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Chapter 1

Introduction

" ... One might regard problems of identifiability as a necessary part of

a specification problem. We would consider such a classification acceptable,

provided the temptation to specify models in such a way as to produce identi-

fiability of relevant characteristics is resisted. Scientific honesty demands that

the specification of a model be based on prior knowledge of the phenomenon

studied and possibly on criteria of simplicity, but not on the desire for identi-

fiability of characteristics in which the researcher happens to be interested.

Identification problems are not problems of statistical inference in a strict

sense, since the study of identifiability proceeds from a hypothetical exact

knowledge of the probability distribution of observed variables rather than

from a finite sample of observations. However, it is clear that the study of

identifiability is undertaken in order to explore the limitations of statistical

inference. ...(Koopmans and Reiersol (1950), pp169-170, emphasis added)"

This thesis focuses on identifiability and testability of structural features. As was

mentioned in the above quotation, the study of identifiability is to clarify what can be

inferred about underlying economic decision mechanisms from data analysis and what

should be believed about them for such inference, which is to explore "the limitations of

statistical inference". It is demonstrated in this thesis that identification results can also

guide statistical inference - estimation and testing - of structural features of interest.

In this thesis the main interest is econometric modeling of individuals’economic deci-

sions (choice) and the outcome of their decisions which may be modeled by a triangular

system. Such individual decision mechanisms may be modeled based on economic mod-

els. Identification is an essential step in associating economic models with data, by which

certain economic interpretations of the results from data analysis can be justified. Diffi cul-

ties arise by the fact that the unobserved elements should be incorporated in econometric

modeling. Economic models may specify individuals’decision mechanisms as determinis-

tic relationships between relevant variables, data analysis should be conducted under the

stochastic framework since we cannot observe all the relevant variables in reality. While

economic models are constructed in a parsimonious way to address specific economic is-
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sues, when data analysis is attempted based on a parsimonious economic model, we need

to be concerned about how we treat unspecified elements in the economic model that affect

the outcome of concern. Under uncertainty as in decisions under asymmetric information

the economic models specify stochastic relationships, where the source of randomness is

well-defined in the specific economic context1. However, the sources of stochastic elements

in econometric modeling for data analysis are more likely to be multi-dimensional and they

are hard to define in economic terms. Hurwicz’s (1950a) structure is adopted to incorpo-

rate both economic arguments from economic models and the stochastic aspects of data

analysis.

1.1 Modeling Economic Processes - the Hurwicz (1950a)

Structure

Suppose that the outcome of interest W is generated by a structural relation of the fol-

lowing

W = h(X,U), (1)

where X are relevant observed variables and U is a vector of relevant unobservable het-

erogeneity with the conditional distribution FU |X . Throughout the thesis the term "un-

observed heterogeneity" is often used rather than "error" when the unobserved elements

are considered to be determinants of the outcome. When we assume that individual’s

choice can be represented by structural relations, every argument of the structural rela-

tion should play distict roles in determining the value of the outcome. The terminology

"error" would be more appropriate if we actually attempted to analyze the structural re-

lation of interest with data. Then the issues regarding the measurement of the arguments

of the structural function - whether they are observable or not, whether we can use proxy

variables for the unobserved arguments, or whether some of the arguments are measured

with error - should be considered.

The distribution of the unobservables (FU |X) together with the structural relations (h)

will determine the distribution of the observables as follows2.

Data/Reduced Form︷ ︸︸ ︷
FW |X(w|x) = Pr[W ≤ w|X = x]

= Pr[h(X,U) ≤ w|X = x] (HR)

=

∫
{u|h(x,u)≤w}

dFU |X(u|x)︸ ︷︷ ︸
Structure

This relation is called the Hurwicz Relation and will be referred to (HR) throughout the

thesis. Identification of the structure (or structural feature), the elements of the right hand

1 such as ability in education signalling models, effort in moral hazard models, productivity in adverse
selection models, and agent’s valuation in auction models. See Matzkin (2007).

2This is the general nonidentification result described in Chesher (2009) since identifying h and FU|X
separately is not possible without imposing further restrictions.
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side, {h, FU |X}, is achieved from information from the observed distribution, FW |X(w|x),

the left hand side object by imposing restrictions on either {h, FU |X} or FW |X(w|x), or

on both. We call the structure, the tuple of {h, FU |X}, an underlying economic data
generating process, which is in contrast with the usage in statistics where the left hand

side object, FW |X(w|x), is called the "data generating process"

The focus on the structure, rather than the distribution of the observables is required

if we attempt to interpret the results from data analysis in economic contexts. The objects

of interest in economic examples are usually defined in terms of structural relations. Note

that without further restrictions we cannot recover the structure from data. For example,

with linear structural function and standard normality assumption on the scalar U, we

have

FW |X(w|x) = Φ(w − xβ)

then we can identify the structural function by identifying β. Or with additively separable

nonparametric structural function, w = h(x) + u with normalization E(U |X) = 0,3 we

have

FW |X(w|x) = FU |X(w − h(x)|x)

then we can identify the structural function h(x) by E(W |X). When we assume that the

structural function is additively nonseparable, w = h(x, u), we need to assume that U is

a scalar, normalized to Uniform (0,1) (single index unobservables (SIU) restriction, which

will be discussed in Chapter 3), and h is strictly increasing in u to identify the structural

"quantile" function h(x, u).

FW |X(w|x) = FU |X(h−1(x,w)|x) (HR-SIU-C)

= h−1(x,w)

where the second equality follows by uniform normalization4. This relation will be re-

ferred to (HR-SIU-C) indicating "Hurwicz Relation with Single Index Unobservables for

continuous variables". Under the uniform(0,1) normalization, the unobserved heterogene-

ity can be called "unobserved type". Throughout the thesis single index unobservables

(SIU) assumption is maintained except for section 4.2 and 4.3 in Chapter 4 where "excess

heterogeneity" is allowed for.

Econometric modeling involves finding out the restrictions by which identification and

inference of (some features of) the structure can be achieved. Several issues should be con-

sidered in choosing the restrictions in micro-econometric modeling. Firstly, the nature5 of

the data encoding individual decisions that affects FW |X , and the presence of endogeneity

that affects FU |X need to be specified. Both issues require special attention in identifica-

tion. Secondly, econometricians should also consider how to incorporate restrictions on

the structure {h, FU |X} imposed by economic models.
3With mean zero restriction a vector U is admitted.
4Note that without uniform normalization we cannot separately identify the structural function from

the distribution of the unobservable.
5By this we mean censoring, discreteness, or aggregation.
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Econometric models would be constructed by restricting either the structure, the right

hand side of (HR) or the distribution of observables, the left hand side of (HR), or both

such that identification can be achieved. The rest of this chapter introduces the issues

considered in the thesis with regards to identifiability and testability and describes the

contents of each chapter.

1.2 Microdata - the Impacts of Observational Processes on

Identification

In the data analysis of individual choices how they are observed, called observational

processes in this thesis, has a crucial impact on econometric modeling. Studying the

impacts of discrete variation on identification is required because we have to deal with

qualitative data in economic applications where the data analysis uses micro-surveys.

How a variable is observed - especially, whether it can be considered to be continuous or

not - has crucial impacts on identification. This focus on the impacts of the nature of the

data and the role of unobserved heterogeneity on the econometric methods under weak

restrictions has the roots in the parametric analysis of simultaneous limited dependent

variable (LDV) models (Heckman (1978), Smith and Blundell (1986), Blundell and Smith

(1989,1994) and Rivers and Vuong (1988), etc), mixture models for duration (Lancaster

(1990), van den Berg (2002) for survey) and count data (Cameron and Trivedi (1998) for

survey).

Discreteness of the dependent variable would restrict both the left hand side and the

right hand side of (HR) in the sense that FW |X or quantiles of it are not continuous nor

differentiable and h(X,U) should be additively non-separable. This thesis investigates

how the observational processes influence the identifying power of the model.

1.3 Nonparametric Identification

Berry and Tamer (2007) categorizes identification practices into two different approaches

: top-down and bottom-up. The top-down approach starts from a specific functional

form, and sees if identification of the parameters of interest is achieved under that specific

specification. This approach often is adopted for the development of estimators, where

identification is required to ascertain the objects to be estimated are well-defined6. On the

other hand, the bottom-up approach starts from the restrictions that are from the economic

arguments and sees if identification is achieved, and if not, then more restrictions are

sequentially imposed. Since I am concerned with the limitations of data analysis with the

weakest possible restrictions - in the sense of just-identification, I advocate the bottom-up

approach. I also advocate nonparametric restrictions, for example, shape restrictions such

as monotonicity or convexity, rather than parametric restrictions such as linearity in the

6For example, see Newey and McFadden (1994). Their discussion on identification is based on this
approach - identification is a necessary step, rather than the goal of the analysis.
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structural function since it is hard to believe that they come from economic arguments7.

As such I follow Roehrig (1988)’s argument for "nonparametric" identification and

consider a non-additive triangular structure. That is, I do not impose any functional or

distributional assumptions on the structure, and I assume the structural equations are

additively nonseparable with the unobserved variable, which allow for the nonparametric

analysis of limited dependent variables8 as well as heterogeneity in response among the

observationally same individuals. Identification should be distinguished from the "spec-

ification" problem, let alone the estimation and inference problems categorized by R.A.

Fisher (1922). Rather, we follow the new definition of "specification" in Koopmans and

Reiersol (1950), the specification of a model that is characterized by a set of nonparametric

restrictions that guarantee identification.

The goal is to define the set of "justifiable" nonparametric restrictions9 that achieve

identification - either point or set - without relying on any parameterization of functional

forms nor distribution of the unobservables. Structural interpretations of any objects

obtained by data analysis are only possible when we believe these restrictions.

Many attempts have been made recently to link specific economic models with data

under weak restrictions, for example, nonparametric identification of auction models10,

regulation models (Perrigne and Vuong (2007)), adverse selection models (D’Haultfaeuille

and Fevrier (2007)) among others. I have the same goal as these studies, that is, defining

the limits of data analysis with no restrictions unsupported by economic models imposed,

and clarifying what should be believed to conclude anything based on the information

from the data analysis, but we abstract from the specific economic models and focus on

the issues that occur with the nature of observation - specifically, discreteness of data.

The first step in nonparametric structural analysis is to determine whether the objects

of interest are identifiable. Under a specific economic model various structural features

as functionals of the structure can be defined and convey specific economic meanings by

identification results. When it is abstracted from any specific economic contexts, the usual

structural features of interest would be partial derivatives or partial differences. In many

cases such nonparametric identification analyses have been done under the assumption

that structural relations are continuous and differentiable. However, when a structural

relation includes observed and unobserved variables that may covary, discreteness of data

limits the identifying power of models as I show in this thesis under triangularity.

7 In many cases the usually assumed linear structural relations are often implausible, or have uninter-
esting economic implications - consider, for example, under which conditions we can have linear demand
or supply functions.

8By this we mean binary outcomes, censored outcomes, count data, interval data, categorical data
etc. Note that with these outcomes it is natural to assume the nonparametric structural function is
additively nonseparable - with additive error we would have the support of the error always dependent
on the observable arguments. Consider the drawbacks of the linear probability models as a well known
example.

9"justifiable" in the economic context, such as monotonicity, or convexity, which are derived from the
economic models.
10See Athey and Haile (2003,2005) for survey and for the compelling arguments for the study of non-

parametric identification.
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1.4 Examples : economic models, econometric modelling

and identification

Example 1 : Auction models

The interpretation of FU |X : The data available are individuals bids, and the

underlying structure is S = {h, FU |X}, where FU |X is the joint distribution of latent

individual valuation and private information (types) satisfying certain statistical properties

(e.g. independence and symmetry etc.) and h is a true mapping from the true distribution

of types (U) to a distribution of observable bids (Y ) implied by the assumption of Baysian

Nash equilibrium. The structural relation h between bids and valuation is implied by the

Bayesian Nash equilibrium, which is represented by H(Y,X,U) = 0. The different auction

models assume different statistical properties on the bidder’s private information, which

opens room for testing the implications from different models using the observed data.

Example 2 : Demand for medical utilization and health insurance

Justification of triangularity : Individuals in the model make decisions on health

insurance and demand for health care sequentially. In the first stage, given a menu of

insurance options, individuals make a choice about health insurance based on the expec-

tation on the future health status or their degree of risk aversion, and in the second stage

after the realization of their own unobserved health status (U), they make a decision

on medical utilization. In this example the structural relations (h) for health demand

(W ) and health insurance (Y ) choice are assumed to satisfy the first-order conditions (

H(W,Y,X,U) = 0 ) of agent’utility maximization problem, where X would be individual

characteristics. Thus, the structure in this exmple is S = {h, FU |X}, where h are the struc-
tural relations for health demand and health insurance as functions of unobservable health

status as well as other variables and FU |X is the distribution of unobserved health status

possibly dependent on the health shock. The two-step decision processes may justify the

triangular structural relation.

Example 3 : Econometric modelling of contract theory

Testable implications from contract theory : When we want to analyze data

which are generated by an economic model under asymmetric information, the testable

implications of the model are usually expressed in terms of unobservables. The predictions

from the contract theory can be expressed in terms of high/low "types" of some unob-

servable characteristics of agents such as agents’efforts, health status, or valuation. The

unobservable variables and the distribution of them as an element of the Hurwicz (1950a)

structure can be useful in modelling this situation and the identification of the underlying

data generating process would be the issue we have to deal with in this case.
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The use of additively nonseparable models can be useful in modelling contract the-

ory, where interesting comparative statics with respect to unobservable variables, that is,

the responses of the agents predicted by the model are heterogenous in the unobserved

"type". Such responses can be measured by the partial derivatives/differences of the struc-

tural functions, and nonseparable structural relations allow for heterogeneous and random

response. Thus, identification of partial derivatives or differences can be used to test the

predictions of the contract theory.

Example 4 : Individual welfare analysis from aggregate household expen-

diture data

Econometric modelling of observational processes : Lack of individual data

on consumption(or expenditure) has restricted the micro-object of empirical research to

households. As long as all the members in a household share the same preference and the

same needs, this practice of using households as the smallest micro-units of decision will

be enough. Nevertheless, when we conduct welfare analysis, using households as a unit

of study limits the information on individual welfare on which policy measures should be

based. If we ignore inequality in intrahousehold allocation, inequality measures based on

household level consumption will underestimate the real level of inequality. Furthermore,

measuring poverty based on poverty line which is formed from household data may under-

estimate the severity of problem if there is serious inequality among members. Econometric

modelling can be constructed based on this in data collection to derive individual level of

consumption as in Chesher (1997).

Chesher (1997) incorporates household characteristics multiplicatively by imposing lin-

ear index restriction, thus, the average age and gender - specific individual expenditure

for the whole population can be obtained by controlling the household characteristics. Lee

(2009) extends Chesher (1997) to incorporate household characteristics nonparametrically

in the study of unobserved individual health expenditures using household health expendi-

ture data, which allows age and gender- specific individual demand to vary with household

characteristics. This may be informative by providing the information regarding how rich

and poor household allocate resources differently in the households. Health expenditures

require a special attention because zero expentitures are commonly observed. Thus, Lee

(2009) includes nonnegativity restriction in the disaggregation process. This procedure

can be applied to any study using household budget information. The identification issue

in this context involves with clarifying under what conditions the age and gender specific

disaggregation can be interpreted as individual demand as a function of price and income

derived from utility maximaziation.

Example 5 : Nonidentification of a nonparametric model with risk aversion

in auction model (Guerre, Perrigne and Vuong (2009) )

Although the important role of risk aversion of individuals in the bidders’behavior is
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accepted, there is lack of consensus on how to measure risk aversion. Guerre, Perrigne

and Vuong (2009) studies the nonparametric identification of the utility function under the

first-price auction model with risk averse bidders within the private value paradigm. They

show that the benchmark model is nonindentified in general from observed bids. They find

that risk aversion does not impose testable restrictions on bids and impose more restriction

to achieve identification - exclusion restriction or linear index in the specification. This

study demonstrates how nonparametric identification results clarify the limitations of data

analysis under the specific economic contexts. Some of economic arguments have no

"testable" implications on the data without imposing further restrictions.

1.5 Nonparametric Structural Analysis of Discrete Data11

By structural analysis, I mean causal analysis of data. The objects of economic interest in

this thesis are heterogeneous causal effects of a variable. There have been two approaches to

measuring causal effects - the potential outcomes framework and the structural approach.

In the potential outcomes framework the causal effects are measured by the difference

between the counterfactuals. When the "cause" variable is binary, the causal effect of the

binary variable is measured by the difference between the counterfactual outcomes when

the binary variable is 1, W1, the counterfactual outcome when the binary variable is 0,

W0. Measuring W1 −W0 is an issue because only either W1 or W0 would be observed :

there exists a missing data problem. Since individuals’ (possibly) heterogeneous causal

effects are not measured, usually average effects are considered. There exists another

econometric issue in measuring average effects. A simple way of measuring the average

effects would be by comparing the mean of the two groups - those with the value of the

binary variable 1, those with 0. However, this way may not measure the true casual effects

correctly since the difference of the average outcomes in the two groups may not be solely

due to the value of the binary variable. This is called the selection problem - unless the

value of the binary variable is randomly assigned, there may be systematic differences in

the two groups other than the value of the binary variable. If the systematic differences

disappear once conditioning on other observed characteristics, this is called selection on

observables. If the systematic difference still exists even after conditioning on the observed

characteristics, this is called selection on unobservables.

Alternatively, one could adopt the regression idea to measure causality, which could

be understood as the structural approach. This is the setup I take in this thesis to mea-

sure causal effects. In the structural approach the econometric issue in measuring causal

effects arises due to endogeneity. Endogeneity is a structural concept - without assuming

the existence of the structure, endogeneity, defined as correlation between an observed

explanatory variable and the unobserved explanatory variable, would not be defined. For

example, the potential outcomes approach does not specify unobserved element as deter-

11 I adopt this title just to indicate that I follow the spirit of the book entitled, Structural Analysis of
Discrete Data, not that this thesis is comparable with the great classic.
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minants. The selection on unobservables under the potential outcomes framework can be

understood as the endogeneity problem in the structural approach.

I adopt the structural approach to deal with the two econometric issues, namely, con-

trolling for endogeneity, and recovering heterogeneity in responses even after conditioning

on observables.

1.5.1 The Structural Approach, Causality and Endogeneity

In the structural approach where the outcome of interest is assumed to be determined

by a structural relation, endogeneity of an explanatory is defined as dependence between

the explanatory variable and the unobserved variables included in a structural relation.

When the variable is chosen by individuals, the exogeneity of a variable would not be

guaranteed because the uncontrolled unobserved individual heterogeneity is very likely to

affect the decision of other observable explanatory variables. The information regarding

endogeneity is contained in the joint distribution of the unobserved variables and the

endogenous variable, which is not observed.

Causality - Objects of Interest

The causal effects are measured by partial derivatives or partial differences of the structural

relation,
∂h(x, u)

∂x
, or h(xa, u)−h(xb, u). To control for the endogeneity, the control function

methods are used by assuming auxiliary equations specifying how the endogenous variables

are determined by observed and unobserved arguments.

1.5.2 Nonseparable Structural Relations and Heterogeneity in Responses

Recovering more and more heterogeneity from data is desirable in the sense that one

can derive more information from data. However, the recovered heterogeneity should

be interpretable12. Conditioning on the observables is one obvious way of recovering

heterogeneity, and using quantiles rather than focusing on the mean would produce more

heterogeneity from the data as Bitler, Gelbach, and Hoynes (2003) argue. As many authors

indicated13, the existence of unobserved heterogeneity causes diffi culties in data analysis

especially with micro-data. Typical methods of modeling unobserved heterogeneity have

been specifying it explicitly, then finding out a legitimate way of eliminating it.

Using additively nonseparable structural functions leads to random sensitivity. Un-

der the nonseparability the approach - the quantile-based control function approach -

taken in this thesis suggests an alternative way of modeling unobserved heterogeneity.

The key implication of the nonseparable functional form is that partial derivatives or

partial differences are themselves stochastic objects that have distributions, since partial

derivative,
∂h(x, u)

∂x
, or h(xa, u)− h(xb, u) are stochastic objects.

12The most heterogeneous form of information would be data themselves, which are not be interpretable.
To derive an interpretable information from data we need the process of "data reduction" - a process of
producing statistics such as mean, or quantiles etc from the data.
13See, for example, Heckman (2000), Blundell and Stoker (2005), Browning and Carro (2007), Matzkin

(2007b), and Lewbel (2007a).
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Nonseparable structural functions can be used to test the predictions in models under

asymmetric information, which are often expressed in terms of a certain unobserved type.

Since the responses under the nonseparable structural relations allow for heterogeneity in

both observable and unobservable variables, the identification results can be beneficially

used to falsify the predictions of the economic models using data.

Focusing on identification of the structural relation evaluated at different values of

observable and unobservable variables is the way to recover heterogeneity in responses in

the thesis.

1.6 Identification and "Measurement"

This thesis considers the "identification" problem by proposing justifiable restrictions.

Identification results would allow for economic interpretation (causality in this case) un-

der such restrictions. Identification matters especially when measurement is imperfect in

recovering an object of economic interest as in individual’s treatment effect example. How-

ever, measurement also matters - I emphasize the importance of devising novel methods

to "measure" otherwise hidden information in the data collection stage via for example,

experiments, or asking hypothetical questions.

Identification results provide model-based evidence and they justify certain interpre-

tation of objects obtained from data reduction processes. Thus, the credibility of the

evidence depends on the credibility of the model - characterized by a set of restrictions.

If one could measure an object of economic interest, the issue of credibility of the model

could be avoided14. I think the two lines of research could complement each other in

recovering evidence from the population of concern.

1.7 Falsifiability of Econometric Models and Testability of

Restrictions

The identifying power of a model comes from the restrictions imposed by the model and

identification results would be believed to the extent that the restrictions are considered

to be true. If one could test the restrictions using data, credibility of restrictions can be

confirmed. Testability of restrictions is also informative in determining which minimum

set of restrictions should be believed when they are not directly testable and in clarifying

the limits of data analysis. However, some of the restrictions imposed on the structure

may not be "directly" testable. In such cases identification results on the structure can

provide a way to test the restrictions. I develop some principles of testability using the

identification results and adopt one of them to test exogeneity.

14The issue would be then whether the new measurement device, for example, using an experiment or
survey questionnairs, is justified.
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1.8 In This Thesis - the Quantile-based Control Function

Approach

The rest of the thesis is composed of as follows. The first chapter is introduction and

Chapter 2 proposes formal frameworks of identifiability and testability of structural fea-

tures allowing for set identification. The results in Chapter 2 are used in other chapters.

The second section of Chapter 3, Chapter 4 and Chapter 5 contain new results.

Chapter 3 has two sections. The first section introduces the quantile-based control

function approach (QCFA) proposed by Chesher (2003) to compare and contrast other re-

sults in Chapter 4 and 5. The second section contains new findings on the local endogeneity

bias and testability of endogeneity. Chapter 4 assumes that the structural relations are

differentiable and applies the QCFA into several models for discrete outcomes. Chapter

4 reports point identification results of partial derivatives with respect to a continuously

varying endogenous variable. Chapter 5 relaxes differentiability assumption and apply

the QCFA into an ordered discrete endogeneous variable. The model in Chapter 5 set

identifies partial differences of a nonseprable structural function.
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Chapter 2

Identifiability and Testability of

Structural Features under Set

Identification1

"Most of economic intuition is expressed in terms of the structure, so the

structure is often the object of interest for estimation and for testing. .... the

reduced form is convenient theoretically, but to be most useful, facts about it

have to be translated back into structural statements... (Kadane and Anderson

(1977), p1028, quoted by Breusch (1986)"

Following the spirit of partial identification of features of probability distributions, pi-

oneered by C. Manski (see Manski (1995) for economic examples that motivate partial

identification, and Manski (2003) for a survey of recent developments), in this section

formal definitions regarding partial identification of features of a Hurwicz (1950a) struc-

ture2 are provided. A structure, as a tuple of structural relations and the distribution of

the unobservables, has been used in many nonparametric identification studies. In this

chapter set identification and sharpness of an identified set are formally defined by using

the nonparametric Hurwicz (1950a) structure that can be applied to models with multiple

equilibria. The logic of testability of structural features is discussed by extending earlier

results of Koopmans and Reiersol (1950) into a general nonparametric setup allowing for

set identification. Jovanovic (1989) modified Koopmans and Reiersol (1950)’s framework

so as to deal with models with multiple equilibria and offers a general framework for statis-

1This chapter is motivated by A. Chesher’s unpublished lecture note entitled "Evidence in Economics"
in which falsifiability of a model is discussed using point identification.

2Although in many cases this distinction is not essential, it is required in the discussion of this thesis.
If treatment responses are homogeneous among the observationally identical indivisuals, this case can be
modelled using an additively separable structural relations. When the structural relations are not addi-
tively separable, for example, when treatment responses are likely to be heterogenous, conditional moment
restrictions do not identify structural parameters. (See Hahn and Ridder (2009)). Also, "endogeneity" is
defined by specifying the unobserved heterogeneity as determinants of an outcome. In the setup of Manski
(2003) the unobserved heterogeneity is implicit.
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tical inference in such models. Jovanovic (1989) noticed the possibility of set identification,

however, "identification" in his paper is restricted to mean point identification.

When strong, often parametric assumptions that are hard to be justified by economic

arguments are avoided, loss of identifying power of a model may result, in the sense that the

value of a feature of the underlying economic process is not determined uniquely by data

using prior information. In such a case, one may choose to impose alternative restrictions,

but instead of imposing strong arbitrary parametric restrictions which may lead to point

identification, one could search for weaker justifiable nonparametric restrictions that define

a set in which the value of the feature can lie.

The identifying power of a model comes from the restrictions imposed by an econo-

metric model. The credibility of restrictions should be discussed in each application of the

model. However, not all restrictions have testable implications on the distribution of the

observables (data). Even in such a case the restrictions can be tested when there exist two

distinct models that identify the same structural feature with the one model nested by the

other. The criteria proposed for testability or falsifiability involve comparison of the two

identified sets - the identified set defined by the nested model should be smaller. Galichon

and Henry (2009) develop a test of nonidentifying restrictions under the Jovanovic (1989)

setup by explicitly allowing for partial identification. Galichon and Henry (2009)’s test

can be used to falsify an econometric model. This chapter suggests an alternative frame-

work of falsification of an econometric model, by which falsification of restrictions may be

achieved.

2.1 Set Identification of Hurwicz (1950a) Structural Fea-

tures

2.1.1 Elements of Identification

Distribution functions are denoted by FA indicating the distribution function of A. FA|B
indicates the conditional distribution of A given B. The corresponding τ−quantiles are
denoted by QA(τ) and QA|B(τ |b)3.

Economic processes are assumed to be generated by individual4’s decision mechanisms.

The decision mechanisms are usually described as relationships between variables. I de-

note these underlying mechanisms as "structures" following Hurwicz (1950a). Hurwicz

(1950a) assumed that the distribution of the observables is generated by a transformation

H performed on the distribution of the unobservables, FU |X and defined the structure, S,
as a tuple of the mapping (H) and the distribution of the unobservables (FU |X) where Y

is a vector of endogenous5 variables determined by the economic decision processes, X is a

vector of covariates (exogenous variables) and U is a vector of unobserved elements to the

3The quantiles are defined by QA|B(τ |b) = inf{a|FA|B(a|b) ≥ τ}
4By "individual" I mean any economic decision unit of interest.
5Following Koopmans (1949, p133), endogenous variables are "observed variables which are not known,

or assumed to be statistically not independent of the latent variables, and whose occurrence in one or more
equations of the set of equations is necessary on grounds of "theory"".
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analyst. From a random sample of observations on Y and X the conditional distribution

of Y given X is identified6. Denote FSY |X to be the distribution of the observables that is

generated by a structure S.

Let S be a set of all structures. Let ΨU be a set of all distributions of unobservabels

(FU |X) and ΨS be the set of all distribution function of observables generated by elements

in S, that is, ΨS = {FSY |X | S ∈ S}. ThenH is a mapping from ΨU to ΨS .More specifically,

a Hurwicz (1950) structure, S = {H, FU |X}, and observed data (FY |X) have the following

relation

FY |X︸ ︷︷ ︸
Re duced form

= H(FU |X).︸ ︷︷ ︸
Structure

The mapping H(·) is assumed to uniquely7 determine the distribution of the observables.
H(·) can specify structural relations and can assume the existence of an equilibrium se-

lection mechanism if there are multiple equilibria. However, this does not mean that

the econometric model for any economic setup with multiple equilibria should specify the

equilibrium selection mechanism. Only the existence of a selection mechanism is required

to be assumed.

Let S0 be the true structure that generates the distribution of observables available

to us, F 0
Y |X . The two structures S and S

′ are called observationally equivalent to

each other if FSY |X = FS
′

Y |X . Define Ω0 = {S : FSY |X = F 0
Y |X}, a set of structures that are

observationally equivalent to the true structure, S0 (note that S0 ∈ Ω0 by definition of Ω0 .

See <Figure 2.1>.) The structural feature, θ(S) is defined as a functional of the structure.

It can be an economic object that is important in policy design such as elasticities, risk

attitudes, or time preferences etc. One of the main objectives of specifying an econometric

model is to recover the true economic data generating structure S0, or some features of it,

θ(S0).

The econometric model, M, is characterized by a priori information (restrictions)

applied to the structure and the distribution of the observables. The model,M, is defined

to be the set of the structures that satisfy the restrictions. Let ΨM be a set of all

possible distribution functions generated by S ∈ M,ΨM = {FSY |X | S ∈ M}. S0 is

said to be point identifiable inM if there is no other member ofM that is observationally

equivalent to S0. A structural feature θ(S0) is said to be point identifiable if there is no

variation in the values of the structural feature of the admitted structures. See Hurwicz

(1950a), Koopmans and Reiersol (1950), Roehrig (1988), and Matzkin (1994, 2007) for

general discussion of point identification. Matzkin (2007) reviews recent developments of

nonparametric identification.

6The exact knowledge of FY |X cannot be derived from any finite number of observations. Such knowl-
edge is the limit approachable but not attainable by increasing the number of observations (Koopmans
and Reiersol (1950)).

7Note that this uniqueness should be distinguished from the assumption that the structural relations
uniquely determine values of endogenous variables given exogenous variables. When structural relations
do not specify one-to-one mappings between the endogenous variables and unobserved variables given
exogenous variables, this setup assums that there should be a mechanism that selects one point among
many. This selection is possibly unknown, thus, unspecified by the analysist since there may not be a well
defined and convincing way of doing it.
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Figure 2.1: Note that S0 ∈ Ω0, by definition of Ω0. Suppose S1, S2 ∈ Ω0. Then F
S1
Y |X = FS2Y |X =

F 0
Y |X . That is, S1 and S2 are observationally equivalent structures and they are indistinguishable from

data - no amount of data can distinguish S1 from S2. Note that the true structure, S0, that generates

the distribution of the observables we have, is always in Ω0.

Examples of Hurwicz (1950a) Structure

1. Nonparametric Simultaneous Equations Models of Roehrig (1988), Benkard

and Berry (2006), or Matzkin (2008) : The mapping H is a system of structural

functions, U = G(Y,X), where Y,X, and U are defined as before. The dimension of Y

needs to be the same as that of U. Their studies assume that the structural functions

are unique valued, one-to-one mappings between Y and U , thereby excluding discrete

endogeneous variables cases. The structural feature of interest, θ(S), can be the value

of the structural function evaluated at a specific point, or partial derivatives of the

structural functions.

2. Treatment Effects using Hurwicz (1950a) Structure : H can be a mapping from

a set of joint distributions of the scalar potential outcomes, Y1 and Y0, FY1Y0|X , to

ΨS , such that

FY |X = H(FY1Y0|X).

Note that FY1Y0|X is unobeserved. θ(S) can be average of quantiles of treatment

effects, θ(S) = E(Y1 − Y0|X = x), or θ(S) = QY1−Y0|X(τ |x).

3. Models for Oligopoly Entry Games : The mapping H can be structural rela-

tions together with an equilibrium selection mechanism. Let the structural relations

be specified by the threshold crossing structures as Y1 = 1(X1β1 + Y2∆1 + U1 ≥ 0)

and Y2 = 1(X2β2 + Y1∆2 + U2 ≥ 0) as in Bresnahan and Reiss (1991). This struc-

tural relations do not predict unique outcomes. By assuming a specific equilibrium

selection rule, π, point identification can be achieved.

4. Binary Choice Models without endogeneity of Manski (1988) and Matzkin (1992)

: H is a latent structural relation together with a threshold crossing structure that
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transfoms the latent structural relation into the observed distribution. Manski

(1988)’s case is Y = 1(Xβ+U ≥ 0), and Matzkin (1992)’s case is Y = 1(h(X)+U ≥
0). The structural feature of interest in these papers are : θ(S) = {β, FU |X} and
θ(S) = {h(x), FU |X}, where x is a realized value of the random variable X. Under a

set of restrictions, point identification of the structural features is established. Note

that neither of the restrictions of the two models are included by the other. One of

the common restrictions in the two models is the existence of a continuous explana-

tory variable (can be called a special regressor as in Lewbel (2000)), which is relaxed

in Magnac and Maurin (2007, 2008).

5. Auction models - the interpretation of FU |X : The data available are individ-

uals’bids, and the underlying structure is S = {h, FU |X}, where FU |X is the joint

distribution of latent individual valuation and private information (types) satisfying

certain statistical properties (e.g. independence and symmetry etc.) and h is a true

mapping from the true distribution of types (U) to a distribution of observable bids

(Y ) implied by the assumption of Baysian Nash equilibrium. The structural relation

h between bids and valuation is implied by the Bayesian Nash equilibrium, which is

represented by H(Y,X,U) = 0. The different auction models assume different sta-

tistical properties on the bidder’s private information, which opens room for testing

the implications from different models using the observed data.

Lemma 1 in Chesher (2007) and Constructive Identification

The above definition is regarding identifiability. Lemma 1 in Chesher (2007) can be used for

constructive identification. Lemma 1 in Chesher (2007) states that if there exists a unique-

valued functional G(·) of distribution of the observables such that θ(S) = G(FY |X),∀S ∈
M ∩ Ω0, then the structural feature θ(S) is identified by G(FY |X). θ(S) = G(FY |X)

indicates the identifying relation.

Identifiability does not necessarily imply how to find out the form of G(FY |X). Finding

out the expression for the structural feature in terms of a functional of the distribution

of the observables, G(FY |X), can be useful because once the exact form is known by the

identification result, then the analogy principle can be used.

Chapter 4 in which point identification of ceteris paribus effects of a continuous variable

are discussed, Lemma 1 in Chesher (2007) is used to find out the identifying relation,

(θ(S) = G(FY |X)).

