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1 Introduction

Many explanations have been proposed for the rank-size rule or power law in city size

distribution based on a probabilistic process [4]. These explanations are usually opposed

to that proposed by Zipf [11] who explained the rank-size rule as the result of the applica-

tion of the principle of least effort. In his opinion, by using this principle, it is possible to

find an equilibrium between the two opposite forces of diversification and of unification.

In fact, because the main components of the system are resources, people and products,

the first force brings people near to resources, and the latter brings products near to

people. Even these notions are simple, and are accepted in the spatial economic field [5]

it is not clear how a rank-size rule can be derived from it[2].

In this paper I will show how a rank-size distribution can be generated by using multi-

agent interaction which uses a probabilistic law to obtain opposing goals that correspond

to unification and diversification forces. This paper is divided in two sections: the first

section presents a model based on agents pursuing opposite goals; the second discusses

the model in relation to the previously proposed models.

2 The model

The rank-size rule states that a set of events, when ranked by frequency or size shows

the following property:
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rα
i Si = K (1)

where Si is the frequency or size of the i event, ri is the rank, the most frequent event

having rank equal one, and α ∼ 1 is an exponent.

In the present model I consider a set of cities in which resources are equally dis-

tributed: for instance one unit of resource in each city. More cities signify more available

resources for the entire population. Agents live and work in each city; they represent

groups of inhabitants, both as producers and as consumers and are supposed to have two

goals: to produce and sell goods and to utilize resources. In the first case, because an

agent must sell the good, he/she prefers to live near the greatest number of consumers.

i.e. in a big city; in the second case an agent prefers to live where resources are shared

among the minimum number of people. If all agents pursue the first goal the result is a

single big city, i.e. the city which is ranked one, and total utilized resources will be one

unit; however if the agents behave in the second way, the result is N cities of size equals

one and total utilized resources will be N units. Thus in the first condition, the agent

would live in first rank cities, or with a minimum rank, while in the second condition,

agents would live in a city having a minimum size. First of all let us suppose that the

differences among ranks and sizes are perceived in a way that the distances between

things near by are emphasized in relation to those further away. This result is produced

by a logarithmic transformation: in the first case an agent would like to minimize log(ri)

while the second would minimize log(Si). Nonetheless, if agents in one period precisely

minimize the function of rank and in the other period the function of size, then the result

will be one big city and a lot of little ones of the same size which are equal to one. In

order to obtain a result similar to that observed, the behavior of the agents needs to

be disturbed by an event brought about by the different preferences among agents, i.e.,

limited knowledge, etc. The result is that in the first case agents will locate in the city

i where the score:

Ai =
[
log

(
ri

N

)
+ λ(W )

]
(2)

has the minimum value. In this expression λ, a stochastic disturbance term, is a random

Gaussian variable with a mean equal to zero, and a standard deviation equal to 1, and W

is a weight related to the disturbance in estimation of the score. The rank ri is divided

by N , the total number of cities with Si > 0, in order that the result will range [0-1].

In the second case agents first choose the desired size Sk and then randomly among

the cities as further explained. The desired size is chosen among all the available sizes,

ranging from 1, which is the minimum size of a city, to Smax, and having the minimum

score:
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Bk =
[
log

(
Sk

Smax

)
+ λ(W )

]
(3)

In the previous expression the desired size is divided by the maximum so that the result

will range [0-1]. In order to live in a city of the desired size Sk, the agent chooses at

random a city i having Si = Sk − 1. In fact with the location of the agent the size will

automatically increase by one. This aspect is interesting in the lowest level cities because

it induces the growth of a new city, or better stated, the activation of an existing site. In

fact the city may be abandoned by the last agent and then be reactivated by a different

agent which decides to live in the previously abandoned city.

Because an agent’s behavior is determined by economic convenience, the agent will

look for a minimum-sized city only if the total resources utilized are lower than the

number requested. Otherwise an agent will look for the minimum rank in order to cluster

with other agents. The total requested resources depend by the total population and

by the technology which establishes the quantity of resources in relation to population.

Because the quantity of resources is proportional to the number N of cities, the demand

of resources is expressed in number of cities and is a function of the total number of

agents S as in the following equation:

N = Sγ (4)

where γ is a parameter which is related to the available technology. In fact the lower the

parameter the lower the needed quantity of resources per inhabitant.

The model has been applied to a set of 500 cities with a number of agents equal to

1000 assigned at random to the cities. At each iteration an agent is chosen at random

and is relocated in one of the cities by using equation 2 if the number of existing cities

is greater than desired (equation 4) or 3 otherwise. After the relocation of the agent the

size, as well as the rank of cities are re-calculated.

The two crucial parameters are γ and W , the parameter controlling the disturbance

term. First of all a value for γ has been established in a way that the resulting value

for N is consistent with α = 1 in equation 1. This is obtained when γ ∼ 0.76. By

using this value for γ the value of parameter W has been estimated by minimizing the

correlation coefficient related to the linear regression in double logarithmic coordinates of

the rank-size distribution (equation 1). As the figure 1 shows the correlation coefficient

is minimum when W ∼ 1.7. By using γ = 0.76 and W = 1.7 as the central values the

plots of the resulting rank-size distribution for nine combinations of the values of these

parameters are shown in figure 2. Parameter γ affects the slope of the graph, i.e., the

hierarchical character of the system, while W affects the concavity or the convexity of

the graph. Because W is a measure of the disturbance it can be related to the quantity of

diverse factors influencing the size distribution. If the number of these factors is reduced
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Figure 1: X axis: W , Y axis: correlation coefficient

Figure 2: Rank-size graphs (X axis: rank, Y axis: size) obtained by varying γ and W .

