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[1] We consider the problem of simulating sequences of daily rainfall at a network of
sites in such a way as to reproduce a variety of properties realistically over a range of
spatial scales. The properties of interest will vary between applications but typically
will include some measures of ‘‘extreme’’ rainfall in addition to means, variances,
proportions of wet days, and autocorrelation structure. Our approach is to fit a generalized
linear model (GLM) to rain gauge data and, with appropriate incorporation of intersite
dependence structure, to use the GLM to generate simulated sequences. We illustrate the
methodology using a data set from southern England and show that the GLM is able
to reproduce many properties at spatial scales ranging from a single site to 2000 km2

(the limit of the available data).

Citation: Yang, C., R. E. Chandler, V. S. Isham, and H. S. Wheater (2005), Spatial-temporal rainfall simulation using generalized

linear models, Water Resour. Res., 41, W11415, doi:10.1029/2004WR003739.

1. Introduction

[2] Generalized linear models (GLMs) extend the clas-
sical linear regression model, and are well established in
the statistical literature. Since the pioneering work of Coe
and Stern [1982] and Stern and Coe [1984], their
potential for use in hydrology and meteorology has also
been recognized. These authors used a two-stage ap-
proach to model both rainfall occurrences and amounts
at a single site. Chandler and Wheater [2002] extended
their work, proposing a GLM-based framework for inter-
preting spatial-temporal structure and applying this frame-
work to the analysis of daily rainfall sequences in the
west of Ireland. Yan et al. [2002] used the same frame-
work for the analysis of daily maximum wind speed in
northwestern Europe. Both of these studies have demon-
strated the power of the GLM methodology for analyzing
and representing complex relationships among compo-
nents of the climate system.
[3] The use of GLMs to study relationships is of interest

in its own right. However, their potential goes beyond this,
since they are effectively probability models and can
therefore be used to simulate realistic sequences of clima-
tological and meteorological variables, incorporating the
complex structures that they represent. For example, Yan
et al. [2005] have explored the use of GLMs to simulate
daily wind speed sequences at a network of European
locations. Yang et al. [2005] give an application of GLMs
to the simulation of daily sequences of potential evapora-
tion, for hydrological applications.
[4] In this paper, we explore the use of GLMs to simulate

multisite sequences of daily rainfall. Multisite rainfall sim-

ulation is a well-studied problem, and a variety of methods
have been proposed for tackling it. These include trans-
forming the rainfall distribution to approximate normality,
with zeroes corresponding to negative transformed values
[e.g., Stehlı́k and Bárdossy, 2002]; techniques based on
resampling [Buishand and Brandsma, 2001]; and those
based on unobserved underlying weather states [Hughes et
al., 1999; Charles et al., 1999]. Against this background,
the need for yet another simulation approach is perhaps not
immediately clear. However, compared with some other
methods GLMs are easily interpretable and computationally
inexpensive and, in our view, this justifies their addition to
the simulation toolkit.
[5] When generating multisite rainfall sequences, it is

necessary to allow for the fact that neighboring sites tend
to experience similar rainfall amounts on the same day,
due to common exposure to a single weather system. We
refer to this as ‘‘spatial dependence’’; it should be
distinguished from ‘‘systematic regional variation,’’ which
is the tendency of neighboring sites to share a common
climate because they are in a similar location. The GLMs
of Chandler and Wheater [2002] specify models for the
marginal time series at each site, into which systematic
variation is easily incorporated via the use of appropriate
covariates such as site altitude. To simulate at a network
of sites however, it is necessary to specify a joint
distribution for all the time series. The present paper
provides some suggestions for achieving this, by con-
structing models for spatial dependence which respect the
marginal distributions from a GLM.
[6] Section 2 gives a brief introduction to GLMs for daily

rainfall sequences. In section 3 we develop a framework for
the modeling of spatial dependence in both rainfall occur-
rence and amounts. Our treatment of dependence in
amounts is correlation-based, and hence can be applied
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quite generally. However, our model for occurrence is
designed for applications where intersite dependence is
strong and does not vary much with distance: it is therefore
most suitable for use in catchments that are small relative to
the weather systems that affect them (this is the case for
almost all UK catchments, for example). Section 4 provides
an example of multisite daily rainfall simulation for a
catchment in southern England; and the work is summarized
in section 5.

2. Generalized Linear Models for Daily Rainfall

[7] The theory of GLMs is reviewed thoroughly by
McCullagh and Nelder [1989]; for a more introductory
account, see Dobson [2001]. Here we outline how GLMs
may be applied in hydrology or meteorology. Further details
are given by Chandler and Wheater [2002], Yan et al.
[2002], and Chandler [2005].
[8] The fundamental idea is to predict a probability

distribution for each day’s rainfall at every site of interest,
by relating the mean of that distribution to the values of
various other related quantities which we call ‘‘covariates.’’
Possible covariates include previous days’ rainfalls (possi-
bly at more than one site), the month of the year and
variables representing topographic and other location
effects. Our implementation broadly follows that of Coe
and Stern [1982] and Stern and Coe [1984], who adopted a
two-stage approach as follows.
[9] 1. Model the pattern of wet and dry days at a site

using logistic regression. Let pi denote the probability of
rain for the ith case in the data set, conditional on a
covariate vector xi; then the model is given by

ln
pi

1� pi

� �
¼ x0iB; ð1Þ

for some coefficient vector B.
[10] 2. Fit gamma distributions to the amount of rain on

wet days. The rainfall amount for the ith wet day in the
database is taken, conditional on a covariate vector Xi, to
have a gamma distribution with mean mi where

ln mi ¼ X0i; ð2Þ

for some coefficient vector ;. All gamma distributions are
assumed to have a common shape parameter, n say (if n = 1
the distributions are exponential). This is equivalent to
assuming that, conditional on the covariates, daily rainfall
values have a constant coefficient of variation [McCullagh
and Nelder, 1989, chapter 8].
[11] These two models are referred to as ‘‘occurrence’’

