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SUMMARY

Despite evidence for the existence of interspecific interactions between helminth
species, there has been no theoretical exploration of their effect on the dis-
tribution of the parasite species in a host population. We use a determin-
istic model for the accumulation and loss of adult worms of two interacting
helminth species to motivate an individual-based stochastic model. The mean
worm burden and variance:mean ratio (VMR) of each species, and the cor-
relation between the two species are used to describe the distribution within
different host age classes. We find that interspecific interactions can produce
convex age-intensity profiles and will impact the level of aggregation (as mea-
sured by the VMR). In the absence of correlated exposure, the correlation
in older age classes may be close to zero when either intra- or interspecific
synergistic effects are strong. We therefore suggest examining the correlation
between species in young hosts as a possible means of identifying interspe-
cific interaction. The presence of correlation between the rates of exposure
makes the interpretation of correlations between species more difficult. Fi-
nally we show that in the absence of interaction, strong positive correlations

are generated by averaging across age classes.
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INTRODUCTION

Parasitic infections of humans have traditionally been investigated and con-
trolled without consideration for the potential effects of multiple-species co-
infection on either pathology or intervention outcomes. As a result of this iso-
lationist approach, areas endemic for a mixture of bacterial, protozoan, and
helminthic infections are receiving a combination of antibiotics, antimalarials,
insecticide-treated bednets, and anthelminthics through essentially vertical
programmes such as the Global Elimination of Trachoma (GET 2020) (Mar-
iotti, Pararajasegaram and Resnikoff, 2003), the Roll Back Malaria part-
nership (Remme, Binka and Nabarro, 2001), the African Programme for
Onchocerciasis Control (Sékétéli et al. 2002), the Global Programme for
the Elimination of Lymphatic Filariasis (Molyneaux and Zagaria, 2002), and
the Schistosomiasis Control Initiative (Fenwick et al. 2003). This approach
persists despite an emerging body of evidence supporting the notion that
polyparasitism may in fact shape experimental (Behnke et al. 2001; Cox,
2001), natural (Lello et al. 2004), epidemiological (Bundy, Sher and Michael,
2000) and clinical (Nacher et al. 2000; Harms and Feldeimer, 2002; Booth
et al. 2004b) patterns, as well as the outcome of control interventions focused
on particular species (Nacher, 2001; Booth et al. 2004a).

The role of factors such as density dependence, parasite-induced host mor-
tality, host heterogeneity, and parasite clumping in shaping the distribution
of helminth parasites among hosts has been discussed by a number of authors
(Anderson and Gordon, 1982; Isham, 1995; Pacala and Dobson, 1988; Duerr,
Dietz and Eichner, 2003). However, with the exception of several papers

on interspecific competition and the coexistence of parasite species (Dobson,



1985; Roberts and Dobson, 1995; Gatto and De Leo, 1998), work has been
on single species models. To our knowledge, there has been no theoretical
investigation of the effect of interspecific interactions on the distribution of
helminths among hosts. This is surprising given the high prevalence of multi-
species coinfection both in human and animal populations (Petney and Ross,
1998) and the mounting evidence for the existence of interactions between
helminth species (Christensen et al. 1987; Behnke et al. 2001; Cox, 2001).

We begin by deriving a simple deterministic model for the accumulation
and loss of two interacting helminth species in a single, ageing host. This
individual-based model is used to motivate a stochastic model that describes
the distribution of the two helminth species in a population of hosts. We
use this model to look at the effects of different types of interaction on mean
worm burden and aggregation for each parasite species, and the correlation
between these species. This is done through an analytical exploration of a
linearized version of the stochastic model and by simulation, with results
presented as functions of host age. Since ecological data on animal hosts are
often not age-specific we briefly explore the effects of combining measures of
parasite aggregation and association across host age classes.

We will adopt the terminology of Behnke et al. (2001) and categorize
the interactions as antagonistic or synergistic. Furthermore, we restrict our-
selves to the analysis of pairs of helminth species. The mode of interaction
is through the density of adult, established worms affecting the rates of es-
tablishment of incoming, larval stages of their own (homologous) species or
the other (heterologous) species. These interactions may arise as the result

of direct effects (e.g. exploitation competition) or may be immunologically-



mediated, although at this stage we do not model the immune response
explicitly. In this paper, we frequently focus on mutually antagonistic and
mutually synergistic interactions. We define mutually antagonistic interac-
tions as those in which parasites of each species reduce the establishment of
parasites of the other species. Thus, these interactions induce host-protection
from heterologous infection. Mutually synergistic interactions are defined as
those in which parasites of each species enhance the establishment of the
other species. These interactions result in increased host susceptibility to

heterologous infection.



MODELS AND RESULTS

Determainistic formulation
A model for two interacting helminth species in a single ageing host, can be
constructed by modifying the simple immigration-death framework (Tallis
and Leyton, 1966; Anderson and May, 1991; Duerr et al. 2003).

The model includes larval (I1,[3) and adult (z1, x2) stages. At age a =0,
there are no larvae or adults of either species: [;(0) = z;(0) = 0 (i = 1,2).
For a > 0, the rate of change with respect to host age a of the numbers of

larvae and adults of each parasite species can be modelled as follows,

% — /\1 _ n16711$1+721$2l1 _ Ulll
a
dl‘l I
— = o1l — mx
da 101 — 121
% — /\2 _ 7726722w2+712:c1 l2 _ U2l2
a
d
% = O'ng — U2T2. (1)

Table 1
In this model, \; represents the net rate at which larval stages of species

i (1 =1,2) invade the host. Incoming larvae either die or become established
and reach the adult stage. Larvae of species ¢ become adults at a per capita
rate o;, and in the absence of any adult worms (of either species) die with a
per capita death rate ;. When adult worms are present, 7; is modulated by
a factor of €% for each adult worm of species j (j = 1,2). Thus adult worms
of species j increase the larval death rate of species i if v;; > 0 and decrease

it if 7;; < 0. Note that the modulation is due to homologous adult worms



when j = ¢ and heterologous adult worms when j # i. The per capita death
rate, p;, of adult worms of species ¢ is unaffected by the worm burden of
either species (it is density-independent). The notation, definition and units
of the parameters for this model are summarized in Table 1.

The model can be simplified by making the assumption that the larval
stage in each species is short-lived, relative to the adult lifespan (o; > p;
i = 1,2). Under this assumption, the dynamics of adult worm numbers
are well described by a model in which larval numbers are at equilibrium

(% = % = 0); Eqn.1 then becomes

d.’l?l _ 0'1)\1 _ T

da o1 + neriTityz: M1ty

d.Tg . 0'2/\2 _ T (2)
da oy + 7726’722$2+712$1 Hala-

We will refer to this model as D (for deterministic). The differential
equations in the system of Eqn.2 can be solved numerically to give numbers
of worms of species 1 and species 2 as functions of host age. It is worth
stressing that x;(a) has been defined as the species ¢ worm burden in a sin-
gle host. Alternatively, z;(a) may be viewed as the mean worm burden of
species 7 in an ageing cohort of hosts (Woolhouse, 1992a). This interpre-
tation is advantageous in that it allows comparisons to be made with data
from a population of hosts. However, the interpretation of the inter- and
intraspecific interaction parameters (the v coefficients) is now less obvious
since the model is no longer individual-based.

