
TRANSFER THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Probabilistic Grid Scheduling
Based on Job Statistics and Monitoring Information

Aleksandar Lazarevic

Department of Electronic and Electrical Engineering

University College London

London, England 2005

Supervisor: Dr. Lionel Sacks

Words: 27729

Aleksandar Lazarevic Transfer Thesis

Table of Contents

1. INTRODUCTION TO THE GRID 6

1.1. A CASE FOR DISTRIBUTION 6
1.2. THE GRID PERSPECTIVE 8
1.3. THE GLOBUS TOOLKIT AND ITS IMPACT 9
1.4. WIDER GRID LANDSCAPE 10
1.5. CONCLUSIONS 11

2. RESEARCH AREA 12

2.1. OPEN ISSUES IN GRID COMPUTING 12
2.2. RESEARCH FOCUS: GRID SCHEDULING 13
2.3. SIMULATION AND TESTING 14
2.4. MEASUREMENTS & INFORMATION FLOW 15
2.5. CONCLUSIONS 16

3. LITERATURE SURVEY 17

3.1. SCHEDULING THEORY 17
3.1.1. TAXONOMY OF SCHEDULING 17
3.1.2. PREDICTING APPLICATION-LEVEL PERFORMANCE 18
3.2. SURVEY OF SCHEDULERS 19
3.2.1. APPLES 20
3.2.2. CONDOR–G 20
3.2.3. N1 (SUN) GRID ENGINE 21
3.2.4. NIMROD/G 22
3.2.5. PORTABLE BATCH SYSTEM (PBS) 23
3.2.6. LOAD SHARING FACILITY (LSF) 24
3.2.7. PACE/TITAN 24
3.2.8. IMPERIAL COLLEGE E-SCIENCE NETWORK INFRASTRUCTURE 25
3.2.9. MAUI CLUSTER SCHEDULER 27
3.2.10. OTHERS 27
3.2.11. CONCLUSIONS 28

 Page 2

Aleksandar Lazarevic Transfer Thesis

3.3. SURVEY OF GRID SIMULATION SUITES 29
3.3.1. SIMGRID 29
3.3.2. MICROGRID 29
3.3.3. GRIDSIM 30
3.3.4. CONCLUSIONS 31
3.4. SURVEY OF MONITORING SYSTEMS 31
3.4.1. GANGLIA 31
3.4.2. RELATIONAL GRID MONITORING ARCHITECTURE 32
3.4.3. NETWORK WEATHER SERVICE 33
3.4.4. OTHER 34
3.4.5. CONCLUSIONS 35

4. SO-GRM PROJECT 36

4.1. SLA MANAGEMENT 37
4.2. RESOURCE DISCOVERY 37
4.3. INTEGRITY INFORMATION INTELLIGENCE - I3 38
4.4. FUNCTIONAL AND INTEGRATION TESTING 38
4.5. CONCLUSIONS 42

5. GRID APPLICATION SIMULATOR 43

5.1. MOTIVATION 43
5.2. REQUIREMENTS 44
5.3. IMPLEMENTATION 44
5.3.1. APPLICATION SIMULATION STAGES 45
5.3.2. PARAMETERISATION OPTIONS 46
5.3.3. DEPLOYMENT SCRIPTS 48
5.4. SELF-TEST RESULTS 49
5.5. CONCLUSIONS 51

6. MONITORING FRAMEWORK 53

6.1. MOTIVATION 53
6.2. REQUIREMENTS 54
6.3. IMPLEMENTATION 54
6.3.1. GANGLIA FUNCTIONALITY 54
6.3.2. INFORMATION PROVIDERS 56
6.3.3. DATABASE MANAGEMENT TOOLS 56
6.4. TEST RESULTS 57
6.5. CONCLUSIONS 62

7. TOWARDS A PROBABILISTIC SCHEDULER 63

7.1. AIMS 63
7.2. REQUIREMENTS 64
7.3. METHODOLOGY 65
7.4. PRELIMINARY ANALYSIS 66
7.4.1. OVERALL JOB STATISTICS 66

 Page 3

Aleksandar Lazarevic Transfer Thesis

7.4.2. GROUP-BASED JOB DIFFERENTIATION 67
7.4.3. DATA CLUSTERING AND CORRELATION 70
7.4.4. TEMPORAL CHARACTERISTICS 72
7.5. CONCLUSIONS 74

8. FURTHER WORK 75

8.1. ALGORITHM DEVELOPMENT 75
8.2. SCHEDULER TESTING 75
8.3. OPEN ISSUES 76
8.3.1. UNIQUE GRID PROCESS IDENTIFICATION 76
8.3.2. HARDWARE HETEROGENEITY 77
8.3.3. DATA STORAGE AND COMMUNICATION 77
8.4. BUSINESS PLAN DEVELOPMENT 78

9. APPENDICES 79

9.1. GLOSSARY OF TERMS 79
9.2. TABLE OF FIGURES 81
9.3. WORK PLAN 82
9.4. PUBLICATIONS AND RELEVANT DOCUMENTS 83
9.4.1. LONDON COMMUNICATIONS SYMPOSIUM 2003 83
9.4.2. INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS 83
9.4.3. NEXT GENERATION NETWORKING - MULTI-SERVICES NETWORKS 83
9.4.4. LONDON COMMUNICATIONS SYMPOSIUM 2004 84
9.4.5. THE NINTH IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED
NETWORK MANAGEMENT 84
9.5. CODE LISTING 85
9.5.1. GRIDLOADER 85
9.5.2. MATLAB® PARAMETER FILE GENERATOR 90
9.5.3. GANGLIA CUSTOM METRIC BROADCAST SCRIPT 92
9.5.4. ROUND-ROBIN DATABASE DATA SWEEP SCRIPT 93
9.5.5. SIMPLE BATCH SCHEDULER (GLOBUS FLAVOUR) 94
9.5.6. SIMPLE BATCH SCHEDULER (SSH FLAVOUR) 95
9.6. REFERENCES 97

 Page 4

Aleksandar Lazarevic Transfer Thesis

Abstract
This transfer thesis presents a novel, probabilistic approach to scheduling
applications on computational Grids based on their historical behaviour, current
state of the Grid and predictions of the future execution times and resource
utilisation of such applications. The work lays a foundation for enabling a more
intuitive, user-friendly and effective scheduling technique termed deadline
scheduling.

Initial work has established motivation and requirements for a more efficient
Grid scheduler, able to adaptively handle dynamic nature of the Grid resources
and submitted workload. Preliminary scheduler research identified the need for a
detailed monitoring of Grid resources on the process level, and for a tool to
simulate non-deterministic behaviour and statistical properties of Grid
applications.

A simulation tool, GridLoader, has been developed to enable modelling of
application loads similar to a number of typical Grid applications. GridLoader is
able to simulate CPU utilisation, memory allocation and network transfers
according to limits set through command line parameters or a configuration file.
Its specific strength is in achieving set resource utilisation targets in a
probabilistic manner, thus creating a dynamic environment, suitable for testing
the scheduler’s adaptability and its prediction algorithm.

To enable highly granular monitoring of Grid applications, a monitoring
framework based on the Ganglia Toolkit was developed and tested. The suite is
able to collect resource usage information of individual Grid applications,
integrate it into standard XML based information flow, provide visualisation
through a Web portal, and export data into a format suitable for off-line analysis.

The thesis also presents initial investigation of the utilisation of University
College London Central Computing Cluster facility running Sun Grid Engine
middleware. Feasibility of basic prediction concepts based on the historical
information and process meta-data have been successfully established and
possible scheduling improvements using such predictions identified.

The thesis is structured as follows: Section 1 introduces Grid computing and its
major concepts; Section 2 presents open research issues and specific focus of the
author’s research; Section 3 gives a survey of the related literature, schedulers,
monitoring tools and simulation packages; Section 4 presents the platform for
author’s work – the Self-Organising Grid Resource management project;
Sections 5 and 6 give detailed accounts of the monitoring framework and
simulation tool developed; Section 7 presents the initial data analysis while
Section 8.4 concludes the thesis with appendices and references.

Probabilistic Grid Scheduling
© 2005, Aleksandar Lazarevic

Department of Electronic and Electrical Engineering
University College London

London, WC1E 7JE
U.K.

a.lazarevic@ee.ucl.ac.uk
www.ee.ucl.ac.uk/~alazarev/

 Page 5

mailto:a.lazarevic@ee.ucl.ac.uk
http://www.ee.ucl.ac.uk/%7Ealazarev/

Aleksandar Lazarevic Transfer Thesis

1. CHAPTER ONE

INTRODUCTION TO THE GRID

The evolution of distributed computing, ultimately leading to the emergence of
the Grid paradigm, was set in motion in 1994 with the start of the Legion and
Globus projects.

This chapter gives a brief introduction to Grid computing with Section 1.1
arguing the case for distributive computing; Section 1.2 outlining the unique and
novel aspects of the Grid approach; Section 1.3 giving further details on the
Globus Toolkit, a de facto Grid middleware today. Section 1.4 introduces
organisations and projects closely supporting Grid efforts, while Section 1.5
concludes the chapter.

1.1. A Case for Distribution

A long running battle in the evolution of computer architectures is that between
centralised and distributed approaches. In last fifty years, technological advances
often tilted the battle in favour of the centralised paradigm, always providing
means to concentrate more computational power into smaller, more integrated
space. The distributed camp, on the other hand, was stimulated by the
developments of new, computationally and data challenging applications,
constantly being one step ahead of the resources any centralised installation
could provide. It has therefore been natural that the development of both
approaches would continue in parallel, each finding an application space that it
can serve best.

However, social, political and scientific developments in the last decade provided
a strong spring board for the distributed computing paradigm. Following, or
perhaps leading, international integration efforts, scientific research has moved

 Page 6

Aleksandar Lazarevic Transfer Thesis

from closed university campuses and governmental departments into a more
cross-border collaboration effort, spanning many countries, organisations and
funding bodies. Stable political climate resulted in the willingness of funding
bodies to invest money in non-dedicated facilities, open for use by scientist from
other nations. And with research goals becoming ever more challenging, a
substantial shift into “Big Science” was unavoidable – requiring enormous
investment in infrastructure and research facilities often beyond the reach of even
the most developed nations.

The same decade saw a number of advances in information technologies able to
support distributed computing better than ever before. High speed networking
became ubiquitous with the roll out of extensive optical networks, effectively
rendering bandwidth a linear function of (moderate) monthly expenditure. IP
protocol established itself as a standard for all and any kind of networking, with
universal connectivity slowly becoming a reality. Despite some pessimistic views,
Moore’s Law still held firm ground, becoming applicable not only to silicone
chips, but to magnetic storage products as well. Storage space became a
commodity few people saw limits to, also with a linear function of unit cost.
Despite all these advances, and frequent promises by the industry, one problem
still caused headaches in the high performance computing circles, marred
deployment of even bigger data centres, and played nicely into hands of
distributed computing advocates. Power consumption of silicone chips remained
directly proportional to their computational output throughout the decade.

Figure 1 CPU Power Consumption Relative to SPEC Computational
Output [1]

 Page 7

Aleksandar Lazarevic Transfer Thesis

Figure 1 shows the computational output per watt of consumed electricity for a
range of CPU families at different operating frequencies.

Hard disks and other components are consuming more power than ever. High
levels of integration could not increase the computational density of data centres
any longer as physical limits are being reached with respect to power supply,
distribution, and heat dissipation (air-conditioning). Although ways of
overcoming these through the use of “brute force” exist, expense of such
approaches would significantly impact the price per FLOPS ratio.

At the turn of the century, right set of enabling technologies and target markets
has formed inspiring new enthusiasm for distributed computing approaches.

1.2. The Grid Perspective

Distributed computing was certainly not a new phenomenon in the high
performance computing field. Indeed, distributed computer installations were
both researched and deployed throughout the 1980’s with Digital Equipment
Manufacturer (DEC) leading the way with its super-mini clusters based on
DECnet. These early attempts were often less then the sum of their parts,
requiring great effort to set- configure hardware and software, they used
proprietary protocols and behaved more like a monolithic unit sliced and
arranged over some physical distance.

Although similar ideas have been floating in the research community for years,
the first prominent project which popularised distributed computing was
SETI@Home[2]. By running as a screensaver on Internet connected PCs,
SETI@Home utilised their idle time to comb radio signals for signs of
extraterrestrial life. A whole range of applications, aimed at utilising unused
cycles on distributed workstations, developed from this early attempt and the
approach was coined “cycle scavenging”. Success of SETI@Home spawned a
number of similar derivative projects (like Stanford University
Folding@Home[3] protein folding application), but by far the most successful is
the Condor Project (see Section 3.2.2).

Grid computing[4] drew significant inspiration from the power grids in which
electricity generation is remote from the point of consumption, and transparent
to the user. From the user’s perspective, the power grid offers ubiquitous and
reliable access to virtually unlimited amount of electricity on a pay-per-use
model. The goal of providing computational power as a form of utility thus
became an epitome of Grid Computing.

The Grid computing perspective was to capitalise on the benefits of distributed
architectures while working on the major problems and issues uncovered in
previous attempts. While many implementations of Grid concept exist, varying
greatly in form and function, the primary objective was to develop a transparent
platform, based on industry standard protocols and open source code, which can
be ported to any of the many operating systems and architectures currently in

 Page 8

Aleksandar Lazarevic Transfer Thesis

use by the academic and commercial institutions. The Grid was to be a much
more organic network than its distributed predecessors, able to form on-demand
Virtual Organisations (VO) [5] spawning geographical, networking and
administrative boundaries. Grid middleware would be able to integrate
distributed computational, storage and visualisation resources into persistent
environments, provide a strong security layer, and a resilient, burstable platform
for scientific research and commercial applications. In an ideal scenario, Grids
would become a new, pervasive and transparent utility which is autonomous and
self-manageable.

1.3. The Globus Toolkit and its Impact

Globus Toolkit[6] has emerged as a de-facto standard Grid middleware. Initially
developed by Ian Foster, Steve Tuecke and Carl Kesselman, Globus now enjoys
a large research and development community compromising universities,
standards bodies and large international corporations. The toolkit has gone
through three major versions, with the version 2.4 widely accepted as most
stable, and extensively deployed in the academic community. Although Globus
Toolkit has been used in production environments (substantially modified and
repackaged), it is still primarily a research framework for the Grid concept.
Commercialisation and production of a industry-grade platform is being actively
pursued by Globus Alliance members.

Version 3 of Globus Toolkit embraces the services framework based on the Web
Services Resource Framework (WSRF), and so will the recently announced
Version 4. Regardless of the implementation issues, Globus Toolkit effectively
stands on three pillars: Globus Security Infrastructure (GSI), Globus Resource
Allocation Manager (GRAM) and Monitoring & Discovery Service (MDS).

Globus Security Infrastructure is based on public key concepts (PKI) and X.509
certificates. Each Globus-enabled network host, service, or user has a certificate
which is used in authenticating that entity’s identity and authorising access to a
resource. All messages communicated between Globus-enabled nodes or
components are also secured using Transport Layer Security (TLS) with
corresponding certificates. The security that GSI is able to offer using PKI
technology is widely recognised, although delivering such levels of security has
proven to be one of the biggest problems with Globus Toolkits. Public key
infrastructure was never trialled on such a large scale as commanded by the wide
acceptance of Globus, and many issues concerning the set-up and running of
Certification Authorities, maintenance of certificate revocation lists, and user’s
approach to dealing with certificates have since arisen. These are not necessarily
faults with the PKI technology or the Globus toolkit, but rather point to a
changing security landscape, and prompt a more coordinated action for
developing supporting tools and altering users habits and perceptions.

Globus Resource Allocation Manager could be thought of as the core of the
toolkit, an interface common to all nodes in a Globus Grid. On a network facing

 Page 9

Aleksandar Lazarevic Transfer Thesis

side, GRAM answers queries from other Globus nodes for running applications
on the local system, providing those requestors with a unique resource identifier
(URI) contact string which can be used at a later time to query the progress of
the job, and collect the job’s output. On the local system side, GRAM can
interface any number of local schedulers, from simple UNIX fork to systems
such as Portable Batch System (PBS, see section 3.2.5) or Load Sharing Facility
(LSF, see Section 3.2.6), through a modular shell script. Once the job is
submitted, GRAM captures its standard and error outputs, and provides
monitoring facility for proper/improper termination.

Monitoring & Discovery Service is a Lightweight Directory Access Protocol
(LDAP) server based component that keeps information pertaining to the
current state of a Globus host and its hardware capability and software
environment. MDS is built on a hierarchical model, with individual information
providers reporting single metric measurements to a tree of distributed
information service servers (called GRIS and GIIS). MDS is a central point of
contact for locating resources, obtaining their usage statistics and discovering
services they are able to provide. For such a critical mission, MDS’s performance
leaves plenty to be desired. The move to web services platform will see important
changes in the information service aspect.

1.4. Wider Grid Landscape

Globus Toolkit was not the first Grid middleware to emerge from the academic
institutions. The Legion Project (see Section 3.2.10), started in the late 1993 at the
University of Virginia had many similarities with the later Globus project.
However, Legion did not manage to solicit the same amount of interest and
involvement as Globus, and although it remains an ongoing research effort, the
installed base remains small.

The success and popularisation of Globus Toolkit has provided a focus point for
Grid research, while the Globus Alliance has acted as a strong promoter of Grid
computing in international research, academic and commercial bodies. Globus
Toolkit was used as the base of several derivative middleware currently in
production use in large international projects (EGEE[7], DataGrid). A large user
community has developed and is orchestrated through the Global Grid Forum
(GGF) [8], a regular meeting of formal research and working groups tackling
short- and long-term issues of Grid Computing. Commercial Grid
implementations were supported by a number of university spin-offs formed by
researchers on Grid related projects. Companies like Platform Computing[9],
Avaki[10] and United Devices[11] managed to establish themselves as leading
consultancies in the field. Major market players have in the last three years
recognised the marketing potential of the Grid, and have joined GGF as
industrial collaborators and development partners. IBM, Sun Microsystems and
Hewlett-Packard are all offering Grid solutions for the enterprise. It is no
surprise that the number of commercial, production level Grid deployments is
constantly on the rise, and that the Grid was named as one of top ten

 Page 10

Aleksandar Lazarevic Transfer Thesis

technologies that could change the word in the next decade[12]. The academic
community equally benefited from this surge of interest in Grid computing with
the increase in research grant funds and better visibility of their work. But with
research proposals influenced by political agendas and policy makers, a negative
effect may be caused by overselling the Grid’s near-term potential, and not
fulfilling community’s (over-optimistic) expectations.

1.5. Conclusions

In this chapter, the need for distributed computing, and some major driving
factors of its development have been discussed. An overall perspective of the
Grid concept was given, and its main value proposition was underlined. The
Globus Toolkit was introduced and its main components briefly discussed.
Finally, an overview of other Grid related efforts is given and major commercial
supporters identified.

 Page 11

Aleksandar Lazarevic Transfer Thesis

2. CHAPTER TWO

RESEARCH AREA

Although wide-area Grid computing can be seen as a natural step from the
distributed computing concept, it poses many new challenges and requires
significantly different implementation approaches. In this chapter, areas of major
Grid research will be presented, and research challenges of the author’s current
and future work described in more detail.

Section 2.1 introduces Grid middleware components and crucial improvements
needed; Section 2.2 gives the main focus of the author’s work, while Sections 2.3
and 2.4 respectively present issues in simulating Grid environments and
monitoring Grid resources.

2.1. Open Issues in Grid Computing

Various aspects of the distributed computing paradigm have been researched
throughout the 1980s and 90s, with solid, proven solutions for many
implementation and programming challenges. Despite all its similarities and
common roots to legacy distributed computing, the Grid poses radical new
questions and requires new approaches for solving them. The Grid’s added value
proposition is in supplying computing power as a utility, providing an
ubiquitous on-demand service through a semi-persistent environment created for
solving a specific task (Virtual Organisation). This is in complete contrast with
legacy cluster systems, and their strict plan-deploy-use cycle. Therefore, legacy
approaches and solutions can not simply be migrated onto the Grid middleware,
as they would diminish the core benefit this new technology offers.

Large amount of Grid research is being undertaken in all aspects of Grid
middleware: data management, security, networking, scheduling and resource

 Page 12

Aleksandar Lazarevic Transfer Thesis

management. The Grid’s envisaged ubiquity and flexibility – ability to operate on
any (time and space shared) hardware, interconnected by any network (dedicated
or not), and deployable across administrative boundaries – adds a whole new
layer of complexity to legacy distributed computing problems. It follows that in
developing core Grid middleware components one should assume little of the
operational environment, and require even less, aiming for an adaptable system
able to operate in a wide range of conditions.

Creating a global and dynamic computational network also creates considerable
management problem. After the initial research effort to develop and deploy
world’s first Grid services, the problem of managing systems of such global scale
became more prominent. The large management burden is caused by the scale
and heterogeneity of the platform, outdated management tools, and the
reluctance to radically change management practices. Desirable properties of any
new or improved Grid middleware components would hence be a high degree of
autonomy and self-management, and a low impact on end users and their
workflow.

The Grid middleware will be greatly influenced by the nature of the applications
that run on it. The Grid has already enabled scientific simulations and
experiments to be performed at previously impossible scale, but as it becomes a
widely accepted collaborative computing platform the application set is likely to
change. With development of computational markets, users could find it cheaper
and more convenient to use the Grid for an increasing variety of jobs. The grid
may emerge as a generalised service delivery platform, executing large numbers
of medium and low demand computational jobs. This would lead to a shift from
a few highly specialised and demanding applications to a more diverse
application landscape.

Any such changes in the usage profiles would change a number of important job
statistics which current management components rely on. As the applications
execution times fall, job arrival rates will increase, and so will the resource
discovery and scheduling overheads. Current Grid resource discovery and
scheduling components are built on assumptions of a very long execution times
and resource pools of modest size. Overheads and job submission delays now
introduced by the Grid middleware may be considered insignificant, but in the
future may represent the greatest part of the job execution time. In a general use
case, schedulers will have to make an intelligent decision and adjust the
complexity of resource discovery and scheduling to the likely complexity of the
job at hand.

2.2. Research focus: Grid Scheduling

The author’s main focus is research and development of a flexible scheduling
system, better suited to the user’s normal workflow, and enabling higher
utilisation of Grid resources. Most of the current Grid schedulers offer either a
“fair-share” of resources to all users, or apply fixed parameter modifiers based on

 Page 13

Aleksandar Lazarevic Transfer Thesis

the user or group priorities. These schedulers are predominantly batch based
systems, requiring users to submit jobs to queues with resource utilisation caps,
and the administrators to prioritise queues and users using scheduling policies.
The end effect is underutilisation due to idle periods, or lower than expected
quality of service to the users whose jobs fail to capture required share of the
resources.

