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Abstract: A new formalism is described for mod- 
elling neural networks by means of which a clear 
physical understanding of the network behaviour 
can be gained. In essence, the neural net is rep- 
resented by an equivalent network of matched 
filters which is then analysed by standard correla- 
tion techniques. The procedure is demonstrated 
on the synchronous Little-Hopfield network. It is 
shown how the ability of this network to discrimi- 
nate between stored binary, bipolar codes is opti- 
mised if the stored codes are chosen to be 
orthogonal. However, such a choice will not often 
be possible and so a new neural network architec- 
ture is proposed which enables the same discrimi- 
nation to be obtained for arbitrary stored codes. 
The most efficient convergence of the synchronous 
Little-Hopfield net is obtained when the neurons 
are connected to themselves with a weight equal 
to the number of stored codes. The processing 
gain is presented for this case. The paper goes on 
to show how this modelling technique can be 
extended to analyse the behaviour of both hard 
and soft neural threshold responses and a novel 
time-dependent threshold response is described. 

1 Introduction 

Theoretical modelling techniques based on spin glasses 
[1-5] have been found to be useful in assessing neural 
network parameters, such as memory capacity. However, 
these models do not easily give a clear physical insight 
into the neural network behaviour. In this paper we 
propose a new modelling formalism based on matched- 
filters which seems better suited to the physical processes 
occurring in the neural network and which allows a 
physically intuitive grasp to be gained of the neural 
network behaviour. This leads to a useful insight into the 
operation of auto-associative memories from a signal- 
processing engineering perspective. The matched-filter 
formalism is applied initially in this paper to model a 
pattern-recognition neural network architecture and is 
used later to design a novel associative memory. The 
pattern-recognition network which is considered requires 
distorted, partial or noisy patterns as input and ideally 
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outputs the stored binary, bipolar (+  1, - 1) pattern si 
(i = 1 to M) which most closely resembles the input. 

The neural net architecture chosen for discussion in 
this paper is the synchronously operated Little-Hopfield 
neural net [6, 71 (having threshold levels of zero), which 
has recently received much attention due to its suitability 
for electronic and optical implementation [8-121. The 
network is shown in Fig. 1, where an input unknown 

non-linear 
processing 

nnection 

feedback loop 

Fig. 1 
neural network 

Vector-matrix representation oJ a synchronous Little-Hopfeld 

pattern vector is first multiplied by a ‘memory’ matrix. 
Subsequently, each bit of the resultant vector is thresh- 
olded such that if it is positive it is set to + 1 and if nega- 
tive to - 1. These two operations are repeated until the 
circulating code converges onto a stable binary state, 
which is then output. The input vector consists of N 
pixels or bits, each of which may have any positive or 
negative analogue value. The symmetric matrix, T j ,  is 
formed from the known vector products as follows: 

7;, = 0 (2) 
where si, is the tth bit of the ith memorised vector and 
where M is the number of memorised vectors. In our 
numerical simulations we have found such a net to have 
several forms of behaviour: 

(a) convergence to the correct memorised state 
(b) convergence to an incorrect memorised state 
(c) nonconvergent oscillation between several states. 

This does not occur in the asynchronous Hopfield net in 
which only single bits are changed each time before 
thresholding, but in our formulation (similar to Little 
[SI) all bits can change their state on each iteration syn- 
chronously. 

Undesirable behaviour of types (b) and (c) are covered in 
Sections 2-5 and behaviour of type (d)  in Section 6. 

(d) convergence to a spurious nonmemorised state. 
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2 Correlating matched-filter formalism and 
its use for modelling the synchronous 
Little-Hopfield net 

In this Section we introduce a pattern recognition 
network of matched-filters similar to that used by Grant 
[13] and then show, in the following Section, that it is 
formally identical to the vector-matrix multiplication 
operation in the synchronous Little-Hopfield neural 
network. 

