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Abstract 

The built environment is a significant factor in many urban processes, yet direct measures of built form are 

seldom used in geographical studies. Representation and analysis of urban form and function could provide 

new insights and improve the evidence base for research. So far progress has been slow due to limited data 

availability, computational demands, and a lack of methods to integrate built environment data with 

aggregate geographical analysis. Spatial data and computational improvements are overcoming some of 

these problems, but there remains a need for techniques to process and aggregate urban form data. Here we 

develop a Built Environment Model of urban function and dwelling type classifications for Greater 

London, based on detailed topographic and address-based data (sourced from Ordnance Survey 

MasterMap). The multi-scale approach allows the Built Environment Model to be viewed at fine-scales for 

local planning contexts, and at city-wide scales for aggregate geographical analysis, allowing an improved 

understanding of urban processes. This flexibility is illustrated in the two examples, that of urban function 

and residential type analysis, where both local-scale urban clustering and city-wide trends in density and 

agglomeration are shown. While we demonstrate the multi-scale Built Environment Model to be a viable 

approach, a number of accuracy issues are identified, including the limitations of 2D data, inaccuracies in 

commercial function data and problems with temporal attribution. These limitations currently restrict the 

more advanced applications of the Built Environment Model. 

 

Keywords: Urban Form, Function, Land Use, GIS, Housing, Residential Type, Dwelling Type, 

Multi-Scale, Visualisation, MasterMap, Address Layer 2, Greater London 
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1: Introduction 

We begin this paper by introducing the aim of integrating urban geographical analysis 

with iconic urban representations used in planning and 3D digital city modelling (Section 

2). This includes a discussion of the importance of scale in geographical analysis and the 

advantages of a multi-scale approach (Section 2.3). Advances in urban data infrastructure 

that underlie this approach are then described in Section 3. The study area for this 

research is Greater London, and the aims of the research in the context of urban change 

and planning in London are outlined in Section 4. The subsequent sections of the paper 

cover more technical aspects of the research including the methods used to create the data 

model and classifications (Section 5) and validation of the model classification accuracy 

(Section 6). In the penultimate section, potential applications of the Built Environment 

Model are illustrated (Section 7), featuring visualisations of urban function and 

residential clustering at multiple scales for Greater London. Finally conclusions of the 

research are discussed in Section 8. 

2: Integrating Geography and Geometry 

Interactions between socio-economic processes and the built environment are relevant to 

many aspects of urban geographical research. For example, research into urban 

demographic and economic spatial structures link locational decision-making to buildings 

through property markets and land ownership. Many significant processes of change in 

cities such as gentrification and urban renewal involve specific transformations in urban 

form
1
 (see Davidson and Lees, 2005). Urban sustainability is another research area 

strongly linked to the built environment, as key aspects of sustainability include the 

energy efficiency of buildings (see Steemers, 2003; Bruhns et al., 2000), and the 

functional integration of urban activities to reduce travel distances (see Urban Task 

Force, 1999; Banister, 2005). Despite these relationships, the direct measurement and 

analysis of urban form and function is rather limited in geographical research, 

particularly for city-wide studies. Where urban form is considered in geographic research 

                                                
1
 The term ‘urban form’ is used here to refer to all physical aspects of the city, its buildings, streets, and all 

other elements that make up the urban realm (Talen, 2003).  
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it is often through aggregate proxy measures such as population and employment density 

(Talen, 2003). While these measures are a useful starting point, they do not consider any 

physical properties of built form and leave many relationships unexplored. In this 

research we argue that the inclusion of urban form and function analysis can provide new 

insights and empirical grounding for a number of fields, particularly for urban planning 

and development research, property market and housing analysis, and urban sustainability 

studies. 

 

There is also a contrast within the fields of architecture, planning and geography in the 

sense that architects and planners commonly use iconic representations of urban form 

such as geometric plans and physical models. This approach contrasts with geographical 

research in two aspects. Firstly the focus is on the physical properties of the built 

environment rather than the socio-economic interests of urban geography. Secondly the 

extent of study is generally restricted to buildings and localities, in contrast to the city-

wide (or larger) scope of geographical studies. There is a growing interest in linking 

these geographical and geometrical approaches to provide an improved understanding of 

cities (Batty, 2007). Over the last decade there has been a continuing development of 

geographic information (GI) technologies and the emergence of rich fine-scale digital 

data sources (Longley, 2003). These new detailed datasets have enhanced spatial and 

attribute information, and are sufficiently intensive to analyse detailed form and function 

relationships and also sufficiently extensive to enable patterns to be generalised across 

entire metropolitan areas. It is increasingly possible to link the socio-economic focus of 

geographical analysis to the geometric built environment approach that is employed in 

local urban planning. Batty (2000; 2007) has termed this linking process ‘geography to 

geometry’, the merging of iconic and symbolic urban models
2
, and it opens up many 

possibilities for research. 

                                                
2
 One of the most widely recognised classifications of urban models is that by Lowry, 1965, who defined 

models on a continuum between the iconic and the symbolic. Iconic models are physical versions of the 

'real' thing, normally scaled down. Typical traditional examples include the architects' block model and 2D 

cartographic maps. Symbolic models represent systems in terms of the way they function, often through 

time and over space. Such models replace the physical or material system by some logical and/or 
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New data models and analysis techniques are required to achieve this goal. This paper is 

intended to further this research agenda: firstly by describing a methodology to combine 

geometric and socioeconomic datasets for a large city in a single spatial database; and 

secondly by implementing spatial analysis techniques to provide data and indicators for 

urban research: principally urban function and residential dwelling type. Fine-scale 

relationships between urban form and function can then be explored to provide an 

evidence base for research topics such as urban sustainability, residential property 

analysis, gentrification, land-use change and neighbourhood definition (Galster, 2001). 

2.1: Built Environment Models 

In this research we link urban geography to the built environment by integrating socio-

economic spatial data with iconic urban models. As noted earlier, an iconic model is a 

geometrical representation of a feature or set of features, typically taking the form of a 

physical scale-model (such as an architect’s miniature building model) or a digital model. 