and ‘‘amounts’’ models respectively. The right-hand sides
of (1) and (2) are called ‘‘linear predictors. ’’ In the GLM
framework, model fitting (estimation of the coefficient
vectors B and ;) and selection can be carried out using
likelihood methods. Models can be checked using a
variety of simple but informative residual plots, illustrated
in section 4. Further features include the ability to model
interactions between covariates (two covariates are said to
interact if the effect of one of them depends upon the
value of the other), and the estimation of nonlinear
transformations of covariates. Interactions can yield useful

information about the mechanisms driving the rainfall
process. For example, Chandler and Wheater [2002]
found in a model for Irish rainfall that there was a
significant interaction between the North Atlantic Oscil-
lation (NAO) and covariates representing the seasonal
cycle; increases in the NAO are associated with increases
in winter rainfall but have little effect in the summer
months. This agrees with our understanding of the NAO
as a phenomenon whose effects are mainly confined to
the Northern Hemisphere winter [Hurrell, 1995]. One of
the potential advantages of the GLM methodology is that
it allows us to incorporate such structures into simulated
rainfall sequences.
[12] It is useful to compare the GLM approach with

other commonly used models for daily rainfall data, as
reviewed by Wilks and Wilby [1999], for example. Many
such models can in fact be regarded as special cases of
GLMs. Markov Chain models for rainfall occurrence can
be written in the form (1) by including binary covariates
representing the occurrence or not of rain on previous
days [see, e.g., Chandler and Wheater, 2002, section 3.1];
separate Markov Chain parameters can be defined for
each month of the year via an interaction between
‘‘monthly’’ and ‘‘previous days’’ covariates. As far as
rainfall amounts are concerned, it is common to use a
mixture of two exponential distributions as by Wilks
[1998], fitted on a month-by-month basis with no tem-
poral dependence. Although our amounts model (2) is not
exactly of this form, the overall distribution of rainfall
amounts will be a mixture of gammas whenever some
covariate values change on a daily basis. Such covariates
might include daily circulation pattern indices, or func-
tions of previous days’ rainfalls. In our experience, such
covariates are invariably found to be statistically signifi-
cant. The implication is, in agreement with many previ-
ous investigations [see Wilks and Wilby, 1999, and
references therein], that rainfall amounts are not well
modeled using a single gamma distribution and that a
mixture of distributions is more realistic.

3. Spatial Dependence Structure

[13] Models (1) and (2) specify probability distributions
for daily rainfall at individual sites, conditioned on the
values of various covariates such as previous rainfalls, time
of year and ‘‘external’’ factors such as the NAO. A single-
site sequence can then be simulated, given some initial
conditions, by sampling a value from the first day’s distri-
bution, using this value to construct a distribution for the
second day, sampling a new value for the second day and so
on. Typically, the required initial conditions are provided by
a few days’ observed data.
[14] For the generation of simultaneous rainfall sequences

at several sites, in general it will be necessary to account for
dependence between the sites, unless they are widely
separated in space. The single-site simulation procedure
must now be modified: instead of specifying individual
distributions for the next day’s rainfall at each site, it is
necessary to specify a joint distribution for the next day’s
rainfalls at all sites. We proceed in two stages, first defining
a joint distribution for the wet-dry pattern of rainfall
occurrence, and then the distribution of the rainfall amounts
vector at the wet sites. The mean vectors of these joint
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distributions are specified by the GLMs of the previous
section.

3.1. Rainfall Amounts

[15] We deal with the joint distribution of amounts first,
since this is easier to specify than that for occurrence. It is
convenient to proceed via a transformation to marginal
normality at each site, since in this case the spatial depen-
dence is conveniently summarized using the intersite cor-
relation structure of the transformed values. If Y is a
continuous random variable with distribution function
F(y) = P(Y � y), then an exact normalizing transformation
is given by Z = F�1[F(Y)], where F[.] is the distribution
function of the standard normal distribution. In this case, a
dependent vector Y could be generated by simulating a
multivariate normal random vector Z, and then setting Y =
F�1[F(Z)] for each element of Z. However, when (as here)
the Ys have gamma distributions, the evaluation of both F�1

and F is relatively expensive computationally. This can
slow down simulations, which is a disadvantage if large
quantities of data are to be generated. As an alternative, we
note that if Y is gamma distributed, the distribution of Y1/3 is
normal, to a degree of approximation described as ‘‘absurdly
accurate’’ by Terrell [2003]. In fact, if Yi is the observed
amount for the ith wet day in a database, and mi is the
modelled mean of the gamma distribution for that case, then
the quantities

r
Að Þ
i ¼ Yi=mið Þ1=3 ð3Þ

all share the same normal distribution, approximately. The
mean and variance of this normal distribution can be
calculated numerically, as described in section 3.3.2 of
Chandler and Wheater [1998]. The calculation needs to
be carried out only once in any simulation, since the mean
and variance depend on n, the common shape parameter of
the gamma distributions, but not upon the means {mi}.
[16] The quantities {ri

(A)} are called Anscombe residuals.
Since they are approximately normal, it is natural to
describe spatial dependence via a model for their intersite
correlations (although this does not necessarily capture all
of the dependence structure, because it is not guaranteed
that the joint distribution of several Anscombe residuals is
multivariate normal). One might choose to use a standard
geostatistical model to represent these correlations as a
function of intersite distance and direction [Cressie,
1991], or simply to calculate the empirical intersite corre-
lation matrix from historical data. Note also that the
normality of the Anscombe residuals can be used to check
the assumption of gamma distributed rainfall amounts; if
this assumption holds, a normal quantile-quantile plot of the
Anscombe residuals should appear as a straight line except
for the smallest rainfall amounts, as illustrated by Chandler
and Wheater [2002].
[17] Simulation of rainfall amounts at ‘‘wet’’ sites for a

particular day therefore proceeds: first, by sampling a
vector of Anscombe residuals from a multivariate normal
distribution with an appropriate mean and covariance struc-
ture (standard algorithms exist for this) and, second, by
inverting the transformation (3) at each site. If any negative
values are generated, they are discarded and a new vector is
drawn. One potential drawback is that the scheme takes no

