
Automated Generation of Context-Aware Tests

Zhimin Wang and Sebastian Elbaum
Dept. of Computer Science and Engineering

University of Nebraska - Lincoln
Lincoln, NE, USA

zwang,elbaum@cse.unl.edu

David S. Rosenblum
Dept. of Computer Science
University College London

London, UK
d.rosenblum@cs.ucl.ac.uk

Abstract

The incorporation of context-awareness capabilities into
pervasive applications allows them to leverage contextual
information to provide additional services while maintain-
ing an acceptable quality of service. These added capa-
bilities, however, introduce a distinct input space that can
affect the behavior of these applications at any point during
their execution, making their validation quite challenging.
In this paper, we introduce an approach to improve the test
suite of a context-aware application by identifying context-
aware program points where context changes may affect the
application’s behavior, and by systematically manipulating
the context data fed into the application to increase its expo-
sure to potentially valuable context variations. Preliminary
results indicate that the approach is more powerful than ex-
isting testing approaches used on this type of application.

1 Introduction

Context-aware applications adapt their behavior based
on situational data to produce richer services and manage
scarce resources. Such applications are becoming more
prevalent in the presence of ubiquitous devices such as mo-
bile phones, which can now support services such as shop-
ping guides, transportation booking services, and the for-
mation of ad-hoc communities for gaming or socializing.
Examples of relevant context include location, battery level,
time of day, environmental readings (e.g. temperature, hu-
midity), and user preferences (e.g. spoken language, spend-
ing limits, ringing profile).

Developing such context-aware applications is full of
difficulties unique to the nature of ubiquitous systems.
Consider the periodic, asynchronous streaming delivery of
location-based information to mobile users. The correct
and efficient functioning of this application will be influ-
enced quite strongly by changes in the context of the ap-
plication. These contexts can be highly dynamic (e.g., sig-

nal strength), are often approximated (e.g., user location),
and may include contradictory data (e.g., sensors perceiv-
ing different things or perceiving the same thing but with
different timing). That is why the collection and process-
ing requirements imposed by complex contexts have led to
specialized software development practices. For example,
context-aware applications rely extensively on middleware
to support different abstraction paradigms aimed at hiding
the complexity of collecting context information, and they
often include mechanisms to mask for and adapt to uneven
circumstances (e.g., levels of luminosity) [10].

Given the importance of contextual data to enable more
powerful services, and the increasing role those services
play in our lives, it is vital that we provide the testing mech-
anisms to help ensure the dependability of such context-
aware applications. Although there have been efforts to
support the specification and to some degree the verifica-
tion of context-aware applications [14], specialized testing
techniques are lacking. The validation of context-aware ap-
plications is primarily confined to the physical emulation of
the mobile device, the logical and physical deployment to
an affordable subset of the user scenarios [17], and the tai-
loring of existing test case generation methodologies (such
as testing context-aware middleware [22]).

The previously proposed validation techniques have
failed to consider a fundamental aspect of context-aware
applications:changes in context can occur and affect the
application behavior at any time during the execution. Al-
though this may happen with other types of inputs, it is par-
ticular prevalent with contextual inputs since they are the
continuously streaming drivers of contextual applications.
Engineers must identify not onlywhat context values to pro-
vide, but alsowhen the stream of variations in context val-
ues can impact the behavior of the application, and hence
are worth testing. This is an essential difference from the
testing of more traditional systems, where the selection of
input values can mostly be performed a priori.

Determining when and controlling how to feed a stream
of changing context values to a context-aware application

1

is complicated by several factors. First, the often thick lay-
ers of middleware that ease the difficulties of developing
these context-aware applications also compound the poten-
tial scenarios that a tester must consider. Second, engineers
must devise control mechanisms to feed such inputs to the
application, which often implies interesting tradeoffs (e.g.,
utilizing the middleware is realistic and requires no addi-
tional infrastructure, but it adds propagation noise and non-
determinism). Third, contextual events must be handled
asynchronously, and such handling must address the pos-
sibility of multiple interfering contextual changes.

In this work we start addressing these challenges through
an approach that improves the context-awareness of an ex-
isting test suite. To achieve such improvement the technique
performs the following tasks: 1) it identifies key program
points where context information can effectively affect the
application’s behavior, 2) it generates potential variants for
each existing test case that explore the execution of differ-
ent context sequences, and 3) it attempts to dynamically di-
rect the application execution towards the generated context
sequences. Preliminary assessment of the approach shows
that it can significantly enhance an existing test suite and
outperform alternative approaches.

2 Motivating Example

Dey et al. define context as “any information that can be
used to characterize the situation of entities (e.g., whether a
person, place, or object) that are considered relevant to the
interaction between the user and an application...” [3]. Bun-
ningen further characterizes contextual data as continuously
changing, temporal, spatial, imperfect and uncertain [23],
capturing some of the unique difficulties faced by testers of
context-aware applications.

Consider for exampleTourApp, a context-aware applica-
tion that runs on the mobile devices of visitors attending an
exposition to notify them about demos of interest.TourApp
was originally distributed with the Context Toolkit [16] and
has become one of the canonical mobile context-aware ap-
plications to demonstrate context-aware middleware. Fig-
ure 1 illustrates the deployed infrastructure that supports
this application. Each exposition room is equipped with
a sensor and a widget (sensor’s wrapper that collects and
maintains its transient data). At the main entrance, visitors
are provided with a PDA runningTourApp and a tag (e.g.,
RFID) that serves to sense their location.