3D digital city models have become increasingly widespread and sophisticated with the 

development and integration of computer-aided design (CAD) software, geographical 

information systems (GIS), computer graphics, web and aerial sensing technologies (see 

Zlatanova and Prosperi, 2006, van Oosterom et al., 2008 for further reviews). An earlier 

research project at the Centre for Advanced Spatial Analysis (CASA) developed a 3D 

digital city model of London called ‘Virtual London’ (Batty and Hudson-Smith, 2005b) 

and this acts as a foundation for this research. 

 

Potential applications of 3D digital city models range between urban planning, 

telecommunications, architecture, facilities and utilities management, property analysis, 

marketing, tourism and entertainment (see Batty et al., 2001 for a review). The 

development of web and virtual globe technologies has given a massive boost to digital 

urban models, enabling widespread access and interaction by the public through geo-

browsers such as the popular Google Earth. 

                                                                                                                                            
mathematical formula, often in the form of algebraic equations within a digital form (e.g. a computer) such 

as in the case of land use transport models (e.g. Batty, 1976). 
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Whilst the visualisation capabilities of 3D digital city models are clear, their analytical 

functionality is often underdeveloped (Batty and Hudson-Smith, 2002). Significant 

advances have been made in increasing the geometrical sophistication of 3D digital city 

models, but many models remain ‘empty shells’ without any socio-economic data 

associated with the buildings or the capability to analyse the role of the built environment 

in urban processes. We believe that future advances will explore how such models can be 

populated with socio-economic data and linked to transportation networks thus moving 

from visualisation to focus on policy applications and analysis. This would essentially 

mean enhancing digital city models to become Planning Support Systems (PSS), i.e. tools 

to aid and enhance planning tasks (see Brail and Klosterman, 2001). 

 

We define four levels of integration between iconic urban models and geographical 

analysis. Starting with the most basic, these techniques are:  

i) the spatial overlay of thematic data on a city model for visualisation; 

ii) the creation of a city model database with building geometry linked to 

address/cadastral geography for socio-economic attribution (i.e. a Built 

Environment Model); 

iii) the combined spatial analysis of socio-economic attributes with urban form 

geometry; 

iv) the integration of Built Environment Models with urban symbolic mathematical 

models (for example, land-use transport models). 

 

These methods range from description to analysis, and from static representations to the 

potential for dynamic modelling. This research focuses on the second and third methods 

of this typology where the benefits for urban research and PSS are most immediate. The 

integration of Built Environment Models with symbolic urban modelling is not explored 

in this paper, though we believe that improved accuracy in the representation of urban 

form and function would be beneficial, particularly for land-use and urban growth 

models, and should be investigated in future research.  
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The first method of combining datasets is the overlay of thematic data on a city model. 

The visualisation of built form and landmarks can help users to navigate and identify 

familiar urban locations, thus improving data legibility (Tuan, 1977). Figure 1A 

illustrates this with an air pollution surface combined with the Virtual London model. 

Insights can emerge from seeing patterns which may not have been evident without the 

context of urban form (Batty, 2007). With this method relationships between urban 

geometry and geography are visual and lack explicit spatial relationships. 

 

 

A B 

Figure 1: Virtual London 3D City Model with Different Data Layers Overlaid on Top. 

A: Nitrogen Dioxide Layered onto the Street System of London, and B: Querying Buildings Developed 

from 2001 to 2004 (Source: Batty, 2007). 

 

A more advanced approach is to develop a spatial database of the built environment- a 

Built Environment Model, and store socio-economic attributes associated with buildings. 

These attributes of buildings can be queried and visualised within a GIS as demonstrated 

in Figure 1B where buildings in Central London of a particular age are identified. This 

type of functionality is relevant to planners querying building stock, and to researchers 

studying property markets and relating socio-economic trends to the built environment. 
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To create a Built Environment Model, the geometry of buildings has to be linked to 

socio-economic attributes through a postal or cadastral geography. Depending on data 

availability, the development of the data model can be a non-trivial task. In the United 

Kingdom (UK) context there has been much recent innovation in spatial address 

infrastructure, yet a full description of building addresses and sub-building geometry of 

premises remains incomplete. Data modelling techniques to link topographic and spatial 

address datasets to try to fill in information gaps are thus pursued in this research. 

 

Once the Built Environment Model has been created then it is possible to perform spatial 

analysis linking geometric and socio-economic properties- the third stage in our typology 

of integration. A simple example is to calculate building density measures by dividing a 

quantity (e.g. the number of residential properties) by building footprint or volume. Any 

address-based data can be incorporated, from business function data, to geodemographic 

and neighbourhood characteristics. Several examples of these techniques are provided in 

Section 7 of this paper. 

 

Overall with a data model that successfully integrates urban form and socio-economic 

data, there are a wide range of potential applications relating to planning practice and 

geographical research. These applications vary in terms of data inputs and analysis 

methods, and so flexibility is a useful quality of the data model to enable a range of 

applications. A common characteristic is the variation in the scale of data inputs and of 

the required output, as discussed further below. 

 

2.3: Scale and Aggregation in Built Environment Models 

In geographical contexts the term scale is used to refer to both the level of detail and 

extent of spatial data and analysis. This dual meaning derives from the common 

association between data resolution and study area size. This balance is significant both 

for spatial analysis and visualisation. For spatial analysis large high-detail datasets 

increase methodological complexity and computation demands; while in visualisation 
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there is a limit to the density of information that is intelligible to the viewer on a page or 

screen (Skupin, 2000). 

 

The association between large scale and coarse resolution is readily seen in aggregated 

types of urban measurement, where information on the form and pattern of the built 

environment is frequently missing (Talen, 2003; Moudon, 2002). Built environment 

studies ideally require analysis that is both fine-scale, to include premises, buildings and 

streets, and large extent, to allow the study of city-wide processes. To achieve this, 

techniques are needed to integrate datasets at fine-scales, make calculations for large 

urban areas computationally feasible, and to visualise data at multiple scales.  

 

The most common quantitative approach geographers use to explore urban data is 

aggregate zonal analysis. Aggregate analysis is a powerful method of simplifying the 

complexity of urban data, smoothing over local variation and enabling patterns to be 

identified. It complements the structure of core datasets such as censuses of population 

and businesses. Additionally using aggregate data reduces computational demands for 

spatial analysis operations. 

