
FMIS 2006

Detecting Cognitive Causes of
Confidentiality Leaks ?

R. Rukšėnas a,1, P. Curzon a, A. Blandford b

a Dept. of Computer Science, Queen Mary, University of London, London, UK
b University College London Interaction Centre, London, UK

Abstract

Most security research focuses on the technical aspects of systems. We consider
security from a user-centred point of view. We focus on cognitive processes that
influence security of information flow from the user to the computer system. For
this, we extend our framework developed for the verification of usability properties.
Finally, we consider small examples to illustrate the ideas and approach, and show
how some confidentiality leaks, caused by a combination of an inappropriate design
and certain aspects of human cognition, can be detected within our framework.

Key words: human error, security, cognitive architecture, formal
verification, SAL.

1 Introduction

There has been much research on security (confidentiality) of information flow
(see Sabelfeld and Myers’ overview [16]). The starting point is the assumption
that computation uses confidential inputs. The goal is to ensure a noninter-
ference policy [8], which essentially means that no difference in outputs can
be observed between two computations that are different only in their confi-
dential inputs. Various approaches to this problem, such as access and static
information-flow control [16], have been proposed, and formalisms and mech-
anisms developed, e.g. security-type systems and type-checkers [16].

All this research focuses on the technical aspects of software systems. It
aims at ensuring that the implementation of a system does not leak confiden-
tial information. However, technology is only one aspect of security. Within
interactive systems, there is another actor besides a computer system – its

? This research is funded by EPSRC grants GR/S67494/01 and GR/S67500/01.
1 Email: rimvydas@dcs.qmul.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Rukšėnas, Curzon and Blandford

world state

User Model

input memory output

interpretation effect

Device Model

output input

Environment Model

Fig. 1. The cycle of interaction

human user. Even perfectly designed and implemented systems cannot pre-
vent users from unwittingly compromising confidential information they have.
Users can breach security for many reasons. Nevertheless, research in human-
computer interaction [1,11] reveals systematic causes of such violations, includ-
ing cognitive overload, lack of security knowledge, and mismatches between
the behaviour of computer systems and the mental model that their users
have. Even in the absence of software errors security can be breached when
the functionally correct behaviour is inconsistent with user expectations [11].

The relationship between users and security mechanisms is addressed by
user-centred security which provides “security models, mechanisms, systems,
and software that have usability as a primary motivation or goal” [17]. Much
of this work takes social dimensions, considering problems like user motivation
and understanding of security mechanisms, work practices, the relationships
between system users, including authorities and communities of users, and
threats to security exploiting social engineering techniques.

Our work lies between the technical aspects of information-flow security
and the social aspects of user-centred security. More specifically, we are in-
terested in information flow; however, the locus of this flow is now not within
a computer system but within the inputs provided to it by its user. We are
not considering the social aspects of human-computer interaction and secu-
rity. Instead, the focus of our attention is cognitive processes that influence
information flow from the human user into the computer system.

We build upon the generic user model (cognitive architecture) we devel-
oped in our work on usability [7]. It was developed from abstract cognitive
principles, such as a user entering an interaction with knowledge of the task
and its subsidiary goals. The cognitive architecture was later extended [14] to
include an abstract specification, interpretation, of the pathways from device
signals and environment objects to the user decision of what they mean (see
Fig. 1). Incorporating such models of user behaviour into models of security
is advocated by user-centred security [17]: e.g. Ka-Ping derives the guidelines
(design rules) for secure interaction design from an informal user model [11].

Our cognitive architecture has proved of use for detecting various types of

2



Rukšėnas, Curzon and Blandford

systematic user errors in the context of usability and task completion [7,14].
Here our aim is to show that the behaviours emerging from this architecture
also expose security problems and so facilitate the improvement of security
aspects in user interaction design. To demonstrate this, we first informally
discuss, from a security viewpoint, several examples of user error dealt with
in our earlier work [7]. Then we consider an example of using the model
checking tool SAL [12] to detect some confidentiality leaks emerging from our
cognitive architecture and conditioned by the user interpretation of system
prompts. More specifically, we consider security problems that may arise
from the combination of user habits and (relative) positioning of input fields
in authentication interfaces. The examples are small and intended to illustrate
an approach and ideas that we believe are more generally applicable.

Summarising, the main contribution of this paper is the following:

• An investigation into the formal modelling of cognitive aspects of confiden-
tiality leaks in interactive systems.

• An extension of our framework, developed for usability verification, to deal
with the security problems in user interaction.

• An illustrative example of confidentiality leaks, caused by cognitive inter-
pretation and detectable by model checking using our cognitive architecture.

Related work

Whilst conducted independently and in parallel, Beckert and Beuster’s
work [2] takes a similar approach to ours. They also develop a formal user
model, and combine it with specifications of the application and the user’s
assumptions about that application to verify security properties of interactive
systems. Their user modelling is based on the formalisation of an established
methodology, GOMS [10], which is the core of their work. The modelling of
user’s assumptions partially coincides with our user interpretation. However,
their ”assumptions” model user choice between multiple plausible options,
whereas our ”interpretation” deals, in addition, with the user perception of
interface objects depending on their shape, position, etc. Beckert and Beuster
informally define three HCI security requirements, however, only one is for-
malised, whereas correctness properties in our framework also address the
remaining two. It is also unclear whether they provide tool support for auto-
matic verification. On the other hand, their methodology supports hierarchical
models: an advantage when dealing with larger systems.

