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Abstract 
This transfer thesis presents a novel, probabilistic approach to scheduling 
applications on computational Grids based on their historical behaviour, current 
state of the Grid and predictions of the future execution times and resource 
utilisation of such applications. The work lays a foundation for enabling a more 
intuitive, user-friendly and effective scheduling technique termed deadline 
scheduling. 

Initial work has established motivation and requirements for a more efficient 
Grid scheduler, able to adaptively handle dynamic nature of the Grid resources 
and submitted workload. Preliminary scheduler research identified the need for a 
detailed monitoring of Grid resources on the process level, and for a tool to 
simulate non-deterministic behaviour and statistical properties of Grid 
applications.  

A simulation tool, GridLoader, has been developed to enable modelling of 
application loads similar to a number of typical Grid applications. GridLoader is 
able to simulate CPU utilisation, memory allocation and network transfers 
according to limits set through command line parameters or a configuration file. 
Its specific strength is in achieving set resource utilisation targets in a 
probabilistic manner, thus creating a dynamic environment, suitable for testing 
the scheduler’s adaptability and its prediction algorithm. 

To enable highly granular monitoring of Grid applications, a monitoring 
framework based on the Ganglia Toolkit was developed and tested. The suite is 
able to collect resource usage information of individual Grid applications, 
integrate it into standard XML based information flow, provide visualisation 
through a Web portal, and export data into a format suitable for off-line analysis. 

The thesis also presents initial investigation of the utilisation of University 
College London Central Computing Cluster facility running Sun Grid Engine 
middleware. Feasibility of basic prediction concepts based on the historical 
information and process meta-data have been successfully established and 
possible scheduling improvements using such predictions identified. 

The thesis is structured as follows: Section 1 introduces Grid computing and its 
major concepts; Section 2 presents open research issues and specific focus of the 
author’s research; Section 3 gives a survey of the related literature, schedulers, 
monitoring tools and simulation packages; Section 4 presents the platform for 
author’s work – the Self-Organising Grid Resource management project; 
Sections 5 and 6 give detailed accounts of the monitoring framework and 
simulation tool developed; Section 7 presents the initial data analysis while 
Section 8.4 concludes the thesis with appendices and references. 

Probabilistic Grid Scheduling 
© 2005, Aleksandar Lazarevic 

Department of Electronic and Electrical Engineering 
University College London 

London, WC1E 7JE 
U.K. 

a.lazarevic@ee.ucl.ac.uk
www.ee.ucl.ac.uk/~alazarev/
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1. CHAPTER ONE 
 
INTRODUCTION TO THE GRID 

The evolution of distributed computing, ultimately leading to the emergence of 
the Grid paradigm, was set in motion in 1994 with the start of the Legion and 
Globus projects.  

This chapter gives a brief introduction to Grid computing with Section 1.1 
arguing the case for distributive computing; Section 1.2 outlining the unique and 
novel aspects of the Grid approach; Section 1.3 giving further details on the 
Globus Toolkit, a de facto Grid middleware today. Section 1.4 introduces 
organisations and projects closely supporting Grid efforts, while Section 1.5 
concludes the chapter. 

1.1. A Case for Distribution 

A long running battle in the evolution of computer architectures is that between 
centralised and distributed approaches. In last fifty years, technological advances 
often tilted the battle in favour of the centralised paradigm, always providing 
means to concentrate more computational power into smaller, more integrated 
space. The distributed camp, on the other hand, was stimulated by the 
developments of new, computationally and data challenging applications, 
constantly being one step ahead of the resources any centralised installation 
could provide. It has therefore been natural that the development of both 
approaches would continue in parallel, each finding an application space that it 
can serve best. 

However, social, political and scientific developments in the last decade provided 
a strong spring board for the distributed computing paradigm. Following, or 
perhaps leading, international integration efforts, scientific research has moved 
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from closed university campuses and governmental departments into a more 
cross-border collaboration effort, spanning many countries, organisations and 
funding bodies. Stable political climate resulted in the willingness of funding 
bodies to invest money in non-dedicated facilities, open for use by scientist from 
other nations. And with research goals becoming ever more challenging, a 
substantial shift into “Big Science” was unavoidable – requiring enormous 
investment in infrastructure and research facilities often beyond the reach of even 
the most developed nations. 

The same decade saw a number of advances in information technologies able to 
support distributed computing better than ever before. High speed networking 
became ubiquitous with the roll out of extensive optical networks, effectively 
rendering bandwidth a linear function of (moderate) monthly expenditure. IP 
protocol established itself as a standard for all and any kind of networking, with 
universal connectivity slowly becoming a reality. Despite some pessimistic views, 
Moore’s Law still held firm ground, becoming applicable not only to silicone 
chips, but to magnetic storage products as well. Storage space became a 
commodity few people saw limits to, also with a linear function of unit cost. 
Despite all these advances, and frequent promises by the industry, one problem 
still caused headaches in the high performance computing circles, marred 
deployment of even bigger data centres, and played nicely into hands of 
distributed computing advocates. Power consumption of silicone chips remained 
directly proportional to their computational output throughout the decade.  

Figure 1 CPU Power Consumption Relative to SPEC Computational 
Output [1]  
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Figure 1 shows the computational output per watt of consumed electricity for a 
range of CPU families at different operating frequencies. 

Hard disks and other components are consuming more power than ever. High 
levels of integration could not increase the computational density of data centres 
any longer as physical limits are being reached with respect to power supply, 
distribution, and heat dissipation (air-conditioning). Although ways of 
overcoming these through the use of “brute force” exist, expense of such 
approaches would significantly impact the price per FLOPS ratio. 

At the turn of the century, right set of enabling technologies and target markets 
has formed inspiring new enthusiasm for distributed computing approaches. 

1.2. The Grid Perspective 

Distributed computing was certainly not a new phenomenon in the high 
performance computing field. Indeed, distributed computer installations were 
both researched and deployed throughout the 1980’s with Digital Equipment 
Manufacturer (DEC) leading the way with its super-mini clusters based on 
DECnet. These early attempts were often less then the sum of their parts, 
requiring great effort to set- configure hardware and software, they used 
proprietary protocols and behaved more like a monolithic unit sliced and 
arranged over some physical distance. 

Although similar ideas have been floating in the research community for years, 
the first prominent project which popularised distributed computing was 
SETI@Home[2]. By running as a screensaver on Internet connected PCs, 
SETI@Home utilised their idle time to comb radio signals for signs of 
extraterrestrial life. A whole range of applications, aimed at utilising unused 
cycles on distributed workstations, developed from this early attempt and the 
approach was coined “cycle scavenging”. Success of SETI@Home spawned a 
number of similar derivative projects (like Stanford University 
Folding@Home[3] protein folding application), but by far the most successful is 
the Condor Project (see Section 3.2.2). 

Grid computing[4] drew significant inspiration from the power grids in which 
electricity generation is remote from the point of consumption, and transparent 
to the user. From the user’s perspective, the power grid offers ubiquitous and 
reliable access to virtually unlimited amount of electricity on a pay-per-use 
model. The goal of providing computational power as a form of utility thus 
became an epitome of Grid Computing. 

The Grid computing perspective was to capitalise on the benefits of distributed 
architectures while working on the major problems and issues uncovered in 
previous attempts. While many implementations of Grid concept exist, varying 
greatly in form and function, the primary objective was to develop a transparent 
platform, based on industry standard protocols and open source code, which can 
be ported to any of the many operating systems and architectures currently in 
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use by the academic and commercial institutions. The Grid was to be a much 
more organic network than its distributed predecessors, able to form on-demand 
Virtual Organisations (VO) [5] spawning geographical, networking and 
administrative boundaries. Grid middleware would be able to integrate 
distributed computational, storage and visualisation resources into persistent 
environments, provide a strong security layer, and a resilient, burstable platform 
for scientific research and commercial applications. In an ideal scenario, Grids 
would become a new, pervasive and transparent utility which is autonomous and 
self-manageable. 

1.3. The Globus Toolkit and its Impact 

Globus Toolkit[6] has emerged as a de-facto standard Grid middleware. Initially 
developed by Ian Foster, Steve Tuecke and Carl Kesselman, Globus now enjoys 
a large research and development community compromising universities, 
standards bodies and large international corporations. The toolkit has gone 
through three major versions, with the version 2.4 widely accepted as most 
stable, and extensively deployed in the academic community. Although Globus 
Toolkit has been used in production environments (substantially modified and 
repackaged), it is still primarily a research framework for the Grid concept. 
Commercialisation and production of a industry-grade platform is being actively 
pursued by Globus Alliance members. 

Version 3 of Globus Toolkit embraces the services framework based on the Web 
Services Resource Framework (WSRF), and so will the recently announced 
Version 4. Regardless of the implementation issues, Globus Toolkit effectively 
stands on three pillars: Globus Security Infrastructure (GSI), Globus Resource 
Allocation Manager (GRAM) and Monitoring & Discovery Service (MDS). 

Globus Security Infrastructure is based on public key concepts (PKI) and X.509 
certificates. Each Globus-enabled network host, service, or user has a certificate 
which is used in authenticating that entity’s identity and authorising access to a 
resource. All messages communicated between Globus-enabled nodes or 
components are also secured using Transport Layer Security (TLS) with 
corresponding certificates. The security that GSI is able to offer using PKI 
technology is widely recognised, although delivering such levels of security has 
proven to be one of the biggest problems with Globus Toolkits. Public key 
infrastructure was never trialled on such a large scale as commanded by the wide 
acceptance of Globus, and many issues concerning the set-up and running of 
Certification Authorities, maintenance of certificate revocation lists, and user’s 
approach to dealing with certificates have since arisen. These are not necessarily 
faults with the PKI technology or the Globus toolkit, but rather point to a 
changing security landscape, and prompt a more coordinated action for 
developing supporting tools and altering users habits and perceptions. 

Globus Resource Allocation Manager could be thought of as the core of the 
toolkit, an interface common to all nodes in a Globus Grid. On a network facing 
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side, GRAM answers queries from other Globus nodes for running applications 
on the local system, providing those requestors with a unique resource identifier 
(URI) contact string which can be used at a later time to query the progress of 
the job, and collect the job’s output. On the local system side, GRAM can 
interface any number of local schedulers, from simple UNIX fork to systems 
such as Portable Batch System (PBS, see section 3.2.5) or Load Sharing Facility 
(LSF, see Section 3.2.6), through a modular shell script. Once the job is 
submitted, GRAM captures its standard and error outputs, and provides 
monitoring facility for proper/improper termination. 

Monitoring & Discovery Service is a Lightweight Directory Access Protocol 
(LDAP) server based component that keeps information pertaining to the 
current state of a Globus host and its hardware capability and software 
environment. MDS is built on a hierarchical model, with individual information 
providers reporting single metric measurements to a tree of distributed 
information service servers (called GRIS and GIIS). MDS is a central point of 
contact for locating resources, obtaining their usage statistics and discovering 
services they are able to provide. For such a critical mission, MDS’s performance 
leaves plenty to be desired. The move to web services platform will see important 
changes in the information service aspect. 

1.4. Wider Grid Landscape 

Globus Toolkit was not the first Grid middleware to emerge from the academic 
institutions. The Legion Project (see Section 3.2.10), started in the late 1993 at the 
University of Virginia had many similarities with the later Globus project. 
However, Legion did not manage to solicit the same amount of interest and 
involvement as Globus, and although it remains an ongoing research effort, the 
installed base remains small. 

The success and popularisation of Globus Toolkit has provided a focus point for 
Grid research, while the Globus Alliance has acted as a strong promoter of Grid 
computing in international research, academic and commercial bodies. Globus 
Toolkit was used as the base of several derivative middleware currently in 
production use in large international projects (EGEE[7], DataGrid). A large user 
community has developed and is orchestrated through the Global Grid Forum 
(GGF) [8], a regular meeting of formal research and working groups tackling 
short- and long-term issues of Grid Computing. Commercial Grid 
implementations were supported by a number of university spin-offs formed by 
researchers on Grid related projects. Companies like Platform Computing[9], 
Avaki[10] and United Devices[11] managed to establish themselves as leading 
consultancies in the field. Major market players have in the last three years 
recognised the marketing potential of the Grid, and have joined GGF as 
industrial collaborators and development partners. IBM, Sun Microsystems and 
Hewlett-Packard are all offering Grid solutions for the enterprise. It is no 
surprise that the number of commercial, production level Grid deployments is 
constantly on the rise, and that the Grid was named as one of top ten 
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technologies that could change the word in the next decade[12]. The academic 
community equally benefited from this surge of interest in Grid computing with 
the increase in research grant funds and better visibility of their work. But with 
research proposals influenced by political agendas and policy makers, a negative 
effect may be caused by overselling the Grid’s near-term potential, and not 
fulfilling community’s (over-optimistic) expectations. 

1.5. Conclusions 

In this chapter, the need for distributed computing, and some major driving 
factors of its development have been discussed. An overall perspective of the 
Grid concept was given, and its main value proposition was underlined. The 
Globus Toolkit was introduced and its main components briefly discussed. 
Finally, an overview of other Grid related efforts is given and major commercial 
supporters identified. 
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2. CHAPTER TWO  
 
RESEARCH AREA 

Although wide-area Grid computing can be seen as a natural step from the 
distributed computing concept, it poses many new challenges and requires 
significantly different implementation approaches. In this chapter, areas of major 
Grid research will be presented, and research challenges of the author’s current 
and future work described in more detail. 

Section 2.1 introduces Grid middleware components and crucial improvements 
needed; Section 2.2 gives the main focus of the author’s work, while Sections 2.3 
and 2.4 respectively present issues in simulating Grid environments and 
monitoring Grid resources. 

2.1. Open Issues in Grid Computing 

Various aspects of the distributed computing paradigm have been researched 
throughout the 1980s and 90s, with solid, proven solutions for many 
implementation and programming challenges. Despite all its similarities and 
common roots to legacy distributed computing, the Grid poses radical new 
questions and requires new approaches for solving them. The Grid’s added value 
proposition is in supplying computing power as a utility, providing an 
ubiquitous on-demand service through a semi-persistent environment created for 
solving a specific task (Virtual Organisation). This is in complete contrast with 
legacy cluster systems, and their strict plan-deploy-use cycle. Therefore, legacy 
approaches and solutions can not simply be migrated onto the Grid middleware, 
as they would diminish the core benefit this new technology offers. 

Large amount of Grid research is being undertaken in all aspects of Grid 
middleware: data management, security, networking, scheduling and resource 
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management. The Grid’s envisaged ubiquity and flexibility – ability to operate on 
any (time and space shared) hardware, interconnected by any network (dedicated 
or not), and deployable across administrative boundaries – adds a whole new 
layer of complexity to legacy distributed computing problems. It follows that in 
developing core Grid middleware components one should assume little of the 
operational environment, and require even less, aiming for an adaptable system 
able to operate in a wide range of conditions. 

Creating a global and dynamic computational network also creates considerable 
management problem. After the initial research effort to develop and deploy 
world’s first Grid services, the problem of managing systems of such global scale 
became more prominent. The large management burden is caused by the scale 
and heterogeneity of the platform, outdated management tools, and the 
reluctance to radically change management practices. Desirable properties of any 
new or improved Grid middleware components would hence be a high degree of 
autonomy and self-management, and a low impact on end users and their 
workflow. 

The Grid middleware will be greatly influenced by the nature of the applications 
that run on it. The Grid has already enabled scientific simulations and 
experiments to be performed at previously impossible scale, but as it becomes a 
widely accepted collaborative computing platform the application set is likely to 
change. With development of computational markets, users could find it cheaper 
and more convenient to use the Grid for an increasing variety of jobs. The grid 
may emerge as a generalised service delivery platform, executing large numbers 
of medium and low demand computational jobs. This would lead to a shift from 
a few highly specialised and demanding applications to a more diverse 
application landscape. 

Any such changes in the usage profiles would change a number of important job 
statistics which current management components rely on. As the applications 
execution times fall, job arrival rates will increase, and so will the resource 
discovery and scheduling overheads. Current Grid resource discovery and 
scheduling components are built on assumptions of a very long execution times 
and resource pools of modest size. Overheads and job submission delays now 
introduced by the Grid middleware may be considered insignificant, but in the 
future may represent the greatest part of the job execution time. In a general use 
case, schedulers will have to make an intelligent decision and adjust the 
complexity of resource discovery and scheduling to the likely complexity of the 
job at hand. 

2.2. Research focus: Grid Scheduling 

The author’s main focus is research and development of a flexible scheduling 
system, better suited to the user’s normal workflow, and enabling higher 
utilisation of Grid resources. Most of the current Grid schedulers offer either a 
“fair-share” of resources to all users, or apply fixed parameter modifiers based on 
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the user or group priorities. These schedulers are predominantly batch based 
systems, requiring users to submit jobs to queues with resource utilisation caps, 
and the administrators to prioritise queues and users using scheduling policies. 
The end effect is underutilisation due to idle periods, or lower than expected 
quality of service to the users whose jobs fail to capture required share of the 
resources.  

The author’s view is that better scheduling can be achieved by enabling the user 
to specify an intuitive metric, such as job completion deadline or available 
“budget”, and producing a schedule optimising these metrics. These metrics are 
embedded in the way users commission services in the real world – asking for 
them to be delivered in certain time and at a certain cost. The notion of deadline 
based scheduling is the central and overriding motivation of the research work 
herein presented. 

The problem of deadline scheduling reduces to the prediction of the execution 
time of any given application submitted to the scheduler. Should this be known, 
admission decision can be made based on the current load of the system and 
user’s requested turnaround time. A real-time scheduling plan could then be 
made using any number of optimisation approaches – a Tetris™ game of fitting 
blocks of jobs to a timeline. It is clear that the knowledge of how long a certain 
job will take to complete is the crucial information needed to support deadline 
scheduling. A difficult task on its own, this information should be arrived at with 
a limited system overhead, in a short period of time, and with reasonable 
accuracy. Such deadline driven scheduler must be able to quantify the quality of 
its predictions, and be able to take adaptive actions in case a wrong prediction 
disturbs the execution plan. And with the user convenience as one of the main 
requirements, switching cost and increase in job submission complexity should 
be minimal. 

2.3. Simulation and Testing 

Redesigning a crucial element of a system, such as the scheduler, raises problems 
in its testing and quality assessment. Deploying an unproven and possibly 
unstable scheduler on a production system is not acceptable. However, assessing 
the performance and benefits of the new scheduler may be impossible in a 
simulation environment in which many crucial metrics are predetermined and 
static. Any results and findings arrived at purely through simulations may hold 
little credibility, and may be insufficient to support deployment of the scheduler 
on the production system. 

The need for an adequate tool for simulating real Grid application load was 
recognised early on in this research. The aim was to develop an application able 
to stress the scheduler, and all other components of the Grid middleware, 
running on a hardware testbed. The computational load presented to the Grid 
should have properties similar to the ones observed on a production system, be 
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repeatable and deterministic on large scale, yet probabilistic on lower scales to 
allow interesting usage patterns to develop. 

Thus, a secondary line of research should investigate and develop appropriate 
supporting tools for simulating real scheduling problems and testing developed 
solutions in an environment closely resembling production Grids. 

2.4. Measurements & Information Flow 

Regardless of a method adopted for delivering deadline scheduling, 
measurements of system’s historical performance, and a timely and accurate 
snapshot of current activities is essential. Monitoring of the Grid is difficult due 
to the heterogeneous nature and large number of resources that need to be 
observed. Monitoring systems with predefined sampling points and frequencies 
will inevitably end up with poor information capture – high volumes of 
irrelevant measurements in which a truly important observation may be lost. 
Operating in a geographically distributed environment, transferring monitoring 
information indiscriminately leads to inefficient use of bandwidth. The next 
generation of truly effective Grid monitoring systems would have to be more 
intelligent, flexible and agile, adapting the granularity, frequency and the 
communication methods to the state of the operating environment and the 
importance of the measurements. These systems would not be unlike virtual 
sensor network, permeating the Grid fabric and self-organising in monitoring 
constellations according to the current requirements. 

Monitoring systems currently in use on the Grid (to be discussed in Section 3.3) 
measure the total CPU load on a single host. However, one can not assume this 
figure is the equivalent of the CPU utilisation of the application running on that 
node. Grid hosts would generally be both time- and space-shared with other 
Grid users, and even with other, local users. Furthermore, author’s tests of the 
Grid middleware deployed on a small testbed (see Figure 4) showed that a 
significant computational overhead is evident in all phases from job submission 
to job results collection. 

It was therefore deemed necessary for a more granular monitoring system to be 
developed, one able to monitor CPU utilisation of a specific application or a 
process. This information would have to be sampled with sufficient frequency to 
extract statistical features of the processes and be easily accessible by other Grid 
management components. 

Investigation into current monitoring tools, and conceptual development of a 
suitable monitoring framework will be undertaken as a secondary line of 
research. The focus will be on demonstrating the benefits of an integrated 
monitoring-scheduling-accounting approach, rather than delivering a completely 
new monitoring tool. 
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2.5. Conclusions 

Chapter 2 offers a view on the differences between legacy distributed systems 
and the Grid, identifying new challenges and suggesting novel approaches that 
will be required for solving them. Scheduling of computational jobs on the Grid 
is identified as the main focus of author’s current and future work. Simulation of 
realistic Grid environments and highly granular monitoring are seen as essential 
requirements for successful study of advanced scheduling algorithms and will be 
pursued as secondary research objectives. 
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3. CHAPTER THREE 
 
LITERATURE SURVEY 

Despite being a relatively new research topic, Grid computing has already 
attracted attention of many scientists, research groups and standards 
organisations. Previous work in the area of parallel and distributed computing 
provides a firm foundation and is sill largely applicable to the Grid. However, 
resource management, and particularly scheduling, require innovative approaches 
and a break from inherited practices. 