The author’s view is that better scheduling can be achieved by enabling the user
to specify an intuitive metric, such as job completion deadline or available
“budget”, and producing a schedule optimising these metrics. These metrics are
embedded in the way users commission services in the real world – asking for
them to be delivered in certain time and at a certain cost. The notion of deadline
based scheduling is the central and overriding motivation of the research work
herein presented.

The problem of deadline scheduling reduces to the prediction of the execution
time of any given application submitted to the scheduler. Should this be known,
admission decision can be made based on the current load of the system and
user’s requested turnaround time. A real-time scheduling plan could then be
made using any number of optimisation approaches – a Tetris™ game of fitting
blocks of jobs to a timeline. It is clear that the knowledge of how long a certain
job will take to complete is the crucial information needed to support deadline
scheduling. A difficult task on its own, this information should be arrived at with
a limited system overhead, in a short period of time, and with reasonable
accuracy. Such deadline driven scheduler must be able to quantify the quality of
its predictions, and be able to take adaptive actions in case a wrong prediction
disturbs the execution plan. And with the user convenience as one of the main
requirements, switching cost and increase in job submission complexity should
be minimal.

2.3. Simulation and Testing

Redesigning a crucial element of a system, such as the scheduler, raises problems
in its testing and quality assessment. Deploying an unproven and possibly
unstable scheduler on a production system is not acceptable. However, assessing
the performance and benefits of the new scheduler may be impossible in a
simulation environment in which many crucial metrics are predetermined and
static. Any results and findings arrived at purely through simulations may hold
little credibility, and may be insufficient to support deployment of the scheduler
on the production system.

The need for an adequate tool for simulating real Grid application load was
recognised early on in this research. The aim was to develop an application able
to stress the scheduler, and all other components of the Grid middleware,
running on a hardware testbed. The computational load presented to the Grid
should have properties similar to the ones observed on a production system, be

 Page 14

Aleksandar Lazarevic Transfer Thesis

repeatable and deterministic on large scale, yet probabilistic on lower scales to
allow interesting usage patterns to develop.

Thus, a secondary line of research should investigate and develop appropriate
supporting tools for simulating real scheduling problems and testing developed
solutions in an environment closely resembling production Grids.

2.4. Measurements & Information Flow

Regardless of a method adopted for delivering deadline scheduling,
measurements of system’s historical performance, and a timely and accurate
snapshot of current activities is essential. Monitoring of the Grid is difficult due
to the heterogeneous nature and large number of resources that need to be
observed. Monitoring systems with predefined sampling points and frequencies
will inevitably end up with poor information capture – high volumes of
irrelevant measurements in which a truly important observation may be lost.
Operating in a geographically distributed environment, transferring monitoring
information indiscriminately leads to inefficient use of bandwidth. The next
generation of truly effective Grid monitoring systems would have to be more
intelligent, flexible and agile, adapting the granularity, frequency and the
communication methods to the state of the operating environment and the
importance of the measurements. These systems would not be unlike virtual
sensor network, permeating the Grid fabric and self-organising in monitoring
constellations according to the current requirements.

Monitoring systems currently in use on the Grid (to be discussed in Section 3.3)
measure the total CPU load on a single host. However, one can not assume this
figure is the equivalent of the CPU utilisation of the application running on that
node. Grid hosts would generally be both time- and space-shared with other
Grid users, and even with other, local users. Furthermore, author’s tests of the
Grid middleware deployed on a small testbed (see Figure 4) showed that a
significant computational overhead is evident in all phases from job submission
to job results collection.

It was therefore deemed necessary for a more granular monitoring system to be
developed, one able to monitor CPU utilisation of a specific application or a
process. This information would have to be sampled with sufficient frequency to
extract statistical features of the processes and be easily accessible by other Grid
management components.

Investigation into current monitoring tools, and conceptual development of a
suitable monitoring framework will be undertaken as a secondary line of
research. The focus will be on demonstrating the benefits of an integrated
monitoring-scheduling-accounting approach, rather than delivering a completely
new monitoring tool.

 Page 15

Aleksandar Lazarevic Transfer Thesis

2.5. Conclusions

Chapter 2 offers a view on the differences between legacy distributed systems
and the Grid, identifying new challenges and suggesting novel approaches that
will be required for solving them. Scheduling of computational jobs on the Grid
is identified as the main focus of author’s current and future work. Simulation of
realistic Grid environments and highly granular monitoring are seen as essential
requirements for successful study of advanced scheduling algorithms and will be
pursued as secondary research objectives.

 Page 16

Aleksandar Lazarevic Transfer Thesis

3. CHAPTER THREE

LITERATURE SURVEY

Despite being a relatively new research topic, Grid computing has already
attracted attention of many scientists, research groups and standards
organisations. Previous work in the area of parallel and distributed computing
provides a firm foundation and is sill largely applicable to the Grid. However,
resource management, and particularly scheduling, require innovative approaches
and a break from inherited practices.

In Chapter 3, a detailed literature survey will be given. Section 3.1 presents the
most important work in the scheduling theory, while Sections 3.2, 3.3, 3.4 give an
in-depth survey of widely used Grid schedulers, simulation tools and monitoring
systems.

3.1. Scheduling Theory

3.1.1. Taxonomy of Scheduling

The general scheduling problem has been described in several seminal works [13,
14] and is a restatement of classical notions of job sequencing in the context of
production management [15].The functionality of the scheduler can in broader
view be described as that of a resource management resource [16]. It consists of a
mechanism or a policy used to effectively and efficiently manage the access to a
certain resource by a number of competing users.

Scheduler is a mediator between the resource and the consumer, and as such has
to satisfy two opposing requirements: in term of quality of service the

 Page 17

Aleksandar Lazarevic Transfer Thesis

performance expected by the user, and in terms of system utilisation the load
fraction expected by the resource operator.

A useful four-category taxonomy of scheduling has been given by Flynn [17],
and further discussed in [18]. Parts of the overall categorisation are shown in the
diagram in Figure 2.

Global Scheduling

Static

Optimal

Sub-optimal
Approximate

Enumerative

Graph Theory

Mathematical Programming

Queuing Theory

Heuristic

Dynamic
Physically Distributed

Cooperative

Optimal

Sub-optimal
Approximate

Heuristic

Non-cooperative

Physically Non-Distributed

Figure 2 Taxonomy of Scheduling

However helpful this hierarchical approach is, it must be considered with
caution, in relation to and from the perspective of a single point in the distributed
computing environment. At the highest level, the taxonomy can be divided by
scope into local and global schedulers. As I will discuss in later sections (3.2
Survey of Schedulers), Grid computing environment consists of many layered
scheduling components and depending on the point of view taken same
component can be seen as either a global or a local scheduler.

The scheduling research work proposed in this thesis would fall in the global,
dynamic and physically distributed category. Depending on the nature of the
Grid environment and the decisions that will be taken at the later stage of the
research, the scheduler would use heuristic, or approximate methods, or a
combination of both.

3.1.2. Predicting Application-Level Performance

Methods for predicting various aspects of application-level performance based on
historic data have been previously researched in the context of high-performance
parallel computing [19, 20]. Of particular interest were estimates of application
queuing time, wait time (time between arriving at the head of the queue and
starting execution), application run time and overall makespan (time elapsed from
submission to the scheduler to the end of execution). Resource utilisation of the
processes was studied in less detail, as HPC systems tend to be space-shared and
jobs were usually allocated exclusive use of a part of the system.

Prediction methods used range widely depending on the scope and target use.
Most widely used are [21, 22]:

♦ Last-value predictions

 Page 18

Aleksandar Lazarevic Transfer Thesis

♦ Mean and Median based statistics

♦ Linear regressions

♦ Greedy algorithm

♦ Genetic algorithm

♦ Neural networks

Most commonly used algorithms are based on derivatives of mean and median
based statistics. These fare well in relatively static pools of resources and well-
behaved job distributions, but special care must be taken when handling
multimodal and probabilistic environment such as the Grid.

Previous works on this topic have established factors which have important
implication on the quality and usability of the forecasts [23]. In deducing
patterns in the data set it was shown as important to build experience based on
similar events, like-for-like data points. Jobs would need to be partitioned and
categorised so that different predictions, and even different forecasting
algorithms, can be used.

Timeliness of the predictions has shown to be at least as equally important as the
margin of error [24]. As prediction algorithm complexity increases, the time
taken for making a scheduling decision may significantly reduce the benefit in
makespan time such prediction would create. If it all possible, the quality of the
given prediction should be quantified, as this would increase the usability of the
forecast.

To this date, little research is evident in the correlation between the job execution
statistics, its related meta-data and the state of the computational environment at
the time of execution. The lack of common accounting standards and log file
formats further hinders comparisons of information obtained from various
sources.

3.2. Survey of Schedulers

Despite the Globus Toolkit evolving as a standard Grid middleware, the meta-
computing landscape is still very fragmented. The core functionality required
from the middleware is not firmly defined, and different approaches lead to a
blurred distinction between the scheduler and meta-computing middleware.
Often, there is significant overlap: many of the surveyed schedulers can operate
as either standalone systems, or as Globus job managers.

The following sections aim to present the most prominent and widely used
schedulers in the Grid community. Various research projects are constantly
developing new schedulers. These efforts sometimes result in little more then a
conceptual implementation, but a few are developed into working
implementations and are subsequently used in production Grid deployments.

 Page 19

Aleksandar Lazarevic Transfer Thesis

3.2.1. AppLeS

Application Level Scheduling (or AppLeS) [25], was developed at the Computer
Science and Engineering Department at the University of California San Diego
(UCSD). AppLeS was one of the first Grid schedulers to investigate adaptive
scheduling and provide full job support from resource discovery, schedule
generation, selection and adaptation, to application execution. Its schedule
generator can take into account and optimise for user’s performance criteria, such
as execution time, or target turnaround time. These benefits come at the price of
having to extensively modify every application to be scheduled using AppLeS. In
most cases this would require a joint team of scientist and AppLeS developers
modifying and recompiling the source code to enable the application to be
dynamically scheduled. The result is an integrated piece of software composed of
a domain-specific component, a scheduling superstructure controlled by the
AppLeS agent and an actual problem solving code. AppLeS developers have in
this way enabled over a dozen applications, and this scheduling method is best
suited to parameter sweep applications and master-slave divisible workload.
Performance modelling methods are based on well known third party software
(such as Network Weather Service see Section 3.4.3) and have to be manually
customised to the application and hardware platform in question.

AppLeS can provide significant increase in resource utilisation and optimisation
of requested performance metric on a properly tuned cluster. However,
modification of the source code may not always be possible or desirable, and
presents a high switching cost to the user. This will only be acceptable for high-
value niché applications, or clusters based on expensive or exceptional hardware.
To date, AppLeS developers have presented their work on application scheduling
for synthetic aperture radar, parallel tomography and magneto-hydrodynamics,
among others.

AppLeS bears significant differences to our approach in requiring each
application, set of resources and prediction algorithm be adapted to its
scheduling framework and domain in question. This requires significant effort on
behalf of the user, cluster administrator, AppLeS developer and software
provider. Any solution developed in such a way may not be portable, or may not
perform sufficiently well even with minor changes in the cluster composition,
network topology or usage patterns. Nevertheless, AppLeS has shown possible
benefits of adaptive and predictive schedulers, and an obvious need for their
development.

3.2.2. Condor–G

Condor[26] is a batch scheduling system targeted at harvesting unused
computational cycles from a heterogeneous set of user workstations. It was first
developed in 1988 at the Computer Science Department, University of
Wisconsin-Madison. Condor suite[27] provides scheduling with different
policies and prioritisation, resource monitoring and job management. Resource
owners maintain full control of their hardware and can set policies on their

 Page 20

Aleksandar Lazarevic Transfer Thesis

acceptable use. Condor uses a proprietary ClassAd language, which allows
hardware owners to describe their resources, and users to specify arbitrary
resource requests. A matchmaker component compares these to match job
requirements with appropriate execution hardware.

Condor-G [27]is an extension to the core Condor components and functions as a
bridge between a Condor pool and resources accessible through Globus
middleware. Running as a Globus job manager on each Grid worker node, and as
a controller on a dedicated node within the Grid, it translates between GRAM
and ClassAd protocols, allowing jobs submitted to a Condor pool to be executed
on machines in the Globus cluster. Due to its strong user base and developer
community, Condor-G is widely accepted as a Grid job manager, and is
deployed even when no Condor cluster exists.

Condor is a batch scheduler with first-in-first-out approach, although some job
grouping and prioritisation is possible. Condor provides the ability for check-
pointing and job migration, important aspects for operation on non-dedicated,
commodity clusters. If a machine running a Condor submitted process becomes
unavailable, whether due to the local policy or a malfunction, the job can be
restarted from the last check point on another suitable worker node. Jobs
submitted through Condor are sandboxed on execution nodes, and should local
policies restrict file I/O, Condor can redirect low-level API calls to a remote file
system.

Condor has a proven track record of providing high throughput computational
clusters, and with its lightweight client deployment is of special benefit to
institutions with large pools of underutilised workstations. However, it is a very
much centralised system with clear separation between master and slave nodes.
Its scheduling framework has no notion of deadline, and other than coarse-
grained prioritisation, little intelligence can be added to the scheduling process.
Despite additional improvements offered by Condor-G, the framework is not
flexible enough to accommodate dynamic Grid resources distributed across
administration boundaries.

3.2.3. N1 (Sun) Grid Engine

Sun has embraced the Grid as one of their core future technologies, and has
developed its Grid software with a very strong business perspective. Sun’s Grid
platform is based on the Sun Grid Engine (SGE) [28], an open source software
from which Sun has recently spawned a commercial product called N1 Grid
Engine[29]. Grid Engine can function as a stand-alone system, or it can be used
as a job manager within a Globus Toolkit Grid environment. Currently, SGE
supports one of the widest sets of hardware and OS combinations: SPARC,
AMD64, x86a and Mac hardware running most of the UNIX operating systems
with even the support for Windows XP forthcoming.

Grid Engine is built on an agent based master-slave model. Master node serves as
the only ingress point to the system and offers a command line and graphical user
interface to the cluster. Slave nodes are running an agent responsible for

 Page 21

Aleksandar Lazarevic Transfer Thesis

executing jobs, monitoring their progress, and communicating with the master.
Each execution host in the cluster represents one queue and each CPU on that
host is seen as one slot. The implication is that each CPU will only ever be
assigned at most one job regardless of its utilisation. Creation of parallel
environments is possible, with one job spanning across a number of CPUs and
nodes. Queue scheduling is based on a policy and priority modified first-in-first-
out model. Agents running on worker nodes report to the master details about
underlying hardware, software and execution environment from which complex
queries for resource selection can be made. Role-based user privileges can
establish groups or projects with different priorities, execution schedules and
billing options. Overall, SGE provides a stable production system for high
throughput computing in commercial environments.

Sun Grid Engine approach is very centralised in nature, with a batch scheduling
system at the core. It provides for a good degree of control over the use of
resources, but no out-of-order or scheduling to a deadline is possible. The
monitoring and management system lacks scalability, relying on approaches
which would be inappropriate in large distributed systems (for example plain text
accounting files needing manual rotation). Performance and robustness issues are
raised by the use of a single master responsible for accepting and dispatching
jobs. Experience shows that even a small worker node population (hundreds of
workers) with a moderate job arrival times can saturate a 4-way SMP master.

University College London Central Computing Cluster (CCC) compromising
104 dual CPU compute nodes has deployed Sun Grid Engine version 5.3 as its
Grid middleware. Preliminary user experiences have been positive with respect
to stability and availability. The relatively low size and utilisation levels of the
CCC did not expose any problems, or have significantly stressed the scheduler.

3.2.4. Nimrod/G

Nimrod [30]scheduler was developed as a tool for facilitating large runs of
parameterised simulations over a distributed set of resources. It provides a
declarative parametric modelling language used to create a plan for deployment
of a large number of tasks. Nimrod application running on a master gateway is
used to submit, execute and collect results from multiple worker nodes.
Resources used are typically loosely coupled workstations with well defined
usage periods (such as office hours), or dedicated resources on which a high level
of utilisation should be maintained. Nimrod offers a Tcl based scripting language
for job setup, and a simple graphical user interface through which ranges for
parameter studies can be defined. The GUI also provides basic monitoring of
running nodes and the progress of the overall experiment. A reengineered version
of Nimrod, called Clustor, was commercialised by Active Tools until the
company ceased to exist in 2003.

Nimrod scheduler was developed for a static set of resources, and could not be
adequately used in a highly dynamic context such as the Grid. Nimrod/G
[31]further developed the Nimrod concept, and embraced Globus middleware
for dynamic resource discovery, job submission and security. Using Nimrod/G,

 Page 22

Aleksandar Lazarevic Transfer Thesis

user can define a deadline for completion of submitted jobs, and/or a virtual
budget available for computational resources. By offering a “budget” metric,
Nimrod/G is looking to provide a framework for market based computational
economy where such services could be traded.

Key components of Nimrod/G architecture [32]are its parametric engine,
scheduler, dispatcher and job-wrapper. These components interface with Globus
middleware, and provide resource discovery through MDS queries, job data
staging through GASS and job dispatch through GRAM. Security services
including authentication and authorisation are provided by GSI. During a
schedule generation stage, Nimrod/G runs a sample of the parametric study
application on the target nodes and uses measured hardware performance as a
benchmark for later execution duration predictions and schedule generation.

Nimrod/G is one of the first schedulers developed specifically for the Grid
environment. It was shown to offer good scheduling performance, with good
adherence to requested deadlines. The trial run prediction method lends itself
well to the heterogeneous nature of the Grid. However, Nimrod/G is aimed at
parametric study applications, whose execution times are very narrowly
distributed, and generally independent of the input parameters. By limiting its
scope, Nimrod/G is able to utilise simple prediction methods to achieve
satisfactory scheduling performance. Although these applications form an
important group of scientific software presently running on the Grid, a general
purpose scheduler must be able to handle other types of applications equally
well.

3.2.5. Portable Batch System (PBS)

Portable Batch System (PBS) [33] is a widely used scheduler in large institutional
clusters, and has become a de facto standard batch scheduling system in the Grid
and Beowulf[34] environments. Originally developed to manage aerospace
computing resources at the NASA, it now comes in two versions: an open-source
implementation OpenPBS[35], and a commercial product from Altair
Engineering PBS Pro[33]. PBS can function without any Grid middleware as
standalone workload management system, or integrated with Globus Toolkit as a
local scheduler. The system is available for almost any cluster system from vector
and parallel supercomputers, SUN, SGI, HP, Alpha, and Macintosh
workstations, to Intel and AMD based Windows systems.

Portable Batch System[36] is based on a centralised server-client model, in which
server accepts job execution requests and forwards them to one or many clients
for execution. The scheduling component is separated from the server process,
and through the use of PBS API can be modified to implement different
scheduling algorithms. The Scheduler communicates with the Server to obtain
submitted job information, and with the PBS resource monitor to acquire
utilisation data. It can operate on single or multiple queues and create schedules
based on site policies, priorities and the utilisation state of the cluster. Subject to
the underlying hardware and software support, PBS Pro can reserve resources in
advance and schedule accordingly.

 Page 23

Aleksandar Lazarevic Transfer Thesis

Although very robust and reliable, Portable Batch System is another
implementation of a modified FIFO approach to job scheduling. It is best suited
to well managed and controlled environment, with (mostly) homogeneous
hardware and software, and with unified accounting and administration policies.
PBS Pro has provisions that mitigate single points of failure (such as failover
Server), and offers cross-system scheduling with access control lists and user
mappings. However, it is clear these are seen as add-ons rather then core
philosophy of PBS. Job recovery mechanism provided can restart jobs disrupted
by a node failure on another host in the network, but the system is not designed
to deal with a highly dynamic resource pool that a Grid environment may
present. Most importantly, no deadline scheduling is supported, and job staging
and execution times are considered unknown.

3.2.6. Load Sharing Facility (LSF)

Load Sharing Facility (LSF) [37] grew out of the PhD thesis of Songnian Zhou,
who later successfully developed and marketed LSF as a core product of his
start-up business – Platform Computing. The company has been at the centre of
Grid development and standardisation efforts in the GGF, with an extensive user
portfolio of blue chip companies in the banking, manufacturing and life science
sectors.

Platform LSF is a commercial product, and little information on the inner
functioning of the scheduler is given in the company’s whitepapers. The author
was unable to obtain a demonstrational copy of the product for testing purposes.
Research papers mostly examine and compare LSF performance with other
scheduling systems, and only very early works by Zhou [38]offer insight into the
algorithms of the early versions. From the information available, the core of
Load Sharing Facility is the Virtual Execution Machine™ which provides
virtualisation of underlying resources and is the primary execution environment
in the LSF enabled cluster. A web based, SOAP/XML enabled interface offers
customisation and integration with other applications. According to the
company web site, an element of self-management has been built into Platform
LSF to offer guarantee zero downtime, self-adaptive dynamic allocation of
resources, and self-healing to reduce management overhead.

Platform LSF offers a comprehensive set of scheduling policies with support for
fair-share, pre-emptive and SLA based scheduling with advanced resource
reservation. The implementation of these is not discussed in publicly available
papers and LSF documentation. Information gathered from informal sources
suggests good performance levels, and a considerable overall increase in resource
utilisation and efficiency. Further research into LSF scheduling methods will be
undertaken.

3.2.7. PACE/Titan

PACE/Titan [39] toolset was developed by the High Performance Systems
Group at the University of Warwick, and is one few schedulers supporting out-

 Page 24

Aleksandar Lazarevic Transfer Thesis

of-order scheduling composition for deadline execution based on performance
predictions.

The PACE toolkit [19]uses pre-execution modelling and analysis techniques to
predict the runtime and resource utilisation of an application on a given hardware
platform. It relies on hardware and software characterisation templates, with an
evaluation engine tasked with extrapolating expected application performance on
the requested platform. The PACE toolkit requires all applications to be re-
compiled and linked with PACE libraries, so that their performance templates
can be created. Equally, each host with a different hardware, operating system or
any performance-influencing component needs to be profiled before PACE can
integrate it into its runtime predictions.

Titan [24]is a workload and workflow management component of the toolset.
Using performance predictions supplied by PACE, Titan optimises the execution
schedule to reduce idle time, makespan and scheduling delay, while maintaining
deadline adherence. Titan uses a genetic algorithm with crossover and mutation
to locate an optimal schedule. The algorithm is constantly run on the pool of
outstanding jobs, replacing the current best schedule if a better one is found.
Titan also provides management of inter-dependant tasks and jobs with sub-
workflows, and is able to optimise their execution in order to minimise total
runtime.