In the related area of safety-critical systems, Rushby et al [15] focus on
mode errors and the ability of pilots to track mode changes. They formalise
plausible mental models of systems and analyse them using the Murφ verifica-
tion tool. The mental models though are essentially abstracted system models;
they do not rely upon structure provided by cognitive principles. Neither do
they model user interpretation. Cerone et al’s [6] CSP model of an air traf-
fic control system includes controller behaviour. A model checker was used

3



Rukšėnas, Curzon and Blandford

Table 1
A fragment of the SAL language

x:T x has type T
λ(x):e a function of x with the value e
x′ = e an update: the new value of x is that of the expression e
{x:T|p(x)} a subset of T such that the predicate p(x) holds
a[i] the i-th element of the array a
r.x the field x of the record r
r WITH .x := e the record r with the field x replaced by the value of e
g → upd if g is true then update according to upd
c [] d non-deterministic choice between c and d
[](i:T): ci non-deterministic choice between the ci with i in range T

to look for new behavioural patterns, missed by the analysis of experimental
data. The classification stage in their model is similar to user interpretation.

Ka-Ping [11] gives a list of design rules, justified by an informal user model
and tailored to increase security of interactive systems. As the rules are in-
formal (many are probably too abstract to be formalised), there is no tool
support for verifying whether designs obey them.

2 The Cognitive Architecture in SAL

Our cognitive architecture is a higher-order logic formalisation of abstract
principles of cognition and specifies cognitively plausible behaviour [4]. The
architecture specifies possible user behaviour (traces of actions) that can be
justified in terms of specific results from the cognitive sciences. Real users
can act outside this behaviour, about which the architecture says nothing. Its
predictive power is bounded by the situations where people act according to
the principles specified. The architecture allows one to investigate what hap-
pens if a person acts in such plausible ways. The behaviour defined is neither
“correct” or “incorrect”. It could be either depending on the environment and
task in question. We do not attempt to model the underlying neural architec-
ture nor the higher level cognitive architecture such as information processing.
Instead our model is an abstract specification, intended for ease of reasoning.

We rely upon cognitive principles that give a knowledge level description
in the terms of Newell [13]. Their focus is on the goals and knowledge of a
user. Our formalisation of the principles is based on the SAL model checking
environment [12]. It provides a higher-order specification language and tools
for analysing state machines specified as parametrised modules and composed
either synchronously or asynchronously. The SAL notation we use is given
in Table 1. We also use the usual notation for the conjunction, disjunction
and set membership operators. The SAL specification of a transition relation
that defines our user model is given in Fig. 2. Below we discuss the cognitive
principles and the way they are reflected in the specification (module User).

4



Rukšėnas, Curzon and Blandford

TRANSITION
[](i:GoalRange): GoalCommit:

gcommit[i] = ready ∧
NOT(gcomm ∨ rcomm) ∧
finished = notf ∧
goals[i].grd(in, mem, env)

→ gcommit′[i] = committed;
gcomm′ = TRUE

[]
[](i:ReactRange): ReactCommit:

rcommit[i] = ready ∧
NOT(gcomm ∨ rcomm) ∧
finished = notf ∧
react[i].grd(in, mem, env)

→ rcommit′[i] = committed;
rcomm′ = TRUE

[]
[](i:GoalRange): GoalTrans:

gcommit[i] = committed →
gcommit′[i] = done;
gcomm′ = FALSE
GoalTransition(i)

[]
[](i:ReactRange): ReactTrans:

rcommit[i] = committed →
rcommit′[i] = ready;
rcomm′ = FALSE
ReactTransition(i)

[]
Exit:

PerceivedGoal(in, mem) ∧
NOT(gcomm ∨ rcomm) ∧
finished = notf

→ finished′ = ok

[]
Abort:

NOT(EnabledGoals(in, mem, env)) ∧
NOT(EnabledReact(in, mem, env)) ∧
NOT(PerceivedGoal(in, mem)) ∧
NOT(gcomm ∨ rcomm) ∧
finished = notf

→
finished′ = IF Wait(in, mem)

THEN notf
ELSE abort ENDIF

[]
Idle:

finished = notf →

Fig. 2. User model in SAL

Non-determinism. In any situation, any one of several cognitively plau-
sible behaviours might be taken. It cannot be assumed that any specific plausi-
ble behaviour will be the one that a person will follow. The SAL specification is
a transition system. Non-determinism is represented by the non-deterministic
choice, [], between the named guarded commands (i.e. transitions). For ex-
ample, GoalCommit in Fig. 2 is the name of a family of transitions indexed by
i. Each guarded command in the specification describes an action that a user

5



Rukšėnas, Curzon and Blandford

could plausibly make.

Mental versus physical actions. A user commits to taking an action in
a way that cannot be revoked after a certain point. Once a signal has been sent
from the brain to the motor system to take an action, it cannot be stopped
even if the person becomes aware that it is wrong before the action is taken.
Therefore, we model both physical and mental actions. Each physical action
modelled is associated with an internal mental action that commits to taking
it. In the specification, this is reflected by the pairings of guarded commands:
GoalCommit – GoalTrans, and ReactCommit – ReactTrans. The first of the
pair models committing to an action, the second actually doing it (see below).