For mutually antagonistic interactions, our simulations frequently show

Fig.1



that the intensity of infection of one of the species is convex, i.e. it peaks,
while that of the other species increases monotonically to approach an equi-
librium. This is illustrated by the bottom two curves (the dashed lines)
in Fig.1. Since processes explaining ‘convex’ age-infection patterns are of
interest in parasitology, we explore this phenomenon further in the section
‘Linearization’.

In the next section we develop a stochastic formulation of model D. The
model will be used to give insight into the effects of interactions on the joint
distribution of the two species in a population of hosts. In particular, this
will allow us to explore the effects of interactions on the mean worm burden
and dispersion for each species and also on the correlation between species;
the latter two quantities can only be investigated with a stochastic model.
Furthermore, since the stochastic model is individual-based, the interpreta-

tion of the interaction parameters is straightforward.

Stochastic formulation

In the stochastic model, we consider the changes of state in a small time
period of length 6. By making § arbitrarily small, possible changes of state
are limited to: 1) a worm of species i is acquired; 2) a worm of species i
dies. The stochastic model can be specified by the rates of transition from
one state to another for a host of age a with X;, worms of species 1 and X5,
worms of species 2. Formally, we assume a Markov model for the bivariate
process {X14, Xog;a > 0}; a process is Markovian if given the current state,
the probability of being in a particular state in the future is independent

of past states. The possible transitions for species 1 and the corresponding



rates are as follows,

(Xla,XQa) — (Xla + 1,X2a) at rate bl(Xla,X2a)

o1\

o1+mericitr2izs ) and

where by (z1,25) =

(XlaaX2a) — (Xla - 1:X2a) at rate dl(XlaaX2a)

where dy (21, x9) = p121.

Similar rates can be defined for species 2, i.e. for the transitions (X1, X2,) —
(X4, Xog +1) and (X14, Xoa) = (X14, X2a — 1). This model will be referred
to as model S (for stochastic). Model S is analyzed by simulating species
1 and species 2 worm burdens in a number of ageing hosts using two prop-
erties of Markov processes. First, given that a host has x; species 1 worms
and x, species 2 worms, the amount of time for which a host is in state
(z1, z2) is determined by sampling from an exponential distribution with rate
b1 + be + dy + dy (note that the arguments of by, etc. have been dropped for
notational convenience). Secondly, on leaving state (zi, z3), the host enters
state (z1+ 1, x9) with probability bm%iﬁ’ state (x1 — 1, x2) with probabil-

. d1 . . . .
Ity gomrasd ete This can be simulated by generating a uniform random

number, U, in [0,1]. If U < m, the host enters state (x; + 1, x9), if
by b1+d1 : .
v tiga S U < gotdsg, it enters (z1 — 1,z9) and so on.

The non-linearity of the functions b; and b, makes analysis of model S
difficult. However, some insight can be gained by approximating b; and by

by linear functions, as we now discuss.



Linearization

Provided that 121 4+ Y2129 <€ 1 and y92x9 + Y1221 < 1, the functions
b;(x1,22) (¢ = 1,2) may be approximated by the first terms of Taylor series
expansions. The resulting approximations are linearly dependent on x; and

T2,

bl(fUl,ﬂJz) ~ 5\1(1 — Y111 — 5’21552)

bo(z1,22) ~ :\2(1 — Yooy — Y1221) (3)

where \; = A,(G"T’n),fy}, = ’in(a.Zf,,.) (1,7 = 1,2). These new ‘composite’

parameters can be thought of as follows: i represents the rate of parasite
establishment of species ¢ in the absence of adult worms, and ¥;; (1,7 = 1,2)
represents the extent to which each adult worm of species j affects the rate of
establishment of species i. The effect is homologous (intraspecific) for j =i
and heterologous (interspecific) for j # 1.

Using this linearization, we define a linear model (L). In this model, the
rates at which adult worms are acquired are given by the linearized form of
bi(x1, z2) and by(z1,x9) provided that these functions are non-negative. For
those values of z; and x5 where the functions are negative, the rates are set
to zero. Formally, the rate at which adult worms of species 1 are acquired

by a host is

10



~ :\1(1 — Y1121 — Yo1%e) if A11m + oz < 1
b1($1,$2) =
0 otherwise

An equivalent function, by, is used for species 2, and the rates at which
adult worms are lost from the host are as in model S. Model L approximates
model S when v1121 + Y2172 < 1 and Y220 + Y1221 < 1, but it is also a well-
defined model in its own right, that has the advantage of being analytically

tractable.

Convexr Age-Intensity Profiles Assumptions outlined in Appendix A allows
us to derive a set of differential equations to approximate the mean worm

burdens of species 1 and species 2 at age a, under model L:

C%E[Xla] = 5\1(1 - ’711E[X1a] - 7721E[X2a]) - M1E[X1a]
L E[Xou] = Ro(1 — 7B[Xa] — FuB[X]) ~ aBXa] ()

where E[X},] is the expected (or mean) worm burden of species i at age a.
From the solution to these equations (Appendix A), model L predicts that

when intra- and interspecific effects are antagonistic (¢’s positive and non-

zero), the age-intensity profile of species 1 peaks if the following condition is

satisfied

11
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5\1(’3’11 — F2) + 1 > 5\2(’722 — 1) + Ha- (5)

Age-intensity profiles that peak and subsequently decline, rather than
increasing monotonically, are referred to as ‘convex’ (Anderson and May,
1985a,b). Eqn.5 therefore gives a criterion for convexity of age-specific worm
burdens in species 1. If the only difference between the two parasite species
arises because of differences in the intra- and interspecific interaction terms
(all parameters except the 7’s are the same for both species) then Eqn.5
becomes 711 +F21 > Fo2 + F12. From the definition of the 7;; (¢, j = 1,2), this
latter criterion for convexity can be given in terms of the original parameters

as

Y11 + Y21 > Y22 + Yi2- (6)

A biological interpretation of this criterion is clear: if intra- and interspe-
cific reductions in the rate of establishment acting on species 1 are greater
than those acting on species 2, then species 1 will exhibit a convex age-
intensity profile (Fig.2A).

From Eqn.5 it is apparent that if species 1 has a shorter life-expectancy
than species 2, then this will increase the likelihood that species 1 exhibits
a convex infection-age-profile. In particular, if all interaction parameters
are the same (y11 = 791 = Y22 = 712), the shorter lived species will peak
while the longer-lived species reaches a plateau. This is illustrated in Fig.2B
where one species has a life-expectancy of 2 years, e.g. Trichuris trichiura,

(Anderson and May, 1991), and the other has a life-expectancy of 10 years,
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e.g. Onchocerca volvulus (Plaisier et al. 1991).

For species 2 to peak the condition (by symmetry) is,

5\2(’722 — Fo1) + po > 5\1(’711 — F12) + p1.

Clearly, the mean worm burdens of either species 1 or species 2 must
peak, but they cannot both do so (Fig.2A,B). Often, however, it appears as
if neither species exhibits a peak intensity; this happens when the age at
which the maximum (peak) occurs is large and therefore indistinguishable
from the equilibrium value (Fig.2C).