In Chapter 3, a detailed literature survey will be given. Section 3.1 presents the 
most important work in the scheduling theory, while Sections 3.2, 3.3, 3.4 give an 
in-depth survey of widely used Grid schedulers, simulation tools and monitoring 
systems. 

3.1. Scheduling Theory 

3.1.1. Taxonomy of Scheduling 

The general scheduling problem has been described in several seminal works [13, 
14] and is a restatement of classical notions of job sequencing in the context of 
production management [15].The functionality of the scheduler can in broader 
view be described as that of a resource management resource [16]. It consists of a 
mechanism or a policy used to effectively and efficiently manage the access to a 
certain resource by a number of competing users. 

Scheduler is a mediator between the resource and the consumer, and as such has 
to satisfy two opposing requirements: in term of quality of service the 
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performance expected by the user, and in terms of system utilisation the load 
fraction expected by the resource operator. 

A useful four-category taxonomy of scheduling has been given by Flynn [17], 
and further discussed in [18]. Parts of the overall categorisation are shown in the 
diagram in Figure 2. 

Global Scheduling

Static

Optimal

Sub-optimal
Approximate

Enumerative

Graph Theory

Mathematical Programming

Queuing Theory

Heuristic

Dynamic
Physically Distributed

Cooperative

Optimal

Sub-optimal
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Heuristic

Non-cooperative

Physically Non-Distributed
 

Figure 2 Taxonomy of Scheduling 

However helpful this hierarchical approach is, it must be considered with 
caution, in relation to and from the perspective of a single point in the distributed 
computing environment. At the highest level, the taxonomy can be divided by 
scope into local and global schedulers. As I will discuss in later sections (3.2 
Survey of Schedulers), Grid computing environment consists of many layered 
scheduling components and depending on the point of view taken same 
component can be seen as either a global or a local scheduler. 

The scheduling research work proposed in this thesis would fall in the global, 
dynamic and physically distributed category. Depending on the nature of the 
Grid environment and the decisions that will be taken at the later stage of the 
research, the scheduler would use heuristic, or approximate methods, or a 
combination of both. 

3.1.2. Predicting Application-Level Performance 

Methods for predicting various aspects of application-level performance based on 
historic data have been previously researched in the context of high-performance 
parallel computing [19, 20]. Of particular interest were estimates of application 
queuing time, wait time (time between arriving at the head of the queue and 
starting execution), application run time and overall makespan (time elapsed from 
submission to the scheduler to the end of execution). Resource utilisation of the 
processes was studied in less detail, as HPC systems tend to be space-shared and 
jobs were usually allocated exclusive use of a part of the system. 

Prediction methods used range widely depending on the scope and target use. 
Most widely used are [21, 22]:  

♦ Last-value predictions 
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♦ Mean and Median based statistics 

♦ Linear regressions 

♦ Greedy algorithm 

♦ Genetic algorithm 

♦ Neural networks 

Most commonly used algorithms are based on derivatives of mean and median 
based statistics. These fare well in relatively static pools of resources and well-
behaved job distributions, but special care must be taken when handling 
multimodal and probabilistic environment such as the Grid. 

Previous works on this topic have established factors which have important 
implication on the quality and usability of the forecasts [23]. In deducing 
patterns in the data set it was shown as important to build experience based on 
similar events, like-for-like data points. Jobs would need to be partitioned and 
categorised so that different predictions, and even different forecasting 
algorithms, can be used.  

Timeliness of the predictions has shown to be at least as equally important as the 
margin of error [24]. As prediction algorithm complexity increases, the time 
taken for making a scheduling decision may significantly reduce the benefit in 
makespan time such prediction would create. If it all possible, the quality of the 
given prediction should be quantified, as this would increase the usability of the 
forecast. 

To this date, little research is evident in the correlation between the job execution 
statistics, its related meta-data and the state of the computational environment at 
the time of execution. The lack of common accounting standards and log file 
formats further hinders comparisons of information obtained from various 
sources. 

3.2. Survey of Schedulers 

Despite the Globus Toolkit evolving as a standard Grid middleware, the meta-
computing landscape is still very fragmented. The core functionality required 
from the middleware is not firmly defined, and different approaches lead to a 
blurred distinction between the scheduler and meta-computing middleware. 
Often, there is significant overlap: many of the surveyed schedulers can operate 
as either standalone systems, or as Globus job managers. 

The following sections aim to present the most prominent and widely used 
schedulers in the Grid community. Various research projects are constantly 
developing new schedulers. These efforts sometimes result in little more then a 
conceptual implementation, but a few are developed into working 
implementations and are subsequently used in production Grid deployments. 
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3.2.1. AppLeS 

Application Level Scheduling (or AppLeS) [25], was developed at the Computer 
Science and Engineering Department at the University of California San Diego 
(UCSD). AppLeS was one of the first Grid schedulers to investigate adaptive 
scheduling and provide full job support from resource discovery, schedule 
generation, selection and adaptation, to application execution. Its schedule 
generator can take into account and optimise for user’s performance criteria, such 
as execution time, or target turnaround time. These benefits come at the price of 
having to extensively modify every application to be scheduled using AppLeS. In 
most cases this would require a joint team of scientist and AppLeS developers 
modifying and recompiling the source code to enable the application to be 
dynamically scheduled. The result is an integrated piece of software composed of 
a domain-specific component, a scheduling superstructure controlled by the 
AppLeS agent and an actual problem solving code. AppLeS developers have in 
this way enabled over a dozen applications, and this scheduling method is best 
suited to parameter sweep applications and master-slave divisible workload. 
Performance modelling methods are based on well known third party software 
(such as Network Weather Service see Section 3.4.3) and have to be manually 
customised to the application and hardware platform in question. 

AppLeS can provide significant increase in resource utilisation and optimisation 
of requested performance metric on a properly tuned cluster. However, 
modification of the source code may not always be possible or desirable, and 
presents a high switching cost to the user. This will only be acceptable for high-
value niché applications, or clusters based on expensive or exceptional hardware. 
To date, AppLeS developers have presented their work on application scheduling 
for synthetic aperture radar, parallel tomography and magneto-hydrodynamics, 
among others. 

AppLeS bears significant differences to our approach in requiring each 
application, set of resources and prediction algorithm be adapted to its 
scheduling framework and domain in question. This requires significant effort on 
behalf of the user, cluster administrator, AppLeS developer and software 
provider. Any solution developed in such a way may not be portable, or may not 
perform sufficiently well even with minor changes in the cluster composition, 
network topology or usage patterns. Nevertheless, AppLeS has shown possible 
benefits of adaptive and predictive schedulers, and an obvious need for their 
development. 

3.2.2. Condor–G 

Condor[26] is a batch scheduling system targeted at harvesting unused 
computational cycles from a heterogeneous set of user workstations. It was first 
developed in 1988 at the Computer Science Department, University of 
Wisconsin-Madison. Condor suite[27] provides scheduling with different 
policies and prioritisation, resource monitoring and job management. Resource 
owners maintain full control of their hardware and can set policies on their 
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acceptable use. Condor uses a proprietary ClassAd language, which allows 
hardware owners to describe their resources, and users to specify arbitrary 
resource requests. A matchmaker component compares these to match job 
requirements with appropriate execution hardware. 

Condor-G [27]is an extension to the core Condor components and functions as a 
bridge between a Condor pool and resources accessible through Globus 
middleware. Running as a Globus job manager on each Grid worker node, and as 
a controller on a dedicated node within the Grid, it translates between GRAM 
and ClassAd protocols, allowing jobs submitted to a Condor pool to be executed 
on machines in the Globus cluster. Due to its strong user base and developer 
community, Condor-G is widely accepted as a Grid job manager, and is 
deployed even when no Condor cluster exists. 

Condor is a batch scheduler with first-in-first-out approach, although some job 
grouping and prioritisation is possible. Condor provides the ability for check-
pointing and job migration, important aspects for operation on non-dedicated, 
commodity clusters. If a machine running a Condor submitted process becomes 
unavailable, whether due to the local policy or a malfunction, the job can be 
restarted from the last check point on another suitable worker node. Jobs 
submitted through Condor are sandboxed on execution nodes, and should local 
policies restrict file I/O, Condor can redirect low-level API calls to a remote file 
system. 

Condor has a proven track record of providing high throughput computational 
clusters, and with its lightweight client deployment is of special benefit to 
institutions with large pools of underutilised workstations. However, it is a very 
much centralised system with clear separation between master and slave nodes. 
Its scheduling framework has no notion of deadline, and other than coarse-
grained prioritisation, little intelligence can be added to the scheduling process. 
Despite additional improvements offered by Condor-G, the framework is not 
flexible enough to accommodate dynamic Grid resources distributed across 
administration boundaries. 

3.2.3. N1 (Sun) Grid Engine 

Sun has embraced the Grid as one of their core future technologies, and has 
developed its Grid software with a very strong business perspective. Sun’s Grid 
platform is based on the Sun Grid Engine (SGE) [28], an open source software 
from which Sun has recently spawned a commercial product called N1 Grid 
Engine[29]. Grid Engine can function as a stand-alone system, or it can be used 
as a job manager within a Globus Toolkit Grid environment. Currently, SGE 
supports one of the widest sets of hardware and OS combinations: SPARC, 
AMD64, x86a and Mac hardware running most of the UNIX operating systems 
with even the support for Windows XP forthcoming. 

Grid Engine is built on an agent based master-slave model. Master node serves as 
the only ingress point to the system and offers a command line and graphical user 
interface to the cluster. Slave nodes are running an agent responsible for 
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executing jobs, monitoring their progress, and communicating with the master. 
Each execution host in the cluster represents one queue and each CPU on that 
host is seen as one slot. The implication is that each CPU will only ever be 
assigned at most one job regardless of its utilisation. Creation of parallel 
environments is possible, with one job spanning across a number of CPUs and 
nodes. Queue scheduling is based on a policy and priority modified first-in-first-
out model. Agents running on worker nodes report to the master details about 
underlying hardware, software and execution environment from which complex 
queries for resource selection can be made. Role-based user privileges can 
establish groups or projects with different priorities, execution schedules and 
billing options. Overall, SGE provides a stable production system for high 
throughput computing in commercial environments. 

Sun Grid Engine approach is very centralised in nature, with a batch scheduling 
system at the core. It provides for a good degree of control over the use of 
resources, but no out-of-order or scheduling to a deadline is possible. The 
monitoring and management system lacks scalability, relying on approaches 
which would be inappropriate in large distributed systems (for example plain text 
accounting files needing manual rotation). Performance and robustness issues are 
raised by the use of a single master responsible for accepting and dispatching 
jobs. Experience shows that even a small worker node population (hundreds of 
workers) with a moderate job arrival times can saturate a 4-way SMP master.  

University College London Central Computing Cluster (CCC) compromising 
104 dual CPU compute nodes has deployed Sun Grid Engine version 5.3 as its 
Grid middleware. Preliminary user experiences have been positive with respect 
to stability and availability. The relatively low size and utilisation levels of the 
CCC did not expose any problems, or have significantly stressed the scheduler. 

3.2.4. Nimrod/G 

Nimrod [30]scheduler was developed as a tool for facilitating large runs of 
parameterised simulations over a distributed set of resources. It provides a 
declarative parametric modelling language used to create a plan for deployment 
of a large number of tasks.  Nimrod application running on a master gateway is 
used to submit, execute and collect results from multiple worker nodes. 
Resources used are typically loosely coupled workstations with well defined 
usage periods (such as office hours), or dedicated resources on which a high level 
of utilisation should be maintained. Nimrod offers a Tcl based scripting language 
for job setup, and a simple graphical user interface through which ranges for 
parameter studies can be defined. The GUI also provides basic monitoring of 
running nodes and the progress of the overall experiment. A reengineered version 
of Nimrod, called Clustor, was commercialised by Active Tools until the 
company ceased to exist in 2003. 

Nimrod scheduler was developed for a static set of resources, and could not be 
adequately used in a highly dynamic context such as the Grid. Nimrod/G 
[31]further developed the Nimrod concept, and embraced Globus middleware 
for dynamic resource discovery, job submission and security. Using Nimrod/G, 
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user can define a deadline for completion of submitted jobs, and/or a virtual 
budget available for computational resources. By offering a “budget” metric, 
Nimrod/G is looking to provide a framework for market based computational 
economy where such services could be traded. 

Key components of Nimrod/G architecture [32]are its parametric engine, 
scheduler, dispatcher and job-wrapper. These components interface with Globus 
middleware, and provide resource discovery through MDS queries, job data 
staging through GASS and job dispatch through GRAM. Security services 
including authentication and authorisation are provided by GSI. During a 
schedule generation stage, Nimrod/G runs a sample of the parametric study 
application on the target nodes and uses measured hardware performance as a 
benchmark for later execution duration predictions and schedule generation. 

Nimrod/G is one of the first schedulers developed specifically for the Grid 
environment. It was shown to offer good scheduling performance, with good 
adherence to requested deadlines. The trial run prediction method lends itself 
well to the heterogeneous nature of the Grid. However, Nimrod/G is aimed at 
parametric study applications, whose execution times are very narrowly 
distributed, and generally independent of the input parameters. By limiting its 
scope, Nimrod/G is able to utilise simple prediction methods to achieve 
satisfactory scheduling performance. Although these applications form an 
important group of scientific software presently running on the Grid, a general 
purpose scheduler must be able to handle other types of applications equally 
well. 

3.2.5. Portable Batch System (PBS) 

Portable Batch System (PBS) [33] is a widely used scheduler in large institutional 
clusters, and has become a de facto standard batch scheduling system in the Grid 
and Beowulf[34] environments. Originally developed to manage aerospace 
computing resources at the NASA, it now comes in two versions: an open-source 
implementation OpenPBS[35], and a commercial product from Altair 
Engineering PBS Pro[33]. PBS can function without any Grid middleware as 
standalone workload management system, or integrated with Globus Toolkit as a 
local scheduler. The system is available for almost any cluster system from vector 
and parallel supercomputers, SUN, SGI, HP, Alpha, and Macintosh 
workstations, to Intel and AMD based Windows systems. 

Portable Batch System[36] is based on a centralised server-client model, in which 
server accepts job execution requests and forwards them to one or many clients 
for execution. The scheduling component is separated from the server process, 
and through the use of PBS API can be modified to implement different 
scheduling algorithms. The Scheduler communicates with the Server to obtain 
submitted job information, and with the PBS resource monitor to acquire 
utilisation data. It can operate on single or multiple queues and create schedules 
based on site policies, priorities and the utilisation state of the cluster. Subject to 
the underlying hardware and software support, PBS Pro can reserve resources in 
advance and schedule accordingly.  
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Although very robust and reliable, Portable Batch System is another 
implementation of a modified FIFO approach to job scheduling. It is best suited 
to well managed and controlled environment, with (mostly) homogeneous 
hardware and software, and with unified accounting and administration policies. 
PBS Pro has provisions that mitigate single points of failure (such as failover 
Server), and offers cross-system scheduling with access control lists and user 
mappings. However, it is clear these are seen as add-ons rather then core 
philosophy of PBS. Job recovery mechanism provided can restart jobs disrupted 
by a node failure on another host in the network, but the system is not designed 
to deal with a highly dynamic resource pool that a Grid environment may 
present. Most importantly, no deadline scheduling is supported, and job staging 
and execution times are considered unknown. 

3.2.6. Load Sharing Facility (LSF) 

Load Sharing Facility (LSF) [37] grew out of the PhD thesis of Songnian Zhou, 
who later successfully developed and marketed LSF as a core product of his 
start-up business – Platform Computing. The company has been at the centre of 
Grid development and standardisation efforts in the GGF, with an extensive user 
portfolio of blue chip companies in the banking, manufacturing and life science 
sectors. 

Platform LSF is a commercial product, and little information on the inner 
functioning of the scheduler is given in the company’s whitepapers. The author 
was unable to obtain a demonstrational copy of the product for testing purposes. 
Research papers mostly examine and compare LSF performance with other 
scheduling systems, and only very early works by Zhou [38]offer insight into the 
algorithms of the early versions. From the information available, the core of 
Load Sharing Facility is the Virtual Execution Machine™ which provides 
virtualisation of underlying resources and is the primary execution environment 
in the LSF enabled cluster. A web based, SOAP/XML enabled interface offers 
customisation and integration with other applications. According to the 
company web site, an element of self-management has been built into Platform 
LSF to offer guarantee zero downtime, self-adaptive dynamic allocation of 
resources, and self-healing to reduce management overhead. 

Platform LSF offers a comprehensive set of scheduling policies with support for 
fair-share, pre-emptive and SLA based scheduling with advanced resource 
reservation. The implementation of these is not discussed in publicly available 
papers and LSF documentation. Information gathered from informal sources 
suggests good performance levels, and a considerable overall increase in resource 
utilisation and efficiency. Further research into LSF scheduling methods will be 
undertaken. 

3.2.7. PACE/Titan 

PACE/Titan [39] toolset was developed by the High Performance Systems 
Group at the University of Warwick, and is one few schedulers supporting out-
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of-order scheduling composition for deadline execution based on performance 
predictions. 

The PACE toolkit [19]uses pre-execution modelling and analysis techniques to 
predict the runtime and resource utilisation of an application on a given hardware 
platform. It relies on hardware and software characterisation templates, with an 
evaluation engine tasked with extrapolating expected application performance on 
the requested platform. The PACE toolkit requires all applications to be re-
compiled and linked with PACE libraries, so that their performance templates 
can be created. Equally, each host with a different hardware, operating system or 
any performance-influencing component needs to be profiled before PACE can 
integrate it into its runtime predictions. 

Titan [24]is a workload and workflow management component of the toolset. 
Using performance predictions supplied by PACE, Titan optimises the execution 
schedule to reduce idle time, makespan and scheduling delay, while maintaining 
deadline adherence. Titan uses a genetic algorithm with crossover and mutation 
to locate an optimal schedule. The algorithm is constantly run on the pool of 
outstanding jobs, replacing the current best schedule if a better one is found. 
Titan also provides management of inter-dependant tasks and jobs with sub-
workflows, and is able to optimise their execution in order to minimise total 
runtime. 

PACE/Titan toolset has been developed to the Open Grid Services Architecture 
(OGSA) standard, uses SOAP messaging and runs in a Globus Toolkit 3 
container. Considering this open architecture, it should be possible to selectively 
replace parts of the toolset with third party components – for example a different 
prediction engine could be used to reply to Titan requests. 

Several research papers by the developers of PACE/Titan toolset have presented 
good results of its predictive scheduling technique. Despite these, the main 
drawback of the toolset is the need to recompile applications, and to extensively 
profile target hardware platforms. For large number of users running various 
applications on non-dedicated resources, such as in a typical Grid scenario, this 
may prove very difficult or impossible. The main strength of the PACE/Titan 
scheduler is in running high-end scientific applications on relatively static pools 
of high performance dedicated hardware. For such clusters, the investment in 
deploying the system and adapting the applications is justified (for example 
Adaptive Grid Eulerian Hydrocode running on US Department of Energy 
Accelerated Strategic Computing Initiative resources). The reported performance 
of the PACE/Titan scheduler shows the value of runtime predictions and the 
need for deadline scheduling. 

3.2.8. Imperial College e-Science Network 
Infrastructure 

ICENI[40] has been developed by the London e-Science Centre at the Imperial 
College London as a generic and modular meta-scheduling framework able to 
use a variety of underlying Grid middleware. 
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The architecture [41]separates scheduling and launching frameworks, allowing 
each to be independently extended to support the widest array of deployment 
scenarios. ICENI aims to explore the role and the flow of meta-data in the 
computational Grids; a Performance Repository maintains data on the job 
execution times on different architectures and with different network 
bandwidths. ICENI prediction engine treats applications as a collection of simple 
components connected as a directed acyclic graph (DAG) with varying depths 
and dependencies. It introduces a user-defined benefit value, such as target 
execution time or computing cost, which the scheduling process aims to 
optimise. 

The launching framework can be adapted to the middleware and hardware 
platform on which ICENI is running – currently supported systems are Globus 
Toolkit 2.4, Sun Grid Engine, Condor or simple fork. The scheduling framework 
supports multiple concurrent schedulers, and user selection of preferred 
scheduling algorithm. The schedulers assume no exclusive control over the 
resources, as these could be made available to other, local or remote users, 
through alternative access methods. An API is provided by the scheduling 
framework for retrieving the meta-data from the Performance Repository, and 
for functions common to all schedulers (such as performance predictions and 
resource discovery). 

ICENI authors have developed four different schedulers for use with the ICENI 
framework. They have recognised that for jobs of shorter duration time taken to 
develop a schedule can be longer then the total execution time. For this class of 
jobs, a random scheduling algorithm is adopted, and an optimised version 
selecting best out of n random schedules is also provided. For more complex job 
sets, simulated annealing or Game theory schedulers are considered. In the 
comparative tests by ICENI authors, simulated annealing performed best, with 
the best of n random scheduling faring very well. Game theory did not produce 
good quality schedules, and was outperformed by random scheduling at the 
fraction of the schedule computing cost and time. 