Double logarithmic scale
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[1] and the value for W is low, then a distribution similar to that of the primate city is

obtained; in turn, when the value of W is higher then the number of factors affecting

the choice is bigger, and the differences among ranks or sizes are less important.

The convergence of the system to the rank-size distribution has been evaluated by

considering the slope of the distribution and the correlation coefficient as previously

stated. As figure 3 shows, the system became stable after about 3,000 iterations. If

Figure 3: X axis: iteration. Y axis, 1: correlation coefficient, 2: estimated value for α

(equation 1)

the distribution is stable, the rank of a city can be changed considerably. In order to

evaluate this aspect, calculations have been made for an index:

I(t + ∆t) =

∑
i | ri(t) − ri(t + ∆t) | [Si(t) + Si(t + ∆t)]

N
∑

i[Si(t) + Si(t + ∆t)]
(5)

This index considers the variation in rank weighted with the size of the city. The resulting

plot is shown in figure 4, where ∆t = 100. The index grows in the first phase of the

simulation and then becomes quite stable around value 0.3.

Figure 4: X axis: iteration, Y axis: index I

Even if the model does not considers growth it can be included. It is sufficient that

an agent could be generated by an other agent. Initially the generated agent is located in

the city where the generating agent is located. Figure 5 shows the resulting distribution

by supposing a probability 0.1 to 0.3 that a new agent will be generated during one

iteration.
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3 Discussion

In order to discuss the proposed model, let us compare it with a simple Monte Carlo

method for the generation of a rank-size distribution. In fact, let us suppose that the

same population of agents is located at random on a set of cities. At each iteration an

agent is chosen at random and is relocated in the city having the smallest score calculated

as rank multiplied by the size as in the following expression:

Xi = rα
i Si (6)

After the relocation of the agent the size, as well as the rank of cities are re-calculated.

This method is nothing but a Monte Carlo generation of a function and is presented

here in order to better understand the functioning of the proposed model. In fact, if we

consider a logarithmic transformation of the previous equation we obtain:

log(Xi) = α log(ri) + log(Si) (7)

It is interesting to consider that the agent of the present model at different periods tries

to minimize one of the two parts of the previous expression.

In order to understand in depth the functioning of the methods, equation 2 has been

iteratively applied to a set of ranked cities. The resulting probability density distribution

in dependence of various values for W is shown in figure 6. This distribution is similar to

that resulting from the generalized rank-size function proposed by Mandelbrot[7]. The

utilization of the logarithm is crucial. In fact when the equation 2 is applied avoiding

the logarithmic transformation, the result is an exponential function (see figure 6). In

essence the functioning of the present model is similar to that of Mandelbrot[7][6]. In

fact, a similarity can be drawn between the way in which a random process produces

words and that of choosing a city in which to live when the equation 2 is applied. In

this case an agent can be supposed to choose the city in which to live beginning from

the first rank. With an established probability the agent will consider the next city in

the rank or decide to choose the current city. This method is similar to the random

generation of words, where with an established probability a character is added to the

previous characters or a space is chosen and the word is terminated. In the Mandelbrot

model the changing of variable from length to the rank of the different words of the same

length, is able to generate a rank-size distribution which, in turn, in the present model

depend on the utilization of logarithm. In fact the logarithmic transformation correlates

the probability of choosing the current city with city rank, i.e., with the size of the city.

The Simon model[9] , differs from the Mandelbrot given that the hierarchy is prac-

tically established exogenously through the growth process, yet it is similar because the

city to be lived in is chosen with a probability which is proportional to the existing
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Figure 5: The rank size distribution (X axis: rank, Y axis: size) obtained by the appli-

cation of 0.1, 0.2, and 0.3 grow rate. Logarithmic scale

Figure 6: X axis: rank, Y axis: probability density, 1: W = 0.7, 2: W = 1.7, 3: W = 2.7

Left side, double logarithmic coordinates. Right side, Y axis, logarithmic scale
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population. By using this method the relative distribution of population would remain

unchanged. The growth process is responsible for increasing the probability that the

first ranked cities will be chosen as a living place. Anyway the similarity of these two

models lies in the fact that they consider the rank-size hierarchy as the result of a process

oriented to the most sized event and that the lower tail results only by the diminishing of

that process. The presented model is different because there is a possibility to prefer the

first ranked cities or the lower level city because resources are considered as important

as the clustering. These two preferences interact because size and rank may change after

the relocation of an agent thus affecting all the following dynamics.

Among the probabilistic model utilized for the generation of rank-size distribution,

those based on proportional random growth [4] [3] seem to implicitly include opposite

forces. In fact this random growth can be realized with a random growth rate with a

fixed mean and standard deviation or, as the case of Manrubia and Zanette[10], as an

intermittent growth rate taking at random the values 0 or 2. The Marsili and Zhang [8]

model presents another version of the model based on individuals. In all these models

the agglomeration results from the temporal cluster of positive growth while dispersion

or decreasing of growth is produced by the temporal cluster of negative growth. In fact

the dynamic of these models is based on local growth and interaction is limited to the

established total number of inhabitants and a diffusion process which is needed in order

to avoid a population fall to zero in these cities. The present model is different from

these for two inter-connected aspects. First of all it is clearly based on agents, second

the interaction is global. In fact these agents are able to compare all the opportunities

offered by the cities which are considered as a collection of agents and not capable of

autonomous growth.

4 Conclusion

The model, which has been presented, is based on agents with dycotomic goals. This

model explains how the two Zipfian forces are able to produce a rank-size distribution.

I will be delighted if someone would send critique or comment to my e-mail address.
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