These results only apply if intra- and interspecific interactions are antag-
onistic (all v terms are positive). It is apparent from the solution of Eqn.4
(Eqn.A-6 in Appendix A) that if one interspecific term is positive (antagonis-
tic) and the other negative (synergistic), then the means for both species may
oscillate before reaching equilibrium. In this case, the mean worm burdens
of both species can ‘peak’ (Fig.2D). This may be understood intuitively as
follows: species 1 and species 2 increase initially; since species 2 is facilitated
by species 1 the worm burden of species 2 grows rapidly; however, species
2 limits species 1 so that there is a decline in species 1, this decline subse-
quently reduces the degree of facilitation for species 2 which therefore also

declines.

Dispersion and Correlation As for the means (first moments), the second
moments can be approximated using differential equations (see Appendix

A). These can be used to obtain approximate equilibrium values for the
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variance and covariance, and therefore for the index of dispersion (variance:
mean ratio) and correlation.

The condition that both 17 > |y12] and ye2 > [y91] (| | denotes absolute
value) guarantees the existence of equilibrium values for the approximations
to the first two moments of L. Further, under this condition, it can be shown
that the following are true for these approximations; the details are given in

Appendix B.

1. Mutually antagonistic and mutually synergistic interactions increase
the equilibrium variance:mean ratio (VMR) for both species relative to

the case where there is no interspecific interaction.

2. The equilibrium VMR for species ¢ is always less than unity if the
interaction is mutually synergistic. If it is mutually antagonistic, it
seems that VMR is less than one when the intraspecific effect acting
on species i is greater than the interspecific effect (y; > 7, for i = 1,2
with 7 # j). However, this has only been formally demonstrated for the
symmetric case where the parameters are the same for both species. In
the reverse situation, where the interspecific effect acting on species ¢
is greater than the intraspecific effect, species ©+ maybe overdispersed at

equilibrium.

3. Mutually antagonistic interactions result in negative equilibrium corre-
lation between the species while mutually synergistic interactions pro-

duce a positive correlation.

It may seem curious that for much of the parameter space explored in the

linear model the VMR is less than unity, when field studies have shown that
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for most species VMR > 1. The reason for this is that we have not included
in this model any of the factors known to generate overdispersion, such as
host heterogeneity or clumping of infective stages. Host heterogeneity will
be incorporated in model Sgg, and the combined effect of host heterogene-
ityand interspecific interaction will be analyzed there. We emphasize that
these results have only been demonstrated for model L in those regions of
parameter space where the condition 7;; > |vi;| (4,5 = 1,2;¢ # j) holds. By
imposing such a restriction we are excluding areas of parameter space that
are relevant for a number of species, in particular those where the intraspe-
cific term is synergistic, e.g. Heligmosomoides polygyrus (see also Behnke
et al. (2001); Christensen et al. (1987) for other examples). Nonetheless,
there are many pairs of species that meet the condition explored here. For
example, Geiger et al. (1996) showed that in rodents there is both homolo-
gous and heterologous protection against establishment of the filarial species
Acanthocheilonema viteae and Monanema martini. Furthermore, the effect
that each of these species has on its own rate of establishment is greater
than the effect it has on the heterologous species. Cross-protective effects
have also been proposed to shape human onchocerciasis epidemiological pat-

terns in areas of high Onchocerca ochengi transmission (Wahl et al. 1998).

Sitmulation Results
The effect of interspecific interactions on dispersion and correlation have been
investigated for model L for regions of parameter space where intraspecific

terms are antagonistic and larger in magnitude than the interspecific terms,
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i.e where v; > |75 (4,7 = 1,2;¢ # j). We now present results from the
simulation of model S (the stochastic version of the nonlinear model). These
simulations focus on regions of parameter space that were not explored in
model L. In particular, model S is used to investigate the effect on dispersion
and correlation of synergistic intraspecific terms (y; < 0) (i = 1,2), and
interspecific terms that are larger in magnitude than the intraspecific terms
([visl > il (5,5 = 1,254 # 7))

The conclusions drawn from the linear model regarding equilibrium cor-
relation and VMR were only dependent on the signs and relative magnitudes
of the intra- and interspecific effects. Similarly, we expect the qualitative
behaviour of equilibrium correlation and VMRs of model S to be governed
by the signs and relative magnitudes of the intra- and interspecific effects.
Nonetheless we use parameter values for the simulations that are consistent
with the life-cycles of a number of human and non-human helminth species;
some examples are given in Table 2. For simplicity it is assumed that all
parameters (demographic and interaction) are the same for both species.

We choose a helminth life-expectancy, u;, of 20 months and a maturation
time, o;, of 1 month. The larval life-expectancy in the absence of immunity,
n;, is taken to be 1 month. This implies that 50% of larvae become established
as adult worms (QUTﬁm = 0.5) which is consistent with establishment in some
experiments (Leathwick et al. 1999). The level of exposure (\; = 5 larvae
per month) was chosen to give worm burdens in the region of 0-100 (Hall
and Holland, 2000). The 7’s range between 0-0.1. That is to say, we allow

each adult worm to increase or decrease the death rate of incoming larvae by

an amount between 0-10%.
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The findings are summarized in Table 3. For the simulations undertaken,
equilibrium was reached after about 5 years (or roughly two parasite life-
times). In general, it can be seen that the magnitude of the interspecific
terms (7;;) relative to the size of the intraspecific terms (y;;) and the signs
of intra- and interspecific terms are critical in determining the equilibrium

index of dispersion and the sign of the equilibrium correlation.

Dispersion From the analysis of the linear model, it was shown that the
equilibrium distribution is not overdispersed (VMR > 1) when the interspe-
cific effect acting on a species is smaller in magnitude than the intraspecific
effect. In contrast, from the simulation of model S, overdispersion can occur
if the relative magnitudes of the inter- and intraspecific terms are reversed
so that interspecific terms are positive and larger in magnitude than the in-
traspecific terms. This is true both when ~; > 0 (Fig.3A) and when ~y; < 0
(Fig.4A) .

For the situation in which interspecific effects are much larger than in-
traspecific effects (v;; > |vi|), each species has a bimodal equilibrium dis-
tribution in which hosts have either no (or very few) worms or very many
(Fig.5). The joint distribution of the two species reveals that under these
conditions those hosts with no (or very few) worms of one species tend to
have a large number of worms of the other species. The bimodal marginal
distribution of each species can be interpreted in light of this: hosts tend to
have either a high or a very low worm burden of one species at equilibrium,
depending on the abundance of the other species.

When interactions are mutually synergistic they have less impact on dis-
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persion than they do when they are mutually antagonistic. From Figs.3A
and 4A, it appears that the index of dispersion is bounded by one, no mat-
ter how large a mutually synergistic interaction becomes and irrespective of

whether each species regulates (7;; > 0) or enhances (7; < 0) itself.

Correlation In keeping with the results of the linearized model, in all age
classes mutually antagonistic interspecific terms yield negative correlations
(cases (a) and (c) in Table 3), and mutually synergistic interspecific interac-
tions yield positive correlations (Fig.3B). However, for mutually synergistic
interactions that are large in magnitude relative to the intraspecific terms
(758 < 0, |vjil > 7% > 0) the correlation peaks in the younger age classes,
and then approaches zero at equilibrium.