User goals. A user enters an interaction with knowledge of the task and,
in particular, task dependent sub-goals that must be discharged. These sub-
goals might concern information that must be communicated to the device or
items (such as bank cards) that must be inserted into the device. Given the
opportunity, people may attempt to discharge such goals, even when the device
is prompting for a different action. We model such knowledge as user goals
which represent a pre-determined partial plan that has arisen from knowledge
of the task in hand, independent of the environment in which that task is
performed. No fixed order is assumed over how user goals will be discharged.

To see how this is modelled in SAL consider the guarded command Goal-
Trans for doing a user action that has been previously committed to:

gcommit[i] = committed →
gcommit′[i] = done;
gcomm′ = FALSE;
GoalTransition(i)

The left-hand side of → is the guard of this command. It says that the rule
will only activate if the associated action has already been committed to, as
indicated by the i-th element of the local variable array gcommit holding value
committed. If the rule is then non-deterministically chosen to fire, this value
is changed to done and the boolean variable gcomm is set to false to indicate
there are now no commitments to physical actions outstanding and the user
model can select another goal. GoalTransition(i) represents the state updates
associated with this particular action i.

User goals are modelled as an array, goals, which is a parameter of the
User module. The state space of the user model consists of three parts: input
variable in, output variable out, and local variable (memory) mem; the envi-
ronment is modelled by a global variable, env. All of these are specified using
type variables and are instantiated for each concrete interactive system. Each
goal is specified by a record with the fields grd, tout, tmem and tenv. The grd

field is discussed below. The remaining fields are relations from old to new
states that describe how two components of the user model state (outputs
out and memory mem) and environment env are updated by discharging this
goal. These relations, provided when the generic user model is instantiated,
are used to specify GoalTransition(i) as follows:

6



Rukšėnas, Curzon and Blandford

out′ ∈ {x:Out | goals[i].tout(in,out,mem)(x)};
mem′ ∈ {x:Memory | goals[i].tmem(in,mem,out′)(x)};
env′ ∈ {x:Env | goals[i].tenv(in,mem,env)(x) ∧ possessions}

Since we are modelling the cognitive aspects of user actions, all three up-
dates depend on the initial values of inputs (perceptions) and memory. In
addition, each update depends on the old value of the component updated.
The memory update also depends on the new value (out′) of the outputs, since
we usually assume the user remembers the actions just taken. The update of
env must also satisfy a generic relation, possessions. It specifies universal
physical constraints on possessions and their value, linking the events of tak-
ing and giving up a possession item with the corresponding increase or decrease
in the number (counter) of items possessed. For example, it specifies that if
an item is not given up then the user still has it. The counters of possession
items are modelled as environment components. We omit further details since
possession properties are not used in any way in this paper.

If the guarded command for committing to a user goal, GoalCommit, fires,
it switches the commit flag for goal i to committed thus enabling the GoalTrans
command. The predicate grd, extracted from the goals parameter, specifies
when there are opportunities to discharge this user goal. Because we assign
done to the corresponding element of the array gcommit in the GoalTrans
command, once fired the command below will not execute again. If the user
model discharges a goal, without an additional reason such as a prompt, it
will not do so again.

Reactive behaviour. Users may react to an external stimulus, doing the
action suggested by the stimulus. For example, if a flashing light comes on a
user might, if the light is noticed, react by inserting coins in an adjacent slot.
Reactive actions are modelled by the pairing ReactCommit – ReactTrans in the
same way as user goals but on different variables, e.g. parameter react of the
User module rather than goals. ReactTransition(i) is specified in the same
way as GoalTransition(i). The array element rcommit[i] is reassigned ready

rather than done, once action i has been executed, since reactive actions, if
prompted, may be repeated.

Goal based task completion. Users intermittently, but persistently,
terminate interactions as soon as their main goal has been achieved [5], even if
subsidiary tasks generated in achieving the main goal have not been completed.
A cash-point example is a person walking away with the cash but leaving the
card. In the SAL specification, a condition that the user perceives as the main
goal of the interaction is represented by a parameter PerceivedGoal of the User
module. Goal based completion is then modelled as the guarded command
Exit, which simply states that, once the predicate PerceivedGoal becomes
true and there are no commitments to user goals and/or reactive actions, the
user may complete the interaction. This action may still not be taken because
the choice between enabled guarded commands is non-deterministic. Task
completion is modelled by setting the local variable finished to ok, whereas

7



Rukšėnas, Curzon and Blandford

the value notf means that the task is unfinished.

No-option based task termination. If there is no apparent action
that a person can take that will help complete the task then the person may
terminate the interaction. For example, if, on a ticket machine, the user
wishes to buy a weekly season ticket, but the options presented include nothing
about season tickets, then the person might give up, assuming the goal is not
achievable.

In the guarded command Abort, the no-option condition is expressed as
the negation of predicates EnabledGoals and EnabledReact. Note that, in such
a case, a possible action that a person could take is to wait. However, they will
only do so given some cognitively plausible reason such as a displayed “please
wait” message. The waiting conditions are represented in the specification by
predicate parameter Wait. If Wait is false, finished is set to abort to model
a user giving up and terminating the task.

3 Verification of Security Aspects in User Interaction

In this section, we discuss examples of user error, focussing on the security
aspects of interaction. We first introduce the properties to verify.