 

On the other hand, aggregation is a source of uncertainty and error in geographical 

research. Datasets and zonations can vary widely in terms of geographical scale, 

aggregation rules and spatial resolution, and this influences research outcomes. All 

aggregate units are spatially modifiable, i.e. they can be partitioned geographically in 

many different ways to generate different types of results. This is known as the 

modifiable areal unit problem (MAUP) (Openshaw, 1984). 

 

Of concern in built environment research is that socio-economic zonations typically 

ignore urban form, and overlook variation in physical features. For example, physical 

urban barriers can be influential in urban processes such as segregation (see Rabin, 

1987), yet are often not represented using zone boundaries. To highlight the impacts of 

data aggregation on the results and interpretation of geographical research we provide a 

simple example. If we create a point map of housing sales data over several years from a 
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district in London (Tower Hamlet’s, for example) we see there is a detailed pattern of 

clusters spread over the entire borough (Figure 2A). This detailed pattern can be 

simplified through aggregation. Figure 2B we show the point density of individual sales
3
, 

which captures the general distribution of points whilst losing some of the detail. This 

contrasts with Figure 2C, where zonal aggregation (in this instance postcode sectors) has 

changed the distribution, with the impact of built environment features such as water and 

parks now masked within the zonal geography. From this simple example it is clear that 

the scale and aggregation impacts on the overall results and interpretation.  

 

 

A B C 

Figure 2: Masking Variation with Data Aggregation. 

A: Individual Addresses B: Point Density of Sales, and C: Density of Sales per Postcode Sector. 

 

These issues can be minimised by using disaggregate data. Greater flexibility is possible 

as fine-scale data can be aggregated into any chosen zonation. Therefore the impact of 

the MAUP can be tested and quantified. Zone boundaries can be tailored to particular 

studies, and built environment features can be considered. The effect of the trade-off 

between level-of-detail and extent can be reduced. 

 

                                                
3
 Point densities - calculates a magnitude per unit area of the point/sale feature that fall within a 

neighbourhood around each point. A 500m radius was used. 
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Figure 3 illustrates aggregation techniques designed for built environment analysis. Data 

is first integrated at the disaggregate scale of building footprints and addresses. This can 

be aggregated into intermediate geographies based on physical features, such as street 

block geography for density analysis, or street network geography for accessibility 

analysis. For large urban areas grids at various resolutions can be used. A regular grid 

should have less inherent bias than socio-economic zones tailored to particular 

administrative purposes.  

 

                                                   Intermediate Aggregation        

      

    Disaggregate Geography                                                    Urban Scale Aggregation          

  

 

                                                         Street Blocks 

 

    Building/Address Level                                                      Regular Grid (500m) 

 

 

                                                        Street Network 

Figure 3: Aggregation Methods for Varied Scales of Built Environment Analysis. 

 

This approach relies on the availability of fine-scale geographical data, and increasingly 

this is becoming available, as will be discussed in Section 3. Privacy is an important 

consideration for demographic data, and this prevents data such as the census being 

released at address level. Attempts to disaggregate zonal data are likely to result in 

ecological fallacy errors, where attributes based on aggregate data are applied to 

individuals that form the aggregate group (de Smith et al., 2007). Microsimulation 

methods are an appropriate tool to mitigate this (see Clarke and Holm, 1987). In this 
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study we base our analysis on anonymous address-based data and so microsimulation 

approaches are not pursued, but we believe this could be a fruitful avenue for further 

research especially in terms of linking iconic to symbolic models in the form of agent-

based models, for example. 

 

However, the fine-scale large-extent approach is computationally demanding. For a large 

city such as London, millions of features must be joined to integrate data at address and 

building scales. The continued advances in computer hardware and Spatial Database 

Management System (SDBMS) software make this approach feasible. Suitable data 

models that fully represent relationships between addresses and building geography are 

necessary. Once the data model is implemented, then analysis becomes an address 

matching process (i.e. attribute joins) as opposed to more computationally intensive 

spatial joins. 

 

2.4: Summary 

This section has argued that geographers and planners have often studied cities 

differently, looking at the geographical aspects or the geometrical aspects respectively. 

Geometrical built environment information is generally overlooked in geographical 

analysis because of the lack of fine resolution and extensive urban datasets, and because 

of the aggregate methodologies commonly used. These challenges are beginning to be 

solved as a new kind of fine-scale urban geography is emerging, using datasets which are 

sufficiently intensive to detect detailed patterns and morphologies and also sufficiently 

extensive to enable these patterns to be generalized to entire metropolitan areas. We have 

highlighted an alternative to the zonal approach that much of quantitative geographical 

research relies on. However, this requires fine-scale large-extent datasets. Nevertheless, 

one can potentially build new theories and models which were not possible in the past, 

and provide a stronger evidence base for planners and researchers.  
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3. Urban Spatial Data Advances 

The field of urban spatial data infrastructure has seen continuous development and 

innovation in recent years, both in the domains of urban geometric data and socio-

economic geographical data (see Onsrud, 2007; Masser, 2005). Improvements have 

included higher spatial resolution, richer attribution, improved integration, and entirely 

new data sources emerging from new technology. These advances towards detailed and 

extensive urban GI make this research feasible. 

3.1: Urban Geometric Data Sources 

Geometric urban data can be used in the analysis of the location of features, in terms of 

context and accessibility, and the geometric quantification of features, such as areas, 

heights and volumes. To measure these properties there are two main sources of urban 

geometric data: topographic mapping and aerial/remote sensing data. Topographic 

mapping data continues to improve as GI applications have expanded, markets have 

matured and the economic value of GI data is increasingly being recognised (see 

Longhorn and Blakemore, 2007). Detailed spatial features such as building outlines and 

roads are more widely available. Furthermore, major providers can now offer topographic 

data closely integrated with other layers such as road network data and spatial address 

data. Advances in spatial address infrastructure in particular enable integration with 

socio-economic data sources.  

 

In the UK context, the Ordnance Survey’s (OS) MasterMap product suite (Ordnance 

Survey, 2007b)
4
 is the most comprehensive source available and it continues to advance 

in content and detail. MasterMap provides a UK-wide detailed vector topographic layer 

with building outlines, internal property divisions, and street infrastructure mapped to an 

accuracy of 1m. This provides the core building geometry data in this research. The other 

key feature of MasterMap is the spatial address product Address Layer 2 (Ordnance 

Survey, 2007a), which can be used for address matching. Addresses are geocoded at the 

                                                
4
 http://www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/ 
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level of building polygons, and some functional attributes are also included to identify 

residential and commercial properties (this is discussed further in Section 3.2.1).  