The ICENI project lays important foundations as one of the first schedulers 
developed specifically for the Grid, with its heterogeneous and space-shared 
resources, and dynamic resource availability. It parts from the traditional 
approach of the batch schedulers and offers out-of-order job execution. 
Although the importance of meta-data is considered, its integration in the overall 
flow of monitoring information could have been more thorough. ICENI falls 
short of offering fully fledged deadline scheduling, but optimisation of wall-
clock job execution time can be done using the benefit function. The core ICENI 
scheduling work focuses on the development of a well performing scheduling 
algorithm, with little or no mention of the job execution time prediction 
methods, their accuracy and computational cost. Due to an open architecture and 
modular design, ICENI offers a good platform for deployment of third party 
components and their testing in a production-like environment. 
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3.2.9. Maui Cluster Scheduler 

Maui Cluster Scheduler [42]is an open source scheduler primarily developed and 
supported by Cluster Resources Inc. Maui forms the basis of the company’s 
other commercial offerings, Moab Cluster/Grid Suite and Silver, but its 
development was widely supported by the HPC community, U.S. Department 
of Energy, and many others. Maui supports a wide variety of cluster hardware, 
operating systems and scheduling APIs including PBS, LSF, Loadleveler, and 
Sun Grid Engine. 

Maui Cluster Scheduler is a high level batch scheduling system, with support for 
scheduling policies, dynamic priorities, resource reservations and fair-share 
allocation[43]. It relies on lower level schedulers to act as resource managers and 
launching tools, supplementing them with additional monitoring and accounting 
functionality. Each job submitted is assigned to a queue according to the 
applicable policies and priorities. On job submission, the user is requested to 
state the maximum wall clock execution time, and if a job is part of a larger 
workflow define other prerequisites for that job’s start. These parameters enable 
Maui to appropriately reserve required resources and construct an initial 
schedule. Further schedule optimisation are made using job prioritisation and fair 
share algorithms. Optionally, Maui can be configured to use backfill, an out-of-
order scheduling strategy inserting shorter jobs into gaps created by mutually 
dependant large jobs. This method can significantly increase job throughputs and 
cluster utilisation, but may lead to users “playing” the scheduler and reducing its 
fairness. 

Although Maui maintains accounting data on previous user-predicted and actual 
job execution times, this information is not used in any way. Its analysis reveals 
users are likely to grossly overstate the wall clock time required for executing 
their application padding their, initially poor, estimates to account for overloaded 
compute resource, prolonged data staging or unexpectedly complex 
computations. These effects compound to lower the accuracy of these 
predictions to about 30%. Backfilling algorithm, combined with hard resource 
limiting, leads to a decrease in scheduling efficiency for large compute jobs as any 
CPU time freed by jobs under-running is used for backfill. Overall, Maui is a 
stable and well supported scheduler for homogeneous compute environments, 
and offers significant increases in efficiency, manageability and fairness compared 
to similar batch schedulers. The lack of an autonomous and intelligent prediction 
system reveals the unreliability of user supplied predictions, and the importance 
of this data in creating effective schedules.  

3.2.10. Others 

Legion[44] was the first modern meta-computing systems, developed at the 
University of Virginia. If the Globus Toolkit can be considered as a “sum of 
services”, the Legion toolkit offers a unified and integrated architecture. Legion 
did not achieve the wider popularity and community acceptance similar to 
Globus. It remains to be seen whether Globus’ modular approach will provide a 
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robust and stable framework, or a more controlled and integrated system like 
Legion would be required. 

NetSolve (GridSolve) [45] is a remote procedure call (RPC), agent based system 
for solving numerical problems. The system manages resource discovery and 
load balancing of a distributed set of resources. NetSolve has interfaces for C and 
Fortran, and commonly used scientific applications such as Matlab, Mathematica 
and Octave. 

Ninf-G [46]is a reference implementation of the Global Grid Forum (GGF) 
recommended GridRPC specification. It is based on the Ninf system, and 
similarly to NetSolve aims to Grid-enable legacy application written in Fortran 
and C. 

A suite of schedulers has been developed for a specific, niché, application. They 
offer good performance levels on specific installations, and running specific class 
of jobs. Some of these are: 

♦ Chameleon[47] – improves scheduling in the Data Grid, and similar 
data intensive environments, by considering the amount of 
computational resources available, as well as the data availability. 

♦ NQE/NQS – legacy batch schedulers, mostly run on mainframe 
machines. Being replaced with PBS or PBSPro (see Section 3.2.5). 

♦ MARS[48] – a meta-scheduler for University of Michigan campus Grid. 

♦ Scheduling Expert Adviser (SEA) – a 1997 project that converts a 
high-level description of a computational task supplied by a user into a 
set of facts and rules on which the scheduling is based. 

3.2.11. Conclusions 

Presented survey of schedulers clearly indicates that most of the scheduling 
approaches have been inherited from the legacy distributed clusters. These, 
almost exclusively batch systems, offer good levels of reliability and control 
while sacrificing utilisation levels, user experience and dynamic resource 
handling. Such trade-off is currently acceptable in the production environments 
mostly due to the lack of stable, usable alternatives. 

Novel schedulers, specifically developed for the Grid, are emerging from several 
research projects (Nimrod/G, ICENI, Titan/PACE). Looking to tackle 
stochastic and probabilistic nature of Grid resources, these schedulers recognise 
the value and the necessity of forward looking estimates on the job execution 
times and its resource utilisation.  
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3.3. Survey of Grid Simulation Suites 

3.3.1. SimGrid 

SimGrid[49] has been developed at the University of Southern California, as a 
toolkit providing core functionality for simulation and analysis of scheduling 
methods for distributed and parallel applications. 

The toolkit [50]provides several levels of abstractions, and has the ability to 
import topology specifications from third party applications. SimGrid is 
implemented as an agent based simulator, with each of the scheduling agents 
running at a certain location, communicating through a network path using a 
defined communication channel, and executing a given task. SimGrid 
abstractions implement these services as Agent, Location, Task, Path and 
Channel objects. 

Simulation scenarios are executed in following steps: modelling the simulated 
applications by defining functionality of each agent, defining resources and 
allocating agents to appropriate locations, and running the simulation while 
observing different levels of trace verbosity. SimGrid supports compute and 
network low level resources, which can be of either fixed characteristics, or 
varying according to a trace file. This is particularly important in modelling 
network links, and a representative Grid topology can be simulated by using 
traces from network monitoring tools such as NWS. Compute resources are 
characterised by computational speed relative to a reference node and their 
availability (from 0 to 100%). Network links are described by their latency and 
bandwidth. These resources can be shared and contended for with three different 
strategies: first in first out (FIFO), first ready first out (FRFO), and shared (user 
implemented fair share method). Once the simulation scenario and hardware 
topology has been developed, different scheduling techniques can easily be 
implemented and repeatable measurements made to assess their merits. 

SimGrid builds on best approaches from more complex and specific simulators, 
while maintaining simplicity and good performance levels. Its use by a number of 
research projects, and numerous publications of SimGrid simulated results have 
confirmed it to be scalable, configurable and extensible enough to simulate a 
wide variety of scheduling problems[51]. Validation of SimGrid results remains a 
difficult question, especially in a relatively new setting that the Grid is. The 
problem is alleviated to some extent by the fact that SimGrid is based on models 
previously accepted in the scheduling community. 

3.3.2. MicroGrid 

MicroGrid[52] is a simulation tool developed at the University of California, 
Sand Diego, under the sponsorship of National Science Foundation as part of the 
Grid Application Development Software project (GrADS) [53]. MicroGrid is an 
online simulator, providing a virtual Grid environment on which real Grid 
middleware and Grid applications could be run. Currently Globus Toolkit is the 
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only supported Grid middleware, but the latest version of MicroGrid is able to 
run Grid applications written in MPI, C, C++, Python and Perl. 

Primary concern with an online simulator such as the MicroGrid is the 
implementation of virtualisation functions. MicroGrid relies on the operating 
system to provide unique namespaces and seamless sharing, and only virtualises 
the host identity[54]. This is achieved by mapping virtual IP addresses to host’s 
physical address, and trapping all resource related calls to perform the 
translation. 

Physical resources in the simulated virtual Grid are discovered and characterised 
through an extended and virtualised Globus Information Service (GIS). 
Computational resources are defined using a scaling factor to their real 
performance, denominating the slice of the CPU time that will be used in the 
virtual Grid. Network elements are simulated through an external application 
(VINT/NSE), creating high overheads and limiting scalability. 

MicroGrid simulator has been validated by the authors, in different testing 
scenarios ranging from single component tests to running a fully fledged Grid 
application (Cactus Application) [55]. The virtual Grid approach is helpful in 
situations where application behaviour is hard to model, or when unfeasible test 
scenarios are needed – such as investigation of catastrophic node or network 
failures. MicroGrid requires stable middleware and application suites, and as 
such could not be used in early stages of a novel scheduler development. The 
need for global coordination of resources in the virtual Grid enforces a 
“maximum feasible simulation rate” on the whole environment, dictated by the 
lowest specified physical hardware on which MicroGrid is running. Although 
theoretically possible, large Grid simulations with complex resource pools could 
be prohibitively time consuming to execute. 

3.3.3. GridSim 

GridSim [56]is a simulation tool developed at the Monash University, Australia 
and freely distributed under the open source license. GridSim is based on 
SimJava2[57], a process based discrete event simulation tool for Java. Developed 
by the same team as the Nimrod-G scheduler means that economy-based 
scheduling and resource allocation principles have been deeply embedded in the 
rationale of this simulation package. GridSim focuses specifically on modelling 
time- and space-shared resources, with support for concurrent tasks running on 
the same resource[58]. The geographical and social aspects of the Grid 
environment can also be modelled through variable resource background 
utilisation based on time zone, busy hours, days of the week and calendaring. 

Simulation set up steps in GridSim include creation of resources, definition of 
applications (called Gridlets), and coding of resource brokers and the scheduling 
algorithm. Compute resources are defined as processing elements (PE), basic 
building blocks whose performance is specified in MIPS and can be coupled to 
form SMP-like architecture. Characterisation of network links was poorly 
documented, with only a reference to their “data transfer baud rate”. Job 
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specification is done through Gridlet objects, which include explicitly defined 
computational cost (in MIPS), size of input and output data sets, preferred 
scheduling policy and user’s deadline and budget constrains. 

Although based on an already established simulation platform, GridSim is not as 
methodological in simulating realistic network topologies, link congestion, 
resource contention, and parallel applications as SimGrid. Poor documentation 
further mars development of genuinely useful simulations. Despite being a 
general purpose Grid simulator, GridSim is targeted at parametric research 
applications and economy driven scheduling approach. The authors have 
developed a GridSim based simulation of their Nimrod-G scheduler (see section 
3.2.4), but few other projects have reported on their experimental use of 
GridSim, or on validation of simulated results. 

3.3.4. Conclusions 

Few Grid simulation tools are presently available, leading to significant problems 
in testing new scheduling approaches. All three simulators surveyed adapt a 
different approach, and are targeted at simulating different aspects of the Grid 
middleware. Generally, simulation of application behaviour is poorly captured 
with few realistic models, and little support for modelling of job statistical 
properties. Effective testing of new, probabilistic, schedulers will depend on 
being able to accurately simulate real application behaviour with its important 
statistical properties. 

3.4. Survey of Monitoring Systems 

3.4.1. Ganglia 

Ganglia Cluster Monitoring[59] was developed at the University of California 
Berkeley, and was sponsored trough National Science Foundation’s NPACI 
program, before becoming part of the PlanetLab project. 

Ganglia aims to consolidate monitoring information in a hierarchical structure, 
and presents increasingly detailed data going from a federation of clusters, or 
Grids, down to a single worker node. It leverages widely used technologies such 
as extensible mark-up language (XML) for data representation, external data 
representation (XDR) for portable data transport, and round-robin databases 
(RRDtool [60]) for data storage and visualization. Ganglia has been ported to an 
extensive set of operating systems and hardware architectures. Throughout 
extensive deployment in production clusters containing over two thousand nodes 
[61], Ganglia was proven as a stable, robust and scalable system with low 
overheads. 

Metrics monitored by Ganglia vary depending on the operating system and 
hardware support, but a core set includes processor load, memory usage and 
network performance. Due to the modular code design, Ganglia is highly 
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customisable and can be modified to monitor custom metrics specific to the local 
environment. By either modifying the source code, or by using Ganglia’s custom 
metric publishing tool, these can be integrated in the core metrics’ information 
flow.  

Cluster nodes running Ganglia can either publish their measurement data, collect 
data published by other nodes, or do both thus creating a distributed data 
repository. Low overhead communication is implemented through broadcast 
messages within the cluster, or unicast links between the clusters. Data storage is 
handled by fixed-size round robin databases, and a Perl toolkit is provided for 
data visualisation through a web based interface. 

Despite being efficient way of storing historical data, round robin databases loose 
detail and alter statistical properties by consolidating older measurements using 
simple functions such as averaging or min-max. Analysis of resource utilisation, 
process behaviour, and proposed scheduling algorithm would depend on 
statistical properties of historical data for correct operation. If Ganglia collected 
data is to be used for process resource utilisation trending and pattern matching, 
methods for preserving highest detail data would need to be developed. 

3.4.2. Relational Grid Monitoring Architecture 

Grid Monitoring Architecture (GMA) was developed by the similarly named 
working group under the auspices of Global Grid Forum, a worldwide forum for 
Grid developers and users. The working group was focused on producing a high-
level architecture statement of the components and interfaces needed to promote 
interoperability between heterogeneous monitoring systems on the Grid. 
Relational GMA (R-GMA) [62] was developed as a web service implementation 
of the GMA specification, providing access to monitoring information through a 
relational database concept. After initial development as part of the European 
DataGrid project, R-GMA is now a candidate system for use in the “Enabling 
Grids for E-science in Europe” project [7]. 

The GMA working group has recognised that performance monitoring 
information differs from other forms of system or program-produced data: it has 
a short lifetime, is frequently updated and is stochastic in nature [63]. The 
group’s subsequent recommendations proposed a monitoring architecture 
consisting of three components. Data Producers would publish their capabilities 
in the Directory, and provide information directly to the data Consumers based 
on their subscription to particular information feeds. Such approach implies a 
separation of the meta-data describing the monitored metric and the stream of 
actual measurement data. Relational GMA system builds on this model by 
relieving consumers and producers of registry interaction, and by providing a 
relational database communication model between the two. However, R-GMA is 
not a general distributed relational database management system (RDBMS); it 
rather provides a method of applying a relational data model in a Grid 
monitoring environment. 

  Page 32 



Aleksandar Lazarevic  Transfer Thesis 

R-GMA is based on industry standard SQL database, and imposes a standard 
query language and database schema. It can thus benefit from proven scalability 
and robustness of these components. Information flow and component 
interaction is based on SQL CREATE TABLE, INSERT and SELECT queries 
on virtual tables maintained by the Registry. 

Grid Monitoring Architecture specification provides a bare framework for which 
adequate information providers and consumers need to be developed. Although 
the whole Grid community would benefit from its wider adoption, few 
installations use it. The EGEE project, R-GMA’s biggest proponent, and its 
monitoring database may contain significant amount of data which could be of 
great use in understanding Grid applications and their execution time patterns. 
Although the usage of SQL databases mitigates reliability issues, the Registry and 
the database schema could be a single point of failure, unless properly replicated. 

3.4.3. Network Weather Service 

Network Weather Service (NWS) [64] originated at the University of California, 
Santa Barbara, as a monitoring and forecasting system for meta-computing 
environments. Since its first versions was published in 1997, it has seen many 
improvements and modifications to become one of the most widely used tools in 
the distributed computing area. NWS operates a distributed set of sensors and 
supporting processes, monitoring network resources, and collecting historical 
performance data. When requested, it uses numerical methods to generate 
forecasts for some future time frame based on previous monitoring data[65]. The 
aim of NWS was to enable better scheduling in meta-computing environments 
by predicting the real level of performance at the application level. Although 
NWS was developed primarily as a network latency and bandwidth monitoring 
tool, its open interface allows for addition of third party sensors. Discussion of 
NWS herein, and its features, is based on the version 2.8. 

Network Weather Service system architecture[66, 67] is based on four separate 
components: Sensor, Forecaster, Name Server and Persistent Storage. Of critical 
interest are the Name Server process, which runs on one machine only and 
provides a directory capability, and the Persistent Storage process which stores 
and retrieves measurements. Name Server is the only well-known address used 
by the system, allowing for both data and services to be distributed, but also 
creating a single point of failure. NWS developers plan to migrate the Name 
Server to a distributed LDAP-based service and eliminate this problem. Data 
storage is implemented using circular data files, and no measurements are kept 
indefinitely. 

The issues of measurement intrusiveness and reliability were often raised in the 
NWS user community, and newer versions have gone to some length in fixing 
them. CPU utilisation sensor now uses both passive (based on UNIX vmstats) 
and active monitoring (by running a compute-intensive probe). The sensor has an 
adaptive, heuristic algorithm tracking the discrepancy of passive and active 
monitors to decide on the right balance of the two. Intrusiveness is especially 
important in network monitoring; NWS network sensor has developed advanced 
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techniques for measuring end-to-end bandwidth and latency while maintaining a 
minimal impact. Network sensors organise in hierarchical cliques and perform 
mesh measurements within these, and point to point measurements between 
different cliques and hierarchical levels. Co-ordination of measurements is 
performed by a token passing protocol using adaptive time-out discovery, and 
with algorithms in place to deal with token loss due to network segmentation or 
node failure. 

Prediction algorithms used in the Network Weather Service fall in three basic 
categories: mean based, median based and autoregressive methods[65]. 
Additional Forecaster modules can be developed to increase the quality of 
predictions, for predicting specific sensor metrics, or for operation in special 
environments. NWS operates a competitive environment for different Forecaster 
modules, requesting each to produce their prediction every time a forecast is 
required. Prediction errors of each module are tracked, and the one with the 
lowest cumulative error is selected for further predictions. In this way, NWS 
automatically identifies the best forecasting technique for any given resource[68]. 

Network Weather Service is targeted at predicting wide area network 
performance, and although it can be extended with custom sensors it does not 
render itself immediately to process execution time predictions. Circular storage 
methods used are similar to round-robin databases used by the Ganglia Cluster 
Monitoring, but provide even less historical information. Self-selection of the 
best prediction method is a novel and useful feature, but it also impose significant 
computational overhead on prediction calculation. This may not be relevant with 
simple mean and median based predictors, but may become so if a more complex 
Forecaster is developed. Regardless, NWS presents a seminal work in monitoring 
and resource utilisation fields, and clearly demonstrates the value of insight into 
historical monitoring data. Its simple, yet effective, prediction methods show that 
even moderately accurate predictions can be used with great success. 

3.4.4. Other 

Several other monitoring systems are used in the Grid community, usually with a 
more specific focus on one of the aspects of the system’s operation. Often, large 
projects assemble toolkits of loosely coupled best-of-breed components, and 
distribute them as part of their customised Grid middleware. 

GridMon[69] is a UK e-Science project monitoring network performance 
between each of the regional e-Science nodes. Using a suite of tests based on 
simple ping scripts and Iperf utility, GridMon confirms connectivity and 
measures packet loss, round trip time and TCP/UDP throughout. A more 
intrusive test establishes end-to-end application level performance by copying 
large files (1 to 80 MB) using SSH file transfers. All measurements are done from 
each node to each other node, thus creating a mesh matrix. This approach leads 
to a very intrusive and non-scalable network monitoring, appropriate only for a 
current small number of e-Science centres (12-15). GridMon publishes its 
measurements using a Web based visualisation suite, LDAP service or OGSA 
compliant web service. 
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Condor Hawkeye[70] is an extension of the Condor high-throughput cycle 
harvesting system (see Section 3.2.2), and is based on the ClassAd  messaging 
protocol used in Condor-G. Hawkeye configures Condor pool master to 
periodically run a selection of scripts which take measurements and generate 
appropriate ClassAd messages. These monitoring messages can then be used to 
execute complex selections or conditional queries when submitting jobs. 
Hawkeye integrates well with a large installed base of Condor pools, and 
requires little administration effort. However, due to the (in)frequency of 
measurements, it is more of a summary utilisation and problem reporting tool 
than a high resolution resource utilisation monitor.  

3.4.5. Conclusions 

As with other management components, Grid infrastructure has inherited 
monitoring applications from the cluster and main-frame world. Currently, most 
monitoring systems will deploy the probes statically, perform the measurements 
in predefined frequency, and use static data retention policies. All data collected 
is treated and retained equally, and no differentiation is made based on temporal 
or relevance criteria. This framework creates a rigid structure in which no 
adaptation to the granularity, frequency, or communication parameters is 
possible based on the operating environment conditions. Apart from introducing 
overheads[71], this approach can not monitor a large scale distributed and 
dynamic environment effectively, and would not be able to concisely present 
required information when and where it is most necessary. 
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4. CHAPTER FOUR 
 
SO-GRM PROJECT 

The author’s research work is part of Self-Organising Grid Resource 
Management (SO-GRM) project[72], sponsored by Engineering and Physics 
Research Council (EPSRC) and in collaboration with BT Research labs.  SO-
GRM is base research project aimed at developing an autonomous management 
infrastructure able to support the job execution through its full lifecycle – from 
job admission through scheduling and resource discovery to security monitoring. 
Every component of the SO-GRM architecture shares the same objectives: 
removing single points of failure through a distributed approach, reducing the 
administration load by using policy based management and creating agile, on-
demand system through the use of self-organising principles. 