Visitors begin the tour at the registration booth. The
booth’s sensor detects the visitor’s tag, and this information
is packaged and sent to the visitor’s PDA by aregistration
widget. A registration form pops up on the visitor’s PDA,
where they provide contact information and key words of
interest. After the registration is completed, visitors sub-
scribe to the services provided by the exhibition such as

PDA

Communication
Middleware

Demo
Widget 1

Registration
Widget

Sensor Sensor

Registration
Booth

Room 1

Interpreter
Widget

TourApp

Remote data
connection

Service …

Visitor

Application

End
Widget

Sensor

Exit Room

Demo
Widget 2

Sensor

Room 2

Service

Tag

Figure 1. Deployed infrastructure for TourApp

Table 1. TourApp Contextual Information
Context Type Context Value Action
Location Registration Pop-Up form
Location Demo Room 1 Display Talk Information
...
Power Low Minimize Updates
...
Time Talk begins Display Announcement
...

alerts on presentations or on visitors with similar interests
found in the vicinity. When a visitor enters a room, the
room’s sensor detects the visitor’s tag, and the correspond-
ing demo widget notifies the visitor’s PDA about the new
location. Within the PDA, the communication middleware
processes the data and updates the PDA display with the
current demo information (e.g., title, duration, current demo
slide, a list of colleagues in the room).

Other contextual inputs can affect the application behav-
ior as well. For example, when the PDA’s power becomes
low, TourApp will only display the demo title. There is also
a demo widget that will provide aservice to query visitors’
interest level on the current demo and notify their PDAs to
dynamically adjust future recommendations. A visitor can
also explicitly query theInterpreter widget about the de-
mos available based on the visitor’s interest, interest level
for each demo and location. Visitors finish their tour when
they reach the exit room, at which point their services are
terminated. A sample of the contexts, context values, and
actions included in this application are presented in Table1.

As previously mentioned, middleware plays a large role
in this type of application to ease the tasks of accessing and
processing contextual information. Examples of support-
ing middleware infrastructure include the Context Toolkit
[16], Context-Phone [18], CARISMA [1], and Gaia [15].
The underlying architecture supportingTourApp based on
the Context Toolkit and depicted in Figure 2 makes the re-
liance on such middleware quite evident.

A visitor subscribes throughTourApp to the services pro-
vided by a group of widgets by callingsubscribeTo, which

main

startCommunication subscribeTo

startListenSocket

acceptData startThread

run

notifySubscriber

contextHandler

findHandler

updateVisitedDemo

Communication
Middleware

Application

run...

recordInterestLevel

sendRequest

loadConfig

addHandler

showInterestLevelWin

notifySubscriber

contextHandler...

...

TourApp application

updatePowerMeter

Widget

Sensor

Context Information

Context Information for

a specific subscriber
Subscription

information

refreshPM

Function Call
Remote Data Connection

Get handler

from vector Add context

handler in vector

A thread is started when

context data is received

initPMConn disconnectPM

Figure 2. Simplified call graph of TourApp

then records within the middleware a reference to the proper
application context handler and sends the subscription in-
formation to the corresponding widget. When context in-
formation reaches a subscriber, the middleware launches
a thread that callsnotifySubscriber, which propagates the
context data to the proper application context handler.

Observe that there are several attributes distinguishing
the context data and necessary infrastructure in this example
from more traditional applications and their inputs:

• The behavior of the application depends on streaming
and unpredictable contextual inputs such as location
and neighbors, whose complexity is abstracted by the
middleware.

• Location sensors may feed data to the application at
any time and at different rates. Furthermore, sensors
may propagate overlapping, incomplete, and contra-
dictory data sets through the system [5].

• Event handlers are likely to operate asynchronously to
process the context changes. This often requires multi-
threaded support, and may lead to context interactions
and races within the same context handler, or between
different context handlers.

These observations have strong implications for testing.
First, it is challenging to anticipate all the relevant con-
text changes and when they could impact the behavior of
this type of application. Program-derived testing models
such as those based on control- or data-flow must be ex-
tended to consider contextual data as well as the concur-
rency issues introduced by pervasive multi-threaded context
handlers. Second, if we are to feed continuous data to a

context-aware application, thenwe must be able to exercise
more control on the executing application.

3 Incorporating Context-Awareness

Given a programP and its test suiteT , our approach en-
hancesT by manipulatingP during the execution of each
test caset ∈ T with the objective of forcing the explo-
ration of potentially interesting contextual scenarios. The
underlying assumption is that, given the proper manipula-
tion mechanisms, the potential ofT to explore much more
of P ’s behavior can be increased.

The approach’s novelty consists in the integrated appli-
cation of existing analysis techniques to identify and control
what contextual scenarios to explore. We now present the
approach in terms of its supporting infrastructure depicted
in Figure 3. The infrastructure consists of the following
components:

• Context-aware program points (capps) Identifier .
This component aims to identify program points where
context changes may affect the application’s behavior.

• Context Driver Generator. This component forms
potential context interleavings that may be of value to
fulfill a context-coverage criterion.

• Program Instrumentor . This component incorpo-
rates a scheduler andcapp controllers into the appli-
cation to enable direct context manipulation.

• Context Manipulator . This component attempts to
expose the application to the enumerated context inter-
leavings through the manipulation of the scheduler.