 

Topographical data sources are by their nature two dimensional, and so cannot 

adequately represent three dimensional urban features such as multi-storey buildings, 

bridges and subways. Advances, however are being made towards data standards that 

fully represent the three dimensional nature of the built environment, for example, the 

City Geography Markup Language (CityGML) standard for 3D digital city model 

exchange (Gröger et al., 2008). The challenges and costs of gathering and integrating 

widespread 3D built environment data however are high. Large quantities of 3D data 

relating to specific buildings lie in CAD models and drawings, but there are several 

technical and data ownership hurdles still to be overcome if these are to become a 

common feature of city models (see Zlatanova and Prosperi, 2006). 

 

So lacking three dimensional data from topographic sources, we look to aerial and remote 

sensing for building height data. In particular Light Detection and Ranging (LIDAR) 

aerial data provides information on the external geometry of buildings and is available 

over large urban areas. While the automatic and semi-automatic derivation of 3D models 

from LIDAR is a very active research area, internal property divisions cannot be derived, 

and these are needed for this particular research
5
. Therefore we use topographical 

mapping data as the geometric base and this is augmented with LIDAR height data 

aggregated across building footprints. This was the method used in the Virtual London 

project (Batty and Hudson-Smith, 2005a). 

 

The combination of 2D topographic data and LIDAR essentially creates a 2.5D block 

model of the city. This method is effective for adding urban texture and a ‘sense of place’ 

to visualisations. The lack of true 3D data does however mean that vertical geometry is 

missing, so the distribution of functions between floors in a multi-storey building is not 

known. This undermines the accuracy of direct geometric measures of premises, 

                                                
5
 However, attempts are being made to overcome this issue but tend to be error prone. See Orford (2010) 

for more information.  
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particularly for mixed use buildings (see Section 6.2). However, this shortfall can be 

minimised by linking to address-based sources of property quantification (e.g. property 

taxation surveys) as discussed further in the following section.    

3.2: Urban Socio-Economic Data 

Several trends have come together to expand the availability of address-based socio-

economic data. The increased recognition of the importance of GI has led to initiatives to 

standardise and integrate GI data, including the improvement of spatial address 

information (e.g. Department for Communities and Local Government, 2005). Another 

significant trend has been e-government initiatives to increase the availability of 

government services and information online. This includes services such as business 

rates, property sales and planning permissions. 

 

There are two basic categories of address-based socio-economic data relevant to this 

research. The first category is information that relates to real estate, such as function, 

ownership, market transactions, size, age and so forth. The second category covers 

information about residents or businesses who occupy that real estate, for example, 

demographic information and business classifications. Here we focus mainly on the first 

category of real estate attributes, with the priority to analyse building function and 

produce a residential classification (see Section 5). The methodology developed can also 

incorporate the second category of demographic and business information, and we intend 

to explore this in future research. 

3.2.1 Property Function Data 

Function
6
 is a core attribute for understanding urban structure. From the description of 

basic urban districts such as centres and suburbs, to detailed studies of mix-of-uses and 

urban agglomeration, functional information is crucial. The mapping of building use and 

                                                
6
 The phrase ‘land use’ is often used to describe urban function. Since multiple functions are often 

combined on a single piece of land in cities, ‘land use’ can be ambiguous and so function is chosen here as 

the preferred term.  
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function has several applications in visualising patterns of land use and urban texture, and 

investigating mix of uses and local service provision.  

 

Up until recently property function data has not been available in a detailed 

comprehensive format for the UK. The OS has been working to overcome this through its 

Address Layer 2 product (Ordnance Survey, 2006, 2007a)
7
. This is the first attempt at a 

complete address-based functional data source for the UK and it is a significant advance. 

There are however shortcomings with the current (2008) release (see Section 5.4). An 

example of the potential output from the dataset generalised into basic categories is 

shown in Figure 4. Useful features of the data include detailed residential address 

information, with multiple dwellings within buildings represented as coincident points. 

The number and location of these dwelling addresses can be used to derive a 

classification of residential types, as discussed further in Section 5.3. 

 

 

 

 

 

Figure 4: Building Function and Land Use Classification. 

 

A significant limitation to the Address Layer 2 functional data is the incomplete 

classification of commercial properties (see Sections 5.4.2 and 6.1 for further 

                                                
7
 http://www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/layers/addresslayer2/  
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information). The major source of commercial property information in England and 

Wales is the local taxation administration body, the Valuation Office Agency (VOA). 

VOA surveys are carried out every five years and record detailed business function 

classifications and property size measurements. The OS are working to integrate the 

VOA classifications into their Address Layer 2 product, but at present this process is far 

from complete. It is possible to access the VOA independently to analyse commercial 

real-estate geography (Smith, 2009), though the data is not geocoded and must be address 

matched by the user. 

 

Overall significant progress is being made in provision and integration of detailed spatial 

data on urban function in the UK. The data infrastructure is still in development and there 

are some shortcomings, but we believe the datasets are at a sufficient stage to illustrate 

their application to city model research. 

3.2.2 Real Estate Transaction Data 

Real estate is bought, sold and rented in a series of markets, with profound results for the 

geography and structure of cities. With data at address level, analysis is possible at the 

scale of property transactions. This is an active area of geographical research, including 

residential valuation models (Pryce and Evans, 2007) and studies of property uplift from 

infrastructure development (Atisreal, 2005). Built Environment Models have the potential 

to enhance these research efforts and integrate further data sets to improve results, as well 

being a means of communicating market trends to researchers and planners. 

 

Property transaction data sources include residential property sales and mortgage 

databases from banks. Business rental information is more restricted in the UK as it is 

judged to be commercially sensitive. The UK government now publishes residential 

property sale information through the Land Registry, beginning in January 2000 with the 

most up-to-date records 3 months old. Attributes include the transaction price, date, and a 

classification into basic housing types. The data set does not include local authority 

housing transactions.  