The SO-GRM aims to present a platform for integrated testing of scheduling, 
simulation and monitoring components developed by the author. A Grid testbed 
has been deployed by the author (see Figure 3), and runs a full set of Globus 
middleware, supporting applications and SO-GRM components. Although of a 
limited size, the testbed should reflect a real Grid production-like environment 
and offer a good opportunity for in-situ testing. 

This chapter briefly introduces the components so far developed by the 
contributors of the project (including the author), and reports on the 
functionality tests undertaken on the project’s Grid testbed. Section 4.1 discusses 
the problem of Service Level Agreement management within the Grid; Section 
4.2 presents a novel resource discovery protocol based on small-worlds topology; 
while Section 4.3 describes a novel distributed intrusion detection system. In 
Section 4.4 test set-up, methodology and results are discussed, while Section 4.5 
concludes this chapter. 
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4.1. SLA Management  

As the highest level management component in the system, Service Level 
Agreement (SLA) Management (SLAM) [73] is responsible for negotiation of 
service level agreements between commercial Grid operators and users, and 
among commercial Grid operators themselves. In the context of our research, an 
SLA describes the expected performance of the system from consumer/user’s 
point of view. As we seek to provide an intuitive interface to the system, an SLA 
might not be expressed in explicit terms, stating for example the number and 
specification of required machines, minimum network bandwidth and latency 
required or similar. It is more likely that a user-level metric such as percentage of 
successful web hits, or deadline for application execution will be used. SLAM is 
expected to provide methods for translation of those abstract service level 
objectives into implicit low level resource requirements. Once these are obtained, 
admission control is undertaken to check the subscribed load of the cluster and 
assess whether such an SLA can be honoured. If that is the case, it is assigned a 
unique SLA identifier, used to tag each subsequent job relating to that SLA. 
Current version of SLAM provides a Type of Service (ToS) indicator that can be 
used by operators to prioritise certain jobs or ensure certain resources are 
reserved for higher value SLAs. On acceptance of a new SLA, a new Virtual 
Organisation (VO) is populated and serves as a container for all resources 
assigned to that SLA. This VO is populated through resource discovery 
procedure, and can dynamically grow and shrink within the bounds set by the 
service level agreement. This adaptive behaviour enables better utilisation 
through controlled oversubscription of resources. 

SLAM is implemented as a Java application and runs on a single node in the 
network. Basic operation has been confirmed in the live test runs, and new 
functionality and improvements are being added. 

4.2. Resource Discovery 

Self-Organising Resource Discovery (SORD) [74] component is tasked with the 
discovery of computational resources which satisfy conditions set by SLA 
management and the scheduler. SORD is a distributed protocol in which each 
node acts autonomously to discover the most suitable host to serve a specific 
request. Initially each node is connected to a number of topologically near nodes 
(called neighbours) and few random far nodes thus creating a small-world 
topology [75]. These topologies have previously been considered in the problem 
of routing with local information and allow distribution of information to the 
correct recipient by using shortcuts. The protocol uses XML encoded query-
reply and advertisement messages with limited time-to-live, and stores received 
responses in fixed size cache tables. By using different tables for each of the 
queried metrics different virtual topologies are created, and certain nodes evolve 
as most frequent successful candidates for fulfilling requests for such metrics (i.e. 

  Page 37 



Aleksandar Lazarevic  Transfer Thesis 

node with much more physical memory than other nodes in the network will be 
a firm favourite for memory intensive applications). Main objectives in the design 
of the protocol where scalability and resilience to single node failures, both of 
which have been successfully met. The protocol implementation and integration 
with other components and Globus middleware was tested on the SO-GRM 
testbed, while extensive simulation has been done to examine its scaling 
properties. More information on scalability and successful resource discovery 
rates can be found in previous publications by Ioannis Liabotis [76, 77]. 

4.3. Integrity Information Intelligence - I3 

Integrity Information Intelligence (I3) is a distributed run-time intrusion 
detection system. I3 is a combination of anomaly and misuse detection systems: 
initially trained with the features of a well behaving process, I3 is subsequently 
able to recognise suspicious utilisation patterns. Suspect patterns are classified as 
either re-occurring offending bad behaviour, or a new ambiguous feature. In the 
later case, one-off human intervention and classification is required. The feature 
set defining an anomaly is stored locally, with all other nodes in the network 
immunised by broadcasting the anomaly’s definition as an XML antidote. Raw 
monitoring data is processed through the feature extraction algorithms that 
calculate central moments, and based on these mean, standard deviation, 
skewness and kurtosis. Outputs of these functions feed the classifier component 
which treats them as points in a multidimensional space. The classifier uses 
mahalanobis distance [78] to compare the level of matching between the training 
set and obtained data, and hence decide on the nature of the observed pattern. 

I3 agent is implemented as a Java application running on each node in our test 
Grid. In both simulation and testbed deployment I3 has provided process 
classification with less than 1% error rate for a suitably configured threshold 
detection value. More information can be found in [74, 77, 79]. 

4.4. Functional and Integration Testing 

Further to previous simulations and isolated testing of SO-GRM components, a 
functional and integration test of the overall system was performed on the Grid 
testbed. SORD, I3 and SLAM were developed in Java, exclusively use XML for 
message passing and data storage, and have been previously tested independently 
to ensure proper core functionality. It was therefore decided to use eXist[80] 
XML database as data storage on local node and global VO levels. This was 
primarily a choice of design convenience and deployment speed; SO-GRM 
management system can be adapted for used with any other data storage method. 
Architecture block diagram is shown in Figure 3. 
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Figure 3 SO-GRM Architecture Block Diagram 

Each node ran a full set of components with multiple management nodes 
maintaining domain and VO-level SLAs, policies and accounting data. The 
integrated monitoring suite, developed by the author and further described in 
section 6, provided all the measurements data. Grid application load was 
simulated using a suitably parameterised GridLoader tool, also developed by the 
author and detailed in section 5. Resource utilisation measurements and other 
monitoring data was collected and parsed into eXist XML database for 
consumption by all other components. 

SO-GRM demo was run on a test bed consisting of six machines in the 
Department of Electronic and Electrical Engineering at UCL and six machines at 
the BT Research Lab at Adastral Park. Machine specification and installed OS 
and software components are given in Table 1. 

Specification: UCL Domain BT Domain 

CPU AMD Athlon 2400+ PIII 550 

Memory 512MB 256MB 

Network 100Base-T Switched 100Base-T Switched 

OS Red Hat 9 Red Hat 8 

 Table 1 Demo Testbed Specification 
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The two sites were connected through a routed ATM link which was only 
partially under our group’s control. Together with other administrative issues 
this ensured the demo was performed in a production-style environment, with 
sites residing in two distinct administrative domains and on two separate 
networks. Testbed network diagram is given in Figure 4. 
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Figure 4 SO-GRM Testbed Network Diagram 

The main purpose of the demo was to confirm end-to-end functionality and 
verify component integration. The test scenario called for establishment of a new 
SLA to support jobs arriving at the nodes in the BT domain with ToS requiring 
dedicated use of the machines. UCL was to supply secondary resource pool for 
jobs overflowing from BT’s domain, or jobs whose resource requirement could 
not be satisfied within BT’s domain (typically high physical memory 
requirements). As all components run in full debug mode, performance issues 
were of secondary interest. Figure 5 shows the output of SORD debug windows 
in process of querying the neighbouring nodes for resources according to the 
submitted request. In the top left of the screen CPU monitors show around 70% 
loading on three out of four hosts; remaining unloaded node will be used for the 
next incoming job. 
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Figure 5 SO-GRM Demo Screenshot 

First demonstration was run in December 2003 with subsequent runs and tests 
taking place until February 2004. Each component was scrutinised and further 
work needed was identified, as shown in Table 2. 

 

SORD 
 Able to receive and interpret XML resource discovery requests 
 Able to communicate with other SORD agents
 Able to query XML database for resource utilisation measurements 
 Able to send jobs for execution to discovered target nodes  
 Resource pool too small to produce self-organising topology 

I3 
 Able to obtain high-frequency CPU and memory utilisation data 
 Able to store formatted data into XML database
 Able to monitor processes and perform anomaly detection 
 Able to communicate with other I3 agents and exchange antidotes 

SLAM 
 Confirmed basic functionality, proof of concept
 Able to acquire cluster overview from Ganglia XML repository 
 Able to accept SLA negotiation request
 Able to mark up job requests and nodes with appropriate SLA id 
 Negotiation and prediction engine in development
 Historical performance repository not yet implemented

Measurements and Monitoring (Author’s Contribution)
 Confirmed functionality of Ganglia Cluster Monitoring

  Page 41 



Aleksandar Lazarevic  Transfer Thesis 

 Confirmed functionality of external information providers 
 Able to provide responses to cluster state queries
 Able to retrieve and customise the storage of high-frequency 

GridLoader (Author’s Contribution)
 Confirmed proper operation on all target platforms
 Confirmed proper block and network I/O, memory allocation 
 Requires more testing of adherence to requested load parameters 

Table 2 Conclusions of SO-GRM Test Runs 

Overall, demonstration was successful in proving correct integration of 
components and served as a proof-of-concept for the overall management 
structure. The testbed continues to be maintained by the author, and will be used 
for further testing of GridLoader, the measurement and monitoring application 
suite, and the scheduling framework. 

4.5. Conclusions 

Self-Organising Grid Resource Management (SO-GRM) project has been 
presented in this chapter as a platform for integrated research in Grid resource 
discovery, scheduling, and security. The project components rely on 
autonomous, self-organising and distributed concepts to deliver a scalable Grid 
resource architecture with high degrees of self-management. The components 
have been deployed on the testbed, their functionality was confirmed and their 
performance tested. Areas requiring improvement, and the direction of possible 
further work, have been identified. 
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5. CHAPTER FIVE 
 
GRID APPLICATION SIMULATOR 

The following sections present the author’s work on the Grid application 
simulator, called GridLoader. Section 5.1 briefly reiterates the motivation for 
development of such a tool (already presented in 2.3), section 5.2 captures the 
requirements, and section 5.3 presents the implementation of the GridLoader. 
Results of functional and qualitative testing are given in section 5.4, while section 
5.5 gives direction for future work and concludes the chapter. 

5.1. Motivation 

The simulation tools available in the Grid research community, as surveyed in 
Section 3.3, could not fully satisfy the requirements for testing and optimising 
author’s proposed probabilistic scheduler. GridLoader application was motivated 
by the need for a controllable and tuneable load generator, able to simulate the 
job statistics of applications run in the production Grid environments. Such tool 
would allow testing of the scheduling algorithm, monitoring component, and all 
aspects of the SO-GRM management framework in a realistic usage scenarios, 
without the problems usually associated with running on a live production Grid 
system. 

Through author’s work on a suite of monitoring applications, and its deployment 
on a production Grids running various application, real-life statistics on job 
arrival rates, their duration, distribution and resource utilisation will be obtained. 
With this information, it will be possible to parameterise GridLoader to present a 
realistic load to our scheduler, and compare its performance against the scheduler 
used on the production system.  
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5.2. Requirements 

To represent a realistic Grid application, the GridLoader was required to 
simulate processor utilisation, memory allocation and network utilisation. The 
execution of the GridLoader would have to be fully parameterised, with suitable 
tools to facilitate orchestrating large simulation runs. Such deployment tool 
would decouple the overall statistical properties of jobs submitted to a cluster 
(whose CPU utilisation could be modelled as a skewed exponential function for 
example) from the resource utilisation statistics of a single node (on which an 
application’s CPU utilisation could be modelled as a normal distribution). 

One of the approaches for simulating a realistic application load, often used by 
benchmarking applications such as SPECmark, is executing a representative set 
of application code snippets in an automated way. This method gives a degree of 
repeatability[81], enabling comparison of hardware implementations by 
maintaining an unchanging application load. 

The probabilistic and self-organising nature of the SO-GRM components would 
require a more fluctuating and dynamic testing environment.  

Although similar is possible using trace-replay simulation systems (see SimGrid 
section 3.3.1), author’s aim is for the GridLoader to be able to create a statistical 
distribution of similar loads, maintaining a level of ambiguity and challenging 
self-organising and adaptive components.  

An important requirement was achieving the right balance between deterministic 
and probabilistic modes of operation. The simulation runs should be repeatable, 
and all simulation parameters should be adhered to if any incremental 
improvements to the management components are to be recognised. At the same 
time, a probabilistic element in the simulated application behaviour is required 
for a realistic and diverse environment to form, and for components’ adaptability 
and self-organisation to be exercised. Different resource may also have to be 
simulated with different distribution functions and parameters – network 
transfers may have a substantially different statistics than the CPU utilisation. 

The GridLoader would need to be submitted through Grid middleware on the 
target site just like any other Grid application. To reduce administrative and 
portability issues, a simple and portable code running under user privileges 
would be highly desirable. 

5.3. Implementation 

GridLoader is based on a state machine, with different states representing CPU, 
memory and network loading stages. UML diagram showing this structure is 
given in Figure 6. Current version of GridLoader uses a deterministic state 
transition table, progressing through network loading, memory allocation and 
CPU utilisation states in progression. This is similar to an “embarrassingly 
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parallel” [82] Grid application, such as a parameter sweep tool, staging the input 
data, allocating required memory and executing a CPU intensive core 
calculations that would usually produce a small result data set. A more 
sophisticated model is possible when GridLoader is used with probabilistic state 
transition table where all three primary states are entered into many times with 
changing probabilities. Although this behaviour is more realistic, and 
representative of a more complex Grid application, it creates a very dynamic 
environment for all other components and possible faults are hard to locate and 
debug. This mode will be used in advanced stages of scheduler operation testing. 

Parse parameters

End

Load_Net Load_Mem Load_CPU Load_Idle

State Transition 
Probability

All state timers 
satisfied

Yes

No

CPU 
Epoch 
done

Yes

No

 
Figure 6 GridLoader UML Diagram 

5.3.1. Application Simulation Stages 

The network loading stage is entered into first. A message 1400 bytes long is 
generated, the required value for the duration of the network transfer is stored in 
the real-time countdown timer, and a UDP socket is opened to the specified IP 
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address. A loop is then entered in which the same packet is resent over the 
network with an intra-packet delay as parameterised at run time. On timer 
signalling the required time has passed, the socket is closed and a flag set for state 
transition. 

Memory allocation state requests the kernel to increase the memory allocation to 
the process by the amount specified at run-time by using malloc function call. 
UNIX memory management is handled very differently depending on the 
implementation and kernel optimisation options, and may prevent a user process 
from directly managing memory allocations. GridLoader ensures that physical 
memory is actually allocated to the process by writing random data into the 
virtual memory space allocated by the kernel. The memory is freed during final 
clean-up state of the application, once all loading targets have been met. 

Computational intensive part of each Grid application is simulated in the CPU 
loading state. This state contains two real-time nested timers, one keeping track 
of the total amount of wall time spent in the CPU loading state, and one tracking 
short time slices in which CPU is toggled between full throttle utilisation and 
idle. Very frequent swaps between these two stages result in a smoothed 
fluctuation of CPU utilisation when observed with above 100ms sampling 
period. Wall time duration is specified at run-time, while the duration of each 
run-sleep cycle is determined in a random manner using a Pareto (or other) 
probability distribution function. This function is randomly seeded at runtime, 
and partly parameterised through a command line option. Benefit of this 
approach is that even for equally parameterised runs, actual CPU load trace can 
be significantly different. This was an essential requirement for the testing of I3 
(see Section 4.3) feature extraction engine: GridLoader was able to simulate 
anomalies in process behaviour and test I3 malicious process detection rate. 

Once all timers indicate that requested loading metrics have been met, final clean-
up stage is entered in which the allocated memory is freed, network sockets 
closed, and a log file with details of the execution written. GridLoader can also 
operate in a debug mode which produces detailed information about the state 
machine and execution timers. 

5.3.2. Parameterisation Options 

GridLoader was written in ANSI C, does not use any low level function calls or 
custom libraries. It compiles successfully on Solaris and Linux platforms. All 
parameters of the GridLoader’s simulation can be supplied either on the 
command line, or from a configuration file. Screenshot in Error! Not a valid 
bookmark self-reference. shows the help screen with the required command 
line format. 

  Page 46 



Aleksandar Lazarevic  Transfer Thesis 

Figure 7 GridLoader Screenshot 

[aleks@android-ee11 gridloader]$ ./gridload

Grid Loading Application, v.0.9. 

 

ERROR: Must have exactly 5 runtime parameters. 

 

Gridload utilisation: 

        gridload <NET> <CPU> <MEM> <BURST> <IP> <PARETO_B> 

 

Where: 

        <NET> = NET transfer time in seconds - FLOATING POINT 

        <CPU> = Total CPU loading time in seconds - FLOATING POINT 

        <MEM> = Amount of memory to allocate in MB - INTREGER 

        <BURST> = Interpacket sleep time in useconds - INTREGER 

        <IP> = IP address to send network traffic to - DOTTED 
NUMERICAL 

The run-time parameters have the following meaning: 

♦ NET – Total time for network transfer state, expressed in seconds 

♦ CPU – Total time of CPU loading state, expressed in seconds 

♦ MEM – Integer MBytes value of total physical memory to allocate 

♦ BURST – Inter-packet delay time, expressed in μseconds and used to 
control the amount of bandwidth used by the network transfer state 

♦ IP – Numerical IP address of the peer (or sink) for the network transfer 
state 

♦ PARETO_B – Pareto parameter B used to influence the idle time 
transitions in the CPU loading state. Large value of this parameter cause 
the long tail of the Pareto probability distribution to extend, leading to 
spikier CPU utilisation trace and larger average levels of CPU 
utilisation. Subsequent runs with the same value of parameter B will not 
produce equal traces due to different seeding values of the random 
number generator. 

To give overall cluster loading a certain statistical property, and to facilitate 
generation of configuration files for larger GridLoader runs, an auxiliary 
application was developed in Matlab™. Two types of parameters can be defined 
with either global or local scope. Global parameters influence the overall 
behaviour of the whole set of GridLoader jobs in a specific simulation run. These 
are used to coordinate the job set, and include the following: 
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♦ CPU_TOTAL_PARETO_[A/B] – Defines the value of Pareto 
probability parameters for generating CPU loading times across the 
whole set of jobs. Any other standard probability distribution function 
could be used with appropriate parameters. 

♦ ITERATIONS – The number of GridLoader jobs to create 

♦ NEXTREQ_[MIN/MAX] – Used in a simple batch scheduling script, 
defines the range of wait times before submitting the next job. The 
values are normally distributed within the set range. 

♦ NEXT_HOST_[MIN/MAX/PREFIX] – Also used in simple batch 
scheduling operation, defines the next host’s IP address to which the job 
will be submitted. 

♦ The following parameters define the ranges for the generation of 
parameters influencing the behaviour of a single GridLoader instance on 
the node it is executing: 

♦ CPU_LOAD_PARETO_B_[MIN/MAX] – Sets the upper and lower 
bounds on the Pareto B parameter; range of values is generated using 
normal PDF. 

♦ IP_[LOW/HIGH/PREFIX] – Defines the range of IP values for the 
target IP address of the GridLoader network peer. Could be defined as a 
single IP address to simulate a master-slave Grid environment. 

♦ MEM_[MEAN/MIN] – Sets the GridLoader’s memory allocation 
parameter. The value is calculated by adding a random number with the 
mean of MEM_MEAN to the minimum value defined in MEM_MIN. 

♦ NET_[MEAN/MIN] – Sets the GridLoader’s network transfer time 
parameter. Calculated in the same way as the memory value above. 

♦ BURST_[MEAN/MIN] – Sets the GridLoader’s inter-packet delay 
parameter. Calculated in the same way as the memory value above. 

5.3.3. Deployment Scripts 

The deployment application will generate a file containing appropriate 
parameters for each GridLoader instance, and a configuration file for the batch 
scheduling script. The probabilistic nature of the GridLoader is here evident at 
different levels. At the global level, two job sets with the same parameters will 
not have the same single values, but in both cases those values will fit the same, 
requested, statistical distribution function. At the level of a single GridLoader 
instance, two equally parameterised runs on the same machine will adhere to the 
parameters supplied, but will achieve those targets with a different resource 
utilisation profile. 

To help visualise the job set being run, deployment application produces a plot of 
parameter values with relevant histograms, as shown in Figure 8. 
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Figure 8 Matlab Generated GridLoader configuration file output 

5.4. Self-Test Results 

Before using GridLoader to test other components of the SO-GRM management 
architecture, a test of its own reliability was undertaken. Primary concern was 
the quality of resource utilisation models and adherence to the specified 
parameters such as the execution time and the size of memory allocated. 

To test the reliability of overall timekeeping, a set containing 120 jobs taking 
around 24 hours to complete was created and run in sequence on one node in the 
testbed Grid (see Figure 4). A simple batch scheduler script was run on a 
“master” node and used to submit jobs through either Globus Toolkit 2.2 
middleware or Secure Shell (SSH) to a dedicated “slave” node. Same job set was 
then re-run locally on the “slave” machine in order to differentiate between 
GridLoader’s systematic error and any overheads that these middleware 
introduce. Figure 9 shows a percentage difference between expected and actual 
execution times for a sample of 50 jobs and for all three different execution 
methods. 
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Figure 9 Expected v Actual GridLoader Runtime 

Running on the local node, actual GridLoader execution times are less then 2% 
greater than expected. This is due to the system overheads such as setting up 
network transfers, allocating memory and random number generation, which are 
not accounted for in the timekeeping of the program. As this level of increase in 
execution time is intrinsic to the operating system, and would be present for all 
applications, we found that a realistic and accurate simulation of the total length 
of the job can be achieved using GridLoader. 