PACE/Titan toolset has been developed to the Open Grid Services Architecture
(OGSA) standard, uses SOAP messaging and runs in a Globus Toolkit 3
container. Considering this open architecture, it should be possible to selectively
replace parts of the toolset with third party components – for example a different
prediction engine could be used to reply to Titan requests.

Several research papers by the developers of PACE/Titan toolset have presented
good results of its predictive scheduling technique. Despite these, the main
drawback of the toolset is the need to recompile applications, and to extensively
profile target hardware platforms. For large number of users running various
applications on non-dedicated resources, such as in a typical Grid scenario, this
may prove very difficult or impossible. The main strength of the PACE/Titan
scheduler is in running high-end scientific applications on relatively static pools
of high performance dedicated hardware. For such clusters, the investment in
deploying the system and adapting the applications is justified (for example
Adaptive Grid Eulerian Hydrocode running on US Department of Energy
Accelerated Strategic Computing Initiative resources). The reported performance
of the PACE/Titan scheduler shows the value of runtime predictions and the
need for deadline scheduling.

3.2.8. Imperial College e-Science Network
Infrastructure

ICENI[40] has been developed by the London e-Science Centre at the Imperial
College London as a generic and modular meta-scheduling framework able to
use a variety of underlying Grid middleware.

 Page 25

Aleksandar Lazarevic Transfer Thesis

The architecture [41]separates scheduling and launching frameworks, allowing
each to be independently extended to support the widest array of deployment
scenarios. ICENI aims to explore the role and the flow of meta-data in the
computational Grids; a Performance Repository maintains data on the job
execution times on different architectures and with different network
bandwidths. ICENI prediction engine treats applications as a collection of simple
components connected as a directed acyclic graph (DAG) with varying depths
and dependencies. It introduces a user-defined benefit value, such as target
execution time or computing cost, which the scheduling process aims to
optimise.

The launching framework can be adapted to the middleware and hardware
platform on which ICENI is running – currently supported systems are Globus
Toolkit 2.4, Sun Grid Engine, Condor or simple fork. The scheduling framework
supports multiple concurrent schedulers, and user selection of preferred
scheduling algorithm. The schedulers assume no exclusive control over the
resources, as these could be made available to other, local or remote users,
through alternative access methods. An API is provided by the scheduling
framework for retrieving the meta-data from the Performance Repository, and
for functions common to all schedulers (such as performance predictions and
resource discovery).

ICENI authors have developed four different schedulers for use with the ICENI
framework. They have recognised that for jobs of shorter duration time taken to
develop a schedule can be longer then the total execution time. For this class of
jobs, a random scheduling algorithm is adopted, and an optimised version
selecting best out of n random schedules is also provided. For more complex job
sets, simulated annealing or Game theory schedulers are considered. In the
comparative tests by ICENI authors, simulated annealing performed best, with
the best of n random scheduling faring very well. Game theory did not produce
good quality schedules, and was outperformed by random scheduling at the
fraction of the schedule computing cost and time.

The ICENI project lays important foundations as one of the first schedulers
developed specifically for the Grid, with its heterogeneous and space-shared
resources, and dynamic resource availability. It parts from the traditional
approach of the batch schedulers and offers out-of-order job execution.
Although the importance of meta-data is considered, its integration in the overall
flow of monitoring information could have been more thorough. ICENI falls
short of offering fully fledged deadline scheduling, but optimisation of wall-
clock job execution time can be done using the benefit function. The core ICENI
scheduling work focuses on the development of a well performing scheduling
algorithm, with little or no mention of the job execution time prediction
methods, their accuracy and computational cost. Due to an open architecture and
modular design, ICENI offers a good platform for deployment of third party
components and their testing in a production-like environment.

 Page 26

Aleksandar Lazarevic Transfer Thesis

3.2.9. Maui Cluster Scheduler

Maui Cluster Scheduler [42]is an open source scheduler primarily developed and
supported by Cluster Resources Inc. Maui forms the basis of the company’s
other commercial offerings, Moab Cluster/Grid Suite and Silver, but its
development was widely supported by the HPC community, U.S. Department
of Energy, and many others. Maui supports a wide variety of cluster hardware,
operating systems and scheduling APIs including PBS, LSF, Loadleveler, and
Sun Grid Engine.

Maui Cluster Scheduler is a high level batch scheduling system, with support for
scheduling policies, dynamic priorities, resource reservations and fair-share
allocation[43]. It relies on lower level schedulers to act as resource managers and
launching tools, supplementing them with additional monitoring and accounting
functionality. Each job submitted is assigned to a queue according to the
applicable policies and priorities. On job submission, the user is requested to
state the maximum wall clock execution time, and if a job is part of a larger
workflow define other prerequisites for that job’s start. These parameters enable
Maui to appropriately reserve required resources and construct an initial
schedule. Further schedule optimisation are made using job prioritisation and fair
share algorithms. Optionally, Maui can be configured to use backfill, an out-of-
order scheduling strategy inserting shorter jobs into gaps created by mutually
dependant large jobs. This method can significantly increase job throughputs and
cluster utilisation, but may lead to users “playing” the scheduler and reducing its
fairness.

Although Maui maintains accounting data on previous user-predicted and actual
job execution times, this information is not used in any way. Its analysis reveals
users are likely to grossly overstate the wall clock time required for executing
their application padding their, initially poor, estimates to account for overloaded
compute resource, prolonged data staging or unexpectedly complex
computations. These effects compound to lower the accuracy of these
predictions to about 30%. Backfilling algorithm, combined with hard resource
limiting, leads to a decrease in scheduling efficiency for large compute jobs as any
CPU time freed by jobs under-running is used for backfill. Overall, Maui is a
stable and well supported scheduler for homogeneous compute environments,
and offers significant increases in efficiency, manageability and fairness compared
to similar batch schedulers. The lack of an autonomous and intelligent prediction
system reveals the unreliability of user supplied predictions, and the importance
of this data in creating effective schedules.

3.2.10. Others

Legion[44] was the first modern meta-computing systems, developed at the
University of Virginia. If the Globus Toolkit can be considered as a “sum of
services”, the Legion toolkit offers a unified and integrated architecture. Legion
did not achieve the wider popularity and community acceptance similar to
Globus. It remains to be seen whether Globus’ modular approach will provide a

 Page 27

Aleksandar Lazarevic Transfer Thesis

robust and stable framework, or a more controlled and integrated system like
Legion would be required.

NetSolve (GridSolve) [45] is a remote procedure call (RPC), agent based system
for solving numerical problems. The system manages resource discovery and
load balancing of a distributed set of resources. NetSolve has interfaces for C and
Fortran, and commonly used scientific applications such as Matlab, Mathematica
and Octave.

Ninf-G [46]is a reference implementation of the Global Grid Forum (GGF)
recommended GridRPC specification. It is based on the Ninf system, and
similarly to NetSolve aims to Grid-enable legacy application written in Fortran
and C.

A suite of schedulers has been developed for a specific, niché, application. They
offer good performance levels on specific installations, and running specific class
of jobs. Some of these are:

♦ Chameleon[47] – improves scheduling in the Data Grid, and similar
data intensive environments, by considering the amount of
computational resources available, as well as the data availability.

♦ NQE/NQS – legacy batch schedulers, mostly run on mainframe
machines. Being replaced with PBS or PBSPro (see Section 3.2.5).

♦ MARS[48] – a meta-scheduler for University of Michigan campus Grid.

♦ Scheduling Expert Adviser (SEA) – a 1997 project that converts a
high-level description of a computational task supplied by a user into a
set of facts and rules on which the scheduling is based.

3.2.11. Conclusions

Presented survey of schedulers clearly indicates that most of the scheduling
approaches have been inherited from the legacy distributed clusters. These,
almost exclusively batch systems, offer good levels of reliability and control
while sacrificing utilisation levels, user experience and dynamic resource
handling. Such trade-off is currently acceptable in the production environments
mostly due to the lack of stable, usable alternatives.

Novel schedulers, specifically developed for the Grid, are emerging from several
research projects (Nimrod/G, ICENI, Titan/PACE). Looking to tackle
stochastic and probabilistic nature of Grid resources, these schedulers recognise
the value and the necessity of forward looking estimates on the job execution
times and its resource utilisation.

 Page 28

Aleksandar Lazarevic Transfer Thesis

3.3. Survey of Grid Simulation Suites

3.3.1. SimGrid

SimGrid[49] has been developed at the University of Southern California, as a
toolkit providing core functionality for simulation and analysis of scheduling
methods for distributed and parallel applications.

The toolkit [50]provides several levels of abstractions, and has the ability to
import topology specifications from third party applications. SimGrid is
implemented as an agent based simulator, with each of the scheduling agents
running at a certain location, communicating through a network path using a
defined communication channel, and executing a given task. SimGrid
abstractions implement these services as Agent, Location, Task, Path and
Channel objects.

Simulation scenarios are executed in following steps: modelling the simulated
applications by defining functionality of each agent, defining resources and
allocating agents to appropriate locations, and running the simulation while
observing different levels of trace verbosity. SimGrid supports compute and
network low level resources, which can be of either fixed characteristics, or
varying according to a trace file. This is particularly important in modelling
network links, and a representative Grid topology can be simulated by using
traces from network monitoring tools such as NWS. Compute resources are
characterised by computational speed relative to a reference node and their
availability (from 0 to 100%). Network links are described by their latency and
bandwidth. These resources can be shared and contended for with three different
strategies: first in first out (FIFO), first ready first out (FRFO), and shared (user
implemented fair share method). Once the simulation scenario and hardware
topology has been developed, different scheduling techniques can easily be
implemented and repeatable measurements made to assess their merits.

SimGrid builds on best approaches from more complex and specific simulators,
while maintaining simplicity and good performance levels. Its use by a number of
research projects, and numerous publications of SimGrid simulated results have
confirmed it to be scalable, configurable and extensible enough to simulate a
wide variety of scheduling problems[51]. Validation of SimGrid results remains a
difficult question, especially in a relatively new setting that the Grid is. The
problem is alleviated to some extent by the fact that SimGrid is based on models
previously accepted in the scheduling community.

3.3.2. MicroGrid

MicroGrid[52] is a simulation tool developed at the University of California,
Sand Diego, under the sponsorship of National Science Foundation as part of the
Grid Application Development Software project (GrADS) [53]. MicroGrid is an
online simulator, providing a virtual Grid environment on which real Grid
middleware and Grid applications could be run. Currently Globus Toolkit is the

 Page 29

Aleksandar Lazarevic Transfer Thesis

only supported Grid middleware, but the latest version of MicroGrid is able to
run Grid applications written in MPI, C, C++, Python and Perl.

Primary concern with an online simulator such as the MicroGrid is the
implementation of virtualisation functions. MicroGrid relies on the operating
system to provide unique namespaces and seamless sharing, and only virtualises
the host identity[54]. This is achieved by mapping virtual IP addresses to host’s
physical address, and trapping all resource related calls to perform the
translation.

Physical resources in the simulated virtual Grid are discovered and characterised
through an extended and virtualised Globus Information Service (GIS).
Computational resources are defined using a scaling factor to their real
performance, denominating the slice of the CPU time that will be used in the
virtual Grid. Network elements are simulated through an external application
(VINT/NSE), creating high overheads and limiting scalability.

MicroGrid simulator has been validated by the authors, in different testing
scenarios ranging from single component tests to running a fully fledged Grid
application (Cactus Application) [55]. The virtual Grid approach is helpful in
situations where application behaviour is hard to model, or when unfeasible test
scenarios are needed – such as investigation of catastrophic node or network
failures. MicroGrid requires stable middleware and application suites, and as
such could not be used in early stages of a novel scheduler development. The
need for global coordination of resources in the virtual Grid enforces a
“maximum feasible simulation rate” on the whole environment, dictated by the
lowest specified physical hardware on which MicroGrid is running. Although
theoretically possible, large Grid simulations with complex resource pools could
be prohibitively time consuming to execute.

3.3.3. GridSim

GridSim [56]is a simulation tool developed at the Monash University, Australia
and freely distributed under the open source license. GridSim is based on
SimJava2[57], a process based discrete event simulation tool for Java. Developed
by the same team as the Nimrod-G scheduler means that economy-based
scheduling and resource allocation principles have been deeply embedded in the
rationale of this simulation package. GridSim focuses specifically on modelling
time- and space-shared resources, with support for concurrent tasks running on
the same resource[58]. The geographical and social aspects of the Grid
environment can also be modelled through variable resource background
utilisation based on time zone, busy hours, days of the week and calendaring.

Simulation set up steps in GridSim include creation of resources, definition of
applications (called Gridlets), and coding of resource brokers and the scheduling
algorithm. Compute resources are defined as processing elements (PE), basic
building blocks whose performance is specified in MIPS and can be coupled to
form SMP-like architecture. Characterisation of network links was poorly
documented, with only a reference to their “data transfer baud rate”. Job

 Page 30

Aleksandar Lazarevic Transfer Thesis

specification is done through Gridlet objects, which include explicitly defined
computational cost (in MIPS), size of input and output data sets, preferred
scheduling policy and user’s deadline and budget constrains.

Although based on an already established simulation platform, GridSim is not as
methodological in simulating realistic network topologies, link congestion,
resource contention, and parallel applications as SimGrid. Poor documentation
further mars development of genuinely useful simulations. Despite being a
general purpose Grid simulator, GridSim is targeted at parametric research
applications and economy driven scheduling approach. The authors have
developed a GridSim based simulation of their Nimrod-G scheduler (see section
3.2.4), but few other projects have reported on their experimental use of
GridSim, or on validation of simulated results.

3.3.4. Conclusions

Few Grid simulation tools are presently available, leading to significant problems
in testing new scheduling approaches. All three simulators surveyed adapt a
different approach, and are targeted at simulating different aspects of the Grid
middleware. Generally, simulation of application behaviour is poorly captured
with few realistic models, and little support for modelling of job statistical
properties. Effective testing of new, probabilistic, schedulers will depend on
being able to accurately simulate real application behaviour with its important
statistical properties.

3.4. Survey of Monitoring Systems

3.4.1. Ganglia

Ganglia Cluster Monitoring[59] was developed at the University of California
Berkeley, and was sponsored trough National Science Foundation’s NPACI
program, before becoming part of the PlanetLab project.

Ganglia aims to consolidate monitoring information in a hierarchical structure,
and presents increasingly detailed data going from a federation of clusters, or
Grids, down to a single worker node. It leverages widely used technologies such
as extensible mark-up language (XML) for data representation, external data
representation (XDR) for portable data transport, and round-robin databases
(RRDtool [60]) for data storage and visualization. Ganglia has been ported to an
extensive set of operating systems and hardware architectures. Throughout
extensive deployment in production clusters containing over two thousand nodes
[61], Ganglia was proven as a stable, robust and scalable system with low
overheads.

Metrics monitored by Ganglia vary depending on the operating system and
hardware support, but a core set includes processor load, memory usage and
network performance. Due to the modular code design, Ganglia is highly

 Page 31

Aleksandar Lazarevic Transfer Thesis

customisable and can be modified to monitor custom metrics specific to the local
environment. By either modifying the source code, or by using Ganglia’s custom
metric publishing tool, these can be integrated in the core metrics’ information
flow.

Cluster nodes running Ganglia can either publish their measurement data, collect
data published by other nodes, or do both thus creating a distributed data
repository. Low overhead communication is implemented through broadcast
messages within the cluster, or unicast links between the clusters. Data storage is
handled by fixed-size round robin databases, and a Perl toolkit is provided for
data visualisation through a web based interface.

Despite being efficient way of storing historical data, round robin databases loose
detail and alter statistical properties by consolidating older measurements using
simple functions such as averaging or min-max. Analysis of resource utilisation,
process behaviour, and proposed scheduling algorithm would depend on
statistical properties of historical data for correct operation. If Ganglia collected
data is to be used for process resource utilisation trending and pattern matching,
methods for preserving highest detail data would need to be developed.

3.4.2. Relational Grid Monitoring Architecture

Grid Monitoring Architecture (GMA) was developed by the similarly named
working group under the auspices of Global Grid Forum, a worldwide forum for
Grid developers and users. The working group was focused on producing a high-
level architecture statement of the components and interfaces needed to promote
interoperability between heterogeneous monitoring systems on the Grid.
Relational GMA (R-GMA) [62] was developed as a web service implementation
of the GMA specification, providing access to monitoring information through a
relational database concept. After initial development as part of the European
DataGrid project, R-GMA is now a candidate system for use in the “Enabling
Grids for E-science in Europe” project [7].

The GMA working group has recognised that performance monitoring
information differs from other forms of system or program-produced data: it has
a short lifetime, is frequently updated and is stochastic in nature [63]. The
group’s subsequent recommendations proposed a monitoring architecture
consisting of three components. Data Producers would publish their capabilities
in the Directory, and provide information directly to the data Consumers based
on their subscription to particular information feeds. Such approach implies a
separation of the meta-data describing the monitored metric and the stream of
actual measurement data. Relational GMA system builds on this model by
relieving consumers and producers of registry interaction, and by providing a
relational database communication model between the two. However, R-GMA is
not a general distributed relational database management system (RDBMS); it
rather provides a method of applying a relational data model in a Grid
monitoring environment.

 Page 32

Aleksandar Lazarevic Transfer Thesis

R-GMA is based on industry standard SQL database, and imposes a standard
query language and database schema. It can thus benefit from proven scalability
and robustness of these components. Information flow and component
interaction is based on SQL CREATE TABLE, INSERT and SELECT queries
on virtual tables maintained by the Registry.

Grid Monitoring Architecture specification provides a bare framework for which
adequate information providers and consumers need to be developed. Although
the whole Grid community would benefit from its wider adoption, few
installations use it. The EGEE project, R-GMA’s biggest proponent, and its
monitoring database may contain significant amount of data which could be of
great use in understanding Grid applications and their execution time patterns.
Although the usage of SQL databases mitigates reliability issues, the Registry and
the database schema could be a single point of failure, unless properly replicated.

3.4.3. Network Weather Service

Network Weather Service (NWS) [64] originated at the University of California,
Santa Barbara, as a monitoring and forecasting system for meta-computing
environments. Since its first versions was published in 1997, it has seen many
improvements and modifications to become one of the most widely used tools in
the distributed computing area. NWS operates a distributed set of sensors and
supporting processes, monitoring network resources, and collecting historical
performance data. When requested, it uses numerical methods to generate
forecasts for some future time frame based on previous monitoring data[65]. The
aim of NWS was to enable better scheduling in meta-computing environments
by predicting the real level of performance at the application level. Although
NWS was developed primarily as a network latency and bandwidth monitoring
tool, its open interface allows for addition of third party sensors. Discussion of
NWS herein, and its features, is based on the version 2.8.

Network Weather Service system architecture[66, 67] is based on four separate
components: Sensor, Forecaster, Name Server and Persistent Storage. Of critical
interest are the Name Server process, which runs on one machine only and
provides a directory capability, and the Persistent Storage process which stores
and retrieves measurements. Name Server is the only well-known address used
by the system, allowing for both data and services to be distributed, but also
creating a single point of failure. NWS developers plan to migrate the Name
Server to a distributed LDAP-based service and eliminate this problem. Data
storage is implemented using circular data files, and no measurements are kept
indefinitely.

The issues of measurement intrusiveness and reliability were often raised in the
NWS user community, and newer versions have gone to some length in fixing
them. CPU utilisation sensor now uses both passive (based on UNIX vmstats)
and active monitoring (by running a compute-intensive probe). The sensor has an
adaptive, heuristic algorithm tracking the discrepancy of passive and active
monitors to decide on the right balance of the two. Intrusiveness is especially
important in network monitoring; NWS network sensor has developed advanced

 Page 33

Aleksandar Lazarevic Transfer Thesis

techniques for measuring end-to-end bandwidth and latency while maintaining a
minimal impact. Network sensors organise in hierarchical cliques and perform
mesh measurements within these, and point to point measurements between
different cliques and hierarchical levels. Co-ordination of measurements is
performed by a token passing protocol using adaptive time-out discovery, and
with algorithms in place to deal with token loss due to network segmentation or
node failure.

Prediction algorithms used in the Network Weather Service fall in three basic
categories: mean based, median based and autoregressive methods[65].
Additional Forecaster modules can be developed to increase the quality of
predictions, for predicting specific sensor metrics, or for operation in special
environments. NWS operates a competitive environment for different Forecaster
modules, requesting each to produce their prediction every time a forecast is
required. Prediction errors of each module are tracked, and the one with the
lowest cumulative error is selected for further predictions. In this way, NWS
automatically identifies the best forecasting technique for any given resource[68].

Network Weather Service is targeted at predicting wide area network
performance, and although it can be extended with custom sensors it does not
render itself immediately to process execution time predictions. Circular storage
methods used are similar to round-robin databases used by the Ganglia Cluster
Monitoring, but provide even less historical information. Self-selection of the
best prediction method is a novel and useful feature, but it also impose significant
computational overhead on prediction calculation. This may not be relevant with
simple mean and median based predictors, but may become so if a more complex
Forecaster is developed. Regardless, NWS presents a seminal work in monitoring
and resource utilisation fields, and clearly demonstrates the value of insight into
historical monitoring data. Its simple, yet effective, prediction methods show that
even moderately accurate predictions can be used with great success.

3.4.4. Other

Several other monitoring systems are used in the Grid community, usually with a
more specific focus on one of the aspects of the system’s operation. Often, large
projects assemble toolkits of loosely coupled best-of-breed components, and
distribute them as part of their customised Grid middleware.

GridMon[69] is a UK e-Science project monitoring network performance
between each of the regional e-Science nodes. Using a suite of tests based on
simple ping scripts and Iperf utility, GridMon confirms connectivity and
measures packet loss, round trip time and TCP/UDP throughout. A more
intrusive test establishes end-to-end application level performance by copying
large files (1 to 80 MB) using SSH file transfers. All measurements are done from
each node to each other node, thus creating a mesh matrix. This approach leads
to a very intrusive and non-scalable network monitoring, appropriate only for a
current small number of e-Science centres (12-15). GridMon publishes its
measurements using a Web based visualisation suite, LDAP service or OGSA
compliant web service.

 Page 34

Aleksandar Lazarevic Transfer Thesis

Condor Hawkeye[70] is an extension of the Condor high-throughput cycle
harvesting system (see Section 3.2.2), and is based on the ClassAd messaging
protocol used in Condor-G. Hawkeye configures Condor pool master to
periodically run a selection of scripts which take measurements and generate
appropriate ClassAd messages. These monitoring messages can then be used to
execute complex selections or conditional queries when submitting jobs.
Hawkeye integrates well with a large installed base of Condor pools, and
requires little administration effort. However, due to the (in)frequency of
measurements, it is more of a summary utilisation and problem reporting tool
than a high resolution resource utilisation monitor.