Although this is an interesting result, it seems unlikely that a helminth
species would operate to decrease its own rate of establishment (y; > 0)
whilst facilitating the establishment of the larvae of another species (7;; < 0).
It is more plausible that a helminth species facilitates the establishment of
larvae of its own species and as a byproduct also enhances the establishment
of another species. This situation (7; < 0) is explored in Fig.4B where it
is apparent that the equilibrium correlation is close to zero for both small
and large mutually synergistic interactions. Interestingly, the equilibrium
correlation is also close to zero for small mutually antagonistic interactions
(0 <5 < |vil)-

These results suggest that inspection of the equilibrium correlation is not
a good predictor for the existence of an interaction between helminth species

when adult worms of each species facilitate the establishment of their own
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species. Furthermore, even when intraspecific interactions are antagonis-
tic, the equilibrium correlation may still be zero for a mutually synergistic
interaction if the interspecific terms are greater in magnitude than the in-

traspecific terms.

Incorporating Heterogeneity

Model S can be modified by treating the rates of exposure as a pair of corre-
lated random variables (A1, Ag); this model will be referred to as Sgg (where
RE stands for random exposure). This adds biological realism because: 1)
there is heterogeneity among hosts in their exposures/susceptibility to the in-
fective stages which can be modelled by the variability of A; and Ag; 2) pairs
of helminth species with similar biologies often share similar routes of trans-
mission implying a positive correlation between the rates of exposure (e.g.,
soil-transmitted helminths such as Ascaris and Trichuris); and 3) susceptibil-
ity to one species may be linked with susceptibility to many species through,
for example, genetic predisposition (Quinnell, 2003). Although A;, Ay will
be referred to as ‘exposure’ random variables, they may incorporate hetero-
geneity and correlation due to susceptibility because, for the purposes of this
model, exposure and susceptibility are essentially indistinguishable.

The random exposure model, Sgg, is analyzed by simulation. For each
realization, the rates of exposure (A, \o) are sampled from a bivariate nor-
mal distribution, truncated so that A\; > 0,As > 0. We use the bivariate
normal distribution because it provides a straightforward way of introducing

correlation between the exposure rates (one of the parameters of the bivariate
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normal is the correlation coefficient); while truncation is necessary to ensure
non-negative exposure rates. The normal distribution is parameterized to

have mean vector ({1, (2) and covariance matrix

2
vy pPU1V2
2
pPV1V9 vy

where v? (i = 1,2) is the variance in exposure for species 7 and p is the

correlation between exposures for the two worm species. In practice, the
truncation is achieved by sampling from the full bivariate normal distribution
and excluding samples where either \; < 0 or Ay < 0. Here we present results
from simulations where (; = 5,v; = 2, p = 0.5; ¢ = 1,2. The means, standard
deviations and correlation for A; and A; can be computed by numerical
integration. For the parameter values used, they are 5.049,1.949 and 0.485

respectively.

Dispersion The effects of both mutually antagonistic and synergistic inter-
specific interactions on the equilibrium index of dispersion differ qualitatively
in models S (homogeneous exposure) and Sgg (random exposure). For mutu-
ally antagonistic interactions, the equilibrium VMR in model Sgg is crucially
dependent on the size of the interaction. When the interspecific interaction
is small (0 < 7;; < i), the equilibrium VMR is smaller than it would be
in the absence of interaction, while for large mutually antagonistic interspe-
cific interactions (yj; > v; > 0), it is substantially greater (Fig.6A). This
is in marked contrast to the results of model S described earlier, where mu-

tually antagonistic interactions increase the equilibrium index of dispersion
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(as compared with the no interaction case) irrespective of their magnitude
(Fig.3A).

In the homogeneous exposure model, S, mutually synergistic interactions
increase the equilibrium index of dispersion when, in the absence of interac-
tion, the distribution is underdispersed, but appear not to be able to induce
overdispersion. However, in the random exposure model, Sgg, mutually
synergistic interactions can greatly increase the extent to which equilibrium

worm burdens are overdispersed.

Correlation If exposures to the two helminth species are positively corre-
lated, worm burdens will also tend to be positively correlated. In Fig.6B it
can be seen that for small mutually antagonistic interactions the correlation
between exposures dominates and the equilibrium worm burdens are posi-
tively correlated, but when the interactions are large the correlation between
exposures is countered by the strong interaction and the equilibrium corre-

lation becomes negative.

Awveraging Across Age Classes

The results for the models presented have assumed knowledge of host age.
That is to say, they describe the joint distribution of the two worm species
for a given age. In contrast, in field studies of non-human parasites, host age
is not usually determined; the distribution that is sampled and described is
therefore averaged across all age groups in the population. Here we briefly

discuss the effect that this has on the index of dispersion and correlation.
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Consider model S in the absence of inter- and intraspecific effects. The
worm burdens X, and X5, for the two species at age a are then independent
Poisson variables with means

%(1 —eTHY) i =1,2. (7)

The mean worm burden across all ages can be computed by weighting the
mean worm burden at age a by the probability of a host being in age class
(a,a+ ) and summing over all age classes. For simplicity it is assumed that
the distribution of ages in the host population is exponential with parameter

ig; then the mean worm burden of species ¢ in the population of hosts is

L
i+ pa

(8)

The variance in species ¢ worm burden for the population of hosts is the
sum of two components: the average variance within age classes and the

variance of the mean between age classes. Specifically it is

Ai 5\?NH
+ 2
pi+ pm (20 + ) (s + p)

9)

where the first term corresponds to the ‘within’ component and the second
to the ‘between’ component. From Eqn.8 and Eqn.9 it is apparent that the
variance:mean ratio (VMR) is greater than unity. The covariance between the
two species can similarly be decomposed into the weighted sum of the average
covariance within age classes and the covariance of the mean worm burdens

between age classes. For a given host age, the worm burdens of species 1
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and species 2 are independent, thus within age classes the covariance is zero;

between age classes it is given by

5\15\2,UH
(1 + po + p ) (pa + pr) (p2 + pr)

(10)

The worm species will therefore be positively correlated when the host
population is not stratified by age even in the absence of interaction. Fur-
thermore, this positive correlation can be large. For example, using the
parameter values of Fig.3 (\; = 2.5 month™", y; = 1/20 month™'; i = 1,2)

and setting piy = 1/48 month™!, gives a correlation of 0.86 (from Eqn.9 and
Eqn.10).
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DISCUSSION

The models presented in this paper describe the process by which two in-
teracting helminth species are acquired and lost in an ageing host. We have
used these models to explore the effects of interspecific interactions on the
means and variance:mean ratios (VMR’s) of each species, and the correla-
tion between parasite species at different host ages. A number of the results
are for equilibrium values of these quantities. These results refer to hosts
that are beyond a certain age (approximately 5 years for the parameters we
have used) where the distribution of worm burden is effectively constant. In
the following, we discuss the likelihood that observed epidemiological pat-
terns have been generated by interspecific interactions, as well as some of the
difficulties associated with making such inferences.