 



16 

The Land Registry data does not record all significant real-estate attributes, in particular 

the size of the property (which is often the most influential factor in the transaction price, 

see Fotheringham et al., 2002). It is possible that digital city modelling techniques could 

be used to estimate property size and augment this dataset (e.g. Orford, 2010), although 

the 2.5D nature of topographic and aerial data hinders this task. 

 

Banks and building societies providing mortgages are an alternative source of residential 

housing information. These tend to be more detailed than the land registry information 

and have been used successfully in hedonic price models (see Pryce and Evans, 2007). 

The main shortcomings of this source is that, unless all mortgage providers supply 

information, then the number of properties covered will be much less comprehensive than 

the Land Registry data
8
. 

3.2.2 Residential Type Data 

Residential or dwelling type data has a number of applications in urban research 

including density and morphological analysis (Longley and Mesev, 2003), socio-

economic segregation, environmental quality, and residential property analysis. The main 

source of residential type data for the UK is the 2001 census, which records general 

categories of housing and is available for aggregate zonal geographies. The spatial and 

temporal resolution of the census limits some of the more interesting applications related 

to fine-scale and dynamic residential processes. 

 

Recent research has been investigating whether topographic and address-based data 

sources can improve or at least complement the census dwelling data (Orford and 

Ratcliffe, 2007). Micro scale classifications are possible at building level, and there is the 

potential to link this data to other information such as property transactions or geo-

demographic data. This research pursues a micro-scale residential classification using 

these methods as discussed in Section 5.4. 

                                                
8
 Additionally not all property transactions are financed through mortgages, therefore making such data 

even less comprehensive. 
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4. Project Aims and Greater London Context 

The data advances discussed in Section 3 enable a range of new analytical possibilities 

for urban research linked to the built environment. This particular study is in 

collaboration with the planning authority of Greater London, the Greater London 

Authority (GLA), and the structure of the city model is directed towards the analysis of 

current planning issues in Greater London (henceforth referred to as London). 

 

As a major world city with a resident population of over 7.5 million, urban planning 

challenges in London are multiple and complex. London’s population is projected to 

increase by over a million by 2026 (GLA, 2006a) whilst employment is projected to 

increase by over 900,000 jobs between 2006 and 2026 (Spooner and Cooper, 2006). The 

current economic crisis has increased the uncertainty of economic and demographic 

forecasting and may well curb these predictions, but significant growth remains likely. 

Recent and projected rises in employment and population translate into major 

development and built environment change. For example, the London Plan has set targets 

of building over 30,000 new homes per year to address the increase in demand (see GLA, 

2004; GLA, 2006b for further information). Planners managing this growth must 

consider the various and often conflicting goals of business needs, social equality, 

sustainability and conservation.  

 

A Built Environment Model with analytical capabilities would improve the quantitative 

evidence base for managing urban change. We do not wish to imply a city model is a 

panacea for planning- clearly for issues such as deprivation and migration such a model 

is of little relevance. But for planning issues linked to the built environment we believe 

this approach can improve the current evidence base. The urban form and function 

approach pursued here can be used in several planning tasks, such as the visualisation of 

urban structure and development, the measurement of density and mix-of-uses, and the 

classification of building forms such as residential housing types. These tasks all relate to 

characterising and analysing urban texture, and managing growth. There has been much 

debate in London surrounding the significantly higher densities of recent developments 

and whether they integrate with the existing urban fabric (GLA, 2002). There is a lack of 



18 

a quantitative base from which to make these assessments and to analyse what change is 

occurring. Mix-of-use and density measures are also highly relevant to urban 

sustainability research, and this too would benefit from improved evidence. 

 

Measurements of urban form, density and function vary with scale, and comprehensive 

analysis should include measurements at multiple scales. This flexibility is therefore a 

key feature of the Built Environment Model, by including fine-scale data that can be 

aggregated to larger scales depending on the questions being asked. This feature also 

complements planning practice, which considers fine-scale issues at local government 

level, and larger scale trends at strategic regional government levels. At strategic regional 

scales, planning is concerned with larger scale land use patterns such as the efficiencies 

of monocentric and polycentric structures (see Aguilera, 2005; Gordon and Richardson, 

1996). The degree of monocentricity or polycentricity in form and function can also be 

explored using built environment models (see Smith, 2009 for such an application). 

 

While we believe there is great potential in developing a Built Environment Model to 

enhance urban analysis, the current stage of data infrastructure (in the UK at least) is 

limited. The lack of a comprehensive property cadastre in the UK leaves data gaps for 

significant real estate attributes such as property function and size. The methodology for 

creating the Built Environment Model must then begin with some basic structures to 

relate address data to topographic mapping, and with algorithms to classify built form 

functions. 
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5. Methodology for Creating the Built Environment Model 

To create a Built Environment Model we need the relationships between building 

geometry and address geography to be fully represented. This section describes the data 

model that allows the topographic building data to be integrated with the spatial address 

data. First, we present the data model in Section 5.1 that allows groups of address objects 

to be associated with multiple building polygons. The algorithm to identify which 

building polygons belong to which addresses is discussed in Section 5.2. Section 5.3 

concerns how residential type is inferred from the address and geometric data. Finally 

Section 5.4 discusses the functional classification of non-residential addresses. 

5.1 Address Points and Building Polygons 

Spatial address data is generally point based, and this is the case with the OS data used in 

this research. The points are abstractions of the areal extent associated with a particular 

address, derived from the UK postal service database, the Postal Address File (see 

Longley and Mesev (2000) for a discussion). In Address Layer 2, each address is linked 

to a single building polygon and has a single x and y coordinate, as shown in Figure 5. 

There are many building polygons that do not contain an address point. In reality each 

address can relate to a larger area of buildings and land than the coincident building 

polygon defines (for example, the large building at the top of Figure 5). This is not 

recorded within the OS data model. 

 

Adding another layer of complication, each building polygon can contain multiple 

addresses (as for example, a block of flats). So the MasterMap data model has a one-to-

many relationship between building polygons and addresses, excluding many-to-many 

relationships, as illustrated in Figure 6A. The number of building polygons that do not 

have coincident address points is significant. In the London study area, there are 3.49 

million building polygons from OS MasterMap data, of which 1.46 million are not 

directly addressed via Address Layer 2. Linking the unclassified building polygons to 

addresses would be useful for several reasons, the first is for visualisation, providing a 

more complete picture of how address attributes are related to the built form, and 

secondly for analysis, ensuring that the full extent of the building geometry is known. A 
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modified data model to enable many-to-many relationships between addresses and 

building polygons is illustrated in Figure 6B. Multiple addresses within the same polygon 

share a common group reference, forming an Address Group object. 