3.4.5. Conclusions

As with other management components, Grid infrastructure has inherited
monitoring applications from the cluster and main-frame world. Currently, most
monitoring systems will deploy the probes statically, perform the measurements
in predefined frequency, and use static data retention policies. All data collected
is treated and retained equally, and no differentiation is made based on temporal
or relevance criteria. This framework creates a rigid structure in which no
adaptation to the granularity, frequency, or communication parameters is
possible based on the operating environment conditions. Apart from introducing
overheads[71], this approach can not monitor a large scale distributed and
dynamic environment effectively, and would not be able to concisely present
required information when and where it is most necessary.

 Page 35

Aleksandar Lazarevic Transfer Thesis

4. CHAPTER FOUR

SO-GRM PROJECT

The author’s research work is part of Self-Organising Grid Resource
Management (SO-GRM) project[72], sponsored by Engineering and Physics
Research Council (EPSRC) and in collaboration with BT Research labs. SO-
GRM is base research project aimed at developing an autonomous management
infrastructure able to support the job execution through its full lifecycle – from
job admission through scheduling and resource discovery to security monitoring.
Every component of the SO-GRM architecture shares the same objectives:
removing single points of failure through a distributed approach, reducing the
administration load by using policy based management and creating agile, on-
demand system through the use of self-organising principles.

The SO-GRM aims to present a platform for integrated testing of scheduling,
simulation and monitoring components developed by the author. A Grid testbed
has been deployed by the author (see Figure 3), and runs a full set of Globus
middleware, supporting applications and SO-GRM components. Although of a
limited size, the testbed should reflect a real Grid production-like environment
and offer a good opportunity for in-situ testing.

This chapter briefly introduces the components so far developed by the
contributors of the project (including the author), and reports on the
functionality tests undertaken on the project’s Grid testbed. Section 4.1 discusses
the problem of Service Level Agreement management within the Grid; Section
4.2 presents a novel resource discovery protocol based on small-worlds topology;
while Section 4.3 describes a novel distributed intrusion detection system. In
Section 4.4 test set-up, methodology and results are discussed, while Section 4.5
concludes this chapter.

 Page 36

Aleksandar Lazarevic Transfer Thesis

4.1. SLA Management

As the highest level management component in the system, Service Level
Agreement (SLA) Management (SLAM) [73] is responsible for negotiation of
service level agreements between commercial Grid operators and users, and
among commercial Grid operators themselves. In the context of our research, an
SLA describes the expected performance of the system from consumer/user’s
point of view. As we seek to provide an intuitive interface to the system, an SLA
might not be expressed in explicit terms, stating for example the number and
specification of required machines, minimum network bandwidth and latency
required or similar. It is more likely that a user-level metric such as percentage of
successful web hits, or deadline for application execution will be used. SLAM is
expected to provide methods for translation of those abstract service level
objectives into implicit low level resource requirements. Once these are obtained,
admission control is undertaken to check the subscribed load of the cluster and
assess whether such an SLA can be honoured. If that is the case, it is assigned a
unique SLA identifier, used to tag each subsequent job relating to that SLA.
Current version of SLAM provides a Type of Service (ToS) indicator that can be
used by operators to prioritise certain jobs or ensure certain resources are
reserved for higher value SLAs. On acceptance of a new SLA, a new Virtual
Organisation (VO) is populated and serves as a container for all resources
assigned to that SLA. This VO is populated through resource discovery
procedure, and can dynamically grow and shrink within the bounds set by the
service level agreement. This adaptive behaviour enables better utilisation
through controlled oversubscription of resources.

SLAM is implemented as a Java application and runs on a single node in the
network. Basic operation has been confirmed in the live test runs, and new
functionality and improvements are being added.

4.2. Resource Discovery

Self-Organising Resource Discovery (SORD) [74] component is tasked with the
discovery of computational resources which satisfy conditions set by SLA
management and the scheduler. SORD is a distributed protocol in which each
node acts autonomously to discover the most suitable host to serve a specific
request. Initially each node is connected to a number of topologically near nodes
(called neighbours) and few random far nodes thus creating a small-world
topology [75]. These topologies have previously been considered in the problem
of routing with local information and allow distribution of information to the
correct recipient by using shortcuts. The protocol uses XML encoded query-
reply and advertisement messages with limited time-to-live, and stores received
responses in fixed size cache tables. By using different tables for each of the
queried metrics different virtual topologies are created, and certain nodes evolve
as most frequent successful candidates for fulfilling requests for such metrics (i.e.

 Page 37

Aleksandar Lazarevic Transfer Thesis

node with much more physical memory than other nodes in the network will be
a firm favourite for memory intensive applications). Main objectives in the design
of the protocol where scalability and resilience to single node failures, both of
which have been successfully met. The protocol implementation and integration
with other components and Globus middleware was tested on the SO-GRM
testbed, while extensive simulation has been done to examine its scaling
properties. More information on scalability and successful resource discovery
rates can be found in previous publications by Ioannis Liabotis [76, 77].

4.3. Integrity Information Intelligence - I3

Integrity Information Intelligence (I3) is a distributed run-time intrusion
detection system. I3 is a combination of anomaly and misuse detection systems:
initially trained with the features of a well behaving process, I3 is subsequently
able to recognise suspicious utilisation patterns. Suspect patterns are classified as
either re-occurring offending bad behaviour, or a new ambiguous feature. In the
later case, one-off human intervention and classification is required. The feature
set defining an anomaly is stored locally, with all other nodes in the network
immunised by broadcasting the anomaly’s definition as an XML antidote. Raw
monitoring data is processed through the feature extraction algorithms that
calculate central moments, and based on these mean, standard deviation,
skewness and kurtosis. Outputs of these functions feed the classifier component
which treats them as points in a multidimensional space. The classifier uses
mahalanobis distance [78] to compare the level of matching between the training
set and obtained data, and hence decide on the nature of the observed pattern.

I3 agent is implemented as a Java application running on each node in our test
Grid. In both simulation and testbed deployment I3 has provided process
classification with less than 1% error rate for a suitably configured threshold
detection value. More information can be found in [74, 77, 79].

4.4. Functional and Integration Testing

Further to previous simulations and isolated testing of SO-GRM components, a
functional and integration test of the overall system was performed on the Grid
testbed. SORD, I3 and SLAM were developed in Java, exclusively use XML for
message passing and data storage, and have been previously tested independently
to ensure proper core functionality. It was therefore decided to use eXist[80]
XML database as data storage on local node and global VO levels. This was
primarily a choice of design convenience and deployment speed; SO-GRM
management system can be adapted for used with any other data storage method.
Architecture block diagram is shown in Figure 3.

 Page 38

Aleksandar Lazarevic Transfer Thesis

R
E
S
O
U
R
C
E

SORD

I^3

SORD

I^3

SORD

Grid Middleware (Globus Toolkit, Sun GridEngine)

Monitoring
(Ganglia,
MDS, ps)

globus-
run

Domain Management

Historical
Data

Scheduling and Resource Managment

Local
Exist

I^3

Local
eXist

Local
eXist

Domain
eXist

To other VO
domains

Service Level
Agreement

Domain specific
policy

Job Request + Job
Resource

Requirements

Figure 3 SO-GRM Architecture Block Diagram

Each node ran a full set of components with multiple management nodes
maintaining domain and VO-level SLAs, policies and accounting data. The
integrated monitoring suite, developed by the author and further described in
section 6, provided all the measurements data. Grid application load was
simulated using a suitably parameterised GridLoader tool, also developed by the
author and detailed in section 5. Resource utilisation measurements and other
monitoring data was collected and parsed into eXist XML database for
consumption by all other components.

SO-GRM demo was run on a test bed consisting of six machines in the
Department of Electronic and Electrical Engineering at UCL and six machines at
the BT Research Lab at Adastral Park. Machine specification and installed OS
and software components are given in Table 1.

Specification: UCL Domain BT Domain

CPU AMD Athlon 2400+ PIII 550

Memory 512MB 256MB

Network 100Base-T Switched 100Base-T Switched

OS Red Hat 9 Red Hat 8

 Table 1 Demo Testbed Specification

 Page 39

Aleksandar Lazarevic Transfer Thesis

The two sites were connected through a routed ATM link which was only
partially under our group’s control. Together with other administrative issues
this ensured the demo was performed in a production-style environment, with
sites residing in two distinct administrative domains and on two separate
networks. Testbed network diagram is given in Figure 4.

ATM ATM

100 Mbps Ethernet100 MBps Ethernet

Certification
Authority

XML Database
Cluster

Monitoring
LearNET

ATM Router

Local
Administrator

UCL Administrative
Domain

BT Administrative
Domain

User

Corporate
Firewall

Figure 4 SO-GRM Testbed Network Diagram

The main purpose of the demo was to confirm end-to-end functionality and
verify component integration. The test scenario called for establishment of a new
SLA to support jobs arriving at the nodes in the BT domain with ToS requiring
dedicated use of the machines. UCL was to supply secondary resource pool for
jobs overflowing from BT’s domain, or jobs whose resource requirement could
not be satisfied within BT’s domain (typically high physical memory
requirements). As all components run in full debug mode, performance issues
were of secondary interest. Figure 5 shows the output of SORD debug windows
in process of querying the neighbouring nodes for resources according to the
submitted request. In the top left of the screen CPU monitors show around 70%
loading on three out of four hosts; remaining unloaded node will be used for the
next incoming job.

 Page 40

Aleksandar Lazarevic Transfer Thesis

Figure 5 SO-GRM Demo Screenshot

First demonstration was run in December 2003 with subsequent runs and tests
taking place until February 2004. Each component was scrutinised and further
work needed was identified, as shown in Table 2.

SORD
 Able to receive and interpret XML resource discovery requests
 Able to communicate with other SORD agents
 Able to query XML database for resource utilisation measurements
 Able to send jobs for execution to discovered target nodes
 Resource pool too small to produce self-organising topology

I3
 Able to obtain high-frequency CPU and memory utilisation data
 Able to store formatted data into XML database
 Able to monitor processes and perform anomaly detection
 Able to communicate with other I3 agents and exchange antidotes

SLAM
 Confirmed basic functionality, proof of concept
 Able to acquire cluster overview from Ganglia XML repository
 Able to accept SLA negotiation request
 Able to mark up job requests and nodes with appropriate SLA id
 Negotiation and prediction engine in development
 Historical performance repository not yet implemented

Measurements and Monitoring (Author’s Contribution)
 Confirmed functionality of Ganglia Cluster Monitoring

 Page 41

Aleksandar Lazarevic Transfer Thesis

 Confirmed functionality of external information providers
 Able to provide responses to cluster state queries
 Able to retrieve and customise the storage of high-frequency

GridLoader (Author’s Contribution)
 Confirmed proper operation on all target platforms
 Confirmed proper block and network I/O, memory allocation
 Requires more testing of adherence to requested load parameters

Table 2 Conclusions of SO-GRM Test Runs

Overall, demonstration was successful in proving correct integration of
components and served as a proof-of-concept for the overall management
structure. The testbed continues to be maintained by the author, and will be used
for further testing of GridLoader, the measurement and monitoring application
suite, and the scheduling framework.

4.5. Conclusions

Self-Organising Grid Resource Management (SO-GRM) project has been
presented in this chapter as a platform for integrated research in Grid resource
discovery, scheduling, and security. The project components rely on
autonomous, self-organising and distributed concepts to deliver a scalable Grid
resource architecture with high degrees of self-management. The components
have been deployed on the testbed, their functionality was confirmed and their
performance tested. Areas requiring improvement, and the direction of possible
further work, have been identified.

 Page 42

Aleksandar Lazarevic Transfer Thesis

5. CHAPTER FIVE

GRID APPLICATION SIMULATOR

The following sections present the author’s work on the Grid application
simulator, called GridLoader. Section 5.1 briefly reiterates the motivation for
development of such a tool (already presented in 2.3), section 5.2 captures the
requirements, and section 5.3 presents the implementation of the GridLoader.
Results of functional and qualitative testing are given in section 5.4, while section
5.5 gives direction for future work and concludes the chapter.

5.1. Motivation

The simulation tools available in the Grid research community, as surveyed in
Section 3.3, could not fully satisfy the requirements for testing and optimising
author’s proposed probabilistic scheduler. GridLoader application was motivated
by the need for a controllable and tuneable load generator, able to simulate the
job statistics of applications run in the production Grid environments. Such tool
would allow testing of the scheduling algorithm, monitoring component, and all
aspects of the SO-GRM management framework in a realistic usage scenarios,
without the problems usually associated with running on a live production Grid
system.

Through author’s work on a suite of monitoring applications, and its deployment
on a production Grids running various application, real-life statistics on job
arrival rates, their duration, distribution and resource utilisation will be obtained.
With this information, it will be possible to parameterise GridLoader to present a
realistic load to our scheduler, and compare its performance against the scheduler
used on the production system.

 Page 43

Aleksandar Lazarevic Transfer Thesis

5.2. Requirements

To represent a realistic Grid application, the GridLoader was required to
simulate processor utilisation, memory allocation and network utilisation. The
execution of the GridLoader would have to be fully parameterised, with suitable
tools to facilitate orchestrating large simulation runs. Such deployment tool
would decouple the overall statistical properties of jobs submitted to a cluster
(whose CPU utilisation could be modelled as a skewed exponential function for
example) from the resource utilisation statistics of a single node (on which an
application’s CPU utilisation could be modelled as a normal distribution).

One of the approaches for simulating a realistic application load, often used by
benchmarking applications such as SPECmark, is executing a representative set
of application code snippets in an automated way. This method gives a degree of
repeatability[81], enabling comparison of hardware implementations by
maintaining an unchanging application load.

The probabilistic and self-organising nature of the SO-GRM components would
require a more fluctuating and dynamic testing environment.

Although similar is possible using trace-replay simulation systems (see SimGrid
section 3.3.1), author’s aim is for the GridLoader to be able to create a statistical
distribution of similar loads, maintaining a level of ambiguity and challenging
self-organising and adaptive components.

An important requirement was achieving the right balance between deterministic
and probabilistic modes of operation. The simulation runs should be repeatable,
and all simulation parameters should be adhered to if any incremental
improvements to the management components are to be recognised. At the same
time, a probabilistic element in the simulated application behaviour is required
for a realistic and diverse environment to form, and for components’ adaptability
and self-organisation to be exercised. Different resource may also have to be
simulated with different distribution functions and parameters – network
transfers may have a substantially different statistics than the CPU utilisation.

The GridLoader would need to be submitted through Grid middleware on the
target site just like any other Grid application. To reduce administrative and
portability issues, a simple and portable code running under user privileges
would be highly desirable.

5.3. Implementation

GridLoader is based on a state machine, with different states representing CPU,
memory and network loading stages. UML diagram showing this structure is
given in Figure 6. Current version of GridLoader uses a deterministic state
transition table, progressing through network loading, memory allocation and
CPU utilisation states in progression. This is similar to an “embarrassingly

 Page 44

Aleksandar Lazarevic Transfer Thesis

parallel” [82] Grid application, such as a parameter sweep tool, staging the input
data, allocating required memory and executing a CPU intensive core
calculations that would usually produce a small result data set. A more
sophisticated model is possible when GridLoader is used with probabilistic state
transition table where all three primary states are entered into many times with
changing probabilities. Although this behaviour is more realistic, and
representative of a more complex Grid application, it creates a very dynamic
environment for all other components and possible faults are hard to locate and
debug. This mode will be used in advanced stages of scheduler operation testing.

Parse parameters

End

Load_Net Load_Mem Load_CPU Load_Idle

State Transition
Probability

All state timers
satisfied

Yes

No

CPU
Epoch
done

Yes

No

Figure 6 GridLoader UML Diagram

5.3.1. Application Simulation Stages

The network loading stage is entered into first. A message 1400 bytes long is
generated, the required value for the duration of the network transfer is stored in
the real-time countdown timer, and a UDP socket is opened to the specified IP

 Page 45

Aleksandar Lazarevic Transfer Thesis

address. A loop is then entered in which the same packet is resent over the
network with an intra-packet delay as parameterised at run time. On timer
signalling the required time has passed, the socket is closed and a flag set for state
transition.

Memory allocation state requests the kernel to increase the memory allocation to
the process by the amount specified at run-time by using malloc function call.
UNIX memory management is handled very differently depending on the
implementation and kernel optimisation options, and may prevent a user process
from directly managing memory allocations. GridLoader ensures that physical
memory is actually allocated to the process by writing random data into the
virtual memory space allocated by the kernel. The memory is freed during final
clean-up state of the application, once all loading targets have been met.

Computational intensive part of each Grid application is simulated in the CPU
loading state. This state contains two real-time nested timers, one keeping track
of the total amount of wall time spent in the CPU loading state, and one tracking
short time slices in which CPU is toggled between full throttle utilisation and
idle. Very frequent swaps between these two stages result in a smoothed
fluctuation of CPU utilisation when observed with above 100ms sampling
period. Wall time duration is specified at run-time, while the duration of each
run-sleep cycle is determined in a random manner using a Pareto (or other)
probability distribution function. This function is randomly seeded at runtime,
and partly parameterised through a command line option. Benefit of this
approach is that even for equally parameterised runs, actual CPU load trace can
be significantly different. This was an essential requirement for the testing of I3
(see Section 4.3) feature extraction engine: GridLoader was able to simulate
anomalies in process behaviour and test I3 malicious process detection rate.

Once all timers indicate that requested loading metrics have been met, final clean-
up stage is entered in which the allocated memory is freed, network sockets
closed, and a log file with details of the execution written. GridLoader can also
operate in a debug mode which produces detailed information about the state
machine and execution timers.

5.3.2. Parameterisation Options

GridLoader was written in ANSI C, does not use any low level function calls or
custom libraries. It compiles successfully on Solaris and Linux platforms. All
parameters of the GridLoader’s simulation can be supplied either on the
command line, or from a configuration file. Screenshot in Error! Not a valid
bookmark self-reference. shows the help screen with the required command
line format.

 Page 46

Aleksandar Lazarevic Transfer Thesis

Figure 7 GridLoader Screenshot

[aleks@android-ee11 gridloader]$./gridload

Grid Loading Application, v.0.9.

ERROR: Must have exactly 5 runtime parameters.

Gridload utilisation:

 gridload <NET> <CPU> <MEM> <BURST> <IP> <PARETO_B>

Where:

 <NET> = NET transfer time in seconds - FLOATING POINT

 <CPU> = Total CPU loading time in seconds - FLOATING POINT

 <MEM> = Amount of memory to allocate in MB - INTREGER

 <BURST> = Interpacket sleep time in useconds - INTREGER

 <IP> = IP address to send network traffic to - DOTTED
NUMERICAL

The run-time parameters have the following meaning:

♦ NET – Total time for network transfer state, expressed in seconds

♦ CPU – Total time of CPU loading state, expressed in seconds

♦ MEM – Integer MBytes value of total physical memory to allocate

♦ BURST – Inter-packet delay time, expressed in μseconds and used to
control the amount of bandwidth used by the network transfer state

♦ IP – Numerical IP address of the peer (or sink) for the network transfer
state

♦ PARETO_B – Pareto parameter B used to influence the idle time
transitions in the CPU loading state. Large value of this parameter cause
the long tail of the Pareto probability distribution to extend, leading to
spikier CPU utilisation trace and larger average levels of CPU
utilisation. Subsequent runs with the same value of parameter B will not
produce equal traces due to different seeding values of the random
number generator.

To give overall cluster loading a certain statistical property, and to facilitate
generation of configuration files for larger GridLoader runs, an auxiliary
application was developed in Matlab™. Two types of parameters can be defined
with either global or local scope. Global parameters influence the overall
behaviour of the whole set of GridLoader jobs in a specific simulation run. These
are used to coordinate the job set, and include the following:

 Page 47

Aleksandar Lazarevic Transfer Thesis

♦ CPU_TOTAL_PARETO_[A/B] – Defines the value of Pareto
probability parameters for generating CPU loading times across the
whole set of jobs. Any other standard probability distribution function
could be used with appropriate parameters.

♦ ITERATIONS – The number of GridLoader jobs to create

♦ NEXTREQ_[MIN/MAX] – Used in a simple batch scheduling script,
defines the range of wait times before submitting the next job. The
values are normally distributed within the set range.

♦ NEXT_HOST_[MIN/MAX/PREFIX] – Also used in simple batch
scheduling operation, defines the next host’s IP address to which the job
will be submitted.

♦ The following parameters define the ranges for the generation of
parameters influencing the behaviour of a single GridLoader instance on
the node it is executing:

♦ CPU_LOAD_PARETO_B_[MIN/MAX] – Sets the upper and lower
bounds on the Pareto B parameter; range of values is generated using
normal PDF.

♦ IP_[LOW/HIGH/PREFIX] – Defines the range of IP values for the
target IP address of the GridLoader network peer. Could be defined as a
single IP address to simulate a master-slave Grid environment.

♦ MEM_[MEAN/MIN] – Sets the GridLoader’s memory allocation
parameter. The value is calculated by adding a random number with the
mean of MEM_MEAN to the minimum value defined in MEM_MIN.

♦ NET_[MEAN/MIN] – Sets the GridLoader’s network transfer time
parameter. Calculated in the same way as the memory value above.

♦ BURST_[MEAN/MIN] – Sets the GridLoader’s inter-packet delay
parameter. Calculated in the same way as the memory value above.

5.3.3. Deployment Scripts

The deployment application will generate a file containing appropriate
parameters for each GridLoader instance, and a configuration file for the batch
scheduling script. The probabilistic nature of the GridLoader is here evident at
different levels. At the global level, two job sets with the same parameters will
not have the same single values, but in both cases those values will fit the same,
requested, statistical distribution function. At the level of a single GridLoader
instance, two equally parameterised runs on the same machine will adhere to the
parameters supplied, but will achieve those targets with a different resource
utilisation profile.

To help visualise the job set being run, deployment application produces a plot of
parameter values with relevant histograms, as shown in Figure 8.

 Page 48

Aleksandar Lazarevic Transfer Thesis

0 50 100 150 200
1000

2000

3000

4000
CPU Load

S
ec

on
ds

1500 2000 2500 3000 3500 4000
0

10

20

30
CPU Load Histogram

C
ou

nt

0 50 100 150 200
150

200

250

300

350

M
B

yt
es

Memory Allocation

0 50 100 150 200
20

40

60

80
NET Transfer Time

S
ec

on
ds

150 200 250 300 350
0

5

10
Memory Histrogram

C
ou

nt

0 50 100 150 200
0

10

20

30

uS
ec

on
ds

Packet Burst Delay

Figure 8 Matlab Generated GridLoader configuration file output

5.4. Self-Test Results

Before using GridLoader to test other components of the SO-GRM management
architecture, a test of its own reliability was undertaken. Primary concern was
the quality of resource utilisation models and adherence to the specified
parameters such as the execution time and the size of memory allocated.