3.1 Correctness properties: usability and security

Previously, our approach dealt with two kinds of usability properties. First,
we want to be sure that, in any possible system behaviour, the user’s main goal
of interaction (as they perceive it) is eventually achieved. Given our model’s
state space, this is written as the SAL assertion

F(PerceivedGoal(in, mem))(1)

where F means ‘eventually’. Second, in achieving a goal, subsidiary tasks are
often generated that the user must complete to complete the task associated
with their main goal. If the completion of the subsidiary tasks is represented as
a predicate, SecondaryGoal, the required condition is (where G means ‘always’):

G(PerceivedGoal(in, mem) ⇒ F(SecondaryGoal(in, mem, env)))(2)

This states that the secondary goal is always eventually achieved once the
perceived goal has been. Often secondary goals can be expressed as interac-
tion invariants [7] which state that some property of the system state, that
was perturbed to achieve the main goal, is restored. Previously, we viewed
property (2) in terms of pure usability, applying it to, e.g. user possessions.

The verification of (2) can, however, also be used to detect security prob-
lems. Moreover, we will introduce a third kind of correctness property, relevant
to confidentiality leaks in user input. Intuitively, one would like to prevent
such leaks in all system states, so we are aiming at a safety property. In terms
of information-flow security [16], let us have, for simplicity, two confidentiality

8



Rukšėnas, Curzon and Blandford

levels of user inputs, “high” and “low”. A safety property that addresses some
security aspects is that in no states do high inputs appear on a low channel.
A boolean, SecurityBreach, represents system states that breach this. The
property, stating that it is always true there is no security breach, is then:

G(NOT(SecurityBreach))(3)

We discuss how SecurityBreach is set to true, indicating breaches, in Section 4.

Note that neither of the first two correctness properties capture confiden-
tiality leaks modelled as SecurityBreach. Property (1) is about usability;
the essential condition is a user achieving the main goal. The fact that this
goal might be achieved by first making a mistake then undoing the erro-
neous action is irrelevant. However, with respect to security, undo is not good
enough [11]: an erroneous action could already have leaked confidential in-
formation. Though checking property (2) can reveal some security problems
related to, e.g. post-completion errors (see below), it is still a liveness property.
As such, it does not require a system to satisfy the condition SecondaryGoal

in all states, only at some point after the main goal has been achieved.

3.2 User error and security

Erroneous actions are the proximate cause of failure, since it was a particular
action that caused the problem: e.g. a user entering data in the wrong field.
To eliminate the problem, however, one must consider the ultimate causes of
an error. In our framework, we consider situations where the ultimate causes
are aspects (limitations) of human cognition that have not been addressed
in the interface. An example is that a person enters data in a particular
field because the interface design suggests it as appropriate for that data.
In Hollnagel’s terms [9] which distinguish between human error phenotypes
(classes of erroneous actions) and genotypes (the underlying, e.g. psychological,
cause), our cognitive architecture deals with genotypes. Since there is no
evidence that security errors are conditioned by different cognitive causes to
usability errors, our cognitive architecture can exhibit behaviours leading to
security problems, even though it was developed without security concerns in
mind. Some of these errors have the same cognitive causes as the usability
errors we dealt with in our earlier work [7]. Next we discuss several types of
user error, related to security but still detectable within the usability based
approach represented by properties (1) and (2).

A persistent user error that emerges from the cognitive architecture is
the post-completion error [5], where a user terminates an interaction with
completion of subsidiary tasks outstanding. People have been found to make
such errors even in lab conditions [5]. An example of this error, which is also a
security breach, is when, with old cash machines, users persistently took cash
but left their bank card. Within our cognitive architecture, such behaviour
emerges because of an action (Exit) that allows a user to stop once the goal has
been achieved. Using our verification framework, this is detected by checking

9



Rukšėnas, Curzon and Blandford

Enter

User Name: Password:

Enter

User Name:

Password:

Fig. 3. Two layouts of an authentication interface

property (2). For this, SecondaryGoal would state that the total value of user
possessions (bank cards included) in a state is the same as it was before the
interaction. The formal verification of a similar example is described in [7].

Blandford and Rugg [3] give an example of an extant security breach caused
by users forgetting to log out when moving away from an industrial printer,
leaving it vulnerable to sabotage – e.g. by unauthorised users changing the
printed message, etc. Being a case of the post-completion error, it can be de-
tected by verifying property (2) with the appropriately chosen SecondaryGoal.

Previously [14] we also considered user error due to the shape-induced
confusion over the meaning of interface prompts. The example was that of a
user attempting to top-up a phone card using an ATM. We showed how model
checking, based on our cognitive architecture, can identify user confusion as
to which of two numbers, phone number or top-up card number, is requested.
The property checked was of type (1), i.e. whether the user achieves the main
goal. User confusion in a similar situation can also result in confidentiality
leaks. For example, asked to enter a card number, a person might be confused
whether the number requested is that of a bank card or a phone card. If a bank
card number is entered when the interface prompts for a top-up card number,
the input might be displayed which is a security breach. This problem would
also be detected by analysing why the user could not achieve the main goal.

4 A Case Study: Authentication Interface

In this section, we extend our previous work and investigate how other security
problems, not considered in that work, can be detected using our cognitive
architecture formalised in SAL. In particular, we show how user habits in
combination with some designs, can lead to the incorrect interpretation of
interface prompts, resulting in the leakage of confidential information. To
determine whether such leakages are possible, we introduce into our framework
a new entity, generic module tester. This module is instantiated by providing
a collection of channels and a high security value. The instantiated module
then checks whether this value can appear on one of the low security channels.