While there is often a lack of age-specific data on the distribution of worm
burdens in non-human hosts, in humans such age-specific data are frequently
available. A common feature of these data is that the mean worm burden
peaks and then drops to a lower equilibrium value (e.g. schistosome para-
sites in humans). Patterns of mean worm burden that exhibit this feature
are said to be ‘convex’ (note that the meaning of convex here is opposite to
its definition in mathematics). Based on mathematical models (Anderson
and May, 1985b; Woolhouse, 1992a; Woolhouse et al. 1994) two explanations
for this phenomenon have been proposed: 1) host exposure or susceptibility
decreases with age; 2) hosts build up protective acquired-immunity to the
helminths. Whilst these proposals are undoubtedly the most likely expla-
nations for ‘convex’ age-intensity patterns, it is tempting to speculate that

in some situations convexity may be the result of mutually antagonistic in-
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teractions between two species. The analysis of model L demonstrated that
a mutually antagonistic interaction must always result in one of the two
species having a convex age-intensity pattern. However, two features (both
illustrated in Fig.2) of the age-intensity pattern of L suggest that such an
interpretation of an observed age-intensity profile should be employed with
caution. First, even though in theory one of the two species must have a con-
vex age-intensity profile when there is a mutually antagonistic interspecific
interaction, the degree of convexity maybe negligible and therefore practi-
cally irrelevant. Secondly, it would appear that often the peak worm burden
occurs at younger ages in model L than is observed in data sets of human
helminth infection (Anderson and May, 1985a).

Aggregation is a key feature of virtually all parasitic helminth distribu-
tions. In this paper we follow the example of Isham (1995), Fulford et al.
(1992) and others and define it in terms of the VMR, (aggregation = VMR
> 1). When the variance is greater than the mean, the distribution is said to
be overdispersed relative to the Poisson distribution; when it is less than the
mean it is underdispersed. Mathematical models have been used to investi-
gate the effects of various processes on the VMR, e.g. parasite-induced host
mortality (Herbert and Isham, 2000); clumping of infective stages (Isham,
1995); heterogeneity in host susceptibility (Tallis and Leyton, 1969), and host
immunity (Anderson and Gordon, 1982; Pacala and Dobson, 1988). To our
knowledge, the impact of interspecific interactions on dispersion has not been
examined. In fact it is an implicit assumption in most ecological models of
competition between helminth species that interspecific interactions have no

effect on the level of aggregation (Dobson, 1985; Roberts and Dobson, 1995;
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Gatto and De Leo, 1998). We find that mutually antagonistic interactions
can give rise to an aggregated equilibrium distribution (VMR > 1) when the
interspecific effect acting on a species is greater than the intraspecific effect.
When there is symmetry so that the two species have the same interaction
parameter values, both species are aggregated because hosts are infected with
large amounts of one or other of the species, but not both. Therefore, when
each species is considered individually, the distribution is aggregated because
individuals have either a very high or very low worm burden of the species
in question. Such distributions are likely to be rare since both interspecific
terms must be much larger than the intraspecific terms. Nonetheless, occa-
sionaly such distributions have been identified and interspecific interaction
suggested as an explanation. For example, Kennedy (1975) tentatively ex-
plains the observation that Haematoloechus sp. and Rhabdias bufonis seldom
occur together in lungs of frogs in this way. A more plausible scenario for
the generation of aggregation by interspecific interaction is that one species,
species 1 say, has both a large interspecific effect as well as intraspecific effect,
while the species it interacts with, species 2, has smaller intra- and interspe-
cific effects. If the difference is sufficiently large then species 1 will cause the
equilibrium distribution of species 2 to be overdispersed.

When interspecific terms are smaller in magnitude than the intraspecific
terms, the effect of a mutually antagonistic interaction on the equilibrium
VMR depends on the degree of heterogeneity in host exposure. In the ab-
sence of heterogeneity, the interaction causes an increase in equilibrium VMR
relative to no interaction. When there is heterogeneity, depending on the

size of interspecific terms, there may be a reduction in the equilibrium VMR.
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This is of interest because it demonstrates that while it is often useful to
explore different factors independently and assume that they combine lin-
early to determine the degree of aggregation (Anderson and Gordon, 1982),
on occasion factors may combine in a nonlinear way. A similar phenomenon
has been shown to occur with parasite-induced host mortality (Herbert and
Isham, 2000): when there is heterogeneity in host exposure/susceptibility,
parasite-induced host mortality will reduce the VMR, but in the absence of
this heterogeneity it has no effect.

In the absence of extraneous factors, the correlations at equilibrium be-
tween species associated with different types of interaction are in agreement
with intuition. Mutually antagonistic interactions yield negative correlations;
mutually synergistic interactions yield positive correlations, and when there
is a mixed interaction (one interspecific term positive, the other negative)
then the correlation can be positive or negative. Therefore if the correlation
at equilibrium between two species is negative this implies that at least one
of the interspecific terms is positive (antagonistic), and conversely if it is pos-
itive then one term must be negative (synergistic). This intuition has been
used to identify potential interactions between species from matrices of corre-
lations for data on intensity of infection (Hayward, Perera and Rohde, 1998;
Byrne et al. 2003) or contingency tables for presence/absence data (Kuris
and Lafferty, 1994; Jackson et al. 1998). We discuss some of the difficulties
of inferring the existence of interactions in light of the current models.

In the section on Awveraging Across Age Classes it is shown that in the
absence of interaction and correlation between exposures, the species will

be positively correlated if correlation is measured in the population of hosts
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as a whole, i.e. across all age classes. Indeed this correlation may be very
strong. Intuitively, the reason for this is that young hosts tend to have
fewer worms of both species than older hosts. Unfortunately, most studies of
helminth communities in non-human hosts are not age-specific. It is therefore
not surprising that in many of these studies there are an excess of positive
associations between species (Bush and Holmes, 1986; Lotz and Font, 1994;
Hayward et al. 1998). Recently, a number of studies have controlled for the
effects of age statistically by fitting regression models that include age and
then examining the correlation between species in the residuals from these
models (Behnke et al. 2005; Faulkner et al. 2005; Tchuente et al. 2003). It
is interesting that an analogous situation has been addressed in the context
of immunity to a single parasite species. Here sampling across age groups
similarly leads to positive associations between antibodies such as IgG and
IgA and worm burden. This suggests that antibody-mediated immunity is
ineffective at reducing worm burdens. However, these positive correlations
are weakened or reversed after controlling for age (Woolhouse, 1992b).

An important feature of strong synergistic intra- and interspecific effects
is that they frequently lead to an equilibrium correlation between species
that approaches zero. Beyond a certain degree of strength, mutually syn-
ergistic interactions produce a zero equilibrium correlation between the two
species. This is not true of mutually antagonistic interactions. However, if
the intraspecific terms act synergistically then a weak mutually antagonistic
interaction may be hidden by a zero correlation. These effects occur because
the rate at which worms become established has un upper bound. If either

intra- or interspecific effects are sufficiently synergistic so that the worm bur-
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den for each species and thus the rates of establishment are maintained at
an ‘upper limit’, then the rate of establishment for each species is effectively
independent of worm numbers producing a zero correlation between species.
This phenomenon will make it difficult to detect interactions in older age
groups. In ecological studies, it is therefore important to sample the young
hosts. Mutually synergistic interactions, for example, will be manifest in
younger age classes as a positive correlation between species even though the
correlation may disappear in older age classes.