account of ‘‘dry’’ sites, since the amounts model is only
defined at sites where the rainfall amount is nonzero.
Therefore it is not guaranteed to produce small amounts
of rain near sites which are dry (a phenomenon labeled
‘‘spatial intermittence’’ by Bárdossy and Plate [1992]),
although wet sites which are close to each other will tend
to have similar rainfall amounts. There are, however, few
currently available simulation methods that overcome this
problem. One approach, adopted by Stehlı́k and Bárdossy
[2002], for example, is to treat the combined occurrence-
amounts process as a transformation of a single underlying
Gaussian field, with nonzero rainfall occurring only when
this field exceeds some threshold. The spatial correlation
structure of the field ensures a tendency for small rainfall
values to appear close to zeroes. One drawback of this
approach is the implication that occurrence and amounts
have the same underlying structure: this is questionable on
both physical and empirical grounds. For example, in
section 4 below, we find that systematic regional variation
is different for the two processes. This is a typical finding
[see, e.g., Chandler and Wheater, 2002, Figure 5].
[18] Alternative solutions to this problem have been

suggested by Wilks [1998] and by Charles et al. [1999].
Wilks suggested a scheme that effectively amounts to the
use of dependent sets of pseudorandom numbers to generate
the two components (occurrence and amounts) of the
rainfall process. Within his modeling framework, such an
approach is relatively straightforward to implement and,
although there is no particular theoretical justification for
the precise form of dependence used, results are encourag-
ing. The approach taken by Charles et al. was to regress
(transformed) amounts at a site upon rainfall occurrence at
neighboring sites. Of the various alternatives available, this
is perhaps the most readily incorporated into our own
framework. It would be of interest to explore these ideas
within the context of the models we consider; however,
such an exercise is well beyond the scope of the present
paper. In any case, the importance of spatial intermittence in
determining hydrological response is not clear: it will
presumably be application-dependent.

3.2. Rainfall Occurrence

[19] For the binary rainfall occurrence model a transfor-
mation to marginal normality is not possible and an alter-
native approach to the modeling of spatial dependence is
required. Possible approaches include specifying the depen-
dence via the correlation structure of the wet/dry field, in the
spirit of Oman and Zucker [2001] and Lunn and Davies
[1998]; discretizing a continuous-valued process with ap-
propriate dependence structure, as by Emrich and
Piedmonte [1991]; specifying the dependence via odds
ratios between pairs of sites [Cox and Wermuth, 1996,
section 3.7]; conditioning on a hidden ‘‘weather state’’
variable as by Hughes et al. [1999]; and including simul-
taneous rainfalls at other sites as extra covariates in the
logistic regression model. There are drawbacks to many of
these approaches, however. For example, the correlation
between binary variables is constrained by the marginal
probabilities: since the probability of rain at each site
changes each day, the correlation structure must therefore
change as well, and it becomes difficult to specify a
plausible correlation-based model for the dependence. Other
approaches suffer from computational cost, either in esti-
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mating or in simulating the correlation structure. More
details are given by Wheater et al. [2000, chapter 4].
3.2.1. Modeling the Number of Wet Sites
[20] A particular feature of space-time rainfall is that, at

typical scales of hydrological interest, intersite dependence
is strong and sites tend to be either mostly wet or mostly
dry. This reflects the fact that all sites tend to be influenced
by the same weather systems on particular days. For
hydrological purposes, it may be important to reproduce
accurately the distribution of numbers of wet sites, since this
is related to the proportion of an area which experiences
rain. Our experience is that it can be difficult to reproduce
the shape of this distribution well, using simple versions of
the methods outlined above. We therefore explore here the
idea of modeling the distribution directly. This approach has
been used in other applications, notably in the analysis of
teratology (developmental toxicity) data [see, e.g., Ryan,
1995, and references therein]. It has the advantage of being
both conceptually straightforward and computationally fea-
sible. At the present stage of development, a potential
drawback is that there is no concept of intersite distance,
except as implied by the regional variation of the probabil-
ities from the rainfall occurrence model (1). This is probably
acceptable at spatial scales where intersite dependence is
uniformly high, especially since it is difficult to obtain very
strong dependence using other methods. The model may not
be suitable, however, at larger scales where there is sub-
stantial variation of intersite dependence with distance.
[21] We begin by establishing some notation. We wish to

simulate, for day t, a vector of dependent binary random
variables at S sites, Yt = (Y1t . . . YSt)

0 say. The rainfall
occurrence model (1) allows us to calculate E(Yst) = pst, say.
A (nonunique) dependence structure can be specified for Yt

through the distribution of Zt =
PS

s¼1Yst. Since the {pst}
vary from day to day, so does the distribution of Zt; in
particular, we have E(Zt) =

PS
s¼1 pst.

[22] A flexible family of distributions for discrete random
variables taking values in {0, 1, . . ., S} is the beta-binomial:

P Zt ¼ zð Þ ¼ S

z

� �
G at þ zð ÞG S þ bt � zð ÞG at þ btð Þ

G at þ bt þ Sð ÞG atð ÞG btð Þ ð4Þ

for z = 0, 1, . . ., S. The parameters of the distribution are
at 2 R

+ and bt 2 R
+. The mean and variance are

Sat

at þ bt
and

Satbt at þ bt þ Sð Þ
at þ btð Þ2 at þ bt þ 1ð Þ

; ð5Þ

respectively. It is convenient to reparameterize the
distribution here: set

qt ¼
at

at þ bt
and ft ¼ at þ bt ; ð6Þ

so that

E Ztð Þ ¼ Sqt and Var Ztð Þ ¼ Sqt 1� qtð Þ ft þ Sð Þ
ft þ 1

: ð7Þ

We can think of qt = S�1 E(Zt) = S�1PS
s¼1 pst as a mean

parameter, which is determined by the ps from the rainfall
occurrence model. As ft ! 0, the distribution becomes
increasingly concentrated around 0 and 1 (see Figure 1); as
ft ! 1 the distribution tends to the binomial, with
parameters S and qt. Since the binomial distribution arises if