2.1.2 Set Identification and Sharpness

Sometimes point identification is not achievable unless we impose stronger restrictions on

the structure. If such strong, often parametric restrictions are hard to be justified in the

context of an economic application, then we may try to obtain partial identification by

imposing weaker restrictions instead of imposing unreasonable restrictions that guarantee

point identification.
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I0

Point Identification

S1 S2

SÝS1Þ = SÝS2Þ = SÝS0Þ = a = GÝFY |X
0 Þ

a = GÝFY |X
0 Þ

Figure 2.2: Point identification of a structural feature, θ(S) by Lemma 1 in Chesher (2007) : it is said
to be point identified if there exists a unique valued functional G(·) such that θ(S) = G(F 0

Y |X), ∀S ∈
M∩Ω0. (Lemma 1 in Chesher (2007)). In other words, if S1, S2 ∈M∩Ω0, then θ(S1) = θ(S2) =
θ(S0) = a = G(F 0

Y |X). Thus, in this case, ΘM(F 0
Y |X) = G(F 0

Y |X) = {a}. The identification
analysis will provides a way to find out the form of unique-valued functional G(F 0

Y |X) to achieve point

identification, or the form of the set, ΘM(F 0
Y |X).

For a given econometric model, M, defined in the previous section, let ΘM(·) be a
mapping from ΨM to a class of sets in Rd, where d is the dimension of the structural

feature, θ(S), specified in the economic example. The mapping is written as ΘM(FSY |X).

We say the model,M, set identifies the structural feature, θ(S0), if we can determine a

set ΘM(F 0
Y |X), given data, F 0

Y |X , such that for any admitted structure S that is observa-

tionally equivalent to S0, θ(S) ∈ ΘM(F 0
Y |X). ΘM(F 0

Y |X) can be defined either explicitly

with the boundary explicitly specified (Manski (1990,1997), Manski and Pepper (2000),

Chesher (2005), and Lee (2010)), or implicitly by some moment inequalities (some of the

entry models (see Berry and Tamer (2007) for survey), Honore and Tamer (2006), Magnac

and Maurin (2008), and Chesher (2010), for example).

Since several studies define their identified sets as those that may contain outer re-

gions8, an identified set is defined as a bigger set that contains a sharp identified set,

which will be defined later. An identified set is defined as the following :

Definition 1 Set Identification : the modelM set identifies the structural feature,

θ(S0) if ∃ ΘM(·) s.t. ∀S ∈M∩ Ω0, θ(S) ∈ ΘM(F 0
Y |X), where Ω0 is defined as before.

Definition 2.1 Set Identification : the model M set identifies the structural

feature, θ(S0) if ∃ ΘM(·) s.t. ∀S ∈ M∩ Ω0, θ(S) ∈ ΘM(F 0
Y |X), where Ω0 is defined as

before.

8An identified set may contain some outer regions as discussed in Beresteanu, Molchanov, and Molinari
(2008).
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M

I0

Set Identification

BMÝFW|X
0 Þ

S1 S2

a1 = SÝS1Þ and a2 = SÝS2Þ

a1, a2 5 BMÝFY |X
0 Þ

Figure 2.3: When the structural feature is set identified, and not point identified, then for any two
admitted and observationally equivalent structures, S1, S2 ∈ M ∩ Ω0, with a1 = θ(S1) and a2 =
θ(S2), all we can say is that a1 ∈ ΘM(F 0

Y |X) and a2 ∈ ΘM(F 0
Y |X), a1 and a2 can be distinct values.

If ΘM(·) is singleton, in other words, if every admitted and observationally equivalent
structure generates the same value of the structural feature, then we say the structural

feature is point identified by the model. See <Figure 2.2>.

Failure of point identification and set identification (examples continued)

1. Nonparametric and Nonseparable Simultaneous Equations Models : Iden-

tifiability results in Matzkin (2008) cannot be applied when any of endogenous vari-

ables is discrete since differentiability and the one-to-one mapping assumption be-

tween the unobservables and the discrete endogenous variable do not hold. Other

(point) identification strategies using a triangular system or single equation IV

models have been proposed. For a triangular system, see Chesher (2003) and Im-

bens and Newey (2009), and for single equation IV models see Chernozhukov and

Hansen (2005). However, when the regressor is discrete under triangular systems

(see Chesher (2005), Jun, Pinkse, and Xu (2010), and Lee (2010) for discrete en-

dogenous regressor) and when the outcome is discrete in single equation IV models

(see Chesher (2010)), point identification fails.

2. Treatment Effects : When parametric assumptions on the distribution function

are relaxed, strong restrictions such as identification at infinity (see Heckman (1990))

are required for point identification of average treatment effects. Several studies re-

port partial identification results under weaker restrictions : see Manski (1990,1997)

and Heckman and Vytlacil (2001), Manski and Pepper (2000), Shaikh and Vytlacil

(2005), and Bhattacharya, Shaikh, Vytalcil (2008).

3. Models for Oligopoly Entry Games : without specifying an equilibrium selec-

tion mechanism point identification in the entry models is not achievable. See Tamer

(2003) and Berry and Tamer (2007) for recent survey.
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4. Binary Choice Models with Endogeneity : When the large support condition

in Lewbel (2000)’s model with a special regressor is relaxed, Magnac and Maurin

(2008) show partial identification results using the moment conditions derived from

their restrictions.

If a set,ΘM(F 0
Y |X), includes all the values of a feature of structures that are admissible

and observationally indistinguishable and if it contains only such values, then ΘM(F 0
Y |X)

is called a sharp identified set.

Definition 2.2 A sharp identified set, ΘMSharp(F
0
Y |X) is defined asΘMSharp(F

0
Y |X) ≡

{a : θ(S) = a, ∀S ∈M∩ Ω0}.

To show set identification, it needs to be shown that an identified set, ΘM(F 0
Y |X),

contains all the values of a feature of structures that are observationally equivalent and

admitted by Ṁ. However, not every point in ΘM(F 0
Y |X) is necessarily generated by

an admitted structure that is observationally equivalent. (e.g. Andrews, Berry, and Jia

(2004), Ciliberto and Tamer (2009)). Alternatively, a set defined by an identification

strategy may not include all the points that are generated by admitted and observationally

equivalent structures.

Beresteanu, Molchanov, and Molinari (2008) define a sharp identified region as

"... the region in the parameter space which includes all possible parameter

values that (i) could generate the same distribution of observables for some data

generation process (ii) consistent with the maintained modeling assumptions

and no other parameter value, is called the sharp identified region. .." .

This is a descriptive definition of sharpness. This descriptive definition can be mapped

into Definition 2.2 because ΘMSharp(F
0
Y |X) is the set of all values of the structural feature,

θ(S), that is generated by an element in S ∈M∩Ω0. "Consistent with the model (S ∈M)"

and "generate the same the distribution of the observables (S ∈ Ω0)" can be guaranteed

by the fact that S ∈M∩ Ω0.

If one can show that ΘM(F 0
Y |X) = ΘMSharp(F

0
Y |X), then sharpness of an identified set

is shown. Another way of showing sharpness is to use the following lemma. Suppose that

for every value in an identified set, there exists an admitted and observationally equivalent

structure whose feature is that value, then the identified set is sharp.

Lemma 2.1 Suppose that ∀ a ∈ ΘM(F 0
Y |X), ∃S ∈ M ∩ Ω0 with θ(S) = a. Then

ΘM(F 0
Y |X) = ΘMSharp(F

0
Y |X).

Proof. Suppose that ∀ a ∈ ΘM(F 0
Y |X), ∃S ∈ M ∩ Ω0 with θ(S) = a. First, note that

ΘM(F 0
Y |X) ⊆ ΘMSharp(F

0
Y |X), since for any a ∈ ΘM(F 0

Y |X), ∃S ∈ M∩ Ω0 with θ(S) = a,

it should be the case that a ∈ ΘMSharp(F
0
Y |X). Next, ΘM(F 0

Y |X) ⊇ ΘMSharp(F
0
Y |X) since
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M

I0
BMÝFY|X

0 Þ

Figure 2.4: Set identification : all the values of the structural feature (θ(S)) generated by any structure
that is admitted by the model and observationally equaivalent to the true structure need to lie in the set

ΘM(F 0
Y |X). If the structural feature is point identified, that is, ΘM(F 0

Y |X) is singleton, distinct struc-
tures that are admitted and observationally equivalent should generate the same value for the structural

feature. Note that there can be some parts of the set, ΘM(F 0
Y |X), where θ(S) never lies. Sharpness of

an identified set guarantees that there will be no such parts, in which case, the set can be described as

"the smallest set that exhausts all the information from the data and the model" as some authors define

sharpness. Two distinct points in the identified may have been generated by two distinct structures, but

they should be admitted (consistent with the model) as well as observationally equivalent to each other

(consistent with the data) if the identified set is sharp.

M

I0
BMÝFY|X

0 Þ

Figure 2.5: Sharpness : showing sharpness involves showing that for each point in the set there exists at
least one structure that is admitted (consistent with the model) and observationally equivalent (consistent

with the data) to the true structure, S0. Note that two distinct structures could generate the same value

for the structural feature.
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ΘMSharp(F
0
Y |X) is the smallest identified set without any outer region. Then ΘM(F 0

Y |X) =

ΘMSharp(F
0
Y |X) follows.

Discussion on Sharpness (examples continued)

1. Nonparametric Structural Analysis with Discrete Data : Chesher (2010) and

Chapter 5 in this thesis show sharpness of their identified sets. The proofs involve

showing that for every point in the identified set, there exists at least one admitted

and observationally equivalent structure

2. Treatment Effects : Heckman, Clement, and Smith (1997), Shaikh and Vytlacil

(2005), Fan and Park (2010), and Firpo and Ridder (2009) study distribution of

treatment effects defined as difference between the potential outcomes, Y1 − Y0.

Since Hurwicz (1950) mapping, H, can be considered to transform the distribution

of Y1 − Y0 (unobservable) into the distribution of Y (observable), their sharpness

proofs involve construction of FY1−Y0|X from the observed distribution, FY |X . For the

constructed distribution, FY1−Y0|X to be legitimate, it has to satisfy the properties

of distribution functions.

3. Entry Models : Ciliberto and Tamer (2007) recognize that the inequality restric-

tions taken in the entry game do not generate sharp identified sets.

4. Monotone Binary Choice Models : Magnac and Maurin (2008)’s identified set

is defined as a set of all the points that are observationally equivalent and that satisfy

the moment restriction derived in their papers. This is enough since they showed

that their moment conditions equivalently express all the restrictions imposed by the

model, thus, all the observationally equivalent structures that satisfy the moment

conditions should be those that are admitted by the model.

2.1.3 Overidentification, Intersection Bounds and Sharpness

A model defines an identified set and sharp identified sets always exist once a model is

given. There can be many such sets (overidentification)9, for example, where different

values of IV define different identified sets in Chesher (2005), or where there exist many

IVs that satisfy the moment conditions in Bontemps, Magnac, and Maurin (2008). Not

every identified set is sharp. Also, even though a model may define several identified sets,

intersection of them does not guarantee sharpness since every identified set may contain

some common outer regions.

2.1.4 Overidentification and Specification Tests under Set Identification

The information when there is overidentification, tests regarding the specification of the

model can be conducted.
9This terminology, "overidentification" in the partial identification context was used in Chesher (2005)

and Bontemps, Magnac and Maurin (2007).
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Examples

1. Treatment Effects : Manski (1990) discusses testability (refutability) of "level-

set" assumption - constant treatment effect assumption across different observable

characteristics - by taking intersection of each identified intervals and see if the

intersection is empty.

2. Overidentification Tests under Set Identification : Bontemps, Magnac, and

Maurin (2008) develop a Sagan-type specification test of overidentifying restrictions

in the case of overidentification when the parameter is partially identified.

2.2 Refutability of Structural Features under Set Identifica-

tion

"...particularly where the model is to a large degree speculative, empiri-

cal confirmation of the validity or usefulness of the model is obtained only

to the extent that observationally restrictive specifications are upheld by the

data....(Koopmans and Reiersol (1950) p180, emphasis added)"

If a model (or the restrictions imposed by a model) can be confirmed by data, this will

validate the usefulness and credibility of the model. Some features of an economic model

may not be identifiable in which case no amount of empirical information will answer the

questions regarding the features of the underlying economic decision processes. To be able

to use data as evidence for or against any hypothesis regarding the underlying structure,

identifiability of the structural feature which is the object of the hypothesis is essential.

The general rule described in the above quote from Koopmans and Reiersol (1950) and

Breusch (1986)’s observation on "testability" are adopted.

Let z be a set of all restrictions and zY X be a set of restrictions on the distribution

of the observables. Then z would be partitioned into the two sets, zY X and z/zY X .
Let R denote an element of the set z. R can be a statement regarding either a structure

or a distribution of observed variables.

Examples of restrictions on the structure can be monotone treatment response or

monotone selection restriction in Manski (1997) and Manski and Pepper (2000). They

can be regarding the functional form such as additive separability, linearity, or regarding

he distribution of the unobservables such as mean or quantile. In most econometric models

restrictions on the structure are not enough for identification.

Often restrictions on the distribution of the observables should be required. Examples

of restrictions on the distribution of the observables are various types of rank conditions,

or no multicollinearity condition or completeness conditions in Newey and Powell (2003)

or Chernozhukov and Hansen (2005). Sometimes existence of a continuous variable plays

22



a key role in identification - identification at infinity, special regressor in Lewbel (2000)

(which can be a special case of Manski (1988) and Matzkin (1992)’s conditions for iden-

tification). In principle, any such restrictions on observables should be checked whether

they are satisfied by the data. that is, R ∈ zY X is "directly testable", while R ∈ z/zY X

is testable if we can derive an equivalent expression for the restriction in terms of the

observable FSY |X . Any R ∈ z
Y X is directly testable, while R ∈ z/zY X is testable (con-

firmable) if and only if ∃R′ ∈ zY X s.t. R⇔ R′. Note that some of the restrictions have

no testable implications on data.

For the discussion of testability of R ∈ z/zY X and how to interpret the test results,

we adopt Breusch (1986)’s framework. From now on we are concerned with restrictions on

structural features which do not have any implications on the distribution of observables.

2.2.1 Breusch (1986)’s Framework of "Testability"

We introduce Breusch (1986)’s framework to determine "testability" of hypotheses on

S. Let H0 be the set of structures that satisfy the null hypothesis. Then S, a set of
all structures, is partitioned into two, H0 and S/H0. The testability of the hypothesis

is a decision problem regarding whether the true structure S0 that generates the data is

included in H0 or not using the data.

Determining how to "interpret" the test results structurally requires further clarifica-

tion of ideas. We adopt the "refutability" and "confirmability" from Breusch (1986) and

define them as the following in a general setup. A hypothesis is refutable if, when the

true structure, S0, is not included in H0, every observationally equivalent structure to S0

is also not included in H0.

Definition 2.3 A hypothesis is called refutable if S0 /∈ H0 =⇒ @S ∈ H0 s.t.F
0
Y |X =

FSY |X .

A hypothesis is confirmable if, when the true structure, S0 is included in H0, every

observationally equivalent structure to S0 is also included in H0.

Definition 2.4 A hypothesis is called confirmable if S0 ∈ H0 =⇒ @S /∈ H0 s.t.F
0
Y |X =

FSY |X .

Discussion :

1. A hypothesis is refutable if when it is rejected, we can use the data as evidence

against the null hypothesis and conclude that the hypothesis is not true. A hy-

pothesis is confirmable if when it is accepted, we can conclude that the model

(hypothesis) is true.
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Figure 2.6: Falsifiability of a model : this is a problem of deciding whether S0 ∈ M, or

S0 ∈ MC . This can be restated as S0 ∈ M∩ Ω0, or, S0 ∈ M∩ Ω0, since S0 ∈ Ω0 by definition of

Ω0.

2. However, if a hypothesis is refutable, but not confirmable, then we cannot

conclude that the hypothesis is true even though the hypothesis is not rejected.

In Chapter 3 a refutable implication of endogeneity is discussed. Endogeneity is a struc-

tural feature that is not directly observable. By imposing some restrictions, a refutable

implication can be derived.

2.3 Falsifiability of a Model

Econometric models characterized by restrictions are used to infer certain information on

the true data generating structure, θ(S0). Identification analysis assumes that S0 is in the

model, i.e. S0 satisfies all the restrictions imposed by the model. Otherwise, the identified

set by the model would not be informative on θ(S0). In this section testability of whether

the true structure actually lies in the model (S0 ∈ M ∩ Ω0) is considered. This is a

problem of deciding whether S0 ∈M, or S0 ∈MC .This can be restated as S0 ∈M∩Ω0,

or, S0 ∈M∩Ω0, since S0 ∈ Ω0 by definition of Ω0. See <Figure 2.6>. In this section one

way of falsifying a model is discussed.

LetM1 be a set of structures that satisfy the set of restrictions R1 andM be a set of

structures that satisfy the set of restrictions RM. Then a modelM′ imposing restrictions
R1 and R can be written as

M′=M∩M1 (**)

Let ΨM be a set of distribution functions of observables generated by the structures in

M and ΨM
′
be a set of distribution functions of observables generated by the structures
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Figure 2.7: Lemma 3

inM′.
Koopmans and Reiersol (1950) state that R1 is "subject to test" if we can test H0 :

F 0
Y |X ∈ ΨM

′
. From this we further develop the logic of testability of restrictions and

discuss how identification results can be used in "falsifying" a model/restrictions.

Suppose that a model, M1, identifies a structural feature, θ(S), by a set Θ1(FSY |X),

and another model,M2, identifies the same structural feature, θ(S), by Θ2(FSY |X). Recall

that we define ΨM
1

= {FSY |X : S ∈ M1} and ΨM
2

= {FSY |X : S ∈ M2}. Note that
ΨM

1∩Ω0 = {F 0
Y |X}.

If F 0
Y |X /∈ ΨM, the model M should be falsified, since the true structure, S0, that

generates F 0
Y |X cannot be inM. Falsification of a model is not always possible.

Lemma 2.3 IfM1 ⊆M2 , then ΨM
1 ⊆ ΨM

2
.

Proof. Trivial by definition of ΨM.

Lemma 2.4 If ΨM
1 ⊆ ΨM

2
, then Θ1(FSY |X) ⊆ Θ2(FSY |X), for ∀S ∈M1 ∩ Ω0.

Proof. For S∗ ∈ M1 ∩ Ω0, F
S∗
Y |X = F 0

Y |X ∈ ΨM
1 ⊆ ΨM

2
, and θ(S∗) ∈ Θ1(FS

∗
Y |X). Since

ΨM
1 ⊆ ΨM

2
, whenever FSY |X ∈ ΨM

1
implies that FSY |X ∈ ΨM

2
. Then the definition of

ΨM
2
and identification imply that S∗ ∈M2 ∩Ω0, thus, θ(S∗) ∈ Θ2(F 0

Y |X) leading to the

conclusion that Θ1(F 0
Y |X) ⊆ Θ2(F 0

Y |X).

Theorem 2.1 IfM1 ⊆M2 , then Θ1(FSY |X) ⊆ Θ2(FSY |X), ∀S ∈M1 ∩ Ω0.

Proof. The result follows from Lemma 2.3 and Lemma 2.4.

Theorem 2.1 is a natural and intuitive result. Consider the following examples.

Example 1 suppose thatM1 imposes linearity with mean independence of the un-

observed U, so that the structural relation admitted is of the form, Y = Xβ+U, andM2

admits additively separable structural relation Y = f(X) +U,with mean independence of

U. ThenM1 ⊆M2. If the true structure lies inM1, by Theorem 2.1 for the structural
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Figure 2.8: Lemma 4

feature of partial derivative, β = f ′(X), implying that Θ1(F 0
Y |X) = Θ2(F 0

Y |X) since both

models point identify the partial derivative. If the identified sets did not intersect, the

linearity restriction could be refuted.

Example 2 Consider Manski (1990), Manski (1997)’s Monotone Treatment Response

(MTR) model, and Manski and Pepper (2000)’s Monotone Treatment Response and

Monotone Treatment Selection (MTR-MTS) model. Let M1,M2, and M3 denote each

model. ThenM1 ⊇ M2 ⊇ M3. Theorem 2.1 implies that if the true structure satisfies

MTR-MTS restrictions, that is, the true structure lies inM3, we have

Θ1(F 0
Y |X) ⊇ Θ2(F 0

Y |X) ⊇ Θ3(F 0
Y |X), ∀S ∈M3 ∩ Ω0

Note that both MTR and MTS are not "directly testable". However, it can be said

that if Θ1(F 0
Y |X) + Θ2(F 0

Y |X), then MTR is violated. Likewise, Θ2(F 0
Y |X) + Θ3(F 0

Y |X),

then MTS is violated. If Θ1(F 0
Y |X) + Θ3(F 0

Y |X), then either MTR or MTS, or both MTR

and MTS are violated.

In Theorem 2.1 at least one model - eitherM1 orM2 - is overidentifying. However,

existence of an overidentifying model is not required to falsify a model. As long as ΨM
1 ⊆

ΨM
2
the criterion can be used to falsifyM1 by Lemma 2.4. That is, although the two

models are just-identifying, if ΨM
1 ⊆ ΨM

2
, we can falsifyM1.

2.4 Just-identifying Models and Falsifiabilty of Restrictions

We first define just-identification. A just-identifying model loses its identifying power

if any of its restrictions is relaxed.
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Definition 2.5 A modelM characterized by a set of restrictions RM just-identifies

a structural feature θ(S) if @M1 characterized by a set of restriction R1 s.t. (i) RM ⊃ R1

and (ii) θ(S) ∈ ΘM1 , ∀S ∈M1 ∩ Ω0, where Ω0 is defined as before.

The set of restrictions, RM of a model M which is just-identifying is a minimal set

that identifies the structural features.

If a model,M, characterized by a set of restrictions RM is not just-identifying, then

there exists a less restrictive model M1 characterized by a set of restriction R1 s.t. (i)

RM ⊃ R1 and (ii) θ(S) = θ(S0) ∀S ∈M1 ∩ Ω0.

Suppose two models, M1 and M2, with M1 6= M2 are just-identifying the same

structural feature. Let the set of restrictions for M1 be R1 and that for M2 be R2. If

ΨM
1 ⊂ ΨM

2
, thenM1 can be falsified. In other words, ifM1 is observationally more

restrictive, and R1/R2 is observationally relevant restrictions. Then we have the

following main result of this chapter.

Definition 2.6 (Koopmans and Reiersol (1950))M1 is called observationally re-

strictive if ΨM
1 ⊂ ΨM

2
.

Definition 2.7 R1/R2 is called a set of observationally relevant restrictions if

ΨM
1 ⊂ ΨM

2
.

Falsifiability of a model can be linked to refutability of restrictions under set identifica-

tion since a model is characterized by restrictions. If a model is falsified, then some of the

restrictions imposed by the model must not be the true description of the true underlying

data generating structure. However, which restrictions among all the restrictions imposed

by the model are not clear. This can be determined by the following proposition.

Proposition 2.1 If ΨM1 ⊂ ΨM2 , R1/R2, the observationally relevant restrictions,

can be refuted.

Proof. The result follows from Lemma 2.4.
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Chapter 3

The Quantile-based Control

Function Approach and Testability

of Endogeneity

In the first section of this chapter the quantile-based control function approach (QCFA)

proposed in Chesher (2003) is introduced, which is a necessary background for later dis-

cussion. Section 3.1 is to compare and contrast the results in Chapter 4 and Chapter 5

with Chesher (2003). A simplified derivation of the Chesher (2003) results is introduced

in a simple setup as a benchmark. Similar steps will be used in deriving the results in

Chapter 4. Section 3.2 has new findings regarding testable implications on endogeneity.

Every variable is assumed to be continuously varying and the structural functions are

assumed to be differentiable in this chapter. This assumption is relaxed in Chapter 4 and

Chapter 5 where the same QCFA is applied to discrete outcomes and discrete endogeneous

variables.

3.1 The Quantile-based Control Function Approach - A Re-

visit

3.1.1 The Model

The Chesher (2003) setup can be described by the following Restriction A. For simplicity,

the case where there is only one endogenous variable is considered. Capital letters indicate

random variables and the lower cases indicate their realization. Some variation of this

restriction is used to reflect the nature of observational processes of each case in Chapter

4 and Chapter 5.

Restriction A - Triangularity, Continuous Variables, Strict Monotonicity

and Differentiability

Scalar random variables W and Y, and a random vector, X of dimension K are con-

tinuously distributed. For any values of X, U, and V, unique values of W and Y are
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determined by the structural equations

W = h(Y,X,U) (S-1)

Y = hY (X,V ) (S-2)

The scalar unobserved indices, U, and V are jointly continuously distributed and each is

normalized uniformly distributed on (0,1). The structural relations h and hY are strictly

monotonic with respect to variation in the unobservable U and V each. The structural

relations h and hY are differentiable.

Chesher (2003) focuses on identification at a point and derives minimum possible

restrictions that achieve local identification. Thus, the restrictions suggested are required

to hold at the point. Based on Restriction A, further restrictions such as independence or

exclusion restrictions will be used to derive identification results in the following discussion.

In the next subsection, some of the implications of this restriction are discussed.

3.1.2 Discussion on Restriction A

Additively Nonseparable Structural Function and Stochastic Sensitivities

One of the key implications of the nonseparable functional form is that partial deriva-

tives or partial differences are themselves stochastic objects that have distributions, since
∂h(Y,X,U)

∂y or h(ya, x, u) − h(yb, x, u) contain unobserved heterogeneity. If the structural

function is linear, that is, W = a+ bY + cX +U, then the partial derivative of this linear

function with respect to Y is b. Thus, assuming a linear structural relation corresponds to

assuming "homogenous" responses. On the other hand, an additively separable structural

function, for example, W = h(Y,X) + U, allows for heterogeneity in responses, but once

conditioning on the observables, there is no difference among the people with different

unobserved characteristics as the ceteris paribus effect measured by the partial derivative,
∂h(y,x)
∂y , is determined by observed characteristics only.

Triangularity, Continuous Endogenous Variables, and the Control Function

Methods

Triangular1 simultaneous equations models have been used under the name of "control

function approach" when the endogenous variable is continuous2. The control function

approach is usually used to indicate the way of correcting for endogeneity by adding the

residuals from the auxiliary equations for the endogenous variables.
1Triangular simultaneous equations systems exclude many interesting economic examples, where out-

comes are determined strategically by agents, much studied in the empirical IO literature recently.
2See Blundell and Powell (2003, 2004) for the most recent survey of the control function approach - the

extensions of the control function approach to nonparametric and semiparametric structural equations for
binary/censored outcomes. Note that their treatment is for the continuous endogenous variables.
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In the identification analysis of structural functions under endogeneity invertibility of

the structural function with respect to the unobservable variable plays a key role for point

identification. Invertibility of hY with respect to V guarantees the one-to-one mapping

between the endogenous variable (Y ) and the error (V ). When the endogenous variable is

continuous, conditioning on the residual obtained from the equation for the endogenous

variable is equivalent to conditioning on the specific-quantiles of the endogenous variable

due to this one-to-one mapping. We call the latter strategy of conditioning on quantiles of

the endogenous variables the quantile-based control function approach (QCFA) in contrast

with the former strategy of conditioning on the residual.

Scalar Index Unobservables, Continuous Unobserved Types, and Monotonicity

Only scalar unobserved characteristics are allowed as an argument of the structural rela-

tions. The model also admits multiple factors of unobserved heterogeneity as long as they

affect the outcome through a scalar index.

Restriction Scalar Index Unobservables (SIU) : U and V should be scalar in the

model. This model admits such cases that U = θU (U1, ..., UL), V = θV (V1, ..., VI), where

θU : RL → (0, 1), θV : RI → (0, 1), for some positive number L and I. Let X = [X1, X2]′.

Each unobserved variable is normalized uniform (0,1) and they are assumed to be

continuous. This assumption can be natural and general in modeling contract theory in

which individuals’unobserved type is assumed to be uniformly distributed.

However, this scalar unobserved index assumption does not admit measurement error

models or duration outcomes. For structures with vector unobservables that cannot be

represented by a scalar unobservable, see Chesher (2009), where examples of such case are

illustrated. The vector of unobservables is called "excess heterogeneity" in Chesher (2009)

- "excess" in the sense that we allow for more unobservable variables than the number

of endogenous variables. The distinction of the number of endogenous variables from

the number of unobservable variables stems from the analysis of classical simultaneous

equations models of the Cowles Commission, and more recent studies on nonparametric

identification of simultaneous equations models in Brown (1983), Roehrig (1988), Matzkin

(2008), and Benkard and Berry (2006), where the number of unobservables is equal to the

number of endogenous variables.

Heterogeneity in sensitivity is recovered by adopting "quantile"-based methods, rather

than averaging the unobserved characteristics out. Monotonicity of the structural relations

in scalar unobserved element is required to use the equivariance property of quantiles. The

monotonicity assumption can be justified in many economic examples - see Imbens and

Newey (2010) for the examples that justify monotonicity.
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3.1.3 Fundamental Identifying Relations - (B), (C), and Derivation of

(AB)

Throughout the thesis the focus is on identification of the sensitivity such as price/income

elasticity of an (endogenous) explanatory variable. The sensitivity or ceteris paribus im-

pacts are measured by partial derivatives/differences of a structural relation, e.g. de-

mand/supply function. To understand and derive the identification of partial deriva-

tives/differences, identification of the structural relations should be understood first.

In this subsection identifying relations are established. The results will be referred

to throughout the thesis in the analysis of the identification of the partial derivatives

(Chapter 4), partial differences (Chapter 5), and the construction of the distribution of

the unobservables in sharpness proofs of Chesher (2005) and Theorem 5.2 (Chapter 5) in

Appendix C.

It is impossible to identify the whole structure, {h, FU |X} even without endogeneity
(Lemma 1 in Matzkin (2003)) due to nonseparability : normalization of FU |X is required for

identification of the structural function, h.3 Then the major focus is on the identification of

normalized structural functions, "structural quantile functions", named by Chernozhukov

and Hansen (2005). When there is endogeneity problem, Matzkin (2003)’s idea fails to pro-

vide identification of independent variations in each argument of the structural function.

In such a case Chesher (2003)’s QCFA can be used to identify independent variations in

observable arguments in the structural function when the unobservable argument is fixed.

The inverse function of hY with respect to v exists by strict monotonicity of hY in v.

It is denoted by v = g(y, x). Then the following identity can be written. For any x and y

on the support of X and Y :

y = hY (x, g(y, x)). (A)

Following Matzkin (2003) under strict monotonicity, the value, hY (x, τV ) is identified

by QY |X(τV |x) using the equivariance property of quantiles under the Uniform normal-

ization :

QY |X(τV |x)︸ ︷︷ ︸
"Data"

= hY (x,QV |X(τV |x))︸ ︷︷ ︸
Structural Feature

(B)

Independent variation in each argument of the structural function, hY (·, ·) can be identified
if the two arguments, X and V, are independent.

3hY (x, v) is identified by QY |X(v|x).
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Strict monotonicity of h in u also guarantees the following relation

"Data"︷ ︸︸ ︷
QW |Y X(τU |y, x) =

Structural Feature︷ ︸︸ ︷
h(y, x, u∗)

= h(y, x,QU |V X(τU |τV , x)) (C)

= h(y, x, f(τU , g(y, x), x))

where f(τU , g(y, x), x) ≡ QU |V X(τU |τV , x),

y = QY |X(τV |x),

u∗ ≡ QU |V X(τU |τV , x)

v = g(y, x) = QV |X(τV |x)

That is, the value of the structural relation evaluated at Y = y = QY |X(τV |x), X = x, and

U = u∗ = QU |Y X(τU |y, x), is found by the quantile of the distribution of W given Y and

X. Following Lemma 1 in Chesher (2007), we interpret the above relation as "the value

of the structural function, h(y, x, u∗), is identified by the functional of the distribution,

QW |Y X(τU |y, x)". To identify all values of the function, h(·, ·, ·), it is required to show
whether independent variations in each argument of h(·, ·, ·). The identifying relation,
(C) does not show this. How the QCFA achieves independent variations is illustrated in

Section 3.1.10 by assuming that there exists an IV.

In Restriction A differentiability of h, hY , and g are assumed. For identification

analysis using (B) and (C), QY |X(τV |x) and QW |Y X(τU |y, x) need to be differentiable.

Restriction D (Differentiability) QW |Y X(τU |y, x) is differentiable with respect to

y and x, and QY |X(τV |x) is differentiable with respect to x.

Remarks

• (B) and (C) are fundamental identifying relations that link "Data" and the structural
features. The left hand side of (B) and (C) are called "Data" since QY |X(τV |x) and

QW |Y X(τU |y, x) are functionals of the distribution of the observables, which can be

obtained from data in principle.

• Some of the information regarding endogeneity is contained in f(τU , x, g(y, x)) ≡
QU |V X(τU |τV , x), where y = QY |X(τV |x). When QU |V X(τU |τV , x) is differentiable,

if there is no endogeneity, then

∇yQU |V X(τU |τV , x) = ∇gf · ∇yg = 0.

• The function f(·, ·, ·) in (C) is introduced to contrast with the result when the

outcome is interval censored whose case is considered in Chapter 4. When the

outcome is interval censored, the value of the structural relation for the interval
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censored outcome can be found only at a specific quantiles, which depend on (y, x),

for example, τ(y, x). In this case, f(τ(y, x), g(y, x)) ≡ QU |Y X(τ(y, x)|y, x). Thus, if

QU |Y X(τ(y, x)|y, x) were invariant with a continuous Y, locally at Y = y, X = x, we

would have

∇yQU |Y X(τ(y, x)|y, x) = ∇τf · ∇yτ(y, x) +∇gf · ∇yg = 0.

• Even though the outcome is discrete, the identifying relation (C) holds. However, if
the outcome is discrete, the structural function, h(·, ·, ·) is not differentiable, thus,
partial derivatives of h(·, ·, ·) are not defined. Chapter 4 considers interval censored
outcome whose latent structural function is differentiable, and the average of a dis-

crete outcome which is assumed to be a differentiable function. Then the QCFA is

applied to identify partial derivatives of these differentiable objects with respect to

the variables of interest.

From the auxiliary equation (S-2), we have the identity (A), and the identifying relation

for hY (·, ·), (B) :

y = hY (x, g(y, x)) (A)

QY |X(τV |x) = hY (x,QV |X(τV |x)) (B)

Suppose that the dimension of X, K = 2 for simplicity. Differentiating the identity,

(A), with respect to y and xk, k ∈ {1, 2}, we get

1 = ∇vhY · ∇yg

0 = ∇x1hY +∇vhY · ∇x1g (A′)

0 = ∇x2hY +∇vhY · ∇x2g

and differentiating (B) with respect to xk, k ∈ {1, 2} we have

”Data”︷ ︸︸ ︷
∇x1QY |X(τV |x) =

Structural elements︷ ︸︸ ︷
∇x1hY +∇vhY · ∇x1QV |X(τV |x) (B′)

∇x2QY |X(τV |x) = ∇x2hY +∇vhY · ∇x2QV |X(τV |x)︸ ︷︷ ︸
(#)

.

Suppose we are interested in identification of ∇xkhY , k ∈ {1, 2}. Without further re-
strictions, identification of∇xkhY is not feasible. Suppose we assume that∇x2QV |X(τV |x) =

0 (#)4. Then ∇xkhY is identified by ∇xkQY |X(τV |x), k ∈ {1, 2}. Under this assumption
4This assumption (∇xkQY |X(τV |x) = 0, k ∈ {1, 2}) would be satisfied if X is independent of V.
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Result (AB) is derived from the identity (A) and the identifying relation (B).

Result (AB) : Suppose that the τV− quantile of the distribution of V given X is

invariant in the small neighborhood of X = x, that is, ∇xkQV |X(τV |x) = 0, k ∈ {1, 2}.
Then from (B′) it can be shown that ∇xkhY is identified by ∇xkQY |X(τV |x),

∇xkhY (x,QV |X(τV |x))︸ ︷︷ ︸
θ(S)

= ∇xkQY |X(τV |x),︸ ︷︷ ︸
G(FW |YX)

k ∈ {1, 2}.