10



Rukšėnas, Curzon and Blandford

LastAttemptMsg

INCOMPLETE

INIT LOGIN

INCORRECT
Acknowledged

STOPWARNING

displayed
DisplayedEnter

IncorrectMsg

IncompleteMsg

LoginMsg

EnterPressed
(IncompleteData)

(IncorrectData)
EnterPressed

Acknowledged

EnterPressed
(CorrectInput)

EnterPressed
(CorrectInput)

(¬CorrectInput)
EnterPressed

displayed AbortMsg
DisplayedEnter

Fig. 4. Authentication procedure

4.1 An Authentication Interface

Our example considers a common problem concerning an authentication step
present in various everyday interactive systems, e.g. internet banking. Before
any transaction, users must establish their identities by providing a user name
and a login password. The system checks whether the provided password
is the same as the one associated with the provided user name and stored
in the system’s database. On the surface, one could expect the design of
an authentication interface to be simple, e.g. like the one in Fig. 3(left). In
reality, the situation is more complicated. The sizes of interface windows in
internet banking systems are not fixed; users might change them at any time.
This means that the layout of input fields is determined by an algorithm.
Depending on this algorithm, the layout shown in Fig. 3(right) is possible
when the window size is reduced. We will argue that the two interfaces are
not equally secure and will show how confidentiality leaks in the second one
can be detected using our verification framework.

We assume that a high security channel is associated with login passwords
and a low security channel with user names. This could mean, e.g., that the
text entered into the name box is echoed on the screen whereas an entry into
the password box is not. The data is sent whenever the users press the Enter

button. The operation of the authentication mechanism is illustrated by a
finite state machine in Fig. 4. We distinguish two cases of incorrect input
represented by the transitions IncompleteData and IncorrectData. The au-
thentication procedure moves into the INCOMPLETE state when Enter is pressed
and either a user name or a password is missing from the input boxes. An
appropriate error message is displayed by the interface, and no other options
for the user are given until the message is acknowledged. Once the user ac-
knowledges it, the authentication procedure returns to the INIT state. The
transition IncorrectData represents the case when both a user name and a
password are provided but some of this data is incorrect. Upon acknowledg-

11



Rukšėnas, Curzon and Blandford

ment, the procedure moves into the WARNING state in this case. The idea is
that, for security reasons, a single authentication attempt with incorrect data
is allowed before the authentication procedure aborts the interaction (STOP
state). Finally, authentication succeeds when the user provides correct data,
represented by the LOGIN state reachable from either the INIT or WARNING state.

The SAL specification of the authentication procedure is a direct trans-
lation of the diagram in Fig. 4. The two input boxes are modelled as the
type Inbox = {A, B}. Each box has a number of attributes: position, security
level, “visibility”, label, text entered and text displayed, modelled as arrays
with the range Inbox. Thus, position[j] is a record with the coordinate
fields x and y, denoting the top-left corner of box j. Its width and height
are represented by the constants dx and dy. The security level level[j] is
either Low or High; displayed[j] indicates whether j is displayed (visible)
or not. The label label[j] is a value of type {NameLabel, PasswordLabel}.
Finally, value[j] and display[j] represent the text entered and displayed,
respectively. The array value and booleans EnterPressed and Acknowledged

are the inputs of the authentication procedure, whereas position, displayed,
label, display, and booleans DisplayedEnter, IncompleteMsg, IncorrectMsg,
LastAttemptMsg, LoginMsg, and AbortMsg are its outputs.

4.2 A User Model

Now we instantiate the generic module User for the authentication task. We
start by specifying the state space of the concrete user model. For each input
box j, we assume that a person either sees it or not, and perceives its label
and the text displayed, represented by seen[j], label[j] and value[j], re-
spectively. The perception of whether the Enter button is active is denoted
by EnterActive. The person also perceives whether an error, warning or au-
thentication message is given, denoted by ErrorMsg, WarningMsg and LoginMsg.
Variables InputName and InputPass denote the perception of which of the two
boxes prompts for the user name and which for the password. Finally, name and
password denote the values the person perceives as a user name and password.
All these components form a record type, In, which is used to instantiate the
corresponding type variable in User.

Next, we specify variables related to the actions users might take. The text
typed into box j is represented by value[j]. The booleans EnterPressed and
Acknowledged denote whether the Enter button and a button to acknowledge
messages are pressed. These components form a record type, Out. We assume
users remember their user name, name, and login password, password. They
also remember whether they already typed information into box j, denoted
entered[j] (reset to false when an error message is acknowledged), and keep
track of whether there was a failure to authenticate, denoted failed. These
form a record type, Mem, which also records the actions taken in the previous
step in a component of the type Out. The reality surrounding our system is

12



Rukšėnas, Curzon and Blandford

given by a record type, Env. It includes the user name, name, and the correct
password, password.

We assume that user knowledge of authentication includes the need to
communicate (1) user name and (2) login password. This knowledge is speci-
fied as user goals (elements of array goals) instantiated by giving the action
guard and the update to the output component. For the goal of communicat-
ing the user name, the guard is that an input box, regarded as the name box,
is seen. The output action is to type in the user name as the person perceives
it:

grd := λ(in,mem,env): in.seen[in.InputName]
tout := λ(in,out0,mem):λ(out): out = Default(out0.value)

WITH .value[in.InputName] := in.name

where Default(x) is a record with the field value set to x and all other fields
set to false thus asserting that nothing else is done. The memory update
(omitted) simply records the action taken. As an example, we will specify the
most complicated memory update below. The action of communicating the
login password is specified similarly. Since the environment updates change
nothing (in all the actions), they are omitted here.