Figure 1. Examples of beta binomial distributions when S = 10. Each row corresponds to a fixed value
of the dispersion parameter f; each column corresponds to a fixed value of the mean parameter q.
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all the Ys are independent and identically distributed, ft can
be regarded as an overall summary of spatial dependence,
with small values corresponding to strong dependence.
[23] As a first attempt at modeling in this way it is

convenient, and not implausible, to assume that ft = f is
constant for all t, so that qt is the only time-varying
parameter of the distribution. As qt varies, the effect
therefore is to move along one of the rows of Figure 1; in
this way we hope to reproduce typical ‘‘summer’’ and
‘‘winter’’ distributions of numbers of wet sites, for example.
[24] In standard applications, the beta-binomial distribu-

tion arises as that of a binomial (S, h) random variable,
where h is itself a random variable distributed according to a
beta distribution with parameters at and bt. Thus the
following simple mechanism would give rise to a beta-
binomial distribution for the number of wet sites in a fixed
region sampled at S locations: a proportion ht of the region
is wet, where ht is a beta-distributed random variable. Given
ht, individual locations are wet or dry independently of each
other. Although this mechanism is clearly idealized, it
provides a useful insight into the model. In particular, it
suggests that the model may fail if sites are too
close together, since in this case the assumption of condi-
tional independence given ht is unlikely to hold even
approximately.
3.2.2. Estimation
[25] Given data {(St, Zt, qt =

P
s pst/St) :t = 1, . . ., T} (we

write St here because in practice it is unlikely that the
number of sites yielding data will be the same for all t), the
parameter f can be estimated using a method of moments.
Let Rt

2 = (Zt � Stqt)
2/[Stqt(1 � qt)]; then, from (7), we have

E R2
t

� �
¼ fþ St

fþ 1
;

suggesting the estimator

f̂ ¼

XT

t¼1
St � 1ð ÞXT

t¼1
R2
t � 1

� �� 1: ð8Þ

The parameterization in terms of qt and f, and proposal for a
moment-based estimate of f, are similar to those given by
Williams [1982].
3.2.3. Simulation
[26] Having specified a plausible model for the distribu-

tion of Zt, a natural strategy for simulation is to sample the
number of wet sites from this distribution and then to
allocate the positions of these wet sites. However, this needs
to be done in such a way as to reproduce correctly the
marginal probabilities of rain at each site, according to
the rainfall occurrence model. Define ws,z,t = P(Yst = 1 and
Zt = z). Then we have

P Yst ¼ 1ð Þ ¼
XS
z¼0

ws;z;t: ð9Þ

The marginal probabilities will be reproduced correctly if
(9) yields the value pst for each s; therefore we seek an
assignment of the probabilities {ws,z,t : s = 1, . . ., S; z = 0,
. . ., S} that will ensure this. This assignment may not be

unique, but this is not a problem since the aim is merely to
reproduce accurately the distribution of the number of wet
sites, while at the same time preserving the probabilities of
rain at each site. Perhaps a more serious problem is that the
postulated distribution of Zt is not guaranteed to be
compatible with the modelled marginal probabilities;
obvious examples of incompatibility arise when P(Zt = S) >
mins P(Yst = 1) and when P(Zt = 0) > mins P(Yst = 0), for
example. In practice however, we have only ever encoun-
tered incompatibility in cases where the occurrence model
(1) generated ps at one or two sites that differed substantially
from the majority. This type of behavior is unrealistic, and is
symptomatic of a poor occurrence model. In the work
reported in section 4 below we have simulated almost four
thousand years of daily rainfall at 10 sites, without once
encountering this problem. Our simulations use an efficient
algorithm for finding a valid set {ws,z,t} if it exists.
Unfortunately, the details of this algorithm are far too
lengthy to include here; a full description is given by
Chandler [2002, appendix].

3.3. Imputation

[27] Daily rainfall records often contain missing values. If
there are many missing values in a record, there will be
considerable uncertainty regarding the historical values of
various rainfall summary statistics. If we can determine the
distribution of these missing values conditional upon the
observed values at all sites, then we can simulate from this
conditional distribution many times to construct uncertainty
envelopes for historical rainfall statistics. We refer to this
process as imputation. It can be an extremely helpful aid to
the interpretation of historical records.
[28] The spatial dependence structures proposed here, for

both amounts and occurrence models, are specified in such a
way that imputation is straightforward. For the occurrence
model, the conditional distribution emerges naturally as a
by-product of the algorithm for allocating the locations of
wet sites given Zt, as described by Chandler [2002]. For the
amounts model, dependence is specified via a multivariate
distribution for the Anscombe residuals. If data from some
sites are missing, but others are observed, then Anscombe
residuals can be computed from the observed sites and the
conditional distribution of the missing residuals, which
remains multivariate normal, can be calculated [Krzanowski,
1988]. Missing residuals can then be simulated from this
conditional distribution, and back transformed to yield
imputed rainfalls.

4. Example

[29] In this section we illustrate the theory described
above, by fitting GLMs to a daily rainfall data set
and simulating the resulting models to evaluate their
performance.

4.1. Data Overview

[30] The data used in this example are from a network
of 34 gauges run by the UK Meteorological Office. The
gauges are in a 50 km � 40 km region in southern
England. The area is relatively flat; gauge altitudes range
from 10 to 170 m above sea level. The earliest record
starts in 1904, and data from some gauges are available
until 2000.
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[31] The data were checked carefully before use. Several
of the ‘‘daily’’ values turned out to be monthly totals, and
were discarded from the subsequent analyses. Moreover, the
recording resolution changed from 0.3 to 0.1 mm during the
early 1970s. This change may create illusory trends, partic-
ularly in rainfall occurrence, and should therefore be taken
into consideration during modeling. Finally, there were
spatial inconsistencies among the records, mainly relating
to the recording of small rainfall amounts (‘‘trace values’’).
A simple but effective solution to this problem is to
threshold the data prior to modeling: we fit GLMs to the
quantities

Yst* ¼ max Yst � t; 0ð Þ ð10Þ

for some threshold t > 0. The fitted models may then be
used to simulate daily sequences of thresholded values, and
the thresholding removed by computing

~Yst ¼
Y*st þ t Y*st > 0

0 otherwise:

�
ð11Þ

In this procedure, the simulated output will contain no
values between 0 and t. However, for practical applica-
tions this will not cause problems providing the threshold
is small enough. Our experience is that setting a small
threshold can remove many apparent inconsistencies
between gauges, without appreciably affecting the im-
portant properties of the sequences. The modeling task is
simplified considerably if the inconsistencies are removed.
In the work reported here, the threshold t has been set to
0.5 mm.