From this, replacing ∇xkhY with ∇xkQY |X(τV |x), k ∈ {1, 2} in (A′), we have

∇yg =
1

∇vhY

∇x1g = − 1

∇vhY
· ∇x1QY |X(τV |x) (AB)

∇x2g = − 1

∇vhY
· ∇x2QY |X(τV |x).

The identifying relations (B) and (C), and the relations (AB) will be used in the

derivation of the results in this section and Chpater 4.

3.1.4 Identification of the Stochastic Ceteris Paribus Effects, ∇yh

Suppose we are interested in the causal effects of a continuous endogenous variable, Y,

defined by the partial derivative of h, ∇yh. Specifying a structural relation reveals different
routes of change caused by Y. This can be seen by differentiating (C) :

”Data”︷ ︸︸ ︷
∇yQW |Y X(τU |y, x)︸ ︷︷ ︸

Observed change in W due to Y

=

Structural elements︷ ︸︸ ︷
∇yh+ ∇uh · ∇gf · ∇yg︸ ︷︷ ︸ .

Indirect effect through U

(C ′ − 1)

When Y is not independent of the unobserved variable, the observed change inQW |Y X(τU |y, x)

due to the change in Y could be caused by two sources - the direct effect of Y on h(·, ·, ·)
and the indirect effect of Y on h(·, ·, ·) through the effect of U on h. If one could identify

the indirect effect, then ∇yh can be identified by subtracting the indirect effect from the

observed change in W. The following discussion shows how to measure the indirect effect

to identify ∇yh. Note that since the indirect effect would be zero if there is no endogeneity,
the indirect effect is called endogeneity bias. The endogeneity bias is discussed in Section

3.2.2 in more detail.

To discuss ceteris paribus effects on the outcome, we defferentiate (C) with respect

xk, k ∈ {1, 2} as well as y:
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∇yQW |Y X(τU |y, x) = ∇yh +∇uh · ∇gf · ∇yg︸︷︷︸
∗

,

∇x1QW |Y X(τU |y, x) = ∇x1h+∇uh · (∇gf · ∇x1g︸ ︷︷ ︸
∗

+∇x1f), (C ′)

∇x2QW |Y X(τU |y, x)︸ ︷︷ ︸
Observed Part from Data

= ∇x2h+∇uh · (∇gf · ∇x2g︸ ︷︷ ︸
∗

+∇x2f).

︸ ︷︷ ︸
Unobservable Structural Features

Data are informative on the left hand side objects, while the terms on the right hand side

are not identifiable without further restrictions. Not all the terms in the right hand side

are of interest, thus, some of the terms regarding "structural" elements in the right hand

side will be replaced using observed parts, which are embodied in relation (AB) derived

in the previous section, or they will be eliminated by imposing homogeneous restrictions

(local exogenous restriction), that is, by assuming that the terms are equal to zero.

Next, we replace the terms (∗) of the right hand side of (C ′) using (AB). Replacing
∇yg
∇x1g
∇x2g

 with 1

∇vhY


1

−∇x1QY |X(τV |x)

−∇x2QY |X(τV |x)

 , it follows that

∇yQW |Y X(τU |y, x) = ∇yh +∇uh ·
∇gf
∇vhY1

, (C ′′)

∇x1QW |Y X(τU |y, x) = ∇x1h−∇uh ·
∇gf
∇vhY1

· (∇x1QY |X(τV |x) +∇x1f),

∇x2QW |Y X(τU |y, x) = ∇x2h−∇uh ·
∇gf
∇vhY1

· (∇x2QY |X(τV |x) +∇x2f).

From here on vector/matrix are introduced. Chesher (2003) discusses a general case

with more than one endogeneous variable and the relations in (C ′) for many endogenous

variables case are expressed using a linear equations system using matrices. The iden-

tification results in Chesher (2003) are expressed as conditions that the solution to the

parameters of interest can be found, similar to the classical simultaneous equations models.

By using this simple case I demonstrate using matrices how his results are derived.

Letting

∇QW ≡


∇yQW |Y X
∇x1QW |Y X
∇x2QW |Y X


3×1

,∇h ≡


∇yh
∇x1h
∇x2h


3×1

,∇g ≡


∇yg
∇x1g
∇x2g


3×1

,∇fx ≡


0

∇x1f
∇x2f


2×1

.

∇g ≡


∇yg
∇x1g
∇x2g


3×1

, and ∇QY ≡


1

−∇x1QY |X
−∇x2QY |X


3×1

and replacing ∇g by 1
∇vhY ∇QY ,

(C ′′) can be rewritten using matrices as :
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∇QW = ∇h+
(∇uh · ∇gf)

∇vhY
·∇QY +∇fx.

Bold letters indicate matices. The structural feature to be recovered are ∇h,γ, and

∇fx, where γ =
(∇uh·∇gf)
∇vhY . Restrictions imposed on ∇h,γ, and ∇fx can be represented as

the following

Ah ·∇h + Aγ · γ + Af · ∇fx= a.

Ah
(G×3)

, Aγ
(G×1)

, Af
(G×2)

, a
(G×1)

are deterministic matrices, which contain the information on the

restrictions imposed.

Let

Φ ≡
[

13 ∇QY B3×2

Ah Aγ Af

]
(G+3)×6

,Ψ ≡


∇h

(∇uh·∇gf)
∇vhY

fx


6×1

,

φ ≡
[
∇QW

a

]
(G+3)×1

,where γ =
(∇uh·∇gf)
∇vhY and B3×2 ≡


0 0

1 0

0 1

 .
Then we have a system of equations represented by the following

ΦΨ = φ.

The structural objects of interest are indicated by the vector, Ψ. If the rank of Φ is

6, we can find the solution to Ψ. Then identification of ∇h can be achieved.

One set of such restrictions is illustrated by the following steps.

1. First, suppose that ∇xkf = 0, k ∈ {1, 2}(∗∗) (Restriction 1 : Local Inde-

pendence). Recall that we define f(τU , x, g(y, x)) ≡ QU |V X(τU |τV , x), where y =

QY |X(τV |x) in (C). Thus,∇x1f = 0, k ∈ {1, 2} indicates that∇xkQU |V X(τU |τV , x) =

0. That is, QU |V X(τU |τV , x) is locally invariant with the values of X. If X is exoge-

nous variable, ∇xkQU |V X(τU |τV , x) = 0. Imposing this restriction yields :

∇yQW |Y X(τU |y, x) = ∇yh +∇uh ·
∇gf
∇vhY1

,

∇x1QW |Y X(τU |y, x) = ∇x1h−∇uh ·
∇gf
∇vhY1

· (∇x1QY |X(τV |x) +∇x1f︸ ︷︷ ︸
∗∗

),

∇x2QW |Y X(τU |y, x) = ∇x2h︸ ︷︷ ︸
∗∗∗

−∇uh ·
∇gf
∇vhY1

· (∇x2QY |X(τV |x) +∇x2f︸ ︷︷ ︸
∗∗

).
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2. It is still impossible to express ∇yh in terms of observable parts only. Now suppose
that ∇x2h = 0 ((∗ ∗ ∗) Restriction 2 : Local Order Condition). That is, the
structural function of the outcome, h, is invariant with the value of X2 locally at

X2 = x2. This implies that X2 is locally excluded in h (called local order condition

to indicate the similarity with the classical linear simultaneous equations analysis).

Then we have from (C ′′)

∇yQW |Y X(τU |y, x) = ∇yh +∇uh ·
∇gf
∇vhY

, (C ′′′)

∇x1QW |Y X(τU |y, x) = ∇x1h−∇uh ·
∇gf
∇vhY

· ∇x1QY |X(τV |x),

∇x2QW |Y X(τU |y, x) = −∇uh ·
∇gf
∇vhY︸ ︷︷ ︸

∗∗∗∗

· ∇x2QY |X(τV |x).

3. To replace the term, ∇uh ·
∇gf
∇vhY1

(∗ ∗ ∗∗), with the observable expression from the

third equation of (C ′′′) we have

−∇uh ·
∇gf
∇vhY︸ ︷︷ ︸

∗∗∗∗

=
∇x2QW |Y X(τU |y, x)

∇x2QY |X(τV |x)
, ( Bias)

if ∇x2QY |X(τV |x) 6= 0 (Restriction 3 : Local "Rank" Condition)

4. Finally, replacing this in the first and second equations of (C ′′′), the identifying

relations for ∇yh and ∇x1h are derived:

∇yh = ∇yQW |Y X(τU |y, x) +
∇x2QW |Y X(τU |y, x)

∇x2QY |X(τV |x)
, (TPD)

∇x1h = ∇x1QW |Y X(τU |y, x)−
∇x2QW |Y X(τU |y, x) · ∇x1QY |X(τV |x)

∇x2QY |X(τV |x)
.

Let TPD(y, x, τU , τV ) ≡ ∇yh(y, x, u). The structural feature, ∇yh(y, x, u), is identified

by the functional of data, ∇yQW |Y X(τU |y, x) +
∇x2QW |Y X(τU |y, x)

∇x2QY |X(τV |x)
. This will be referred

to as "Three Part Decomposition" indicated by (TPD).

Then the system of equations we need to solve in this illustration can be written as
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∇yQW |Y X(τU |y, x) = ∇yh +∇uh ·
∇gf
∇vhY

,

∇x1QW |Y X(τU |y, x) = ∇x1h−∇uh ·
∇gf
∇vhY

· (∇x1QY |X(τV |x) +∇x1f),

∇x2QW |Y X(τU |y, x) = ∇x2h−∇uh ·
∇gf
∇vhY

· (∇x2QY |X(τV |x) +∇x2f).

∇x2h = 0

∇x1f = 0

∇x2f = 0

∇x2QY |X(τV |x) 6= 0.

Note that there are G = 3 homogeneous restrictions which will determine the order of

Φ. Setting

Ah=


0 0 0

0 0 0

0 0 1

 ,Aγ = 0,Af=


0 0

1 0

0 1

 , a =


0

0

0

 ,

Φ =



1 0 0 1 0 0

0 1 0 −∇x1QY |X(τV |x) 1 0

0 0 1 −∇x2QY |X(τV |x) 0 1

0 0 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 1


6×6

.

Note that even though ∇x2QY |X(τV |x) = 0, since G = 3, the order of Φ is 6, thus,

the necessary order condition is satisfied. However, if ∇x2QY |X(τV |x) = 0, the third row

is equal to the sixth row, which will result in rank(Φ) = 5. Thus, the local rank condition,

∇x2QY |X(τV |x) 6= 0, is required for the system to have solution.

Remarks on the restrictions imposed

The restrictions imposed are local version of order and rank conditions used in the classical

simultaneous equations models. Restriction 1 holds if X is independent of U. Restriction

2 is exclusion restrictions imposed locally at a point. Restriction 3 is local rank condition,

which implies that X2 needs to be a determinant of Y. Restriction 1,2 and 3 show that X2

plays the role of IV locally at a point.

Remarks on the rank condition

The rank condition is regarding "identifiability" as well as suggesting constructive identifi-

cation. In contrast with Matzkin (2008), this rank condition directly suggests constructive

identification result as well. Once the specific restrictions, embodied inAh,Aγ ,Af ,a, that
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A AB B

Figure 3.1: The TPD(y, x, τU , τV ) is drawn for different values of τV by fixing Y = y, and
X = x, in the left panel. The right panel shows the distribution of TPD(y, x, τU , τV ). By
using the usual random coeffi cient models, a similar distribution of the coeffi cient to the
right panel can be drawn. In contrast to them, the QCFA’s random ceteris paribus effects
are interpretable in the sense that whose TPD(·, ·, ·, ·) is A or B. An individual who have
observed characteristics y and x and who are τV 1 − ranked in V and τU1 − ranked in U,
would have value, indicated by A, for example.

satisfy the rank condition is given, the exact form of the functional of the distribution can

be found as was described in the illustration by solving the system.

3.1.5 Interpretation of Partial Derivatives - Stochastic Ceteris Paribus

Effects

Random sensitivity : (TPD) encompasses random coeffi cient models. The identification

of partial derivatives, which are measures of sensitivity, can be used to characterize the

distribution of heterogeneous random responses in random coeffi cient models. Unlike most

of the random coeffi cient models that do not allow correlated random coeffi cients, the

random elements in TPD can be correlated with each other as well as other explanatory

variables.

The randomness (V,U) is also interpretable in the sense that they indicate the rank-

ings, (τU , τV ), of the unobservable types which affect the outcome and the endogenous

variable. For example, when the outcome is health spending and the endogenous variable

is household income, the income elasticity can be recovered for individuals τV − ranked
in the income (or unobserved type V) distribution and τU − ranked in health spending
(or unobserved type U) distribution. See <Figure 3.1>.

The quantile-based identification strategy can be used to recover heterogeneous causal

effects even after conditioning on the observables. This can be informative when the causal

effects may be varying with different values of the unobserved characteristic - although

the value of the unobserved variable would never be known, there are cases in which

"high" versus "low" types of the unobserved characteristic may have different patterns
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of sensitivity. In such cases the QCFA could be used to investigate how individuals with

different unobserved types show different responses.

3.1.6 Local Identification of Structural Features

If the local restrictions are satisfied at all points in the support, identification of the partial

derivatives can be achieved at all points. Two benefits of discussing local identification

need to be mentioned. The first benefit is that to identify causal effects of a continuous

endogenous variable, a continuous IV is not required to infer certain information from data.

Suppose one is interested in how the sensitivity to a continuous endogenous variable varies

with different unobserved types, U, for the fixed type V when the observed characteristics

are the same. This can be measured by varying τU fixing all other things (Y and X). If

one wants to recover all the patterns of the sensitivity evaluated at different values of Y

and X, then continuous IV would be required.

The second benefit is that local information is enough to "refute" (in the Breusch

(1986) sense) certain hypothesis. For example, an economic model derives an implication

that individuals with high unobserved type (such as effort, degree of risk aversion) would

behave or respond differently from individuals with low unobserved type. This can be

tested by measuring the sensitivity evaluated at different quantiles of U, other things all

fixed. However, this test would not give a confirmable conclusion in the Breusch (1986)

sense.

3.1.7 Comparison with Roehrig (1988), Benkard and Berry (2005), and

Matzkin (2008)

A triangular simultaneous equations model is considered to deal with endogeneity. There

have been some attempts to extend the linear classical simultaneous equations analysis

into the nonparametric equations model without triangularity.

Brown (1983) and Roehrig (1988) assume full independence between exogenous vari-

ables and the unobserved variables for identification, while Benkard and Berry (2006)

found that the necessary and suffi cient condition (called derivative conditions) for full

independence is actually not suffi cient. Matzkin (2008) proposes different restrictions on

the structure which do not require full independence and characterizes observationally

equivalence structures and derive rank conditions for "identifiability". She found that

for given structural relation satisfying her restrictions there exists a distribution of the

unobserved variable that are observationally equivalent to the true structure and that

the distribution should be independent of the exogenous variables. Those structures that

are admissible and observationally equivalent need to satisfy "independence" condition,

however, the "derivative condition" which was shown to be wrong by Benkard and Berry

(2006) is not required in her derivation of the results.

A triangular system is a special case of the simultaneous equations systems studied

in these papers. Matzkin (2008)’s restrictions are satisfied when Chesher (2003)’s restric-

tions are satisfied, thus, Matzkin (2008)’s identifiability condition can be applied to the
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triangular system (as is shown in section 5.2 in Matzkin (2008) where she shows this

by imposing "exclusion" restriction which was not imposed in her model). However, the

identification results under the non-triangular nonlinear simultaneous equations models in

Brown (1983), Roehrig (1988), Benkard and Berry (2006), and Matzkin (2008) all rely on

the differentiability of the structural functions, invertibility of the structural functions and

continuity of covariates. Thus these results cannot be applied to nonparametric analysis

of limited dependent variables.

3.1.8 Imbens and Newey (2009)’s Control Function Approach

When the local restrictions imposed in Chesher (2003) imposed are assumed to hold glob-

ally, both Imbens and Newey (2009) and Chesher (2003) use the same information. How-

ever, they use distinct identification strategies - Imbens and Newey (2009) add an extra

regressor, v = FY |Z(y|z), while Chesher (2003) condition on y = QY |Z(v|z) to control for
endogeneity.

Imbens and Newey (2009) showed that the two control function approaches can produce

the equivalent results on partial derivatives when the endogenous variable is continuous

and U is a scalar. This is a natural result since v = FY |Z(y|z) can be understood as the
inverse function, v = g(y, x) = FY |Z(y|z), then inverting it with respect to y, we have
y = g−1(v, z) = QY |Z(v|z). Thus, the two control function methods utilize exactly the
same information. Note that FY |Z(y|z) guarantees the one to one mapping between Y
and V given Z because with continuous Y FY |Z(y|z) is monotonic in y. The key property
to be required for point identification using triangular system is this monotonicity and the

existence of IV

Both models can produce the same identification results of partial derivatives. The

advantage of using the QCFA can be shown in the next subsection where identification of

partial difference is illustrated with an discrete IV. It is not clear how to identify partial

difference by Imbens and Newey (2009)’s identification strategy.

Their Theorem 1 still applies to a discrete endogenous variable, as is known with the

propensity score for the binary endogenous variable, however, what structural features are

identified has not been discussed.

3.1.9 An Illustration of the QCFA with Discrete Exogenous Variables

The discussion so far assumes that the structural functions are differentiable with respect

to every variable. In this subsection, how the identification strategy operates in recovering

independent variation in each argument, by using partial differences with respect to a

continuously varying endogenous variable. This allows for the use of a discrete IV. Note

that if an endogenous variable is discrete, point identification of the partial difference is not

achieved. Identification with discrete endogeneous variables will be discussed in Chapter

5.

Chesher (2007) considers identification of partial difference of a structural function

evaluated at a point. Chesher (2003) and Chesher (2007) consider the case in which
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the endogenous variables are continuous. With continuous endogenous variables partial

differences are point identified.

Partial differences could be used to measure the causal effects of a continuously varying

variable when a certain policy change the variable discretely, for example, when household

income is observed as a continuously varying, and a certain government subsidy increases

income discretely, then one may be interested in the impact on the outcome, say, health

spending on children, of the subsidy. One of the benefits focusing on partial difference

at a specific point is that discrete instruments can be used for identification. When the

endogenous variable is continuous, at least one continuous IV is required if all the values

of partial derivatives are to be recovered.

Recall that X2 plays the role of IV locally. Denote Z ≡ X2. X1 is ignored for simplic-

ity. Assume that the exclusion restriction holds globally, so that we exclude Z from the

structural relation, h. Also assume that V is independent of Z globally. Note that we as-

sume that U and V are uniformly distributed on (0, 1). Suppose the value of the structural

function evaluated at (ya, u∗), where ya = QY |Z(τV |za) and u∗ ≡ QU |V Z(τU |τV , za), is
the parameter of interest.5 In other words, h(ya, u∗) is the value of the structural function

for an individual with the observed characteristic ya and the ranking of the unobserved

characteristic conditional on Y = ya and Z = za is τU . This can be identified by the

quantile of the conditional distribution of W given Y and Z (Chesher (2003)).

h(ya, u∗) = QW |Y Z(τU |ya, za),

where ya = QY |Z(τV |za) (3)

u∗ ≡ QU |V Z(τU |τV , za)

= QU |Y Z(τU |ya, za),

where u∗ ≡ QU |V Z(τU |τV , za) = QU |Y Z(τU |ya, za) due to the one-to-one mapping between
the continuous Y and V given the value of Z by the auxiliary equation (S-2).

As the value of Z changes from za to zb, the τV−quantile of Y given Z changes from ya

to yb. Changes in Z cause exogenous variation in Y , because V is fixed at v as Z change

due to independence of Z and V.6 That is, the change in Y from ya to yb caused by change

in Z from za to zb is achieved without changing the value of U. See <Figure3.2>

h(ya, u∗)− h(yb, u∗) = QW |Y Z(τU |ya, za)−QW |Y Z(τU |yb, zb),

ya = QY |Z(τV |za), yb = QY |Z(τV |zb),

where za and zb are the values for Z.

Thus, independent variation of h(·, ·) in y by fixing U = u∗ is achieved by generating

5u∗ is not known since U is unobservable, but we assume that u∗ is τU -quantile of distribution of U
given Y and Z.

6Note that the value of the structural function h(y, u∗) is found by fixing u∗ = QU|V Z(τU |τV , z) and by
changing z. Thus, whether we can recover all the values of the function h(y, u∗) over the whole support will
depend on how strongly Y is related with Z as well as whether τV− quantile of Y given Z, QY |Z(τV |z),
would cover the whole points in the support of Y by varying Z.
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Y

Y

V = FY|Z

v

*

hÝy,uDÞ

ya yb

FW|YZÝw|ya ,zaÞ
FW|YZÝw|yb,zbÞ

FY|ZÝy|zaÞ FY|ZÝy|zbÞ

D = QW|YZÝu|ya , zaÞ ? QW|YZÝu|yb, zb Þ

Figure 3.2: The line, h(y, u∗), is drawn by fixing the value of U at u∗. Thus, the causal
effect of changing Y from ya to yb should be measured by ∗ since on the line, h(y, u∗), u∗

is fixed. However, this cannot be identified by Matzkin (2003)’s idea of using quantiles
of FW |Y since whenever the values of Y is changed, the change in FW |Y includes the
change in W due to the change in U in the presence of endogeneity. Chesher (2003)’s
suggestion is to use triangularity to control for the covariation between Y and U . The
auxiliary equation (S-2) under the triangularity allows to control the source of endogeneity
V when Y is continuous. Continuity of Y and monotonicity of the structural function in
the unobservable guarantee that once the values of Y and Z are given the value of V is
determined due to the invertibility of the function g. If there exist values za and zb such that
ya = QY |Z(τV |za) and yb = QY |Z(τV |zb) then conditional distribution of W given Y and
Z, FW |Y Z , rather than FW |Y will deliver information on exogenous variation in Y. Thus,
∗ is identified using the difference of the quantiles of the two conditional distributions,
FW |Y Z(w|ya, za) and FW |Y Z(w|yb, zb). Suppose there is no endogeneity, then Matzkin
(2003)’s identification strategy of using quantiles of the conditional distribution ofW given
Y should be the same as Chesher (2003)’s strategy of using quantiles of the conditional
distribution of W given Y and Z. This observation can be used to test exogeneity of an
explanatory variable. See Section 3.2.
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exogenous variation in y caused by Z.

3.2 Testability of Endogeneity

How to cope with endogeneity, defined as dependence between an explanatory variable and

unobserved variables, has been one of the major issues in identification and inference in

micro-econometric modelling. In this section I discuss a testable implication of endogeneity

of an explanatory variable. The result is motivated by the observation discussed in the

last section regarding the endogeneity bias. The endogeneity bias is found when all the

variables are continuous and the structural functions are differentiable. The result reported

in this section can be applied to a case in which any of relevant variables are discrete.

3.2.1 Endogeneity

Evidence regarding the presence of endogeneity is informative in determining identification

and inference methods. So far the literature has more focused on how to identify and make

inferences of "ceteris paribus" impacts on the outcome by allowing for endogeneity7.

However, not only identification and inference procedures under endogeneity involve more

steps but also allowing for endogeneity when the variable is actually exogenous may result

in effi ciency loss8. Thus, if one can be sure statistically of exogeneity of an explanatory

variable, it could guarantee simpler estimation and more precise inference procedures.

The information regarding endogeneity is contained in the unobservable joint distrib-

ution9 of the unobservable and (possibly) endogenous variables. To deal with this hidden

information to judge the exogeneity of an explanatory variable we derive a testable expres-

sion of the conditional distribution of the unobserved heterogeneity given the explanatory

variables in terms of the observables under some restrictions. This involves identification

of the distribution of the unobservable variables. It is shown that if an explanatory vari-

able is exogenous, then the distribution function of the outcome is independent of the IV

conditional on the explanatory variable. When the outcome is continuous, the shape of

the conditional distribution of the unobservables is "fully" identified (see Appendix C),

therefore the test is "confirmable" as well as refutable in Breusch’s (1986) sense. However,

the test is only "refutable" if the dependent variable is discrete.

A testable implication regarding endogeneity is proposed in this section. A test statistic

can be implemented based on this testable implication. See Lee (2010) for one of such

7For review, see for example, Hausman (1983) for linear structural equations models, and Blundell
and Powell (2003, 2004) for non/semi- parametric discussion under triangularity. There have been studies
using single-equation IV models such as many on OLS/2SLS in linear relations, Newey and Powell (2003)
for additively separable relations, Chernozhukov and Hansen (2005), and Chesher (2010) for non-additive
relations.

8This fact is well known in the OLS and 2SLS context. This is also true in the quantile-based control
function approach (QCFA) in Chesher (2003) since the casual effects are found by estimating more terms
than the case withou endogeneity.

9The same information on the joint distribution of the unobservable and explanatory variables is con-
tained in the conditional distribution of the unobservable variable given the explanatory variable when the
marginal distribution of the explanatory variable is known. Thus, we focus on the conditional distribution.
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attempts.

3.2.2 Identification of the Endogeneity Bias with Continuous Variables

Reproducing (C ′ − 1) in Section 3.1.4

∇yQW |Y X(τU |y, x)︸ ︷︷ ︸
Observed change in W due to Y

= ∇yh+ ∇uh · ∇gf · ∇yg︸ ︷︷ ︸ .
Indirect effect through U

(C ′ − 1)

The indirect effect is the endogeneity bias : when the value of Y changes, the observed

changes in the outcome,W, is not the causal effect of Y onW because the observed change

in the outcome contains the indirect effect through U on W. The indirect effect, which is

called the endogeneity bias can be identified through the derivation (Bias) in Section 3.1.5

as follows :

∇uh · ∇gf · ∇yg︸ ︷︷ ︸
Endogeneity Bias

= −
∇x2QW |Y X(τU |y, x)

∇x2QY |X(τV |x)
, (Bias)

if ∇x2QY |X(τV |x) 6= 0.

Note that the indirect effect is composed of the three elements : ∇uh, the sensitivity of h
to u,∇gf, the sensitivity of QU |V X(τU |τV , x) to v, and ∇yg, the sensitivity of Y to v. If

U and Y were independent, ∇uh · ∇gf · ∇yg would be zero, because ∇gf would be zero.

−∇uh · ∇gf · ∇yg︸ ︷︷ ︸
Indirect effect due to endogeneity

=
∇x2QW |Y X(τU |y, x)

∇x2QY |X(τV |x)︸ ︷︷ ︸
=0 if ∇gf=0

The information on∇gf , which is not identified directly, is contained in
∇x2QW |Y X(τU |y, x)

∇x2QY |X(τV |x)
.10

This is an example of structural features that are not directly testable, but "testable" since

there exists an equivalent expression to this that is directly testable as we discussed in

Chapter 2.

Use of weak IV : note also that although the degree of endogeneity is not high if IV

is weak (small ∇x2QY |X(τV |x)), then the bias measured by
∇x2QW |Y X(τU |y, x)

∇x2QY |X(τV |x)
would be

large.

By testing whether
∇x2QW |Y X(τU |y, x)

∇x2QY |X(τV |x)
6= 0, one can test the existence of endogeneity.

Since ∇x2QY |X(τV |x) 6= 0 by local rank conditions, testing the existence of endogeneity

would involve testing ∇x2QW |Y X(τU |y, x) = 0. Note that if this conditional quantile in-

variance holds at all points and at all quantiles, the conditional distribution of W given

Y and X needs to be independent of X2.

10Note that "local" independence (∇gf = 0) implies ∇x2QW |YX(τU |y, x) = 0 since ∇x2QY |X(τV |x) 6= 0
by local rank condition.
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3.2.3 Exogeneity and Conditional Independence

The information contained in the endogeneity bias discussed in the previous section is local

and can only be applied to continuous variables with differentiable structural relations.

This section discusses a testable implication of endogeneity that can be applied to more

general cases without continuity/differentiability.

"Endogeneity" is a structural concept. Without assuming the existence of a "struc-

ture" as discussed in Chapter 2, endogeneity is not defined. An endogeneous variable

is an explanatory variable which is not independent of the unobserved arguments of the

structural relation of concern. A structural relation is assumed to generate the data we

observe.

Restriction S (Structural Relation) : Suppose that the outcome of interest W is

generated by a structural relation of the following

W = h(Y,X,U) (S − 1)

The variables W and Y can be discrete, continuous, or mixed discrete continuous random

variable. The variable X = {Xk}Kk=1 is a vector of covariates. A vector of latent variates,

U is jointly continuously distributed with FU |Y X .

Definition 3.1 Exogeneity of Y : Y is called an exogenous variable if Y ⊥ U. Y is

endogenous if it is not exogenous.

Remarks on nonseparability

• A nonseparable nonparametric structural relation is used to deal with discrete or

censored outcomes. For the implications or diffi culties caused by nonseparability of

the structural function see Hahn and Ridder (2009).

• An additively nonseparable structural function requires full independence for iden-
tification of the structural function, thus, we define exogeneity using full indepen-

dence11.

• The information regarding endogeneity is contained in the joint distribution of U
and Y.

Once the identification of the conditional distribution of the unobservables given other

covariates is achieved, the test of the hypothesis of exogeneity can be conducted by the

11The definition of endogeneity is related with the identification strategy. Whether the structural relation
is assumed to be additively separable or not influences what type of restrictions are required to identify
the causal effects. For example, with nonparametric structural function with additively separable error,
existence of IVs that are mean independent of the regressors will be enough for identification (Newey and
Powell (2003), and Newey, Powell, and Vella (1999)), whereas, when we allow for additively nonseparable
errors, full independence of IV is required (Matzkin(2003), Chesher (2003), Imbens and Newey (2009),
Chernozhukov and Hansen (2005), Chesher (2010) etc)
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identification results which link the unobservable structural feature with the observed

distribution.

We adopt the definition of conditional independence by Dawid (1979).

Definition 3.2 Conditional independence (Dawid (1979)) : X and Z are independent

conditional on Y if FX|Y Z(x|y, z) = H(x, y), for all x, y, z, for some function H.

We assume the existence of a "conditional instrumental variable" in deriving the

testable implication.

Restriction C-IV (Existence of "conditional" IV) : There exists a variable Z

such that (i) U ⊥ Z | Y and (ii) Y = θ(Z,∆), where ∆ is a vector of determinants of Y,

including both observable and unobservable variables.

One of the diffi culties in testing endogeneity is the fact that endogeneity is about the

dependence between the explanatory variables and the unobserved variables. The infor-

mation of the dependence is contained in the conditional distribution of the unobservable

variables, FUY |X , given other variables. Once the identification of the conditional distri-

bution of the unobservables given other covariates is achieved, the test of the hypothesis

of exogeneity can be conducted by the identification results which link the unobservable

structural feature with the observed distribution.

We first report a "refutable" implication when Y is exogenous. For simplicity we omit

X. X can be included as conditioning variables.

Theorem 3.1 Under Definition 3.1, Restriction S and C-IV, if Y is exogenous, then the

distribution of W is independent of Z conditional on Y.

Proof.

FW |Y Z(w|y, z) = Pr[W ≤ w|Y = y, Z = z]

= Pr[h(Y,U) ≤ w|Y = y, Z = z]

(*) =

∫
{u:h(y,u)≤w}

dFU |Y Z(u|y, z)

=

∫
{u:h(y,u)≤w}

dFU |Y (u|y)

=

{ ∫
{u:h(y,u)≤w} dFU (u) if U ⊥ Y∫
{u:h(y,u)≤w} dFU |Y Z(u|θ(z,∆), z) o.w

}

(**) =

{
H(w, y) if U ⊥ Y

H∆(w, y, z; ∆) o.w

}
,
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where the second equality follows from Restriction S and the fourth equality is due to

Restriction C-IV. Thus, we conclude that if U ⊥ Y (Y is exogeneous), then FW |Y Z(w|y, z) =

H(w, y) (W is conditional independence of Z given Y).

Discussion

1. We allow for bi-directional simultaneity in the sense that∆ can includeW . Although

we specify the structural relations as (4) the test does not involve the estimation of

the structural relation.

2. Note that the unobserved variable can be a vector. However, with multi-dimensional

unobserved heterogeneity identification of the distribution of the unobserved vari-

ables is not achievable12. (*) shows that it is impossible to identify {h, FU |Y } sepa-
rately without further restrictions, but the refutable implication can still be derived.

3. This result holds as long as Restriction C-IV holds ; only when an IV, Z satisfies the

exclusion as well as relevance conditions. Weak instruments would have an impact on

step (**). If the instrument is weak, there would not be much difference in H(w, y)

and H∆(w, y, z; ∆) thus the link between the test of conditional independence and

the test of exogeneity is weak even in the presence of endogeneity.

3.2.4 Illustration - Endogeneity, Conditional Independence, and Weak

IV

I illustrate that the idea can be informally used to test exogeneity by plotting the condi-

tional distribution functions. I also illustrate the possible loss of power due to the use of

weak instruments. In each part we generate W,Y, and Z by the following data generating

processes :

Z ∼ Poisson (λ), λ = 0.5

Y = 1(a0 + a1Z + V ≥ 0)

W = b0 + b1Y + U(
U

V

)
|Z ∼ N

((
0

0

)
,

(
1 σUV

σUV σ2
U

))

By varying a1, we can control the "strength" of IV and by varying σV U , we control

the degree of endogeneity. The distributions of W given Y and Z shown below are drawn

using the data generated by the above processes. We draw the cumulative distribution

functions, FW |Y Z , for Y ∈ {0, 1}, and Z ∈ {0, 1} to examine the link between conditional
independence and endogeneity, and how the link is affected by the strength of IV.

When σUV = 0, that is, when there is no endogeneity, the two conditional distribu-

tions for different values of Z are the same, while when σUV 6= 0, that is, when there is

12See Chesher (2009).
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endogeneity, the two conditional distributions differ when the instrument is strong, but

they do not show much difference when the instrument is weak.

1. Exogenous Y and conditional independence

I set σUV = 0. The two graphs show the distribution functions of W given Y and Z.

The first panel shows whether FW |Y Z is independent of Z once we condition on Y = 1. It

shows that FW |Y=1,Z=1 = FW |Y=1,Z=0
13. The second panel is the distribution functions

of W given Y and Z for Y = 0 for different values of Z ∈ {0, 1}.
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2. Weak IV, endogenous Y

2.1 σUV = 0.7, and a1 = 0.3

I consider endogenous Y(σUV = 0.7) and "relatively " weak IV (a1 = 0.3). As long as

Z is "relevant" the distribution of outcome seems to be affected by the values of Z.
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2.2 σUV = 0.7 and a1 = 0

13Z is distributed by Poisson, but with mean λ = 0.5, there are a few observations for the values
Z = 2, 3, ...
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When Z is not "relevant", as we expected, the distribution of the outcome is not

affected by the irrelevant IV conditioning on Y. Even though Y is endogenous, plotting

FW |Y=1Z=1 and FW |Y=1Z=0 suggests that FW |Y Z may be independent of Z. This shows

the case in which testing exogeneity via testing conditional independence fails to detect

the presence of endogeneity.
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3. Strong IV, endogenous Y

σUV = 0.7, and a1 = 1.3

Now consider a strong IV and endogenous Y. The conditional distribution is affected

by both Y and Z even though Z is excluded from the outcome equation.
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Chapter 4

Discrete Outcomes

This chapter is motivated by how to model interval censored outcomes, duration outcomes,

and count outcomes allowing for endogeneity without relying on parametric assumptions.