Context
Driver

Generator

Program
Instrumentor

P’

D

Annotated
Graph

Data Flow

Context
Manipulator

Capps
Identifier

Feedback on Coverage

Test Suite
(T)

Context-aware
Program (P)

Context
Adequacy
Criteria

Achieved Coverage
&

Test Case Extension

Figure 3. Overview of our testing approach

3.1 Capps Identifier

The identifier aims at recognizing program locations
where context changes may impact the application’s behav-
ior. It requires two inputs: the application source and a list
of signatures for the context-handling methods defined by
the middleware API. Sample code of theTourApp appli-
cation and its supporting middleware is presented in Figure
4, which corresponds to parts of the call graph presented in
Figure 2; the middleware code is included for completeness
purposes but is not subject to our analysis. In this exam-
ple, the application must implement theSubscriber inter-
face, which has a method whose signature isSubscriber:
void contextHandler(ContextData).

With these inputs in place we proceed to identify two
types ofcapps: 1) statements dependent on reading or writ-
ing context data object fields, and 2) statements reading
or writing interfered objects, that is, objects shared with
other context-handling threads. Identifying this latter kind
of capp is important because the majority of context-aware
applications run in a multi-threaded environment to han-
dle asynchronous context change events [16, 19, 25]. We
use two known program analysis techniques to recognize
thecapps: side-effect analysis andescape analysis. These
techniques have been implemented, with some variations,
in freely available toolkits. Our infrastructure utilizestwo
of those toolkits: Soot [13] and Indus [6] .

To identify capps corresponding to statements that de-
pend on reading or writing context data objects, we utilize
side-effect analysis; more specifically we have instantiated
the approach given by Le et al. [7] to just focus on the con-
textual data types. For our example, this results in all the
statements that may be affected byctxData, that is, 12, 14,
21, 27, and 29 (capps #1, 2, 3, 5, 6 respectively).

To identify capps originating from multithreading con-
text handlers, we utilizeescape analysis starting from each
context handler. We concentrate on detectingglobally
shared object variables that can be accessed while execut-
ing any other event handler thread in the program by instan-
tiating the approach given by Ranganath et al. [12]. For
TourApp, this process results in the following statements

11

12

16
13 19

20

21

22

23

Exit

Exit

11

14

16
15 26

27

32

Exit

Exit

28

31

29

30

Handler CFG
type="power"

Handler CFG
type="demo"

capp1

capp
2

capp3

capp4

capp5

capp6

Figure 5. CFGs of two types context handlers

identified ascapps: 21, 22 (capp #4), 27, and 29.1

The outcome of this process is a set of interprocedural
control flow graphs where certain nodes are annotated with
capps ids. Figure 5 illustrates the CFGs for the two types
of context handlers in the example application, power and
demo (room location). The gray nodes in the graph are
capps, which are generally annotated with uniqueids (the
exception being when they are part of a synchronized sec-
tion of code, in which case they receive the sameid).

This information on its own can be valuable for testers
to better understand when context changes may matter for
the program, which might not be intuitive in the presence of
complex flows and interference between context handlers.
Still, the number ofcapps can be large, and the potential
interleavings of context changes worth testing could be even
larger. In addition, testers still lack support to exercisethe
context changes considered worthy. The next components
start addressing these issues.

3.2 Context Driver Generator

Once thecapps have been identified, we would like to
explore the context scenarios that are likely to generate dif-
ferent program behavior, and hence are worth exploring.
This exploration consists of traversing the CFGs to generate
a sequence of nodes that we calldrivers since they will be
used to drive the test execution at a later phase.

Drivers can be generated through the traversal of a sin-
gle CFG. For example, in Figure 5, a traversal of the
CFG corresponding topower could generate the driver
{capp1, capp3, capp4}. More interestingly, however, are
the traversals across multiple CFGs, because they explore

1We point the reader interested in these techniques to the work of Le
et al. and Ranganath et al. [7, 12] and for their detailed application to our
example refer to our technical report [24].

class MySubscriber implements Subscriber{
 public static Integer power = new Integer(100); /* global power value, initially 100% */
 /* some other variable declaration here */

 public static void main(String[] args){
 CommMid cm = new CommMid();
 Widget widget = cm.loadConfig(); /* load info of remote widgets */

cm.startCommunication(); /* call startListenSocket() in cm */
cm.subscribeTo(this, widget); /* widget contains address information */

 }
 public void contextHandler (ContextData ctxData){
 System.out.println("new context data is received");
 if(ctxData.type.equals("power")) /* read ctxData.type */

updatePowerMeter(ctxData);
 else if(ctxData.type.equals("demo")) /* read ctxData.type */

updateVisitDemo(ctxData);
 System.out.println("context has been handled");
 }
 public void updatePowerMeter(ContextData ctxData){
 PowerMeter pm = new PowerMeter(); /* the object related to the power meter */
 pm.initPMConn(); /* initialize power meter connection before update display*/
 MySubscriber.power = new Integer(ctxData.value); /* read ctxData.value */
 pm.refreshPM(MySubscriber.power); /* power escaped */
 pm.disconnectPM(); /* release power meter connection */
 }
 public void updateVisitDemo(ContextData ctxData){
 System.out.println("You are in demo room");
 if(ctxData.value.equals("demo1") && MySubscriber.power.intValue()>30)

System.out.println("A very long description of demo1:......");
 else if(ctxData.value.equals("demo2") && MySubscriber.power.intValue()>30)

System.out.println("A very long description of demo2:......");
 showInterestLevelWin(); /* ask for visitor interest level on demo */
 recordInterestLevel(); /* record visitor interest on device */
 }

...... /* some other methods definition here */
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

capp #1

capp #2

capp #3
capp #4

capp #5

capp #6

interface Subscriber { /* interface for client application */
 public void contextHandler(ContextData ctxData);
}
class CommMid {
 private Vector v = new Vector(); /* vector used to store subscriber */
 public void subscribeTo(Subscriber sub, Widget widget){

addHandler(sub); /* add sub to vector v */
 sendRequest(sub, widget); /* send subscription to widget */
 }
 public void startListenSocket(){
 ServerSocket s=new ServerSocket(PORT);
 while(true){