4.2. Fitted Models

[32] To represent rainfall occurrence a logistic model of
the form (1) has been fitted to the thresholded data from all
sites. The model contains 19 terms, selected using a
combination of formal tests and residual analyses in an
approach similar to that described by Chandler and Wheater
[2002]. Systematic regional effects are represented using
site altitude as a covariate, as well as Legendre polynomial
transformations of site eastings and northings (these are
defined in such a way as to be approximately uncorrelated if
the sites are uniformly distributed on the study region [see
Chandler, 2005]). Seasonality is represented using sine and
cosine terms; temporal dependence and persistence are
modelled using indicators for three previous days’ rainfall
so that the structure is effectively a generalized Markov
chain, as described in section 2. We refer to these indicators
as ‘‘autoregressive terms.’’
[33] In addition to this basic structure, the model

contains terms representing the effect of the NAO, which
is generally regarded as the most important large-scale
structure affecting climate in Europe [Barnston and
Livezey, 1987]. The monthly NAO index used here is
the extended version defined by Jones et al. [1997]. The
fitted model involves significant interactions between the
NAO and seasonal terms; this reflects the fact that
the NAO is more strongly associated with UK rainfall
in winter than in summer.

[34] Finally, to allow for the change in recording resolu-
tion in the early 1970s, the model includes an indicator
variable defined as

Is;t ¼
1 for all observations before 1975

0 for all observations from 1975 onward:

�
ð12Þ

The change in resolution means that terms representing
previous days’ rainfall have a different meaning before and
after 1975. This can be accommodated by considering
interactions between the adjustment indicator (12) and any
autoregressive terms. The occurrence model used here
contains just the interaction involving the lag 1 autore-
gressive term; other interactions involving the adjustment
indicator were not significant.
[35] For rainfall amounts, the gamma model (2) has been

fitted to the same data set. The covariates are similar to
those in the occurrence model, but fewer in number (only 13
are included). The reduction is mainly due to simpler site
effects, implying that rainfall amounts are less affected by
spatial variations within the region than rainfall occurrence.
Additionally, the amounts model contains no terms involv-
ing adjustment indicators of the form (12), since these terms
were not significant. The shape parameter is estimated as
0.6873.
[36] The fit of either model can be assessed by plotting

mean Pearson residuals by month, site and year. The
Pearson residual for an observation Y is proportional to

Y � E Yð Þ
s

ð13Þ

where E(Y) and s are the expected value and standard
deviation of Yunder the fitted model. If the model is correct,
all Pearson residuals come from distributions with mean
zero and constant variance. To illustrate their use, Figure 2
shows monthly and annual residual plots for the amounts
model. There is some suggestion of a weak trend in the
annual means (a block of predominantly negative values
between 1940 and 1960) and some seasonality in the
monthly standard deviations; however, neither effect is
particularly large. There is no structure in the corresponding
plots for the occurrence model (not shown). Overall, these
analyses suggest that the models represent well the seasonal
structure and trends in the rainfall sequences. The clearest
residual structure is the seasonal variation in standard
deviations for the amounts model. Although not substantial,
this variation suggests that the model could be improved by
relaxing the assumption of a constant shape parameter. This
assumption may affect the ability of the model to reproduce
aspects such as extremes; this is investigated below.
[37] Figure 3 shows mean Pearson residuals at each site

for both occurrence and amounts models. If the model
captures the spatial pattern correctly, the mean residuals
should differ significantly from zero at about 5% of the sites
(indicated by thick circles in the plots). It is clear that this is
not the case. However, neither plot shows any systematic
structure. For example, in the occurrence model the mean
residuals at neighboring sites B19 and B20 are both
significantly different from zero, but have opposite signs.
This kind of spatial inconsistency cannot be modelled using
a smooth surface. The inconsistencies are worse for the
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occurrence model than for the amounts; this suggests that
problems with small values remain even after thresholding.
However, the results here improve sufficiently upon those
for unthresholded data (not shown) that the thresholding
must be regarded as worthwhile.
[38] As described in section 3, a normal quantile plot of

Anscombe residuals has been used to check the gamma
distributional assumption for the amounts model. The plot is

not shown here; it looks almost identical to that presented in
Figure 4 of Chandler and Wheater [2002], and indicates
that the gamma distribution fits extremely well.

4.3. Spatial Dependence Structure

[39] As described in section 3, when simulating sequen-
ces at a network of sites it is necessary to represent the
dependence between them. Here, dependence in rainfall

Figure 2. Mean and standard deviation (across all sites) of Pearson residuals for amounts model by
month and year. In Figure 2 (top), dashed lines show 95% limits, adjusted for intersite dependence, under
the assumption that the model is correct. In Figure 2 (bottom), dashed lines show the standard deviations
expected under the model.

Figure 3. Mean Pearson residuals from GLMs fitted to thresholded data (threshold = 0.5 mm). Solid
(dashed) circles represent positive (negative) residuals. The radii of the circles are proportional to
the mean values of residuals. Thick lines indicate mean residuals that differ significantly from zero at the
5% level. The background images show the topography of the area; darker shading corresponds to lower
ground. Gauge altitudes range from 10 to 170 m above sea level at sites B13 and B15, respectively.
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amounts is modelled via correlation between Anscombe
residuals. As indicated previously, it is natural to consider
standard geostatistical models for the intersite correlation
structure. However, in this particular example all of the
correlations are similar (90% of them are between 0.76 and
0.94), which is to be expected since the study area is small
relative to most weather systems. In view of this, in our
opinion the additional complexity of a distance-dependent
correlation model is not warranted in this case. In the
simulations reported below we have therefore used a com-
mon correlation, estimated as 0.786, between each pair of
sites. To check the sensitivity of the results to this simpli-
fication, we have repeated all of the analyses for a further
set of simulations using the exact residual correlations
between each pair of sites. All of the results were, in
practical terms, indistinguishable from those reported be-
low. We conclude that at the spatial scales considered here,
the precise choice of intersite correlation structure is rela-
tively unimportant.
[40] To summarize the dependence in rainfall occurrence,

10 sites have been selected that have few missing values
over the period 1961–1999, and for each month of the year
the frequency distribution of the number of wet sites has
been tabulated (excluding days when any site had missing
data). The proportion of days on which 2–8 of the 10 sites
experienced rain ranges from just 0.16 (in September) to
0.21 (in May). Hence, as far as occurrence is concerned, the
variation of intersite dependence with distance is of little
interest in this particular example. We therefore model the
dependence using the beta binomial structure described
previously. The parameter f is estimated, using (8), to be
0.359. The distributions of numbers of wet sites will
therefore look similar to those in Figure 1 (top).