We assume that the user can react to the active Enter button by pressing
it. For this to happen, the user must not have the recollection of a failure to
authenticate. Alternatively, if there was such a failure, we expect the user to
be more careful and press Enter only when both input boxes were filled in:

grd := λ(in,mem,env): in.EnterActive ∧ (NOT(mem.failed) ∨
(mem.entered[in.InputName] ∧ mem.entered[in.InputPass]))

tout := λ(in,out0,mem):λ(out):
out = Default(out0.value) WITH .EnterPressed := TRUE

We also assume that the user can acknowledge error messages. This only
happens when the message is interpreted as an error signal. The acknowledg-
ment must also not have occurred, as indicated by the memory, in the previous
step. By acknowledging the error message, the user records in the memory
the fact of a failed authentication attempt, and “forgets” previously typing
data into the input boxes (since the data was rejected), formally specified as:

grd := λ(in,mem,env): in.ErrorMsg ∧ NOT(mem.out.Acknowledged)
tout := λ(in,out0,mem):λ(out):

out = Default(out0.value) WITH .Acknowledged := TRUE
tmem := λ(in,mem0,out):λ(mem): mem = mem0 WITH .failed := TRUE

WITH .entered := [[j:Inbox] FALSE] WITH .out := out

As discussed earlier, the need to communicate the name and password
is modelled as user goals. However, it is plausible that the user makes an
error when trying to achieve those goals, e.g. enters a wrong password or
presses Enter when some box is empty. Errors can also occur due to user
habits; relying on previous experience, the user might expect the input box
for the name to precede that for the password. In such cases, once the error

13



Rukšėnas, Curzon and Blandford

message has been acknowledged, the system prompts for a new authentication
attempt. We assume that the user will respond to this prompt. The response
is modelled as two reactive actions. In the case of the password, the action
guard is that an input box is seen (as for the corresponding user goal) and the
password was not entered, as indicated by the memory, in the previous step.
The output action is the same as for the corresponding user goal. Finally, the
memory update records the fact of entering the password:

grd := λ(in,mem,env): in.seen[in.InputPass] ∧
NOT(mem.entered[in.InputPass]) ∧ mem.failed

tout := λ(in,out0,mem):λ(out): out = Default(out0.value)
WITH .value[in.InputPass] := in.password

tmem := λ(in,mem0,out):λ(mem): mem = mem0
WITH .entered[in.InputPass] := TRUE WITH .out := out

The reactive action for entering the name is analogous to the one above.

Goal and wait predicates are the last parameters used to instantiate the
User module. The display of LoginMsg confirms authentication which is the
main goal. We also assume that there are no signals that a user could perceive
as a suggestion to wait. These predicates are specified as follows:

PerceivedGoal = λ(in,mem): in.LoginMsg
Wait = λ(in,mem): FALSE

Finally, the user model for the authentication task, UserAuthenticate, is
defined by instantiating the generic user model with the parameters (goals,
reactive actions, perceived goal and wait condition) just defined.

4.3 User Interpretation

So far we have specified an authentication interface and have developed a
formal model of its user. As in reality, the state spaces of the two specifications
are distinct. The changing interface state is first attended to then interpreted
by the user. Next we specify this interpretation, thus connecting distinct state
spaces. The specification is given as a new SAL module, interpretation. The
module, being a connector, has input variables that are the output variables of
the interface, and an output variable that is the input (perception) component
(record in) of the UserAuthenticate module.

In the authentication task, the crucial aspect of user interpretation is the
perception of the meaning (function) of the two input boxes. Their function
is indicated by labels, however, we assume that people may not pay sufficient
attention to the labels. Instead, the user might assume the name box comes
first. The perception of precedence depends on the layout (coordinates) of
boxes in the interface window. Formally, we define the condition when the
input box i precedes j as follows (pos is an array of coordinates):

precedes(i,j,pos) = (pos[i].x + dx < pos[j].x ∧ pos[i].y ≤ pos[j].y)
∨ (pos[i].x ≤ pos[j].x ∧ pos[i].y + dy < pos[j].y)

14



Rukšėnas, Curzon and Blandford

Intuitively, this means that j is placed to the right and to the bottom of i.
Thus, the name box in the left interface in Fig. 3 precedes the password box,
whereas neither of the boxes in the interface on the right precedes the other.

Now we formally define the user interpretation of the function of input
boxes, depending on their layout and labelling. We distinguish three cases.
First, the user might judge the function of input boxes from their labels:

ByLabel(l,x) = ∃(i,j): l[i] = NameLabel ∧ l[j] = PasswordLabel ∧
x.InputName = i ∧ x.InputPass = j

Second, if i precedes j then i is perceived as a name and j as password
box:

ByPrecedence(pos,x) = ∃(i,j): precedes(i,j,pos) ∧
x.InputName = i ∧ x.InputPass = j

Finally, the user might get confused. This is possible when neither of the
input boxes precedes the other or their labels are the same; the judgment
about the function of the boxes is random in this case:

Random(pos,l,x) = (l[A] = l[B] ∨ ∀(i,j):NOT(precedes(i,j,pos))) ∧
x.InputName 6= x.InputPass