As previously described, a loose control on the level and shape of CPU loading 
can be exercised by specifying different values of Pareto parameter B at run time. 
A parameter sweep test was undertaken to establish the upper and lower bounds 
of these values that provide a usable result. During these tests it was noted that a 
low value of the parameter will result in a longer duration of CPU idle time, and 
thus a lower average load. Higher values of the shaping parameter cause Pareto 
probability function to draw high numbers for CPU intensive loops and leads to 
higher average utilisation and pronounced load spikes. GridLoader’s 
probabilistic routines will create a similar, but not equal, trace for each equally 
parameterised run. 

Reliability of the duration of network transfers was established as part of the 
overall test of GridLoader timekeeping. The influence of inter-packet delay 
parameter was examined through a parameter sweep test. By using network 
monitoring package Iperf, bandwidth utilisation between the “slave” node 
executing GridLoader and a designated traffic sink node was measured. The 
inter-packet delay parameter provides a soft control of the amount of bandwidth 
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used, and not a strict upper or lower limit. This kind of probabilistic behaviour is 
sufficient for the required simulation of the network traffic and, considering the 
aims of the simulation, its probabilistic nature is beneficial. The use of the UDP 
network protocol, and its lack of bandwidth control mechanisms, could lead to 
network congestion issues in large GridLoader simulation runs. It remains to be 
assessed whether such conditions would impair the running of the simulation or 
added another realistic aspect of the production network environment. 

Sequential memory allocation and freeing has been monitored using the Ganglia 
system, as shown in Figure 10. The test were carried out to confirm actual 
physical memory is being allocated, and that this could lead to memory 
contention as in the case in production environments. The granularity of the 
allocations is one megabyte which is considered sufficient considering very high 
memory utilisation of most Grid applications. 

 
Figure 10 GridLoader Memory Utilisation Testing 

5.5. Conclusions 

In this chapter, a novel Grid application load simulator tool, GridLoader, has 
been described. GridLoader provides a way for parameterised and probabilistic 
simulation of application CPU, memory and network usage. Deployment scripts 
facilitate creation of run-time parameters for large simulation runs, enabling these 
to follow statistics of jobs observed on the production Grid facilities. Testing of 
GridLoader functionally and reliability has been undertaken and reported on. 

During the stand-alone testing phase of the GridLoader, a number of minor 
problems and issues were discovered.  

From the implementation perspective, a better CPU loading algorithm would 
prove very useful. Some cases exist where a constant, predefined level of CPU 
load should be simulated, such as visualisation applications or other applications 
bound not computationally but by some other factor. These could not be 
precisely simulated using the currently implemented probabilistic approach. 

GridLoader heavily depends on the quality of the random numbers generated 
within the programme, and the seeding mechanism for the random number 
generator. Although better generators than the one used in GridLoader are 
available, these would require additional libraries which may not readily be 
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available on the target platforms. As no adverse effects associated with random 
number generations were observed during debug runs, the current approach is 
considered adequate. 

Significant problems were caused by the real-time clock resolution and lack of 
synchronisation between the Grid nodes. Globus X.509 certificates carry a 
begin-end validity period with one second granularity, and in a network without 
proper clock synchronisation a certificate may become valid on one machine 
before it does so on another. This leads to the job being rejected due to incorrect 
credentials, an error message often associated with other issues within the Globus 
Security Infrastructure and Certification Authority problems. 

Overall, the parameter generator application and the GridLoader were successful 
in creating a job set with given statistics, and executing it according to the 
parameters required. Appropriately parameterised GridLoader will be able to 
simulate a realistic eco-system of Grid applications and present a diverse and 
varied load to the Grid management components on test. 

Development of GridLoader is a distinct contribution of this thesis. Apart from 
its primary intended use as a Grid application simulator described above, 
GridLoader can potentially be used as a testing tool for confirming end-to-end 
application level operation of Grid middleware. With a suitable parameter set, 
GridLoader could also be used to stress Grid hardware and middleware 
components to the edge of their operational envelope, thus exposing any possible 
points of failure or performance bottlenecks. 
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6. CHAPTER SIX 
 
MONITORING FRAMEWORK 

A detailed account of the monitoring framework developed by the author will be 
presented in this chapter. Section 6.1gives the motivation for developing the 
monitoring suite, while Section 6.2 captures the system requirements. Section 6.3 
gives details of the implementation, Section 6.4 provides results of functionality 
and reliability tests, while Section 6.5 concludes the chapter. 

6.1. Motivation 

Current Grid monitoring systems, as previously summarised in Section 3.3, offer 
scalable and effective monitoring of resource utilisation on a per-node basis. As 
one must assume a general case where Grid nodes will be both time- and space-
shared, these measurements bear no relationship to the actual resources used by 
any single application. Even in the case of a dedicated Grid host, the footprint of 
current Grid middleware, management and security components is such that the 
overall node resource utilisation will be very different to that of a single user 
application.  

The author’s motivation was to extend one of the current monitoring systems to 
provide process-specific measurements of resource utilisation in an unobtrusive 
and scalable way. Extension to an already established monitoring system would 
have the benefit of an already established user base, giving access to wider source 
of data. It will also remove any switching cost from the user’s perspective and 
alleviate administrator’s reservations about installing unproven software. 

  Page 53 



Aleksandar Lazarevic  Transfer Thesis 

6.2. Requirements 

The basic requirements for a Grid monitoring system are support for a wide 
range of operating systems and hardware architectures, effective data storage 
methods, and the use of efficient and standardised communication protocols. 

The additional requirements for successful integration with other SO-GRM 
management components were an extensible metric sampling interface, the 
possibility of integration with the Globus MDS, and support for XML encoded 
messages. 

The monitoring system of choice should be able to integrate per-process resource 
utilisation metrics into the standard flow of measurement data, fully supporting 
storing and retrieving such additional information through its usual data access 
methods. 

6.3. Implementation 

The measurement suite herein presented is based on the Ganglia cluster 
monitoring system. Ganglia was selected for its extensible data collection 
interface, effective storage of data in fixed size round-robin databases, use of 
XML encoded measurements, and customisable unicast and multicast delivery 
protocols. It has previously been extensively used with Globus Toolkit and 
successfully integrated with MDS using the Glue Schema [83]. Various platform-
specific information providers have been developed, and this modular design 
offers a clear path for implementation of per-process resource utilisation 
monitoring. 

6.3.1. Ganglia Functionality  

The monitoring suite is implemented through a set of Ganglia applications, 
compiled code, and shell scripts developed by the author. All code was written 
with portability in mind and relies on UNIX standard libraries and script 
commands. Figure 11 presents the layout of monitoring components in a block 
diagram. 
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Figure 11 Monitoring Components Block Diagram 

Ganglia Cluster Monitoring core provides two daemon modules:  

♦ Ganglia Monitoring Daemon (gmond) – collecting basic information 
about each node in predefined intervals, encoding it in XML and 
providing network transport mechanism 

♦ Ganglia Meta Daemon (gmetad) – receiving information broadcasted by 
all or some of the monitoring daemons, and storing it in the round-
robin databases. It also answers queries about overall state of the cluster, 
and provides a programmatic interface to queries on data contained in 
the databases. 

Round-robin database (RRD) [60] is a fixed sized database targeted at storing 
time-series data. Each database can contain several data sources (DS), and each 
data source has a number of round robin archives (RRA). These archives could 
be thought of as layered tooth-wheels, each wheel slot containing one sampled 
value. On database creation the frequency of rotation of these wheels is defined, 
and a consolidation function (CF) is given for each data source. Once the wheel 
makes a full turn all of its data is passed through the consolidation function 
(usually average, minimum or maximum) and the result is written as one sample 
point in the next hierarchical wheel. The size of the database is kept constant, 
since the high frequency data will be kept for a limited duration before being 
consolidated. Depending on the target application, this behaviour may be a 
desirable feature or a disadvantage.  

Ganglia Monitoring Daemon can use either unicast or broadcast UDP packets to 
transport XML encoded measurements. Each gmond can be set up to either 
listen to other daemons (mute mode), transmit its measurements to other peers 
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(deaf mode), or do both. By configuring certain nodes to be muted or deafened, a 
distributed system with no single point of failure can be created. In our test 
implementation, all but one Ganglia monitoring daemons were configured in 
deaf mode. One node in the network run the non-deaf daemon, as well as 
gmetad, and provided storage for all databases. This centralised network 
configuration was appropriate provided the size of our test network (no more 
than 10 nodes at any time), and the goal of our tests. 

6.3.2. Information Providers 

The author has developed custom information providers to provide monitoring 
of CPU utilisation and memory footprint per each process submitted through 
Grid middleware. It is implemented either as a shell script using UNIX standard 
ps command, or as a precompiled application (still in development) using libgtop 
library. Functionality is similar, as both implementations run as a daemon on 
each Grid node and periodically sample CPU and memory utilisation. Criteria 
for process selection, and the information collected are fully customisable. 
Processes can be selected by their process identification (PID), executable name, 
or by username under whose credentials they are running. Information reported 
can include any metric available through UNIX /proc system. Process selection 
based on the PID is the most efficient and unambiguous method, unfortunately 
current implementation of Globus Toolkit does not pass the PID of the remote 
process to the job scheduler, nor does it make this information available through 
MDS or any other means. This is a widely recognised implementation issue, 
impeding improvements in several areas such as grid job workflow and 
scheduling concurrency. Next versions of Globus Toolkit should address this 
problem. Once the per-process monitoring data is collected, it is transmitted 
either by using Ganglia’s gmetric shell command or by using Ganglia’s API 
libraries, depending on the implementation. 

6.3.3. Database Management Tools 

Author’s core research topic will be based on the initial assessment of the 
monitoring data, and the development of a suitable prediction algorithm, both of 
which will depend on the availability of large amounts of high frequency data. 
Consolidation feature of round-robin databases is therefore not beneficial, as 
high frequency data would be quickly lost through averaging. A shell script, 
sweeprrd in Figure 11, was developed to perform automated data extraction from 
RRD databases. The script can be configured to retrieve data on specific nodes 
and specific metrics of those nodes, or collect all the data available. Time stamped 
measurement values are formatted in a comma delimited format, and stored as 
flat text files. The script can either be run as a daemon process or invoked by 
UNIX standard cron scheduling daemon. Frequency of execution is 
customisable with the obvious limit of at least one sweep within the duration of 
the shortest round robin archive in the database (to prevent any data being lost 
through consolidation). Database sweeps can be invoked as often as necessary 
and at any time; the script will only extract new samples from the RRD database. 
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6.4. Test results 

First phase of the monitoring suite tests was aimed at establishing proper 
installation and basic functionality of the Ganglia suite. After modifications to 
Ganglia’s default settings, it was necessary to ensure core functionality has not 
been affected and stable operation was maintained. Ganglia version 2.6 was 
deployed on both BT and UCL administrative domains of our testbed Grid 
(shown in Figure 4, and used for day-to-day monitoring of these facilities. Figure 
12 shows a typical screenshot of Ganglia web front-end displaying overview of 
hosts in the UCL domain. 

 
Figure 12 Ganglia Screen Shot - Cluster Level 

In the second phase of testing, per-process monitoring components were 
introduced and observations were made on stability of the system, quality and 
reliability of measurement, and any increase in system resources utilisation. 
Screenshot in Figure 13 shows a single monitored node in the Grid under heavy 
utilisation, while screen detail in shows globus-cpu-utilisation metric, revealing 
the CPU utilisation attributed to a single Globus submitted job. 
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Figure 13 Ganglia Screenshot – Node Level 

 
Figure 14 Ganglia Screenshot – Custom Information Provider 

(Highlighted) 
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The third phase of tests was designed to establish the overall monitoring 
functionality and the quality of measurements. A sample GridLoader set 
containing 50 jobs with Pareto distributed execution lengths was run on a single 
machine on the Grid testbed. Full set of metrics including Globus-attributed and 
total CPU utilisation were recorded through our monitoring suite with one 
second resolution, averaged and published over 15 second periods. Jobs were 
submitted from one of the machines in the cluster to a different machine in the 
same cluster using appropriate Globus commands. A simple master-slave 
scheduling was used, iterating through the job list and allowing 45 seconds 
between job completion and next job submission for any transient machine 
loading to settle. These transients loads are created by the Globus toolkit job 
completion procedures (results stage-out, process cleanup and accounting 
updates). Resulting data is plotted in Figure 15. 
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Figure 15 Comparison of GridLoader and total CPU utilisation 

The measurements captured the difference between the GridLoader generated 
load and the total system load which includes various background processes 
associated with Globus middleware, and kernel time servicing network transfers, 
memory allocation and process scheduling. Figure 16 shows in more detail 
percentage difference between total and GridLoader CPU utilisation. Positive 
values indicate greater reported system load than GridLoader generated load. 
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Percentage Difference in GridLoader and Total CPU Utilisation
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Figure 16 Total and Globus-attributed CPU Load Discrepancy 

The data shows discernible and repeated peaking in both positive and negative 
values. Markers on the same plot indicate recorded job start and end times and 
there is a visible correlation between these. Analysis of job events at these 
timestamps indicate that discrepancies are partly attributed to the submission and 
staging of the next job in the queue. At those times, the machine loading is high, 
but the CPU time is not yet attributed to the process being submitted. The 
samples coinciding with job start and end times can be filtered, which will lead to 
a more balanced plot as shown in Figure 17. 
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Percentage Difference in GridLoader and Total CPU Utilisation [Filtered]
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Figure 17 Total and Globus-attributed CPU Load Discrepancy [Filtered] 

This experimental data has exposed a shortcoming in the process monitoring 
component which leads to a ramp-up effect in the observed loading 
measurements, as seen in Figure 15. This low-pass effect causes large variation 
between total node utilisation value and Globus-attributed CPU load at the 
beginning of job execution. The software routine responsible for collecting those 
measurements uses UNIX standard process reporting calls, and these return 
CPU usage as a decaying time average since process initiation. To improve the 
accuracy of measurements, a trade-off will have to be made in the portability of 
the code. Work on an improved version is under way, focusing on the use of 
kernel “jiffies” measurements for a more reliable result. 

Another source of discrepancies is different sampling frequency of per-process 
and total CPU load measurements. This leads to discrepancies at the end of job 
execution. In those instances, per-process load would disappear before total load 
is reduced, and this time offset would lead to large difference being reported. 

Most of the problems occurred where in the local monitoring component. 
However, successful overall operation of the system was confirmed, and sampled 
data was correctly integrated in the Ganglia data handling flow (including Web 
visualisation). Data extraction tools operated effectively and reliably with no lost 
or duplicated samples. Data obtained was readily analysable, and has 
immediately provided insight into the extent of difference between perceived and 
actual resource usage by Grid processes. 

Resource footprint of the monitoring components was acceptable (below 1%); 
although an increase was noted as the number of processes to be monitored grew. 
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This is attributed to the computationally expensive parsing of the processes table 
required to obtain process IDs of monitored jobs, and depends strongly on the 
criteria used for process selection.  

6.5. Conclusions 

Presented monitoring solution addresses the whole monitoring cycle, from 
measurement data collection, to visualisation and extraction for off-line analysis. 
The system has been developed on an open framework to support programmatic 
access to the data by the forthcoming scheduler component. Implementation has 
taken into account expressed reservations of cluster administrators to running 
third party compiled daemons on their networks, and has developed a 
transparent monitoring system based on a widely used application. The chosen 
approach scales well, being based on a proven core and complemented with 
maintenance scripts designed to facilitate deployment and management. This 
solution seamlessly integrates measurements specific to the needs of the advanced 
scheduler research with an established monitoring framework. Off-line data 
analysis is facilitated with the use of the data extraction scripts developed. 

Captured measurements, combined with the accounting data from a production 
Grid cluster, will allow analysis of the job statistics such as arrival times, queue 
wait times, resource utilisation and execution times. It should be possible to 
locate any correlation between multiple job runs, and some social and workflow 
factors such as time of the day or day of the week when the job was submitted, 
and user identity. Considering human workflow, one intuitively expects that a 
certain user working on a project will submit jobs of similar nature at similar 
times of day expecting a certain turnaround time. Recognising such localities in 
the covariant data, and communicating them to the scheduler could result in an 
increase in the quality of its predictions. 
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7. CHAPTER SEVEN 
 
TOWARDS A PROBABILISTIC 

SCHEDULER 

Examining schedulers currently in use on the Grid (see Section 3.2), it is clear 
that current systems leave much to be desired in terms of flexibility, user 
convenience and scheduling efficiency. If the Grid applications are to be 
successfully mapped onto highly dynamic Grid resources a break from the legacy 
batch systems seems inevitable. 

This chapter will introduce the envisaged probabilistic scheduling approach, and 
is organised as follows: Section 7.1 gives overall aims of this novel scheduling 
approach, Section 7.2 presents methods that will be investigated for delivering 
such scheduling, while Section 7.2 captures the requirements and restrictions of 
the future system. Preliminary data analysis is presented in Section 7.4 and the 
deployment plan is given in Section Error! Reference source not found.. A 
brief summary and conclusions are given in Section 7.5. 

7.1. Aims 

To truly live up to the utility computing vision the Grid has offered, application 
scheduling needs to offer to the user a decoupled and service orientated 
environment, requiring no in-depth knowledge of the physical Grid resources or 
application characteristics. The ultimate workflow experienced by the end-user 
should be similar to a dry-cleaner service or a photo developing lab: the user 
presents a job and decides between several, differently priced, turnaround time 
options. The service provider can then decide on how and where to service the 
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request, trading off between the cost of scheduling (perhaps sending photos to be 
developed off-site) and the cost of local resources. 

Achieving this level of user abstraction from the underlying scheduling process 
requires good knowledge of the nature and complexity of the jobs submitted. 
Since these are hard to capture, and may be unknown even to the end-user, the 
scheduling system will inevitably need to make predictions and rely on estimates. 

The author’s ongoing research will focus on the investigation and development 
of the algorithms estimating the job’s execution time and its resource utilisation 
profile. The aim of these predictions is to enable a probabilistic scheduling 
approach, one that removes hard limiting in terms of execution time or resource 
utilisation, and instead relies on the diversity and statistical distribution of Grid 
application to ensure adequate scheduling. 

Such approach would benefit from manageable oversubscription by statistically 
multiplexing jobs at the VO level. From the experience of running batch 
schedulers – which has shown that users tend to grossly over-estimate the 
requirements of their jobs – this approach could lead to increased overall 
utilisation levels while ensuring user’s quality of service is unaffected. This is a 
key added value proposition for present hardware operators which are 
dimensioning their clusters for peak load and thus seeing very low mean 
utilisation levels. A strong business case exists for a novel scheduling technology 
that will reduce the mean-to-peak load while maintaining user’s perceived QoS. 

7.2. Requirements 

As previously discussed in Section 2.2, a novel scheduling system would need to 
offer added value to the end-user, the Grid resource owners and, indirectly 
through the reduction of the total cost of ownership, to the Grid administrators. 

From a user perspective the job submission should be simple and the switching 
cost minimal – the new system should not require recompilation of the source 
code or require the use of any specific middleware. 

Resource owners are primarily concerned with maintaining high overall 
utilisation, and can benefit greatly from the statistical multiplexing and 
oversubscription that probabilistic scheduling could deliver. A simple control 
mechanism should be made available allowing the overall level of utilisation and 
the level of the scheduling safety margin, to be easily and dynamically changed. 
Through such mechanisms, resource owners should be able to trade-off resource 
utilisation levels with the quality of service provided according to their business 
model. 

By using commodity components in the Grid clusters, the total cost of operation 
is significantly influenced by ongoing administration and maintenance expense. 
New middleware components would need to ensure administrative burden is 
kept to a minimum by trying to offer a self-managed service able to adapt and 
autonomously resolve as many operational issues as possible.  
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Proposed scheduler will make no presumptions of the nature of the jobs running, 
their monolithic or distributed nature, criticality of any one sub-system on their 
operation (network performance, memory bandwidth and similar), or their 
internal optimisation for any given platform. Rather than try to model these 
parameters directly, it is expected that their influence will reflect on one of the 
monitored metrics. For example network performance may strongly influence 
the execution time of a certain job, and may also be very dependant on the time 
of the day when the congestion is most likely to occur. The scheduler may 
therefore pick up on the correlation between submission time and actual 
execution time for a certain job highly dependant on network bandwidth.  

7.3. Methodology 

To estimate a job’s execution time, the author’s selected approach will investigate 
the relationship between an application’s historical execution times and meta-
data related to the operating environment at the time of execution. A range of 
“hard metrics” such as scheduling wait time, execution time, effective CPU time, 
memory utilisation and similar will be investigated. These will be observed in a 
broader perspective of the Grid environment, correlating them with a set of 
various “soft metrics” such as job submission time of the day and day of the 
week, submitting user and group, overall load of the cluster etc. 

Intuition, supported by preliminary analysis presented in the following section, 
and the sequential nature of the human workflow leads me to believe that an 
observable and predictable utilisation pattern will develop in a production cluster 
with a significantly large and diverse user group. 