4.4. Simulation

[41] The previous residual analyses indicated that overall,
the fitted models capture well the systematic structure in
rainfall sequences. This does not necessarily guarantee good
simulation performance, however, since small errors in
model specification may cumulate over a long period of
time. Moreover, the occurrence and amounts models have
been assessed individually rather than in combination, and
the simultaneous performance at several sites has not been
investigated. To address these issues, the fitted models have
been used to generate simulated sequences, and properties
of these sequences have been compared with those of the
observations at a variety of spatial scales. Reasonably
complete observational series are needed for this exercise.
To meet this requirement, simulations were carried out over
the 1961–1999 period for the same 10 sites used in section
4.3 to assess dependence in rainfall occurrence.
4.4.1. Summary Statistics
[42] Prior to simulation, 10 sets of imputations were

carried out, replacing any missing observations by
simulated values conditional on the observations as de-
scribed in section 3.3. For each set of imputed data,
summary statistics were calculated; the range of each set
of statistics indicates the uncertainty due to missing data.
The statistics considered were: mean, standard deviation,
proportion of wet days (i.e., proportion of days with
nonzero rainfall after thresholding), conditional mean and
standard deviation (computed for wet days only), maximum

and autocorrelations at lags 1 and 2. Statistics were calcu-
lated separately for each month of the year, for each
individual site and for daily time series obtained by aver-
aging over groups of sites. These average series can be
regarded as estimates of areal mean rainfall at scales up to
2000 km2, and can be used to assess the appropriateness of
the spatial dependence structures used in the simulations.
[43] 100 sets of simulated data were then generated at the

same 10 sites, to simulate the modelled dynamics of the
rainfall processes during the 1961–1999 period. Each
simulation was initialized using the historical data for
December 1960, and was conditioned on the historical
NAO series. Summary statistics were calculated for each
simulation, to yield a simulated distribution for each statis-
tic. If the simulations are realistic, the observed values of the
statistics should look like samples from these simulated
distributions.
[44] Figure 4 shows the results for the regional average

series (i.e. mean of all 10 sites). Similar results are obtained
for other groups of sites, and for individual sites. The worst
individual statistic is the conditional mean, for which the
simulated distributions are slightly too high. This probably
reflects a slight misspecification of the nonlinear autore-
gressive structure in the amounts model. Elsewhere, there
are some isolated discrepancies (e.g., the standard deviation
on wet days in September, and lag 1 autocorrelation in
August), and a tendency for the simulated maxima to peak
later in the year than the observations. The latter result is
consistent with the previous analysis of Pearson residuals,
which suggested that the constant shape parameter in the
amounts model may lead to an underestimation of variabil-
ity in summer and overestimation in winter. However,
overall the observed structure is well reflected in the
simulated distributions. Note in particular that the simula-
tions reproduce features such as the seasonal variation in the
degree of autocorrelation; this is achieved via the interaction
terms in the models.
4.4.2. Simulated Rainfall Distributions
[45] As well as examining rainfall summary statistics, it is

of interest to compare the overall shape of the simulated and
observed rainfall distributions on wet days. This can be
achieved by plotting the quantiles of the observed data
against those of the simulations. Results, for a single site
(code B18; see Figure 3) and for the areal average, are given
in Figure 5. Site B18 is located in the center of the study
area, with a small mean Pearson residual for the amounts
model. Therefore any discrepancies here are due to the way
in which the individual daily gamma distributions are mixed
in the simulations, rather than to any systematic bias in the
individual distributions themselves.
[46] The plots in Figure 5 are typical and indicate good

agreement overall between observed and simulated distri-
butions (in the upper tails, some departures from the line of
perfect agreement are to be expected due to sampling
variability). However, when the distributions are split by
month it becomes apparent that the simulations systemati-
cally overestimate the highest quantiles in January and
underestimate in July. The latter problem seems particularly
acute for the areal average, although in fact it affects only a
small proportion of the distribution (in the areal average
July plot, just 2.5% of observed wet day amounts exceed
21 mm, which is the point where the agreement breaks down;
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this corresponds to around 0.5% of all July days). Once again,
the discrepancy is probably due to the assumption of a
constant shape parameter in the amounts model. The good
agreement between overall distributions suggests that the
difficulty may be resolved if this assumption can be relaxed.
4.4.3. Seasonal Rainfall Totals
[47] Although the NAO contributes to both occurrence

and amounts models, it explains only a fraction of a percent
of the variance in the daily rainfall sequences. However, at a
seasonal scale the effect is much more apparent. To illustrate
this, Figure 6 shows the observed time series of summer
(June, July, and August) and winter (December, January,
and February) rainfall totals, averaged over the 10 sites used
in the simulation. For each year, the distributions of simu-
lated seasonal totals are also shown. Overall, the simulated
distributions seem more or less consistent with the obser-
vations. This is not surprising, given that the simulations
reproduce the mean structure of the time series as shown
above. Of more interest is the fact that that the simulated
summer distributions show little interannual variability,
whereas the winter distributions are more erratic. The