 

 

Figure 5: Addresses (Circles) and Building Polygons in MasterMap. 

 

A  

B  

Figure 6: Address and Building Geometry Relationships. 

A: MasterMap One-to-Many Data Model, B: Modified Many-to-Many Data Model. 
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5.2 Classifying Building Polygons Using Spatial Relationships 

The task for the classification algorithm is to associate unclassified polygons with 

Address Group objects based on spatial relationships. Different types of relationships 

between classified and unclassified building polygons are illustrated in Figure 7. 

Adjacency relationships are central to the classification algorithm as contiguous polygons 

in MasterMap often comprise a single building which in reality relate to the same 

address. Adjacency relationships vary between basic topology as shown in Figure 7A, 

involving first order neighbours of single classified polygons, to more complex topology, 

for example, in Figure 7B where unclassified polygons are related to multiple classified 

polygons at various orders of adjacency. We assume here that basic adjacency 

relationships, particularly first order neighbours of one classified polygon, relate to the 

same Address Group, i.e. the address point marks the delivery point within a single 

multi-polygon building. For complex adjacency relationships the degree of ambiguity 

and uncertainty is higher. Unclassified polygons with more than one classified neighbour 

of the same order remain unclassified by the algorithm. 

 

 

 

 

 

 

 

       A: Basic Adjacency                                      B: Complex Adjacency 

 

 

 

 

 

 

      C: Non-contiguous Minor Outhouses         D: Non-contiguous Multi-building Group 

Figure 7: Unclassified Building Polygon Relationship Types. 
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In addition to unclassified polygons related by adjacency, there are also a high number of 

non-contiguous building polygons in the data. The vast majority of these are minor 

buildings such as sheds and garages as highlighted in Figure 7C. Classification of these 

minor buildings is not essential for this research, as they do not greatly affect function or 

property size. There are however other configurations of non-contiguous buildings that 

do have a significant bearing on property size as shown in Figure 7D. This type of 

arrangement is generally found in institutional buildings such as hospitals and university 

campuses. Automatic identification of these configurations is challenging as it requires 

geometric and morphological analysis to estimate the association between nearby 

building polygons. The scope for classification errors is high. For this study the volume 

of building polygons to be processed and limited time for detailed validation has led to 

the decision not to include non-contiguous building classification in the algorithm. 

 

5.2.1 Classification Algorithm and Block Features 

For the purposes of assessing adjacency relationships, and to increase efficiency by 

minimising the number of spatial join operations, it is useful to create the concept of 

Blocks in the data model. Blocks are groups of contiguous building polygons as 

highlighted in Figure 8. Each block has a number of directly classified polygons from the 

address data (e.g. Address Layer 2), and a number of unclassified polygons. Based on 

these two properties, the classification algorithm selects how to process each Block, as 

shown in Table 1. The simple steps highlighted in Table 1 limit the number of Blocks 

that need to be processed with the adjacency algorithm. The adjacency algorithm loops 

through the Block polygons, assigning unclassified polygons to neighbours (classified 

polygons) and gives them the same address until no unclassified polygons remain. 

Polygons that share multiple closest neighbours at the same order of adjacency are left 

unclassified as highlighted in Figure 8. The method of classification and order of 

adjacency is stored in a classification confidence attribute which can be used for further 

analysis if needed. 
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Table 1: Algorithm Steps Relating to Block Properties. 

Table 2 shows the results of the adjacency analysis. An additional 20% of the total 

building polygons for the London study area are classified through this method. A large 

number of unclassified polygons still remain (32%) so there is still much scope to 

improve the process and include non-contiguous polygons in the classification. 

 

 

Figure 8: Classification of Polygons Before and After Running the Classification.  
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Table 2: Adjacency Classification Totals for the London Study Area. 

 

5.3 Residential Type Classification 

The relationships between building geometry and addresses can be used to classify 

residential buildings into dwelling types. There are various means of defining housing 

types, and classification schemes vary between data providers and between nation states 

across the world (see Orford and Ratcliffe, 2007 for a detailed discussion). Here we 

pursue a dwelling address and geometry-based functional classification method. With this 

approach, houses are classified using the number and location of residential addresses. So 

for example, a large house that has been subdivided into flats would be classed as flats in 

this method. Other methods, for example, a historical approach, may be more interested 

in the original building type. 

 

The residential classification is applied to residential only (single use) classified 

polygons, identified using Address Layer 2 attributes (see Section 5.4). The algorithm 

relies on two key properties: the number of residential dwellings within each polygon, 

and the number of classified polygons on the parent Block feature. This is a 

simplification of the classification method developed by Orford and Radcliffe (2007). 

However, this was deemed acceptable due to time constraints of the project, 

computational demands and the size of the study area which is a significant order of 

magnitude larger. With these two properties, some basic rules can be set out to derive 

housing types as shown in Table 3. 
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Table 3: Residential Classification Rules. 

An example of the output from this classification is shown in Figure 9, with local scale 

clustering of housing types clearly highlighted. There is a degree of arbitrariness in the 

exact definition of some of the housing types. In the case of end-terrace housing these 

could be classed as ‘Semi-detached’ or ‘Terraced’ depending on the classification 

method used. The Block-based algorithm used here classifies end-terraces as ‘Terraced’. 

This issue is more a question of classification semantics than error per se. Of greater 

concern is where the algorithm results in a clear classification error. The issue of trivial 

building polygon links, such as minor extensions that join together detached houses, is 

one such source of error (see Orford and Radcliffe, 2007). Identifying this error requires 

some form of building roofline analysis. This process is computationally demanding for 

such a large study area and has not implemented at this stage of the research. 
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Figure 9: Example of the Residential Type Classification. 

 

Generally as an automatic classification method the algorithm performs consistently and 

produces useful results for analysis with strongly clustered housing groups as highlighted 

in Figure 9. More complex classifications could be devised, for example, relating houses 

to gardens, or breaking down classes into sub-categories. In this research we intend to 

begin with basic categories for mapping out general relationships. More sophisticated 

classifications could be added in future work. 