To test the reliability of overall timekeeping, a set containing 120 jobs taking
around 24 hours to complete was created and run in sequence on one node in the
testbed Grid (see Figure 4). A simple batch scheduler script was run on a
“master” node and used to submit jobs through either Globus Toolkit 2.2
middleware or Secure Shell (SSH) to a dedicated “slave” node. Same job set was
then re-run locally on the “slave” machine in order to differentiate between
GridLoader’s systematic error and any overheads that these middleware
introduce. Figure 9 shows a percentage difference between expected and actual
execution times for a sample of 50 jobs and for all three different execution
methods.

 Page 49

Aleksandar Lazarevic Transfer Thesis

GridLoader Execution Time Deviation
 GridLoader SSH Globus 2.4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Job ID

0

2

4

6

8

10

12
P

er
ce

nt
ag

e
D

ev
ia

tio
n

[%
]

Figure 9 Expected v Actual GridLoader Runtime

Running on the local node, actual GridLoader execution times are less then 2%
greater than expected. This is due to the system overheads such as setting up
network transfers, allocating memory and random number generation, which are
not accounted for in the timekeeping of the program. As this level of increase in
execution time is intrinsic to the operating system, and would be present for all
applications, we found that a realistic and accurate simulation of the total length
of the job can be achieved using GridLoader.

As previously described, a loose control on the level and shape of CPU loading
can be exercised by specifying different values of Pareto parameter B at run time.
A parameter sweep test was undertaken to establish the upper and lower bounds
of these values that provide a usable result. During these tests it was noted that a
low value of the parameter will result in a longer duration of CPU idle time, and
thus a lower average load. Higher values of the shaping parameter cause Pareto
probability function to draw high numbers for CPU intensive loops and leads to
higher average utilisation and pronounced load spikes. GridLoader’s
probabilistic routines will create a similar, but not equal, trace for each equally
parameterised run.

Reliability of the duration of network transfers was established as part of the
overall test of GridLoader timekeeping. The influence of inter-packet delay
parameter was examined through a parameter sweep test. By using network
monitoring package Iperf, bandwidth utilisation between the “slave” node
executing GridLoader and a designated traffic sink node was measured. The
inter-packet delay parameter provides a soft control of the amount of bandwidth

 Page 50

Aleksandar Lazarevic Transfer Thesis

used, and not a strict upper or lower limit. This kind of probabilistic behaviour is
sufficient for the required simulation of the network traffic and, considering the
aims of the simulation, its probabilistic nature is beneficial. The use of the UDP
network protocol, and its lack of bandwidth control mechanisms, could lead to
network congestion issues in large GridLoader simulation runs. It remains to be
assessed whether such conditions would impair the running of the simulation or
added another realistic aspect of the production network environment.

Sequential memory allocation and freeing has been monitored using the Ganglia
system, as shown in Figure 10. The test were carried out to confirm actual
physical memory is being allocated, and that this could lead to memory
contention as in the case in production environments. The granularity of the
allocations is one megabyte which is considered sufficient considering very high
memory utilisation of most Grid applications.

Figure 10 GridLoader Memory Utilisation Testing

5.5. Conclusions

In this chapter, a novel Grid application load simulator tool, GridLoader, has
been described. GridLoader provides a way for parameterised and probabilistic
simulation of application CPU, memory and network usage. Deployment scripts
facilitate creation of run-time parameters for large simulation runs, enabling these
to follow statistics of jobs observed on the production Grid facilities. Testing of
GridLoader functionally and reliability has been undertaken and reported on.

During the stand-alone testing phase of the GridLoader, a number of minor
problems and issues were discovered.

From the implementation perspective, a better CPU loading algorithm would
prove very useful. Some cases exist where a constant, predefined level of CPU
load should be simulated, such as visualisation applications or other applications
bound not computationally but by some other factor. These could not be
precisely simulated using the currently implemented probabilistic approach.

GridLoader heavily depends on the quality of the random numbers generated
within the programme, and the seeding mechanism for the random number
generator. Although better generators than the one used in GridLoader are
available, these would require additional libraries which may not readily be

 Page 51

Aleksandar Lazarevic Transfer Thesis

available on the target platforms. As no adverse effects associated with random
number generations were observed during debug runs, the current approach is
considered adequate.

Significant problems were caused by the real-time clock resolution and lack of
synchronisation between the Grid nodes. Globus X.509 certificates carry a
begin-end validity period with one second granularity, and in a network without
proper clock synchronisation a certificate may become valid on one machine
before it does so on another. This leads to the job being rejected due to incorrect
credentials, an error message often associated with other issues within the Globus
Security Infrastructure and Certification Authority problems.

Overall, the parameter generator application and the GridLoader were successful
in creating a job set with given statistics, and executing it according to the
parameters required. Appropriately parameterised GridLoader will be able to
simulate a realistic eco-system of Grid applications and present a diverse and
varied load to the Grid management components on test.

Development of GridLoader is a distinct contribution of this thesis. Apart from
its primary intended use as a Grid application simulator described above,
GridLoader can potentially be used as a testing tool for confirming end-to-end
application level operation of Grid middleware. With a suitable parameter set,
GridLoader could also be used to stress Grid hardware and middleware
components to the edge of their operational envelope, thus exposing any possible
points of failure or performance bottlenecks.

 Page 52

Aleksandar Lazarevic Transfer Thesis

6. CHAPTER SIX

MONITORING FRAMEWORK

A detailed account of the monitoring framework developed by the author will be
presented in this chapter. Section 6.1gives the motivation for developing the
monitoring suite, while Section 6.2 captures the system requirements. Section 6.3
gives details of the implementation, Section 6.4 provides results of functionality
and reliability tests, while Section 6.5 concludes the chapter.

6.1. Motivation

Current Grid monitoring systems, as previously summarised in Section 3.3, offer
scalable and effective monitoring of resource utilisation on a per-node basis. As
one must assume a general case where Grid nodes will be both time- and space-
shared, these measurements bear no relationship to the actual resources used by
any single application. Even in the case of a dedicated Grid host, the footprint of
current Grid middleware, management and security components is such that the
overall node resource utilisation will be very different to that of a single user
application.

The author’s motivation was to extend one of the current monitoring systems to
provide process-specific measurements of resource utilisation in an unobtrusive
and scalable way. Extension to an already established monitoring system would
have the benefit of an already established user base, giving access to wider source
of data. It will also remove any switching cost from the user’s perspective and
alleviate administrator’s reservations about installing unproven software.

 Page 53

Aleksandar Lazarevic Transfer Thesis

6.2. Requirements

The basic requirements for a Grid monitoring system are support for a wide
range of operating systems and hardware architectures, effective data storage
methods, and the use of efficient and standardised communication protocols.

The additional requirements for successful integration with other SO-GRM
management components were an extensible metric sampling interface, the
possibility of integration with the Globus MDS, and support for XML encoded
messages.

The monitoring system of choice should be able to integrate per-process resource
utilisation metrics into the standard flow of measurement data, fully supporting
storing and retrieving such additional information through its usual data access
methods.

6.3. Implementation

The measurement suite herein presented is based on the Ganglia cluster
monitoring system. Ganglia was selected for its extensible data collection
interface, effective storage of data in fixed size round-robin databases, use of
XML encoded measurements, and customisable unicast and multicast delivery
protocols. It has previously been extensively used with Globus Toolkit and
successfully integrated with MDS using the Glue Schema [83]. Various platform-
specific information providers have been developed, and this modular design
offers a clear path for implementation of per-process resource utilisation
monitoring.

6.3.1. Ganglia Functionality

The monitoring suite is implemented through a set of Ganglia applications,
compiled code, and shell scripts developed by the author. All code was written
with portability in mind and relies on UNIX standard libraries and script
commands. Figure 11 presents the layout of monitoring components in a block
diagram.

 Page 54

Aleksandar Lazarevic Transfer Thesis

LAN / WAN

gmetad sweep-
rrdRound-robin

database

Persistent
Storage

Compute Nodes Compute Nodes

Ganglia
Web

Frontend

gmond

custom-
metric

Figure 11 Monitoring Components Block Diagram

Ganglia Cluster Monitoring core provides two daemon modules:

♦ Ganglia Monitoring Daemon (gmond) – collecting basic information
about each node in predefined intervals, encoding it in XML and
providing network transport mechanism

♦ Ganglia Meta Daemon (gmetad) – receiving information broadcasted by
all or some of the monitoring daemons, and storing it in the round-
robin databases. It also answers queries about overall state of the cluster,
and provides a programmatic interface to queries on data contained in
the databases.

Round-robin database (RRD) [60] is a fixed sized database targeted at storing
time-series data. Each database can contain several data sources (DS), and each
data source has a number of round robin archives (RRA). These archives could
be thought of as layered tooth-wheels, each wheel slot containing one sampled
value. On database creation the frequency of rotation of these wheels is defined,
and a consolidation function (CF) is given for each data source. Once the wheel
makes a full turn all of its data is passed through the consolidation function
(usually average, minimum or maximum) and the result is written as one sample
point in the next hierarchical wheel. The size of the database is kept constant,
since the high frequency data will be kept for a limited duration before being
consolidated. Depending on the target application, this behaviour may be a
desirable feature or a disadvantage.

Ganglia Monitoring Daemon can use either unicast or broadcast UDP packets to
transport XML encoded measurements. Each gmond can be set up to either
listen to other daemons (mute mode), transmit its measurements to other peers

 Page 55

Aleksandar Lazarevic Transfer Thesis

(deaf mode), or do both. By configuring certain nodes to be muted or deafened, a
distributed system with no single point of failure can be created. In our test
implementation, all but one Ganglia monitoring daemons were configured in
deaf mode. One node in the network run the non-deaf daemon, as well as
gmetad, and provided storage for all databases. This centralised network
configuration was appropriate provided the size of our test network (no more
than 10 nodes at any time), and the goal of our tests.

6.3.2. Information Providers

The author has developed custom information providers to provide monitoring
of CPU utilisation and memory footprint per each process submitted through
Grid middleware. It is implemented either as a shell script using UNIX standard
ps command, or as a precompiled application (still in development) using libgtop
library. Functionality is similar, as both implementations run as a daemon on
each Grid node and periodically sample CPU and memory utilisation. Criteria
for process selection, and the information collected are fully customisable.
Processes can be selected by their process identification (PID), executable name,
or by username under whose credentials they are running. Information reported
can include any metric available through UNIX /proc system. Process selection
based on the PID is the most efficient and unambiguous method, unfortunately
current implementation of Globus Toolkit does not pass the PID of the remote
process to the job scheduler, nor does it make this information available through
MDS or any other means. This is a widely recognised implementation issue,
impeding improvements in several areas such as grid job workflow and
scheduling concurrency. Next versions of Globus Toolkit should address this
problem. Once the per-process monitoring data is collected, it is transmitted
either by using Ganglia’s gmetric shell command or by using Ganglia’s API
libraries, depending on the implementation.

6.3.3. Database Management Tools

Author’s core research topic will be based on the initial assessment of the
monitoring data, and the development of a suitable prediction algorithm, both of
which will depend on the availability of large amounts of high frequency data.
Consolidation feature of round-robin databases is therefore not beneficial, as
high frequency data would be quickly lost through averaging. A shell script,
sweeprrd in Figure 11, was developed to perform automated data extraction from
RRD databases. The script can be configured to retrieve data on specific nodes
and specific metrics of those nodes, or collect all the data available. Time stamped
measurement values are formatted in a comma delimited format, and stored as
flat text files. The script can either be run as a daemon process or invoked by
UNIX standard cron scheduling daemon. Frequency of execution is
customisable with the obvious limit of at least one sweep within the duration of
the shortest round robin archive in the database (to prevent any data being lost
through consolidation). Database sweeps can be invoked as often as necessary
and at any time; the script will only extract new samples from the RRD database.

 Page 56

Aleksandar Lazarevic Transfer Thesis

6.4. Test results

First phase of the monitoring suite tests was aimed at establishing proper
installation and basic functionality of the Ganglia suite. After modifications to
Ganglia’s default settings, it was necessary to ensure core functionality has not
been affected and stable operation was maintained. Ganglia version 2.6 was
deployed on both BT and UCL administrative domains of our testbed Grid
(shown in Figure 4, and used for day-to-day monitoring of these facilities. Figure
12 shows a typical screenshot of Ganglia web front-end displaying overview of
hosts in the UCL domain.

Figure 12 Ganglia Screen Shot - Cluster Level

In the second phase of testing, per-process monitoring components were
introduced and observations were made on stability of the system, quality and
reliability of measurement, and any increase in system resources utilisation.
Screenshot in Figure 13 shows a single monitored node in the Grid under heavy
utilisation, while screen detail in shows globus-cpu-utilisation metric, revealing
the CPU utilisation attributed to a single Globus submitted job.

 Page 57

Aleksandar Lazarevic Transfer Thesis

Figure 13 Ganglia Screenshot – Node Level

Figure 14 Ganglia Screenshot – Custom Information Provider

(Highlighted)

 Page 58

Aleksandar Lazarevic Transfer Thesis

The third phase of tests was designed to establish the overall monitoring
functionality and the quality of measurements. A sample GridLoader set
containing 50 jobs with Pareto distributed execution lengths was run on a single
machine on the Grid testbed. Full set of metrics including Globus-attributed and
total CPU utilisation were recorded through our monitoring suite with one
second resolution, averaged and published over 15 second periods. Jobs were
submitted from one of the machines in the cluster to a different machine in the
same cluster using appropriate Globus commands. A simple master-slave
scheduling was used, iterating through the job list and allowing 45 seconds
between job completion and next job submission for any transient machine
loading to settle. These transients loads are created by the Globus toolkit job
completion procedures (results stage-out, process cleanup and accounting
updates). Resulting data is plotted in Figure 15.

Observed GridLoader and Total CPU Utilisation
 Total Load Globus Load

1088429500 1088430500 1088431500 1088432500 1088433500

Timestamp

0

10

20

30

40

50

60

70

80

C
P

U
 U

til
is

at
io

n
[%

]

Figure 15 Comparison of GridLoader and total CPU utilisation

The measurements captured the difference between the GridLoader generated
load and the total system load which includes various background processes
associated with Globus middleware, and kernel time servicing network transfers,
memory allocation and process scheduling. Figure 16 shows in more detail
percentage difference between total and GridLoader CPU utilisation. Positive
values indicate greater reported system load than GridLoader generated load.

 Page 59

Aleksandar Lazarevic Transfer Thesis

Percentage Difference in GridLoader and Total CPU Utilisation

1088429500
1088430500

1088431500
1088432500

1088433500

Timestamp

-20

-10

0

10

20

30

40

50

60

70
C

P
U

 U
til

is
at

io
n

D
iff

er
en

ce
 [%

]

Figure 16 Total and Globus-attributed CPU Load Discrepancy

The data shows discernible and repeated peaking in both positive and negative
values. Markers on the same plot indicate recorded job start and end times and
there is a visible correlation between these. Analysis of job events at these
timestamps indicate that discrepancies are partly attributed to the submission and
staging of the next job in the queue. At those times, the machine loading is high,
but the CPU time is not yet attributed to the process being submitted. The
samples coinciding with job start and end times can be filtered, which will lead to
a more balanced plot as shown in Figure 17.

 Page 60

Aleksandar Lazarevic Transfer Thesis

Percentage Difference in GridLoader and Total CPU Utilisation [Filtered]

1088429500
1088430500

1088431500
1088432500

1088433500

Timestamp

-20

-10

0

10

20

30

40

50

60

70
C

P
U

 U
til

is
at

io
n

D
iff

er
en

ce
 [%

]

Figure 17 Total and Globus-attributed CPU Load Discrepancy [Filtered]

This experimental data has exposed a shortcoming in the process monitoring
component which leads to a ramp-up effect in the observed loading
measurements, as seen in Figure 15. This low-pass effect causes large variation
between total node utilisation value and Globus-attributed CPU load at the
beginning of job execution. The software routine responsible for collecting those
measurements uses UNIX standard process reporting calls, and these return
CPU usage as a decaying time average since process initiation. To improve the
accuracy of measurements, a trade-off will have to be made in the portability of
the code. Work on an improved version is under way, focusing on the use of
kernel “jiffies” measurements for a more reliable result.

Another source of discrepancies is different sampling frequency of per-process
and total CPU load measurements. This leads to discrepancies at the end of job
execution. In those instances, per-process load would disappear before total load
is reduced, and this time offset would lead to large difference being reported.

Most of the problems occurred where in the local monitoring component.
However, successful overall operation of the system was confirmed, and sampled
data was correctly integrated in the Ganglia data handling flow (including Web
visualisation). Data extraction tools operated effectively and reliably with no lost
or duplicated samples. Data obtained was readily analysable, and has
immediately provided insight into the extent of difference between perceived and
actual resource usage by Grid processes.

Resource footprint of the monitoring components was acceptable (below 1%);
although an increase was noted as the number of processes to be monitored grew.

 Page 61

Aleksandar Lazarevic Transfer Thesis

This is attributed to the computationally expensive parsing of the processes table
required to obtain process IDs of monitored jobs, and depends strongly on the
criteria used for process selection.

6.5. Conclusions

Presented monitoring solution addresses the whole monitoring cycle, from
measurement data collection, to visualisation and extraction for off-line analysis.
The system has been developed on an open framework to support programmatic
access to the data by the forthcoming scheduler component. Implementation has
taken into account expressed reservations of cluster administrators to running
third party compiled daemons on their networks, and has developed a
transparent monitoring system based on a widely used application. The chosen
approach scales well, being based on a proven core and complemented with
maintenance scripts designed to facilitate deployment and management. This
solution seamlessly integrates measurements specific to the needs of the advanced
scheduler research with an established monitoring framework. Off-line data
analysis is facilitated with the use of the data extraction scripts developed.

Captured measurements, combined with the accounting data from a production
Grid cluster, will allow analysis of the job statistics such as arrival times, queue
wait times, resource utilisation and execution times. It should be possible to
locate any correlation between multiple job runs, and some social and workflow
factors such as time of the day or day of the week when the job was submitted,
and user identity. Considering human workflow, one intuitively expects that a
certain user working on a project will submit jobs of similar nature at similar
times of day expecting a certain turnaround time. Recognising such localities in
the covariant data, and communicating them to the scheduler could result in an
increase in the quality of its predictions.

 Page 62

Aleksandar Lazarevic Transfer Thesis

7. CHAPTER SEVEN

TOWARDS A PROBABILISTIC

SCHEDULER

Examining schedulers currently in use on the Grid (see Section 3.2), it is clear
that current systems leave much to be desired in terms of flexibility, user
convenience and scheduling efficiency. If the Grid applications are to be
successfully mapped onto highly dynamic Grid resources a break from the legacy
batch systems seems inevitable.

This chapter will introduce the envisaged probabilistic scheduling approach, and
is organised as follows: Section 7.1 gives overall aims of this novel scheduling
approach, Section 7.2 presents methods that will be investigated for delivering
such scheduling, while Section 7.2 captures the requirements and restrictions of
the future system. Preliminary data analysis is presented in Section 7.4 and the
deployment plan is given in Section Error! Reference source not found.. A
brief summary and conclusions are given in Section 7.5.

7.1. Aims

To truly live up to the utility computing vision the Grid has offered, application
scheduling needs to offer to the user a decoupled and service orientated
environment, requiring no in-depth knowledge of the physical Grid resources or
application characteristics. The ultimate workflow experienced by the end-user
should be similar to a dry-cleaner service or a photo developing lab: the user
presents a job and decides between several, differently priced, turnaround time
options. The service provider can then decide on how and where to service the

 Page 63

Aleksandar Lazarevic Transfer Thesis

request, trading off between the cost of scheduling (perhaps sending photos to be
developed off-site) and the cost of local resources.

Achieving this level of user abstraction from the underlying scheduling process
requires good knowledge of the nature and complexity of the jobs submitted.
Since these are hard to capture, and may be unknown even to the end-user, the
scheduling system will inevitably need to make predictions and rely on estimates.

The author’s ongoing research will focus on the investigation and development
of the algorithms estimating the job’s execution time and its resource utilisation
profile. The aim of these predictions is to enable a probabilistic scheduling
approach, one that removes hard limiting in terms of execution time or resource
utilisation, and instead relies on the diversity and statistical distribution of Grid
application to ensure adequate scheduling.

Such approach would benefit from manageable oversubscription by statistically
multiplexing jobs at the VO level. From the experience of running batch
schedulers – which has shown that users tend to grossly over-estimate the
requirements of their jobs – this approach could lead to increased overall
utilisation levels while ensuring user’s quality of service is unaffected. This is a
key added value proposition for present hardware operators which are
dimensioning their clusters for peak load and thus seeing very low mean
utilisation levels. A strong business case exists for a novel scheduling technology
that will reduce the mean-to-peak load while maintaining user’s perceived QoS.

7.2. Requirements

As previously discussed in Section 2.2, a novel scheduling system would need to
offer added value to the end-user, the Grid resource owners and, indirectly
through the reduction of the total cost of ownership, to the Grid administrators.

From a user perspective the job submission should be simple and the switching
cost minimal – the new system should not require recompilation of the source
code or require the use of any specific middleware.

Resource owners are primarily concerned with maintaining high overall
utilisation, and can benefit greatly from the statistical multiplexing and
oversubscription that probabilistic scheduling could deliver. A simple control
mechanism should be made available allowing the overall level of utilisation and
the level of the scheduling safety margin, to be easily and dynamically changed.
Through such mechanisms, resource owners should be able to trade-off resource
utilisation levels with the quality of service provided according to their business
model.

By using commodity components in the Grid clusters, the total cost of operation
is significantly influenced by ongoing administration and maintenance expense.
New middleware components would need to ensure administrative burden is
kept to a minimum by trying to offer a self-managed service able to adapt and
autonomously resolve as many operational issues as possible.

 Page 64

Aleksandar Lazarevic Transfer Thesis

Proposed scheduler will make no presumptions of the nature of the jobs running,
their monolithic or distributed nature, criticality of any one sub-system on their
operation (network performance, memory bandwidth and similar), or their
internal optimisation for any given platform. Rather than try to model these
parameters directly, it is expected that their influence will reflect on one of the
monitored metrics. For example network performance may strongly influence
the execution time of a certain job, and may also be very dependant on the time
of the day when the congestion is most likely to occur. The scheduler may
therefore pick up on the correlation between submission time and actual
execution time for a certain job highly dependant on network bandwidth.