The first section considers a model for interval censored outcomes. When the outcome

is interval censored, the observational aspects can be described as discrete outcomes such

as count data, ordered discrete data. However, the object of structural interest may

be different each case in the sense that one may be interested in the uncensored latent

function. The first section examines what can be recovered regarding the latent structural

relation.

Interval censored duration data such as unemployment spells cannot be dealt with by

the model in Section 4.1 since duration outcomes require multiple unobserved elements in

representing a structural relation1. Chesher (2009) defines "excess heterogeneity" as the

case where there are more unobserved latent variables than there are observable stochastic

outcomes. When Restriction Scalar Index Unobservables (SIU) is relaxed, the QCFA

cannot be applied. A random index model with excess heterogeneity is discussed in Section

4.2 to deal with such cases.

The last section discusses how to measure sensitivity of the averaged object with the

innovation being that the averaged object can be stochastic. When allowing for excess

heterogeneity, the objects of interest in many studies are those obtained by integrating

out the vector unobserved elements. See Blundell and Powell (2003, 2004), Hoderlein and

Mammen (2007), Imbens and Newey (2009), Chernozhukov et al (2009), for example. All

of these studies do not allow for stochastic elements to be conditioned. The structural

object of interest in the last section allows for this.

All the regressors are assumed to be continuous throughout this Chapter. The endo-

geneity is corrected for by the QCFA by Chesher (2003) discussed in Chapter 3.

When the outcome is discrete, partial derivatives of the structural function are not

defined. To measure "ceteris paribus" impacts of a continuous variable, partial derivatives

of three different structural objects are considered :

1When the outcome is duration data, there need to be at least two unobserved variables, which cannot
be expressed as a single index, in order to express the duration outcome using a non-additive structural
function. See the example in Chesher (2009).
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• partial derivatives of a latent structural function are considered for the interval cen-
sored outcome in section 4.1

• partial derivatives of random indices are considered in a model with excess hetero-

geneity in Section 4.2. When the structural function is differentiable, then ratios of

partial derivatives of the structural function can be recovered, once ratios of random

indices are recovered.

• partial derivatives of stochastic average conditional response (SACR) function are
considered for discrete outcomes in Section 4.3. This object is different from the

average of the partial derivatives. The object of interest in Section 4.3 is partial

derivatives of the mean.

To the best of my knowledge, what is identified and how it is identified with interval

censored outcome when the latent structural function is additively nonseparable allowing

for endogeneity has not been discussed. Also, identification of the stochastic index or

the stochastic average conditional response function allowing for dependence between the

unobserved variables has not been discussed in the literature. The innovation is through

the triangularity and strict monotonicity under the existence of an IV, by which certain

stochastic elements can be recovered from the auxiliary equations for the continuous en-

dogenous variables using the triangularity. This observation is used in Section 4.2 and

4.3. Section 4.2 is a direct extension of Chesher (2009) in which an index restriction is

imposed but the index does not have a random element. Section 4.2 shows that allowing

for the index to be stochastic is possible when the same QCFA is used as an identification

strategy.

In all cases only ratios of partial derivatives can be recovered due to lack of variation

in the outcome in the three cases. Indeed even under the stronger parametric restrictions

when the outcome is discrete, only ratios of coeffi cients can be identified.

4.1 Interval Censored Outcome

In reality, interval censoring is present everywhere - variables treated as being continuous

such as age, expenditure etc, in fact are measured/reported as discrete. The degree of

discreteness could depend on the survey design, thus the threshold points ({Tm}Mm=1) are

fixed and known a priori, or the discreteness could depend on the interviewee’s memory

or intention, hence {Tm}Mm=1 could also vary with individuals. Examples of the former

would be wealth data in the Health and Retirement Survey (HRS) or interval data on

food consumption in the BHPS (British Household Panel Survey), and an example of the

latter would be unemployment duration data (Han and Hausman (1990), Ridder(1990)),

where we would imagine that as the unemployment duration increases the intervals of

observed duration will increase. In both cases the econometric studies are conducted by

assuming the continuity of the variables - especially the basic building blocks of duration

analysis such as the hazard function are defined under differentiability. Thus considering
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a discrete outcome as the result of interval censoring of a differentiable latent function

may be relevant in many applications.

Manski and Tamer (2002) consider identification and inference in cases with both

interval censored outcomes and interval censored regressors under both nonparametric

and semiparametric setup without consideration of endogeneity. Khan and Tamer (2007)

consider censoring with a linear structural function allowing for endogeneity. Bontemps,

Magnac, and Maurin (2008) also consider a model that admits interval censoring allowing

for endogeneity under the linear structural function. If the latent outcome function is

additively separable, the results in threshold crossing models - as in Matzkin (1992) - can

be applied to the interval censored outcome model.

Berry and Tamer (2007) use Matzkin (1992)’s identification strategy to identify ra-

tios of partial derivatives of additively separable nonparametric latent function under the

threshold crossing framework not allowing for endogeneity. However, the identification

and inference when the outcome is interval censored whose uncensored process is nonsep-

arable has not been studied before. This section proposes an identification result under

endogeneity by using a triangular structure.

4.1.1 The Model

To model interval censoring we assume a latent function for the outcome, and assume that

there exists a censoring mechanism that transforms the latent function into the observed

interval censored outcome.

Restriction IC (Interval censored outcome with scalar unobservable index)

W ∗, Y ≡ {Yi}Ni=1, X ≡ {Xi}Ki=1, U, and V ≡ {Vi}Ni=1 are random variables, which are

continuously distributed . For any values of X, U, and V, unique values of W ∗ and Y are

determined by the structural equations

W ∗ = h∗(Y,X,U), (S-1*)

Yn = hYn (X,Vn), (S-2)

n ∈ {1, 2, ..., N}

The unobservable variables, U and {Vn}Nn=1 are scalar indices and are jointly con-

tinuously distributed and each is normalized to be uniform (0 , 1 ). The structural rela-

tion h∗ is strictly monotonic in each of the unobservable random variables U . Each

function {hYn }Nn=1 is strictly monotonic with respect to variation in the unobservable

{Vn}Nn=1. This model admits such cases that U = θU (U1, ..., UL), Vn = θVn(V1, ..., VIn),

where θU : RL → (0, 1), θVn : RIn → (0, 1), for some positive number L and In, for

n = 1, 2, ..., N.

However, the outcome of interest W ∗ is not observed completely, but it is interval

censored by the following censoring mechanism :
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W = h(Y,X,U) (O)

=

M∑
m=1

wm · 1(Tm−1<h
∗(Y,X,U) ≤ Tm), wm ∈ (Tm−1, Tm] .

{Tm}Mm=0 are threshold points by which the observed values of W are determined.

Define Pm(y, x) ≡ FW |Y X(wm|y, x). Then

Pm(y, x) ≡ FW |Y X(wm|y, x)

(1) = FW ∗|Y X(Tm|y, x)

= Pr(W ∗ ≤ Tm|Y = y,X = x)

(2) = Pr(h∗(Y,X,U) ≤ Tm|Y = y,X = x)

(3) = Pr(h∗(Y,X,U) ≤ Tm|V = v,X = x)

(4) = Pr(h∗(Y,X,U) ≤ Tm|V = g(y, x), X = x).

(1) is by the censoring mechanism, and (2) is by the functional relationship

specified in Restriction IC. (3) is by strict monotonicity of hn with respect to Vn, and (4)

is by the inverse relationship between V and Y , where g(y, x) = [g1(y1, x), ..., gN (yN , x)]′.

The continuous distribution of FW ∗|Y X(w∗|y, x) is unknown, we only observe the dis-

crete distribution of W given Y and X, Pm(y, x) ≡ FW |Y X(wm|y, x). However, we can

obtain partial information on latent FW ∗|Y X(w∗|y, x) from observable Pm(y, x). Although

Tm is unknown, by the interval censoring mechanism defined in Restriction IC, we know

Pm(y, x) ≡ FW |Y X(wm|y, x) = FW ∗|Y X(Tm|y, x).

This is the information we can use to identify structural features regarding the latent

function h∗. This relation implies that Tm is the Pm(y, x)− quantile ofW ∗ given Y and X.
Then by the strict monotonicity of h∗ in U, we can connect the latent structural function

h∗(y, x, u) with observable distribution Pm(y, x), by the following argument.

Under Restriction IC, we have the following relation :

Tm = h∗(y, x,QU |V X(Pm(y, x)|τV , x)), (C − IC)

where y = QY |X(τV |x).

Remarks

1. Note that when u 6= QU |V X(Pm(y, x)|τV , x), where y = QY |X(τV |x), m = 1, 2, ...,M,
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the value of h∗(y, x, u) is not known. With strict monotonicity of h∗ in u, we can

bound the values of h∗ at each point.

2. Eq. (C − IC) is the key relation linking the latent structural function with the

observed distribution. (C − IC) is a level set of values of (y, x, u) that produce the

same level, Tm. The information regarding the partial derivatives is derived from

the level set. Thus, it is no wonder that we can only identify ratios of the partial

derivatives.

4.1.2 Identification of Partial Derivatives

The inverse function of each hn with respect to Vn exists by strict monotonicity. It is

denoted by gn.

Restriction D-IC (Differentiability-IC) The conditional distribution of W given

Y and X , Pm(y, x) is differentiable with respect to y and x , and the conditional distri-

bution function of Yn given X , and it’s quantiles, QYn|X(τV n|x) are differentiable with

respect to x.

Define

f(Pm(y, x), g1(y1, x), g2(y2, x), ..., gN (yN , x), x) ≡ QU |V X(Pm(y, x)|g(y, x), x),

where g(y, x) = [g1(y1, x), g2(y2, x), ..., gN (yN , x)]′.

Note that if QU |V X is independent of x, we have ∇xf = 0.

Regarding the structural elements the following vectors are defined :

λy/u ≡
1

∇uh∗


∇y1h∗
...

∇yNh∗


N×1

,λx/u ≡
1

∇uh∗


∇x1h∗
...

∇xKh∗


K×1

,

fx ≡


∇x1f
...

∇xKf


K×1

, γ ≡


∇g1f
∇v1h1
...

∇gNf
∇vN hN


N×1

.

For the observable elements the following are defined :

FW
y ≡


∇y1Pm
...

∇ymPm


N×1

,FW
x ≡


∇x1Pm
...

∇xKPm


K×1

, andGx ≡


∇x1QY1|X · · · ∇x1QYn|X

...
. . .

...

∇xKQY1|X · · · ∇xKQYn|X


K×N

.

Restriction R-IC. There are G restrictions on λy/u,λx/u, γ, and fx as follows,

Ay · λy/u+Ax · λx/u+Aγ · γ + Af · fx= a.
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The arrays Ay
G×N

, Ax
G×K

, Aγ
G×N

, Af
G×K

and a
G×1

are nonstochastic.

Ay,Ax,Aγ ,Af and a specify specific restrictions imposed in each case. This is local

analogy of the classical linear simultaneous equations system. Restriction R-IC can be

specified in more detail as will be illustrated later. In the illustration I use the exclu-

sion restriction, the relevance condition (rank condition), and independence restriction as

the example of Restriction R. For example, if one is interested in measuring returns to

schooling, it is likely that some individuals’unobserved characteristics such as ability, mo-

tivation, sociability, etc. determine both the individual’s wage and schooling decision. In

this case if there exists a variable, such as distance to college, subsidy to schooling, quarter

of birth that affects the schooling decision, but does not determine wage, as well as is in-

dependent of the unobserved characteristics, then Restriction R-IC can be constructed

by specifying the matrices Ay,Ax,Aγ ,Af and a accordingly.

Then we define Φ,Ψ, and φ to express the system of equations which is to be solved

for Ψ, to achieve identification

Φ ≡


IN 0K IN 0K

0N IK −Gx IK

Ay Ax Aγ Af


(G+N+K)×(2N+2K)

,Ψ ≡


λy/u

λx/u

γ

fx


(2N+2K)×1

,

φ ≡


Sy

Sx

a


(G+N+K)×1

,where Sy = ∇τf · FW
y and Sx = ∇τf · FW

x

Ψ contains the structural features of interest. If the solutions to Ψ can be found then

identification is achieved. thus, the rank condition for identification can be stated.

Theorem 4.1 Under Restriction IC,D-IC, and R-IC, ΦΨ = φ, and Ψ can be found iff

rank(Φ) = 2N + 2K for which a necessary condition is G ≥ N +K.

Proof. See Appendix A.

Note that Sy = ∇τf · FW
y and Sx = ∇τf · FW

x contain the unidentified element ∇τf.
Therefore, to eliminate this, we take ratios. This is why only ratios of partial derivatives

are identified.

Corollary 4.1 Under Restriction IC,D-IC, and R-IC, ratios of partial derivatives are

identified iff rank(Φ) = 2N + 2K.

Proof. Theorem 4.1 shows identification of λy/u and λx/u, but they contain ∇uh∗. To
eliminate ∇uh∗, we take ratio of the two. Thus, the same rank condition is applied.
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4.1.3 Illustration - Constructive Identification

Restriction R-IC specifies a general form of restrictions. There can be many options

that satisfy Restriction R-IC. In this section we consider the traditional rank and order

condition applied to a point - "local" rank and "order" condition.

I consider a case where there is only one endogenous variable, N = 1 and K = 2.

Reproducing (C − IC) we have

Tm = h∗(y, x,QU |V X(Pm(y, x)|τV , x)) (C − IC)

= h∗(y, x, f(Pm(y, x), g(y, x), x))

where f(Pm(y, x), g(y, x), x) ≡ QU |V X(Pm(y, x)|τV , x)

Differentiating (C − IC), with respect to y, and xk, k ∈ {1, 2}, we have

0 = ∇yh∗ +∇uh∗ · (∇τf · ∇yPm︸ ︷︷ ︸
Observable

+∇gf · ∇yg︸︷︷︸
∗

), (C − IC ′)

0 = ∇x1h∗ +∇uh∗ · [(∇τf · ∇x1Pm︸ ︷︷ ︸
Observable

+∇gf · ∇x1g︸ ︷︷ ︸
∗

) +∇x1f ],

0 = ∇x2h∗ +∇uh∗ · [(∇τf · ∇x2Pm︸ ︷︷ ︸
Observable

+∇gf · ∇x2g︸ ︷︷ ︸
∗

) +∇x2f ].

The ceteris paribus effect of Y is indicated by ∇yh∗. Note that in contrast with the
continuous outcome case discussed in Chapter 3, the left hand side is all 0, and the

information obtainable from data are∇yPm,∇x1Pm, and∇x2Pm.Without imposing more
restrictions, ∇yh∗ is not identified. Replacing the terms (∗) using (AB) from Chapter 3,

we have

0 = ∇yh∗ +∇uh∗ · [∇τf · ∇yPm +
∇gf
∇vhY

], (C − IC ′′)

0 = ∇x1h∗ +∇uh∗ · [∇τf · ∇x1Pm −
∇gf
∇vhY

· ∇x1QY |X +∇x1f︸ ︷︷ ︸
∗∗

],

0 = ∇x2h∗︸ ︷︷ ︸
∗∗∗

+ ∇uh∗ · [∇τf · ∇x2Pm −
∇gf
∇vhY

· ∇x2QY |X +∇x2f︸ ︷︷ ︸
∗∗

].

The same restrictions as Chapter 3 are adopted to demonstrate the effect of interval

censoring on identification. Firstly, we impose ∇xkf = 0, k ∈ {1, 2} (∗∗) (local indepen-
dence restriction), which would hold if X were exogenous. Then local exclusion restriction
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(∇x2h∗ = 0 (∗ ∗ ∗)) is imposed yielding

0 = ∇yh∗ +∇uh∗ · [∇τf · ∇yPm +
∇gf
∇vhY

], (C − IC ′′)

0 = ∇x1h∗ +∇uh∗ · [∇τf · ∇x1Pm −
∇gf
∇vhY

· ∇x1QY |X ],

0 = ∇uh∗ · [∇τf · ∇x2Pm −
∇gf
∇vhY

· ∇x2QY |X ].

If ∇uh∗ 6= 0, then
∇gf
∇vhY

=
∇τf∇x2Pm
∇x2QY |X

, where ∇x2QY |X 6= 0 (local rank condition)

from the third equation of (C − IC ′′). Replacing ∇gf∇vhY
using this in the first and the

second equations in (C − IC ′′), we have

−∇yh
∗

∇uh∗
= ∇τf · (∇yPm +

∇x2Pm
∇x2QY |X

), (C − IC ′′′)

−∇x1h
∗

∇uh∗
= ∇τf · (∇x1Pm −∇x2Pm ·

∇x1QY |X
∇x2QY |X

).

Note that in contrast with the continuous outcome case considered in Chapter 3, interval

censoring causes loss of identifying power when exactly the same restrictions are imposed

since
∇yh∗
∇uh∗

is identified, rather than ∇yh∗. Therefore, the ratio of partial derivatives,

∇yh∗
∇x1h∗

is identified by

∇yPm +
∇x2Pm
∇x2QY |X

∇x1Pm −∇x2Pm
∇x1QY |X
∇x2QY |X

as is inferred from (C − IC ′′′).

This can be shown as the following :

Let FW
y ≡

[
∇yPm

]
1×1

,FW
x ≡

[
∇x1Pm

∇x2Pm

]
2×1

,Gx ≡
[
∇x1QY |X
∇x2QY |X

]
2×1

,

λy/u ≡
1

∇uh∗
[
∇yh∗

]
1×1

,λx/u ≡
1

∇uh∗

[
∇x1h∗

∇x2h∗

]
2×1

,

fx ≡
[
∇x1f
∇x2f

]
2×1

, fg ≡
[
∇gf

]
1×1

,and γ ≡
[
∇gf
∇vhY

]
1×1

.

Then (C − IC ′′′) can be expressed using these vectors as

λy/u + IN · γ = −∇τf · FW
y

λx/u −Gx · γ + fx = −∇τf · FW
x .

Then the system of equations that are need to be solved is :
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∇yh∗
∇uh∗

+
∇gf
∇vhY

= ∇τf · ∇yPm

∇x1h∗
∇uh∗

−∇x1QY |X
∇gf
∇vhY

+∇x1f = −∇τf · ∇x1Pm

∇x2h∗
∇uh∗

−∇x2QY |X
∇gf
∇vhY

+∇x2f = −∇τf · ∇x2Pm

∇x2h∗
∇uh∗

= 0

∇x1f = 0

∇x2f = 0

∇x2QY |X 6= 0.

This can be written using the matrices Φ,Ψ, and φ, as

where Φ ≡



1 0 0 1 0 0

0 1 0 ∇x1QY |X −1 0

0 0 1 ∇x2QY |X 0 −1

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


6×6

,Ψ ≡



∇y1h∗/∇uh∗

∇x1h∗/∇uh∗

∇x2h∗/∇uh∗

∇g1f/∇v1hY

∇x1f
∇x2f


6×1

,φ ≡


Sy

Sx

a



with the homogeneous restrictions indicated by the following matrices as :

Ay =


0

0

0

 ,Ax =


0 1

0 0

0 0

 ,Aγ =


0

0

0

 ,Af =


0 0

1 0

0 1

 , and a =


0

0

0

 .
The restrictions used are ∇xkf = 0, k ∈ {1, 2},∇x2h∗ = 0, with N = 1,K = 2, and

G = 3. If ∇x2QY |X = 0, then the third row (r3) of Φ is a linear combination of the fourth

(r4) and the sixth (r6) rows as r3 = r4 − r6. Thus, the local rank condition, ∇x2QY |X 6= 0

is required for rank(Φ) = 6. The identification condition specified in Corollary 4.1. is

satisfied with the restrictions imposed in the illustration.

4.2 Random Index Model with Excess Heterogeneity

The interval censored model in Section 4.1 cannot be applied to interval censored

duration data because Restriction SIU does not hold. The model considered here permits

a nonseparable and random index. As in Chesher (2009) I impose an index structure,

but unlike Chesher (2009) I allow for the index to vary with the unobserved factors

that affect both the outcome and the endogenous variables. By allowing for the index

to be nonseparable and to include the unobserved heterogeneity that affects endogenous

variables, we can recover heterogeneous random marginal effects - more precisely, ratios
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of marginal effects. This can relax some of the usual restrictions in duration and count

models. The modeling building blocks such as the hazard function or the mean of the count

have usually been restricted into specific forms of mixture - e.g. mixed proportional hazard.

The random index in this section relaxes the patterns that the unobserved heterogeneity is

incorporated into the index, the most general and flexible additively non-separable form.

There have been several studies on index models. The most relevant studies are Han

(1987) and Matzkin (1991,1994). Han (1987) considered a general regression model of

the form

Yi = D(F (Xiβ, Ui))

where Xi ⊥ Ui
and D(·) is monotonic and

F (·, ·) is strictly monotonic in both arguments.

This model is nonseparable, so it does allow for heterogeneous marginal effects, but,

Han (1987) does not allow for possible endogeneity. The marginal impact of x isD′F1(x′β, u)β,

which varies with U. However, Han (1987) focuses on identification of β.,D(·) and F (·, ·),
are not identified separately.

Matzkin (1991, 1994) extended Han (1987)’s general regression model into the non-

parametric index of the following form :

Yi = D(F (Xi), Ui)

where Xi ⊥ Ui
and D(·, ·) is monotonic and nonconstant in both arguments

and F (·) is strictly monotonic in at least one explanatory variable.

In both cases the models do not admit endogeneity. Also, the models admit only

a single source of stochastic variation. Unlike these studies we incorporate endogeneity

into the model by introducing an auxiliary equation for the endogenous variable and by

allowing for the possible correlation between the unobservables in both equations. By

specifying the data generating process for the endogenous variable using the triangular

system we are able to control for endogeneity using the control function method. The

endogeneity in this model is accounted for by the QCFA.

We base our model on Chesher (2009), but just incorporate the unobserved heterogene-

ity (the unobserved type that determines the endogenous variable) into the index function

so that we allow for randomness of the partial derivatives of the index.
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4.2.1 The Model

Restriction RI - EH (Random Index with Excess Heterogeneity)

W, Y ≡ {Yi}Ni=1, X ≡ {Xi}Ki=1, U, and V ≡ {Vi}Ni=1 are random variables, which are

continuously distributed. For any values of X, U, and V, unique values of W and Y are

determined by the structural equations

W = h(θ(Y,X, V ), U1, ..., UL)

Yn = hYn (X,Vn),

n ∈ {1, 2, ..., N}

where θ is a scalar valued function. The unobservable latent variables, U = [U1, ..., UL] is

a vector and each Vn is distributed uniform (0, 1). h is weakly monotonic in U . {hYn }Nn=1

is strictly monotonic with respect to variation in the unobservable Vn. {Vn}Nn=1 should be

scalar. This model admits such case that Vn = θVn(V1, ..., VIn), where θVn : RIn → (0, 1),

for some positive number In, for n = 1, 2, ..., N.

The inverse function of each hYn with respect to Vn exists by strict monotonicity. It

is denoted by gn. Let g = [g1(Y1, X), ..., gN (YN , X)]′. Under Restriction RI - EH the

conditional distribution function of W given Y and X is

FW |Y X(w|y, x) = FW |V X(w|y, v)

=

∫
{u:h(θ(y,x,v),U)≤w}

dFU |V X(u|g(y, x), x) (C-RI)

≡ s(w, θ(y, x, g(y, x)), g(y, x), x)

Restriction D - RI (Differentiability) The conditional distribution of W given Y

and X , FW |Y X(w|y, x) is differentiable with respect to y and x , and for n ∈ {1, 2, ..., N}
the conditional distribution function of Y n given X, FYn|X(yn|x) is differentiable with

respect to yn and x .

Matrices of partial derivatives, all evaluated at a point are now defined. For structural

elements the followings are defined :

λy ≡ ∇θs


∇y1θ
...

∇yN θ


N×1

,λx ≡ ∇θs


∇x1θ
...

∇xKθ


K×1

,
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sx ≡


∇x1s
...

∇xKs


K×1

, sg ≡


∇g1s
∇v1h1
...

∇gN s
∇vN hN


N×1

,θg =


∇g1θ
∇v1h1
...

∇gN θ
∇vN hN


N×1

,

and γ ≡ ∇θs


∇g1θ+∇g1s
∇v1h1
...

∇gN θ+∇gN s
∇vN hN


N×1

= ∇θs · (θg + sg).

For the observable elements from the data the followings are defined :

FW
y ≡


∇y1FW |Y X

...

∇yNFW |Y X


N×1

,FW
x ≡


∇x1FW |Y X

...

∇xKFW |Y X


K×1

,

Gx ≡


∇x1QY1|X · · · ∇x1QYn|X

...
. . .

...

∇xKQY1|X · · · ∇xKQYn|X


K×N

.

4.2.2 An Example of Random Index

In modeling count or duration data we need to be careful in how to define "endogene-

ity". In the regression model the distribution of the dependent variable is determined by

the distribution of the unobserved variable - usually a scalar unobserved variable. How-

ever, duration data or count data are modeled directly by specifying the hazard function

of the duration data, or the mean of the count data, and we do not specify the error term.

Therefore, the usual perception of endogeneity, as correlation between an explanatory

variable and an error term is not applied.

To incorporate endogeneity we introduce unobserved heterogeneity into the structural

function to allow for endogeneity. Then endogeneity could occur if there exists dependence

between the unobserved heterogeneity and the explanatory variables.

For example, consider the effects of the wage from the previous job on the unemploy-

ment duration. It is possible that some of the unobserved factors such as motivation,

ability, personality etc will affect both search efforts and wage. It may be the case that

individuals with the high unobserved type that determines the wage behave differently

from those with low type. When the unemployment duration is the outcome of concern,

possibly interval censored, the previous model in Section 4.1 cannot be applied, because

the Single Index Unobservable (SIU) restriction cannot hold with duration outcome. See

Chesher (2009) for more discussion.
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4.2.3 Identification of Partial Derivatives of the Random Index

Restriction R - RI. There are G restrictions on λy, λx, γ, and sx as follows,

Ay · λy+Ax · λx+Aγ · γ + As · sx= a.

The arrays Ay
G×N

, Ax
G×K

, Aγ
G×N

, As
G×K

and a
G×1

are nonstochastic. ∇θs is finite and nonzero.

After the following definitions Theorem 4.2 can be stated.

Φ ≡


IN 0 IN 0

0 IK −Gx IK

Ay Ax Aγ As


(G+N+K)×(2N+3K)

,Ψ ≡


λy

λx

γ

sx


(2N+3K)×1

,

φ ≡


FW
y

FW
x

a


(G+N+K)×1

.

Theorem 4.2 Under Restriction RI-EH, D-RI, R-RI ΦΨ = φ, and Ψ is identified iff

rank (Φ) = 2N + 3K for which a necessary order condition is G ≥ N + 2K.

Proof. See Appendix A.

4.2.4 Illustration - Constructive Identification

Suppose for simplicity that N = 1 and K = 2.

Then we have the following :

y = hY (x, g(y, x)) (A)

QY |X(v|x) = hY (x,QV (v|x)) (B)

FW |Y X(w|y, x) = s(w, θ(y, x, g(y, x)), g(y, x), x) (C −RI)

From (A) and (B), (AB) can be derived as is shown in Chapter 3 :

∇yg =
1

∇vhY

∇x1g = − 1

∇vhY
· ∇x1QY |X(τV |x) (AB)

∇x2g = − 1

∇vhY
· ∇x2QY |X(τV |x).
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Identification of ratios of partial derivatives under exclusion restriction

Now differentiate (C −RI) w.r.t. y and xk, k ∈ {1, 2}, we get

∇yFW |Y X = ∇θs · ∇yθ +∇θs · ∇vθ · ∇yg +∇gs · ∇yg (C −RI)

∇x1FW |Y X = ∇θs · ∇x1θ +∇θs · ∇vθ · ∇x1g +∇gs · ∇x1g +∇x1s

∇x2FW |Y X︸ ︷︷ ︸
”Data”

= ∇θs · ∇x2θ +∇θs · ∇vθ · ∇x2g +∇gs · ∇x2g +∇x2s︸ ︷︷ ︸
Unobservable Structural elements

.

Then replacing


∇yg
∇x1g
∇x2g

 with 1

∇vhY


1

−∇x1QY |X(τV |x)

−∇x2QY |X(τV |x)

 by using (AB) from Chapter 3,

we have

∇yFW |Y X = ∇θs · ∇yθ + (∇θs · ∇vθ +∇gs) ·
1

∇vhY
(C −RI ′′)

∇x1FW |Y X = ∇θs · ∇x1θ + (∇θs · ∇vθ +∇gs) ·
1

∇vhY
· (−∇x1QY |X) +∇x1s︸ ︷︷ ︸

∗

∇x2FW |Y X = ∇θs · ∇x2θ︸ ︷︷ ︸
∗∗

+ (∇θs · ∇vθ +∇gs) ·
1

∇vhY
· (−∇x2QY |X) +∇x2s︸ ︷︷ ︸

∗

.

Without imposing further restrictions, major structural features of interest, ∇yθ,∇x1θ,
and ∇x2θ are not identified. The same restrictions as in Chapter 3 are imposed to demon-
strate what effects of the index structure have on identification of causal effects.

Firstly, we assume that X affects the outcome only through the index, θ, that is,

∇x1s = 0 and ∇x2s = 0 (∗). Imposing also local exclusion restriction, ∇x2θ = 0(∗∗), we
have

∇yFW |Y X = ∇θs · ∇yθ + (∇θs · ∇vθ +∇gs)
1

∇vhY
(C −RI ′′′)

∇x1FW |Y X = ∇θs · ∇x1θ + (∇θs · ∇vθ +∇gs)
1

∇vhY
· (−∇x1QY |X)

∇x2FW |Y X = + (∇θs · ∇vθ +∇gs)
1

∇vhY
· (−∇x2QY |X) .

Since
∇θs∇vθ +∇us

∇vhY
= −
∇x2FW |Y X
∇x2QY |X

from the third equation in (C − RI ′′′), we now

have from the first and second equations of (C −RI ′′′)
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∇θs∇yθ = ∇yFW |Y X +
∇x2FW |Y X
∇x2QY |X

∇θs∇x2θ = ∇x2FW |Y X −∇x2FW |Y X
∇x2QY |X
∇x2QY |X

if ∇x2QY |X 6= 0.

Note that the structural features, ∇yθ, and ∇x1θ are not identified, but ratios of them
can be identified. Taking ratio of the above we have

∇θs∇y1θ
∇θs∇xθ

=

∇y1FW |Y X +
∇x2FW |Y X
∇x2QY |X

∇x1FW |Y X −∇x2FW |Y X
∇x2QY |X
∇x2QY |X

.

That is,
∇y1θ
∇xθ

is identified by
∇y1FW |YX+

∇x2FW |Y X
∇x2QY |X

∇x1FW |YX−∇x2FW |YX
∇x2QY |X
∇x2QY |X

. Moreover, if the structural

function h is differentiable, then ratios of the structural function can be identified since the

ratios of the partial derivatives of the structural function should be equal to the ratios of

the random index. Note that from the structural function W = h(θ(Y,X, V ), U1, ..., UL),

partial derivatives are

∇yh = ∇θh∇yθ

∇x1h = ∇θh∇x1θ

yielding the following
∇yh
∇x1h

=
∇yθ
∇x1θ

.

this can be seen using matrices. (C −RI ′′′) can be expressed using these vectors as

λy + IM · γ = FW
y

λx −Gx · γ + sx = FW
x .

Then the system of equations that are need to be solved is :
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∇θs · ∇yθ + (∇θs · ∇vθ +∇gs)
1

∇vhY
= ∇yFW |Y X

∇θs · ∇x1θ + (∇θs · ∇vθ +∇gs)
1

∇vhY
· (−∇x1QY |X) = ∇x1FW |Y X

∇θs · ∇x2θ + (∇θs · ∇vθ +∇gs)
1

∇vhY
· (−∇x2QY |X) = ∇x2FW |Y X

∇x2θ = 0

∇x1s = 0

∇x2s = 0

∇x2QY |X 6= 0.

This can be written as using the matrices Φ,Ψ, and φ,

whereΦ ≡



1 0 0 1 0 0

0 1 0 ∇x1QY |X −1 0

0 0 1 ∇x2QY |X 0 −1

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


6×6

,Ψ ≡



∇θs · ∇yθ
∇θs · ∇x1θ
∇θs · ∇x2θ
∇θs∇vθ +∇us

∇vhY
∇x1s = 0

∇x2s = 0


6×1

,φ ≡


FW
y

FW
x

a



with the homogeneous restrictions indicated by the following matrices as :

Ay =


0

0

0

 ,Ax =


0 1

0 0

0 0

 ,Aγ =


0

0

0

 ,Af =


0 0

1 0

0 1

 , and a =


0

0

0

 .
The restrictions used are ∇xks = 0, k ∈ {1, 2},∇x2θ = 0, with N = 1,K = 2, and

G = 3. If ∇x2QY |X = 0, then the third row (r3) of Φ is a linear combination of the fourth

(r4) and the sixth (r6) rows as r3 = r4 − r6. Thus, the local rank condition, ∇x2QY |X 6= 0

is required for rank(Φ) = 6.

4.3 A Model for Discrete Outcomes with Excess Hetero-

geneity

When we allow for a vector of unobserved elements in the additively non-separable struc-

tural function there have been two approaches suggested. Chesher (2009) imposes index

restrictions and the index is included as an argument of a structural function which is addi-

tively non-separable with a vector of unobservables. The objects of identification are some

features of the index. Imbens and Newey (2009) also allows for a vector of unobservables

in the structural function for the outcome, and by using the control function approach

they identify the stochastic "average conditional response (SACR) function" which is a
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function of the scalar random elements as well as other observable variables.

Use of an additively nonseparable structural relationship is usually motivated by its

flexibility that allows for possibly heterogeneous random ceteris paribus impacts of a

"cause" variable on the outcome. However, a more compelling reason for using non-

separable form would be found in microeconometric models. Many models used in micro-

econometrics are inherently not just nonlinear, but additively nonseparable.

Typically, count outcomes are modeled by adopting a specific parametric distribu-

tion such as Poisson or Negative Binomial distributions and using MLE for estimation

(see Cameron and Trivedi (1998) for detailed discussion of count data modeling). When

exogenous unobserved heterogeneity is modeled into the conditional mean function, quasi-

MLE can be used for estimation. However, when the unobserved heterogeneity in the

mean function is correlated with the explanatory variables, then quasi-MLE estimators

are inconsistent. Therefore, when we suspect the exogeneity of regressors in a count data

model, we need to consider a new way of identification and inference.

When the structural relationship is nonseparable and there is an endogeneity problem,

then inference based on mean independence causes bias. Consider the following a mean

regression model of count outcome with mean independence restriction conditional on IV,

Z.

W = λ(Y ) + ε (*)

E[ε|Z] = 0.

If W is in fact generated by a nonseparable structural function, which is implied by

the count nature of W as the following,

W = h(Y,U),

then the model specified in eq.(*) will cause bias since2

E[h(Y,U)− λ(Y )|Z] 6= 0

The regression error, defined as the difference between the outcome and the mean re-

gression function, would not contain the information on the uncontrollable unobserved

heterogeneity that causes endogeneity when the structural relation is non-additive.