5.4: Building Function Classification 

The Address Layer 2 data includes several functional attributes sourced from OS surveys, 

VOA surveys and the National Land Use Database (NLUD) information. The OS survey 

data, referred to as the ‘field surveyor’s allocation’ or ‘Basefunction’ attribute, is 

included for all addresses and is the basis of the functional classification developed in this 

research. Unfortunately the VOA and NLUD attributes are highly incomplete in the 2008 

Address Layer 2 data and are not used here for classification. 
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This OS Basefunction attribute allows residential and non-residential addresses to be 

distinguished. For non-residential addresses, there are over 1,500 functional types- a 

highly detailed dataset. The classes come from raw surveyors’ data and are a somewhat 

jumbled assortment of features ranging from farming structures, to energy infrastructure 

and urban functions. These classes lack any hierarchy and need to be simplified to be 

intelligible in any kind of visualisation and analysis. 

5.4.1: Functional Classification Scheme 

With over 1,500 functional types from the OS survey data, these need to be summarised 

into general categories to be intelligible in visualisation and analysis. The classification 

scheme developed here is based around core urban functions, such as residential, office 

and retail uses. The intention of the scheme is that, when the data is mapped, basic 

aspects of urban structure can be grasped quickly by viewers. Therefore the scheme has a 

limited number of classes, with the intention that these are distinctive in their function 

and are also likely to share similar locational patterns. The ten classes created are 

described in Table 4. Note that the final class of ‘General Commercial’ is forced by data 

issues (see Section 5.4.2). 

 

Classification schemes are to an extent arbitrary. There are several function types that 

have several roles and fall between the classes in Table 4. For instance, high street banks 

are included in the ‘Local Services’ category, but banks also incorporate elements of 

retail and office functions and an alternative classification is possible. Libraries are also 

classed as ‘Local Services’ though they have a strong educational role. Hotels are classed 

as “Hotel” but they often include bars and nightclubs which are found in the “Leisure-

Restaurant” category. Alternative classification schemes can be designed and 

implemented reasonably quickly. Future applications may well require a more detailed 

classification of functions than is provided here, and so the scheme could be tailored to 

these requirements. Fuzzy classification methods would also be useful to handle the kind 

of ambiguities discussed. 
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Table 4: Functional Classification Scheme from OS Basefunction Attribute. 

 

It would be useful for the classification scheme to conform to an official standard. The 

most likely candidate in the UK is the Use Class codes
9
 that are an integral part of the 

planning permissions process. The Use Class scheme classifies office and retail space by 

the quality of the real-estate. Unfortunately this kind of property specification is not 

possible with the OS data at present. It is likely the OS will change the format of the 

functional data in future releases of Address Layer 2 as the current structure lacks any 

classification hierarchy and is difficult to manage. Use Class codes would be a good basis 

for providing an improved structure, or indeed the VOA functional classification scheme, 

Special Category Codes (SCATs). 

                                                
9
 Use Class codes refer to classes of use for England which were set out in the Town and Country Planning 

(Use Classes) Order of 1987 and its subsequent amendments. Readers wishing to know more are referred to 

the UK Planning portal http://www.planningportal.gov.uk/england/genpub/en/1011888237913.html.  
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5.4.2: Commercial Classification Limitations 

There are a substantial number of non-residential addresses that lack attributes from 

either OS cartographic surveys or the VOA data. These addresses are given the 

provisional category of ‘General Commercial’ in the OS data (although there also a small 

number of non-commercial addresses that are also included in this category). In the 

London context, 51% of non-residential addresses have the General Commercial 

classification. This is a very significant shortcoming for any analysis that needs to 

distinguish between commercial functions such as retail and office activities. In contrast 

to the commercial data, the functional classification of non-commercial services, such as 

educational facilities, is much more complete.   

5.4.3: Classification of Mixed-Use Buildings 

It is common in dense urban environments for multiple functions to be combined in a 

single mixed-use building. In the study area approximately 2% of building polygons have 

multiple functions, and these are strongly clustered in the Central London. The data 

sources used in this research do not include any sub-building information and so these 

multiple functions need to be combined into some form of mixed-use classification. 

 

The majority of mixed use buildings (82%) combine only two functions, and of these 

functions, residential is by far the most common (74%). Therefore a simple method of 

classifying mixed-use buildings is to prioritise non-residential functions, creating classes 

such as ‘Mixed-Use Office’ and ‘Mixed-Use Retail’. For mixed-use buildings that 

combine multiple non-residential functions some form of comparison is required to 

estimate the dominant function. For this purpose a script was written to calculate the 

function with the greatest number of addresses. In cases of two or more functions with 

the same number of addresses the classification simply remains ‘Mixed Use’. This is not 

an ideal method of estimating the most prominent function, as the number of addresses 

does not include the size of the premises. For example, a large office of many floors may 

be above two small retail units. This type problem requires sub-building geometry or 

detailed real-estate floorspace data at premises level to be tackled adequately. 
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6: Built Environment Model Validation 

The previous section detailed our methodology for creating a Built Environment 

database. To test its usefulness we need to be able to explore sources of error and validate 

the data model. It is to this, that we now turn. There are potential sources of error at each 

stage of the analysis process, from the accuracy of the original datasets, to the matching 

of addresses to building polygons, and the classification of buildings into functional and 

residential types. As the datasets used in this research are somewhat unique there is a lack 

data that can be used to validate the results against. One exception is the residential 

classification data which can be compared to the dwelling type data from the 2001 census 

(see Section 6.2). For the other data sources the most suitable validation method is to 

ground truth the data against manual surveys. Section 6.1 compares the functional 

classification outputs against manual surveys of two commercial streets in London. This 

is a brief validation survey, but is sufficient to highlight sources of error in the functional 

data. 

6.1: Functional Classification Validation Survey 

The output of the functional classification was compared against manual surveys of two 

streets in London. These were a high density city centre high street- Tottenham Court 

Road- and a lower density suburban centre high street- Station Road in Edgware. While 

far from comprehensive, this small survey should be indicative of the general accuracy of 

the classification data within London. The city centre street has been chosen as the 

potential for error is particularly high, due to the high diversity of uses, frequent changes 

of use and vertical complexity with multi-storey buildings. 