A pattern-recognition network must be able to recog- 
nise a signal when it is distorted or obscured by noise. A 
partial signal in which several bits are set to zero can be 
included by treating it as a special case of additive noise. 
Recognition requires the calculation of some closest- 
match criterion between the intput signal r and each of a 
set of known, stored template signals si ( i  = 1,2, to M). 

It is well known [I41 from maximum entropy argu- 
ments that the best way to recognise the existence of a 
known signal in the presence of unknown, additive noise 
is to perform the correlation between the input noisy 
signal r and the known signal s and to see if this is 
greater than some threshold: 

A 

r * si = 1 rrsir 
1 = 1  

(3) 

where the t subscript indicates the bit index. The digital 
signals are assumed, for simplicity, to be one-dimensional 
time (t) dependent as, for example, in an electronic imple- 
mentation of a neural network. However, it should be 
noted that all the reasoning is directly applicable to one- 
or two-dimensional signals such as may be found in an 
optical implementation [8-121 simply by replacing the 
dependent variable, time, by some spatially-dependent 
co-ordinate as done by Grant [13]. 

The correlating matched-filter model has two system 
components (Fig. 2) like the vector-matrix representation, 

AA1 lA' 

noise * s 2  (T-1)  

OUtDUt 

feedback loop 

Fig. 2 Correlating matched-filter representation of a pattern- 
recognition synchronous Little-Hopfield neural network 

but instead of representing the weighted interconnection 
net as a vector-matrix multiplier it is represented as a 
network of correlating matched-filters. When the input 
signal r is passed through a matched-filter with an 
impulse response of the signal complex conjugate s:(T 
- t) [which, since we assume real signals throughout, is 

equal to si(T - c), where T is the total duration of the 
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stored signal] the output gives a measure of the closeness 
of match of r and s i .  Hence, to distinguish which code 
vector si is closest to the input vector r, it is necessary to 
distribute the input code in equal measure to each of a 
bank of matched-filters as shown in Fig. 2 and to search 
for the largest correlation output. 

Only the magnitude of the central correlation spike is 
relevant for the degree of match between r and si since 
the central spike corresponds to an exact overlap of the 
memorised code and the intput code, assuming they are 
both of equal length and assuming that there is no uncer- 
tainty in the time of arrival. Thus, the correlation side- 
lobes and much of the associated noise can be gated out. 
In an optical implementation this function might be per- 
formed by one pinhole for each filter as done by Abu- 
Mostafa and Psaltis [IO]. Hence, a set of Dirac delta 
functions can be formed which are scaled by the magni- 
tudes of the correlation peaks in each channel, as shown 
in Fig. 2. These pass into a second bank of matched- 
filters which have the impulse responses of the memo- 
rised codes si(t). Each channel has, therefore, two filters 
having the impulse responses of the time reverse of a 
known code and of the known code itself. The output 
from each of the second filters is the corresponding code 
scaled by the magnitude of the correlation peak. The 
scaled output codes from each channel are summed 
together before being supplied to the nonlinear threshold. 
We show below that this interconnection network (Fig. 
2), without its thresholding feedback, is mathematically 
identical (i.e. isomorphic) to the vector-matrix multiplica- 
tion neural net (Fig. 1). 

3 Proof of the equivalence of the matched-filter 
network and the vector-matrix multiplication 
neural network 

The magnitude of the correlation peak following the 
initial ith-channel filter is given by the correlation 

r N  

(4) 

where the T subscripts indicate which bit of the code is 
being considered. The 1/M112 amplitude factor arises 
from the 1/M power loss which occurs when the signal is 
divided between the M channels. A delta function scaled 
by the magnitude, A i ,  is generated and passes through 
the second filter in the channel to give as output 

. R  

All of the M channel outputs are summed to yield 

Rearranging eqn. 6 gives the output r; of the weighted 
interconnection network before thresholding as 

where we have defined the matrix T,, to be 
U 

(7) 

(9) 
i = 1  
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which implies that 

7;, = M (10) 
The output from the matched-filter network after one 
pass (eqn. 8) is the same as that through the vector- 
matrix network except for an extra l/(M”zN) scaling 
factor in the case of the matched-filter network. 