Hahn and Ridder (2009) show that when the structural relation is nonseparable, con-

ditional moment restrictions (CMR) do not identify Average Structural Function (ASF)

which has been a parameter of interest in many studies (see for example, Blundell and

Powell (2003,2004) and Imbens and Newey (2009).

2E[ε|Z] = E[W − λ(Y )|Z]
= E[h(Y,U)− λ(Y )|Z], when the true model is W = h(Y,U),
6= 0.

Note that the equality holds only when Y is not endogenous, or the true model is additively separable.
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Two points need to be emphasized in modelling discrete outcomes structurally, in other

words to allow for endogeneity. Structural functions need to be additively nonseparable.

Nonseparability is required to model unobserved heterogeneity that is the cause of endo-

geneity. Once a nonseparable structural function is used, conditional mean independence

restrictions, that are used in Newey and Powell (2003), cannot be used to identify any

structural parameters. Alternative options would be to use Chesher (2010)’s single equa-

tion IV model or Imbens and Newey (2009). In this note I propose another option to

identify any structural parameters when the outcome is discrete using the Quantile-based

Control Function Approach (QCFA) by Chesher (2003).

Chesher (2003)’s identification results on partial derivatives are not applicable to dis-

crete outcomes. In this section the stochastic average conditional response (SACR) func-

tion is defined and identification of SACR and partial derivatives of SACR is demonstrated.

The objects of interest need to be distinguished from the averaged object of partial deriv-

atives of structural functions studied for example, in Chernozhukov, Fernandez-val, Hahn,

and Newey (2008). It is partial derivatives of the averaged "structural" function. This is

a new identification result in the sense that we allow for the correlated unobservable het-

erogeneity in the nonparametric mixture model. Identifying the conditional mean of the

discrete outcome is informative in deriving ceteris paribus impacts, such as price/income

elasticities, which is impossible to measure with discrete outcome and continuous regres-

sors due to nondifferentiability3.

4.3.1 An Example - A Count Outcome Model with Correlated Unob-

served Heterogeneity

Identification of income elasticity of demand for health care measured as the number

of visits to doctors : in this problem endogeneity is of concern because the wealthy tend to

be healthy, and thus without controlling for endogeneity the true causal effect of income

would not be measured correctly. Several studies examine the income elasticity of demand

for health care under the parametric or semiparametric framework. In their studies how to

incorporate unobserved heterogeneity which would be the source of endogeneity is limited,

for example, in a multiplicative way into the mean function of count data. The model in

this section allows for flexible form of interaction between the unobserved heterogeneity

and the other explanatory variables.

4.3.2 The Model

Restriction ODO - EH (Ordered Discrete Outcomes with Excess Hetero-

geneity)

3This should be distinguished from the set-identified results of the marginal effects studied in Cher-
nozhukov, Fernandez-val, Hahn, and Newey (2008).
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W is a random variable taking values, w1 < w2 < ... < wM , Y ≡ {Yi}Ni=1, X ≡
{Xi}Ki=1, U, and V ≡ {Vi}Ni=1 are random variables, which are continuously distributed .

For any values of X, U, and V, unique values of W and Y are determined by the structural

equations

W = h(Y,X,U1, ..., UL) (S-1-EH)

Yn = hYn (X,Vn) (S-2)

n ∈ {1, 2, ..., N}

The unobservable latent variables, U = [U1, ..., UL] is a vector and each component of

{Vn}Nn=1 is distributed uniform (0, 1). h is weakly monotonic in U . {hYn }Nn=1 are strictly

monotonic with respect to variation in the unobservable Vn. {Vn}Nn=1 should be scalar.

This model admits such a case that Vn = θVn(V1, ..., VIn), where θVn : RIn → (0, 1), for

some positive number In, for n = 1, 2, ..., N.

The inverse function of each hYn with respect to Vn exists by strict monotonicity. It is

denoted by gn. Let g = [g1(Y1, X), ..., gN (YN , X)]′.

4.3.3 Stochastic Average Conditional Response (SACR) Function for

Ordered Discrete Outcomes

We consider the mean of ordered discrete outcomes that are characterized by observed

and unobserved factors. Define the Stochastic Average Conditional Response (SACR),

λ(y, x, v), as the conditional mean of an ordered discrete outcome conditional on all the

observable explanatory variables (Y and X) and the vector of unobserved variable, V.

Note that this function is obtained by integrating out the excess heterogeneity, a vector

U , but it is a stochastic object since this is varying with the unobserved variable, V . That

can be defined by the following

EW |Y XV (W | Y = y,X = x, V = v)

=

∫
WdFW |Y XV (w|y, x, g(y, x))

=

∫
h(Y,X,U1, ..., UL)dFU |Y XV (u|y, x, g(y, x))

=
M∑
m=1

wmP
V
m (y, x, v)

≡ λ(y, x, g(y, x))

= λ(y, x, v)
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where P Vm (y, x, v) ≡ Pr(W = wm|Y = y,X = x, V = v) = Pr(W = wm|Y = y,X =

x, V = g(y, x)).

From the definition we have

λ(y, x, v) =
∑
m=0

wmP
V
m (y, x, v)

=
∑
m=0

wmPm(y, x),

where Pm(y, x) ≡ Pr(W = wm|Y = y,X = x)

where the second equality is due to the fact that

P Vm (y, x, v) = Pr(W = wm|Y = y,X = x, V = v)

= Pr(W = wm|Y = y,X = x, V = g(y, x))

= Pr(W = wm|Y = y,X = x).

Thus we have the identifying relation4

Pm(y, x)︸ ︷︷ ︸
”Data”

= P Vm (y, x, g(y, x))︸ ︷︷ ︸
Structural element

(C −ODO)

P Vm (y, x, v), the stochastic conditional probability (SCP), should be distinguished from

Pm(y, x). P Vm (y, x, v) is a structural object, which is unobservable, while Pm(y, x) is ob-

served. Note that (C − ODO) holds always. To achieve independent variations, more

restrictions need to be imposed.

Note that λ(y, x, v) is not the Average Structural Function (ASF). Hahn and Ridder

(2009) show that if the structural function is nonseparable, conditional moment restrictions

do not recover the ASF when there is endogeneity. The object of interest in this section

should be distinguished from the ASF. Another thing to note is that one can see the

implication of endogeneity from (C −ODO). If there is no endogeneity, then ∇vP Vm = 0,

and there is no indirect effect of Y via V as

∇yPm(y, x) = ∇yP Vm (y, x, v) +∇vP Vm (y, x, v) · ∇yg︸ ︷︷ ︸
The Indirect Effect

.

Suppose one is interested in how the average response varies when all the observables

are fixed. For example, it may be of interest how the average number of visits to doctors

vary with unobserved type (how high types respond differently from low types), when the

4Consider N = 1 and K = 2. Suppose X2 is the IV for Y. Then by imposing the exclusion restricion
explicitly, we have from (C −ODO)

Pm(y, x1, x2) = PVm (y, x1, g(y, x1, x2)) (C −ODO)
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income level and other characteristics are the same. For this purpose, there should be at

least one IV that affects household (or individual) income and that is not a determinant

of the number of visits to doctors. For N = 1, and K = 2, if X2 is a determinant of Y ,

but excluded in h, then the independent variation of each coordinate of the SACR can be

identified at each point of the support of the conditioning variables, λ(y, x1, g(y, x1, x2)).

4.3.4 Objects of Interest

The object of interest is sensitivity of the (differentiable) average of the discrete outcome

to a continuous endogeneous variable. This should be distinguished from the marginal

effects studied in Chernozhukov, Fernandez-Val, Hahn and Newey (2009), which is the

average of partial derivatives of a nonseparable structural function. Their object is not

defined when the outcome is discrete.

4.3.5 Identification of Partial Derivatives of SACR Function

Using the identification result in Theorem 4.3, we can measure the sensitivity by partial

derivatives of λ(y, x, v).

Restriction D-ODO (Differentiability-ODO). The conditional distribution of W

given Y and X, Pm(y, x) is differentiable with respect to y and x .

Define the following vectors and matrices for the structural features

ξy ≡


∇y1P Vm
...

∇yNP Vm


N×1

, ξx ≡


∇x1P Vm
...

∇xKP Vm


K×1

,η ≡


∇v1P Vm
...

∇vNP Vm


N×1

,

hV ≡


∇v1hY1 · · · 0
...

. . .
...

0 · · · ∇vNhYN


N×N

,hx ≡


∇x1hY1 · · · ∇x1hYN
...

. . .
...

∇xKhY1 · · · ∇xKhYN


K×N

.

Define also vectors and matrices for functionals of the distributions of observables as

follows :

FW
y ≡


∇y1Pm
...

∇ymPm


N×1

,FW
x ≡


∇x1Pm
...

∇xKPm


K×1

,

and Gx ≡


∇x1QY1|X · · · ∇x1QYn|X

...
. . .

...

∇xKQY1|X · · · ∇xKQYn|X


K×N

.

Restriction R-ODO. There are G restrictions on ξy, ξx, and η as follows,
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Ay · ξy+Ax · ξx+Aη · η=a

The arrays Ay
G×N

, Ax
G×K

, Aη
G×N

,and a
G×1

are nonstochastic.

Φ ≡


IN 0K INh−1

v

0N IK −Gxh
−1
v

Ay Ax Aη


(G+N+K)×(2N+K)

,Ψ ≡


ξy

ξx

η


(2N+K)×1

,φ ≡


FW
y

FW
x

a


(G+N+K)×1

Theorem 4.3 Under Restriction ODO-EH, D-ODO, and R-ODO, ΦΨ = φ, and Ψ can

be found iff rank(Φ) = 2N +K for which a necessary condition is G ≥ N.

Proof. See Appendix A.

4.3.6 Illustration - Constructive Identification

To illustrate how the identification condition can be used to construct the identified

point, suppose N = 1,K = 2. Then we have the following results.

Corollary 4.2 Under Restriction ODO-EH,D-ODO,and R-ODO, ∇yλ(y, x, v) is iden-

tified by
∑
m=0

wm

{
∇yPm(y, x) +

∇x2Pm(y, x)

∇x2QY |X(v|x)

}
.

Proof. From λ(y, x, v) =
∑
m=0

wmP
V
m (y, x, v), it follows that

∇yλ(y, x, v) =
∑
m=0

wm∇yP Vm (y, x, v) (*)

Then, to identify ∇yλ(y, x, v), ∇yP Vm (y, x, v) needs to be identified. Since it is specified

how the endogenous variable and the unobservable heterogeneity are related by the trian-

gularity, y = hY (x, v) and it is assumed that Y is continuous and hY is strictly monotonic

in V, we write v = g(y, x), where g(y, x) is the inverse function of hY (x, v).

Differentiating (C −ODO) w.r.t. y and xk, k ∈ {1, 2} yields

∇yPm(y, x) = ∇yP Vm (y, x, v) +∇vP Vm (y, x, v) · ∇yg︸︷︷︸
∗

∇x1Pm(y, x) = ∇x1P Vm (y, x, v) +∇vP Vm (y, x, v) · ∇x1g︸ ︷︷ ︸
∗

(C −ODO′)

∇x2Pm(y, x) = ∇x2P Vm (y, x, v) +∇vP Vm (y, x, v) · ∇x2g.︸ ︷︷ ︸
∗
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Using (AB) from Chapter 3, replacing


∇yg
∇x1g
∇x2g

 with 1

∇vhY


1

−∇x1QY |X(v|x)

−∇x2QY |X(v|x)

, we have

∇yPm(y, x) = ∇yP Vm (y, x, v) +∇vP Vm (y, x, v) · 1

∇vhY

∇x1Pm(y, x) = ∇x1P Vm (y, x, v) +∇vP Vm (y, x, v) ·
−∇x1QY |X(v|x)

∇vhY

∇x2Pm(y, x) = ∇x2P Vm (y, x, v)︸ ︷︷ ︸
∗∗

+∇vP Vm (y, x, v) ·
−∇x2QY |X(v|x)

∇vhY

Without imposing restrictions we cannot identify ∇yP Vm (y, x, v). Local exclusion re-

striction, ∇x2P Vm (y, x, v) = 0 (∗∗), is imposed. Then we have

∇yPm(y, x) = ∇yP Vm (y, x, v) +
∇vP Vm
∇vhY

∇x1Pm(y, x) = ∇x1P Vm (y, x, v) +
∇vP Vm
∇vhY

· [−∇x1QY |X(v|x)] (C −ODO′′′)

∇x2Pm(y, x) = +
∇vP Vm
∇vhY

· [−∇x2QY |X(v|x)].

Then solving for ∇vPmV (y, x, v) from the third eq. of (C −ODO′′′) yields

∇vP Vm
∇vhY

= − ∇x2Pm(y, x)

∇x2QY |X(v|x)
(Bias-ODO)

if ∇x2QY |X(v|x) 6= 0

Using this, Replacing
∇vP Vm
∇vhY

with − ∇x2Pm(y, x)

∇x2QY |X(v|x)
in the first eq. of (C −ODO′′′) gives

us

∇yPm(y, x) = ∇yP Vm (y, x, v)− ∇x2Pm(y, x)

∇x2QY |X(v|x)
.

Thus, we finally have the following the identifying relation :

∇yPmV (y, x, v) = ∇yPm(y, x) +
∇x2Pm(y, x)

∇x2QY |X(v|x)
.

Therefore, the sensitivity of the conditional mean to change in the endogenous variable

in eq. (*) is now identified by the following relationship.

∇yλ(y, x, v) =
M∑
m=0

wm∇yP Vm (y, x, v) (TPD-ODO)

=
M∑
m=0

wm

{
∇yPm(y, x) +

∇x2Pm(y, x)

∇x2QY |X(v|x)

}
.

Then the system of equations that need to be solved is :
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∇yP Vm (y, x, v) +∇vP Vm (y, x, v) · 1

∇vhY
= ∇yPm(y, x)

∇x1P Vm (y, x, v) +∇vP Vm (y, x, v) ·
−∇x1QY |X(v|x)

∇vhY
= ∇x1Pm(y, x)

∇x2P Vm (y, x, v) +∇vP Vm (y, x, v) ·
−∇x2QY |X(v|x)

∇vhY
= ∇x2Pm(y, x)

∇x2P Vm (y, x, v) = 0

In other words,

Φ ≡


1 0 0 1

0 1 0 ∇x1QY |X(v|x)

0 0 1 ∇x2QY |X(v|x)

0 0 1 0


4×4

,Ψ ≡


∇yP Vm (y, x, v)

∇x1P Vm (y, x, v)

∇x2P Vm (y, x, v)

∇vP Vm (y, x, v)


4×1

,φ ≡


∇yPm(y, x)

∇x1Pm(y, x)

∇x2Pm(y, x)

0


4×1

,

with N = 1,K = 2, G = 1, when the restriction imposed is ∇x2P Vm (y, x, v) = 0 (which

is indicated in the fourth row of Φ), and ∇x2QY |X(v|x) 6= 0 (local rank condition) so that

rank(Φ) = 4, satisfying the condition of Theorem 4.4. Once ∇yP Vm (y, x, v) is identified,

∇yλ(y, x, v) can be identified by (TPT-ODO).

Discussion :

1. A similar three-part decomposition as in Chesher (2003) is obtained.

2. In comparison with the usual control function approach as discussed in Blundell and

Powell (2003, 2004), stochastic sensitivity can be identified.

3. Count outcomes are a special case of ordered discrete outcomes with wm = m, for

integer m = 0, 1, 2, ....

4. Although a binary outcome is not ordered, it can be considered to be a special case

with N = 2. Thus, for the binary outcome we have

∇yλ(y, x, v) = ∇yP (y, x) +
∇x2P (y, x)

∇x2QY |X(v|x)
,

where P (y, x) = Pr(W = 1|Y = y,X = x).

5. A testable expression for the exogeneity of Y can be derived even when the outcome

is discrete. By testing H0 : ∇x2P (y, x) = 0 we could test the exogeneity of Y locally.

This can be seen from (Bias-ODO).

∇vP Vm
∇vhY

= − ∇x2Pm(y, x)

∇x2QY |X(v|x)
(Bias-ODO)

if ∇x2QY |X(v|x) 6= 0
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If there is no endogeneity, the indirect effect, ∇vP
V
m

∇vhY = 0. In other words, if Y and U

are independent, ∇vP Vm = 0.

4.3.7 Stochastic Conditional Probability(SCP) Function for Categorical

Outcomes

When the outcome is not ordered, but categorical, the average does not deliver any mean-

ing. When the outcome is categorical, the stochastic conditional probability (SCP) func-

tion could be considered to be the structural object of the identification study. Note that

the identification results in Theorem 4.3 can be used to identify the SCP.
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Chapter 5

Discrete Endogenous Variables

5.1 Introduction

This chapter demonstrates how additively nonseparable structural functions are used in

measuring heterogeneous causality and provides a model that identifies individual treat-

ment effects. This has not been studied using the Hurwicz (1950a) structure. Restrictions

are imposed on the shape of the Hurwicz (1950a) structure. The novel restriction exploits

the fact that the patterns of endogeneity may vary across the level of the unobserved

variable. The proposed model does not require differentiability of the structural functions

nor continuity of observed variables. The model does not impose weak separability. It can

be used to recover some partial information on individual-level causal effects of a discrete

variable by identifying the partial difference of a nonadditive structural function. In this

chapter I assume that every individual is distinguished by their observed characteristics

and the rankings in the distribution of their unobserved characteristics, and show that

individual -specific counterfactual outcomes and causal effects can be partially identified

using a control function approach.

5.1.1 Causality, Heterogeneity, and Nonseparable Structural Relations

Suppose we are interested in the impact of a variable (Y ) chosen by individuals on their

outcome (W ) of interest, and suppose the economic decisions onW and Y can be described

by the following triangular system

W = h(Y,X,U) (1)

Y = hY (Z,X, V ),

where X is a vector of characteristics that are exogenously given to individuals such

as age, gender, and race, Z is an exogenous covariate that is excluded in h, and U and

V are normalized scalar indices of unobservable (possibly) multidimensional individual

characteristics. Various unobserved factors can affect the outcome and the choice, but

they are assumed to do so, only through the scalar indexes taking values between 0 and
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1. The structural relations may be derived from some optimization processes such as

demand/supply functions. If there is not a well-defined economic theory behind them, then

the structural relations can be simply understood as how the outcome and the choice are

determined by other relevant (both observable and unobservable) variables. The structural

relations deliver the information on "contingent" plans of choice or outcomes when different

values of X, Z, U and V are given. Even among the individuals with the same observed

characterisics we observe a distribution of the outcome due to the unobserved elements,

U and V. The conditional distribution of the outcome, FW |Y X , is determined by the

distribution of the unobserved elements, FU |Y X and the structural relation, h(·, ·, ·).
Causal effects of a variable indicate the effects of the variable only, separated from other

possible influences. This counterfactual information is contained in the partial differences

of the structural relation. When the outcome is determined by (1), the causal effects of

changing the value of Y from ya to yb on W, other things being equal (the ceteris paribus

effects), would be measured by the partial difference of the structural function, h

∆(ya, yb, x, u) ≡ h(ya, x, u)− h(yb, x, u)

for some fixed values of X = x and U = u. Individuals with different values of X and

U may have different values of ∆(ya, yb, x, u), thus, heterogeneity can constitute of both

observed and unobserved components.

When Y is binary, the ceteris paribus effect of Y can be expressed by

∆(1, 0, x, u) = h(1, x, u)− h(0, x, u).

Adopting the notation of the potential outcomes framework, letWdi denote the hypotheti-

cal outcome with Y = d for the individual i whose observed and unobserved characteristics

are x and u1. Suppose there are binary choices and let d ∈ {0, 1}. If we can assume that
W1i and W0i are generated by the structural relation then we can write

W1i −W0i = h(1, x, u)− h(0, x, u). (2)

This way we map the problem in the potential outcomes framework into the structural

approach2. By this relation the interpretation of h(1, x, u) − h(0, x, u) as the individual-

specific treatment response is justified.

Identification of causal effects calls for special attention if there is endogeneity or se-

lection problem. Y is called endogenous if U and Y are not independent. The selection

problem exists if the distributions of counterfactual outcomes, W0 and W1 are different

1See Heckman, Florens, Meghir, and Vytlacil (2008) for average effects of continuous treatment, and
Angrist and Imbens (1995), and Nekipelov (2009) for average effects of multi-valued discrete treatment.

2By the structural approach we mean the sort of analysis in classical simultaneous equations systems
model. This should be distinguished from "structural estimation" where the underlying optimization
processes such as preferences are fully specified. Rather, the structural approach I am considering simply
assumes the existence of decision processes which can be expressed as relationships between variables.
Further specification of the decision processes is not required to be specified.
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from each other3. The identification problem in the potential outcomes approach (identi-

fication of the object on the left) is caused by the fact that either W1i or W0i is observed,

but not both. Thus, the difference of the two for each individual is never observed and

cannot be replaced by observed Wi if there exists the selection problem. Diffi culties in

identification of the structural function (identification of the object on the right) arise

because observed information from the relevant variables does not necessarily guarantee

the information on independent variation in each coordinate of the structural relation.

The potential outcomes approach does not utilize the information on the economic

processes that generate the potential outcomes. Instead of W1i −W0i, this paper focuses

on identification of h(1, x, u)−h(0, x, u), by assuming the existence of economic processes

and by imposing restrictions on such decision mechanisms. See the recent debate between

Deaton (2009) and Imbens (2009)4. The proposed model can be used to identify the signs

of individual treatment responses. This model would be particularly informative when the

signs of individual effects vary across the population, in which case average effects would

underestimate the true effects with different signs being cancelled out.

In contrast with the triangular system, switching regression models with a selection

equation of the following form have been widely used :

W0 = h0(0, X, U0)

W1 = h1(1, X, U1) (3)

Y = g(Z,X, V ), Y ∈ {0, 1}.

The counterfactual outcomes are determined by distinct functional relations, h0 and h1,

and the unobserved heterogeneity for the two counterfactual events, U0 and U1, are allowed

to be different. Individual causal effects would be measured by h1(1, X, U1)−h0(0, X, U0),

not by the partial difference of h0 nor h1.

5.1.2 Contributions

This chapter contributes to the nonparametric identification literature by providing new

identification results on additively nonseparable structural functions when an endogenous

variable is discrete/binary by using a control function approach. Non-additive structural

functions are used to model heterogeneity. One of the key implications of additively

3 If the counterfactual distributions are distinct from each other even after controling for observable
characteristics, there is selection on unobservables. Selection on unobservables is the case I am considering
in this paper.

4We advocate the structural approach for two reasons : as Deaton (2009) and Heckman and Urzua
(2009) argue econometric models guided by economic models provide clearer interpretation of data analysis.
Moreover, assuming the existence of a structure derived from an economic model allows us to use restrictions
that may be justified by economic arguments such as monotonicity or concavity of structural relation, which
can result in identification of some parameters of interest. In contrast with Imbens (2009)’s arguments,
when a specific structural feature is aimed to be recovered (not the whole structure), the structural approach
helps, rather than hinders, inference of causal information from data. On the other hand, the applicability
may be limited to the extent that the restrictions can be justified since the identifying power comes from
such restrictions.
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nonseparable functional form is that partial differences are themselves stochastic objects

that have distributions. Thus, heterogeneity in individual causal effects can be found by

identifying partial differences of a non-additive structural function. However, individual-

specific causal effects have not been discussed so far.

On the one hand, in the structural approach many studies dealing with endogeneity

focus on identification of the structural function itself, rather than its partial differences,

however, identification of partial differences is not necessarily guaranteed from the knowl-

edge of identification of structural function when it is non-additive. Existing identification

results of a nonadditive structural function are not applicable to identification of partial

difference of a nonadditive function with respect to a binary endogeneous variable. Single

equation IV models as in Chernozhukov and Hansen (2005) and Chesher (2010) do not

guarantee identification of partial differences. Imbens and Newey (2009)’s control func-

tion approach is not applicable to discrete endogenous variables. Chesher (2005) report

identification resutls of partial difference with respect to an ordered discrete endogenous

variable, but it is not applicable to a binary endogenous variable.

On the other hand, individual treatment effect is not recovered from the potential out-

comes approach since both counterfactual outcomes are never observed. Instead, usually

average effects are the focus of interest. Several papers (see Imbens and Rubin (1997),

Abadie (2002), and more recently, Chernozhukov, Fernandez-Val, and Melly (2010), Kita-

gawa (2009), for example) focus on identification of the marginal distribution of the coun-

terfactuals whose information may be useful in recovering QTE, but individual treatment

effect cannot be recovered from the information on the marginal distributions of the po-

tential outcomes.

Another distinct feature of the proposed model is that the identifying power does not

come from restrictions on data. In this paper nonparametric shape restrictions on the

structure are imposed, rather than relying on properties of observed variables. Nonpara-

metric identification under endogeneity often relies on the characteristics of IV/exogenous

variables - many results exploit continuity, rich support in exogenous variation, large

support conditions or certain rank conditions. Such results therefore may have limited

applicability since many microeconomic variables are discrete or show limited variation in

the support. In contrast with other studies, the new results in this paper can be applied

to a discrete, including binary, endogenous variable when the IV is binary or when the

IV is weak. The proposed model does not require differentiability of the structural func-

tion and thus, can be applied to discrete outcomes. The proposed weak rank condition

can be applied to examples such as regression discontinuity designs, a case with a binary

endogenous variable or weak IV or a binary IV.

5.1.3 Related Studies

Since Roehrig (1988)’s recognition of the importance of nonparametric identification, there

have been many studies that aim to clarify what can be obtained from data without

parametric restrictions (see Matzkin (2007) for survey on nonparametric identification and
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the references therein). When parametric assumptions are avoided, point identification is

often not possible5 with a discrete endogenous variable. In such cases one could aim to

define a set in which the parameter of interest can be located. This partial identification

idea, which was pioneered by Manski (1990, 1995, 2003), has been actively used in the

setup that can be interpreted as a missing data problem - selection or (interval) censoring

as examples (Manski (1990), Balke and Pearl (1997), Manski and Pepper(2000), Cross

and Manski (2002), Manski and Tamer (2002), Heckman and Vytalcil (1999), Blundell,

Gosling, Ichimura, and Meghir (2007), Chernozhukov, Riggobon and Stoker (2009), for

example). It has been expanded into other economic models such as consumer demand or

labor supply analyses by adopting the restrictions from economic theory recently (Blundell,

Browning, and Crawford (2007), Hoderlein and Stoye (2009), and Chetty (2009)). Set

identification defined by moment inequalities has been used in entry models (see Berry

and Tamer (2007) for the recent survey), panel data models (Honore and Tamer (2006)),

discrete outcomes (Chesher (2010)), for example.

Many authors6 emphasize the existence of heterogeneity in individual responses in

practice. The importance of the information regarding individual-specific, possibly het-

erogeneous causal effects of a binary endogenous variable was recognized earlier. Many

interesting parameters are functionals of the distribution of individual treatment effects

as Heckman, Smith, and Clements (1997) noted. In contrast with average treatment ef-

fects which are found by a linear operator, other functionals such as quantiles require the

knowledge of the distribution of the individual treatment effects7.

One approach to recover individual-specific causal effects has been taken to recover

heterogeneity in treatment effects by identifying the distribution of W1 −W0 directly8.

Heckman, Smith and Clements (1997) use the Hoeffding-Frechet bounds, and Fan and

Park (2009) and Firpo and Ridder (2008) used Makarov bounds to derive information on

the distribution of the treatment effects from the "known" marginal distributions of the

potential outcomes.

Alternatively, some information regarding heterogeneity can be recovered by using

quantiles9. One particular object that has been the focus of research is the quantile

5Under the "complete" system of equations as Roehrig (1988) and Matzkin (2008), identification analy-
sis relies on differentiability and invertibility of the structural functions. However, differentiability and
invertibility fail to hold with discrete endogenous variables. Another well known example is discussed
by Heckman (1990) using the selection model - without parametric assumptions point identification is
achieved by the identification at infinity argument, which may not hold in practice.

6See, for example, Heckman (2000).
7When the treatment effects are homogeneous the problem is trivial and the distribution of the treatment

effects is degenerate.
8The quantiles of treatment effects recovered from the distribution of W1i −W0i are examples of D∆−

treatment effects, while the quantile treatment effects (QTE) are examples of ∆D−treatment effects dis-
cussed in Manski (1997). Neither of them is implied by the other, and they deliver different informa-
tion regarding distributional consequences of any policy. As Firpo and Ridder (2008) nicely discussed,
∆D−treatment effects, such as QTE can deal with the issues such as the impact of a policy on the society
(population) in general, while D∆−treatment effects can be used to address issues such as policy impacts
on "individuals".

9By estimating quantile treatment effects (QTE) using the Connecticut experimental data Bitler, Gel-
bach, and Hoynes (2006) found that welfare reforms in the ninties had heterogeneous effects on individuals
as predicted by labour supply theory. They conclude that "welfare reform’s effects are likely both more
varied and more extensive". Average effects may miss much information and can be misleading if the
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treatment effect (QTE) defined by Lehman (1974) and Doksum (1974). The QTE can be

found from the marginal distributions in principle. Abadie, Angrist, and Imbens (2002)

study the QTE under the LATE-type assumptions using a linear quantile regression model,

Firpo (2007) under the matching assumption, and Frolich and Melly (2009) under the

regression discontinuity design. Chernozhukov and Hansen (2005)’s moment condition

based on their IV-QR model provides a way to estimate QTE.

Alternative to these potential outcomes setup, one could use the structural approach.

By adopting a triangular structural setup, Chesher (2003,2007) studies identification of

∆(ya, yb, x, u) when Y is continuous, by the quantile-based control function approach

(QCFA, hereafter). Chesher (2005) showed how the QCFA proposed by Chesher (2003)

can be used to find the intervals that the values of the structural function lie in when

the endogenous variable is ordered discrete with more than three points in the support.

Jun, Pinkse, and Xu (2010) report tighter bounds when a different rank condition from

Chesher (2005)’s is used, while other restrictions on the structure in Chesher (2005) are

adopted. Jun, Pinkse, and Xu (2010) does not have identifying power for a binary endoge-

nous variable if the IV is binary. Vytalcil and Yildiz (2007) use a triangular system and

report a point identification result of average treatment effect of a dummy endogenous

variable. They impose weak separability and exclusion restriction. Their result rely on

certain characteristics of variation in exogenous variable and excluded variables to achieve

point identification. Vytalcil and Yildiz (2007) results does not guarantee identification

of partial difference - Jun, Pinkse, and Xu (2009) focus on identification of the struc-

tural function, and Vytalcil and Yildiz (2007) focus on identification of average effect,

not the structural function. Manski and Pepper (2000) and Bhattacharya, Shaikh, and

Vytlacil (2008) have partial identification results on average effects. They exploit different

monotonicity restrictions to this paper. More discussions on these studies can be found in

Section 5.5.

The remaining part is organized as follows. Section 5.2 introduces the model for

"ordered" discrete endogenous variables and contains the main results on identification.

Section 5.3 discusses "unordered" binary endogenous variable as a different case of discrete

endogenous variable. We also discuss the testability of the restrictions imposed by our

model. Section 5.5 discusses several relevant points to the model proposed. I then illustrate

the possibly useful information derived from our identification results by examining the

effects of the Vietnam-era veteran status on the civilian earnings in section 5.6. Section

5.7 concludes.

signs of individual treatment effects are varying across people. However, when experimental data are not
available, QTE does not have causal interpretation on individuals because individuals’ rankings in the
two marginal distributions of the potential outcomes may change. Our model could be used to determine
who benefits by identifying the signs of treatment effect of individuals with different rankings of the scalar
unobserved heterogeneity even with observational data.

81



5.2 Local Dependence and ResponseMatch (LDRM)Model

- MLDRM

5.2.1 Restrictions of the Model MLDRM

I introduce a model that interval identifies the value of the structural function evaluated

at a certain point in the presence of an endogenous discrete variable by applying the

QCFA. The model, MLDRM , is defined as the set of all the structures that satisfy the

restrictions10.

Restriction A-EX : Scalar Unobservables Index (SIU)/Monotonicity/Exclusion11

W = h(Y,X,U),

Y = hY (Z,X, V ),

with hY (z, x, v) = ym, Pm−1(z, x) < v ≤ Pm(z, x),

m ∈ {1, 2, ...,M − 1}

The function h is weakly increasing12 with respect to variation in scalar U. From here

on other exogenous variables, X, than Z are ignored. X can be added as a conditioning

variables in any steps of discussion without changing the results.

The variableW is a discrete, continuous, or mixed discrete continuous random variable.

The conditional distribution of Y given Z = z is discrete with points of support y1 < y2 <

... < yM , invariant with respect to z and with positive probability masses {pm(z)}Mm=1.

Cumulative probabilities {Pm(z)}Mm=1 are defined as

Pm(z) ≡
m∑
l=0

pl(z) = FY |Z(ym|z), m ∈ {1, 2, ...,M},

p0(x) ≡ 0.

The latent variates are jointly continuously distributed and they are normalized uni-

formly distributed on (0, 1) independent of Z. The value ym,m ∈ {2, ...,M − 1}, is an
interior point of support of the distribution of Y.

The function g evaluated at Z = z, g(z, τV ) is identified byQY |XZ(τV |z). The monotonic-
ity restriction on Y is reflected in the threshold crossing structure.

Restriction RC (Rank Condition)13 There exist instrumental values of Z, {z′m, z′′m},
10 I adopt this definition of a model as a set of structures satisfying the restrictions imposed, following

Koopmans and Reiersol (1950).
11Triangularity assumption enables us to avoid the issue of coherency that may be caused due to discrete

endogenous variables when the outcome is discrete.
12 If hY is weakly increasing in v, then if h is weakly increasing in u and if hY is weakly decreasing, h should

be weakly decreasing as well. This monotonicity restriction is one of the two key restrictions in QCFA
identification strategy. This enables us to use the equivariance property of quantiles. In many applications
this can be justified - under certain regularity conditions many optimization frameworks predict that the
equilibrium relations are monotonic in certain variables - law of demand as a typical example.
13Restriction RC is related to the "relevance" condition for IV. If Z is a strong IV, Restriction RC is
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such that

Pm(z′m) ≤ τV ≤ Pm(z′′m)

for m ∈ {0, 1, 2, ...,M − 1}.

Restriction C-QI (Conditional Quantile Invariance) : The value of U, u∗ ≡
QU |V Z(τU |τV , z) is invariant with z ∈ zm ≡ {z′m, z′′m} for Pm(z′m) ≤ τV ≤ Pm−1(z′′m).

Define V ≡ (VL, VU ], where VL = maxz∈zm P
m−1(z), and VU = maxz∈zm P

m+1(z).14

Define also U ≡ (UL(z), UU (z)], where UL(z) = minτV ∈V QU |V Z(τU |τV , z), and UU (z) =

maxτV ∈V QU |V Z(τU |τV , z). The value, u∗, is not known, but it indicates τU− ranked

individual’s value of U in the conditional distribution of U given V and Z. The case in

which FU |V Z(u∗|v, z) is nonincreasing in v, for u∗ ∈ U is called PD (Positive Dependence)
and the other case, ND (Negative Dependence). The case in which h(ym+1, u∗) ≥ h(ym, u∗)

is called PR (Positive Response) and the other case, NR (Negative Response).