To benefit from these, the proposed scheduler should enable autonomous and 
intelligent coupling of monitoring data, accounting records and operational 
meta-data in a framework able to analyse current and historical usage patterns of 
the system. It should operate with little or no user intervention, and act as a 
passive observer of the system’s performance, user’s habits and overall trends. 
Targeted at large production Grids, this probabilistic scheduling will be based on 
the statistics of a large number of jobs with widely varying resource utilisation, 
execution length and arrival characteristics. In this Grid eco-system, the 
scheduler should be able to distinguish trends, seasonal variations and inter-
metric dependencies, providing a confidence factor for its predictions and 
learning on its own mistakes. 

With a low system utilisation overhead, and negligible user switching costs, the 
scheduler aims to provide a better-than-guess estimate on job resource 
requirements and execution times. Although the accuracy of such predictions 
would be seen as a natural key performance indicator, previous research work 
and experiential evidence has shown that the timeliness of the predictions and the 
ability to subsequently refine them play a much more important role. In view of 
the dynamic characteristic of the Grid resources, an in the author’s own view, 
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accuracy of the predictions will come second to the ability of the scheduler to 
constantly adapt to the changing operational environment. 

7.4. Preliminary Analysis 

Preliminary analysis of accounting and usage records of the UCL’s Central 
Computing Cluster (CCC) facility has shown that a diverse user community had 
developed, running jobs with very different statistical properties. Based on 
accounting records since 10th of August 2004., an up to the end of year 2004., 
more than 50,000 jobs have been run totalling in excess of 5,500 CPU days. 

7.4.1. Overall Job Statistics 

The following analysis is based on a representative sample of 1000 jobs submitted 
in a 15 hour period in November 2004. Figure 18 is a log-normal plot of the wall-
clock execution times of these. On its own, this series of execution times offers 
little insight into the effectiveness or quality of the scheduling, the level of 
resource utilisation, nor does it readily offer any predictions on the future 
loading of the system.  
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Figure 18 Wall-Clock Execution Times for All Jobs 

However, Sun Grid Engine maintains a text accounting file containing extensive 
details of the jobs run in the past, including the username of the submitting entity 
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and the group to which this username belongs. On the CCC facility, these are 
centrally administered entries, set on account opening according to the user’s 
project and department affiliations. Although the location of this data may 
change from system to system, it will inevitably be present on the accounting file 
in some way. Those fields can hint at the nature of jobs submitted by the users, 
and such job’s resource requirements, execution times and arrival rates. Figure 19 
is a pie-chart plot of the number of jobs submitted by each user group. Clearly a 
large difference between the groups exists, and further analysis should investigate 
the properties of each individual group. 

Job Distribution by Submitting Group

matsim, 933, 93%

geogrs, 48, 5%
ocotir, 19, 2%

 
Figure 19 Job Distribution by Submitting Group 

7.4.2. Group-based Job Differentiation 

Separating execution times of each of the user groups, and graphing them as a 
time series plot in Figure 20, reveals a strong differentiation between groups. 
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Figure 20 Wall-Clock Execution Times for Different User Groups 

It is clearly seen that certain groups (such as geogrs) submit jobs whose duration 
is, on average, several orders of magnitude longer than those of other groups (like 
the matsim group). The number of jobs submitted by each group is also inversely 
proportional to their typical execution length. 
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Of great interest is the distribution of job execution times within each of these 
identifiable groups. An array of histograms in Figure 21 shows significant 
differences in the shape of these distributions. 
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Figure 21 Histograms of Wall-Clock Execution Times for Each Group 
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Jobs submitted by some groups fall into normal distribution of execution times 
(like geogrs), while others follow a clearly skewed, long-tailed distribution. 
Applications will require development of different statistical models in order to 
represent them with acceptable accuracy. But benefit to scheduling process are 
already clearly visible: Figure 22 gives a mean plot with outliers (values 150% 
outside 25th - 75th percentile) of execution times of the three user groups 
represented in this sample of jobs (group isadmin had only one job and 
represents the system administrator account). The groups are clearly separated, 
spanning five degrees of magnitude, yet with a small 95% confidence interval 
relative to their respective execution times. These observations have important 
implications for the feasibility of predictions and their quality.  
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Figure 22 Execution Time Mean Plot for All User Group 

Observing widely different means and confidence intervals plotted in Figure 22 
reaffirms the need for a tuneable, statistical and probabilistic load generator, such 
as GridLoader, to adequately simulate observed resource utilisation of Grid 
applications. 

7.4.3. Data Clustering and Correlation 

Considering matsim group in more detail, see Figure 20(b), we observe at least 
two modalities of execution times, with a clear break at around Job ID 39150. 
Closer inspection of the raw traces reveals a 13 minute gap between two groups 
of matsim jobs. It is clear that some aspect of the application run by this group 
has changed as the application has started exhibiting a significantly different 
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execution time pattern. The scheduler will have to be able to recognise these 
changing temporal characteristics of the jobs, and appropriately adjust the 
prediction method and confidence level. By constantly monitoring the quality of 
predictions, the scheduler can decide to discard the previous “experience” if it 
proves to lead to greatly inaccurate estimates. 

To effectively detect changes in metrics that can signal a new execution mode, the 
scheduler will need to analyse data for emergence of clusters. An application can 
swap between two or more clusters of execution times, or start executing in a 
new and yet undefined space. A preliminary analysis using K-means clustering 
algorithm[84] and three clusters have resulted in groups having the means as 
shown in Figure 23. 
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Figure 23 Plot of Means for Each matsim Group Cluster 

Further details of the clustering analysis are given in Table 3. Cluster separation 
distances are given as distances below diagonal or squared distances above 
diagonal. 

Euclidian Distance 
 Mean Standard 

Deviation Cluster 1 Cluster 2 Cluster 3 

Cluster 1 420 51.5 0 85214 29153 

Cluster 2 128 38 292 0 214050 

Cluster 3 590 56 171 463 0 

Table 3 K-means Clustering Analysis 
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Selecting the first group of matsim jobs, with Job IDs in the range of 38646 to 
39125, a study of their correlation was done. The level of execution time 
correlation can give insight into the predictability of the data and the reach of 
forward looking estimates possible. Figure 24 shows a partial autocorrelation 
function plot of wall clock execution times for said selection of matsim jobs with 
ten lag steps. The S.E. column in the figure represents white noise standard error. 
The execution times correlate with a significant degree up to seven lag steps, with 
a very high correlation present in the first lag step. Further correlation studies 
will play an important role in the selection of the prediction algorithm. 
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Figure 24 Correlation of Wall Clock Execution Times (10 lag steps) 

7.4.4. Temporal Characteristics 

Finally, the matsim job set was treated by simple curve fitting methods as an 
initial survey of its predictability. A distance weighted least square method was 
firstly used over the whole range of jobs. This method, as shown in Figure 25 in 
black dashed line, yielded a reasonable fit, but was marred by slow recovery from 
the abovementioned abrupt discontinuity of job execution times around Job ID 
39150. A much better fit was achieved by using a negative exponential least 
square fitting function, shown in Figure 25 in red line, and this was further 
improved by using two fitting functions, one for each side of the discontinuity. 
Further research into these, and other forecasting methods will be undertaken. 
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Prediction Trends
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Figure 25 Curve-fitted matsim Jobs Scatterplot 

This initial analysis of only two metrics, wall-clock execution time and 
submitting group, shows the possible benefits of statistical, stochastic and 
predictive scheduling system. In this example, on submission of a new job the 
scheduler can consult the historical information on previous jobs submitted by 
that user group, lookup the distribution of execution times and make a 
prediction on the length of the execution of the new job. Even a simple if-then 
test can distinguish between two different user groups and jobs that would, on 
average, run for 100s of seconds or 100,000s of seconds. 

Important consideration in investigation of the collected data is its temporal 
characterisation. Following the human workflow, the type and the way 
applications are run on the Grid will change over time. Even from the relatively 
small amount of data in Figure 20(b), one can observe a positive trend in 
execution times for hundreds of runs, followed by a discontinuity with a large 
increase or decrease in subsequent runs. These abrupt changes may be caused by 
the change in the application’s runtime parameters, update of the underlying 
data, or a new research objective may be identified. A robust scheduling system 
needs to be able to recognise these discontinuities and take steps to quickly adapt 
to new conditions, minimising the negative effects on prediction capabilities. 
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7.5. Conclusions 

In this chapter, a probabilistic scheduling system for Grid environments has been 
proposed. This novel scheduling approach departs from the FIFO based queuing 
and instead offers out-of-order execution based on the job competition deadline, 
as set by the submitting user, and scheduler’s forecasts on the execution length of 
the job and its resource utilisation. 

From the user’s perspective, such scheduling system could significantly simplify 
the job submission process, and enable a friendlier workflow by eliminating the 
need to explicitly state job’s resource requirements. 

For the Grid operator’s, probabilistic scheduling could considerably increase the 
overall utilisation levels of their computational infrastructure by offering 
tuneable level of oversubscription, and by removing inherent “padding” of 
process requirements by the users present in the batch scheduling systems. 

Job execution length and resource utilisation forecasts will be based on the 
historical data, and the meta-data collected from various sources relating to the 
submitted job, its owner, and the state of the Grid at the time of submission. 
Preliminary analysis of the data collected from the UCL’s Grid facility shows 
that submitted jobs vary significantly in arrival rates, mean execution time and 
resource utilisation – creating a diverse application ecosystem which can support 
speculative and probabilistic scheduling technique as proposed. 
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8. CHAPTER EIGHT 
 
FURTHER WORK 

8.1. Algorithm Development 

The development of the scheduler will proceed by further investigating data 
collected on the UCL’s Central Computing Cluster (CCC) facility. The data will 
be analysed off-line with the aim of spotting statistically meaningful features and 
patterns, meta-data significant to the job statistics, and the trends and tendencies 
of job arrival rates and job workflows.  

Theoretical work will centre on examination of various statistical methods for 
treating time series data, methods for analysis of such data, feature extraction 
techniques, and investigation of prediction algorithms. As a result of this off-line 
analysis, a set of suitable algorithms for on-line analysis will be defined and 
developed. These will enable integration of real-time monitoring data with the 
historical accounting information, providing for on-the-fly estimation of job 
execution times and resource utilisation of the newly submitted jobs. This is seen 
as crucial missing information in the scheduling systems such as ICENI (see 
Section 3.2.8) and PACE/Titan (Section 3.2.7). Integration of our stochastic 
scheduler component with these systems will be investigated. 

8.2. Scheduler Testing 

The testing and validation of the design and principles behind the probabilistic 
scheduler will be done throughout simulations and a possible deployment of the 
SO-GRM Grid testbed. Instrumental in this effort is as large as possible 
collection of accounting and monitoring data from production environments 
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serving large communities of users. UCL’s CCC installation will be the main 
source of such data, although every effort will be made to obtain similar data 
from other commercial and academic Grid installations. 

In the off-line analysis phase, hypotheses will be formed based on the subsets of 
data and tested on the complete dataset. Second phase testing will be undertaken 
when appropriate statistical models have been selected to model user application 
behaviour and prediction algorithms have been developed. Using simulation 
tools, a range of jobs with varying adherence to the statistical model will be 
submitted through the simulated scheduler to establish the adaptability of the 
prediction engine and its functional envelope. As a result, further fine tuning may 
be necessary and some empirical observations of the prediction confidence 
intervals may emerge. Finally, once the first implementation has been done, the 
GridLoader tool will be used to simulate real Grid applications with probabilistic 
execution times and resource utilisation values drawn from pre-defined 
probability distribution functions. Monitoring framework presented in Section 6 
will be used to measure the effects of scheduler system overheads, timings of data 
acquisition and overall system dynamics. The performance of the scheduling 
logic will be most evident in theoretical simulations run on the production 
system job traces, while any implementation issues and their effect on the 
scheduler will show in the tests using the GridLoader application simulator.  

8.3. Open Issues 

Several issues regarding the implementation, restrictions and intended uses of the 
probabilistic scheduler remain open. 

8.3.1. Unique Grid Process Identification 

One of the most valuable meta-data information not available to the Grid 
schedulers at the moment is the unique identity of the executing process. Many 
Grid applications are a complex set-up of various data staging and preparation 
steps, distributed processes and complex result handling mechanisms. These 
compound jobs are often referred to as Grid workflows, and their management 
has become a major problem for the Grid community. Current practices rely on 
the use of scripting languages, and often one generic script can run any number 
of different applications with widely different characteristics. For these reasons, 
our stochastic scheduler is not able to fully identify the executable being run, and 
develop a model for its behaviour. The issue of workflow management and job 
identification is actively researched by the Grid community, and is likely to be 
resolved in the near future. Next versions of the Grid middleware should be able 
to uniquely identify different workflows and their constituent components, and 
make this information available through an open interface. 
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8.3.2. Hardware Heterogeneity 

The execution time and resource utilisation statistics observed by the proposed 
probabilistic scheduler are only applicable to a certain node hardware 
configuration. Although this seems to conflict with a vision of a widely 
heterogeneous Grid infrastructure, it is in the line with the intended mode of use 
of such local-level scheduler.  

For reasons of administrative, economical and political nature, processing farms 
constituting a global Grid are highly homogeneous. Choosing one, or at most 
two, architectures (manufacturer) reduces administrative overheads, creates 
economies of scale and a more manageable environment. In that context, our 
scheduler will be able to generate predictions for its local hardware environment, 
offering those predictions, together with an associated confidence level, as a bid 
value to the global Grid meta-scheduler. Lacking any previous experience with 
the offered job, our stochastic scheduler will revert to a batch mode and reflect 
such uncertainty in the confidence level offered. It is on the Grid meta-scheduler 
to pool bids from different clusters and select the most appropriate one, based on 
its own set of requirements and restrictions.  

Such hardware-specific approach has been adopted after considerable research 
into profiling and predicting application performance on different hardware 
platforms. As previously discussed in the Section 3.1.2, execution predictions, of 
acceptable quality, reached using moderate system resources, in or near real-time, 
on a widely varying architectures as found on the Grid, and with many 
application’s performance sensitive to very specific hardware capabilities simply 
may not be possible. 

8.3.3. Data Storage and Communication 

Adequate means of compressing, storing and communicating statistics pertaining 
to a large number of jobs, metrics and meta-factors will be required for efficient 
operation of the scheduler. Any compression method used should endeavour to 
maintain the statistical properties of the compressed data, hence wavelets and 
other similar methods will be investigated.  

Underlying monitoring and accounting sub-systems will handle communications 
and storage aspects of the raw data, but the scheduler will be required to 
communicate its own statistical models and predictions both within the local 
cluster and to the higher level meta-scheduler. Ideas from previous work within 
the SO-GRM project group will be used as the starting point for those scheduler 
aspects. Of special interest are XML encoded antibodies used in the I3 
component, and self-organising gossip-like communication protocol employed 
in SORD component. 
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8.4. Business Plan Development 

Grid computing has drawn interest from a large number of commercial 
institutions, and from large organisations from across a broad range of industries. 
Common to all is a need for large pool of computational power, cost of which is 
now more determined by the level of utilisation then by the price of the installed 
equipment. 

Effective scheduling plays an important part in keeping the hardware loaded, and 
providing high levels of return on investment made into the data-centres. It is the 
author’s belief that proposed probabilistic scheduling holds a very attractive 
value promise and that an operational system could be successfully marketed to 
large commercial Grid operators. 

Subject to further market research, a proposal for the commercialisation of this 
novel scheduling technology would be made in the form of a business plan. 
Funding will also be sought for further studies of system feasibility and possible 
revenue stream. Throughout this process, adequate steps will be taken in 
cooperation with UCL’s technology transfer office to affirm any intellectual 
property rights that may be applicable to the system. 
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9. CHAPTER NINE 
 
APPENDICES 

9.1. Glossary of Terms 

 

Acronym Meaning
AppLeS Application Level Scheduling
ASCI Accelerated Strategic Computing Initiative
CCC UCL Central Computing Cluster
CF RRD Database Consolidation Function
CPU Central Processing Unit
DEC Digital Equipment Corporation (now part of HP) 
DS RRD Database Data Source
FIFO First In First Out
FLOPS Floating Point Instructions Per Second
FRFO First Ready First Out
GASS Globus Access to Secondary Storage
GGF Global Grid Forum
GIIS Grid Information Index Service
GIS Globus Information Service
GMA Grid Monitoring Architecture
GRAM Globus Resource Allocation Manager
GRIS Grid Resource Information Service
GSI Globus Security Infrastructure
IP Internet Protocol
LDAP Lightweight Directory Access Protocol
LSF Load Sharing Facility
MDS Globus Monitoring & Discovery Service

MIPS Millions of Instructions Per Second
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Acronym Meaning
MPI Message Passing Interface
NWS Network Weather Service
OGSA Open Grid Services Architecture
PBS Portable Batch System
PDF Probability Distribution Function
PE GridSim Processing Elements
PID Process Identifier
PKI Private Key Infrastructure
RDBMS Relational Database Management System
R-GMA Relational Grid Monitoring Architecture
RRA Round Robin Archive
RRD Round Robin Database
SGE Sun Grid Engine
SLA Service Level Agreement
SLAM SO-GRM SLA Management Component
SMP Symmetric Multiprocessor
SOAP Simple Object Access Protocol
SORD Self-Organised Resource Discovery Protocol
SQL Simple Query Language
SSH Secure Shell 
Tcl Tool Command Language
TCP Transport Control Protocol
TLS Transport Layer Security
ToS Type of Service
UDP User Datagram Protocol
URI Universal Resource Identifier
VO Virtual Organisation
WSRF Web Services Resource Framework
XDR External Data Representation
XML eXtensible Mark-up Language
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9.4. Publications and Relevant Documents 

9.4.1. London Communications Symposium 2003 

 

“Resource and Application Models for Advanced Grid Schedulers” 

Aleksandar Lazarevic, Lionel Sacks 

 

ABSTRACT: As Grid computing is becoming an inevitable future, managing, 
scheduling and monitoring dynamic, heterogeneous resources will present new 
challenges. Solutions will have to be agile and adaptive, support self-organization 
and autonomous management, while maintaining optimal resource utilisation. 
Presented in this paper are basic principles and architectural concepts for efficient 
resource allocation in heterogeneous Grid environment. 

 

Available at: www.ee.ucl.ac.uk/~alazarev/papers/ 

9.4.2. International Symposium on 
Telecommunications 

 

“Self-organising management of Grid environments” 

Ioannis Liabotis, Ognjen Prnjat, Tope Olukemi, Adrian Li Mow Ching, 
Aleksandar Lazarevic, Lionel Sacks, Mike Fisher, Paul McKee 

 

ABSTRACT: This paper presents basic concepts, architectural principles and 
algorithms for efficient resource and security management in cluster computing 
environments and the Grid. The work presented in this paper is funded by 
BTExacT and the EPSRC project SO-GRM (GR/S21939). 
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“Adaptive Grid Scheduling and Resource Management” 
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Aleksandar Lazarevic, Lionel Sacks 
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9.4.4. London Communications Symposium 2004 

 

“Measuring and Monitoring Grid Resource Utilisation” 

Aleksandar Lazarevic, Lionel Sacks 

 

ABSTRACT: Effective resource utilisation monitoring and highly granular yet 
adaptive measurements are prerequisites for a more efficient Grid scheduler. We 
present a suite of measurement applications able to monitor per-process resource 
utilisation, and a customisable tool for emulating observed utilisation models. 

 

Available at: www.ee.ucl.ac.uk/~alazarev/papers/ 

9.4.5. The Ninth IFIP/IEEE International 
Symposium on Integrated Network Management  

 

“Enabling Adaptive Grid Scheduling and Resource Management” 

Aleksandar Lazarevic, Lionel Sacks, Ognjen Prnjat 

 

ABSTRACT: Wider adoption of the Grid concept has led to an increasing 
amount of federated computational, storage and visualisation resources being 
available to scientists and researchers. Distributed and heterogeneous nature of 
these resources renders most of the legacy cluster monitoring and management 
approaches inappropriate, and poses new challenges in workflow scheduling on 
such systems. Effective resource utilisation monitoring and highly granular yet 
adaptive measurements are prerequisites for a more efficient Grid scheduler. We 
present a suite of measurement applications able to monitor per-process resource 
utilisation, and a customisable tool for emulating observed utilisation models. We 
also outline our future work on a predictive and probabilistic Grid scheduler. 
The research is undertaken as part of UK e-Science EPSRC sponsored project 
SO-GRM (Self-Organising Grid Resource Management) in cooperation with 
BT. 