Socket dataSocket = s.accept(); /* receive context info */
DataThread dt = new DataThread(dataSocket, this);
dt.start(); /* start a thread to process new context */

 }
 public void notifySubscriber(ContextData ctxData){
 Enumeration e = v.elements(); /* find handlers */
 while (e.hasMoreElements()) { /* call contextHandler in app */

((Subscriber)e.nextElement()).contextHandler(ctxData);
 }
 }

...... /* some other methods definition here*/
}
class DataThread extends Thread{
 public Socket s;
 public CommMid cm;
 public DataThread(Socket s, CommMid cm){
 this.s=s;
 this.cm = cm;
 }
 public void run() { /* ContextData contains "type" and "value" */

..... /* retrieve context data from socket (s) here */
 ContextData ctxData = new ContextData();

...... /* pack received data into ctxData here*/
cm.notifySubscriber(ctxData); } }

Application Communication Middleware

Figure 4. Simplified application adapted from TourApp

scenarios that include switches between context handlers,
which are more likely to exercise potential interactions be-
tween contextual data. For example, the dotted lines in Fig-
ure 5 describe a scenario that starts with thepower context
handler, switches to thedemo handler, returns to thepower
handler, and returns again back to thedemo handler. Drivers
{capp1, capp2}, {capp5, capp3}, and{capp4, capp6} are
interesting because they may expose faults such as the
PDA’s display not being adjusted according to the power
level. These faults are associated with the improper syn-
chronization of context handlers or the poor management
of conflicting data reported by the sensors.

Even for programs with a few context handlers and
capps, the number of interesting drivers grows quickly.
Hence, we utilize a constraining mechanism that can be
set to generate drivers that fulfill various coverage ade-
quacy criterion. We explore three such criteria in this
work (Taylor et al. and Tse et al. propose other potential
ones [20, 22]). The baseline criterion we explore isCA:
Context-Adequacy, which requires the existence of a set
of drivers that covers at least onecapp in each type of con-
text handler. This criterion is valuable because it aims to
expose all types of contexts under execution. In our exam-
ple, having a set of drivers exercising thepower CFG and
thedemo CFG would make the suiteCA-adequate.

The second criterion we explore,StoC-k: Switch-To-
Context-Adequacy, requires the existence of drivers that
cover all possible combinations ofk switches between han-
dlers, where each switch can occur at anycapp. This cri-
terion aims to expose faults that may appear through the
interactions between context handlers. In our example,
a StoC-1 adequate set of drivers isD={{capp1, capp2},
{capp5, capp3},{capp3, capp3}, {capp5, capp5}} (with
these last two drivers corresponding to a context handler
being preempted by one of the same type before ending its
execution).

The third criterion,StoC-k-FromCapp: Switch-With-
Preempted-Capp-Adequacy, requires the existence of
drivers that cover all possible combinations ofk switches
between handlers, and that each switch is exercised at each
capp in the preempted context handler. This criterion not
only exposes the interactions between context handlers, but
also aims to explore where such interactions take place.
In our example, the demo handler could be preempted by
the power handler atcapps# 1, 3, and 4, while the power
handler could be preempted by the demo handler atcapps#
2, 5, and 6, AStoC-1-FromCapp adequate set of drivers
for our example isD={{capp1, capp2}, {capp3, capp2},
{capp4, capp5}; {capp2, capp3}, {capp5, capp1},
{capp6, capp3}, {capp3, capp3}, {capp5, capp5}}.

Algorithm 1 StoC-k-FromCapp-DGen(ch CFGs[], k)

Input: ch CFGs[]: family of interprocedural CFGs (rooted in
context handlers) annotated withcapp id; k: number of switches;
Output: D: set ofcapps drivers.

1: S = genAllkSwitchSequence(k, ch CFGs)
2: v[1..k] = storeAllCappsInV ectors(k, ch CFGs)
3: while hasUncoveredSwitchSeq(S) or

hasUnmarkedCapps(v[1..k]) do
4: driver = { }
5: curV Id = 1
6: curSwitchSeq = nextUncoveredSwitchSeq(S)
7: if curSwitchSeq is NULL then
8: curSwitchSeq = getAnySwitchSeq(S)
9: end if

10: curCFG = nextCFG(init, curSwitchSeq)
11: curCapp = nextUnmrkdCapp(curCFG, v[curV Id])
12: repeat
13: if curCapp notNULL then
14: driver = driver + curCapp

15: if curV Id <= k then
16: markCappInV (curCapp, v[curV Id])
17: end if
18: curV Id++
19: curCFG=nextCFG(curCFG, curSwitchSeq)
20: curCapp=nextUnmrkdCapp(curCFG,v[curV Id])
21: else
22: curCapp = getAnyCapp(curCFG)
23: end if
24: until curSwitchSeq is satisfied
25: if markedNewCappFrom(driver,v[1..k]) or

coveredNewSwitchSeq(driver, S) then
26: D.add(driver)
27: end if
28: if coveredNewSwitchSeq(driver, S) then
29: S.markCovered(curSwitchSeq)
30: end if
31: end while