7.3. Methodology

To estimate a job’s execution time, the author’s selected approach will investigate
the relationship between an application’s historical execution times and meta-
data related to the operating environment at the time of execution. A range of
“hard metrics” such as scheduling wait time, execution time, effective CPU time,
memory utilisation and similar will be investigated. These will be observed in a
broader perspective of the Grid environment, correlating them with a set of
various “soft metrics” such as job submission time of the day and day of the
week, submitting user and group, overall load of the cluster etc.

Intuition, supported by preliminary analysis presented in the following section,
and the sequential nature of the human workflow leads me to believe that an
observable and predictable utilisation pattern will develop in a production cluster
with a significantly large and diverse user group.

To benefit from these, the proposed scheduler should enable autonomous and
intelligent coupling of monitoring data, accounting records and operational
meta-data in a framework able to analyse current and historical usage patterns of
the system. It should operate with little or no user intervention, and act as a
passive observer of the system’s performance, user’s habits and overall trends.
Targeted at large production Grids, this probabilistic scheduling will be based on
the statistics of a large number of jobs with widely varying resource utilisation,
execution length and arrival characteristics. In this Grid eco-system, the
scheduler should be able to distinguish trends, seasonal variations and inter-
metric dependencies, providing a confidence factor for its predictions and
learning on its own mistakes.

With a low system utilisation overhead, and negligible user switching costs, the
scheduler aims to provide a better-than-guess estimate on job resource
requirements and execution times. Although the accuracy of such predictions
would be seen as a natural key performance indicator, previous research work
and experiential evidence has shown that the timeliness of the predictions and the
ability to subsequently refine them play a much more important role. In view of
the dynamic characteristic of the Grid resources, an in the author’s own view,

 Page 65

Aleksandar Lazarevic Transfer Thesis

accuracy of the predictions will come second to the ability of the scheduler to
constantly adapt to the changing operational environment.

7.4. Preliminary Analysis

Preliminary analysis of accounting and usage records of the UCL’s Central
Computing Cluster (CCC) facility has shown that a diverse user community had
developed, running jobs with very different statistical properties. Based on
accounting records since 10th of August 2004., an up to the end of year 2004.,
more than 50,000 jobs have been run totalling in excess of 5,500 CPU days.

7.4.1. Overall Job Statistics

The following analysis is based on a representative sample of 1000 jobs submitted
in a 15 hour period in November 2004. Figure 18 is a log-normal plot of the wall-
clock execution times of these. On its own, this series of execution times offers
little insight into the effectiveness or quality of the scheduling, the level of
resource utilisation, nor does it readily offer any predictions on the future
loading of the system.

Wall Clock Execution Times - All Groups

38400 38600 38800 39000 39200 39400 39600 39800

Job ID

50

500

5000

50000

Ex
ec

ut
io

n
Ti

m
e

[s
]

Figure 18 Wall-Clock Execution Times for All Jobs

However, Sun Grid Engine maintains a text accounting file containing extensive
details of the jobs run in the past, including the username of the submitting entity

 Page 66

Aleksandar Lazarevic Transfer Thesis

and the group to which this username belongs. On the CCC facility, these are
centrally administered entries, set on account opening according to the user’s
project and department affiliations. Although the location of this data may
change from system to system, it will inevitably be present on the accounting file
in some way. Those fields can hint at the nature of jobs submitted by the users,
and such job’s resource requirements, execution times and arrival rates. Figure 19
is a pie-chart plot of the number of jobs submitted by each user group. Clearly a
large difference between the groups exists, and further analysis should investigate
the properties of each individual group.

Job Distribution by Submitting Group

matsim, 933, 93%

geogrs, 48, 5%
ocotir, 19, 2%

Figure 19 Job Distribution by Submitting Group

7.4.2. Group-based Job Differentiation

Separating execution times of each of the user groups, and graphing them as a
time series plot in Figure 20, reveals a strong differentiation between groups.

 Page 67

Aleksandar Lazarevic Transfer Thesis

Execution Time - ocotir Group

38624
38626

38628
38630

38632
38634

38636
38638

38640
38642

38644
38646

Job_ID

0
5000

10000
15000
20000
25000
30000
35000
40000

45000
E

xe
cu

tio
n

Ti
m

e
[s

]

Execution Time - matsim Group

38600 38800 39000 39200 39400 39600 39800

Job_ID

0

100

200

300

400

500

600

700

800

900

E
xe

cu
tio

n
Ti

m
e

[s
]

Execution Time - geogrs Group

39120 39130 39140 39150 39160 39170 39180

Job_ID

0

20000

40000

60000

80000

1E5

1.2E5

E
xe

cu
tio

n
Ti

m
e

[s
]

Figure 20 Wall-Clock Execution Times for Different User Groups

It is clearly seen that certain groups (such as geogrs) submit jobs whose duration
is, on average, several orders of magnitude longer than those of other groups (like
the matsim group). The number of jobs submitted by each group is also inversely
proportional to their typical execution length.

 Page 68

Aleksandar Lazarevic Transfer Thesis

Of great interest is the distribution of job execution times within each of these
identifiable groups. An array of histograms in Figure 21 shows significant
differences in the shape of these distributions.

Execution Time Histogram - ocotir Group

5 100 200 500 2000 5000 10000 20000 30000

Execution Time [s]

0

1

2

3

4

5

6

N
o

of
 J

ob
s

Total No: 19

Execution Time Histogram - matsim Group

71 124 176 229 281 334 386 439 492 544 597 649 702 754

Execution Time [s]

0

20

40

60

80

100

120

140

160

N
o

of
 J

ob
s

Total No: 933

Execution Time Histogram - geogrs Group

82000 86000 90000 94000 98000 1.02E5 1.06E5 1.1E5 1.14E5

Execution Time [s]

0

2

4

6

8

10

12

14

N
o

of
 J

ob
s

Total No: 48

Figure 21 Histograms of Wall-Clock Execution Times for Each Group

 Page 69

Aleksandar Lazarevic Transfer Thesis

Jobs submitted by some groups fall into normal distribution of execution times
(like geogrs), while others follow a clearly skewed, long-tailed distribution.
Applications will require development of different statistical models in order to
represent them with acceptable accuracy. But benefit to scheduling process are
already clearly visible: Figure 22 gives a mean plot with outliers (values 150%
outside 25th - 75th percentile) of execution times of the three user groups
represented in this sample of jobs (group isadmin had only one job and
represents the system administrator account). The groups are clearly separated,
spanning five degrees of magnitude, yet with a small 95% confidence interval
relative to their respective execution times. These observations have important
implications for the feasibility of predictions and their quality.

Execution Times Mean Plot - All Groups
 Mean ±0.95 Conf. Interval Outliers

matsim geogrs isadmin ocotir

User Group

0

20000

40000

60000

80000

1E5

1.2E5

W
al

l C
lo

ck
 E

xe
cu

tio
n

Ti
m

e
[s

]

Figure 22 Execution Time Mean Plot for All User Group

Observing widely different means and confidence intervals plotted in Figure 22
reaffirms the need for a tuneable, statistical and probabilistic load generator, such
as GridLoader, to adequately simulate observed resource utilisation of Grid
applications.

7.4.3. Data Clustering and Correlation

Considering matsim group in more detail, see Figure 20(b), we observe at least
two modalities of execution times, with a clear break at around Job ID 39150.
Closer inspection of the raw traces reveals a 13 minute gap between two groups
of matsim jobs. It is clear that some aspect of the application run by this group
has changed as the application has started exhibiting a significantly different

 Page 70

Aleksandar Lazarevic Transfer Thesis

execution time pattern. The scheduler will have to be able to recognise these
changing temporal characteristics of the jobs, and appropriately adjust the
prediction method and confidence level. By constantly monitoring the quality of
predictions, the scheduler can decide to discard the previous “experience” if it
proves to lead to greatly inaccurate estimates.

To effectively detect changes in metrics that can signal a new execution mode, the
scheduler will need to analyse data for emergence of clusters. An application can
swap between two or more clusters of execution times, or start executing in a
new and yet undefined space. A preliminary analysis using K-means clustering
algorithm[84] and three clusters have resulted in groups having the means as
shown in Figure 23.

Plot of Means for Each matsim Group Cluster
 Cluster 1 Cluster 2 Cluster 3

WClock
-100

0

100

200

300

400

500

600

700

800

E
xe

cu
tio

n
Ti

m
e

[s
]

Figure 23 Plot of Means for Each matsim Group Cluster

Further details of the clustering analysis are given in Table 3. Cluster separation
distances are given as distances below diagonal or squared distances above
diagonal.

Euclidian Distance
 Mean Standard

Deviation Cluster 1 Cluster 2 Cluster 3

Cluster 1 420 51.5 0 85214 29153

Cluster 2 128 38 292 0 214050

Cluster 3 590 56 171 463 0

Table 3 K-means Clustering Analysis

 Page 71

Aleksandar Lazarevic Transfer Thesis

Selecting the first group of matsim jobs, with Job IDs in the range of 38646 to
39125, a study of their correlation was done. The level of execution time
correlation can give insight into the predictability of the data and the reach of
forward looking estimates possible. Figure 24 shows a partial autocorrelation
function plot of wall clock execution times for said selection of matsim jobs with
ten lag steps. The S.E. column in the figure represents white noise standard error.
The execution times correlate with a significant degree up to seven lag steps, with
a very high correlation present in the first lag step. Further correlation studies
will play an important role in the selection of the prediction algorithm.

Partial Autocorrelation Function of Wall Clock Execution Times
 Conf. Limit

-1.0 -0.5 0.0 0.5 1.0
0

 10 +.039 .0456

 9 +.023 .0456

 8 -.081 .0456

 7 +.162 .0456

 6 +.252 .0456

 5 +.181 .0456

 4 +.243 .0456

 3 +.273 .0456

 2 +.347 .0456

 1 +.909 .0456

Lag Corr. S.E.

Figure 24 Correlation of Wall Clock Execution Times (10 lag steps)

7.4.4. Temporal Characteristics

Finally, the matsim job set was treated by simple curve fitting methods as an
initial survey of its predictability. A distance weighted least square method was
firstly used over the whole range of jobs. This method, as shown in Figure 25 in
black dashed line, yielded a reasonable fit, but was marred by slow recovery from
the abovementioned abrupt discontinuity of job execution times around Job ID
39150. A much better fit was achieved by using a negative exponential least
square fitting function, shown in Figure 25 in red line, and this was further
improved by using two fitting functions, one for each side of the discontinuity.
Further research into these, and other forecasting methods will be undertaken.

 Page 72

Aleksandar Lazarevic Transfer Thesis

Prediction Trends
Distance Weighted vs. Negative Exponential Weighted

38600 38800 39000 39200 39400 39600 39800

Job_ID

0

100

200

300

400

500

600

700

800

900
E

xe
cu

tio
n

Ti
m

e
[s

]

Figure 25 Curve-fitted matsim Jobs Scatterplot

This initial analysis of only two metrics, wall-clock execution time and
submitting group, shows the possible benefits of statistical, stochastic and
predictive scheduling system. In this example, on submission of a new job the
scheduler can consult the historical information on previous jobs submitted by
that user group, lookup the distribution of execution times and make a
prediction on the length of the execution of the new job. Even a simple if-then
test can distinguish between two different user groups and jobs that would, on
average, run for 100s of seconds or 100,000s of seconds.

Important consideration in investigation of the collected data is its temporal
characterisation. Following the human workflow, the type and the way
applications are run on the Grid will change over time. Even from the relatively
small amount of data in Figure 20(b), one can observe a positive trend in
execution times for hundreds of runs, followed by a discontinuity with a large
increase or decrease in subsequent runs. These abrupt changes may be caused by
the change in the application’s runtime parameters, update of the underlying
data, or a new research objective may be identified. A robust scheduling system
needs to be able to recognise these discontinuities and take steps to quickly adapt
to new conditions, minimising the negative effects on prediction capabilities.

 Page 73

Aleksandar Lazarevic Transfer Thesis

7.5. Conclusions

In this chapter, a probabilistic scheduling system for Grid environments has been
proposed. This novel scheduling approach departs from the FIFO based queuing
and instead offers out-of-order execution based on the job competition deadline,
as set by the submitting user, and scheduler’s forecasts on the execution length of
the job and its resource utilisation.

From the user’s perspective, such scheduling system could significantly simplify
the job submission process, and enable a friendlier workflow by eliminating the
need to explicitly state job’s resource requirements.

For the Grid operator’s, probabilistic scheduling could considerably increase the
overall utilisation levels of their computational infrastructure by offering
tuneable level of oversubscription, and by removing inherent “padding” of
process requirements by the users present in the batch scheduling systems.

Job execution length and resource utilisation forecasts will be based on the
historical data, and the meta-data collected from various sources relating to the
submitted job, its owner, and the state of the Grid at the time of submission.
Preliminary analysis of the data collected from the UCL’s Grid facility shows
that submitted jobs vary significantly in arrival rates, mean execution time and
resource utilisation – creating a diverse application ecosystem which can support
speculative and probabilistic scheduling technique as proposed.

 Page 74

Aleksandar Lazarevic Transfer Thesis

8. CHAPTER EIGHT

FURTHER WORK

8.1. Algorithm Development

The development of the scheduler will proceed by further investigating data
collected on the UCL’s Central Computing Cluster (CCC) facility. The data will
be analysed off-line with the aim of spotting statistically meaningful features and
patterns, meta-data significant to the job statistics, and the trends and tendencies
of job arrival rates and job workflows.

Theoretical work will centre on examination of various statistical methods for
treating time series data, methods for analysis of such data, feature extraction
techniques, and investigation of prediction algorithms. As a result of this off-line
analysis, a set of suitable algorithms for on-line analysis will be defined and
developed. These will enable integration of real-time monitoring data with the
historical accounting information, providing for on-the-fly estimation of job
execution times and resource utilisation of the newly submitted jobs. This is seen
as crucial missing information in the scheduling systems such as ICENI (see
Section 3.2.8) and PACE/Titan (Section 3.2.7). Integration of our stochastic
scheduler component with these systems will be investigated.

8.2. Scheduler Testing

The testing and validation of the design and principles behind the probabilistic
scheduler will be done throughout simulations and a possible deployment of the
SO-GRM Grid testbed. Instrumental in this effort is as large as possible
collection of accounting and monitoring data from production environments

 Page 75

Aleksandar Lazarevic Transfer Thesis

serving large communities of users. UCL’s CCC installation will be the main
source of such data, although every effort will be made to obtain similar data
from other commercial and academic Grid installations.

In the off-line analysis phase, hypotheses will be formed based on the subsets of
data and tested on the complete dataset. Second phase testing will be undertaken
when appropriate statistical models have been selected to model user application
behaviour and prediction algorithms have been developed. Using simulation
tools, a range of jobs with varying adherence to the statistical model will be
submitted through the simulated scheduler to establish the adaptability of the
prediction engine and its functional envelope. As a result, further fine tuning may
be necessary and some empirical observations of the prediction confidence
intervals may emerge. Finally, once the first implementation has been done, the
GridLoader tool will be used to simulate real Grid applications with probabilistic
execution times and resource utilisation values drawn from pre-defined
probability distribution functions. Monitoring framework presented in Section 6
will be used to measure the effects of scheduler system overheads, timings of data
acquisition and overall system dynamics. The performance of the scheduling
logic will be most evident in theoretical simulations run on the production
system job traces, while any implementation issues and their effect on the
scheduler will show in the tests using the GridLoader application simulator.

8.3. Open Issues

Several issues regarding the implementation, restrictions and intended uses of the
probabilistic scheduler remain open.

8.3.1. Unique Grid Process Identification

One of the most valuable meta-data information not available to the Grid
schedulers at the moment is the unique identity of the executing process. Many
Grid applications are a complex set-up of various data staging and preparation
steps, distributed processes and complex result handling mechanisms. These
compound jobs are often referred to as Grid workflows, and their management
has become a major problem for the Grid community. Current practices rely on
the use of scripting languages, and often one generic script can run any number
of different applications with widely different characteristics. For these reasons,
our stochastic scheduler is not able to fully identify the executable being run, and
develop a model for its behaviour. The issue of workflow management and job
identification is actively researched by the Grid community, and is likely to be
resolved in the near future. Next versions of the Grid middleware should be able
to uniquely identify different workflows and their constituent components, and
make this information available through an open interface.

 Page 76

Aleksandar Lazarevic Transfer Thesis

8.3.2. Hardware Heterogeneity

The execution time and resource utilisation statistics observed by the proposed
probabilistic scheduler are only applicable to a certain node hardware
configuration. Although this seems to conflict with a vision of a widely
heterogeneous Grid infrastructure, it is in the line with the intended mode of use
of such local-level scheduler.

For reasons of administrative, economical and political nature, processing farms
constituting a global Grid are highly homogeneous. Choosing one, or at most
two, architectures (manufacturer) reduces administrative overheads, creates
economies of scale and a more manageable environment. In that context, our
scheduler will be able to generate predictions for its local hardware environment,
offering those predictions, together with an associated confidence level, as a bid
value to the global Grid meta-scheduler. Lacking any previous experience with
the offered job, our stochastic scheduler will revert to a batch mode and reflect
such uncertainty in the confidence level offered. It is on the Grid meta-scheduler
to pool bids from different clusters and select the most appropriate one, based on
its own set of requirements and restrictions.

Such hardware-specific approach has been adopted after considerable research
into profiling and predicting application performance on different hardware
platforms. As previously discussed in the Section 3.1.2, execution predictions, of
acceptable quality, reached using moderate system resources, in or near real-time,
on a widely varying architectures as found on the Grid, and with many
application’s performance sensitive to very specific hardware capabilities simply
may not be possible.

8.3.3. Data Storage and Communication

Adequate means of compressing, storing and communicating statistics pertaining
to a large number of jobs, metrics and meta-factors will be required for efficient
operation of the scheduler. Any compression method used should endeavour to
maintain the statistical properties of the compressed data, hence wavelets and
other similar methods will be investigated.

Underlying monitoring and accounting sub-systems will handle communications
and storage aspects of the raw data, but the scheduler will be required to
communicate its own statistical models and predictions both within the local
cluster and to the higher level meta-scheduler. Ideas from previous work within
the SO-GRM project group will be used as the starting point for those scheduler
aspects. Of special interest are XML encoded antibodies used in the I3
component, and self-organising gossip-like communication protocol employed
in SORD component.

 Page 77

Aleksandar Lazarevic Transfer Thesis

8.4. Business Plan Development

Grid computing has drawn interest from a large number of commercial
institutions, and from large organisations from across a broad range of industries.
Common to all is a need for large pool of computational power, cost of which is
now more determined by the level of utilisation then by the price of the installed
equipment.

Effective scheduling plays an important part in keeping the hardware loaded, and
providing high levels of return on investment made into the data-centres. It is the
author’s belief that proposed probabilistic scheduling holds a very attractive
value promise and that an operational system could be successfully marketed to
large commercial Grid operators.

Subject to further market research, a proposal for the commercialisation of this
novel scheduling technology would be made in the form of a business plan.
Funding will also be sought for further studies of system feasibility and possible
revenue stream. Throughout this process, adequate steps will be taken in
cooperation with UCL’s technology transfer office to affirm any intellectual
property rights that may be applicable to the system.

 Page 78

Aleksandar Lazarevic Transfer Thesis

9. CHAPTER NINE

APPENDICES

9.1. Glossary of Terms

Acronym Meaning
AppLeS Application Level Scheduling
ASCI Accelerated Strategic Computing Initiative
CCC UCL Central Computing Cluster
CF RRD Database Consolidation Function
CPU Central Processing Unit
DEC Digital Equipment Corporation (now part of HP)
DS RRD Database Data Source
FIFO First In First Out
FLOPS Floating Point Instructions Per Second
FRFO First Ready First Out
GASS Globus Access to Secondary Storage
GGF Global Grid Forum
GIIS Grid Information Index Service
GIS Globus Information Service
GMA Grid Monitoring Architecture
GRAM Globus Resource Allocation Manager
GRIS Grid Resource Information Service
GSI Globus Security Infrastructure
IP Internet Protocol
LDAP Lightweight Directory Access Protocol
LSF Load Sharing Facility
MDS Globus Monitoring & Discovery Service

MIPS Millions of Instructions Per Second

 Page 79

Aleksandar Lazarevic Transfer Thesis

Acronym Meaning
MPI Message Passing Interface
NWS Network Weather Service
OGSA Open Grid Services Architecture
PBS Portable Batch System
PDF Probability Distribution Function
PE GridSim Processing Elements
PID Process Identifier
PKI Private Key Infrastructure
RDBMS Relational Database Management System
R-GMA Relational Grid Monitoring Architecture
RRA Round Robin Archive
RRD Round Robin Database
SGE Sun Grid Engine
SLA Service Level Agreement
SLAM SO-GRM SLA Management Component
SMP Symmetric Multiprocessor
SOAP Simple Object Access Protocol
SORD Self-Organised Resource Discovery Protocol
SQL Simple Query Language
SSH Secure Shell
Tcl Tool Command Language
TCP Transport Control Protocol
TLS Transport Layer Security
ToS Type of Service
UDP User Datagram Protocol
URI Universal Resource Identifier
VO Virtual Organisation
WSRF Web Services Resource Framework
XDR External Data Representation
XML eXtensible Mark-up Language

 Page 80

Aleksandar Lazarevic Transfer Thesis

9.2. Table of Figures

Figure 1 CPU Power Consumption Relative to SPEC Computational Output [1]7
Figure 2 Taxonomy of Scheduling ..18
Figure 3 SO-GRM Architecture Block Diagram...39
Figure 4 SO-GRM Testbed Network Diagram..40
Figure 5 SO-GRM Demo Screenshot ..41
Figure 6 GridLoader UML Diagram..45
Figure 7 GridLoader Screenshot..47
Figure 8 Matlab Generated GridLoader configuration file output...............................49
Figure 9 Expected v Actual GridLoader Runtime ...50
Figure 10 GridLoader Memory Utilisation Testing...51
Figure 11 Monitoring Components Block Diagram ..55
Figure 12 Ganglia Screen Shot - Cluster Level ...57
Figure 13 Ganglia Screenshot – Node Level ...58
Figure 14 Ganglia Screenshot – Custom Information Provider (Highlighted)............58
Figure 15 Comparison of GridLoader and total CPU utilisation.................................59
Figure 16 Total and Globus-attributed CPU Load Discrepancy..................................60
Figure 17 Total and Globus-attributed CPU Load Discrepancy [Filtered]..................61
Figure 18 Wall-Clock Execution Times for All Jobs ..66
Figure 19 Job Distribution by Submitting Group ..67
Figure 20 Wall-Clock Execution Times for Different User Groups............................68
Figure 21 Histograms of Wall-Clock Execution Times for Each Group.....................69
Figure 22 Execution Time Mean Plot for All User Group ..70
Figure 23 Plot of Means for Each matsim Group Cluster..71
Figure 24 Correlation of Wall Clock Execution Times (10 lag steps)72
Figure 25 Curve-fitted matsim Jobs Scatterplot...73

 Page 81

Aleksandar Lazarevic Transfer Thesis

9.3. Work Plan
S

ta
tis

tic
al

 s
of

tw
ar

e
pa

ck
ag

es
 s

ur
ve

y

R
eg

re
ss

io
n

m
et

ho
ds

 a
na

ly
si

s

R
el

ev
an

t m
et

a-
da

ta
 id

en
tif

ic
at

io
n

S
ur

ve
y

of

pr
ed

ic
tio

n
m

et
ho

ds

S
ur

ve
y

of

cl
us

te
rin

g
al

go
rit

hm
s

Se
le

ct
io

n
of

th

e
pr

ed
ic

tio
n

al
go

rit
hm

(s
)

Se
le

ct
io

n
of

di

sc
on

tin
ui

ty

m
an

ag
em

en
t

al
go

rit
hm

Tr
an

sf
er

Su

bm
is

si
on

 /
V

iv
a

A
cq

ui
re

E

G
EE

ac

co
un

tin
g

da
ta

A
cq

ui
re

C

C
C

ac

co
un

tin
g

da
ta

S
ol

ic
it

ot
he

r
da

ta

so
ur

ce
s

Su
rv

ey
 o

f
sc

he
du

lin
g

si
m

ul
at

io
n

to
ol

s

S
el

ec
tio

n
of

th

e
si

m
ul

at
io

n
to

ol

Q
ua

lit
at

iv
e

te
st

in
g

of
 th

e
pr

ed
ic

tio
n

al
go

rit
hm

Q
ua

lit
at

iv
e

te
st

in
g

of
 th

e
di

sc
. M

gm
t.

al
go

rit
hm

S
ch

ed
ul

in
g

si
m

ul
at

io
n

Se
le

ct
io

n
of

 th
e

de
pl

oy
m

en
t

pl
at

fo
rm

D
ev

el
op

m
en

t o
f

th
e

sc
he

du
le

r

Fu
nc

tio
na

l t
es

tin
g

of
 th

e
sc

he
du

le
r

Q
ua

lit
at

iv
e

te
st

in
g

of
 th

e
ov

er
al

l
sy

st
em

P
hD

 T
he

si
s

W
rit

e-
up

Le
ar

ni
ng

,
A

na
ly

si
ng

O
ff-

Li
ne

A

na
ly

si
s

O
n-

Li
ne

A

na
ly

si
s

Le
ge

nd
:

 Page 82

Aleksandar Lazarevic Transfer Thesis

9.4. Publications and Relevant Documents

9.4.1. London Communications Symposium 2003

“Resource and Application Models for Advanced Grid Schedulers”

Aleksandar Lazarevic, Lionel Sacks

ABSTRACT: As Grid computing is becoming an inevitable future, managing,
scheduling and monitoring dynamic, heterogeneous resources will present new
challenges. Solutions will have to be agile and adaptive, support self-organization
and autonomous management, while maintaining optimal resource utilisation.
Presented in this paper are basic principles and architectural concepts for efficient
resource allocation in heterogeneous Grid environment.