 

Available at: www.ee.ucl.ac.uk/~alazarev/papers/ 
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9.5. Code Listing 

9.5.1. GridLoader 

/* 
Grid Loading Application 
Aleksandar Lazarevic,  
Dept of E&E Engineering, University College London 
v 0.8 
 
*/ 
 
 
// -------- Include Files -------- 
 
#include <stdio.h> 
#include <sys/time.h> 
#include <sys/mman.h> 
#include <unistd.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <string.h> 
#include <netinet/in.h> 
#include <arpa/inet.h> 
#include <errno.h> 
#include <signal.h> 
#include <math.h> 
#include <time.h> 
#include <stdlib.h> 
 
// ------------------------------- 
 
 
 
// -------- Static Definitions --- 
 
//Used for LoadIdle() sleep time, in useconds 
#define CPU_IDLE_PAR_A 150000 
 
//Used for LoadIdle() sleep time, in useconds 
#define CPU_IDLE_PAR_B 8 
 
// CPU Load Pareto A parameter in useconds 
#define CPU_LOAD_PAR_A 1000 
 
// 1: Print out a lot of debuging info, 0: silent operation 
#define DEBUG 0 
 
// ------------------------------- 
 
// -------- Functions ------------ 
 
void LoadNet(float run_for, int burst_delay, char *to_addr); 
void LoadMem(int mem_amount); 
int LoadCPU(float run_for, float cpu_load_par_b); 
void LoadIdle(); 
void Done(); 
void LoadCPUDone(); 
void LoadNetDone(); 
float ran_pareto(float A, float B); 
 
// ------------------------------- 
 
 
// -------- Global Variables ----- 
 
typedef enum {DONE = 0, NET_LOAD, MEM_LOAD, CPU_LOAD, IDLE} State_Type; 
 
State_Type curr_state;    // States init table 
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int LoadNetAlarm = 0;    // Signal handler for Net loop, break on =1 
int LoadCPUAlarm = 0;    // Signal handler for CPU loop, break on =1 
double LoadCPUTime = 0;                           // Keeps track of CPU time already 
done, in seconds 
 
// ------------------------------- 
 
 
 
// -------- main () -------------- 
 
main (int argc, char *argv[]) 
{ 
 
 
    if (argc != 7) 
    { 
 
        printf("Grid Loading Application, v.0.8.\n\nERROR: Must have exactly 6 runtime 
parameters.\n\nGridload utilisation:\n\tgridload <NET> <CPU> <MEM> <BURST> <IP> 
<PARETO_B>\n\nWhere:\n\t<NET> = NET transfer time in seconds - FLOATING POINT\n\t<CPU> 
= Total CPU loading time in seconds - FLOATING POINT\n\t<MEM> = Amount of memory to 
allocate in MB - INTREGER\n\t<BURST> = Interpacket sleep time in useconds - 
INTREGER\n\t<IP> = IP address to send network traffic to - DOTTED 
NUMERICAL\n\t<PARETO_B> - LoadCPU time Pareto B parameter - FLOATING POINT\n\nAs no 
rigorous error cheking is done, please abide by the specification of these 
paramters.\n"); 
        exit(1); 
    } 
 
 
 
    int i = 0; 
    time_t *mytime; 
    long int t; 
 
    //Allocate enough memory for type time_t 
    mytime = malloc(sizeof(time_t)); 
 
    //Get current Epoch time 
    t = time(mytime); 
 
    if (DEBUG) 
        printf("Seeding with Epoch time: %d\n", t); 
 
    //Seed the random genereator with current Epoch, has a resolution of a second! May 
cause problems later 
    srand48(t); 
 
 
 
    float net_run_for, cpu_run_for, cpu_load_par_b; 
    int mem_amount, burst_delay; 
 
 
    // Assign parameters to variables 
 
    net_run_for = atof(argv[1]); 
    cpu_run_for = atof(argv[2]); 
    mem_amount = atoi(argv[3]); 
    burst_delay = atoi(argv[4]); 
    cpu_load_par_b = atof(argv[6]); 
 
    if (DEBUG) 
        printf("Arguments: %f,%f,%d,%d,%s,%f\n", net_run_for, cpu_run_for, mem_amount, 
burst_delay, argv[5], cpu_load_par_b); 
 
 
    curr_state = NET_LOAD;   // Jump to first state 
 
    while (curr_state) 
    { 
        switch (curr_state) 
        { 
 
        case 1 : 

  Page 86 



Aleksandar Lazarevic  Transfer Thesis 

            LoadNet ( net_run_for, burst_delay, argv[5] ); 
            break; 
 
        case 2 : 
            LoadMem ( mem_amount ); 
            break; 
 
        case 3 : 
            LoadCPU ( cpu_run_for, cpu_load_par_b); 
            break; 
 
        case 4 : 
            LoadIdle(); 
            break; 
        } 
    } 
} 
 
// ------------------ 
 
void LoadNet (float run_for, int burst_delay, char *to_addr) 
{ 
 
    if (DEBUG) 
        printf("Entering LoadNet()\n"); 
 
    int udp_socket, i; 
    char send_this[1400]; // MTU max 1500, use 1400+headers+spare 
    struct itimerval NetTimer; 
    struct sockaddr_in IP_client; 
    long run_for_sec, run_for_usec; 
 
    // Convert float run_for into two long /sec and /usec 
    run_for_sec = floor (run_for); 
    run_for_usec = 1000000 * (run_for - run_for_sec); 
 
    //Signal handler for CLOCK_REAL 
    signal (14, *LoadNetDone); 
 
    //Fill message with letters A 
    for (i = 0; i < 1400; i++) 
        send_this[i] = 'A'; 
 
    //Set timer 
    NetTimer.it_interval.tv_sec = 0; 
    NetTimer.it_interval.tv_usec = 1; 
    NetTimer.it_value.tv_sec = run_for_sec; 
    NetTimer.it_value.tv_usec = run_for_usec; 
 
    //Open socket 
    udp_socket = socket (PF_INET, SOCK_DGRAM, 0); 
 
    IP_client.sin_family = AF_INET; 
    IP_client.sin_addr.s_addr = inet_addr (to_addr); 
    IP_client.sin_port = 22222; 
 
    if (DEBUG) 
        printf("Entering loop, timer set: seconds:%d , useconds:%d\n", 
NetTimer.it_value.tv_sec, NetTimer.it_value.tv_usec); 
 
    //Run the timer 
    setitimer (ITIMER_REAL, &NetTimer, 0); 
 
    while (!LoadNetAlarm) 
    { 
        sendto (udp_socket, &send_this, sizeof(send_this), 0, (struct sockaddr *) 
&IP_client, sizeof(IP_client)); 
        usleep(burst_delay); 
    } 
 
    curr_state = MEM_LOAD; 
 
    //Reset Timer Raiser back to 0 !!! 
    LoadNetAlarm = 0; 
 
    if (DEBUG) 
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        printf("Leaving LoadNET()\n"); 
 
    // return(); if needs to return something to main() 
 
} 
 
void LoadNetDone() 
{ 
    LoadNetAlarm = 1; 
} 
 
 
// ---------------------------------- 
 
 
 
// ---------------------------------- 
 
int LoadCPU (float run_for, float cpu_load_par_b) 
{ 
 
    if (DEBUG) 
        printf("Entering LoadCPU()\n"); 
 
    //If done enough time return setting state DONE 
    if (LoadCPUTime >= run_for) 
    { 
        curr_state = DONE; 
 
        if (DEBUG) 
            printf("Leaving LoadCPU - time required has been reached!\n"); 
 
        return (0); 
    } 
 
    float this_run; 
    struct itimerval CPUTimer; 
    long this_run_usec; 
 
    //Signal handler for CLOCK_VIRTUAL 
    signal (26, *LoadCPUDone); 
 
    //Choose how long to run this time around 
    this_run = ran_pareto ( CPU_LOAD_PAR_A, cpu_load_par_b ); 
 
 
    this_run_usec = floor (this_run); 
 
    //Set the timer 
    CPUTimer.it_interval.tv_sec = 0; 
    CPUTimer.it_interval.tv_usec = 0; 
    CPUTimer.it_value.tv_sec = 0; 
    CPUTimer.it_value.tv_usec = this_run_usec; 
 
    if (DEBUG) 
        printf("Setting timer: seconds:%d , useconds:%d\n", CPUTimer.it_value.tv_sec, 
CPUTimer.it_value.tv_usec); 
 
    //Run the timer 
    setitimer (ITIMER_VIRTUAL, &CPUTimer, 0); 
 
    //Load the CPU using an empty loop - very effective :) 
    while (!LoadCPUAlarm) 
        ; 
 
    //Update how much time we spent in the CPUload loop, converting timer useconds 
into seconds 
    LoadCPUTime += (double)this_run_usec / 1000000; 
 
    if (DEBUG) 
        printf("LoadCPUTime so far: %.12f\n", LoadCPUTime); 
 
 
    curr_state = IDLE; 
 
    //Reset Timer raiser back to 0 !!! 
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    LoadCPUAlarm = 0; 
 
    if (DEBUG) 
        printf("Leaving LoadCPU - this_run done\n"); 
 
} 
 
void LoadCPUDone() 
{ 
    LoadCPUAlarm = 1; 
} 
// -------------------------------------- 
 
 
// ------------------------------------- 
 
float ran_pareto (float A, float B) 
{ 
 
    double x, y1, y2, y; 
 
    //Get a random value between (0.0,1.0] 
    x = drand48(); 
 
    if (DEBUG) 
        printf("Random number is: %f\n", x); 
 
 
    //Use inverse method to obtain a random Pareto number 
    y1 = 1 - x; 
    y2 = - ( (1 / B) * ( log(y1) ) ); 
    y = A * ( exp(y2) ); 
 
 
    if (DEBUG) 
        printf("Returning Pareto number:%f\n", y); 
 
    //Return floating random Pareto 
    return (y); 
 
} 
 
// ------------------------------------ 
 
// ----------------------------------- 
 
void LoadMem (int mem_amount) 
{ 
 
    if (DEBUG) 
        printf("Entering LoadMEM()\n"); 
 
    char *data; 
    int j; 
 
    //Allocate the required memory as given by mem_amount. SIZEOF(CHAR) = 1 
    data = (char *) malloc ( 1024 * 1024 * mem_amount * sizeof(char)); 
 
    //Above line increases virtual memory size, loop below makes kernel allocate 
physical memory 
    for (j = 0;j < 1024*1024*mem_amount;j++) 
        data[j] = 'A'; 
 
    //All done here, memory will be free when process terminates 
    curr_state = CPU_LOAD; 
 
    if (DEBUG) 
        printf("Leaving LoadMEM(), allocated: %d MB\n", mem_amount); 
} 
 
// ----------------------------------- 
 
// ---------------------------------- 
 
void LoadIdle () 
{ 
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    if (DEBUG) 
        printf("Entering LoadIdle()\n"); 
 
    long int sleep_for; 
 
    //Get a Pareto using predefined A and B, and round it down 
    sleep_for = floor ( ran_pareto (CPU_IDLE_PAR_A, CPU_IDLE_PAR_B)); 
 
    if (DEBUG) 
        printf("Will be sleeping for:%d  useconds\n", sleep_for); 
 
 
    //Sleep for so many useconds 
    usleep(sleep_for); 
 
    // Include sleeping time in CPUTime - more realistic, try to agree with 'time 
./gridload ...' 
    LoadCPUTime += (double)sleep_for / 1000000; 
 
    //Return back to LoadCPU(), which controls when to break out of LoadCPU<->LoadIdle 
loop 
    curr_state = CPU_LOAD; 
 
    if (DEBUG) 
        printf("Leaving LoadIdle()\n"); 
 
} 
 
// ------------------------------------ 

 

9.5.2. Matlab® Parameter File Generator 

% Aleksandar Lazarevic - v0.8 
% Create RUN file for Globus Grid Loader 
% Simple format for testing without SORD & I3 
 
 
% Output format: 
% <NET> <CPU> <MEM> <BURST> <IP> <PARETO_B> <NEXTREQ DELAY> <NEXTREQ IP> 
 
 
clear; 
 
% Change the values below ... 
 
IP_LOW = 146; 
IP_HIGH = 149; 
IP_PREFIX = '128.16.235.'; 
 
CPU_TOTAL_PARETO_A = 1500; 
CPU_TOTAL_PARETO_B = 6; 
 
CPU_LOAD_PARETO_B_MIN = 2; 
CPU_LOAD_PARETO_B_MAX = 10; 
 
MEM_MEAN = 40; 
MEM_MIN = 180; 
 
NET_MEAN = 15; 
NET_MIN = 20; 
 
BURST_MEAN = 8; 
BURST_MIN = 5; 
 
NEXTREQ_MIN = 2000; 
NEXTREQ_MAX = 3000; 
 
NEXT_HOST_MIN = 13; 
NEXT_HOST_MAX = 13; 
NEXT_HOST_PREFIX = 'android-ee'; 
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ITERATIONS = 200; 
 
% No need to change anything below this line! 
% ------------------------------------------ 
 
 
% Put Pareto numbers in CPU 
 
x=rand(ITERATIONS,1); 
for i=1:ITERATIONS, 
   y1=1-x(i); 
   y2=-(1/CPU_TOTAL_PARETO_B)*(log(y1)); 
   CPU(i)= CPU_TOTAL_PARETO_A * exp(y2); 
end  
% ---------------------------- 
 
% Generate random net transfer times 
NET = NET_MIN + NET_MEAN * abs ( randn(1,ITERATIONS) ); 
% ---------------------------- 
 
 
% Generate random rounded memory sizes for MEMLOAD 
MEM = round ( MEM_MIN + MEM_MEAN * abs ( randn(1,ITERATIONS) ) ); 
% ---------------------------- 
 
% Generate random rounded burst delay intervals for NETLOAD 
BURST = round ( BURST_MIN + BURST_MEAN * abs ( randn(1,ITERATIONS) ) ); 
% ----------------------------- 
 
% Generate random IP address for NETLOAD traffic and next request 
IPLoad = round (IP_LOW + (IP_HIGH - IP_LOW) * rand(1,ITERATIONS) ); 
 
IPNext = round (IP_LOW + (IP_HIGH - IP_LOW) * rand(1,ITERATIONS) ); 
% ---------------------------- 
 
 
% Generate random next request delay 
NEXTREQ = round (NEXTREQ_MIN + (NEXTREQ_MAX - NEXTREQ_MIN) * rand(1,ITERATIONS) ); 
% ---------------------------- 
 
% Generate random CPU_LOAD_PARETO_B values from range MIN to MAX 
CPU_LOAD_PARETO_B = CPU_LOAD_PARETO_B_MIN + (CPU_LOAD_PARETO_B_MAX - 
CPU_LOAD_PARETO_B_MIN) * rand(1,ITERATIONS); 
% ---------------------------- 
 
% Generate random address for NEXT_HOST 
NEXTHOST = round (NEXT_HOST_MIN + (NEXT_HOST_MAX - NEXT_HOST_MIN) * rand(1,ITERATIONS) 
); 
% ---------------------------- 
 
% File writing 
 
RUN_FILE = fopen('param.grid', 'w'); 
STAT_FILE = fopen('stats.csv','w'); 
 
for i=1:ITERATIONS 
 
    fprintf(RUN_FILE, '%f %f %d %d %s%d %f %10s%d %d\n', NET(i), CPU(i), MEM(i), 
BURST(i), IP_PREFIX, IPLoad(i), CPU_LOAD_PARETO_B(i), NEXT_HOST_PREFIX, NEXTHOST(i), 
NEXTREQ(i) );         
    fprintf(STAT_FILE, '%f,%f,%d\n', NET(i), CPU(i), MEM(i) ); 
 
end  
 
fclose(RUN_FILE); 
fclose(STAT_FILE); 
% -------------------- 
 
 
 
% Plotting 
hold on; 
 
subplot(3,3,1); 
plot (CPU,'k'); 
axis auto; 
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title('CPU Load'); 
ylabel('Seconds'); 
 
subplot(3,3,2); 
hist(CPU,100); 
axis auto; 
title('CPU Load Histogram'); 
xlabel('Seconds'); 
ylabel('Count'); 
 
subplot(3,3,4); 
plot (MEM,'r'); 
axis auto; 
ylabel('MBytes'); 
title('Memory Allocation'); 
 
subplot(3,3,3); 
axis auto; 
plot (NET,'m.'); 
title('NET Transfer Time'); 
ylabel('Seconds'); 
 
subplot(3,3,5); 
hist(MEM,100); 
axis auto; 
title('Memory Histrogram'); 
xlabel('MBytes'); 
ylabel('Count'); 
 
subplot(3,3,6); 
axis auto; 
plot (BURST,'b.'); 
ylabel('uSeconds'); 
title('Packet Burst Delay') 
 
 
subplot(3,3,7); 
hist(NEXTREQ,100); 
axis auto; 
title('NEXTREQ Time'); 
xlabel('Seconds'); 
ylabel('Count'); 
 
subplot(3,3,8); 
hist(CPU_LOAD_PARETO_B,100); 
axis auto; 
title('CPU Load B Time'); 
xlabel('Value'); 
ylabel('Count'); 
 
 
% --------------------------------- 

 

9.5.3. Ganglia Custom Metric Broadcast Script 

#!/bin/sh 
 
# 
# 'broadcast_metric' Script 
# 
# Generate Ganglia XML and publish certain local system metric 
# to Ganglia MetaDeamon through custom information provider 
# 'gmetric' 
# 
# Uses 'ps' to obtain info and 'gawk' to process it 
# then sleeps for a period of time 
# 
# 
# (c) Aleksandar Lazarevic 2004 
 
# Metric name to be published 
METRIC="globus-cpu-percentage" 
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# 'ps' query command (part of) 
# use "-U username" or "-C cmdline" or "-p PID" 
CMD="-C gl08" 
 
# Polling period, don't make it shorter then 5s due to CPU util. 
SLEEP=5 
 
# ------------------------------- 
 
 
while [ 0 ] 
do 
 
VAL=`ps ${CMD} -o pcpu | gawk '{s += $1} END {print s}'` 
 
gmetric --name="${METRIC}" --value=${VAL} --type=float 
 
sleep ${SLEEP} 
 
done 
 

 

9.5.4. Round-Robin Database Data Sweep Script 

#!/bin/sh 
 
# 'sweeprrd' Script 
# 
# Extract highest frequency data from Ganglia RRD for a given metric 
# Checks last timestamp in local file and exports from the next 
# timestamp up to NOW less 45 seconds (don't ask why!) 
# 
# It then sleeps for some time. Polling should be less then 60 minutes 
# otherwise high freq data will be lost or consolidated (RRD) 
# 
# 
# (c) Aleksandar Lazarevic 2004 
# 
# 
 
# RRD File location WITH TRAILING SLASH!!! 
RRDLOC="/var/lib/ganglia/rrds/UCL/android-ee13.cs.ucl.ac.uk/" 
 
# RRD metric database to use 
RRDFILE1="globus-cpu-percentage.rrd" 
RRDFILE2="cpu_idle.rrd" 
 
# Raw data file (will contain timestamp:value[scientific] 
FILE1="/home/aleks/experiments/4/globus_load" 
FILE2="/home/aleks/experiments/4/total_load" 
 
# Sleep time (less than 3500 more than 120) 
SLEEP=900 
 
# Debug? 
DEBUG=0 
 
# ------------------------------ 
 
 
# export $FILE1 $FILE2 
 
while [ 0 ] 
do 
 
STARTTIME=`tail -n 1 $FILE1 | gawk '/:/ {print substr($1,1,10)}'` 
 
 
if [ "$STARTTIME" == "" ] 
then 
 STARTTIME=`date +%s` 
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 let "STARTTIME-=3500" 
  
 if [ $DEBUG = 1 ]; then 
 echo No previous startime found. Using: $STARTTIME 
 fi 
 
else 
 let "STARTTIME+=15" 
  
 if [ $DEBUG = 1 ]; then 
 echo Previous startime: $STARTTIME 
 fi 
fi 
 
rrdtool fetch ${RRDLOC}/${RRDFILE1} AVERAGE -r 1 --end=now-45 --start=$STARTTIME | 
grep : >> $FILE1 
rrdtool fetch ${RRDLOC}/${RRDFILE2} AVERAGE -r 1 --end=now-45 --start=$STARTTIME | 
grep : >> $FILE2 
 
sleep ${SLEEP} 
 
done 
 

 

9.5.5. Simple Batch Scheduler (Globus flavour) 

#!/bin/sh 
 
#  
# 'scheduler' Script 
# 
# Simple master-slave schedulng script 
# Take a runfile with GridLoader parameters and two extra: next host and delay 
# Using globus-job-run to submit to "next host" after "delay" 
# 
# MUST BE RUN AS SOGRM! 
# [Because of Globus certificates] 
# 
# 
# (C) Aleksandar Lazarevic 2004 
# 
# 
 
# Debug? 
DEBUG=0 
 
# Runfile Location 
RUNFILE="/home/aleks/experiments/4/param" 
 
# Runtime Log 
RUNLOG="/home/aleks/experiments/4/run.log" 
 
# Globus certificate password 
GLOBUSPASS="/home/aleks/scripts/globus-proxy-pass" 
# ------------------------------------ 
 
 
 
# Open files 
exec 3<$RUNFILE 
exec 4>>$RUNLOG 
 
# count how many jobs to run (-1) 
jobs=`wc -l ${RUNFILE} | gawk '{print $1}'` 
 
if [ $DEBUG = 1 ] 
then echo Jobs to run:$jobs 
fi 
 
 
# Main Loop 
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for ((i=1; a < $jobs ; a++)) 
do 
  read -a V <&3 
   
  # Add NET time and CPU time - NO Floating Point ??? 
  #$(( runtime = V[0] + V[1] )) 
   
  if [ $DEBUG = 1 ] 
      then echo Total Runtime:${runtime} Next Host: ${V[6]}  in-: ${V[7]} 
  fi 
   
  if [ $DEBUG = 0 ] 
      then   
 echo -n `date +%s`, >&4 
 grid-proxy-init -q -valid   24:00 -pwstdin <$GLOBUSPASS 
 globus-job-run ${V[6]} /home/aleks/gridloader/gl08 ${V[0]} ${V[1]} ${V[2]} 
${V[3]} ${V[4]} ${V[5]} 
 grid-proxy-destroy  
 echo `date +%s`,${V[6]} >&4 
  fi 
 
if [ $DEBUG = 1 ] 
then  
 
    echo sent it! now go to sleep 
    sleep 1 
 
else 
 
 sleep 45  
  leep ${V[7]  # s } 
 
fi 
 
done 
# End of main loop 
exit 0 

 

9.5.6. Simple Batch Scheduler (SSH flavour) 

#!/bin/sh 
 
#  
# 'scheduler' Script 
# 
# Simple master-slave schedulng script 
# Take a runfile with GridLoader parameters and two extra: next host and delay 
# Using SSH submit to "next host" after "delay" 
# 
# MUST BE RUN AS ROOT! 
# [Because of SSH certificates] 
# 
# 
# (C) Aleksandar Lazarevic 2004 
# 
# 
 
# Debug? 
DEBUG=0 
 
# Runfile Location 
RUNFILE="/home/aleks/experiments/3/param" 
 
# Runtime Log 
RUNLOG="/home/aleks/experiments/3/run.log" 
 
# ------------------------------------ 
 
 
 
# Open files 
exec 3<$RUNFILE 
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exec 4>>$RUNLOG 
 
# count how many jobs to run (-1) 
jobs=`wc -l ${RUNFILE} | gawk '{print $1}'` 
 
if [ $DEBUG = 1 ] 
then echo Jobs to run:$jobs 
fi 
 
 
# Main Loop 
 
for ((i=1; a < $jobs ; a++)) 
do 
  read -a V <&3 
   
  # Add NET time and CPU time - NO Floating Point ??? 
  #$(( runtime = V[0] + V[1] )) 
   
  if [ $DEBUG = 1 ] 
      then echo Total Runtime:${runtime} Next Host: ${V[6]}  in-: ${V[7]} 
  fi 
   
  if [ $DEBUG = 0 ] 
      then   
 echo -n `date +%s`, >&4 
 ssh ${V[6]} /home/aleks/gridloader/gl08 ${V[0]} ${V[1]} ${V[2]} ${V[3]} ${V[4]} 
${V[5]}  
   echo `date +%s`,${V[6]} >&4 
  fi 
 
if [ $DEBUG = 1 ] 
then  
 
    echo sent it! now go to sleep 
    sleep 1 
 
else 
 
 sleep 45  
  leep ${V[7]  # s } 
 
fi 
 
done 
 
# End of main loop 
 
exit 0 

 

  Page 96 



Aleksandar Lazarevic  Transfer Thesis 

9.6. References 

[1]  "LCG Computing Fabric Overview,"  http://lcg-computing-
fabric.web.cern.ch/LCG-Computing-
Fabric/fabric_presentations/lhcc_review_fabric_overview_BPanzer3.ppt; Last 
Accessed:  2003 

[2]  "SETI@home: Search for Extraterrestrial Intelligence at home,"  
http://setiathome.ssl.berkeley.edu/; Last Accessed:  2005 

[3]  "Folding@Home Distributed Computing,"  
http://www.stanford.edu/group/pandegroup/folding/; Last Accessed:  2005 

[4]  Foster, Kesselman and Tuecke "The Anatomy of the Grid: Enabling Scalable 
Virtual Organizations," International J. Supercomputer Applications vol. 
15(3),  2001. 