The identification of interspecific interactions is complicated by hetero-
geneity in host exposure (or susceptibility) if there is correlation between
the exposure rates for the two species as in model Sgp (Kuris and Lafferty,
1994). This heterogeneity may be due to: 1) differences between hosts due
to factors such as host sex (Behnke et al. 2005; Wilson et al. 2002), host
genetics (Quinnell, 2003) and host behaviour (Wong, Bundy and Golden,
1988); 2) the spatial distribution of infective stages; 3) the distribution of
infective stages amongst any intermediate hosts. To a certain extent, these
complexities can be eliminated; either by controlling statistically for the ef-
fect of area, sex, etc. (Haukisalmi and Henttonen, 1998; Behnke et al. 2005),
or by sampling appropriately. On other occasions, stratification alone will
not deal with the problem, as in the case when two helminth species share
an intermediate host. In this situation, it might be worthwhile exploring
how correlation changes with host age. Model Sggr suggests that there is
often a decline in correlation in older age groups for a mutually antagonistic
interaction; such a decline does not occur when there is no interaction.

The models analyzed in this paper have been restricted to two interact-
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ing species. In reality, many species of parasite may occupy a single host.
Under these circumstances, the interpretation of correlations between species
becomes even more complicated because interspecific interactions can cause
associations between species that do not interact (Moore and Simberloff,
1990; Haukisalmi and Henttonen, 1998). For example, a mutually antago-
nistic interaction between species 1 and species 2; and between species 2 and
species 3 will result in a positive correlation between species 1 and species 3
in the absence of any interaction between these latter species. Species 2 is in
effect a ‘confounding factor’ of the relationship between species 1 and species
3. One way of dealing with this is to use partial correlations (Kleinbaum et al.
1998); this provides the correlation between species 1 and species 3 having
controlled for species 2. Such an approach has been used by Thomas (1964)
to explore associations between helminth species in brown trout. However,
it assumes that the joint distribution of the numbers of each parasite species
is multivariate normal, which may often not be a reasonable assumption to
make.

There has been a continued debate over the extent to which the joint
distribution of parasite species found within a population of hosts is shaped
by interspecific interaction (Kennedy, 1975; Price, 1980; Simberloff, 1990;
Poulin, 1998). Yet surprisingly there has been no theoretical investigation
of the possible effects of interactions on the joint distribution; rather investi-
gators have relied heavily on intuition. This paper has tried to put some of
this intuition into a more formal context. We have shown that interspecific
interactions can produce convex age intensity profiles, and will impact the

degree to which species are aggregated. We highlight the importance of ob-

30



taining age-specific data, and demonstrate that it maybe difficult to identify

interspecific interactions from data on older hosts.
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APPENDIX A

Let the random variables X;, and X,, represent, respectively, the numbers
of worms of species 1 and species 2 in a host of age a. We define a linear
model (L) in which the transition rates are:

(X4, Xoa) = (X1a + 1, Xo,) at rate 51(X1a;X2a)

~ M(1 = A11z1 — Jorxe)  if 1121 + o2 < 1
where by (21, 29) =

0 otherwise
and (Xiq, Xoq) = (X1o — 1, Xo,) at rate u; X1, The rates for species 2
(X1as Xoa) = (X1a, Xog + 1) and (X4, X2a) = (X14, X9 — 1) are similarly
defined.
Assuming that the probability P(%,i X, + 7;iXje > 1) < 1 for all a
(1 =1,2;7 # i), we derive a set of differential equations to approximate the
first two moments of model L as follows:

After a small time period § the expected number of worms of species 1,

given X, and Xy, is

E[X1a16] X1a, X2a] = b1 (X1a, X20)8 — di (X140, X24)0 + X1

By taking the expected value of both sides, the unconditional mean is

obtained,

E[X10+5] = E[X1q + (b1(X1a, X2a) — d1(X14, X324)) + 0(6))-

Subtracting E[X;,] from both sides, dividing by § and taking the limit
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0 — 0 gives the differential equation

d .
%E[Xla] = E[bl(XlaaXZa)_dl(XlavXZa)]

= Z (El (z1,T2) — dl(x1,£2)> Pa(T1, T2)

(%1,72)

= M1 = E[X] = 721 E[Xz]) — mE[X1a] — 1. (A-1)

where pa($1;$2) = P(Xla =21, Xog = $2),

21 = Z 5\1(1 — ’~)’11$1 - 5/21372)13(1(:617 .1'2),

and the summation for ¥; is over the set (x1,z3) : {1121 + Y2122 > 1}.

Similarly,

d

S Pl X2a] = Ao(1 = 32E[Xz0] — 712E[X1a]) — 12E[X2e] = o (A-2)

where Y, is equivalently defined. Therefore if p,(x1,x2) is negligible in
the sets over which the summation in ¥; and Y, takes place, then E[X,]
and E[X,,] can be approximated by the solution to the set of differential
equations obtained by setting 3; = 0 in Eqn.A-1 and ¥y = 0 in Eqn.A-2.

Under the same assumptions, and given E[X,] and E[X3,], the derivatives
of the second moments are approximated by the following set of differential

equations
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d - . -
%E[Xfa] = 2)\; (E[X1a] — 71 E[XT,] — 21 B[ X1 X24])

o (B, - BIXL) + Del )
CEIX2,] = 2% (E[Xo0] ~ 7B [X3] — 7B (X0 X
+ 2y (BLX,] - BIXG) + Tl (o)
%E[XMXQG] = ME[X20] — 721 ME[X2] + AE[X 1]
— F1222B[XT,] = (B1 + B2)E[X10Xa4]- (A-5)

Assuming that at age a = 0 the worm burden for each species is zero

(X14 = Xoq = 0), the solution to Eqn.A-1 and Eqn.A-2 is as follows:

S‘i % 'LN
E[X.] = BIX] + (“1 + 05 = iy g _ 024 B — T e> (A-6)

(031 (&)

where the asterisk indicates equilibrium and
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Bi = A+ i
poxy — M=)
BiBBj — NiXiVii Vi
T = \/(51 — B2)? + 45\1;\25/21’712
1

Q1o = 5(_(ﬂ1+52)i7') (i=1,2;5 #1).

The accuracy of the approrimation to the moments of model L

The approximation is known to be good if P(9;; X, + 7;iXje > 1) < 1
(1 =1,2;j # 1) for all host ages, a. Unfortunately, the parameter values un-
der which this probability is small are unknown; some insight can nonetheless
be obtained by examining the parameter values for which the condition holds
according to the approximation. Clearly, this is a necessary condition for the
approximation to hold: if P(%;Xi, + 7;iXje > 1) < 1, and the approxi-
mation is good, then this probability must also be small according to the
approximation. Therefore for a satisfactory approximation, it is necessary
that that equilibrium values exist, i.e. v; > [v;;| (¢ = 1,2;j # i), and that
¥iE[X]] +79;E[X}] < 1. In practice, it seems that the solution to the differ-
ential equations A-1 to A-5 approximate the moments of model L well when

34E[X;] + 4;E[X;] < 1 (Fig.Al).
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APPENDIX B

In the following, it is assumed that 11 > |v2| and o2 > |721|. These
conditions are sufficient to guarantee the existence of a stable equilibrium for
Eqns.A-1 to A-5 of Appendix A. From these equations it is possible to derive

an approximate expression for the equilibrium covariance,

Cov(Xp,Xo)" = —-K </31’721,L62(51 - ’7125\1) + BaYrap1 (B2 — ’7215\2)) (B-1)
where
A
(B1 + B2)(B1B2 — A AoFarT12)?