Restriction LDRM (Local (Quantile) Dependence Response Match) : FU |V Z(u|v, z)
is weakly monotonic in v ∈ V for u ∈ U. If FU |V Z(u|v, z) is weakly decreasing in v ∈ V
for u ∈ U , then h(ym+1, u∗) ≥ h(ym, u∗), (PDPR) and if FU |V Z(u|v, z) is weakly increas-
ing in v ∈ V for u ∈ U , then h(ym+1, u∗) ≤ h(ym, u∗), (NDNR) for any u∗ ∈ U for

m ∈ {0, 1, 2, ...,M − 1}. See <Figure 5.1>.

5.2.2 Discussion

Restriction A-EX

This is fundamental restrictions imposed in the quantile-based control function method

in Chesher (2003). Monotonicity of the structural functions in the scalar indices of unob-

served factors and the existence of Z that is excluded from the outcome equation are key

features together with independence between U and Z.

There is a tradeoff between using a vector and a scalar unobserved heterogeneity -

allowing for a vector unobserved heterogeneity in the structural relation would be more

realistic. Several studies report identification results without monotonicity restriction

(See Altonji and Matzkin (2005), Hoderlein and Mammen (2007), Imbens and Newey

(2009), and Chalak, Schennach, and White (2008), and Chernozhukov, Fernandez-Val,

satisfied. Chesher (2005)’s rank condition is that there exist values of Z, z′m, and z
′′
m such that

Pm(z′m) ≤ τV ≤ Pm−1(z′′m)

thus, if Chesher (2005)’s rank condition holds, our rank condition also holds since Pm−1(z′′) ≤ Pm(z′′).
In this sense, Chesher (2005)’s rank condition is stronger than our rank condition. Note also that Chesher
(2005)’s strong rank condition is not satisfied when the instrument is weak or when a binary endogenous
variable is present.
14For a binary endogenous variable V ≡ [0, 1].
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Figure 5.1: Distributions of U given V are drawn for different values of V by assuming monotonity in

V . The thick line is the distribution of U given V = v. A point in the support of U, u∗ can be written as
τU -quantile of U given V = v. "Local" nature of Restriction LDRM : the information on endogeneity

is contained in FU |V - if Y is exogenous, then FU |V is invariant with values of V. Monotonicity of
FU |V (u∗|v) does not have to be global in U , all that is required is monotonicity in some region U of

u. In this graph, for v′ ≤ v′′ ≤ v′′′, FU |V (u∗|v) is decreasing in v, while FU |V (u∗2|v) is increasing in
v ∈ V.

and Newey (2009) for identification analysis without monotonicity). However, what can

be identified without monotonicity is objects with the heterogeneity in responses averaged

out. On the other hand, the quantile approach under monotonicity can be adopted to

recover heterogeneous treatment responses if a scalar (index) unobserved heterogeneity is

assumed, however, this may be considered to be restrictive since some of the examples

such as models with measurement error cannot be dealt with. See Chesher (2009) for

examples where the unobserved elements cannot be collapsed into a scalar index.

Local Dependence and Response Match (LDRM)

Endogeneity is roughly defined as the dependence between an explanatory variable and

the unobserved elements in the structural relationship. They can be positively dependent

or negatively dependent. "Dependence" is used instead of "correlation" to clarify the local

information contained in Restriction LDRM. Under the triangularity in the setup of this

chapter the source of endogeneity is caused by the dependence between U and V. This

information is contained in conditional distribution of FU |V .

Restriction LDRM assumes first that FU |V (u|v) is monotonic in v in certain ranges of

U and V. Then it restricts the direction of the dependence in that range and the direction

of the response - whether the response is positive or negative or zero. For example,

college graduates may be different from high school graduates in terms of ability (U)

when other observed characteristics are identical. Restriction LDRM is concerned with

how the patterns of dependence varies with the level of the unobserved characteristic. It

may be the case that individuals with very low ability are not allowed to get into college

due to low test scores, on the other hand, individuals with extremely high ability may

not choose to go to college if they have better options that will lead to higher income.

This example shows the possibility that there is positive dependence with the low level of
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ability, and negative dependence with the high level.

Discrete Data

The restrictions imposed do not require continuity/differentiability of structural relations,

nor rely on continuity of covariates/large support condition. This makes the proposed

model more useful since many variables in microeconometrics are in the form of discrete

or censored.

5.3 Main Results

5.3.1 Bound on the Value of the Structural Relation

We have the following interval identification for h(ym, u∗) for m ∈ {1, 2, ...,M − 1}, where
u∗ = QU |V Z(τU |τV , z). For m = M, the bound in Theorem 5.1 is not applied15.

Theorem 5.1 Under Restriction A-EX,C-QI,RC,and LDRM, there are the inequali-

ties for m ∈ {0, 1, 2, ...,M − 1} and τ ≡ {τU , τV }

qLm(τ , ym, zm) ≤ h(ym, u∗) ≤ qUm(τ , ym, zm)

where u∗ = QU |V Z(τU |τV , z),

for some τU ∈ (0, 1) and τV ∈ [Pm(z′m), Pm(z′′m)],

z ∈ zm = {z′m, z′′m},

qLm(τ , ym, zm) = min{QW |Y Z(τU |ym, z′m), QW |Y Z(τU |ym+1, z′′m)},

qUm(τ , ym, zm) = max{QW |Y Z(τU |ym, z′m), QW |Y Z(τU |ym+1, z′′m)}.

The interval is not empty.

Proof. See the Appendix.

To identify all the values of the structural function, say, h(y1, u∗), h(y2, u∗), ..., h(yM−1, u∗),

for fixed u∗, we need to guarantee the rank condition holds for all m ∈ {1, 2, ...,M − 1}.
There should exist two values of Z, {z′m, z′′m} for each m, such that Pm(z′m) ≤ τV ≤
Pm(z′′m). Therefore, how closely y and z are related and whether we have enough variation

in Z are key to the identification of the whole function.

5.3.2 Sharpness

Suppose a set identifies the value of the structural feature. Then all distinct "admitted"

structures that are "observationally equivalent" to the true structure should produce values

of the structural feature that are contained in the identified set. All such structures that

generate a point in the set, are indistinguishable by data. If the identified set is not sharp,

15The bounds cannot be applied to m = M. This restricts the identification results when M = 2, as we
will see in the next section.
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some of the points in the set are not possible candidates for the value of the structural

feature, which would make the identified set less informative. A sharp identified set

contains all and only such values that are generated by admitted and observationally

equivalent structures.

Different points in a sharp identified set may have been generated by different struc-

tures, but the distinct structures (i) should all satisfy the restrictions of the model (consis-

tent with the model), (ii) should be observationally equivalent (consistent with the data),

and (iii) any point in the interval should be considered to be the possible value of the

structural feature. (Lemma 2.1 in Chapter 2).

Common support restriction is imposed for sharpness.

Restriction CSupp (Common Support) The support of the conditional distri-

bution of W given Y and Z has support that is invariant across the values of Y and

Z.

Theorem 5.2 Under Restrictions CSupp, A-EX,C-QI,RC,and LDRM, the bound

I(τ , ym, z)≡ [qLm(τ , ym, zm), qUm(τ , ym, zm)], specified inTheorem 1 for eachm = 0, 1, 2, ..,M−
1 and for some τ ≡ {τU , τV }, is sharp.
Proof. Use Lemma 2.1 in Chapter 2. See the Appendix.

5.3.3 Many Instrumental Values, Overidentification, and Refutability

If there are many pairs of values of Z that satisfy Restriction RC (overidentification), then

each pair defines the causal effect for a different subpopulation defined by each pair and

each identified set is sharp. However, taking intersection of each identified set is not a

sharp identified set byMLDRM as is discussed in Chapter 2. To use all the information

available from data and to justify taking intersection of each set defined by distinct pairs

of values of Z in producing a sharp identified set in this case, a different restriction is

imposed16.

Let SUPP (Z) be the support of Z. Define Vm ≡ [Pm(z′m), Pm(z′′m)] for the pair,

{z′m, z′′m} that satisfies Restriction RC. Each pair defines different subpopulation over
which a causal interpretation is given. Define Zm as the set of pairs of {z′m, z′′m} that
satisfies Restriction RC, Zm ≡ {zm : Pm(z′m) ≤ τV ≤ Pm(z′′m), with zm = {z′m, z′′m}}.
Let Vm(Zm) ≡ {Vm(zm) : zm ∈ Zm} be a class of the set defined by Zm. Denote

V ≡ ∩ZmVm(zm).

Restriction C-QIM (Conditional Quantile Invariance with Many Instrumen-

tal Values) : The value of U, u∗ ≡ QU |V Z(τU |τV , z) is invariant with all z ∈ zm(∈ Zm).

16See Manski (1997)’s description of sharp sets as "they exhaust the information from the data".
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If the conditional distribution, FU |V Z(u|v, z) is independent of Z, then Restriction
Restriction C-QIM always holds.

Corollary 5.1 Under Restriction QCFA,C-QIM , RC,and LDRM, there are the in-

equalities for m ∈ {0, 1, 2, ...,M − 1}, τ ≡ {τU , τV },

QLm(τ , ym,Zm) ≤ h(ym, u∗) ≤ QUm(τ , ym,Zm)

where u∗ = QU |V Z(τU |τV , z),

for some τU ∈ (0, 1) and τV ∈ V ≡ ∩mVm(zm)

QLm(τ , ym,Zm) = max
zm

qLm(τ , ym, zm), zm ∈ Zm

QUm(τ , ym,Zm) = min
zm

qUm(τ , ym, zm), zm ∈ Zm

qLm(τ , ym, zm) = min{QW |Y Z(τU |ym, z′m), QW |Y Z(τU |ym+1, z′′m)}

qUm(τ , ym, zm) = max{QW |Y Z(τU |ym, z′m), QW |Y Z(τU |ym+1, z′′m)}

This intersection interval is sharp and can be empty.

Proof. Identified intervals for each pair zm ∈ Zm, are shown in Theorem 5.1. The

bound in this corollary is found by taking intersection of all such identified intervals. This

intersection bound is sharp. The same sharpness proof of Theorem 5.2 applies with

some modification in (S2) constructed in the proof in Appendix. When there exist many

instrumental values that satisfy the rank condition, Restriction RC, the partition, {P l}Ml=1

defined in the proof of Theorem 5.2 can be re-defined as the following :

P l =

{
minz∈SUPP (Z){P l(z)}, if l < m− 1

maxz∈SUPP (Z){P l(z)}, if l > m

}
Pm−1 = min

z∈zL
{Pm(z)}

Pm = max
z∈zU
{Pm(z)},

where zL ≡ {zL : zL = min zm, zm ∈ Zm}

zU ≡ {zU : zU = max zm, zm ∈ Zm}

Zm ≡ {zm : Pm(z′m) ≤ τV ≤ Pm(z′′m),with zm = {z′m, z′′m}}.

zL(zU ) is the set of smaller (larger) values of zm = {z′m, z′′m} ∈ Zm. The partition of the
support of V, (0, 1), is constructed such that P 1 < P 2 < ... < PM .

Intersection of identified sets may be empty, and even if it is not empty, the causal

interpretation of the intersection bound needs to be given to a different subpopulation.

Suppose that the intersection, V 6= ∅. Then the bound defined by Corollary 5.1
should be interpreted as causal effects for the subpopulation defined by V. If V = ∅, no
causal interpretation would be possible, even though the intersection bound is not empty

since the subpopulation that is affected by the change in the values of Z does not exist. If

V 6= ∅, but the intersection bound is empty, then this means that some of the restrictions
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Figure 5.2: Chesher (2005) strong rank condition is that there exist values of Z, z′m and z′′m such

that Pm(z′m) ≤ v ≤ Pm−1(z′′m) : the arrow in the upper panel indicates the Chesher bound. Note

that if Chesher (2005)’s strong rank condition holds our rank condition always holds since Pm(z′) ≤
v ≤ Pm−1(z′′) ≤ Pm(z′′). Note also that for this rank condition to hold IV should be very strong -

Chesher (2005) demonstrate that Angrist and Krueger (1999) quarter of birth IV does not satisfy his rank

condition.

in the model are not satisfied17. However, which restrictions are misspecified is not known

by the fact that the identified set is empty. This way one can falsify the econometric

model, rather than a specific restriction. This is one of the examples of the discussion of

Chapter 2 can be applied. Another example is discussed in the next section.

5.3.4 Testability of Restriction LDRM

The identifying power of a model comes from the restrictions imposed by the model and the

applicability of identification results depends on the credibility of the restrictions imposed.

If we could test the restrictions using data, credibility of restrictions can be confirmed. As

Koopmans and Reiersol (1950) noted the general rule of testability is that if there exists

an observationally more restrictive model than the other such that both models identify

the same structural feature, then the restrictions imposed by the observationally more

restrictive model can be tested.

Consider Manski (1990), Manski (1997)’s Monotone Treatment Response (MTR) model,

and Manski and Pepper (2000)’s Monotone Treatment Response and Monotone Treatment

Selection (MTR-MTS) model. Since the models are nested, if the true data generating

structure satisfies MTR and MTS, then the identified set by MTR-MTS should be in-

cluded by the identified set by MTR. Another example is the case with Chesher (2005)

model and MLDRM . If the strong rank condition is satisfied, MLDRM is contained by

Chesher (2005) model, thus, MLDRM is observationally more restrictive. Theorem 2.1

in Chapter 2 implies that LDRM bound should be equal to or smaller than Chesher

(2005) bound.

LDRM restriction is "not directly testable18", in other words, LDRM restriction does

17 I am grateful to Pierre Debois, and Brendon McConell for this point.
18Note that LDRM is a restriction imposed on the structural relation and the distribution of the unob-
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FW|YZÝw|ym ,zvÞ

FW|YZÝw|ym+1,zvvÞ

Figure 5.3: Failure of Chesher (2005) strong rank condition : when our rank condition holds we can define
the sharp interval by the quantiles of the two distributions FW |Y X(w|ym, z′) and FW |Y X(w|ym+1, z′′)
(not FW |Y X(w|ym, z′′) as in Chesher (2005)). The arrow indicates the LDRM bound. The graph is

drawn for the case with the nonnegative response case. Note that unless Chesher (2005) rank condition

holds we are not sure whether u - quantile of FW |Y X(w|ym, z′′) is below or above h(ym, u∗). This is
why we cannot define the identified interval by the quantiles of FW |Y X(w|ym, z′′) if Chesher (2005)’s
rank condition is not satisfied. If Chesher (2005)’s rank condition holds then Chesher (2005) bounds should

be equal to or larger than the LDRM bounds. See <Figure 5.4>.
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Figure 5.4: Testability of LDRM : when Chesher (2005) rank condition is satisfied Chesher bound(A)

should be larger than or equal to LDRM bound(B) - if not, Restriction LDRM is not satisfied by the true

structure.
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not have any implication on the distribution of the observables, but it can be falsified

when the strong rank condition in Chesher (2005) is satisfied. The strong rank condition

is "directly testable19", thus, once the strong rank condition is satisfied we can say that the

model,MLDRM is observationally more restrictive than the model in Chesher (2005). In

this case, the identified interval by MLDRM should be included by the identified interval

by Chesher (2005) if restriction LDRM is satisfied. Therefore, if the bounds constructed

by Chesher (2005) are smaller than the bounds formed by the LDRM model, then this

implies that restriction LDRM is not the right description of the true underlying structure

that generated the data.

We cannot "confirm" restriction LDRM, but we can "refute" the restriction by com-

paring QW |Y Z(τU |ym, z′′) with QW |Y Z(τU |ym+1, z′′).

5.4 Binary Endogenous Variable

Although in many empirical studies, the distribution of the treatment effects can deliver

valuable information for any policy design, quantiles of the distribution of differences of

potential outcomes,W1−W0, have been considered to be diffi cult to point identify without

strong assumptions.20 In this section I apply the LDRM model to a binary endogenous

variable and identify the ceteris paribus impact of the binary variable, or treatment effects.

As Chesher (2005) noted, models for an ordered discrete endogenous variable can not

directly be applied to binary endogenous variables due to the "unordered" nature of binary

variables, however, Restriction LDRM imposes a sense of order to a binary endogenous

variable, which enables the model to identify the partial differences. The number of points

in the support of Y restricts the identification result.

5.4.1 Bound on the Value of the Structural Relation

The model interval identifies h(1, u∗) and h(0, u∗) as the following corollary.

Corollary 5.2 Under Restriction A-EX,C-QI,RC,and LDRM there are the inequalities

for y ∈ {0, 1}, z ∈ z = {z′, z′′}, and τ ≡ {τU , τV },

qL(τ , y, z) ≤ h(y, u∗) ≤ qU (τ , y, z)

where u∗ = QU |V Z(τU |τV , z),

for some τU ∈ (0, 1) and τV ∈ [P (z′), P (z′′)],

qL(τ , y, z) = min{QW |Y Z(τU |0, z′), QW |Y Z(τU |1, z′′)}

qU (τ , y, z) = max{QW |Y Z(τU |0, z′), QW |Y Z(τU |1, z′′)}

servables. The restrictions imposed on the structure are not testable unless they have implications on the
distribution of the observables.
19Data are informative about whether the rank condition is satisfied since the rank condition is about

the conditional distribution of Y given Z.
20Note that in general, quantiles of treatment effects, QW1−W0|X(τ |x) 6= QW1|X(τ |x) − QW0|X(τ |x),

where the right hand side is the QTE.
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The bound is sharp.

Proof. See the Appendix

The identified intervals for h(1, u∗) and h(0, u∗) are the same. Nevertheless, this is still

informative in the sense that the identified interval restricts the possible range that the

values h(1, u∗) and h(0, u∗) lie in, and that under Restriction LDRM either the upper

bound or the lower bound on h(1, u∗)− h(0, u∗) should be zero.

Lemma 5.3 Under Restriction A-EX,C-QI,RC,and LDRM,

PDPR implies QW |Y Z(τU |ym+1, z′′m) ≥ QW |Y Z(τU |ym, z′m), and

NDNR implies QW |Y Z(τU |ym+1, z′′m) ≤ QW |Y Z(τU |ym, z′m).

Proof. See the Appendix.

Corollary 5.2 and Lemma 5.3 are used to recover heterogeneous treatment re-

sponses. Theorem 5.3 states the partial identification result of heterogeneous treatment

effects.

5.4.2 Bound on Partial Difference of the Structural Relation

Theorem 5.3 Under Restriction A-EX,C-QI,RC,and LDRM, h(1, u∗) − h(0, u∗) is iden-

tified by the following interval:

BL ≤ h(1, u∗)− h(0, u∗) ≤ BU

BU = max{0, Q∆
10(τU )}

BL = min{0, Q∆
10(τU )},

where Q∆
10(τU ) = QW |Y Z(τU |1, z′′)−QW |Y Z(τU |0, z′)

Proof. Suppose QW |Y Z(τU |1, z′′) ≥ QW |Y Z(τU |0, z′). From Corollary 5.2 we have

QW |Y Z(τU |0, z′) ≤ h(1, u∗) ≤ QW |Y Z(τU |1, z′′)

QW |Y Z(τU |0, z′) ≤ h(0, u∗) ≤ QW |Y Z(τU |1, z′′)

then we have

−(QW |Y Z(τU |1, z′′)−QW |Y Z(τU |0, z′)) ≤ h(1, u∗)− h(0, u∗) (3)

≤ QW |Y Z(τU |1, z′′)−QW |Y Z(τU |0, z′).

By Lemma 5.3, if QW |Y Z(τU |1, z′′) ≥ QW |Y Z(τU |0, z′), we should have

h(1, u∗)− h(0, u∗) ≥ 0
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applying this to (3) yields the result. The case when QW |Y Z(τU |1, z′′) ≤ QW |Y Z(τU |0, z′)
can be shown similarly.

Whether the treatment effect is positive or negative can be determined by data from

the sign of Q∆
10(τU ) ≡ QW |Y Z(τU |1, z′′) − QW |Y Z(τU |0, z′) based on Theorem 5.3. If

Q∆
10(τU ) > 0, then

0 ≤ h(1, u∗)− h(0, u∗) ≤ Q∆
10(τU ),

and if Q∆
10(τU ) < 0, then

Q∆
10(τU ) ≤ h(1, u∗)− h(0, u∗) ≤ 0.

If Q∆
10(τU ) = 0, then h(1, u∗)−h(0, u∗) is point identified as zero. Either the upper bound

or the lower bound is always zero.

If Restriction LDRM were true about the underlying structure, then from this restric-

tion we could infer whether the dependence between the two unobservables is positive or

negative locally in a certain range by Lemma 5.3. If economic arguments can justify the

nature of the selection pattern found from data, then this model can be credibly applicable.

5.4.3 Discussion

Heterogeneous Causality Measured by Partial Difference

The major object of interest in this paper is the partial difference of the structural

quantile function, h(1, u∗) − h(0, u∗). The value u∗ is unknown, but is assumed to be

u∗ = QU |V Z(τU |τV , z) for some τU , τV ∈ (0, 1). h(1, u∗) − h(0, u∗) is interpreted as a ce-

teris paribus impact of Y . When the value of Y changes from 1 to 0, the value of U would

change as well if there exists endogeneity.

This is in contrast with other identification results in additively nonseparable models.

Other studies identify the values of a nonseparable structural function, but their results

do not guarantee identification of partial differences. For example, Imbens and Newey

(2009)’s control function method does not identify partial difference when the endogenous

variable is discrete.

Rank Condition and Causal Interpretation

The rank condition restricts the group for whom the identification of causal impacts is

justifiable into those who are ranked between P (z′) and P (z′′), where P (z) = Pr(Y =

0|Z = z). h(1, u∗)−h(0, u∗) would be understood as the treatment effects of the τU−ranked
individuals in the subpopulation whose V− ranking is between P (z′) and P (z′′). When

the value of Z changes from z′ to z′′, their treatment status changes from y = 1 to y = 0.

We call this group "compliers" following the potential outcomes framework.

92



Applicability to Regression Discontinuity Designs (RDD)

Recently, many studies (see Lee and Lemieux (2009), for a survey) adopted regression

discontinuity design (RDD) to measure causal effects. Under this design if the continuity

condition at the threshold point of the "forcing variable" holds, the causal effects of indi-

viduals with the forcing variable just above and below the threshold point are shown to

be identified.

When the RDD is available, our rank condition21 is guaranteed to hold, thus, as long

as Restriction LDRM is applicable in the context of interest, the proposed model can

be applicable to an RD design even when all other variables are not continuous in the

treatment - determining variable at the threshold.22

5.5 Further Comments

5.5.1 Control Function Methods, and Discrete Endogenous Variables in

Non-additive Structural Relations

Control function approaches are usually understood as a way to correct endogeneity or

selection problem by conditioning on the residuals obtained from the reduced form equa-

tions for the endogenous variables in a triangular simultaneous equations system. Control

function methods (see Blundell and Powell (2003) for survey) are not considered to be

applicable when the structural function is non-additive and the endogenous variable is

discrete. If the structural relation is additively separable, the control function method

can be applied to a case with a discrete endogenous variable. (See Heckman and Robb

(1986)).

Imbens and Newey (2009)’s control function method is conditioning on the conditional

distribution of the endogenous variable given other covariates as an extra regressor for the

outcome equation. Chesher (2003) used the QCFA. This uses the same information as

Imbens and Newey (2009), but, instead of conditioning on the conditional distributions

of the endogenous variable given other covariates, the QCFA can be understood as con-

ditioning on a quantile of the conditional distribution. Imbens and Newey (2009) show

that the two control function approaches are equivalent when the endogenous variable is

continuous.

When the endogenous variable is discrete, Imbens and Newey (2009)’s approach does

not have identifying power.23 Chesher (2003)’s QCFA fails to produce point identification

since the one-to-one mapping between the endogenous variable and the unobserved variable

that exists with a continuous endogenous variable does not exist any more with discrete

endogenous variable. Rather, with a discrete endogenous variable, a specific value of the

21Suppose a threshold point t0 of a variable T is known by a policy design such that the treatment
status (Y ) is partly determined by this vairiable. Then we can construct a binary variable Z such that
Z = 1(T > t0). In such a case, our rank condition holds.
22For example, age or date of birth, which are used for eligibility criteria, are often only available at a

monthly, quarterly, or annual frequency level.
23 Imbens and Newey (2009) defines a bound, but this is for the case in which the common support

assumption fails, not for a discrete endogenous variable.
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endogenous variable maps into a set of values of the unobservable variable, called a V-set,

thus, the QCFA with a discrete variable could be roughly described as conditioning on

v- quantiles of the conditional distribution of the endogenous variable given covariates for

v ∈V-set. The smaller the V-set is, the smaller would the identified set be. Without
imposing further restrictions, a sharp bound cannot be defined. Chesher (2005) suggested

to impose monotonicity of FU |V (u|v) in v to define a bound on the value of the structural

function. This monotonicity restriction is adopted in this chapter and Jun, Pinkse, and

Xu (2010).

5.5.2 Nonparametric Shape Restrictions

Identifying power of an econometric model comes from restrictions imposed by the model.

The restrictions can be categorized into two : those imposed on the structure, and those

on data. One could impose restrictions on data - existence of a variable exhibiting certain

characteristics such as large support condition, rank conditions, or completeness condi-

tions.

Alternatively, one could adopt restrictions on the structure. Apart from Chesher (2005)

and Jun, Pinkse,a dn Xu (2010), Manski and Pepper (2000)24 and Bhattacharya, Shaikh

and Vytlacil (2008) adopt monotonicity restrictions in the structural relations. Under the

MTS (Monotone Treatment Selection) - MTR (Monotone Treatment Response) restriction

Manski and Pepper (2000) estimated the upper bounds on the returns to schooling. With

monotonicity in response, the lower bound is always zero.

Manski and Pepper (2000) develop their arguments by assuming that both selection

and response are increasing, but assuming that both are decreasing also leads to identifi-

cation of average effects. However, with the LDRM restriction, weakly increasing response

should be matched with weakly increasing selection and vice versa. MTR is equivalent

to monotone response assumption in our model, and MTS holds if FU |V (u|v) is weakly

decreasing in v over the whole support of U. Since LDRM allows the direction (either

PDPR or NDNR) of the match to vary over the support of U, while MTR-MTS should be

matched - either positive response with positive selection or negative response with nega-

tive selection - for the mean. Roughly speaking, the LDRM restriction can be described

as a local version of MTR-MTS. Manski and Pepper (2000) identifies average treatment

effects, thus the heterogeneity in treatment effects can be found for the subpopulation

defined by the observed characteristics, while LDRM model can recover heterogeneity in

treatment effects even among observationally identical individuals.

Bhattacharya, Shaikh and Vytlacil (2008) compare Shaikh and Vytlacil (2005) bounds

with Manski and Pepper (2000)25 by applying them to a binary outcome - binary endoge-

nous variable case. Bhattacharya, Shaikh and Vytlacil (2008)’s bounds are found under

24Okumura and Usui (2009) impose concavity to Manski and Pepper (2000) framework and show that
the identified interval can be shortened. However, when the endogenous variable is binary Okumura and
Usui (2009) bounds would be the same as those of Manski and Pepper (2000).
25 In fact, what they consider is MTR-MIV in Manski and Pepper (2000) with the upper bound of the

outcome 1 and the lower bound 0 when the outcome is binary.
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the restriction that the binary endogenous variable is determined by an IV monotonically.

When IV, Z, and Y are binary, their monotonicity is equivalent to the monotonicity here.

Note also that when Y is binary, we can always reorder 0 and 1 due to the "unordered na-

ture" of a binary variable. In contrast with their claim, when Manski and Pepper (2000)

is applied to a binary case, the direction of the monotonicity of response and selection

does not have to be determined a priori26. Data will inform about the direction of the

monotonicity, however, the direction of MTR and MTS should be matched in a certain

way27.

The advantage of the LDRM assumption is that it allows the match to vary across the

level of the unobserved characteristic unlike MTS-MTR in Manski and Pepper (2000) or

Bhattacharya, Shaikh and Vytlacil (2008). The LDRM model would be useful when the

direction of the dependence is likely to be different depending on the level of the unobserved

characteristic. However, LDRM may not be very informative when the outcome is binary

in practice, since the values that the partial difference can take are -1,0, and 1, although

it is still legitimate to apply the model to binary outcomes in principle.

5.5.3 Different Approaches to Heterogeneous Treatment Responses

I discuss three different approaches to heterogeneous treatment effects. The information

delivered by partial difference need to be distinguished from that by QTE or quantiles of

treatment effect. The three approaches answer different policy questions.

Quantile Treatment Effect (QTE) QTE is defined as the horizontal difference be-

tween the marginal distributions of the potential outcomes. QTE can be used to investigate

the impacts of any policy on, for example, median individuals in the distributions with

and without a policy, which can be informative, for example, in the study of changes in

inequality. However, QTE should not be interpreted as individual level causal effects be-

cause the ranks of individuals may vary across the treatment status. That is, the median

ranked individuals in each potential outcome distribution may not be the same individ-

uals. Moreover, even if the rank is preserved across the treatment status, the size of

QTE would not necessarily be the same as the quantiles of the treatment effects since

26When the endogenous variable is oredered discrete with more than two points in the support, the
direction should be assumed a priori to find the bounds.
27Following the notation of Manski and Pepper (2000) if data show that E(y|z = 0) ≤ E(y|z = 1), then

this is the case where non-decreasing MTR and non-decreasing MTS are matched because

E(y|z = 0) = E(y(0)|z = 0)
MTR

≤ E(y(1)|z = 0)

MTS

≤ E(y(1)|z = 1) = E(y|z = 1).

Whereas if the data show that E(y|z = 0) ≤ E(y|z = 1), then this is the case where non-increasing
MTR matched with non-increasing MTS as follows :

E(y|z = 0) = E(y(0)|z = 0)
MTR

≥ E(y(1)|z = 0)

MTS

≥ E(y(1)|z = 1) = E(y|z = 1).

The counterfactural E(y(1)|z = 0) can be bounded by E(y|z = 0) and E(y|z = 1), and the data will inform
us of which is the upper/lower bound - the direction of the match will be determined by data.
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Figure 5.5: The QTE (in the left panel) measures the effects of a treatment on a particular point of

distributions of marginal distributions of counterfactuals. It does not necessarily convey the information

regarding the causal effects on the individuals unless the rank preservation condition holds. The information

on FW1−W0 (in the right panel) can be useful in finding out the proportion of the population that benefit

from the treatment. For example, if the 0.75 quantile of FW1−W0 is zero, then this means that 25% of

the population benefit from the treatment.

QW1−W0 6= QW1 −QW0 .

Quantiles of treatment effects recovered from the distribution of the treatment

effect, FW1−W0 Another line of studies focuses on the distribution of the treatment ef-

fects, FW1−W0 . Their object of identification is FW1−W0 , and the identification results

are found by the mathematical bounds such as Hoeffding bounds, or Makarov bounds.

These bounds can be found from the marginal distributions of the potential outcomes.

Identifying the marginal distributions of the potential outcomes is not simple - Heckman,

Smith, and Clements (1997) assumed that the potential outcomes are normally distrib-

uted, and Fan and Park (2009) assume that experimental data are available. The studies

mentioned above report partial identification of the distribution of the treatment effects.

Once FW1−W0 is found, then functionals of FW1−W0 , such as the quantiles of the treatment

effects can be found following the definition of the quantiles.

Heterogeneous treatment responses recovered from partial differences Individual-

specific heterogeneous treatment effect, W1i − W0i, defined by the potential outcomes

framework, can be measured by partial difference under the structural framework, as

W1i−W0i = h(1, x, u)−h(0, x, u) for the individual i whose the observed and unobserved

characteristics are Xi = x and Ui = u.

Comparison of the three In general, QTE and partial differences should be different

even with the rank preservation assumption. h(1, x, u) − h(0, x, u) are not the same as

the quantiles of FW1−W0 . This is because the quantile parameter(τ) used in our structural

framework indicates the ranking of the outcome, W, (which is the same as that of the

unobserved heterogeneity (U) under the monotonicity in scalar unobservable variable),
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while the quantile parameter for FW1−W0 is the ranking of the treatment effects, W1−W0.

They may be different.

The knowledge of FW1−W0 , and thus the knowledge of QW1−W0 can answer the ques-

tions of proportion of the population that benefit from the treatment. Our identification

results can answer the question of "who benefits" from the treatment by identifying "who"

using the observed characteristics and the ranking of the unobserved heterogeneity. Our

results can then recover the proportion of population whose treatment effects are positive.

5.5.4 Inference

The inference results under set identification can be categorized into two28 : the one is by

Horowitz and Manski (2000) or Imbens and Manski (2004), Stoye (2008) and the other

is by Chernozhukov, Hong and Tamer (2007), and many others recently. The first line of

study estimates the bounds which are explicitly defined by the identification results and

deal with the construction of the confidence intervals of the bounds. In the second line

of study the identified set is not necessarily defined explicitly, rather they are defined by

the (conditional) moment inequality conditions implicitly, and the inference methods are

based on the moment inequality conditions. Our identification results do not provide any

moment conditions to be adopted, thus, the first line of studies is more relevant to the

paper.

The confidence intervals of the bounds with ordered discrete endogenous variables can

be found by Imbens and Manski (2004) if there is only one pair of instrumental values.

When there are more than two instrumental values, the bounds are found by intersecting

the intervals found by each pair. In this case the bounds and the confidence intervals can

be found by using Chernozhukov, Lee, and Rosen (2009). Either parametric (see Koenker

and Basset (1978) for example) or nonparametric (see Chaudhuri (1991) or Chaudhuri,

Doksum, Samarov (1997)) estimation of the quantiles can be applied for the construction

of the confidence intervals.

When the endogenous variable is binary, the inference problem on partial difference

is somewhat different. The inference problem from the identification results would be (i)

estimating the upper bounds or lower bounds as the difference the two quantile functions,

QW |Y Z(τU |1, z′′) − QW |Y Z(τU |0, z′), (ii) testing whether the confidence interval of either
the upper bound or the lower bound contains zero, and (iii) constructing the confidence

intervals for the identified interval. The major inference issue would be testing whether

zero is included in the confidence set of the upper/lower bounds as the model identifies

the sign of the treatment effect.

28 I mention this categorization as it is more relevant to the inference problem in this paper. However,
this is not the only possible categorazation ; one can categoraze the inference approaches by whether the
confidence set covers a specific point of the parameter of interest, or the identified set itself.

97



5.6 Empirical Illustration - Heterogeneous Individual Treat-

ment Responses

By heterogeneous treatment responses I mean idiosyncratic treatment effects even after

accounting for observed characteristics29. Several studies30 allowed for individual hetero-

geneity in response. However, identification is achieved by integrating out the heterogene-

ity31 in these studies. By identifying average responses, much information regarding the

distributional consequences of a policy - heterogeneity in response - would be lost. In this

paper individual heterogeneity in response is allowed by use of a non-additive structural

relation and the proposed model identifies heterogeneity by identifying partial difference

of the structural relation. I demonstrate how "partial" information (the signs and the

bounds of treatment effects, not the exact size of them) regarding who benefits (individ-

ual heterogeneous response) can be recovered from data by using quantiles rather than

averages when "who" is indicated by individual observed characteristics and the ranking

in the distribution of the unobserved characteristic32. This is illustrated by examining

the effects of the Vietnam-era veteran status on the civilian earnings using the data used

in Abadie (2002)33 - a sample of 11,637 white men, born in 1950-1953, from the March

Current Population Surveys of 1979 and 1981-1985. Annual labour earnings are used as

an outcome, and the veteran status is the binary endogenous variable of concern.