[5]  I. Foster, C. Kesselman, J. Nick and S. Tuecke "The Physiology of the Grid: An 
Open Grid Services Architecture for Distributed Systems Integration," Global 
Grid Forum  2002. 

[6]  "The Globus Alliance,"  http://www.globus.org/; Last Accessed:  2005 

[7]  "EGEE - Gateway,"  http://egee-intranet.web.cern.ch/egee-intranet/gateway.html; 
Last Accessed:  2005 

[8]  "Global Grid Forum,"  http://www.ggf.org/; Last Accessed:  2005 

[9]  "Platform Computing - Accelerating Intelligence - Grid Computing,"  
http://www.platform.com/; Last Accessed:  2005 

[10]  "Avaki : Home,"  http://www.avaki.com/; Last Accessed:  2005 

[11]  "United Devices, Inc. ™ - Grid Computing Solutions - Home,"  
http://www.ud.com/home.htm; Last Accessed:  2005 

[12]  "10 Emerging Technologies That Will Change Your World", 2004; 

[13]  K. Vairavan and R.A. DeMillo "On the Computational Complexity of a 
Generalised Scheduling Problem," IEEE Trans. Computing vol. C-25, no. 11, 
pp. 1067-1073, 1976. 

[14]  M.J. Gonzales "Deterministic Process Scheduling," ACM Computer Surveys vol. 
9, no. 3, pp. 173-204, 1997. 

[15]  E.S. Buffa "Modern Production Management", 5th Edition, Wiley;  New York, 
NY, 1977; 

[16]  R.W. Conway, W.L. Maxwell and L.W. Miller "Theory of Scheduling", 
Addison-Wesley;  Reading, MA, 1967; 

[17]  M.J. Flynn "Very High-speed Computing Systems," Proceeding of the IEEE vol. 
54, pp. 1901-1909, 1966. 

[18]  Casavant and Kuhl "A taxonomy of scheduling in general-purpose distributed 
computing systems," Software Engineering, IEEE Transactions on vol. 14, no. 
2 SN  - 0098-5589, pp. 141-154, 1988. 

  Page 97 



Aleksandar Lazarevic  Transfer Thesis 

[19]  S.A. Jarvis, D. Spooner, H. Keung and G. Nudd "Performance prediction and its 
use in parallel and distributed computing systems," Parallel and Distributed 
Processing Symposium, 2003. Proceedings. International pp. 8 pp. 2003. 

[20]  Y. Lingyun, I. Foster and J.M. Schopf "Homeostatic and tendency-based CPU 
load predictions," Parallel and Distributed Processing Symposium, 2003. 
Proceedings. International no. SN  - 1530-2075, pp. 9 pp. 2003. 

[21]  J.M. Schopf and F. Berman "Using stochastic intervals to predict application 
behavior on contended resources," Parallel Architectures, Algorithms, and 
Networks, 1999. (I-SPAN '99) Proceedings. Fourth InternationalSymposium 
on pp. 344-349, 1999. 

[22]  L. Byoung Dai and J.M. Schopf "Run-time prediction of parallel applications on 
shared environments," Cluster Computing, 2003. Proceedings. 2003 IEEE 
International Conference on no. SN  -, pp. 487-491, 2003. 

[23]  S.A. Jarvis, D. Spooner, H. Keung, J. Dyson, Z. Lei and G. Nudd "Performance-
based middleware services for grid computing," Autonomic Computing 
Workshop, 2003 pp. 151-159, 2003. 

[24]  D.P. Spooner, S. Jarvis, J. Cao, S. Saini and G. Nudd "Local grid scheduling 
techniques using performance prediction," Computers and Digital Techniques, 
IEE Proceedings- vol. 150, no. 2, pp. 87-96, 2003. 

[25]  Berman, Wolski, Casanova, Cirne, Dail, Faerman, Figueira, Hayes, Obertelli, 
Schopf, Shao, Smallen, Spring, Su and Zagorodnov "Adaptive computing on 
the Grid using AppLeS," Parallel and Distributed Systems, IEEE Transactions 
on vol. 14, no. 4 SN  - 1045-9219, pp. 369-382, 2003. 

[26]  "Condor-G,"  http://www.cs.wisc.edu/condor/condorg/; Last Accessed:  2005 

[27]  J. Frey, T. Tannenbaum, I. Foster and S. Tuecke "Condor-G: a computation 
management agent for multi-institutional grids," High Performance 
Distributed Computing, 2001. Proceedings. 10th IEEE International 
Symposium on no. SN  -, pp. 55-63, 2001. 

[28]  "Grid Engine Project Home Page,"  http://gridengine.sunsource.net/; Last 
Accessed:  2005 

[29]  "N1 Grid Engine 6,"  http://www.sun.com/software/gridware/index.xml; Last 
Accessed:  2005 

[30]  D. Abramson, R. Sosic, J. Giddy and B. Hall "Nimrod: a tool for performing 
parametrised simulations using distributed workstations," High Performance 
Distributed Computing, 1995., Proceedings of the Fourth IEEE International 
Symposium on pp. 112-121, 1995. 

[31]  "Nimrod/G,"  http://www.csse.monash.edu.au/~davida/nimrod/nimrodg.htm; 
Last Accessed:  2005 

[32]  R. Buyya, D. Abramson and J. Giddy "Nimrod/G: an architecture for a resource 
management and scheduling system in a global computational grid," High 
Performance Computing in the Asia-Pacific Region, 2000. Proceedings. The 
Fourth International Conference/Exhibition on vol. 1, pp. 283-289 vol.1, 
2000. 

[33]  "PBS Pro Home,"  http://www.pbspro.com/; Last Accessed:  2005 

  Page 98 



Aleksandar Lazarevic  Transfer Thesis 

[34]  "Beowulf.org: The Beowulf Cluster Site,"  http://www.beowulf.org/; Last 
Accessed:  2005 

[35]  "OpenPBS,"  http://www.openpbs.org/; Last Accessed:  2005 

[36]  R.L. Henderson "Job Scheduling Under the Portable Batch System," IPPS '95: 
Proceedings of the Workshop on Job Scheduling Strategies for Parallel 
Processing pp. 279-294, 1995. 

[37]  "Platform Computing - Products - Platform LSF,"  
http://www.platform.com/products/LSF/; Last Accessed:  2005 

[38]  S. Zhou "LSF: Load Sharing in Large-scale Heterogeneous Distributed 
Systems," Workshop on Cluster Computing  1992. 

[39]  "University of Warwick: Computer Science: Research: PACE,"  
http://www.dcs.warwick.ac.uk/research/hpsg/pace/pace-introduction.html; 
Last Accessed:  2005 

[40]  "LeSC - London e-Science Centre - ICENI,"  http://www.lesc.ic.ac.uk/iceni/; 
Last Accessed:  2005 

[41]  L. Young, S. McGough, S. Newhouse and J. Darlington "Scheduling 
Architecture and Algorithms within the ICENI Grid Middleware,"  2003. 

[42]  "Maui Cluster Scheduler,"  http://www.clusterresources.com/products/maui/; 
Last Accessed:  2005 

[43]  D. Jackson, Q. Snell and M. Clement "Core Algorithms of the Maui Scheduler," 
Lecture Notes in Computer Science vol. 2221, pp. 87-??, 2001. 

[44]  "Legion: A Worldwide Virtual Computer,"  
http://legion.virginia.edu/index.html; Last Accessed:  2005 

[45]  "NetSolve,"  http://icl.cs.utk.edu/netsolve/; Last Accessed:  2005 

[46]  "Ninf Project Home Page,"  http://ninf.apgrid.org/; Last Accessed:  2005 

[47]  P. Sang-Min and K. Jai-Hoon "Chameleon: a resource scheduler in a data grid 
environment," Cluster Computing and the Grid, 2003. Proceedings. CCGrid 
2003. 3rd IEEE/ACM International Symposium on no. SN  -, pp. 258-265, 
2003. 

[48]  "MGRID - MGRID Accounting,"  
http://www.mgrid.umich.edu/projects/mars.html; Last Accessed:  2005 

[49]  "SimGrid,"  http://juggler.ucsd.edu/simgrid/; Last Accessed:  2005 

[50]  Casanova "Simgrid: a toolkit for the simulation of application scheduling," 
Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM 
International Symposium on no. SN  -, pp. 430-437, 2001. 

[51]  Legrand, Marchal and Casanova "Scheduling distributed applications: the 
SimGrid simulation framework," Cluster Computing and the Grid, 2003. 
Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium on no. 
SN  -, pp. 138-145, 2003. 

[52]  "Micro Grid,"  http://www-csag.ucsd.edu/projects/grid/microgrid.html; Last 
Accessed:  2005 

  Page 99 



Aleksandar Lazarevic  Transfer Thesis 

[53]  "Grid Application Development Sofware Project (GrADS),"  
http://www.hipersoft.rice.edu/grads/; Last Accessed:  2005 

[54]  X. Huaxia, Dail, Casanova and Chien "The MicroGrid: using online simulation 
to predict application performance in diverse grid network environments," 
Challenges of Large Applications in Distributed Environments, 2004. CLADE 
2004. Proceedings of the Second International Workshop on no. SN  -, pp. 52-
61, 2004. 

[55]  H.J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura and A.A. 
Chien "The MicroGrid: a Scientific Tool for Modeling Computational Grids," 
Supercomputing  2000. 

[56]  "GridSim: A Grid Simulation Toolkit for Resource Modelling and Application 
Scheduling for Parallel and Distributed Computing,"  
http://www.buyya.com/gridsim/; Last Accessed:  2005 

[57]  "SimJava,"  http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava/; Last 
Accessed:  2005 

[58]  R. Buyya and M. Murshed "GridSim: a toolkit for the modeling and simulation 
of distributed resource management and scheduling for Grid computing", John 
Wiley & Sons, Ltd.;  2003; 

[59]  "Ganglia,"  http://ganglia.sourceforge.net/; Last Accessed:  2005 

[60]  "RRD TOOL -- About RRDtool,"  
http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/; Last Accessed:  2005 

[61]  "Ganglia Cluster Toolkit:: Rocks Network Grid Report,"  
http://meta.rocksclusters.org/Rocks-Network/; Last Accessed:  2005 

[62]  "R-GMA:Relational Grid Monitoring Architecture.,"  http://www.r-gma.org/; 
Last Accessed:  2005 

[63]  B. Tierney "A Grid Monitoring Architecture,"  2005. 

[64]  "NWS,"  http://www.nsf-middleware.org/documentation/NMI-R3/0/NWS/; Last 
Accessed:  2005 

[65]  Wolski "Forecasting network performance to support dynamic scheduling using 
the network weather service," High Performance Distributed Computing, 
1997. Proceedings. The Sixth IEEE International Symposium on no. SN  -, pp. 
316-325, 1997. 

[66]  Takefusa, Matsuoka, Nakada, Aida and Nagashima "Overview of a performance 
evaluation system for global computing scheduling algorithms," High 
Performance Distributed Computing, 1999. Proceedings. The Eighth 
International Symposium on no. SN  -, pp. 97-104, 1999. 

[67]  R. Wolski, N.T. Spring and J. Hayes "The network weather service: a distributed 
resource performance forecasting service for metacomputing," Future Gener. 
Comput. Syst. vol. 15, no. 5-6, pp. 757-768, 1999. 

[68]  R. Wolski "Dynamically forecasting network performance using the Network 
Weather Service," Cluster Computing vol. 1, no. 1, pp. 119-132, 1998. 

[69]  "GridMon - Grid Network Performance Monitoring for UK e-Science,"  
http://gridmon.dl.ac.uk/; Last Accessed:  2005 

  Page 100 



Aleksandar Lazarevic  Transfer Thesis 

[70]  "Hawkeye,"  http://www.cs.wisc.edu/condor/hawkeye/; Last Accessed:  2005 

[71]  Z. Xuechai, J.L. Freschl and J.M. Schopf "A performance study of monitoring 
and information services for distributed systems," High Performance 
Distributed Computing, 2003. Proceedings. 12th IEEE International 
Symposium on no. SN  - 1082-8907, pp. 270-281, 2003. 

[72]  "SO-GRM - EPSRC Web Site - Grants on the Web,"  
http://gow.epsrc.ac.uk/ViewGrant.ASPx?Grant=GR/S21939/01&bannerlink=P
rogramme%20support; Last Accessed:  2005 

[73]  A. Li Mow Ching, Sacks and McKee "SLA Management and Resource 
Monitoring for Grid Computing," London Communications Symposium  2003. 

[74]  I. Liabotis, O. Prnjat, T. Olukemi, A.L. Ching, A. Lazarevic, L. Sacks, M. Fisher 
and P. McKee "Self-organising management of Grid environments," 
International Symposium on Telecommunications  2003. 

[75]  D.J. Watts "Small Worlds", Princeton University Press;  1999; 
ISBN:0691005419 

[76]  I. Liabotis, O. Prnjat and L. Sacks "Policy-Based Resource Management for 
Application Level Active Networks,"  2001. 

[77]  Prnjat, Liabotis, Olukemi, Sacks, Fisher, McKee, Carlberg and Martinez 
"Policy-based management for ALAN-enabled networks," Policies for 
Distributed Systems and Networks, 2002. Proceedings. Third International 
Workshop on no. SN  -, pp. 181-192, 2002. 

[78]  R.O. Duda, P.E. Hart and D.G. Stork "Pattern Classification", 2nd Edition, John 
Wiley and Sons;  2001; 

[79]  O. Prnjat, T. Olukemi, I. Liabotis and L. Sacks "Integrity and Security of the 
Application Level Active Networks," IFIP Workshop on IP and ATM Traffic 
Management  2001. 

[80]  "Open Source Native XML Database,"  http://exist.sourceforge.net/; Last 
Accessed:  2005 

[81]  Citron "MisSPECulation: partial and misleading use of spec CPU2000 in 
computer architecture conferences," Computer Architecture, 2003. 
Proceedings. 30th Annual International Symposium on no. SN  - 1063-6897, 
pp. 52-59, 2003. 

[82]  Amato and Dale "Probabilistic roadmap methods are embarrassingly parallel," 
Robotics and Automation, 1999. Proceedings. 1999 IEEE International 
Conference on vol. 1, no. SN  -, pp. 688-694 vol.1, 1999. 

[83]  "GLUE Schema,"  http://www.globus.org/mds/glueschemalink.html; Last 
Accessed:  2005 

[84]  C. Bishop "Neural Networks for Pattern Recognition", Oxford University Press;  
Oxford, England, 1995; 

  Page 101 


	1. Chapter One  Introduction to the Grid 
	1.1. A Case for Distribution 
	1.2. The Grid Perspective 
	1.3. The Globus Toolkit and its Impact 
	1.4. Wider Grid Landscape 
	1.5. Conclusions 
	2. Chapter Two   Research Area 
	2.1. Open Issues in Grid Computing 
	2.2. Research focus: Grid Scheduling 
	2.3. Simulation and Testing 
	2.4. Measurements & Information Flow 
	2.5. Conclusions 

	3. Chapter Three  Literature Survey 
	3.1. Scheduling Theory 
	3.1.1. Taxonomy of Scheduling 
	3.1.2. Predicting Application-Level Performance 

	3.2. Survey of Schedulers 
	3.2.1. AppLeS 
	3.2.2. Condor–G 
	3.2.3. N1 (Sun) Grid Engine 
	3.2.4. Nimrod/G 
	3.2.5. Portable Batch System (PBS) 
	3.2.6. Load Sharing Facility (LSF) 
	3.2.7. PACE/Titan 
	3.2.8. Imperial College e-Science Network Infrastructure 
	3.2.9. Maui Cluster Scheduler 
	3.2.10. Others 
	3.2.11. Conclusions 

	3.3. Survey of Grid Simulation Suites 
	3.3.1. SimGrid 
	3.3.2. MicroGrid 
	3.3.3. GridSim 
	3.3.4. Conclusions 

	3.4. Survey of Monitoring Systems 
	3.4.1. Ganglia 
	3.4.2. Relational Grid Monitoring Architecture 
	3.4.3. Network Weather Service 
	3.4.4. Other 
	3.4.5. Conclusions 


	4. Chapter Four  SO-GRM Project 
	4.1. SLA Management  
	4.2. Resource Discovery 
	4.3. Integrity Information Intelligence - I3 
	4.4. Functional and Integration Testing 
	4.5. Conclusions 

	5. Chapter Five  Grid Application Simulator 
	5.1. Motivation 
	5.2. Requirements 
	5.3. Implementation 
	5.3.1. Application Simulation Stages 
	5.3.2. Parameterisation Options 
	5.3.3. Deployment Scripts 

	5.4. Self-Test Results 
	5.5. Conclusions 

	6. Chapter Six  Monitoring Framework 
	6.1. Motivation 
	6.2. Requirements 
	6.3. Implementation 
	6.3.1. Ganglia Functionality  
	6.3.2. Information Providers 
	6.3.3. Database Management Tools 

	6.4. Test results 
	6.5. Conclusions 

	7. Chapter Seven  Towards a Probabilistic Scheduler 
	7.1. Aims 
	7.2. Requirements 
	7.3. Methodology 
	7.4. Preliminary Analysis 
	7.4.1. Overall Job Statistics 
	7.4.2. Group-based Job Differentiation 
	7.4.3. Data Clustering and Correlation 
	7.4.4. Temporal Characteristics 

	7.5. Conclusions 

	8. Chapter Eight  Further Work 
	8.1. Algorithm Development 
	8.2. Scheduler Testing 
	8.3. Open Issues 
	8.3.1. Unique Grid Process Identification 
	8.3.2. Hardware Heterogeneity 
	8.3.3. Data Storage and Communication 

	8.4. Business Plan Development 

	9. Chapter Nine  Appendices 
	9.1. Glossary of Terms 
	9.2.  Table of Figures 
	9.3.  Work Plan 
	9.4.  Publications and Relevant Documents 
	9.4.1. London Communications Symposium 2003 
	9.4.2. International Symposium on Telecommunications 
	9.4.3. Next Generation Networking - Multi-Services Networks 
	9.4.4. London Communications Symposium 2004 
	9.4.5. The Ninth IFIP/IEEE International Symposium on Integrated Network Management  

	9.5.  Code Listing 
	9.5.1. GridLoader 
	9.5.2. Matlab® Parameter File Generator 
	9.5.3. Ganglia Custom Metric Broadcast Script 
	9.5.4. Round-Robin Database Data Sweep Script 
	9.5.5. Simple Batch Scheduler (Globus flavour) 
	9.5.6. Simple Batch Scheduler (SSH flavour) 

	9.6.  References 