Algorithm 1 illustrates how theStoC-k-FromCapp driver
generator producesD.2 Statement 1 generates the setS of
all possible context handler switches required by the cho-
sen criterion. Statement 2 initializesk vectorsv[1..k] to
keep track of thecapps preempted by each switch. The
rest of the algorithm attempts to generate drivers that exer-
cise the sequences inS and thecapps in v[1..k]; whenever
there are uncovered switch sequences or unmarkedcapps,
a driver is generated (statements 3 to 31). In statements 4
to 11, the algorithm initializes the driver, selects a target se-
quence fromS calledcurSwitchSeq, gets the CFG of the
first handler incurSwitchSeq, and selects acapp in the
CFG. In statements 12 to 24, a driver is generated according
to curSwitchSeq by repeatedly concatenatingcurCapp in

2Due to space constrains we do not discuss how this algorithm deals
with several exceptional cases, and do not present the algorithm for StoC-
k which is a simpler version of Algorithm 1.

curCFG to driver. When feasible, the algorithm assigns
an unmarkedcapp to curCapp. Once thecurSwitchSeq is
satisfied, statements 25 to 30 check whether the generated
driver is unique (either because it covers a new sequence in
which case the sequence is marked as covered, or because
it covers an existing sequence with the handler preemption
occurring at distinctcapps) and if is, it gets added into the
set of driversD.

The outcome of this phase is a set of driversD that, if
executed, would achieve a desired context-aware coverage
adequacy criterion. Note that the proposed drivers represent
one in a set of many potential sequences of context changes
that may also meet that adequacy criterion. Furthermore,
it may not be feasible to execute a generated driver due to
program constrains (e.g., some handlers may be completely
synchronized) or test suite limitations (e.g., the original test
suite may lack tests that exercise certain contexts). The gen-
erated drivers are just guides used by the following phases
to explore particular program executions.

3.3 Program Instrumentor

The instrumentor takesP and adds to it two new meth-
ods,enterDScheduler andexitDScheduler, and an invoca-
tion to each of those methods before and after eachcapp,
to produceP ′. Pseudocode 1 illustrates an example of the
instrumentation. Before eachcapp, enterDScheduler will
be invoked to determine whether it is appropriate (accord-
ing to a targetD) to execute the nextcapp. If it is not, then
the current thread of execution corresponding to a context
handler will wait until its turn comes. Otherwise, thecapp
will be executed andexitDScheduler will mark thecapp as
“executed” and notify the waiting handlers.

Pseudocode 1: Instrumentation pseudocode oncapps
/* Added by Instrumentor */
/* Ask scheduler if next capp can be executed */
pos = enterDScheduler(threadId, cappId, D[i]);
/* Original statement */
capp #1;
/* Added by Instrumentor */
exitDScheduler(pos); /*notify other capps to execute */

3.4 Context Manipulator

The manipulator takesP ′, D andT as inputs, and runs
each test caset onP ′ while attempting to drivet towards the
capps corresponding to the scenarios of interest contained
in D. This is expected to result in the execution of each orig-
inal test case under multiple schedules that expose multiple
contextual scenarios.

The manipulator consists of three methods described by
Algorithms 2, 3, and 4. Algorithm 2, which invokes Algo-
rithm 3, forces the current context handler thread towait()
until the execution of the previouscapps specified in the

driver are completed (withcapps not in the driver being ig-
nored). Since it is possible for a driver to contain unreach-
able context interleavings, the manipulator discards sucha
driver when a parameterizabletimeout is reached. (Section
4 provides further details about how to adjust this setting
within our infrastructure.) Algorithm 3 checks whether a
capp can be executed by inspecting whether it is specified
in the driver, and if it is, by checking that all previouscapps
in thedriver have been executed. In Algorithm 4, the “exe-
cuted” flag of the current executedcapp is set to true and the
other handlers are notified so that they can check whether it
is their turn to continue with the execution.

The act of discarding drivers (due to unreachability or
any other reason) may stop the coverage criterion from be-
ing satisfied. The manipulator then reports the unreachable
drivers and coverage information (e.g., the switches cur-
rently not covered) to re-launch the context driver generator
with a refined set of targets. The generator then uses this
feedback to produce an alternativeD aiming to address that
potential weakness. The newD can then be re-scheduled
by the manipulator, leading to an iterative process that stops
when a specified condition is met (e.g., coverage percentage
is reached, or testing resources are exhausted).

Algorithm 2 [sync]enterScheduler(tID,cappID,D[i])

Input: tID: ID of current thread;cappID: ID of currentcapp;
D[i]: a driver;
Output: Position of (tID,cappID) in D[i].

1: pos = checkScheduler(tID, cappID,D[i])
2: while pos == -1 do
3: wait(timeout)
4: if timeout occursthen
5: Log “timeout” for feedback to generator
6: exit(); /* exit the program */
7: end if
8: pos = checkScheduler(tID, cappID,D[i])
9: end while

10: returnpos

Algorithm 3 [sync]checkScheduler(tID,cappID,D[i])

Input: tID: ID of current thread;cappID: ID of currentcapp in
driverD[i].
Output: Position of (tID,cappID) in D[i]. If the position is pos-
itive or -2, it is time for the currentcapp to execute.

1: pos = locate the position of (tID,cappID) in D[i]
2: if (tID,cappID) not inD[i] then
3: return -2 /*capp will be skipped */
4: end if
5: if all capps beforepos are executedthen
6: returnpos

7: else
8: return -1 /*capp will wait */
9: end if

Algorithm 4 [sync]exitScheduler(pos)

Input: pos: Position of (tID,cappID) in driver D[i].

1: setExecution(pos, true) /* mark an “executed”capp */
2: notifyAll()

4 Preliminary Assessment

In this section we perform an assessment of the proposed
approach in terms of its applicability and its potential to
enhance an existing test suite.