It is apparent from Eqn.B-1 that the covariance between the two species

is negative if J9; and ¥ are both positive, and positive if they are both
negative. Thus mutually antagonistic interactions induce a negative equi-
librium correlation between helminth species whereas mutually synergistic
interactions induce a positive equilibrium correlation.

Using this result it can easily be shown that both mutually antagonistic
and mutually synergistic interactions increase the equilibrium VMR relative
to the case where there are no interspecific interactions. From Eqn.A-3 of

Appendix A, the equilibrium VMR of species 1 can be written as

Var[lXa|* 1 (5 1 - EXXT\ x ;
o~ (O W) Ry e
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In the absence of interaction Eqn.B-2 simplifies to % Therefore an in-
terspecific interaction will increase the VMR if the following condition is

met

E[ X X,]*

I :
a ((/\1 + ) — Atya E[X,]"

« o M1
3, ) —E[Xi]* > = (B-3)

B

This condition may be re-expressed as

E[X1]*(/\1 - 51E[X1]* - )\1721E[X2]*) > )\172100V[X1,X2]*-

From Eqn.A-1 it can be seen that A\; — S1E[X ]* — Ay E[Xo]* = 0,

therefore an interspecific interaction increases the VMR if

721COV[X1,X2]* < 0. (B-4)

This condition is satisfied when the interspecific interaction is mutually
antagonistic or mutually synergistic.

We now derive a condition for overdispersion in species 1. The equilibrium
VMR for species 1 is greater than 1 if Var[X;]* >E[X;]*. This can be written

in terms of the equilibrium values of the first two moments

é(%E[Xl]* — AAmEX X) + mEX]) — (EX]7)? > E[X]

or, in terms of Cov[Xy, Xo|*,
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E[X1)* 0\ + 1 — 81 — BEX]" — MAnE[Xo]*) > A2 Cov[ X, Xo]*. (B-5)

Since \; — GLE[X1]* — j\ﬁ/ﬂE[Xg]* = 0 at equilibrium, Eqn.B-5 becomes

")v/glcOV[Xl, _XQ]* + fYElE[Xl]* < 0. (B—6)

Substituting in the equilibrium values for E[X]* and Cov[X;, X5]* gives

the following condition

/\~1{’711(52 — X2%21)(Br + Ba) (8152 — M AoForna)

- 5\25’21 (,31’721M2(51 - ’712;\1) + BoFrop (B2 — ’7215\2)) } < 0. (B-7)

It is immediately apparent that Eqn.B-7 is not satisfied when 715 < 0 and
91 < 0. Thus the equilibrium variance:mean ratio is not greater than unity
for mutually synergistic interspecific interactions. By contrast the distribu-
tion may be overdispersed when the interspecific terms are positive. This
can be seen, for example, by setting 711 = 0, which implies 712 = 0 since it
is assumed that 4117 > |F12].

However, it seems that equilibrium overdispersion is not possible when the
interspecific effect acting on a species is smaller than the intraspecific effect
(0 < A91 < A11). This is demonstrated for the symmetric case (parameters
for the two species are identical). Under these assumptions, Eqn.B-7 can be

written as
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11 (8 = Aj431) — MAsm < 0. (B-8)

Eqn.B-8 does not hold when 0 < A5 < #4;;. Thus VMR < 1 for a

symmetric mutually antagonistic interactions when 79 < 713.
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Fig.2, C. Bottomley, V. Isham, M.-G. Basdnez Helminth Interactions and Distribution
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Fig.3, C. Bottomley, V. Isham, M.-G. Basdnez Helminth Interactions and Distribution
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Fig.4, C. Bottomley, V. Isham, M.-G. Basadnez Helminth Interactions
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Fig.5, C. Bottomley, V. Isham, M.-G. Basanez
Helminth Interactions and Distribution
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Fig.6, C. Bottomley, V. Isham, M.-G. Basdnez Helminth Interactions and Distribution

A

=VMR

Index of Dispersion

25

Mutually Synergistic

Mutually Antagonistic

VMR=1

-0.05 0
Interspecific terms

0.05

0.1

B

Correlation

0.8

y.=-0.01
\}J‘i:—o.oe |
¥;=0.00
yJI:O.Ol q
O |
-0.2 ]
-0.4 ]
-0.6 1
¥;=0.06
-0.8 ¥;=0.10 1
_1 1 L
0 10 15 20

Age (years)



G¢

Mean

Variance

Correlation

-0.2

-0.4

-0.8
0

Fig.Al, C. Bottomley, V. Isham, M.-G. Basanez
Helmanth Interactions and Distribution

4 6 8 10

Age (years)

14

Variance Mean

Correlation

40

30

20

10

15

101

-0.21-

-0.6[

4 6 8 10 12

Age (years)

16

18



Table 1: Parameter definitions for the deterministic model (model D)

Parameter Definition Units
Ai Rate at which host acquires species 7 larvae larvae month™!
0; Maturation rate of species i larvae month ™
M Per capita death rate of species ¢ larvae month ™
i Per capita death rate of species 7 adults month™!
eii Factor by which each adult worm of species ¢ no units

(1 =1,2;j = 1,2) modifies species j larval mortality
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Table 2: Some examples of helminth demographic parameter values

Parasite species Life expectancy Length of maturation
(years) (days)
Ascaris lumbricoides 12! 50 — 80!
Trichuris trichiura 12! 50 — 84!
Schistosoma japonicum 22 25 — 30!
Haemonchus contortus > 23 21 — 25%

! Tables 15.2 and 15.3 of Anderson and May (1991).
2 Table 5.1 Esch and Fernandez (1993).
3 Gems (2000).