NAO provides the only possible source of interannual
variability in the simulations; accordingly we conclude that
it is responsible for the variation in winter distributions but
has little effect upon summer rainfall. This is in agreement
with previous studies [e.g., Hurrell, 1995] and could also
have been deduced by examining its contribution to the
linear predictors in the models, as by Chandler and Wheater
[2002]. However, the simulations also indicate that, despite
the very weak signal in the daily time series, the simulations
generate a plausible level of interannual variation in winter
rainfalls. Note in particular that the observations follow the
simulated distributions closely in the latter half of the 1990s,
suggesting that winter rainfalls during this period were
strongly associated with variation in the NAO. There are
places where the observations do not follow the simulated
distributions particularly closely, for example, in 1990 and
1992, and this suggests the existence of other factors
affecting winter rainfall in the area, that are not accounted
for by our models. A possible candidate is the east Atlantic
pattern (EA), defined by Barnston and Livezey [1987].
Murphy and Washington [2001] reported that the EA is

Figure 4. Observed and simulated monthly summary statistics for 10-gauge average daily series
(models fitted to thresholded data). Thick lines show the envelope obtained from 10 sets of imputations
of missing data; shading shows the range of the simulated distributions along with 5th, 25th, 50th, 75th,
and 95th percentiles. Mean, standard deviation, proportion of wet days, and conditional mean (i.e., mean
on wet days only) are shown from left to right in the top row, and conditional standard deviation,
maximum, and autocorrelation at lags 1 and 2 are shown from left to right in the bottom row.
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more closely related than the NAO to rainfall variability in
the British Isles, particularly in the southeast, from Septem-
ber to April. Our own calculations support this: for example,
the correlations with December total rainfall in our data set

are 0.375 and 0.146 for the EA and NAO respectively.
Unfortunately, however, the EA is not defined between May
and August, which makes it difficult to incorporate directly
into a GLM. Further research is required to investigate this.

Figure 5. Quantile-quantile plots of observed and simulated daily wet day rainfall distributions for (top)
a single site and (bottom) a 10-site average. (left) Overall rainfall distributions for each series and the
distributions during (middle) January and (right) July.

Figure 6. Observed time series (thick solid line) and annual simulated distributions of summer (June,
July, and August) and winter (December, January, and February) rainfall, averaged over 10 sites.
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4.4.4. Numbers of Wet Sites
[48] The results discussed so far indicate that the fitted

models are able to reproduce various properties of rainfall,
at spatial scales ranging from a single site to a 10-site
average. This indicates that the models’ representation of
spatial dependence is adequate. As an additional check on
the use of the beta-binomial dependence mechanism,
Figure 7 shows the observed and simulated distributions
of numbers of wet sites. The variability in the simulations is
illustrated by calculating frequencies individually for each
realization, and displaying the 5th and 95th percentiles of
each frequency. The agreement between observations and
simulations is excellent throughout. Of course, this does not
represent an independent verification of the beta binomial
model, whose parameters have been chosen to fit this
particular set of data. However, it does indicate that the
distribution is capable of reproducing observed histograms;
moreover, the good agreement for both summer and winter
suggests that the assumption of constant f is reasonable.
4.4.5. Extremes
[49] As a final check on the simulations we examine their

extremal behavior, since this is of primary importance if the
models are to be used in applications such as flood risk
assessment. In Figure 4 the comparison of observed and
simulated maxima in each month of the year provides a
preliminary confirmation that extremes are reproduced
fairly well. A more sophisticated approach is to compare
the simulations with the results of a classical extreme value
analysis. For each of the observed daily time series studied
here, a generalized extreme value (GEV) distribution has
been fitted to the annual maxima using maximum likeli-
hood, as described by Coles [2001]. The GEV distribution
function (the probability that the annual maximum daily
rainfall does not exceed m, say) is

G mð Þ ¼ Pr M � mð Þ ¼ exp � 1þ x
m� m
s

� 	h i�1=x
� �

ð14Þ

for all m with 1 + x(m � m)/s > 0. The parameters m and s
control the location and scale of the distribution, and x is a
shape parameter. If x = 0 a Gumbel distribution is obtained,
if x < 0 the distribution has a finite upper bound, and if x > 0
it is heavy tailed. The value of x is often regarded as an
important summary measure of extremal behavior in risk
assessment, since it controls the magnitude of ‘‘rare but
conceivable’’ events.
[50] As a first comparison between the fitted GEV dis-

tributions and the GLM-generated annual maxima, quantiles
of the GEV distributions have been compared directly with
those of the simulated maxima. To obtain reasonable
estimates of the latter, we pool all of the 39-year simulations
to give a combined sample of 3900 simulated maxima at
each of the 10 sites. The results are summarized in Table 1
for all of the individual sites in the simulation as well as the
time series of areal averages and an average of a group of
three sites. For each time series, Table 1 shows estimates of
the median, 90th and 99th percentiles of the distribution
of annual maxima. Almost everywhere there is a striking
agreement between the two sets of estimates; the main
exception is at site B33, where the GLM simulations
substantially overestimate relative to the GEV fit. However,
standard diagnostics at this site (not shown) indicate that the
GEV fits poorly; indeed, the largest of the 39 maxima here
is 81.3 mm, which is far in excess of the 99th percentile of
the fitted distribution. Moreover, the GEV fit at this site is
very different from that at B15, which is nearby (see
Figure 3) and at which the GEV and GLM agree much
more closely. It appears therefore that the discrepancy at this
site may be due to the GEV rather than to the simulations.
The problem could be overcome by pooling data from
several sites before fitting the GEV as in the Flood Estima-
tion Handbook [Institute of Hydrology, 1999], for example.
However, for current purposes it suffices to note that where
the GEV fits reasonably, the two methods of estimating rare
events are in close agreement.

Figure 7. Distributions of numbers of wet sites for (top) January and (bottom) July. Middle bars
indicate observed frequencies; left and right bars are 5th and 95th percentiles of the distribution of
simulated frequencies, respectively.