Veterans have been provided with various forms of benefits in terms of insurance,

education, etc. How serious the impact of military service on veterans’ labour market

outcomes, or whether they are compensated for their service enough has been an important

political issue and there has not been any consensus on this matter. Angrist (1990) reports

negative average impact of veteran status on earnings later in life, which shows that on

average military service had a negative impact on earnings possibly due to the loss of

labour market experience.

5.6.1 Bounds on Individual-specific Causal Effects of Vietnam-era Vet-

eran Status on Earnings

By applying his identification results of the marginal distribution of the potential outcomes

for compliers, Abadie (2002) reports that military service during the Vietnam era reduces

29This is called "essential heterogeneity" by Heckman, Urzua, and Vytlacil (2006).
30The standard linear IV model cannot identify heterogeneus treatment effects. See Heckman and

Navarro (2004) and Heckman and Urzua (2009).
For identification under heterogeneous responses see Heckman, Urzua, and Vytlacil (2006) for binary

endogenous variable, and Florens, Heckman, Meghir, and Vytlacil (2008), Athey and Imbens (2006),
Imbens and Newey (2009),Chernozhukov, Fernandez-Val, and Newey (2009), Hoderlein and White (2009),
among others. There is another line of research using random coeffi cient models to recover the distribution
of the response, see Card (2001) and Heckman and Vytlacil (1999) for example.
31The averaged objects however can exhibit a certain degree of heterogeneity by allowing for treatment

heterogeneity.
32Most welfare programs are designed to support certain groups of people. If "who benefits" from such

programs could be recovered from data, this would be informative in judging whether the groups targeted
by the policy actually benefit from it.
33The data are obtainable in Angrist Data Archive :
http://econ-www.mit.edu/faculty/angrist/data1/data
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lower quantiles of the earnings distribution, leaving higher quantiles unaffected. The

information from the marginal distribution of the potential outcomes (for compliers) may

be used to recover QTE, however, it does not reveal any information on individual-specific

impact on earnings of Vietnam-era veteran experience.

LetW be annual labour earnings, Y be the veteran status, and Z be the binary variable

determined by the draft lottery. Age, race, and gender are controlled so that the subgroup

considered is observationally homogenous. The unobserved variables U and V indicate

scalar indexes for "earnings potential" and "participation preference" or "aptitude for the

army" each. Note that there can be many factors that determine these indexes, but we

assume that these multi-dimensional elements can be collapsed into a "scalar" index.

Selection on Unobservables

Enrollment for military service during the Vietnam era may have been determined by

the factors which may have been associated with the unobserved earnings potential. This

concern about selection on unobservables is caused by several aspects of decision processes

both of the military and of those cohorts to be drafted. On the one hand, the military

enlistment process selects soldiers on the basis of factors related to earnings potential. For

example, the military prefers high school graduates and screens out those with low test

scores, or poor health. As a consequence, men with very low earnings potential are unlikely

to end up in the army. On the other hand, for some volunteers military service could

be a better option because they expected that their careers in the civilian labour market

would not be successful, while others with higher earnings potential probably found it

worthwhile to escaping the draft. This shows that the direction of selection could vary

with where each individual is located in the distribution of the earnings potential.

Draft Lottery as an Instrument - Exclusion, Rank Condition, and Indepen-

dence

As in Angrist (1990) the Vietnam era draft lottery is used as an instrument to identify the

effects of veteran status on earnings. The lottery was conducted every year between 1970

and 1974. The lottery assigned numbers from 1 to 365 to dates of birth in the cohorts

being drafted. Men with the lowest numbers were called to serve up to a ceiling34. The

ceiling was unknown in advance. I construct a binary IV based on the lottery number the

threshold point being chosen as 100 following Abadie(2002).

It would be natural to believe that this IV is not a determinant of earnings, and the

unobserved scalar indexes are independent of draft eligibility35.

34The draft eligibility ceilings were 195 for men born in 1950, 125 for men born in 1951, and 95 for men
born in 1952. The eligibility ceiling is determined by the Department of Defense depending on the needs
in the year.
35There has been some discussion on individuals’ draft lottery number caused behavior : some men

therefore volunteered in the hope of serving under better terms and gaining some control over the timing
of their service. If those who change their behavior according to their draft lottery number show certain
patterns in their unobserved factors, then the quantile invariance restriction may be violated.
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Figure 5.6: LDRM bounds on heterogeneous treatment effects of Vietnam era veteran status among the

observationally similar individuals

To apply the identification results in Theorem 5.3, I investigate first whether the data

satisfy Restriction RC in the model. Consider X = age, gender, race. The participation

rate36 among the draft-non-eligible (Z = 0) is about 0.14 and the participation rate among

the eligible is 0.22.

P (Y = 0|Z = 1, X = x) = 0.78 < P (Y = 0|Z = 0, X = x) = 0.86 (RC)

Thus, z′ = 1 and z′′ = 0 in this example. The compliers (or draftees) are defined as those

whose V -ranking is between 78% and 86%. Note that the V- ranking is never observed,

so we cannot tell whether an individual is a complier or not.

The Result and Causal Interpretation

The bounds on the partial differences, QW |Y Z(τU |1, z′′) − QW |Y Z(τU |0, z′), are found by
the differences in the quantiles of earnings for the veterans who were not eligible and

those of non-veterans who were draft-eligible.

LATE can be found by the model in Imbens and Angrist (1994). LATE is found for

compliers by integrating out the heterogeneity, therefore, hiding possibly useful informa-

tion regarding heterogeneity. While Angrist (1990) report negative impact on earnings on

average, our quantile based analysis reveals that when age, gender, and race are controlled

the veteran status had positive causal impacts for individuals with low earnings poten-

tial, but negative causal impacts for individuals with high earnings potential(see <Figure

5.6>).

The costs of military service may be larger than the benefits provided by the govern-

ment for those with high earnings potential, while the benefits provided may be suffi cient

for those with low earnings potential. Considering the fact that benefits in the form of

36Note that P (z) is not the usual propensity score, and 1− P (z) is the propensity score.

100



insurance, pension, or education opportunities should be targeted at people with less po-

tentials, the findings indicate that the compensation was enough for this group. However,

the Vietnam-era military service may have higher opportunity costs for individuals with

high earnings potential. This may be used against conscription.

The results in <Figure 5.6> are interpreted as the causal effects for those who change

their participation decision as the value of Z changes. To the extent that we believe the

implication from Restriction LDRM on the distribution of the unobservable the bounds

would be considered to be informative regarding the population.

5.7 Conclusion

The presence of endogeneity and discreteness of the endogenous variable causes the loss

of the identifying power of the quantile-based control function approach (QCFA) in the

sense that the model based on the QCFA does not produce point identification. I propose

a model that set identifies the structural features when one of the regressors is ordered

discrete. I then apply the model to a binary endogenous variable, this structural approach

turns out to be useful in defining the bounds on the heterogeneous individual treatment

effects, which have not been studied so far under the structural framework without distri-

butional assumptions.

The set identification result of this paper is applied to recover heterogeneous impacts of

the Vietnam-era military service on earnings later in life. As we can see in this example,

average effects may miss much information in some cases. Even though the proposed

model can give only partial information on the individual causal effect, this may be useful

in some economic contexts, especially when the sign of the effects may be varying across

individuals with different characteristics. The causal interpretation is justified on the group

of compliers defined by the pair of instrumental values that satisfy the rank condition.

Different pair defines different "compliers". Heterogeneity in responses is recovered for

different earnings potentials. If there exist heterogeneity in responses between draftees

and volunteers, then our findings cannot be extrapolated into volunteers.

In conclusion, by using nonparametric shape restrictions that can be argued in each

economic context, the proposed model provides partial information regarding individual

causal effects. This information can be more credible than parametric restrictions to the

extent they are justifiable by economic logic. The information on the signs of individual

treatment effects is crucial if they vary across the population, since in such a case the

average effect would be smaller with different effects with different signs canceled out.

This would lead to a misleading conclusion. The model can also be used for robustness

checks in data analysis for whether there exists any heterogeneity in causal responses.
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Appendix A

Appendix of Chapter 4

A.1 Theorem 4.1

Proof. Recall that we have

yn = hYn (x, gn(yn, x)), (A)

Gn(vn, x) ≡ QYn|X(vn|x) = hYn (x,QVn|X(vn|x)) (B)

Tm = h∗(y, x, qm), (C-IC)

n ∈ {1, 2, ..., N}, m ∈ {1, 2, ...,M}

Differentiating (A) w.r.t. yn and xk, we have

1 = ∇vhYn · ∇yngn, (A - 1)

0 = ∇xkhYn +∇vhYn · ∇xkgn, (A - 2)

n ∈ {1, 2, ..., N}, k ∈ {1, 2, ...,K}.

Note also that hYn is identified by quantiles of Yn given X, (B). Then we have the following

relations by differentiating (B) w.r.t. xk :

∇xkGn = ∇vhYn · ∇xkgn, k ∈ {1, 2, ...,K}. (*)

Recall that

f(Pm(y, x), g1(y1, x), g2(y2, x), ..., gN (yN , x), x) ≡ QU |V X(Pm(y, x)|g(y, x), x).

Then from eq. (C-IC) we have

Tm = h∗(Y,X, qm) (**)

= h∗(Y,X, f(Pm(y, x), g1(y1, x), g2(y2, x), ..., gN (yN , x), x))
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First, differentiate (**) with respect to yn, and xk, we have1

0 = ∇ynh∗ +∇uh∗ · (∇τf · ∇ynPm +∇gnf · ∇yngn), (B - 1)

0 = ∇xkh∗ +∇uh∗[
N∑
n=1

(∇τf · ∇xkPm +∇gnf · ∇xkgn) +∇xkf ], (B - 2)

n ∈ {1, 2, ..., N}, k ∈ {1, 2, ...,K}.

When we use the control function approach as in Chesher (2003), how U and {Vn}Nn=1

move together is indicated by how the quantiles of U given V and X are affected by

V = g(Y,X). {∇gnf}Nn=1 will indicate this information - if U and {Vn}Nn=1 are independent,

then ∇gnf = 0. It turns out we can identify
∇gnf
∇vnh1

. Now define matrices to state the

results

Reproducing the definitions in Section 4.1 we have

λy/u ≡
1

∇uh∗


∇y1h∗
...

∇yNh∗


N×1

,λx/u ≡
1

∇uh∗


∇x1h∗
...

∇xKh∗


K×1

,

fx ≡


∇x1f
...

∇xKf


K×1

, fg ≡


∇g1f
...

∇gN f


N×1

, γ ≡


∇g1f
∇v1h1
...

∇gNf
∇vN hN


N×1

gy ≡


∇y1g1 · · · 0
...

. . .
...

0 · · · ∇yN gN


N×N

,gx ≡


∇x1g1 · · · ∇x1gN
...

. . .
...

∇xKg1 · · · ∇xKgN


K×N

,

hV ≡


∇v1hY1 · · · 0
...

. . .
...

0 · · · ∇vNhYN


N×N

,hx ≡


∇x1hY1 · · · ∇x1hYN
...

. . .
...

∇xKhY1 · · · ∇xKhYN


K×N

,

1With U continuously distributed, we have

τ = FU|VX(QU|VX(τ |g(y, x)|g(y, x)).
Differentiating it w.r.t. τ , we have

∇τQU|VX(τ |g(y, x), x) =
1

fpdf (QU|VX(τ |g(y, x), x))
,

where fpdf (u|v, x) = ∇uFU|VX(u|v, x).

From qmU|VX ≡ QU|VX(Pm(y, x)|g(y, x), x) ≡ f(Pm(y, x), g1(y1, x), g2(y2, x), ..., gN (yN , x), x), ∇τf =
∇τQU|VX(τ |g(y, x), x). Then we know from the property of quantiles described above,

∇τQU|VX(τ |g(y, x), x) =
1

fpdf (QU|VX(τ |g(y, x), x))
,

where fpdf (u|v, x) = ∇uFU|VX(u|v, x).

Thus, we can see that ∇τf is unknown. However, with continuously distributed U, we know that
∇τf 6= 0.
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FW
y ≡


∇y1Pm
...

∇ymPm


N×1

,FW
x ≡


∇x1Pm
...

∇xKPm


K×1

, andGx ≡


∇x1G1 · · · ∇x1GN
...

. . .
...

∇xKG1 · · · ∇xKGN


K×N

,

Φ ≡


IN 0K IN 0K

0N IK −Gx IK

Ay Ax Aγ Af


(G+N+K)×(2N+2K)

,Ψ ≡


λy/u

λx/u

γ

fx


(2N+2K)×1

,

φ ≡


Sy

Sx

a


(G+N+K)×1

,where Sy = ∇τf · FW
y and Sx = ∇τf · FW

x .

Then (A - 1) and (A - 2) will be written as the following since Gx = hx by (*) :

IN = gy · hv
−Gx = gx · hv.

Thus, Replacing gy and gx by the following in (B - 1) and (B - 2)

gy = IN · h−1
v

gx = −Gx · h−1
v

we obtain :

λy/u = −∇τf ·FW
y −IN · γ

λx/u = −∇τf ·FW
x +Gx · γ − fx

Then by stacking these equations using the restrictions of Restriction R-IC, the rank

condition follows from the fact that Ψ has 2N+2K elements.

A.2 Theorem 4.2

Proof. Recall that we have from Section 4.2

yn = hYn (x, gn(yn, x)), (A)

Gn(vn, x) ≡ QYn|X(vn|x) = hYn (x,QVn|X(vn|x)) (B)

Tm = h∗(y, x, qm), (C-IC)

n ∈ {1, 2, ..., N}, m ∈ {1, 2, ...,M}

Now differentiate FW |Y X and Gm w.r.t. ym,m = 1, 2, ...,M and xk, k = 1, 2, ...,K to
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get

∇ymFW |Y X = ∇θs · ∇ymθ +∇θs · ∇gmθ · ∇ymgm +∇gms · ∇ymgm , (A)

∇xkFW |Y X = ∇θs · ∇xkθ +∇θs · ∇vmθ · ∇xkgm +∇us · ∇xkg1 +∇xks .

∇xkGm = ∇xkhm.

Differentiating (A) w.r.t. ym and xk, will yield

1 = ∇vmhm · ∇ymgm (B)

0 = ∇xkhm +∇vmhm · ∇xkgm

m = 1, 2, ...,M and k = 1, 2, ...,K.Then from (A) and using the fact that hm is identified

the quantiles of the conditional distribution of Ym given X, that is, ∇xkGm = ∇xkhm for

all m = 1, 2, ...,M and k = 1, 2, ...,K.

FWy = λy + gy · (∇θs · θg + sg)

FWx = λx + gy · (∇θs · θg + sg) + sx

Gx = hx

Reproducing the definitions in Section 4.2 we have

λy ≡ ∇θs


∇y1θ
...

∇yM θ


N×1

,λx ≡ ∇θs


∇x1θ
...

∇xKθ


K×1

,

sx ≡


∇x1s
...

∇xKs


K×1

, sg ≡


∇g1s
...

∇gN s


N×1

,θg =


∇g1θ
...

∇gN θ


N×1

,

and γ ≡ ∇θs


∇g1θ+∇g1s
∇v1h1
...

∇gM θ+∇gM s

∇vM hM


N×1

= ∇θsθg + sg,

gy ≡


∇y1g1 · · · 0
...

. . .
...

0 · · · ∇yN gN


N×N

,gx ≡


∇x1g1 · · · ∇x1gN
...

. . .
...

∇xKg1 · · · ∇xKgN


K×N

,

hV ≡


∇v1hY1 · · · 0
...

. . .
...

0 · · · ∇vMhYN


N×N

,hx ≡


∇x1hY1 · · · ∇x1hYN
...

. . .
...

∇xKhY1 · · · ∇xKhYN


K×N

,

FW
y ≡


∇y1FW |Y X

...

∇yNFW |Y X


N×1

,FW
x ≡


∇x1FW |Y X

...

∇xKFW |Y X


K×1

,Gx ≡


∇x1QY1|X · · · ∇x1QYn|X

...
. . .

...

∇xKQY1|X · · · ∇xKQYn|X


K×N

.
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Now, from (B), we have

IN = gy · hV
−Gx = gx · hV .

Solving for gy and gx, then replacing them in (A)

gy = IN · h−1
V

gz = −Gx · h−1
V .

FW
y = λy + IM · h−1

V (∇θs · θg + sg)

FW
x = λx −Gx · h−1

V (∇θs · θg + sg) + sx

we have

FW
y = λy + IN · γ

FW
x = λx −Gx · γ + sx.

Thus, the result follows.

A.3 Theorem 4.3

Proof. From λ(y, x, v) =
∑
m=0

mP Vm (y, x, v), we have

∇ynλ(y, x, v) =
M∑
m=1

m · ∇ynP Vm (y, x, v)

n = 1, 2, ..., N

To identify ∇ynλ(y, x, v), ∇ynP Vm (y, v) needs to be measured. Since how the endogenous

variable and the unobservable heterogeneity are related is specified by auxiliary equations,

Yn = hn(X,Vn), n = 1, 2, ..., N, and by strict monotonicity of hn in Vn, the inverse function

exists, Vn = h−1
n (Yn, X) ≡ gn(Yn, X). Thus, we have

Pm(y, x) = P Vm (y, x, g(y, x)) (C −ODO)

Also recall from section 3.1 we have

yn = hn(x, gn(y, x)) (A)

Gn(vn, x) ≡ QY |X(vn|x) = hYn (x,QVn|X(vn|x)) (B)

n ∈ {1, 2, ..., N}.
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Differentiate (A) w.r.t. yn and xk respectively yields

1 = +∇vhYn · ∇yngn
0 = ∇xkhn +∇vhYn · ∇xkgn
n ∈ {1, 2, ..., N}, k ∈ {1, 2, ...,K}.

Differentiating (B) w.r.t. xk yields

∇xkGn(vn, x) = ∇xkhYn +∇vhYn · ∇xkQVn|X(vn|x)

k ∈ 1, 2, ...,K

Differentiating (C −ODO) w.r.t. yn and xk respectively yields

∇ynPm(y, x) = ∇ynP Vm (y, x, v) +∇vnP Vm (y, x, v) · ∇yngn(yn, x) (∗)

∇xkPm(y, x) = ∇xkP Vm (y, x, v) +∇vnP Vm (y, x, v) · ∇xkgn(yn, x)

n ∈ {1, 2, ..., N}, k ∈ {1, 2, ...,K}

We need to find out conditions that ∇ynP Vm (y, x, v),∇xkP Vm (y, x, v), n ∈ {1, 2, ..., N}, k ∈
{1, 2, ...,K} can be solved for. Using matrices (∗) is rewritten so that the rank condition
similar to the classical simultaneous equations system.

Reproducing the definitions of vectors and arrays in Section 4.3 as follows

ξy ≡


∇y1P Vm
...

∇yNP Vm


N×1

, ξx ≡


∇x1P Vm
...

∇xKP Vm


K×1

,η ≡


∇v1P Vm
...

∇vNP Vm


N×1

,

gy ≡


∇y1g1 · · · 0
...

. . .
...

0 · · · ∇yN gN


N×N

,gx ≡


∇x1g1 · · · ∇x1gN
...

. . .
...

∇xKg1 · · · ∇xKgN


K×N

,

hV ≡


∇v1hY1 · · · 0
...

. . .
...

0 · · · ∇vNhYN


N×N

,hx ≡


∇x1hY1 · · · ∇x1hYN
...

. . .
...

∇xKhY1 · · · ∇xKhYN


K×N

,

FW
y ≡


∇y1Pm
...

∇ymPm


N×1

,FW
x ≡


∇x1Pm
...

∇xKPm


K×1

,

and Gx ≡


∇x1G1 · · · ∇x1GN
...

. . .
...

∇xKG1 · · · ∇xKGN


K×N

.
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Then we have from the identify

IN = gy · hv
−Gx = gx · hv

thus, yielding

gy = IN · h−1
v

gx = −Gx · h−1
v

By replacing gy and gx in (*) we have

FW
y = ξy + IN · h−1

v η

FW
x = ξx −Gx · h−1

v η

Therefore, for the arrays defined as the following

Φ ≡


IN 0K INh−1

v

0N IK −Gxh
−1
v

Ay Ax Aη


(G+N+K)×(2N+K)

,Ψ ≡


ξy

ξx

η


(2N+K)×1

,φ ≡


FW
y

FW
x

a


(G+N+K)×1

,

we have the identification condition for the linear equations to have solutions to Ψ

since Ψ has (2N +K) elements.
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Appendix B

Appendix of Chapter 5

B.1 Theorem 5.1

Proof. Recall thatV ≡ (VL, VU ], where VL = maxz∈zm P
m−1(z), and VU = maxz∈zm P

m+1(z),

and where zm is the set of values of the values of Z that satisfy the rank condition.

Suppose that QU |V Z(τU |τV , z) is weakly increasing in τV ∈ V. Then by Lemma 2 in

Chesher (2005) we have for Y = ym,

h(ym, QU |V Z(τU |VL, z′m)) ≤ QW |Y Z(τU |ym, z′m) (A-1)

≤ h(ym, QU |V Z(τU |Pm(z′m), z′m))

h(ym, QU |V Z(τU |VL, z′′m)) ≤ QW |Y Z(τU |ym, z′′m) (A-2)

≤ h(ym, QU |V Z(τU |Pm(z′′m), z′′m))

and for Y = ym+1

h(ym+1, QU |V Z(τU |Pm(z′m), z′m)) ≤ QW |Y Z(τU |ym+1, z′m) (A-3)

≤ h(ym+1, QU |V Z(τU |VU , z′m))

h(ym+1, QU |V Z(τU |Pm(z′′m), z′′m)) ≤ QW |Y Z(τU |ym+1, z′′m) (A-4)

≤ h(ym+1, QU |V Z(τU |VU , z′′m))

Under Restriction RC, Pm(z′m) ≤ τV ≤ Pm(z′′m), when QU |V Z(τU |τV , z) is weakly
increasing in v, then :

QU |V Z(τU |τV , z′′m) ≤ QU |V Z(τU |Pm(z′′m), z′′m)

QU |V Z(τU |Pm(z′m), z′m) ≤ QU |V Z(τU |τV , z′m)

and because h is weakly increasing in U ,

h(ym, QU |V Z(τU |τV , z′′m)) ≤ h(ym, QU |V Z(τU |Pm(z′′m), z′′m)) (B-1)

h(ym, QU |V Z(τU |Pm(z′m), z′m)) ≤ h(ym, QU |V Z(τU |τV , z′m)). (B-2)
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Combining (A-4) and (B-1) we can find the upper bound on h(ym, QU |V Z(τU |τV , z′′m))

h(ym, QU |V Z(τU |τV , z′′m)) ≤ h(ym, QU |V Z(τU |Pm(z′′m), z′′m))

≤ h(ym+1, QU |V Z(τU |Pm(z′′m), z′′m))

≤ QW |Y Z(τU |ym+1, z′′m)

The first inequality is due to (B-1) and the second inequality is due to Restriction LDRM,

and the third inequality is due to (A-4).

The lower bound on h(ym, QU |V Z(τU |τV , z′m)) can be found by (A-3) and (B-2) :

QW |Y Z(τU |ym, z′m) ≤ h(ym, QU |V Z(τU |Pm(z′m), z′m)) ≤ h(ym, QU |V Z(τU |τV , z′m)).

The first inequality is due to (A-3), the second is due to (B-2).

Finally, under the conditional quantile invariance C-QI and exclusion Restrictions A-

EX, there is for z ∈ {z′m, z′′m} for u∗ = QU |V Z(τU |τV , z),

QW |Y Z(τU |ym, z′m) ≤ h(ym, u∗) ≤ QW |Y Z(τU |ym+1, z′′m)

Similarly, when QU |V Z(τU |τV , z) is weakly decreasing in τV ∈ V, we have

QW |Y Z(τU |ym+1, z′′m) ≤ h(ym, u∗) ≤ QW |Y Z(τU |ym, z′m)

B.2 Corollary 5.2

Proof. We adopt Lemma 2 in Chesher (2005) when m = 1 with P 0(z) = 0 and P 1(z) =

P (z), where P (z) = Pr(Y = 1|Z = z) and whenm = 2 with P 2(z) = 1 and P 1(z) = P (z).

Suppose that QU |V Z(τU |v, z) is weakly increasing in v. Then we have

h(0, QU |V Z(τU |0, z′)) ≤ QW |Y Z(τU |0, z′) (A-1)

≤ h(0, QU |V Z(τU |P (z′), z′))

h(0, QU |V Z(τU |0, z′′)) ≤ QW |Y Z(τU |0, z′′) (A-2)

≤ h(0, QU |V Z(u|P (z′′), z′′))

h(1, QU |V Z(τU |P (z′), z′)) ≤ QW |Y Z(τU |1, z′) (A-3)

≤ h(1, QU |V Z(τU |1, z′))

h(1, QU |V Z(τU |P (z′′), z′′)) ≤ QW |Y Z(τU |1, z′′) (A-4)

≤ h(1, QU |V Z(τU |1, z′′))
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We use (A-1) and (A-4).

QW |Y Z(τU |0, z′) ≤ h(0, QU |V Z(τU |P (z′), z′)) (A-1)

h(1, QU |V Z(τU |P (z′′), z′′)) ≤ QW |Y Z(τU |1, z′′) (A-4)

Under Restriction RC, P (ź) ≤ τV ≤ P (z′′), when QU |V Z(τU |v, z) is weakly increasing in
v, then :

QU |V Z(τU |τV , z′′) ≤ QU |V Z(τU |P (z′′), z′′)

QU |V Z(τU |P (ź), z′) ≤ QU |V Z(τU |τV , z′)

and because h is monotonic in u and weakly increasing,

h(1, QU |V Z(τU |τV , z′′)) ≤ h(1, QU |V Z(τU |P (z′′), z′′)) (B-1)

h(1, QU |V Z(τU |P (ź), z′)) ≤ h(1, QU |V Z(τU |τV , z′)). (B-2)

Combining (A-4) and (B-1) we can find the upper bound for h(1, QU |V Z(τU |τV , z′′))

h(1, QU |V Z(τU |τV , z′′)) ≤ h(1, QU |V Z(τU |P (z′′), z′′)) ≤ QW |Y Z(τU |1, z′′)

Use the Restriction LDRM : h(1, u) ≥ h(0, u), for all values of z and u in the support

of Z and u ∈ U. Applying Restriction LDRM to (B-2)

h(0, QU |V Z(τU |P (ź), z′)) ≤ h(1, QU |V Z(τU |P (ź), z′)) ≤ h(1, QU |V Z(τU |τV , z′)). (C)

Applying (A-1) to (C), we have the lower bound for h(1, QU |V Z(τU |τV , z′))

QW |Y Z(τU |0, z′) ≤ h(1, QU |V Z(τU |τV , z′)).

Finally, under the conditional independence restriction and exclusion Restriction C-QI

and QCFA, there is for z ∈ {z′, z′′} for u∗ = QU |V Z(τU |v, z)

QW |Y Z(τU |0, z′) ≤ h(1, u∗) ≤ QW |Y Z(τU |1, z′′) (D-1)

Consider next the identification of h(0, u∗).

Under Restriction RC, P (ź) ≤ τV ≤ P (z′′), when QU |V Z(τU |v, z) is weakly increasing
in v, then :

QU |V Z(τU |τV , z′′) ≤ QU |V Z(τU |P (z′′), z′′)

QU |V Z(τU |P (ź), z′) ≤ QU |V Z(τU |τV , z′)
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and because h is monotonic in U and weakly increasing,

h(0, QU |V Z(τU |τV , z′′)) ≤ h(0, QU |V Z(τU |P (z′′), z′′)) (B-3)

h(0, QU |V Z(τU |P (ź), z′)) ≤ h(0, QU |V Z(τU |τV , z′)). (B-4)

using (A-4) and (B-3), and Restriction LDRMwe can find the upper bound for h(0, QU |V Z(τU |τV , z′′))

h(0, QU |V Z(τU |τV , z′′))
(a)

≤ h(0, QU |V Z(τU |P (z′′), z′′))

(b)

≤ h(1, QU |V Z(τU |P (z′′), z′′))

(c)

≤ QW |Y Z(τU |1, z′′)

(a) is due to (B-3), (b) follows from Restriction LDRM, and (c) is from (A-4).

Applying (A-1) to (B-4) we have

QW |Y Z(τU |0, z′)
(a)

≤ h(0, QU |V Z(τU |P (ź), z′))
(b)

≤ h(0, QU |V Z(τU |τV , z′)).

(a) follows from (A-4) and (b) is from (B-4). Thus, the lower bound for h(0, QU |V Z(τU |τV , z′))

QW |Y Z(τU |0, z′) ≤ h(0, QU |V Z(τU |τV , z′)).

Finally, by Restriction C-QI and A-EX, there is for z ∈ {z′, z′′}

QW |Y Z(τU |0, z′) ≤ h(0, u∗) ≤ QW |Y Z(τU |1, z′′) (D-2)

Note that the identified intervals for h(0, u∗) and h(1, u∗) are the same as we see in

(D-1) and (D-2).

B.3 Lemma 5.1

Proof. We show the case in which QW |Y Z(τU |ym, z′m) ≤ QW |Y Z(τU |ym+1, z′′m). The other

case can be shown similarly. We need to show that PDPR implies QW |Y Z(τU |ym, z′m) ≤
QW |Y Z(τU |ym+1, z′′m). Let Q′′m+1 and Q′m indicate the values of τU− quantiles, Q′m ≡
QW |Y Z(τU |ym, z′m) and Q′′m+1 ≡ QW |Y Z(τU |ym+1, z′′m). Then by definition of quantiles we

have

τU = FW |Y Z(Q′m|Y = ym, Z = z′m)

= Pr(W ≤ Q′m|Y = ym, Z = z′m) (A)

= Pr(h(ym, U) ≤ Q′m|Y = ym, Z = z′m)

= Pr(U ≤ h−1(ym, Q′m)|Y = ym, Z = z′m)
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similarly for Q′′m+1, we have

τU = Pr(U ≤ h−1(ym+1, Q′′m+1)|Y = ym+1, Z = z′′m) (B)

where h−1 is defined as (C*) in Appendix C. Suppose PDPR. Then we have

τU = Pr(U ≤ h−1(ym+1, Q′′m+1)|Y = ym+1, Z = z′′m) (C-1)

= Pr(U ≤ h−1(ym+1, Q′′m+1)|V ∈ (Pm(z′′m), Pm+1(z′′m)])

≤ Pr(U ≤ h−1(ym+1, Q′′m+1)|V ∈ (Pm−1(z′′m), Pm(z′′m)])

= Pr(U ≤ h−1(ym+1, Q′′m+1)|Y = ym, Z = z′′m)

= Pr(U ≤ h−1(ym+1, Q′′m+1)|Y = ym, Z = z′m) ≡ ũ (C-2)

where the first equality is by (B), the second equality follows from that the event {V ∈
(Pm(z′′m), Pm+1(z′′m)]} is equivalent to the event {Y = ym+1, Z = z′′m}. The first inequality
is due to PD (FU |V Z(u|v, z) is non-increasing in v ∈ V), and the third equality results

from the same logic as in the second equality. The last equality is due to Restriction C-QI.

Then τU ≤ ũ.
From (A) and (C-2), we have

τU
by (A)

= Pr(U ≤ h−1(ym, Q′m)︸ ︷︷ ︸
u∗

|Y = ym, Z = z′m) ≤ Pr(U ≤ h−1(ym+1, Q′′m+1)︸ ︷︷ ︸
u∗∗

|Y = ym, Z = z′m)
by (C-2)

= ũ

since τU ≤ ũ, which implies that

u∗ ≡ h−1(ym, Q′m) ≤ h−1(ym+1, Q′′m+1) ≡ u∗∗

by the nondecreasing property of distribution function, i.e., if a ≤ a′, FA|B(a|b) ≤
FA|B(a′|b). Then we have

Q′m = h(ym, u∗)

Q′′m+1 = h(ym+1, u∗∗)

By PDPR and monotonicity of h in u, we have by inverting h−1

Q′m = h(ym, u∗) ≤ h(ym+1, u∗)

≤ h(ym+1, u∗∗) = Q′′m+1

where the first inequality is due to PDPR and the second inequality is due to monotonicity

of h in u. Thus, we have shown thatQ′m ≡ QW |Y Z(τU |ym, z′m)≤Q′′m+1 ≡ QW |Y Z(τU |ym+1, z′′m).

The other case can be shown similarly.
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Appendix C

Proofs of Sharpness

Sharpness in Theorem 5.2 in Chapter 5 is proved in this appendix following Lemma

2.1 in Chapter 2. To contrast the role of Restriction LDRM, and to describe the logic

behind the construction of the structure, sharpness of Chesher (2005) is discussed first

briefly. Define

h−1(ym, x, w) ≡ sup
u
{u : h(ym, x, u) ≤ w}. (C*)

This implies

h(ym, x, h−1(ym, x, w)) ≤ w (C**)

with equality holding when h(ym, u) is strictly increasing in u.

Under the triangular system with the single index unobservables restriction, a variation

of (HR-SIU-C) (Chapter 1) of the following exists when the endogenous variable is

continuous

FU |V X(h−1(y, x, w)|g(y, x), x)︸ ︷︷ ︸
Structure

generates
=⇒
=

⇐=
Iidentification

FW |Y X(w|y, x).︸ ︷︷ ︸
Data

By the interaction between h and FU |V X , the distribution of the observables is generated.

From this relationship alone h and FU |V X cannot be separately recovered from data.

Identification of the structure S ≡ {h, FU |V X} is achieved by imposing several restrictions
discussed in Chapter 3. For exposition, the identification result (C) in Chapter 3 are

reproduced ignoring exogenous covariates X other than the IV, Z :

h(y, u∗)︸ ︷︷ ︸
Structural feature, θ(S)

= h(y,QU |V Z(τU |τV , z)) (C)

= QW |Y Z(τU |y, z)︸ ︷︷ ︸
Functional of data, G(FW |Y Z)

where u∗ ≡ QU |V Z(τU |τV , z),

y = QY |Z(τV |z). (C.1)

Chesher (2003) did not consider identification of the distribution of the unobserved

variables. However, the QCFA can be used for this purpose. The distribution of the
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unobservables is identified up to monotone transformation : only the shape is identified

by the conditional distribution of the outcome given other covariates. Recall that U and V

are each normalized Uniform (0, 1). Once the conditional distribution of U given V and X

is identified, the joint distribution of U and V given other covariates, X, can be recovered

since FUV |X(u, v|x) = FU |V X(u|v, x)FV |X(v|x), where FV |X(v|x) is assume to be uniform

(0,1). The dependence between the unobservable variables is indicated by the conditional

distribution, FU |V X , which would not be uniform (0, 1) in the presence of endogeneity.

Thus we focus on the identification of the conditional distribution, FU |V X(u|v, x).

For notational simplicity, we ignore other covariates, X, than an IV, Z. X can be

added as conditioning variables in any steps without changing the results. The following

identification of the value of the distribution of the unobservables can be stated as in

(D). The value of FU |V Z(u|v, z) is identified by FW |Y Z(w|y, z) when v = g(v, z) and u =

h−1(y, w). Note that once the values of W,Y, and Z are given, the values of U and V are

determined by the structural relations, h−1 and g.