User interpretation is modelled as a SAL definition which allows one to
describe system invariants. Intuitively, this means that the left-hand side of
an equation is updated whenever the value of the right-hand side changes. We
assume that, once the user makes a mental commitment to a goal or reactive
action, the interpretation of the interface outputs does not change until the
associated physical action is performed. If there is no commitment, the user
directly perceives the Enter button, the displayed input boxes with their labels
and displayed text, and the interface messages. Hence the first seven conjuncts
simply rename the interface variables to the corresponding fields of the record
in in the definition below:

DEFINITION in ∈ { x:In | IF NOT(gcomm ∨ rcomm) THEN
x.EnterActive = DisplayedEnter ∧
x.seen = displayed ∧ x.label = label ∧ x.value = display ∧
x.ErrorMsg = (IncompleteMsg ∨ IncorrectMsg) ∧
x.WarningMsg = LastAttemptMsg ∧ x.LoginMsg = LoginMsg ∧
x.name = IF x.WarningMsg THEN env.name ELSIF mem.name ENDIF
x.password = IF x.WarningMsg THEN env.password

ELSIF mem.password ENDIF
IF x.WarningMsg THEN ByLabel(label,x)
ELSIF MajorChanges(p,position,l,label) THEN ByLabel(label,x)

∨ ByPrecedence(position,x) ∨ Random(position,label,x)
ELSE x.InputName = s.InputName ∧ x.InputPass = s.InputPass ENDIF

ELSE x = s ENDIF }
TRANSITION s′ = in; p′ = position; l′ = label

For the user name and password, the user relies on the memory unless a
warning message is displayed. If so, we expect the user to be careful enough

15



Rukšėnas, Curzon and Blandford

to provide the correct values. For simplicity, here we do not consider how this
is actually achieved (perhaps they are taken from a notebook), assuming that
the values from the environment specification are used.

As explained earlier, the perception of which of the two boxes is for the
names and which for the passwords is more complicated; the results of this
perception are assigned to InputName and InputLabel, respectively. We as-
sume that, upon receiving a warning message, the user becomes more careful
and interprets the input boxes by their labels. Otherwise, if there are major
changes in the layout of the boxes, the interpretation is an arbitrary choice
between the three cases defined above. If there are no major changes, the
interpretation of the boxes is the same as in the previous step. The auxil-
iary variables s, p and l are not intended to represent aspects of cognition.
Intuitively, they, and the related TRANSITION section, are used to store the
previous interpretation which allows specifying that user interpretation does
not change. Finally, “major” changes mean changes in the precedence of input
boxes or any label change:

MajorChanges(pos0,pos,l0,l) =
∃(i,j): precedes(i,j,pos0) 6= precedes(i,j,pos) ∨ l0[i] 6= l[i]

Admittedly, this attempt to formally specify how the user perceives input
boxes already hints at potential problems, even before the actual verification.
However, we aim at developing a generic model of interpretation which would
turn the specification process into a simple instantiation of the generic model.

4.4 Verification

We have specified an authentication interface and its user model. Now the
correctness properties of this interactive system can be analysed. We start
from the interface with no constraints on the layout of the input boxes (other
than that they do not intersect). The usability property (1), the user eventu-
ally achieving the perceived goal, is satisfied by the interactive system. Next
we proceed with the analysis of security aspects of the system.

Even though security properties for each concrete system can be speci-
fied separately, we prefer to take a generic approach as with the user model
itself. We thus introduce a generic module, tester. The idea is that the
module, composed with an interactive system, monitors the communication
between the device and the user. When security is breached, it sets the variable
SecurityBreach to true. What security aspects are monitored is determined
by the instantiation of the module. It has three parameters. The type variable
Chan represents the communication channels. The predicate filter specifies
which of the channels are monitored. Finally, test denotes security sensitive
data. When this data appears on a monitored channel, SecurityBreach is set
to true. The transitions of the module are the following family of commands:

[](j:Chan): filter(j) ∧ value[j] = test → SecurityBreach′ = TRUE

16



Rukšėnas, Curzon and Blandford

For our authentication task, Chan is instantiated to the two input boxes.
The security sensitive data is the actual user password env.password. Finally,
the monitored channels are low security ones: filter(j) = (level[j] = Low).
With this instantiation of tester, we check property (3); the verification fails.
The counterexample produced by SAL indicates that the user enters the pass-
word into the name box. The analysis of the specifications reveals that this
counterexample occurs because neither of the boxes precedes the other which
confuses the user.

Why was this confusion not detected when verifying property (1)? The
answer is that it does not prevent the user from achieving the main goal,
authenticating their identity. Our user model is “smart” enough to recover
from the mistake made due to this confusion and, after receiving a warning
message, to provide the required information according to the labels of the
input boxes. Such a recovery, however, is not good enough from the security
point of view, since the mistake could have already breached security and
undoing or redoing a wrong action cannot undo the consequences of this breach
in most cases, which is detected by the failure to establish property (3).

How can we avoid this security breach? Since the confusion leading to it
is caused by the layout of the input boxes, the solution is to display them as
in Fig. 3(left). However, one must be careful even with such a layout. If the
password box preceded the name box, people might enter their password into
the name box, due to their habits rather than confusion. Again, this security
breach is detected by verifying (3). This property holds when the layout of the
input boxes is such that precedes(InputName,InputPass,position) is true.