4.1 Study Design and Settings

We utilize TourApp, described previously in the paper,
as our object of study [16].TourApp has 11KLoc of Java
(about 90% of the application being the middleware). We
create test cases derived from scenarios included in the Con-
text Toolkit Installation Guide to serve as the baseline val-
idation. We then extended the test suite with scenarios
that include changes of location (registration booth, 2 demo
rooms, exit room), visitor’s interests (demos, applications,
virtual environment) and interest levels (low, middle, high).
We developed a total of 36 automated test cases, which take
approximately 10 minutes to execute on a 1.6GHz Pentium
CPU and 1GB RAM running Java 1.4 (the same platform
being used for the whole assessment).

We created an instrumented version ofTourApp that we
call manipulatedTourApp, which includes probes to manip-
ulate thecapps and our context manipulator algorithms. We
set our generator to provide drivers aiming to satisfy four
context criteria: CA, StoC-1, StoC-2, StoC-1-FromCapp,
andStoC-2-FromCapp. We set thetimeout, used to stop the
manipulator when pursuing a given driver, to 30 seconds,
which is the approximate maximum time it took for any test
case to execute.

We also created two additional versions ofTourApp
called delayShortTourApp and delayLongTourApp. These
versions were instrumented to implement an approach sim-
ilar to that performed by theContest tool [4], where a
random delay is introduced before shared variables and
synchronizing-type structures to add “noise” to the sched-
uler so that alternative interleavings are explored. The im-
plementation of this approach consisted in insertingsleep()
at the beginning of each context handler inTourApp. The
insertedsleep() calls randomly choose delays ranging from
1 to 3 seconds fordelayShortTourApp, and from 1 to 10 sec-
onds fordelayLongTourApp (the delay values being derived
empirically by trial and error until further variations were
not observed).

Last, we identified four contextual scenarios that could
causeTourApp to fail. All failures were related to event se-

quences propagated through the application in the wrong or-
der, due to either lack of proper synchronization primitives
or missing handler exceptions. For example, if the visitor
is detected by a sensor in a demo room before completing
the registration, the demo sensor would trigger a set of mes-
sages that would not match the visitor’s interest unless the
application was ready to deal with such an exception. We
used these scenarios to further assess the approaches.

After preparing the test suite and the various versions of
TourApp, we performed the following steps:
1. For manipulatedTourApp, each test case in the original
test suite was executed onmanipulatedTourApp under the
guidance of each relevant generated driver. We consider
a driver to be relevant to a test case when all the types of
contexts in the driver are exercised by the original test case.
For instance, if a test case does not provide coverage for the
context of typepower, then it is irrelevant for any driver that
includespower. We repeat this process for each coverage
criterion while calculating the execution time under each
one of them, keeping track of the number of drivers that
could not be completed by the manipulator.
2. For originalTourApp (unmodifiedTourApp with origi-
nal test suite),delayShortTourApp, anddelayLongTourApp,
each application was executed repeatedly for as long as it
took for themanipulatedTourApp to complete execution un-
der the same adequacy criterion. By setting the same upper
time bound, we can effectively compare performance across
approaches.
3. We compared the contextual coverage achieved and the
exposed contextual scenarios that led to failures byma-
nipulatedTourApp versus those fromTourApp, delayShort-
TourApp, anddelayLongTourApp.

4.2 Results and Analysis

Table 2 summarizes the number of drivers and execution
times ofmanipulatedTourApp under the coverage criteria.
As expected, execution time increases with more demand-
ing context coverage criteria as more context scenarios are
required. It is interesting to note that even for theCA cri-
terion, manipulatedTourApp took over three times as long
(34m versus 10m) as the original test suite , which was also
CA-adequate. Still, there are many techniques that we have
not yet explored that could improve the efficiency of the
current prototype.

Table 3 provides evidence of the large number of gen-
erated drivers that were not exposable by the application
within the set timeouts, which resulted in the manipulator
wasting exploration of those spaces. Improvements in the
generation ofD, such as through the use of flow informa-
tion, would reduce the number of such drivers being gen-
erated, leading to a shorter manipulation time to satisfy the
coverage criterion.

Table 2. Timings with manipulatedTourApp
Criteria Generated Execution Time

Drivers (minutes)

CA 4 34
StoC-1 16 168
StoC-2 28 295
StoC-1-FromCapp 46 546
StoC-2-FromCapp 57 670

Table 3. Drivers in manipulatedTourApp
CA StoC-1 StoC-2 StoC-1- StoC-2-

FromCapp FromCapp

Exposed 4 15 25 45 51
Timed out 0 1 3 1 6

More important than efficiency, however, is whether the
approach is able to expose valuable contextual scenarios.
Table 4 provides the coverage achieved by each approach in
the time taken bymanipulatedTourApp to complete execu-
tion when using the same criterion. Table 4 also reports on
the percentage of failure-leading contextual scenarios ex-
posed through each approach.

We note that all approaches achieve 100%CA coverage.
However, the coverage percentage decreases as we move
to more exhaustive coverage criteria.OriginalTourApp is
the one that declines quickest, providing less than 20% cov-
erage at theStoC-2 level. The approaches utilizing delay
provide approximately 31% more coverage on average in
StoC-1 thanoriginalTourApp, but the difference is reduced
to 20% atStoC-2. Note also the variability in the per-
formance ofdelayShortTourApp and delayLongTourApp,
which shows the sensitivity of this approach to the cho-
sen delays.ManipulatedTourApp performs noticeably bet-
ter than the rest, especially as the target coverage criterion
becomes more powerful. The exposure to contextual sce-
narios leading to failure also shows similar patterns, with
manipulatedTourApp detecting all the problematic scenar-
ios at theStoC-2-FromCapp level, while the rest of tech-
niques cannot expose more than half of the them.