Available at: www.ee.ucl.ac.uk/~alazarev/papers/

9.4.2. International Symposium on
Telecommunications

“Self-organising management of Grid environments”

Ioannis Liabotis, Ognjen Prnjat, Tope Olukemi, Adrian Li Mow Ching,
Aleksandar Lazarevic, Lionel Sacks, Mike Fisher, Paul McKee

ABSTRACT: This paper presents basic concepts, architectural principles and
algorithms for efficient resource and security management in cluster computing
environments and the Grid. The work presented in this paper is funded by
BTExacT and the EPSRC project SO-GRM (GR/S21939).

Available at: www.ee.ucl.ac.uk/~alazarev/papers/

9.4.3. Next Generation Networking - Multi-
Services Networks

“Adaptive Grid Scheduling and Resource Management”

 Page 83

Aleksandar Lazarevic Transfer Thesis

Aleksandar Lazarevic, Lionel Sacks

Available at: www.ee.ucl.ac.uk/~alazarev/papers/

9.4.4. London Communications Symposium 2004

“Measuring and Monitoring Grid Resource Utilisation”

Aleksandar Lazarevic, Lionel Sacks

ABSTRACT: Effective resource utilisation monitoring and highly granular yet
adaptive measurements are prerequisites for a more efficient Grid scheduler. We
present a suite of measurement applications able to monitor per-process resource
utilisation, and a customisable tool for emulating observed utilisation models.

Available at: www.ee.ucl.ac.uk/~alazarev/papers/

9.4.5. The Ninth IFIP/IEEE International
Symposium on Integrated Network Management

“Enabling Adaptive Grid Scheduling and Resource Management”

Aleksandar Lazarevic, Lionel Sacks, Ognjen Prnjat

ABSTRACT: Wider adoption of the Grid concept has led to an increasing
amount of federated computational, storage and visualisation resources being
available to scientists and researchers. Distributed and heterogeneous nature of
these resources renders most of the legacy cluster monitoring and management
approaches inappropriate, and poses new challenges in workflow scheduling on
such systems. Effective resource utilisation monitoring and highly granular yet
adaptive measurements are prerequisites for a more efficient Grid scheduler. We
present a suite of measurement applications able to monitor per-process resource
utilisation, and a customisable tool for emulating observed utilisation models. We
also outline our future work on a predictive and probabilistic Grid scheduler.
The research is undertaken as part of UK e-Science EPSRC sponsored project
SO-GRM (Self-Organising Grid Resource Management) in cooperation with
BT.

Available at: www.ee.ucl.ac.uk/~alazarev/papers/

 Page 84

Aleksandar Lazarevic Transfer Thesis

9.5. Code Listing

9.5.1. GridLoader

/*
Grid Loading Application
Aleksandar Lazarevic,
Dept of E&E Engineering, University College London
v 0.8

*/

// -------- Include Files --------

#include <stdio.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <string.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <errno.h>
#include <signal.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>

// -------------------------------

// -------- Static Definitions ---

//Used for LoadIdle() sleep time, in useconds
#define CPU_IDLE_PAR_A 150000

//Used for LoadIdle() sleep time, in useconds
#define CPU_IDLE_PAR_B 8

// CPU Load Pareto A parameter in useconds
#define CPU_LOAD_PAR_A 1000

// 1: Print out a lot of debuging info, 0: silent operation
#define DEBUG 0

// -------------------------------

// -------- Functions ------------

void LoadNet(float run_for, int burst_delay, char *to_addr);
void LoadMem(int mem_amount);
int LoadCPU(float run_for, float cpu_load_par_b);
void LoadIdle();
void Done();
void LoadCPUDone();
void LoadNetDone();
float ran_pareto(float A, float B);

// -------------------------------

// -------- Global Variables -----

typedef enum {DONE = 0, NET_LOAD, MEM_LOAD, CPU_LOAD, IDLE} State_Type;

State_Type curr_state; // States init table

 Page 85

Aleksandar Lazarevic Transfer Thesis

int LoadNetAlarm = 0; // Signal handler for Net loop, break on =1
int LoadCPUAlarm = 0; // Signal handler for CPU loop, break on =1
double LoadCPUTime = 0; // Keeps track of CPU time already
done, in seconds

// -------------------------------

// -------- main () --------------

main (int argc, char *argv[])
{

 if (argc != 7)
 {

 printf("Grid Loading Application, v.0.8.\n\nERROR: Must have exactly 6 runtime
parameters.\n\nGridload utilisation:\n\tgridload <NET> <CPU> <MEM> <BURST> <IP>
<PARETO_B>\n\nWhere:\n\t<NET> = NET transfer time in seconds - FLOATING POINT\n\t<CPU>
= Total CPU loading time in seconds - FLOATING POINT\n\t<MEM> = Amount of memory to
allocate in MB - INTREGER\n\t<BURST> = Interpacket sleep time in useconds -
INTREGER\n\t<IP> = IP address to send network traffic to - DOTTED
NUMERICAL\n\t<PARETO_B> - LoadCPU time Pareto B parameter - FLOATING POINT\n\nAs no
rigorous error cheking is done, please abide by the specification of these
paramters.\n");
 exit(1);
 }

 int i = 0;
 time_t *mytime;
 long int t;

 //Allocate enough memory for type time_t
 mytime = malloc(sizeof(time_t));

 //Get current Epoch time
 t = time(mytime);

 if (DEBUG)
 printf("Seeding with Epoch time: %d\n", t);

 //Seed the random genereator with current Epoch, has a resolution of a second! May
cause problems later
 srand48(t);

 float net_run_for, cpu_run_for, cpu_load_par_b;
 int mem_amount, burst_delay;

 // Assign parameters to variables

 net_run_for = atof(argv[1]);
 cpu_run_for = atof(argv[2]);
 mem_amount = atoi(argv[3]);
 burst_delay = atoi(argv[4]);
 cpu_load_par_b = atof(argv[6]);

 if (DEBUG)
 printf("Arguments: %f,%f,%d,%d,%s,%f\n", net_run_for, cpu_run_for, mem_amount,
burst_delay, argv[5], cpu_load_par_b);

 curr_state = NET_LOAD; // Jump to first state

 while (curr_state)
 {
 switch (curr_state)
 {

 case 1 :

 Page 86

Aleksandar Lazarevic Transfer Thesis

 LoadNet (net_run_for, burst_delay, argv[5]);
 break;

 case 2 :
 LoadMem (mem_amount);
 break;

 case 3 :
 LoadCPU (cpu_run_for, cpu_load_par_b);
 break;

 case 4 :
 LoadIdle();
 break;
 }
 }
}

// ------------------

void LoadNet (float run_for, int burst_delay, char *to_addr)
{

 if (DEBUG)
 printf("Entering LoadNet()\n");

 int udp_socket, i;
 char send_this[1400]; // MTU max 1500, use 1400+headers+spare
 struct itimerval NetTimer;
 struct sockaddr_in IP_client;
 long run_for_sec, run_for_usec;

 // Convert float run_for into two long /sec and /usec
 run_for_sec = floor (run_for);
 run_for_usec = 1000000 * (run_for - run_for_sec);

 //Signal handler for CLOCK_REAL
 signal (14, *LoadNetDone);

 //Fill message with letters A
 for (i = 0; i < 1400; i++)
 send_this[i] = 'A';

 //Set timer
 NetTimer.it_interval.tv_sec = 0;
 NetTimer.it_interval.tv_usec = 1;
 NetTimer.it_value.tv_sec = run_for_sec;
 NetTimer.it_value.tv_usec = run_for_usec;

 //Open socket
 udp_socket = socket (PF_INET, SOCK_DGRAM, 0);

 IP_client.sin_family = AF_INET;
 IP_client.sin_addr.s_addr = inet_addr (to_addr);
 IP_client.sin_port = 22222;

 if (DEBUG)
 printf("Entering loop, timer set: seconds:%d , useconds:%d\n",
NetTimer.it_value.tv_sec, NetTimer.it_value.tv_usec);

 //Run the timer
 setitimer (ITIMER_REAL, &NetTimer, 0);

 while (!LoadNetAlarm)
 {
 sendto (udp_socket, &send_this, sizeof(send_this), 0, (struct sockaddr *)
&IP_client, sizeof(IP_client));
 usleep(burst_delay);
 }

 curr_state = MEM_LOAD;

 //Reset Timer Raiser back to 0 !!!
 LoadNetAlarm = 0;

 if (DEBUG)

 Page 87

Aleksandar Lazarevic Transfer Thesis

 printf("Leaving LoadNET()\n");

 // return(); if needs to return something to main()

}

void LoadNetDone()
{
 LoadNetAlarm = 1;
}

// ----------------------------------

// ----------------------------------

int LoadCPU (float run_for, float cpu_load_par_b)
{

 if (DEBUG)
 printf("Entering LoadCPU()\n");

 //If done enough time return setting state DONE
 if (LoadCPUTime >= run_for)
 {
 curr_state = DONE;

 if (DEBUG)
 printf("Leaving LoadCPU - time required has been reached!\n");

 return (0);
 }

 float this_run;
 struct itimerval CPUTimer;
 long this_run_usec;

 //Signal handler for CLOCK_VIRTUAL
 signal (26, *LoadCPUDone);

 //Choose how long to run this time around
 this_run = ran_pareto (CPU_LOAD_PAR_A, cpu_load_par_b);

 this_run_usec = floor (this_run);

 //Set the timer
 CPUTimer.it_interval.tv_sec = 0;
 CPUTimer.it_interval.tv_usec = 0;
 CPUTimer.it_value.tv_sec = 0;
 CPUTimer.it_value.tv_usec = this_run_usec;

 if (DEBUG)
 printf("Setting timer: seconds:%d , useconds:%d\n", CPUTimer.it_value.tv_sec,
CPUTimer.it_value.tv_usec);

 //Run the timer
 setitimer (ITIMER_VIRTUAL, &CPUTimer, 0);

 //Load the CPU using an empty loop - very effective :)
 while (!LoadCPUAlarm)
 ;

 //Update how much time we spent in the CPUload loop, converting timer useconds
into seconds
 LoadCPUTime += (double)this_run_usec / 1000000;

 if (DEBUG)
 printf("LoadCPUTime so far: %.12f\n", LoadCPUTime);

 curr_state = IDLE;

 //Reset Timer raiser back to 0 !!!

 Page 88

Aleksandar Lazarevic Transfer Thesis

 LoadCPUAlarm = 0;

 if (DEBUG)
 printf("Leaving LoadCPU - this_run done\n");

}

void LoadCPUDone()
{
 LoadCPUAlarm = 1;
}
// --------------------------------------

// -------------------------------------

float ran_pareto (float A, float B)
{

 double x, y1, y2, y;

 //Get a random value between (0.0,1.0]
 x = drand48();

 if (DEBUG)
 printf("Random number is: %f\n", x);

 //Use inverse method to obtain a random Pareto number
 y1 = 1 - x;
 y2 = - ((1 / B) * (log(y1)));
 y = A * (exp(y2));

 if (DEBUG)
 printf("Returning Pareto number:%f\n", y);

 //Return floating random Pareto
 return (y);

}

// ------------------------------------

// -----------------------------------

void LoadMem (int mem_amount)
{

 if (DEBUG)
 printf("Entering LoadMEM()\n");

 char *data;
 int j;

 //Allocate the required memory as given by mem_amount. SIZEOF(CHAR) = 1
 data = (char *) malloc (1024 * 1024 * mem_amount * sizeof(char));

 //Above line increases virtual memory size, loop below makes kernel allocate
physical memory
 for (j = 0;j < 1024*1024*mem_amount;j++)
 data[j] = 'A';

 //All done here, memory will be free when process terminates
 curr_state = CPU_LOAD;

 if (DEBUG)
 printf("Leaving LoadMEM(), allocated: %d MB\n", mem_amount);
}

// -----------------------------------

// ----------------------------------

void LoadIdle ()
{

 Page 89

Aleksandar Lazarevic Transfer Thesis

 if (DEBUG)
 printf("Entering LoadIdle()\n");

 long int sleep_for;

 //Get a Pareto using predefined A and B, and round it down
 sleep_for = floor (ran_pareto (CPU_IDLE_PAR_A, CPU_IDLE_PAR_B));

 if (DEBUG)
 printf("Will be sleeping for:%d useconds\n", sleep_for);

 //Sleep for so many useconds
 usleep(sleep_for);

 // Include sleeping time in CPUTime - more realistic, try to agree with 'time
./gridload ...'
 LoadCPUTime += (double)sleep_for / 1000000;

 //Return back to LoadCPU(), which controls when to break out of LoadCPU<->LoadIdle
loop
 curr_state = CPU_LOAD;

 if (DEBUG)
 printf("Leaving LoadIdle()\n");

}

// ------------------------------------

9.5.2. Matlab® Parameter File Generator

% Aleksandar Lazarevic - v0.8
% Create RUN file for Globus Grid Loader
% Simple format for testing without SORD & I3

% Output format:
% <NET> <CPU> <MEM> <BURST> <IP> <PARETO_B> <NEXTREQ DELAY> <NEXTREQ IP>

clear;

% Change the values below ...

IP_LOW = 146;
IP_HIGH = 149;
IP_PREFIX = '128.16.235.';

CPU_TOTAL_PARETO_A = 1500;
CPU_TOTAL_PARETO_B = 6;

CPU_LOAD_PARETO_B_MIN = 2;
CPU_LOAD_PARETO_B_MAX = 10;

MEM_MEAN = 40;
MEM_MIN = 180;

NET_MEAN = 15;
NET_MIN = 20;

BURST_MEAN = 8;
BURST_MIN = 5;

NEXTREQ_MIN = 2000;
NEXTREQ_MAX = 3000;

NEXT_HOST_MIN = 13;
NEXT_HOST_MAX = 13;
NEXT_HOST_PREFIX = 'android-ee';

 Page 90

Aleksandar Lazarevic Transfer Thesis

ITERATIONS = 200;

% No need to change anything below this line!
% --

% Put Pareto numbers in CPU

x=rand(ITERATIONS,1);
for i=1:ITERATIONS,
 y1=1-x(i);
 y2=-(1/CPU_TOTAL_PARETO_B)*(log(y1));
 CPU(i)= CPU_TOTAL_PARETO_A * exp(y2);
end
% ----------------------------

% Generate random net transfer times
NET = NET_MIN + NET_MEAN * abs (randn(1,ITERATIONS));
% ----------------------------

% Generate random rounded memory sizes for MEMLOAD
MEM = round (MEM_MIN + MEM_MEAN * abs (randn(1,ITERATIONS)));
% ----------------------------

% Generate random rounded burst delay intervals for NETLOAD
BURST = round (BURST_MIN + BURST_MEAN * abs (randn(1,ITERATIONS)));
% -----------------------------

% Generate random IP address for NETLOAD traffic and next request
IPLoad = round (IP_LOW + (IP_HIGH - IP_LOW) * rand(1,ITERATIONS));

IPNext = round (IP_LOW + (IP_HIGH - IP_LOW) * rand(1,ITERATIONS));
% ----------------------------

% Generate random next request delay
NEXTREQ = round (NEXTREQ_MIN + (NEXTREQ_MAX - NEXTREQ_MIN) * rand(1,ITERATIONS));
% ----------------------------

% Generate random CPU_LOAD_PARETO_B values from range MIN to MAX
CPU_LOAD_PARETO_B = CPU_LOAD_PARETO_B_MIN + (CPU_LOAD_PARETO_B_MAX -
CPU_LOAD_PARETO_B_MIN) * rand(1,ITERATIONS);
% ----------------------------

% Generate random address for NEXT_HOST
NEXTHOST = round (NEXT_HOST_MIN + (NEXT_HOST_MAX - NEXT_HOST_MIN) * rand(1,ITERATIONS)
);
% ----------------------------

% File writing

RUN_FILE = fopen('param.grid', 'w');
STAT_FILE = fopen('stats.csv','w');

for i=1:ITERATIONS

 fprintf(RUN_FILE, '%f %f %d %d %s%d %f %10s%d %d\n', NET(i), CPU(i), MEM(i),
BURST(i), IP_PREFIX, IPLoad(i), CPU_LOAD_PARETO_B(i), NEXT_HOST_PREFIX, NEXTHOST(i),
NEXTREQ(i));
 fprintf(STAT_FILE, '%f,%f,%d\n', NET(i), CPU(i), MEM(i));

end

fclose(RUN_FILE);
fclose(STAT_FILE);
% --------------------

% Plotting
hold on;

subplot(3,3,1);
plot (CPU,'k');
axis auto;

 Page 91

Aleksandar Lazarevic Transfer Thesis

title('CPU Load');
ylabel('Seconds');

subplot(3,3,2);
hist(CPU,100);
axis auto;
title('CPU Load Histogram');
xlabel('Seconds');
ylabel('Count');

subplot(3,3,4);
plot (MEM,'r');
axis auto;
ylabel('MBytes');
title('Memory Allocation');

subplot(3,3,3);
axis auto;
plot (NET,'m.');
title('NET Transfer Time');
ylabel('Seconds');

subplot(3,3,5);
hist(MEM,100);
axis auto;
title('Memory Histrogram');
xlabel('MBytes');
ylabel('Count');

subplot(3,3,6);
axis auto;
plot (BURST,'b.');
ylabel('uSeconds');
title('Packet Burst Delay')

subplot(3,3,7);
hist(NEXTREQ,100);
axis auto;
title('NEXTREQ Time');
xlabel('Seconds');
ylabel('Count');

subplot(3,3,8);
hist(CPU_LOAD_PARETO_B,100);
axis auto;
title('CPU Load B Time');
xlabel('Value');
ylabel('Count');

% ---------------------------------

9.5.3. Ganglia Custom Metric Broadcast Script

#!/bin/sh

'broadcast_metric' Script

Generate Ganglia XML and publish certain local system metric
to Ganglia MetaDeamon through custom information provider
'gmetric'

Uses 'ps' to obtain info and 'gawk' to process it
then sleeps for a period of time

(c) Aleksandar Lazarevic 2004

Metric name to be published
METRIC="globus-cpu-percentage"

 Page 92

Aleksandar Lazarevic Transfer Thesis

'ps' query command (part of)
use "-U username" or "-C cmdline" or "-p PID"
CMD="-C gl08"

Polling period, don't make it shorter then 5s due to CPU util.
SLEEP=5

while [0]
do

VAL=`ps ${CMD} -o pcpu | gawk '{s += $1} END {print s}'`

gmetric --name="${METRIC}" --value=${VAL} --type=float

sleep ${SLEEP}

done

9.5.4. Round-Robin Database Data Sweep Script

#!/bin/sh

'sweeprrd' Script

Extract highest frequency data from Ganglia RRD for a given metric
Checks last timestamp in local file and exports from the next
timestamp up to NOW less 45 seconds (don't ask why!)