FU |V Z(u|v, z)︸ ︷︷ ︸
θ(S)

= Pr(U ≤ u|v, z)

= Pr(U ≤ u|g(y, z), z)

= Pr(U ≤ h−1(y, w)|g(y, z), z) (D)

= Pr(U ≤ h−1(y, w)|Y = y, Z = z)

= Pr(h(y, U) ≤ h(y, h−1(y, w))|Y = y, Z = z)

= Pr(W ≤ w|Y = y, Z = z)

= FW |Y Z(w|y, z)︸ ︷︷ ︸
G(FW |Y Z)

where v = g(y, z)

u = h−1(y, w)

where the second equality follows from v = g(y, x), the third equality is due to (C∗), the

fourth equality follows from the fact that the event {V = g(y, x)∩X = x} is equivalent to
the event {Y = y ∩X = x} under the triangular structure, the sixth equality follows from
(a − 2). However, there can be many pairs of {h, FU |V X}, that generate FW |Y X(w|y, x),

thus, the distribution of the unobservables is only identified up to a monotone transfor-

mation.

All the values of the distribution of the unobservable variables is completely identified

when W,Y and Z are continuous. Recall that the unobserved variables U and V are

assumed to be continuously varying, and normalized uniform (0, 1). Continuity of U and

V is the reason why loss of identifying power of the QCFA arises when the endogenous

variable is discrete1.
1 I am grateful to Hide Ichimura for pointing this out. However, assuming that the unobserved types,

U and V , take infinitely many values which are represented by numbers in (0,1) is, I suppose, a natural
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When the endogenous variable is discrete, the identification in (C) fails, and the whole2

shape of the conditional distribution of the unobservable variables can not be identified.

The information on the distribution of the observables from data does not pin down the

values of the structural function nor the shape of the distribution of the unobservables.

This is mainly because of the fact that in general

u∗ ≡ QU |V Z(τU |τV
�
, z) 6= QU |Y Z(τU |y

�
, z) (1)

where y = QY |X(τV |x),

when Y shows discrete variation, which results in h(y, u∗) 6= QW |Y Z(τU |y, z).
From these identification results, the sharpness proofs start by constructing a struc-

ture, {ha, F aU |V Z}, using the distribution of the observables, FW |Y Z . In the proofs, the
construction of the structure is based on the identification results in (C) and (D) making

adjustments where necessary reflecting the discreteness of Y and the restrictions imposed

by each model.

C.1 Sharpness of Chesher (2005) Bound

The loss of identifying power of the QCFA arises by the fact that knowing the values of

Y and Z does not pin down the value of V. Since U and V are dependent, the QCFA

cannot control the "endogeneity" problem completely. Chesher (2005)’s idea is that if

data satisfy a certain rank condition, the value of the structural function can be bounded

by restricting the pattern of dependence between U and V in a certain way. That is, by

imposing monotonicity of FU |V (u|v) in v, the possible range of the value of h(y, u∗) is

recovered from data.

The monotonicity restriction together with the strong rank condition does not have

the identifying power when the endogenous variable is binary, because the strong rank

condition in Chesher (2005) cannot be satisfied with binary endogenous variable. The

model in Chapter 5 imposes more restriction in the sense that the pattern of the depen-

dence between the unobserved types, U and V, should be matched with the patterns of

the response in a certain way and the direction of the match can be varying with the level

of the unobserved type, U. The benefit of this model is that the strong rank condition

in Chesher (2005) can be relaxed thereby making it applicable with a binary endogenous

variable, but the additional restriction, LDRM should be justified to be applied, instead.

In this section a candidate structure to show sharpness of Chesher (2005) bounds is

discussed to clarify the role of Restriction LDRM in the model in Chapter 5. A modified

version of the candidate structure to reflect the additional restriction, Restriction LDRM

is used in the next section to show sharpness of LDRM bounds.

presumption. Assuming particular forms of discrete unobserved types as in Heckman and Singer (1984),
which is the alternative to the continuous types, seems to be arbitrary.

2This is also related to the continuity of U and V. If they are discrete, there may be a way to point
identify the structural function.
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Recall that the identification problem of concern in Chesher (2005) is to find out the

value of the structural function, h, evaluated at Y = ym, X = x, and U = QU |V X(τU |τV , z).
The value of U is never known, but it is indicated as u∗ ≡ QU |V X(τU |τV , z). Other covari-
ates X than Z, which is an IV, is ignored without affecting the results. They can be added

as additional conditioning variables in any part of the proofs. The following lemma shows

what happens when the endogenous variable is discrete and the unobservables are con-

tinuous. (HR-SIU-C) (from Chapter 1) have the following variation with a discrete

endogenous variable.

Lemma C.1 Observational Equivalence (Lemma 1 in Chesher (2005)) Under Re-

striction A-EX and C-QI, the conditional distribution of W given Y = ym and Z = z ∈ zm
with zm is the set of values of Z that satisfy Chesher (2005)’s strong rank condition

Data︷ ︸︸ ︷
FW |Y Z(w|ym, z) =

1

pm(z)

Structure︷ ︸︸ ︷∫ Pm(z)

Pm−1(z)
FU |V Z(h−1(ym, w)|s, z)ds

where pm(z) = Pr(Y = ym|Z = z) (HR-SIU-D)

for z ∈ zm ≡ {z′m, z′′m}.

This lemma is the key in the construction of the distribution of the unobservables when

Y is discrete.3 There can be many pairs, {h, FU |V Z} that produce the same observed data
FW |Y Z : the shape of the distribution of the unobservables (FU |V Z) is not determined by

the distribution of the observed variables completely, in contrast with when the endogenous

variable is continuous. Not all such observationally equivalence structures satisfy all the

restrictions imposed by the model.

The candidate structure is constructed based on the identification result (C) and

Lemma C.1. The candidate structural relation (ha) is chosen as a certain quantile of the

distribution of the observables, FW |Y Z , since the value of the structural relation is identified

by the quantile of the distribution of the observables. The candidate for the distribution of

the unobservables (F aU |V Z) is chosen as a step function in v from the above observation. It

is assumed that both U and V are continuously varying, but how FU |V Z(u|v, z) is varying
for a range of V is hidden from the observed data, the constructed distribution is constant

over a certain range of V. Suppose the integrand, FU |V Z(h−1(ym, w)|s, z), is constant for
s ∈ (Pm−1(z), Pm(z)). Then the relation (HR-SIU-D) can be written, for example, as

FW |Y Z(w|ym, z) = FU |V Z(h−1(ym, w)|v, z),

for v ∈ (Pm−1(z), Pm(z)).

3See Chesher (2010) for the proof of sharpness in the structural approach. Note that in his proof the
key relation is

F aWY |Z(w∗, y|z) = F aUY |Z(h−1a (y, w∗), y|z)
since how Y is determined given Z is not specified as it is under triangularity. The proof in Chesher (2010)
is done by constructing the distribution of the unobservables using the observables, and the construction
of the structural function is not required since the information on the structural relation is included in the
threshold crossing function (Pm(y)). The proof is concerned with constructing FU|Y Z , and using FY |Z the
object of interest FUY |Z can be recovered.
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In Part 1 a structure, a structural relation (ha) and the distribution of the unobserv-

ables (F aU |V Z), is suggested as a candidate structure that generated the data. In Part 2,

the three conditions in Lemma 2.1 in Chapter 2 will be discussed.

Part 1 - Construction of an admitted and observationally equivalent(o.e.)

structure Sa ≡ {ha, F aU |V Z}, such that θ(S
a) = a

If there were no restrictions imposed on h or FU |V Z , then any form of h and FU |V Z

can be used as the candidate structure. This is why in many studies sharpness proof is

omitted. Otherwise, at least one candidate structure needs to be constructed such that

the imposed restrictions are satisfied and this admissibility needs to be proven formally.

The candidate structure is constructed such that all the values of h and FU |V Z can be

determined. Some of the restrictions such as Restriction LDRM imposed in the model in

Chapter 5 are regarding local properties of the structure, while some of the restrictions

such as monotonicity of h in u or whether the constructed distribution of the unobservables

is weakly increasing should be shown for all the points in the support of U. To show such

restrictions all the values in the support of the arguments of the structural function and

the distribution of the unobservables need to be determined by the construction. Note

also that there can be other ways of construction. The distribution of observables, FW |Y Z ,

is used in the construction of ha and F aU |V Z(u|v, z), such that by the interaction of ha and
F aU |V Z(u|v, z), FW |Y Z can be generated (the Hurwicz (1950a) relation).

1. Construction of ha
The structural function is constructed as

ha(y
m, u∗) ≡ Q0

W |Y Z(τm|ym, z) for some τm and vm (S1)

where u∗ ≡ QaU |V Z(τU |τV , z)

= QaU |Y Z(τm|vm, z)

for m = 1, 2, ...,M.

For given V = τV and Y = ym, by varying τU ∈ (0, 1), all values of ha(y
m, u∗) are

determined by (S1). All the values of the structural function for given τU can be defined

as follows :

ha(y, u
∗) ≡

M∑
m=1

[Q0
W |Y Z(τm|ym, z′m)]1(y = ym)

where u∗ ≡ QaU |V Z(τU |τV , z)

= QaU |V Z(τm|vm, z)

Remarks :

• When Y is continuous, the value of ha(y, u∗), where u∗ ≡ QU |V Z(τU |τV , z), is iden-
tified by Q0

W |Y Z(τU |y, z), where Y = y = QY |Z(τV |z).
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FU|V

0 U

b m

FU|VZÝu|bV, zÞ

FU|VZÝu|v m , zÞ

uD

uD ¯ QU|VZÝbU |bV, zÞ

= QU|VZÝ b m |v m , zÞ

bU

• The equality fails to hold with discrete Y as is discussed in (1) in Appendix C. There
remains certain ambiguity regarding which value of V corresponds to Y = ym given

Z.

• It should be noted that even though exclusion of Z in the structural function h is

assumed, the value of Z can affect the value of Y via the auxiliary equation for Y

in the triangular system.

• All the values of ha(y, u) in the support of Y and U are defined (globally defined).

— In (S1), for given value, u∗, the value of the structural function ha(y
m, u∗)

can take M values. The value, Q0
W |Y Z(τm|ym, z′m) is assigned as the value of

ha(y
m, u∗), where u∗ ≡ QU |V Z(τU |τV , z), for m = 1, 2, ..,M. (S1) does not

indicate that ha(ym, u∗) is a function of Z.

— In (S1), on the other hand, for given Y = ym, different values of ha(ym, u∗) can

be assigned by varying the value of τU .

2. Construction of F aU |V Z and proof of proper distribution

For a given structural relation, ha, and given the values of Y = ym and an arbitrary

value of U = u ∈ (0, 1) can be written as

h−1
a (ym, w#)

for some w# by (C*). Then we can find w1, w2, ..., wM for the fixed value u such that

wl = ha(y
l, u), for l = 1, 2, ...,M

so that

h−1
a (ym, w#) = h−1

a (y1, w1) = h−1
a (y2, w2) = · · · = h−1

a (yM , wM )
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for continuous W .

Let SUPP (Z) be the support of Z. For an arbitrary value u ∈ (0, 1), u is expressed as

u = h−1
a (ym, w#), for some w#. For a given z ∈ SUPP (Z), for any u, v ∈ (0, 1) × (0, 1),

F aU |V Z(u|v, z) is constructed as follows :

F aU |V Z(u|v, z) = F aU |V Z(h−1
a (ym, w#)︸ ︷︷ ︸

u

|v, z)

≡



F 0
W |Y (w1|y1, z), if 0 < v ≤ P 1

F 0
W |Y (w2|y2, z), if P 1 < v ≤ P 2

· · ·
F 0
W |Y (wm−1|ym−1, z), if Pm−2 < v ≤ Pm−1

F 0
W |Y (w#|ym, z), if Pm−1 < v ≤ Pm

F 0
W |Y (wm+1|ym+1, z), if Pm < v ≤ Pm+1

· · ·
F 0
W |Y (wM |yM , z), if PM−1 < v ≤ 1


(S2)

where w1, w2, ..., wM are found such that

wl = ha(y
l, u),

P l = max
z∈SUPP (Z)

{P l(z)}, l 6= m− 1,m

Pm−1 = min
z∈zm
{Pm(z)} and Pm = max

z∈zm
{Pm(z)}

l = 0, 1, 2, ...,M, with P 0 = 0, PM = 1

Remarks

• For a given value v, if v ∈ (P l−1(z), P l(z)], assign Y = yl, as the conditioning value,

l = 1, 2, ...,M .

• If u = h−1
a (ym, w#) and v ∈ (P l−1(z), P l(z)], where l 6= m then find the value, wl

such that

wl = ha(y
l, u)

and assign F aU |V Z(u|v, z) the value F 0
W |Y (wl|yl, z).

• If u = h−1
a (ym, w#) and v ∈ (Pm−1(z), Pm(z)], then assign the value, F 0

W |Y (w#|ym, z),
to F aU |V Z(u|v, z).

• {P l}Ml=1 is a weakly increasing sequence. The partition of the support of V, (0, 1), by

{P l}Ml=1 is determined once a variable Z is given.Therefore, the partition does not

vary with different values of Z, but the assigned value vary with the values of Z.

• Pm−1 = minz∈zm{Pm(z)} and Pm = maxz∈zm{Pm(z)} is chosen to guarantee the
conditional quantile invariance restriction, which locally holds for τU quantile of U

given V and Z, for the range of V specified by the rank condition.
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• If W is discrete, F aU |V Z(u|v, z) should be a step function in u as well as in v. For
notational simplicity, we assume that W is continuous. Other parts in the proof are

not affected when W is discrete, but in each part of the proof extra complication of

notation needs to be introduced.

Proof of proper distribution

It is required to check whether the constructed distribution is proper : since each

F 0
W |Y Z(w|yl, z), for all l ∈ {1, 2, ...,M} is a proper distribution, F 0

W |Y Z(w|yl, z) lies between
zero and one, thus, the values of constructed distribution, F aU |V Z(u|v, z), lie between zero
and one, but to guarantee the nondecreasing property of F aU |V Z(u|v, z) in u for given v
and z, we need to show that as u increases, w increases for given v and z. This can be

shown by the following Lemma.

Lemma C.2 For given v and z, F aU |V Z(u|v, z) weakly increases in u.

Proof. Consider two distinct values u′ and u′′. We express u′ and u′′ using h−1
a , for given

Y = ym as the following

u′ = h−1
a (ym, w′)

u′′ = h−1
a (ym, w′′)

Fix V = v and Z = z and suppose that V = v and Z = z corresponds to Y = yl,

l = 1, 2, ...,M. Then by (S2) we have for some τ ′, τ ′′, w′l, and w
′′
l

τ ′ = F aU |V Z(u′|v, z)

(S2)
=

{
F 0
W |Y Z(w′l|yl, z), if l 6= m− 1,m

F 0
W |Y Z(w′|yl, z), if l = m− 1, m

}
(1-1)

where u′ = h−1
a (ym, w′) = h−1

a (yl, w′l)

and

τ ′′ = F aU |V Z(u′′|v, z)

(S2)
=

{
F 0
W |Y Z(w′′l |yl, z), if l 6= m− 1,m

F 0
W |Y Z(w′′|yl, z), if l = m− 1, m

}
(1-2)

where u′′ = h−1
a (ym, w′′) = h−1

a (yl, w′′l ).

If we can show that w′′l ≥ w′l, when u
′′ ≥ u′, then the proof is done because then the

assigned value following (S2) for F aU |V Z(u′′|v, z) is larger than F aU |V Z(u′|v, z). Suppose

u′′ = QaU |V Z(τ ′′|v, z)

≥ QaU |V Z(τ ′|v, z) = u′

for τ ′′ ≥ τ ′.
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Then w′′l ≥ w′l, since from (1-1) and (1-2)

w′′l = Q0
W |Y Z(τ ′′|yl, z) ≥ Q0

W |Y Z(τ ′|yl, z) = w′l

whenever u′′ = QaU |V Z(τ ′′|v, z) ≥ QaU |V Z(τ ′|v, z) = u′, that is, whenever τ ′′ ≥ τ ′.

Part 2

Part 2 - A. ha(ym, u∗) = w∗, ∀w∗ ∈ I(τ , ym, zm), where u∗ = QU |V Z(τU |τV , z), and
I(τ , ym, zm) is the Chesher (2005) bound where zm is the set of values of Z that satisfy

Chesher (2005)’s strong rank condition.

Note that under Restriction Common Support, any point in the identified interval,

w∗ ∈ I(τ , ym, zm) can be written as (see <Figure C.1>)4

w∗ = Q0
W |Y Z(τm|ym, z′m) for some τm ≥ τU .

That is,

τm = F 0
W |Y Z(w∗|ym, z′m) for some τm ≥ τU

Note also that for any v ∈ (Pm−1, Pm] by construction from (S2)

F aU |V Z( h−1
a (ym, w∗)︸ ︷︷ ︸

τm-quantile of FaU|V Z

|v, z′m)
(S2)
= F 0

W |Y Z(w∗|ym, z′m) = τm,

thus, by definition of quantiles,

h−1
a (ym, w∗) = QaU |V Z(τm|v, z′m) for some v ∈ (Pm−1, Pm] (ha − a)

For a given value, w∗, in the identified interval, τm(≥ τU ) is determined by w∗. Then

(ha − a) holds for a range of values of v ∈ (Pm−1, Pm]. Now we choose vm ∈ (Pm−1, Pm]

such that

u∗ ≡ QaU |V Z(τU |τV , z′m) (ha − b)

= QaU |V Z(τm|vm, z′m).

Then by inverting h−1
a in (ha − a), for given w∗ and τm(≥ τU ), we have

w∗ = ha(y
m, QaU |V Z(τm|vm, z′m))

= ha(y
m, u∗).

Thus, this construction guarantees that the constructed structural function crosses

4Alternatively, one can find τm such that w∗ = Q0
W |Y Z(τm|ym, z′′m) for some τm ≤ τU
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wD = QW|YZ
0 Ýb|ym,zmv Þ forsome b ³ bU

QW|YZÝbU|ym ,zmv Þ

QW|YZÝbU|ym+1,zmvv Þ

FW|YZÝw|ym ,zmv Þ

Figure C.1: Any point in the interval, w∗ ∈ I(τ ,m, zm), can be expressed using the quantiles of
FW |Y Z(w|ym, z′m) under the common support restriction. If the common support condition does not
hold, then some of the points in the identified set, one cannot express them as a τm-quantile of W given

Y and Z.

the arbitrary value in the identified interval

w∗ = ha(y
m, u∗),

that is, there exists a structural relation (that satisfies all the restrictions imposed by the

model, which will be shown in the next section) which crosses an arbitrary point, w∗, in

the identified interval.

Part 2 - B : Observational equivalence (F aW |Y Z = F 0
W |Y Z) : See Part 2 - B in

Section C.2.

Part 2 - C : Admissibility by the Model in Chesher (2005)

0. Rank condition : this can be shown using data. This restriction is assumed to

be satisfied.

1. Monotonicity of ha(ym, u) in u : See Part 2 - C.1 in Section C.2.

2. Conditional Quantile Invariance : See Part 2 - C.2 in Section C.2.

3. Monotonicity of FU |V Z in v : See Part 2 - C.3 - (1) in Section C.2.

In the next section sharpness stated in Theorem 5.2 is shown. Note that LDRM model

adopts all the restrictions imposed in Chesher (2005), but relaxes the Chesher (2005)’s

strong rank condition and imposes one more restriction Restriction LDRM. The rank

condition can be tested if data are available. If Chesher (2005)’s rank condition holds, the
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weak rank condition in the model LDRM always holds, in this sense, it is as if Chesher

(2005)’s rank condition is imposed. Thus, the model in Chapter 5 is nested by Chesher

(2005) model if Chesher (2005)’s rank condition holds.

The sharpness proof of the bound in Chapter 5 requires to show Restriction LDRM in

addition to the restrictions in Chesher (2005). For that purpose the construction of the

distribution of the unobservables should be modified slightly.

C.2 Theorem 5.2

Notation : The case in which FU |V Z(u∗|v, z) is nonincreasing in v, for u∗ ∈ U is called

PD (Positive Dependence) and the other case, ND (Negative Dependence). The case in

which h(ym+1, u∗) ≥ h(ym, u∗) is called PR (Positive Response) and the other case, NR

(Negative Response).

Let I(τ , ym, zm) denote the identified interval for PDPR. Sharpness of the other case

can be shown similarly.

Following Lemma 2.1. in Chapter 2, what is required to show sharpness is to

construct a structure (Sa) such that (A) for any value, w∗ ∈ I(τ , ym, zm), w∗ = ha(ym, u∗),

and to show that (B) the constructed structure is observationally equivalent to the true

structure (F aW |Y Z = F 0
W |Y Z) and (C) is admitted by LDRM model (Sa ∈ MLDRM ). In

Part 1 we construct a structure Sa ≡ {ha, F aU |V Z(u|v, z)} and in Part 2 we show (A),(B),
and (C) .

Part 1. Construction of a candidate structure :

1-A Construction of a structural function

The same structural relation, (S1), for Chesher (2005) bound is used.

1-B Construction of the distribution of the unobservables.

For a given structural relation, ha, and given the values of Y = ym and an arbitrary

value of U = u ∈ (0, 1) can be written as

h−1
a (ym, w#)

for some w# by (C*). Then we can find w1, w2, ..., wM for the fixed value u such that

wl = ha(y
l, u), for l = 1, 2, ...,M

so that

h−1
a (ym, w#) = h−1

a (y1, w1) = h−1
a (y2, w2) = · · · = h−1

a (yM , wM )

for continuous W .

Let SUPP (Z) be the support of Z. For an arbitrary value u ∈ (0, 1), u is expressed as

u = h−1
a (ym, w#), for some w#. For a given z ∈ SUPP (Z), for any u, v ∈ (0, 1) × (0, 1),

F aU |V Z(u|v, z) is constructed as follows :
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F aU |V Z(u|v, z) = F aU |V Z(h−1
a (ym, w#)︸ ︷︷ ︸

u

|v, z)

≡



F 0
W |Y (w1|y1, z), if 0 < v ≤ P 1

F 0
W |Y (w2|y2, z), if P 1 < v ≤ P 2

· · ·
F 0
W |Y (w#

�
|ym−1, z), (∗) if Pm−2 < v ≤ Pm−1

F 0
W |Y (w#

�
|ym, z), (∗) if Pm−1 < v ≤ Pm

F 0
W |Y (wm+1|ym+1, z), if Pm < v ≤ Pm+1

· · ·
F 0
W |Y (wM |yM , z), if PM−1 < v ≤ 1



(S2′)

where w1, w2, ..., wM are found such that

wl = ha(y
l, u),

P l = max
z∈SUPP (Z)

{P l(z)}, l 6= m− 1,m

Pm−1 = min
z∈zm
{Pm(z)} and Pm = max

z∈zm
{Pm(z)}

l = 0, 1, 2, ...,M, with P 0 = 0, PM = 1

Remarks

• For any given value v, if v ∈ (P l−1, P l], usesY = yl, as the conditioning value.

• If u is expressed as h−1
a (ym, w#) for some w, in the identified interval, and v ∈

(P l−1, P l], where l 6= m− 1 and m, then find a value, wl such that

wl = ha(y
l, u)

then assign the value F aU |V Z(u|v, z) ≡ F 0
W |Y Z(wl|yl, z).

• In (*) in (S2′) if u = h−1
a (ym, w#) and v ∈ (Pm−2, Pm−1], then assign F aU |V Z(u|v, z) ≡

F 0
W |Y Z(w#|ym−1, z). Note the value, w#, (indicated by �) is assigned in contrast

with in the previous section for Chesher (2005) bound.

• In (*) in (S2′) if u = h−1
a (ym, w#) and v ∈ (Pm−1, Pm], then assign F aU |V Z(u|v, z) ≡

F 0
W |Y Z(w#|ym, z).

• Note also that this is a special case of the Chesher (2005) setup - that is, the re-
strictions imposed in Chesher (2005) model can be shown to be satisfied, once the

restrictions in LDRM model are shown to hold.

126



Part 2

Part 2 - A : For any value, w∗ ∈ I(τ , ym, zm), w∗ = ha(y
m, u∗). This follows from

Part 2 - A in Section C.1.

Part 2 - B : Observational equivalence5 (F aW |Y Z = F 0
W |Y Z)

We need to show that F aW |Y Z = F 0
W |Y Z , for S

a = {ha, F aU |V Z} constructed as in Part
1 : for pam = Pm − Pm−1, for all m ∈ {1, 2, ...,M},

F aW |Y Z(w|ym, z) =
1

pam

∫ Pm

Pm−1
F aU |V Z(h−1

a (ym, w)|s, z)ds

=
1

pam

∫ Pm

Pm−1
F 0
W |Y Z(w|ym, z)ds

= F 0
W |Y Z(w|ym, z)

the first equality is due to Lemma 1 in Chesher (2005), the second equality is due to con-

struction in (S2′), that is, F aU |V Z(h−1
a (ym, w)|v, z) = F 0

W |Y Z(w|ym, z), for v ∈ (Pm−1, Pm]

and the last equality is due to integration over the constant and the definition of pam.

Part 2 - C : Admissibility by the model Sa ∈MLDRM

0. Rank condition : this can be shown using data. We suppose this restriction is

satisfied.

1. Monotonicity of ha(ym, u) in u

I consider whether ha(y, u) is nondecreasing in u. Recall that

ha(y
m, u) = ha(y

m, QaU |V Z(τm|vm, z))
by (S1)
≡ Q0

W |Y Z(τm|ym, z)

by choosing vm such that u = QaU |V Z(τU |τV , z) = QaU |V Z(τm|vm, z) = QU |Y Z(τm|ym, z),
for ∀τU , τV , τm ∈ (0, 1) and vm ∈ (Pm−1, Pm].

• First, fix vm, then ha(ym, u) is weakly increasing in u since higher τm implies higher

u = QU |V Z(τm|vm, z), as well as higher QU |Y Z(τm|ym, z).

• Next fix τm, if we observe higher u, then it is because of higher vm if FU |V (u|vm, z)
is nonincreasing in vm and lower vm if FU |V Z(u|vm, z) is nondecreasing in vm ∈
(Pm−1, Pm].However, regardless of the direction of monotonicity, for vm ∈ (Pm−1, Pm],

Y = ym. Thus, the value of vm does not affect the value of ha as long as Y is fixed

at Y = ym. That is, for fixed τm, and Y, ha(y, u) is constant as u increases due to

change in vm.

5That is, the data distribution that is generated by the structure constructed in part 1 is actually
what we observe. Note that this can be shown because we have constructed the structure using
the observed distribution.
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2. Conditional Quantile Invariance : u∗ ≡ QaU |V Z(τU |τV , z) is invariant with
respect to z ∈ zm ≡ {z′m, z′′m}, for τV ∈ [Pm(z′m), Pm(z′′m)]. Note that there should exist

a true structure, S0 = {h0, F
0
U |V Z} ∈ M

LDRM ∩ Ω0, that generates the data we observe.

The distinction of the true structure, S0 from the constructed structure, Sa, should be

noted in this proof. For u∗ = h−1
a (ym, w∗)

τU ≡ F aU |V Z(u∗|τV , z′m)

= F 0
W |Y Z(w∗|ym, z′m)

=
1

pm(z′m)

∫ Pm(z′m)

Pm−1(z′m)
F 0
U |V Z(h−1

0 (ym, w∗)|s, z′m)ds

=
Pr(U ≤ h−1

0 (ym, w∗) ∩ Pm−1(z′m) ≤ V ≤ Pm(z′m))

pm(z′m)

= F 0
U |V (h−1

0 (ym, w∗)|V ∈ (Pm−1(z′m), Pm(z′m)])

= F 0
U |Y (h−1

0 (ym, w∗)|ym)

= F 0
U |Y (u∗|ym)

the first equality is by construction in (S2′), the second equality is due to Lemma 1 in

Chesher (2005), and the third equality follows by integration. The fourth equality is by

definition of the conditional probability, the fifth equality is due to how the value of Y is

determined. Similarly for Z = z′′m,

τU ≡ F aU |V Z(u∗|τV , z′′m)

= F 0
W |Y Z(w∗|ym, z′′m)

=
1

pm(z′′m)

∫ Pm(z′′m)

Pm−1(z′′m)
F 0
U |V Z(h−1

0 (ym, w∗)|s, z′′m)ds

=
Pr(U ≤ h−1

0 (ym, w∗) ∩ Pm−1(z′′m) ≤ V ≤ Pm(z′′m))

pm(z′′m)

= F 0
U |V (h−1

0 (ym, w∗)|V ∈ (Pm−1(z′′m), Pm(z′′m)])

= F 0
U |Y (h−1

0 (ym, w∗)|ym)

= F 0
U |Y (u∗|ym)

yielding u∗ = QaU |V Z(τU |τV , z′m) = QaU |V Z(τU |τV , z′′m) = Q0
U |Y (τU |ym), invariant with

respect to z ∈ zm.

3. LDRM :

(1) First, it is noted that F aU |V Z(u|v, z) is monotonic in v, for u ∈ U, v ∈ V, where

U and V are defined in Restriction LDRM. This is so since F aU |V Z(u|v, z) is defined
as a step function in v, for the range of V only two constants (F 0

W |Y Z(w∗|ym, z), and
F 0
W |Y Z(wm+1|ym+1, z)) should be considered, and with two constants, monotonicity always
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holds.

(2) Now we check whether the constructed Sa = {ha, F aU |V Z} satisfies the specified
match. Suppose for some τ ′′m, τ

′′
m+1, P

m(z′′m) and Pm+1(z′′m),

u∗ ≡ QaU |V Z(τU |τV , z) (3-1)

= QaU |V Z(τ ′′m|Pm(z′′m), z′′m) = QaU |V Z(τ ′′m+1|Pm+1(z′′m), z′′m),

This can be shown by observing the sign of

ha(y
m, u∗)− ha(ym+1, u∗) (3-2)

= ha(y
m, QaU |V Z(τ ′′m|Pm(z′′m), z′′m))− ha(ym+1, QaU |V Z(τ ′′m+1|Pm+1(z′′m), z′′m))

= Q0
W |Y Z(τ ′′m|ym, z′′m)−Q0

W |Y Z(τ ′′m+1|ym+1, z′′m),

where the first equality follows by (3-1), and the second equality is by construction in (S1).

To determine the sign of ha(ym, u∗)−ha(ym+1, u∗), it is required to determine the sign

of Q0
W |Y Z(τ ′′m|ym, z′′m)−Q0

W |Y Z(τ ′′m+1|ym+1, z′′m).We first fix U = u∗, and vary the value of

V . Then use the monotonicity of FU |V Z in v in a certain range specified in the restriction

and see if the match holds.

(3-3)-(3-5) link the distribution of the unobservables with the distribution of the ob-

servables, and they are found by expressing u∗ using h−1
a and the construction in Part

1.

For u∗ = h−1
a (ym, w∗) and v = Pm(z′′m), let τ ′′m be

τ ′′m ≡ F aU |V Z(u∗|Pm(z′′m), z′′m)

= F aU |V Z( h−1
a (ym, w∗)︸ ︷︷ ︸

τ ′′m− quantile of FaU|V Z

|Pm(z′′m), z′′m) (3-3)

= F 0
W |Y Z( w∗︸︷︷︸

τ ′′m− quantile of F 0W |Y Z

|ym, z′′m)

Note that for u∗ = h−1
a (ym+1, wm+1) and v = Pm+1(z′′m), let τ ′′m+1 be:

τ ′′m+1 ≡ F aU |V Z(u∗|Pm+1(z′′m), z′′m)

= F aU |V Z( h−1
a (ym+1, wm+1)︸ ︷︷ ︸

τ ′′m+1− quantile of FaU|V Z

|Pm+1(z′′m), z′′m) (3-4)

= F 0
W |Y Z( wm+1︸ ︷︷ ︸

τ ′′m+1− quantile of F 0W |Y Z

|ym+1, z′′m)
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Also, for Pm(z′m) < v < Pm(z′′m), we have6

τ ≡ F aU |V Z(u∗|v, z′′m)

= F aU |V Z(h−1
a (ym+1, wm+1)︸ ︷︷ ︸

τ− quantile of Fa
U|V Z

|v, z′′m) (3-5)

= F 0
W |Y Z( wm+1︸ ︷︷ ︸

τ− quantile of F 0
W |Y Z

|ym, z′′m)

Step 2 : Order of (3-3)-(3-5) :

Note Pm(z′m) ≤ Pm(z′′m) ≤ Pm+1(z′′m). Then PD implies that

τ ′′m+1 ≤ τ ′′m ≤ τ (*PD)

since we are comparing the values of the three conditional distributions evaluated at the

same value u∗. And ND implies that

τ ′′m+1 ≥ τ ′′m ≥ τ (*ND)

Step 3 : Quantile expressions for w and u∗

Now we express u∗ and w∗ and wm+1 as quantiles of the distributions so that we can

find the order of the two, ha(ym, u∗) and ha(ym+1, u∗) using (*PD) and (*ND). (4-2)-(4-5)

imply (4-6) and (4-7) under continuity of W and U :

u∗ = QaU |V Z(τ ′′m|Pm(z′′m), z′′m) (3-6)

= QaU |V Z(τ ′′m+1|Pm+1(z′′m), z′′m)

= QaU |V Z(τ ′m+1|Pm+1(z′m), z′m)

= QaU |V Z(τ |v, z′′m), for Pm(z′m) < v < Pm(z′′m)

w∗
(a)
= Q0

W |Y Z(τ ′′m|ym, z′′m) = Q0
W |Y Z(τ ′′m|ym, z′′m) (3-7)

wm+1 (c)
= Q0

W |Y Z(τ ′′m+1|ym+1, z′′m)

(a) follows from (3-3), (b) from (3-5) and (c) is by (3-4).

Step 4 : Match?

Finally we use the construction of the structural function using (3-6). Then we can

6This is for Pm−1(z′′) ≤ Pm(z′). Other cases can be shown similarly.

τ ≡ F aU |V Z(r|v, z′′)
= F aU |V Z(h−1a (ym+1, wm+1)|v, z′′) (3-5′)

=

(
F 0W |Y Z(wm+1|ym, z′′) if Pm−1(z′′) ≤ Pm(z′)

F 0W |Y Z(wm+1|ym+1, z′) if Pm(z′′) ≤ Pm+1(z′)

)
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determine the direction of the response : we have from (3-2)7

ha(y
m, u∗)− ha(ym+1, u∗)

= ha(y
m, QaU |V Z(τ ′′m|Pm(z′′m), z′′m))− ha(ym+1, QaU |V Z(τ ′′m+1|Pm+1(z′′m), z′′m))

= Q0
W |Y Z(τ ′′m|ym, z′′m)−Q0

W |Y Z(τ ′′m+1|ym+1, z′′m)

= Q0
W |Y Z(τ ′′m|ym, z′′m)−Q0

W |Y Z(τ |ym, z′′m)(
≤ 0 if PD
≥ 0 if ND

)
the third equality is by (c) in (3-7). Then the inequality follows because τ ′′m ≤ τ (*PD)

and τ ′′m ≥ τ (*ND), and the property of quantiles.

7Recall that this is the case for Pm−1(z′′) ≤ Pm(z′). The other case can be shown similarly.
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