5 Related Work

The most widely used method for the validation of
context-aware applications is simulation [17]. These simu-
lation activities are often supported by various frameworks.
For example, Satoh used an agent-based framework to sim-
ulate physical mobility to support the exposure of specific
trajectories that might impact an application executing in
a mobile device [17]. Some aspects relevant to context-
aware applications have also received attention within the
verification community. For example, Mobile UNITY uses
formal specification and proof logic to enable the modeling

Table 4. Contextual Coverage (Cov.) and Fault Detection (F. D) in %
CA StoC-1 StoC-2 StoC-1-FromCapp StoC-2-FromCapp

Cov. Cov.
Cov. F.D. Cov. F.D. Cov. F.D. Switches Capps F.D. Switches Capps F.D.

originalTourApp 100 0 38 0 18 0 38 7 0 18 7 0
delayShortTourApp 100 25 63 25 29 25 81 10 50 46 10 50
delayLongTourApp 100 25 75 25 46 25 75 10 50 43 7 25
manipulatedTourApp 100 0 94 75 89 75 94 100 75 88 93 100

and verification of movement, transient data sharing, and
transient action synchronization in mobile computing [14].

The appearance of testing approaches for context-aware
applications is more recent. Tse et al. applied a technique
for test case generation based on metamorphic testing to a
context-aware application [22]. The technique requires the
definition of metamorphic properties that serve as oracles.
If any tests’ outputs violate a specific metamorphic prop-
erty, then it is presumed that the program must contain a
fault. More recently, the same group developed an initial
suite of data-flow type coverage criteria that considers some
contextual events and their associated actions [9]. These
efforts are parallel to ours, primarily targeting the defini-
tion and assessment of an initial context-aware test suite,
without considering the problem of automatically identify-
ing capps or the manipulation of the program execution to
expose interesting conflicting scenarios.

Our approach is also related to a wide spectrum of vali-
dation techniques for concurrent systems (e.g., [2, 4, 8, 20])
aiming at the detection of concurrency faults, in particular
execution sequences and schedules. In general, these tech-
niques can be classified in two groups: those that sample
over non-deterministic runs, and those that attempt to cre-
ate specific deterministic runs. The first class of solutions
involves executing the program repeatedly over the same
inputs in the hope of exercising a reasonable percentage of
the possible synchronization events. TheConTest tool, for
example, inserts random perturbations (e.g.,sleep()) around
concurrency related structures in the program to induce in-
terleavings of threads that were not manifested with the
original test suite [4]. This approach is relatively inexpen-
sive to put in place, but it cannot guarantee that even a rea-
sonable subset of the interesting scenarios are exercised.

The second class of solutions (e.g., [2, 20]) determinis-
tically replays a chosen set of synchronization sequences.
This approach generally requires specific tool support, and
its effectiveness is dependent on the tester’s selection ofse-
quences. Our approach belongs to this latter group, which
aims to provide a somewhat deterministic program execu-
tion. However, our focus is on the specific execution model
of context-aware programs as defined by thecapps, and on
how these applications react to arbitraryexternal context
changes, instead of dealing with more standard concurrency

primitives such as semaphores and queuing mechanisms or
synchronization constructs, which typically govern behav-
ior internally. Furthermore, our approach provides inte-
grated support for the automatic enhancement of an existing
test suite, which requires minimal tester participation.

Our approach also shares elements with model checkers,
which systematically explore the scheduling state space of
concurrent systems. Both approaches statically analyze the
source code to identify program points of interest and then
force the execution through some sequence of points to ex-
hibit potential interesting behavior. Our approach, however,
trades the soundness of model checkers to verify a set of
properties, for the preciseness of testing and the practicality
of utilizing an existing test suite to incorporate potentially
interesting scheduling variations (as opposed to generating
the necessary environment to check a system module [21].)

Last, the initial phase of our approach is also related to
several efforts aiming at creating models from which use-
ful test cases can be derived. For example, Memon’s tech-
niques for event-based testing targetingGUI event handlers
utilize event flow graphs to explore the allowable event se-
quences in the event-based program [11]. However, the rest
of our approach to manipulate the execution toward the con-
textual scenarios of interest requires mechanisms that are
not needed for the more constrained domain of GUI events.

6 Conclusion and Future Work

We have presented an approach to enhance the test suites
of context-aware applications. The approach is novel in that
it provides an integrated solution to identify when context
changes may be relevant, and a control mechanism to guide
the execution of given tests into potentially interesting con-
textual scenarios as defined by a coverage criterion that is
context-cognizant. Preliminary assessment of the approach
revealed that it can effectively enhance an existing test suite,
providing exposure to a larger set of interesting and valuable
context scenarios than alternative testing practices.

We are in the process of addressing several limitations
of the approach. First, we are further integrating pieces of
the supporting infrastructure and improving their efficiency.
For example, we are exploring a closer integration of the
driver generator and the manipulator so that they both op-
erate online. We expect that this will result in a reduction

of the number of infeasible drivers generated. We are also
revisiting the selected static analysis tools, which are quick
and somewhat scalable but quite conservative and thus lead
to the identification of extracapps or the generation of in-
feasible drivers as well. Second, we are incorporating ad-
ditional adequacy criteria. Although our focus has been
primarily on the adequacy of the generated drivers, we are
starting to explore a range of criteria that emphasize the as-
sociation between elements defined in the middleware and
used by the application. Third, we are aware that we need to
provide a more comprehensive assessment of the approach.
TourApp is just a first step, and we must investigate how our
approach handles the complexities associated with larger
applications that consider other contextual events such as
connectivity or proximity. Last, we are extending our ap-
proach to consider not just the types and values of context
provided by a given test suite, but also to include infor-
mation from other sources such as the simulation runs that
are often used to validate context-aware application models,
and that can also serve to provide additional values and to
compare the outcomes of the generated test cases.