It then sleeps for some time. Polling should be less then 60 minutes
otherwise high freq data will be lost or consolidated (RRD)

(c) Aleksandar Lazarevic 2004

RRD File location WITH TRAILING SLASH!!!
RRDLOC="/var/lib/ganglia/rrds/UCL/android-ee13.cs.ucl.ac.uk/"

RRD metric database to use
RRDFILE1="globus-cpu-percentage.rrd"
RRDFILE2="cpu_idle.rrd"

Raw data file (will contain timestamp:value[scientific]
FILE1="/home/aleks/experiments/4/globus_load"
FILE2="/home/aleks/experiments/4/total_load"

Sleep time (less than 3500 more than 120)
SLEEP=900

Debug?
DEBUG=0

export $FILE1 $FILE2

while [0]
do

STARTTIME=`tail -n 1 $FILE1 | gawk '/:/ {print substr($1,1,10)}'`

if ["$STARTTIME" == ""]
then
 STARTTIME=`date +%s`

 Page 93

Aleksandar Lazarevic Transfer Thesis

 let "STARTTIME-=3500"

 if [$DEBUG = 1]; then
 echo No previous startime found. Using: $STARTTIME
 fi

else
 let "STARTTIME+=15"

 if [$DEBUG = 1]; then
 echo Previous startime: $STARTTIME
 fi
fi

rrdtool fetch ${RRDLOC}/${RRDFILE1} AVERAGE -r 1 --end=now-45 --start=$STARTTIME |
grep : >> $FILE1
rrdtool fetch ${RRDLOC}/${RRDFILE2} AVERAGE -r 1 --end=now-45 --start=$STARTTIME |
grep : >> $FILE2

sleep ${SLEEP}

done

9.5.5. Simple Batch Scheduler (Globus flavour)

#!/bin/sh

'scheduler' Script

Simple master-slave schedulng script
Take a runfile with GridLoader parameters and two extra: next host and delay
Using globus-job-run to submit to "next host" after "delay"

MUST BE RUN AS SOGRM!
[Because of Globus certificates]

(C) Aleksandar Lazarevic 2004

Debug?
DEBUG=0

Runfile Location
RUNFILE="/home/aleks/experiments/4/param"

Runtime Log
RUNLOG="/home/aleks/experiments/4/run.log"

Globus certificate password
GLOBUSPASS="/home/aleks/scripts/globus-proxy-pass"

Open files
exec 3<$RUNFILE
exec 4>>$RUNLOG

count how many jobs to run (-1)
jobs=`wc -l ${RUNFILE} | gawk '{print $1}'`

if [$DEBUG = 1]
then echo Jobs to run:$jobs
fi

Main Loop

 Page 94

Aleksandar Lazarevic Transfer Thesis

for ((i=1; a < $jobs ; a++))
do
 read -a V <&3

 # Add NET time and CPU time - NO Floating Point ???
 #$((runtime = V[0] + V[1]))

 if [$DEBUG = 1]
 then echo Total Runtime:${runtime} Next Host: ${V[6]} in-: ${V[7]}
 fi

 if [$DEBUG = 0]
 then
 echo -n `date +%s`, >&4
 grid-proxy-init -q -valid 24:00 -pwstdin <$GLOBUSPASS
 globus-job-run ${V[6]} /home/aleks/gridloader/gl08 ${V[0]} ${V[1]} ${V[2]}
${V[3]} ${V[4]} ${V[5]}
 grid-proxy-destroy
 echo `date +%s`,${V[6]} >&4
 fi

if [$DEBUG = 1]
then

 echo sent it! now go to sleep
 sleep 1

else

 sleep 45
 leep ${V[7] # s }

fi

done
End of main loop
exit 0

9.5.6. Simple Batch Scheduler (SSH flavour)

#!/bin/sh

'scheduler' Script

Simple master-slave schedulng script
Take a runfile with GridLoader parameters and two extra: next host and delay
Using SSH submit to "next host" after "delay"

MUST BE RUN AS ROOT!
[Because of SSH certificates]

(C) Aleksandar Lazarevic 2004

Debug?
DEBUG=0

Runfile Location
RUNFILE="/home/aleks/experiments/3/param"

Runtime Log
RUNLOG="/home/aleks/experiments/3/run.log"

Open files
exec 3<$RUNFILE

 Page 95

Aleksandar Lazarevic Transfer Thesis

exec 4>>$RUNLOG

count how many jobs to run (-1)
jobs=`wc -l ${RUNFILE} | gawk '{print $1}'`

if [$DEBUG = 1]
then echo Jobs to run:$jobs
fi

Main Loop

for ((i=1; a < $jobs ; a++))
do
 read -a V <&3

 # Add NET time and CPU time - NO Floating Point ???
 #$((runtime = V[0] + V[1]))

 if [$DEBUG = 1]
 then echo Total Runtime:${runtime} Next Host: ${V[6]} in-: ${V[7]}
 fi

 if [$DEBUG = 0]
 then
 echo -n `date +%s`, >&4
 ssh ${V[6]} /home/aleks/gridloader/gl08 ${V[0]} ${V[1]} ${V[2]} ${V[3]} ${V[4]}
${V[5]}
 echo `date +%s`,${V[6]} >&4
 fi

if [$DEBUG = 1]
then

 echo sent it! now go to sleep
 sleep 1

else

 sleep 45
 leep ${V[7] # s }

fi

done

End of main loop

exit 0

 Page 96

Aleksandar Lazarevic Transfer Thesis

9.6. References

[1] "LCG Computing Fabric Overview," http://lcg-computing-
fabric.web.cern.ch/LCG-Computing-
Fabric/fabric_presentations/lhcc_review_fabric_overview_BPanzer3.ppt; Last
Accessed: 2003

[2] "SETI@home: Search for Extraterrestrial Intelligence at home,"
http://setiathome.ssl.berkeley.edu/; Last Accessed: 2005

[3] "Folding@Home Distributed Computing,"
http://www.stanford.edu/group/pandegroup/folding/; Last Accessed: 2005

[4] Foster, Kesselman and Tuecke "The Anatomy of the Grid: Enabling Scalable
Virtual Organizations," International J. Supercomputer Applications vol.
15(3), 2001.

[5] I. Foster, C. Kesselman, J. Nick and S. Tuecke "The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration," Global
Grid Forum 2002.

[6] "The Globus Alliance," http://www.globus.org/; Last Accessed: 2005

[7] "EGEE - Gateway," http://egee-intranet.web.cern.ch/egee-intranet/gateway.html;
Last Accessed: 2005

[8] "Global Grid Forum," http://www.ggf.org/; Last Accessed: 2005

[9] "Platform Computing - Accelerating Intelligence - Grid Computing,"
http://www.platform.com/; Last Accessed: 2005

[10] "Avaki : Home," http://www.avaki.com/; Last Accessed: 2005

[11] "United Devices, Inc. ™ - Grid Computing Solutions - Home,"
http://www.ud.com/home.htm; Last Accessed: 2005

[12] "10 Emerging Technologies That Will Change Your World", 2004;

[13] K. Vairavan and R.A. DeMillo "On the Computational Complexity of a
Generalised Scheduling Problem," IEEE Trans. Computing vol. C-25, no. 11,
pp. 1067-1073, 1976.

[14] M.J. Gonzales "Deterministic Process Scheduling," ACM Computer Surveys vol.
9, no. 3, pp. 173-204, 1997.

[15] E.S. Buffa "Modern Production Management", 5th Edition, Wiley; New York,
NY, 1977;

[16] R.W. Conway, W.L. Maxwell and L.W. Miller "Theory of Scheduling",
Addison-Wesley; Reading, MA, 1967;

[17] M.J. Flynn "Very High-speed Computing Systems," Proceeding of the IEEE vol.
54, pp. 1901-1909, 1966.

[18] Casavant and Kuhl "A taxonomy of scheduling in general-purpose distributed
computing systems," Software Engineering, IEEE Transactions on vol. 14, no.
2 SN - 0098-5589, pp. 141-154, 1988.

 Page 97

Aleksandar Lazarevic Transfer Thesis

[19] S.A. Jarvis, D. Spooner, H. Keung and G. Nudd "Performance prediction and its
use in parallel and distributed computing systems," Parallel and Distributed
Processing Symposium, 2003. Proceedings. International pp. 8 pp. 2003.

[20] Y. Lingyun, I. Foster and J.M. Schopf "Homeostatic and tendency-based CPU
load predictions," Parallel and Distributed Processing Symposium, 2003.
Proceedings. International no. SN - 1530-2075, pp. 9 pp. 2003.

[21] J.M. Schopf and F. Berman "Using stochastic intervals to predict application
behavior on contended resources," Parallel Architectures, Algorithms, and
Networks, 1999. (I-SPAN '99) Proceedings. Fourth InternationalSymposium
on pp. 344-349, 1999.

[22] L. Byoung Dai and J.M. Schopf "Run-time prediction of parallel applications on
shared environments," Cluster Computing, 2003. Proceedings. 2003 IEEE
International Conference on no. SN -, pp. 487-491, 2003.

[23] S.A. Jarvis, D. Spooner, H. Keung, J. Dyson, Z. Lei and G. Nudd "Performance-
based middleware services for grid computing," Autonomic Computing
Workshop, 2003 pp. 151-159, 2003.

[24] D.P. Spooner, S. Jarvis, J. Cao, S. Saini and G. Nudd "Local grid scheduling
techniques using performance prediction," Computers and Digital Techniques,
IEE Proceedings- vol. 150, no. 2, pp. 87-96, 2003.

[25] Berman, Wolski, Casanova, Cirne, Dail, Faerman, Figueira, Hayes, Obertelli,
Schopf, Shao, Smallen, Spring, Su and Zagorodnov "Adaptive computing on
the Grid using AppLeS," Parallel and Distributed Systems, IEEE Transactions
on vol. 14, no. 4 SN - 1045-9219, pp. 369-382, 2003.

[26] "Condor-G," http://www.cs.wisc.edu/condor/condorg/; Last Accessed: 2005

[27] J. Frey, T. Tannenbaum, I. Foster and S. Tuecke "Condor-G: a computation
management agent for multi-institutional grids," High Performance
Distributed Computing, 2001. Proceedings. 10th IEEE International
Symposium on no. SN -, pp. 55-63, 2001.

[28] "Grid Engine Project Home Page," http://gridengine.sunsource.net/; Last
Accessed: 2005

[29] "N1 Grid Engine 6," http://www.sun.com/software/gridware/index.xml; Last
Accessed: 2005

[30] D. Abramson, R. Sosic, J. Giddy and B. Hall "Nimrod: a tool for performing
parametrised simulations using distributed workstations," High Performance
Distributed Computing, 1995., Proceedings of the Fourth IEEE International
Symposium on pp. 112-121, 1995.

[31] "Nimrod/G," http://www.csse.monash.edu.au/~davida/nimrod/nimrodg.htm;
Last Accessed: 2005

[32] R. Buyya, D. Abramson and J. Giddy "Nimrod/G: an architecture for a resource
management and scheduling system in a global computational grid," High
Performance Computing in the Asia-Pacific Region, 2000. Proceedings. The
Fourth International Conference/Exhibition on vol. 1, pp. 283-289 vol.1,
2000.

[33] "PBS Pro Home," http://www.pbspro.com/; Last Accessed: 2005

 Page 98

Aleksandar Lazarevic Transfer Thesis

[34] "Beowulf.org: The Beowulf Cluster Site," http://www.beowulf.org/; Last
Accessed: 2005

[35] "OpenPBS," http://www.openpbs.org/; Last Accessed: 2005

[36] R.L. Henderson "Job Scheduling Under the Portable Batch System," IPPS '95:
Proceedings of the Workshop on Job Scheduling Strategies for Parallel
Processing pp. 279-294, 1995.

[37] "Platform Computing - Products - Platform LSF,"
http://www.platform.com/products/LSF/; Last Accessed: 2005

[38] S. Zhou "LSF: Load Sharing in Large-scale Heterogeneous Distributed
Systems," Workshop on Cluster Computing 1992.

[39] "University of Warwick: Computer Science: Research: PACE,"
http://www.dcs.warwick.ac.uk/research/hpsg/pace/pace-introduction.html;
Last Accessed: 2005

[40] "LeSC - London e-Science Centre - ICENI," http://www.lesc.ic.ac.uk/iceni/;
Last Accessed: 2005

[41] L. Young, S. McGough, S. Newhouse and J. Darlington "Scheduling
Architecture and Algorithms within the ICENI Grid Middleware," 2003.

[42] "Maui Cluster Scheduler," http://www.clusterresources.com/products/maui/;
Last Accessed: 2005

[43] D. Jackson, Q. Snell and M. Clement "Core Algorithms of the Maui Scheduler,"
Lecture Notes in Computer Science vol. 2221, pp. 87-??, 2001.

[44] "Legion: A Worldwide Virtual Computer,"
http://legion.virginia.edu/index.html; Last Accessed: 2005

[45] "NetSolve," http://icl.cs.utk.edu/netsolve/; Last Accessed: 2005

[46] "Ninf Project Home Page," http://ninf.apgrid.org/; Last Accessed: 2005

[47] P. Sang-Min and K. Jai-Hoon "Chameleon: a resource scheduler in a data grid
environment," Cluster Computing and the Grid, 2003. Proceedings. CCGrid
2003. 3rd IEEE/ACM International Symposium on no. SN -, pp. 258-265,
2003.

[48] "MGRID - MGRID Accounting,"
http://www.mgrid.umich.edu/projects/mars.html; Last Accessed: 2005

[49] "SimGrid," http://juggler.ucsd.edu/simgrid/; Last Accessed: 2005

[50] Casanova "Simgrid: a toolkit for the simulation of application scheduling,"
Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM
International Symposium on no. SN -, pp. 430-437, 2001.

[51] Legrand, Marchal and Casanova "Scheduling distributed applications: the
SimGrid simulation framework," Cluster Computing and the Grid, 2003.
Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium on no.
SN -, pp. 138-145, 2003.

[52] "Micro Grid," http://www-csag.ucsd.edu/projects/grid/microgrid.html; Last
Accessed: 2005

 Page 99

Aleksandar Lazarevic Transfer Thesis

[53] "Grid Application Development Sofware Project (GrADS),"
http://www.hipersoft.rice.edu/grads/; Last Accessed: 2005

[54] X. Huaxia, Dail, Casanova and Chien "The MicroGrid: using online simulation
to predict application performance in diverse grid network environments,"
Challenges of Large Applications in Distributed Environments, 2004. CLADE
2004. Proceedings of the Second International Workshop on no. SN -, pp. 52-
61, 2004.

[55] H.J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura and A.A.
Chien "The MicroGrid: a Scientific Tool for Modeling Computational Grids,"
Supercomputing 2000.

[56] "GridSim: A Grid Simulation Toolkit for Resource Modelling and Application
Scheduling for Parallel and Distributed Computing,"
http://www.buyya.com/gridsim/; Last Accessed: 2005

[57] "SimJava," http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava/; Last
Accessed: 2005

[58] R. Buyya and M. Murshed "GridSim: a toolkit for the modeling and simulation
of distributed resource management and scheduling for Grid computing", John
Wiley & Sons, Ltd.; 2003;

[59] "Ganglia," http://ganglia.sourceforge.net/; Last Accessed: 2005

[60] "RRD TOOL -- About RRDtool,"
http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/; Last Accessed: 2005

[61] "Ganglia Cluster Toolkit:: Rocks Network Grid Report,"
http://meta.rocksclusters.org/Rocks-Network/; Last Accessed: 2005

[62] "R-GMA:Relational Grid Monitoring Architecture.," http://www.r-gma.org/;
Last Accessed: 2005

[63] B. Tierney "A Grid Monitoring Architecture," 2005.

[64] "NWS," http://www.nsf-middleware.org/documentation/NMI-R3/0/NWS/; Last
Accessed: 2005

[65] Wolski "Forecasting network performance to support dynamic scheduling using
the network weather service," High Performance Distributed Computing,
1997. Proceedings. The Sixth IEEE International Symposium on no. SN -, pp.
316-325, 1997.

[66] Takefusa, Matsuoka, Nakada, Aida and Nagashima "Overview of a performance
evaluation system for global computing scheduling algorithms," High
Performance Distributed Computing, 1999. Proceedings. The Eighth
International Symposium on no. SN -, pp. 97-104, 1999.

[67] R. Wolski, N.T. Spring and J. Hayes "The network weather service: a distributed
resource performance forecasting service for metacomputing," Future Gener.
Comput. Syst. vol. 15, no. 5-6, pp. 757-768, 1999.

[68] R. Wolski "Dynamically forecasting network performance using the Network
Weather Service," Cluster Computing vol. 1, no. 1, pp. 119-132, 1998.

[69] "GridMon - Grid Network Performance Monitoring for UK e-Science,"
http://gridmon.dl.ac.uk/; Last Accessed: 2005

 Page 100

Aleksandar Lazarevic Transfer Thesis

[70] "Hawkeye," http://www.cs.wisc.edu/condor/hawkeye/; Last Accessed: 2005

[71] Z. Xuechai, J.L. Freschl and J.M. Schopf "A performance study of monitoring
and information services for distributed systems," High Performance
Distributed Computing, 2003. Proceedings. 12th IEEE International
Symposium on no. SN - 1082-8907, pp. 270-281, 2003.

[72] "SO-GRM - EPSRC Web Site - Grants on the Web,"
http://gow.epsrc.ac.uk/ViewGrant.ASPx?Grant=GR/S21939/01&bannerlink=P
rogramme%20support; Last Accessed: 2005

[73] A. Li Mow Ching, Sacks and McKee "SLA Management and Resource
Monitoring for Grid Computing," London Communications Symposium 2003.

[74] I. Liabotis, O. Prnjat, T. Olukemi, A.L. Ching, A. Lazarevic, L. Sacks, M. Fisher
and P. McKee "Self-organising management of Grid environments,"
International Symposium on Telecommunications 2003.

[75] D.J. Watts "Small Worlds", Princeton University Press; 1999;
ISBN:0691005419

[76] I. Liabotis, O. Prnjat and L. Sacks "Policy-Based Resource Management for
Application Level Active Networks," 2001.

[77] Prnjat, Liabotis, Olukemi, Sacks, Fisher, McKee, Carlberg and Martinez
"Policy-based management for ALAN-enabled networks," Policies for
Distributed Systems and Networks, 2002. Proceedings. Third International
Workshop on no. SN -, pp. 181-192, 2002.

[78] R.O. Duda, P.E. Hart and D.G. Stork "Pattern Classification", 2nd Edition, John
Wiley and Sons; 2001;

[79] O. Prnjat, T. Olukemi, I. Liabotis and L. Sacks "Integrity and Security of the
Application Level Active Networks," IFIP Workshop on IP and ATM Traffic
Management 2001.

[80] "Open Source Native XML Database," http://exist.sourceforge.net/; Last
Accessed: 2005

[81] Citron "MisSPECulation: partial and misleading use of spec CPU2000 in
computer architecture conferences," Computer Architecture, 2003.
Proceedings. 30th Annual International Symposium on no. SN - 1063-6897,
pp. 52-59, 2003.

[82] Amato and Dale "Probabilistic roadmap methods are embarrassingly parallel,"
Robotics and Automation, 1999. Proceedings. 1999 IEEE International
Conference on vol. 1, no. SN -, pp. 688-694 vol.1, 1999.

[83] "GLUE Schema," http://www.globus.org/mds/glueschemalink.html; Last
Accessed: 2005

[84] C. Bishop "Neural Networks for Pattern Recognition", Oxford University Press;
Oxford, England, 1995;

 Page 101

	1. Chapter One Introduction to the Grid
	1.1. A Case for Distribution
	1.2. The Grid Perspective
	1.3. The Globus Toolkit and its Impact
	1.4. Wider Grid Landscape
	1.5. Conclusions
	2. Chapter Two Research Area
	2.1. Open Issues in Grid Computing
	2.2. Research focus: Grid Scheduling
	2.3. Simulation and Testing
	2.4. Measurements & Information Flow
	2.5. Conclusions

	3. Chapter Three Literature Survey
	3.1. Scheduling Theory
	3.1.1. Taxonomy of Scheduling
	3.1.2. Predicting Application-Level Performance

	3.2. Survey of Schedulers
	3.2.1. AppLeS
	3.2.2. Condor–G
	3.2.3. N1 (Sun) Grid Engine
	3.2.4. Nimrod/G
	3.2.5. Portable Batch System (PBS)
	3.2.6. Load Sharing Facility (LSF)
	3.2.7. PACE/Titan
	3.2.8. Imperial College e-Science Network Infrastructure
	3.2.9. Maui Cluster Scheduler
	3.2.10. Others
	3.2.11. Conclusions

	3.3. Survey of Grid Simulation Suites
	3.3.1. SimGrid
	3.3.2. MicroGrid
	3.3.3. GridSim
	3.3.4. Conclusions

	3.4. Survey of Monitoring Systems
	3.4.1. Ganglia
	3.4.2. Relational Grid Monitoring Architecture
	3.4.3. Network Weather Service
	3.4.4. Other
	3.4.5. Conclusions

	4. Chapter Four SO-GRM Project
	4.1. SLA Management
	4.2. Resource Discovery
	4.3. Integrity Information Intelligence - I3
	4.4. Functional and Integration Testing
	4.5. Conclusions

	5. Chapter Five Grid Application Simulator
	5.1. Motivation
	5.2. Requirements
	5.3. Implementation
	5.3.1. Application Simulation Stages
	5.3.2. Parameterisation Options
	5.3.3. Deployment Scripts

	5.4. Self-Test Results
	5.5. Conclusions

	6. Chapter Six Monitoring Framework
	6.1. Motivation
	6.2. Requirements
	6.3. Implementation
	6.3.1. Ganglia Functionality
	6.3.2. Information Providers
	6.3.3. Database Management Tools

	6.4. Test results
	6.5. Conclusions

	7. Chapter Seven Towards a Probabilistic Scheduler
	7.1. Aims
	7.2. Requirements
	7.3. Methodology
	7.4. Preliminary Analysis
	7.4.1. Overall Job Statistics
	7.4.2. Group-based Job Differentiation
	7.4.3. Data Clustering and Correlation
	7.4.4. Temporal Characteristics

	7.5. Conclusions

	8. Chapter Eight Further Work
	8.1. Algorithm Development
	8.2. Scheduler Testing
	8.3. Open Issues
	8.3.1. Unique Grid Process Identification
	8.3.2. Hardware Heterogeneity
	8.3.3. Data Storage and Communication

	8.4. Business Plan Development

	9. Chapter Nine Appendices
	9.1. Glossary of Terms
	9.2. Table of Figures
	9.3. Work Plan
	9.4. Publications and Relevant Documents
	9.4.1. London Communications Symposium 2003
	9.4.2. International Symposium on Telecommunications
	9.4.3. Next Generation Networking - Multi-Services Networks
	9.4.4. London Communications Symposium 2004
	9.4.5. The Ninth IFIP/IEEE International Symposium on Integrated Network Management

	9.5. Code Listing
	9.5.1. GridLoader
	9.5.2. Matlab® Parameter File Generator
	9.5.3. Ganglia Custom Metric Broadcast Script
	9.5.4. Round-Robin Database Data Sweep Script
	9.5.5. Simple Batch Scheduler (Globus flavour)
	9.5.6. Simple Batch Scheduler (SSH flavour)

	9.6. References