W11415 YANG ET AL.: SPATIAL-TEMPORAL RAINFALL SIMULATION

11 of 13

W11415



[51] A second comparison is between the shape parame-
ters (x) of GEV distributions fitted to observed and simu-
lated annual maxima. As described above, x provides a
convenient summary measure of tail behavior for risk
assessment purposes; hence this analysis is a check on the
upper tail of the simulated distributions. Again, Table 1
shows the results. The estimated standard errors for the
observational estimates are all around 0.1 (except at site
B06, which has an estimated standard error of 0.19); those
for the simulations are around 0.01. The difference reflects
the fact that there are 100 simulated sequences but only one
set of observations. The majority of the observed estimates
are positive, although few of them differ significantly from
zero according to their standard errors. The simulation-
based estimates are all consistent with the observational
ones. More interesting, perhaps, is the fact that they all
significantly exceed zero at the 5% level. In the literature,
positive values of the shape parameter are widely reported
for daily rainfall data [e.g., Katz et al., 2002]. The ability of
the GLMs to reproduce this may appear counterintuitive,
since they are based on gamma distributions and it is known
that, for a sequence of independent gamma random varia-
bles, the limiting distribution of the maximum has x = 0
[Embrechts et al., 1997, Table 3.4.4]. We have checked (via
simulation) that this limiting distribution is effectively
achieved by the maximum of 365 independent observations.
Our results therefore show that the marginal distributions of
the GLMs have heavier tails than the gamma distributions
used to construct them.

5. Summary

[52] GLMs provide a powerful and flexible environment
within which to explore relationships among variables in the
climate system. The main contribution of the current paper
is to demonstrate their potential for simulating realistic
sequences of daily rainfall at a network of sites. The models
are cheap to simulate and have a simple structure. The
biggest difficulty is the representation of spatial dependence
in rainfall occurrence, particularly at spatial scales that are
small relative to weather systems. In such situations the
proposed beta-binomial scheme is conceptually simple and
computationally tractable, and it works well in all the

examples we have tried. At larger scales, however, intersite
dependence will tend to be lower and to vary with distance:
in such cases, other representations of dependence may be
more appropriate.
[53] At present, a potential problem with our models is

that, conditional on the covariates, rainfall amounts and
occurrence are generated independently. It is therefore not
guaranteed, for example, that smaller rainfall amounts will
be generated close to dry sites. The extent to which this is a
problem in applications is not clear. The ultimate test is to
use GLM simulations to drive, for example, a rainfall-runoff
model, and to examine the resulting performance. Work in
this area is currently under way; in the meantime, it has
been demonstrated above that the models are able to
reproduce a variety of hydrologically important properties
of rainfall sequences, at different spatial scales. In particular,
extremes were well reproduced, although there is some
suggestion that the seasonal variation in extremes could
be improved by relaxing the assumption of a constant shape
parameter in the rainfall amounts distributions. Further
refinement could result from the use of distance-dependent
correlation structures for rainfall amounts, and by allowing
for seasonal variation in the spatial dependence structures.
[54] The results reported in section 4 are typical of those

obtained from several other data sets, from the UK and
Ireland as well as other parts of the world. For example,
Yang [2001] fitted GLMs separately to daily rainfall data
from seven different regions representing different climate
regimes in mainland China. Although he did not perform
any simulations, the fitted models were remarkably similar
to those reported above, albeit with lower shape parameters
in the amounts models (interestingly, these shape parame-
ters were almost identical for six of the seven regions, the
exception being the Tibetan plateau). Moreover, in their
original development of GLMs for daily rainfall, Coe and
Stern [1982] worked with data from several African
countries as well as Sri Lanka. This suggests that the
methodology is potentially widely applicable. It would,
however, be useful to verify this by carrying out further
simulation exercises with contrasting data sets.
[55] As well as providing a means of generating ‘‘stand-

alone’’ rainfall simulations, this work has potential
application to the downscaling of future climate scenarios

Table 1. Estimated Percentiles of Distributions of Annual Maxima, Obtained Using Fitted GEV Distributions and From GLM

Simulationsa

Site/Group

P50, mm P90, mm P99, mm x

GEV GLM GEV GLM GEV GLM Observed Simulated

B05 34.8 35.3 50.2 52.7 83.9 80.1 0.263 0.094
B06 29.6 33.5 46.6 48.8 96.3 71.2 0.398 0.056
B13 32.0 30.9 47.8 45.1 66.2 66.9 �0.032 0.057
B15 37.9 42.4 59.1 61.8 96.8 89.8 0.167 0.053
B16 35.7 38.1 52.6 56.6 69.6 82.1 �0.104 0.066
B18 33.2 34.6 50.1 50.0 77.4 71.7 0.120 0.050
B19 33.9 36.9 50.3 53.3 76.5 76.8 0.118 0.048
B20 32.3 36.1 47.6 52.9 70.4 80.5 0.086 0.072
B27 33.6 31.9 51.4 46.6 73.8 68.3 0.004 0.072
B33 34.3 41.9 48.6 61.0 68.3 89.4 0.045 0.048
Average of B18, B19, and B20 33.3 31.2 49.4 44.8 76.6 64.0 0.144 0.052
Average of all 10 sites 31.5 29.7 44.3 42.4 64.9 63.2 0.120 0.053

aAlso shown are the estimated shape parameters (x) for GEV distributions fitted to observed and simulated annual maxima. Site locations are shown in
Figure 3.
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generated by atmospheric general circulation models
(GCMs) or regional climate models (RCMs). Despite recent
increases in the resolution of RCMs, there are questions
regarding the representation of rainfall in these models
[Wheater, 2002], and there remains a need for statistical
methods linking gridded climate model outputs to point
rainfall sequences. Downscaling is commonly achieved
using ‘‘weather generators’’ in which the parameters of a
simple model for a rainfall sequence are linked to the output
of a climate model [Wilks and Wilby, 1999]. Commonly,
weather generators for rainfall are based on Markov chain
models for rainfall occurrence, along with skewed distribu-
tions for rainfall amounts. As discussed in section 2, these
models are all closely related to, and in many instances are
special cases of, the GLMs presented here; the GLM
framework allows a more realistic representation of the
relationship between rainfall and large-scale climate. It is
therefore of interest to see if GLM simulations, driven by
the output of a climate model rather than by observed large-
scale indices, are able to improve upon the performance of
existing weather generators, at least as far as precipitation is
concerned. Research in this area is ongoing.
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