Acknowledgments

This work was supported in part by NSF CAREER
Award 0347518, by the ARO-DURIP award W911NF-04-
1-0104, and by the EPSRC under grants EP/D077273/1 and
EP/E006191/1. D. Rosenblum holds a Wolfson Research
Merit Award from the Royal Society. We are thankful to A.
Dey for providing the Context Toolkit, and to the research
groups making Soot and Indus publicly available.

References

[1] L. Capra, W. Emmerich, and C. Mascolo. Carisma: Context-
aware reflective middleware system for mobile applications.
IEEE Transactions on Software Engineering, 29(10):929 –
945, Oct 2003.

[2] R. H. Carver and K.-C. Tai. Replay and testing for concur-
rent programs.IEEE Software, 8(2):66–74, Mar 1991.

[3] A. K. Dey and G. D. Abowd. Towards a better understanding
of context and context-awareness. InWorkshop on the What,
Who, Where, When and How of Context-Awareness, pages
304 – 307, Jun 2000.

[4] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Mul-
tithreaded java program test generation.IBM Systems Jour-
nal, 41(1):111–125, 2002.

[5] K. Henricksen and J. Indulska. Modelling and using im-
perfect context information. InPervasive Computing and
Comm. Workshops, pages 33 – 37, Sep 2004.

[6] S. Lab. Indus. http://indus.projects.cis.ksu.edu/.
[7] A. Le, O. Lhoták, and L. Hendren. Using inter-procedural

side-effect information in jit optimizations. InConference
on Compiler Construction, volume 3443, pages 287–304,
Apr. 2005.

[8] B. Long, D. Hoffman, and P. Strooper. Tool support for
testing concurrent java components.IEEE Transactions on
Software Engineering, 29(6):555–566, Jun 2003.

[9] H. Lu, W. Chan, and T. Tse. Testing context-aware
middleware-centric programs: a data flow approach and a
rfid-based experimentation. InSymposium on Foundations
of Software Engineering, pages 242 – 252, Nov 2006.

[10] C. Mascolo, L. Capra, and W. Emmerich. Middleware for
mobile computing. InInternational Conference of Network-
ing, pages 20–58, May 2002.

[11] A. M. Memon, I. Banerjee, and A. Nagarajan. Gui ripping:
Reverse engineering of graphical user interfaces for testing.
In Working Conference on Reverse Engineering, pages 260
– 269, Nov 2003.

[12] V. Ranganath and J. Hatcliff. Pruning interference andready
dependence for slicing concurrent java programs. InConfer-
ence on Compiler Construction, pages 39–56, Mar 2004.

[13] S. research group. Soot: a java optimization framework.
http://www.sable.mcgill.ca/soot/.

[14] G.-C. Roman, P. J. McCann, and J. Y. Plun. Mobile
unity: Reasoning and specification in mobile computing.
ACM Transactions on Software Engineering Methodologies,
6(3):250 – 282, Jul 1997.

[15] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, and K. Nahrstedt. Gaia: a middleware platform
for active spaces.IEEE Mobile Computing and Communi-
cations, 6(4):65 – 67, Oct 2002.

[16] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit:
aiding the development of context-enabled applications. In
Conference on Human Factors in Computing Systems, pages
434 – 441, May 1999.

[17] I. Satoh. A testing framework for mobile computing
software. IEEE Transactions on Software Engineering,
29(12):1112–1121, Dec 2003.

[18] A. Schmidt, T. Stuhr, and H.-W. Gellersen. Context-
phonebook - extending mobile phone applications with con-
text. InMobile HCI Workshop, Sept 2001.

[19] T. Sivaharan, G. Blair, and G. Coulson. Green: A config-
urable and re-configurable publish-subscribe middleware for
pervasive computing. InSymposium on Distributed Objects
and Applications, pages 732–749, Oct 2005.

[20] R. N. Taylor, D. L. Levine, and C. D. Kelly. Structural test-
ing of concurrent programs.IEEE Transactions on Software
Engineering, 18(3):206–215, Mar 1992.

[21] O. Tkachuk, M. Dwyer, and C. Pasareanu. Automated envi-
ronment generation for software model checking. InAuto-
mated Software Engineering, pages 116 – 129, Oct 2003.

[22] T. Tse, S. Yau, W. Chan, H. Lu, and T. Chen. Testing
context-sensitive middleware-based software applications.
In International Computer Software and Applications Con-
ference, pages 458–465, Sept 2004.

[23] A. H. van Bunningen, L. Feng, and P. M. Apers. Context for
ubiquitous data management. InWorkshop on Ubiquitous
Data Management, pages 17 – 24, Oct 2005.

[24] Z. Wang, S. Elbaum, and D. Rosenblum. Automated Gener-
ation of Context-Aware Tests. Technical Report TR-UNL-
CSE-2006-0012, University of Nebraska Lincoln, 2006.

[25] S. Yau, F. Karim, Y. Wang, B. Wang, and S. Gupta. Recon-
figurable context-sensitive middleware for pervasive com-
puting. IEEE Pervasive Computing, 1(3):33 – 40, Jul 2002.