The matrix T,, (eqn. 9) is identical to the autocorrela- 
tion matrix as defined by Kohonen [l5, 161 for use in a 
vector-matrix pattern recognition memory. Matrix T,, 
(eqns. 9 and lo), however, differs slightly from the matrix 
operator proposed by Hopfield (eqns. 1 and 2) in that it 
has diagonal elements of magnitude M (the number of 
stored state vectors) for bipolar (+ 1, - 1 )  codes as 
opposed to elements of magnitude zero in the Hopfield 
operator. 

4 Physical behaviour of the synchronous 
Little-Hopfield network 

4.1 Influence of the diagonal matrix elements on the 
convergence behaviour of the network 

The matrix element T,, represents the weight of the bidi- 
rectional connection between the tth neuron and the rth 
neuron. Diagonal elements, therefore, represent connec- 
tions from the same neuron to itself. Since self connected 
neurons have not been observed in the brain, the diago- 
nal elements were set to zero in the original net as in eqn. 
2. However, in the last Section we saw how matrix ele- 
ments of magnitude M arise from the optimum signal 
detection strategy based on performing correlations and 
so should lead to better performance. Physically, a con- 
nection of a neuron to itself with a weight M tends to 
stabilise the potential on the neuron (this weight is equal 
to, or larger than, any other weight) and thus acts as a 
memory between iterative cycles. 

Mathematically, the diagonal elements act as an iden- 
tity matrix and so are responsible for projecting the input 
vector through the matrix to stabilise the pattern. This 
has the effect of substantially reducing the oscillatory 
non-convergent behaviour observed in synchronous nets 
with zero diagonal elements. Improved behaviour has 
also been observed by Gindi et al. [17] with nonzero 
diagonal elements. 

4.2 Relationship between Hopfield energy and net 
inputloutput crosscorrelation 

In the spin glass model of neural networks an energy 
function, or Hamiltonian, is defined which plays a central 
role in neural net behavioural analysis. This function is 
defined [7] to be 

where matrix T has its diagonal elements set to zero. 
This is almost identical to the correlation of the output of 
the matched-filter network (before thresholding) with the 
input 

apart from the fact that the diagonal elements of the 
memory matrix are not zero in the matched-filter case 
(Section 4.1) and that the proportionality constant is 
1/M’/2NZ as opposed to -1/2 in the conventional 
expression. The physical interpretation is that the output 
of the matched-filter net (before thresholding) starts off 
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being quite different to the input (i.e. small correlation, 
high energy) and gradually begins to resemble the feed- 
back input until they become identical (correlation peak, 
energy minimum). 

4.3 Optimum memorised codes for signal 
discrimination in noise 

Consider the input to the net to be one of the memorised 
codes plus noise. Clearly, by minimising the cross- 
correlation between memorised codes one maximises the 
difference in correlation magnitudes emerging from the 
first bank of filters, so improving the ability to discrimi- 
nate the largest peak in the greatest amount of noise. 
This is optimised by choosing the stored code set to be 
mutually orthogonal. Confirmation is provided by the 
fact that our matrix (eqns. 9 and 10) reduces to 
Kohonen’s optimum memory matrix [lS, 161 (based on 
the generalised inverse matrix) when the memorised 
codes are chosen to be orthogonal. This limitation is 
overcome by the novel net proposed in Section 5. A net 
storing orthogonal codes cannot converge onto an incor- 
rect memorised code. 

4.4 Network filtering behaviour, upper limit on 
memory capacity and processing gain 

In this Section we assume that the stored codes are 
orthogonal for the reasons given in the previous Section. 
The maximum number of mutually orthogonal N-bit 
bipolar (+ 1,  - 1 )  codes that can be found is N and they 
only exist when N = 2“, where n is an integer. Numerous 
sets of N mutually orthogonal codes exist. 