* Sharma, Chauhan and Agrawal (2000).
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Table 3: Equilibrium index of dispersion (variance to mean ratio, VMR) for each helminth species, and sign of the correlation (r)

between species at equilibrium for stochastic model S. Correlations that approach zero at equilibrium but which are positive or negative
at younger ages are denoted by = 0(+ve) and = 0(-ve) respectively. Results are based on simulations where all parameters
are identical for both species

Interaction Parameters Description VMR r
Case Intra-  Inter- Relative
specific specific magnitude
a vji >0 Yii < Yii Intra- and interspecific interactions antagonistic, and <1 -ve
intraspecific effects equal or larger than interspecific effects.
b 75 <0 || <vii  Intraspecific interactions antagonistic, interspecific interactions synergistic. =~ <1 +ve
Intraspecific effects equal or larger in magnitude than interspecific effects.
vii >0
c vjii >0 7 > v  Intra- and interspecific interactions antagonistic, and >1 -ve
interspecific effects much greater in magnitude than intraspecific effects.
d 75 <0 |vji| > v Intraspecific interactions antagonistic, interspecific interaction synergistic. ~1 ~ 0(+ve)
Interspecific effects much greater in magnitude than intraspecific effects.
e 75 >0 74 <|vi| Intraspecific interaction synergistic, interspecific interactions antagonistic. ~ 1 ~ 0(—wve)
Intraspecific effects equal or larger than interspecific effects.
f vji <0 |vjil <|vil Intra- and interspecific interactions synergistic, and ~1 ~ 0(+ve)
intraspecific effects equal or larger in magnitude than interspecific effects.
Yii <0
g vji >0 v > |vi| Intraspecific interactions synergistic, interspecific interaction antagonistic. ~1 -ve
Interspecific effects much greater in magnitude than intraspecific effects.
h vji <0 |vji| > |vi| Intra- and interspecific interactions synergistic, and ~ 1 ~ 0(+ve)

interspecific effects much greater in magnitude than intraspecific effects.




Figure Captions

Fig.1: Solutions to the deterministic model (D) giving worm burden as a
function of host age. Three scenarios are illustrated: a) no interaction
(721 = 712 = 0); b) mutually antagonistic interaction (y; = 0.01, ;2 = 0.07),
and ¢) mutually synergistic interaction (y2; = —0.01,v;2 = —0.005). For
each scenario, the thick line represents species 1 and the thin line species
2. Other parameter values: \; = 1.5 month™',0; = 1 month™!, y; = 1/72

month™" 7; = 0.5 month™! (7 = 1,2), 11 = 0.03, 22 = 0.01.

Fig.2: Mean worm burden as a function of age (from Eqn.4). In A) - C)
intra- and interspecific interactions are antagonistic; one of the two species
has a convex age-intensity profile when the parameter values for the two
species are not the same. A) Mean worm burden as a function of age peaks
in species 1 and increases monotonically in species 2 due to differences in the
intra and inter-specific terms. Parameter values: 5\1 = 5\2 =1 month™!, y =
po = 1/72 month™ 7, = 0.01,99 = 0.03,59; = 0.04,5;, = 0.001. B)
When all the interaction parameters are equal, then the species with the
shorter life-expectancy (species 1) will exhibit the peak. Parameter values
A= =1 month™! 4y = 1/24 month™!, y = 1/120 month~!,7;; =
Fa2 = 21 = H2 = 0.02. C) The peak maybe imperceptible so that both
species appear to increase monotonically. Parameter values: A = \p = 1
month™!, iy = py = 1/36 month™, Yoy = F19 = F91 = 0.01,71; = 0.005. D)
The interspecific terms have opposite signs and age-intensity curves for both

species are convex. Parameter values: :\1 = :\2 =1 month™, = pp = 1/72

month_l,’yll = ’3’22 = ’5/21 = 0.01,:)/12 = —0.1.
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Fig.3: Equilibrium dispersion index, and correlation as a function of age from
100, 000 realizations of model S, when the intraspecific terms are antagonis-
tic (v > 04 = 1,2). A) Equilibrium dispersion index (VMR) for differ-
ent strengths of interspecific interaction (y;;). Both mutually antagonistic
(75i > 0) and synergistic (y;; < 0) interspecific interactions increase the equi-
librium VMR (relative to the value for y;; = 0), but for mutually synergistic
interactions the index of dispersion appears not to exceed unity. Mutually
antagonistic interactions for which the interspecific terms are greater in mag-
nitude than the intraspecific terms can yield highly overdispersed equilibrium
distributions. B) Correlation between species 1 and 2 as a function of host
age. We explore values of the interspecific terms, v;; (¢, = 1,2; j # i), that
range from absence of interspecific interaction (y;; = 0), to a strong mutu-
ally antagonistic effect (7;; = 0.10) or a strong mutually synergistic effect
(75 = —0.10). ~y;; = 0.01 illustrates case (a) of Table 2; v;; = 0.06 and
v;i = 0.1 case (c); v;; = —0.01 case (b); v;; = —0.06 and y;; = —0.1 case
(d). Mutually antagonistic interspecific interactions (7y;; > 0) yield negative
correlations and mutually synergistic interactions (y;; < 0) yield positive cor-
relations, for all host ages. However, when the interspecific terms are negative
and much larger than the intraspecific terms (|y;i| > 7i), then the equilib-
rium correlation approaches zero, for large values of host age but is positive
and convex for small values. Parameter values are: \; = 5 month™!,0; =1

month~!, y; = 0.05 month™!,7; = 1 month~!,~;; = 0.01 7 = 1, 2.

Fig.4: Equilibrium dispersion index, and correlation as a function of age from

100, 000 realizations of model S, when the intraspecific effects are synergis-
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tic (7 < 04 = 1,2). A) Equilibrium dispersion index (VMR) for varying
vji- When ;5 < 0, VMR ~ 1. When +;; > 0, increasing the size of the
interspecific terms rapidly leads to overdispersion of parasites amongst the
host population (VMR > 1). B) Correlation between the worm burdens of
species 1 and 2 as a function of host age; v;; = 0.01 illustrates case (e) of
Table 1; v;; = 0.06 case (g); 7;; = —0.01 case (f), and 7;; = —0.06 case (h).

Parameter values: v; = —0.05 ¢ = 1, 2, others as in Fig.3.

Fig.5: The A) joint equilibrium distribution, and B) single species distribu-
tions of species 1 and species 2 worm burdens (100,000 realizations of model
S) for a mutually antagonistic interaction in which the interspecific effects
are much stronger than the antagonistic intraspecific effects (7;; > v > 0).
Hosts tend to have a large worm burden for one species and a very small
or zero worm burden for the other species. Parameter values: \; = 5
month™',0; = 7; = 1 month™, ; = 0.05 month™,~; = 0.01,7; = 0.1,

i=1,2; ] #1.

Fig.6: Index of dispersion at equilibrium and correlation as a function of age
from 100, 000 realizations of model Sgg, where exposure to species 1 (A1) and
exposure to species 2 (Ay) are positively correlated random variables. A) Mu-
tually synergistic interspecific interactions increase the index of dispersion at
equilibrium relative to v;; = 0 and can cause overdispersion (compare with
Fig.3A). Large mutually antagonistic interactions (vy;; > 7;;) cause overdis-
persion at equilibrium, whereas smaller ones reduce the VMR relative to

that for 7;; = 0. B) Since host exposures to the two species are positively
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correlated, mutually antagonistic interspecific interactions (7;; > 0) do not
necessarily result in negative correlation between worm burdens. However,
for small mutually antagonistic interactions (v;; = 0.01) there is a decline
in correlation with increasing age which is not observed in the absence of
interaction (v;; = 0). The distribution of (Ay,As) has parameter values:

(i =051v;,=2,p=0.5;7=1,2. All other parameters are as in Fig.3.

Fig.A1l: Means, variances and correlations obtained through: A) simulation
of model L (100,000 realizations), and B) using the set of differential equa-

tions that approximate the moments of L. Parameter values as in Fig.2B.
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