5 Conclusion

In previous work, we assumed that usability verification is enough to estab-
lish user-centred correctness of interactive systems. This is not true within
security- or mission-critical contexts where it is possible to achieve the main
goal while exposing ourselves to various security or safety risks. Here we ad-
dressed one aspect of interactive systems security – information-flow security.
We discussed how security breaches can be detected using our earlier frame-
work. The main focus, however, was an extension of that framework to address
security aspects more directly and link them to the usability properties. For
this, we introduced into our framework a generic tester module which moni-
tors information flow between the user and the device and registers security
breaches in it. Using the tester, we added to our verification approach a cor-
rectness property which captures some security aspects of interactive systems.

To illustrate these extensions, we considered a simple authentication inter-
face. We showed how the layout of input fields combined with user habits can
influence the user (mis)interpretation of interface prompts, possibly leading
to confidentiality leaks (see our SAL specs at http://www.dcs.qmul.ac.uk/
∼rimvydas/usermodel/security.sal). We demonstrated how these leaks

17

http://www.dcs.qmul.ac.uk/~rimvydas/usermodel/security.sal
http://www.dcs.qmul.ac.uk/~rimvydas/usermodel/security.sal


Rukšėnas, Curzon and Blandford

are detected using the SAL verification tools, and how the analysis of the
SAL counterexamples can help in eradicating cognitively susceptible interface
designs. The SAL environment was primary chosen because of its support for
higher-order specifications. This is necessary for developing a generic cognitive
architecture as ours.

The user interpretation stage was introduced into our framework from gen-
eral considerations. We previously showed how modelling user interpretation
allows us to detect usability problems due to the shape-induced confusion over
device prompts [14]. Here we showed that similar ideas apply in the context of
security properties and their dependance on the layout of input fields. Finally,
we also considered user habits, which we had not dealt with before.

Human factors in the security context have been considered before [1,11].
The novelty of our approach is dealing with the cognitive aspects of security
in a completely formal way, making them amenable to automatic verification.
Moreover, our cognitive architecture could be used to prove generic results on,
e.g., design rules for security, using its formalisation within the HOL prover.

References

[1] Adams, A., and M. A. Sasse, Users are not the enemy, CACM 42(12) (1999),
41–46.

[2] Beckert, B., and G. Beuster, A method for formalizing, analyzing, and verifying
secure user interfaces, in press: Proc. ICFEM 2006, LNCS, Springer, 2006.

[3] Blandford, A., and G. Rugg, A case study on integrating contextual information
with usability evaluation, Int. J. Human-Computer Studies 57(1) (2002), 75–99.

[4] Butterworth, R., A. Blandford, and D. Duke, Demonstrating the cognitive
plausibility of interactive systems, Form. Asp. Computing 12 (2000), 237–259.

[5] Byrne, M. D., and S. Bovair, A working memory model of a common procedural
error, Cognitive Science 21(1) (1997), 31–61.

[6] Cerone, A., P. A. Lindsay, and S. Connelly, Formal analysis of human-computer
interaction using model-checking, in: Proc. SEFM 2005, IEEE Press, 352–362.

[7] Curzon, P., and A. E. Blandford, Detecting multiple classes of user errors, in:
R. Little, and L. Nigay, eds., Proc. EHCI 2001, vol. 2254 of LNCS, Springer,
2001, 57–71.

[8] Goguen, J. A, and J. Meseguer, Security policies and security models, in: Proc.
IEEE Symp. on Security and Privacy, Apr. 1982, IEEE Press, 1982, 11–20.

[9] Hollnagel, E., ”Cognitive Reliability and Error Analysis Method,” Elsevier,
1998.

[10] John, B. E., and D. E. Kieras, The GOMS family of user interface analysis
techniques: Comparison and contrast, ACM Trans. CHI 3(4) (1996), 320–351.

18



Rukšėnas, Curzon and Blandford

[11] Ka-Ping, Y., User interaction design for secure systems, in: R. Deng, et al.,
eds., Proc. ICICS 2002, vol. 2513 of LNCS, Springer-Verlag, 2002, 278–290.

[12] de Moura, L., S. Owre, H. Ruess, J. Rushby, N. Shankar, M. Sorea, and A.
Tiwari, SAL 2, in: R. Alur, and D.A. Peled, eds., Computer Aided Verification:
CAV 2004, vol. 3114 of LNCS, Springer-Verlag, 2004, 496–500.

[13] Newell, A., ”Unified Theories of Cognition,” Harvard University Press, 1990.

[14] Rukšėnas, R., P. Curzon, J. Back, and A. Blandford, Formal Modelling of
Cognitive Interpretation, in press: Proc. DSVIS 2006, LNCS, Springer, 2006.

[15] Rushby, J., Analyzing cockpit interfaces using formal methods, Electronic Notes
in Theoretical Computer Science 43 (2001).

[16] Sabelfeld, A., and A. C. Myers, Language-based information-flow security,
IEEE Journal on Selected Areas in Communications 21(1) (2003), 1–15.

[17] Zurko, M. E., User-centered security: Stepping up to the grand challenge, in:
Proc. ACSAC 2005, IEEE Press, 2005, 187–202.

19


	Introduction
	The Cognitive Architecture in SAL
	Verification of Security Aspects in User Interaction
	Correctness properties: usability and security
	User error and security

	A Case Study: Authentication Interface
	An Authentication Interface
	A User Model
	User Interpretation
	Verification

	Conclusion
	References