Consider the case when N ,  N-bit orthogonal codes are 
stored in a synchronous Little-Hopfield neural net. An 
arbitrary digital (bits having any analogue magnitude) 
code is input. This can be expressed as a series expansion 
in terms of the complete set of orthogonal codes: 

N T N  1 

This is the digital equivalent (in terms of codes on a 
closed interval) of a Fourier transform (in terms of sine 
waves on an infinite interval). 

The intermediate A, correlation peak coefficients after 
the first bank of filters are effectively the ‘spectrum’ in 
terms of orthogonal digital codes and contain all the 
information of the original code. 

The second filter bank and the summation perform the 
equivalent of an inverse digital orthogonal code trans- 
form and so reconstruct exactly the original input code 
apart from a l/M’/’ scaling-loss factor. This is equivalent 
to performing the inverse Fourier transform. Obviously, 
such a net is then equivalent to a straight parallel 
highway and performs no useful function. This, therefore, 
sets an upper limit on the number of codes that can be 
stored, which is N .  Abu-Mostafa and St. Jacques [18] 
recently obtained the same result by information theory. 
Earlier, Cover [19] obtained an upper bounded capacity 
which was a factor of just two higher. 

When one of the N stored orthogonal code channels is 
removed or when an infinite attenuator is employed 
instead of the noise gate, the net acts as a filter preventing 
any such code contribution from passing through. For M 
(< N) stored codes the output from the matched-filter net 
before thresholding only consists of the sum of varying 
amounts of the stored codes. If a known code plus white 
noise, which contains equal RMS (time averaged) powers 
of each of the orthogonal codes, were supplied as input, 
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the net output noise would be reduced by a factor of 
M / N  compared to the output code. This results in an 
overall processing gain for the interconnection net of 

PG = I O  log,, ( N / M )  

5 Design of a novel associative memory neural 
network using matched-filters 

Once the matched-filter modelling concept has been 
grasped, numerous new neutral nets can be designed. 
Here, we present one particularly useful associative 
memory which can be used to associate arbitrary input 
and output, digital or analogue, stored patterns. It  con- 
sists (Fig. 3) of an optimum synchronous Little-Hopfield 
pattern-recognition neural net storing orthogonal binary, 
bipolar codes sandwiched between two pattern- 
association nets. The first pattern-association net associ- 
ates arbitrary analogue or digital patterns, sI, stored in 
the first matched-filter bank with orthogonal code 
'labels'. The central pattern-recognition net converges 
onto the strongest orthogonal code (which corresponds 

with the strongest stored code in the input). The final 
pattern-association net maps the strongest code to an 
arbitrary analogue or digital code sj  stored in the final 
matched-filter bank. In the language of neural nets this 
net consists of three layers with internal feedback in the 
central layer, which has its weights preprogrammed prior 
to training. 

6 Threshold behaviour 

We initially consider the behaviour of hard thresholds 
(Fig. 4) and go on to look at soft and time-dependent 
thresholds later. The output of the interconnection net 
(i.e. the input to the array of nonlinear thresholding 
elements) was shown by the use of the matched-filter 
model to consist of the sum of only the known memo- 
rised codes. The magnitudes of each are weighted accord- 
ing to how closely they resemble the input. We show that 
the hard threshold acts together with the summation at 
the output of the interconnection network to emphasise 
the stronger memorised codes and to suppress the weaker 
on repeated iterations. 

input 

pattern association net 

pattern recognition net 

threshold 

output 

I pattern association net 

*S?M(T-t) -_I 'SjM(t) 
P 

Fig. 3 Pattern-association net with three layers of interconnections for  arbitrary analogue or digital pattern association 
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When several binary, bipolar codes are added, if all the 
ith bits have the same polarity then the sum code ith bit 
has the largest amplitude (assumed greater than unity) of 

output r’(t;, 1 
input r (t) 

Fig. 4 Hard threshold response 

all the bits and is suppressed by the hard threshold. Con- 
versely, if all the ith bits differ in polarity then the sum 
code ith bit will have a small amplitude (assumed less 
than unity) and will be amplified by the hard threshold. 
The greatest amplification takes place if the polarity of 
the two strongest codes differ and if the next two strong- 
est codes differ, and so on. In summary, the summation 
and hard threshold have the effect of emphasising the dif- 
ferences between the codes and suppressing the simi- 
larities so that they act as a feature extractor. In this way 
the code sum entering the interconnection net on the 
second iteration consists of the sum of nonbinary, bit- 
weighted feature codes with the same polarity sequence 
as the corresponding memorised codes. These correlate 
with their corresponding memorised codes in the 
matched-filters to give a large output and with the others 
to give a low output. The difference between the outputs 
of the correlation filters is larger than before due to the 
feature extraction performed by the summation and 
threshold. Thus, repeated iterations select the strongest 
memorised code component. 

However, if too many of the memorised code com- 
ponents of the input are large and similar in magnitude, 
convergence to a spurious nonmemorised code can occur. 
In this case, the hard threshold, which is an odd function, 
generates from the input codes new output codes which 
are products of odd numbers of the input codes accord- 
ing to a power series expansion of the threshold function. 
Spurious codes only occur when the input (to the 
threshold) consists of three or more memorised codes 
since it is impossible to form a binary, bipolar output 
code using less. The probability of converging to a spu- 
rious code increases as the fractional memory capacity 
M / N ,  for a given number of neurons, increases and this 
limits the available capacity for a given error rate. 

This undesirable behaviour is due to the strength of 
the threshold nonlinearity, that is, the coefficients of the 
higher order odd terms (third, fifth, etc.) in a series expan- 
sion of the threshold. This can be overcome by using a 
soft threshold (Fig. 5 )  with weaker higher order terms 
since this reduces the number of stable spurious states at 
the expense of the increased number of iterations which 
are required before convergence due to the lower thresh- 
old gain. To reduce the convergence time we propose a 
novel method reminiscent of simulated annealing in a 
Boltzmann machine, namely the use of a threshold with a 
time-dependent response. Start with a hard threshold 
which causes fast convergence to a probably spurious 
state. Gradually reduce the threshold gain so that it 
becomes softer on repeated iterations. This causes the 
spurious state to become unstable and the net to home in 
on the next stable state, which may also be spurious. 
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After repeated iterations the net ends up in the lowest 
energy minimum. To obtain the fastest overall con- 
vergence time the threshold gain must be decreased 

output r’(t) I 

Fig. 5 Soft threshold response 

slowly enough to ensure that convergence is almost com- 
pleted before the spurious state becomes unstable. This 
procedure differs from that of the Boltzmann machine in 
that the energy surface is initially full of local minima 
which gradually disappear until only one remains 
whereas in the Boltzmann machine the energy surface is 
fixed but the convergence path is guided towards the 
lowest minimum. By further reducing the rate of thresh- 
old ‘softening’, higher fractional memory capacity can be 
obtained. 

7 Conclusions 

A new neural network modelling technique has been 
described in which the neural net is represented by an 
equivalent net of matched-filters. This enables a physi- 
cally intuitive understanding of the network behaviour to 
be gained. The synchronous Little-Hopfield net was 
analysed and optimised in this way. The use of orthog- 
onal stored codes prevented convergence to incorrect 
stored codes. The connection of the neurons back to 
themselves with a weight equal to the number of stored 
codes reduced the possibility of oscillatory noncon- 
vergence. The use of a novel time-dependent hard and 
soft threshold response avoided the chance of converging 
to a spurious nonstored state and so increased the 
memory capacity. A novel three-layer neural net architec- 
ture was proposed incorporating the optimised synchro- 
nous Little-Hopfield net as a building block. This net can 
perform arbitrary analogue or digital pattern association 
in only a few iterations with low error rate and high 
memory capacity. Finally, it is worth noting that the 
equivalent matched-filter net can be implemented directly 
using electronic or optical matched-filters; this offers a 
new way of implementing neural nets using standard 
building blocks. 
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