 

The survey included a number of variables to measure various sources of error. These can 

be divided into two general types – classification errors and geometrical errors. 

Classification errors result from errors in the attribute data of the Address Layer 2 dataset 

(discussed in Section 6.1.1), while geometrical errors are related to the 2D generalisation 

of three dimensional buildings (discussed in Section 6.1.2). 
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6.1.1: Classification Errors 

Looking in detail at the classification errors, the survey measured errors in the 

identification of residential addresses (relevant to the residential classification); errors in 

the recorded business name (caused by out-of-date information); incorrect ‘Basefunction’ 

attributes (see Section 5.4) where a clear classification error has been made; and finally 

the number of ‘General Commercial’ classifications (see Section 5.4.2) where a detailed 

classification attribute has been omitted. 

 

Table 5 shows results of the survey and as expected, errors are higher in the city centre 

example though differences with the suburban high street are fairly minimal and there are 

significant errors within both streets. For residential property identification very few 

errors were found and this is a positive sign for the application of the data to residential 

classification. For commercial properties however there are a high number of 

classification errors in various forms. The proportion of ‘General Commercial’ addresses 

is high, there are some temporal errors, and additionally there are a small but significant 

number of directly false classifications in the ‘Basefunction’ attribute. 

 

The Address Layer 2 data used in this analysis is from 2008, and so some temporal errors 

are to be expected compared to the 2009 manual survey. Generally the currency of the 

Address Layer 2 data appears to be good. The high number of ‘General Commercial’ and 

‘Basefunction’ errors are more serious problems for the functional classification, as these 

will directly translate into errors in the final classification. The ‘Basefunction’ errors 

appear to be caused by the method of string matching business names against keywords 

that is used in the creation of Address Layer 2 classifications. For example, a business 

name including the phrase ‘Estate Agent’ would be classed as an Estate Agent with this 

method. Unfortunately this technique is error prone. For instance the key words of 

‘Press’, ‘Communications’ and ‘Workshop’ have been used to classify businesses as 

industrial, but this produces commission errors where small offices, print shops and 

electronics stores are incorrectly classified as industrial. This was the most common 

‘Basefunction’ error found, particularly in the Tottenham Court Road example. There are 

similar errors caused by the commercial nature of business names. For example, a 
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‘Television Entertainment Centre’ is classed as an Entertainment Venue, and the ‘Church 

of Scientology’ is classed as a Church. This highlights the limitation of string matching 

without manual validation. 

 

Table 5: Functional Classification Validation Survey- Attribute Errors. 

 

A final problem encountered was that some addresses were missing in the Tottenham 

Court Road survey. This was mainly a temporal error, as some buildings had been 

redeveloped with subdivided premises creating new addresses. There were however some 

other significant missing addresses, particularly underground stations. This indicates 

some incompleteness in the data. 

 

Overall the validation survey points towards the Address Layer 2 data being accurate in 

distinguishing residential and non-residential properties, but being unreliable as a detailed 

source of commercial classification data with a high proportion of missing attributes and 

a small but significant percentage of incorrect classifications. The data is still very useful 

for residential classifications and more aggregate visualisations of land use, but should 

not be used in detailed analysis without being aware of the various errors in the 

commercial classifications. 

6.1.2: Geometrical Errors 

The manual surveys shown in Table 5 include variables for measuring geometrical 

generalisation and errors. This is intended to explore to what extent geometrical measures 

of commercial properties can be estimated from this data, and how 2D generalisation may 
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lead to errors in the algorithm linking address data to building polygon footprints (see 

Section 5.2). 

 

The survey recorded several measures including the number of Address Groups that 

combine multiple functions within a single building polygon; the number of times 2D 

generalisation is present due to vertical changes in the geometry of premises; and finally 

the number of major 2D generalisation errors found where a clear misrepresentation in 

the geography of function has occurred. These are all highlighted in Table 6.  

 

Table 6: Functional Classification Validation Survey- Geometrical Errors. 

 

The main result that stands out from Table 6 is that the vast majority of buildings from 

the surveyed streets are mixed-use buildings (around 90%), typically combining retail 

and office or retail and residential functions. This means essentially that geometrical 

measures are limited to assessing the footprint of buildings in this model. The vertical 

distribution of uses in multi-storey buildings is not known from the 2D topographic data, 

so measures such as floorspace and volume cannot easily be estimated. 

 

The remaining survey measures describe related 2D generalisation issues. For several 

types of buildings the geometry of property divisions changes in the vertical dimension. 

A common example is found in large commercial buildings where open-plan offices 

occupy the first floor and above, while retail premises with smaller property divisions are 

located on the ground floor. In this case the OS MasterMap data records the larger office 

outline rather than the ground floor retail divisions. This type of arrangement accounts for 

over 30% of Address Groups in the city centre survey and over 18% of the suburban 
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centre survey. For these buildings the footprint area cannot be assessed accurately from 

the topographic data. 

 

Occasionally the 2.5D generalised data will lead to a poor match between the address 

data and the building geometry. This occurs when the address delivery point is not 

coincident with the building polygon it relates to. This error was fairly rare (found three 

times in the surveys) yet it further increases uncertainty in the geometrical measurement 

of commercial premises. 

 

In summary the vast majority of commercial buildings in the surveyed streets are of 

mixed-use, often with vertical variation in the geometry of premises, and this greatly 

limits the ability to make GIS based measures of commercial property size using 2D 

topographic data. The particular case study of London where densities are high and 

mixed use buildings more prevalent exacerbates this issue. This has several implications. 

Firstly for analyses that require geometrical quantification of commercial properties, this 

cannot be accurately estimated from the 2D methods used here and other quantification 

data (such as from the VOA surveys) is required. Secondly for the visualisation of urban 

function, the majority of commercial buildings are mixed-use so methods to sub-

categorise these mixed-use buildings (as in Section 5.4.3) are needed if commercial 

functions are to be visible in map form. 

6.2: Residential Classification Validation 

The residential classification results can be validated against dwelling type data from the 

2001 census. The aim of the validation process is to assess the degree of error in the 

definition of dwelling types in the Built Environment Model. Classification errors could 

result from issues such as trivial building links (see Section 5.4). In addition to accuracy 

issues, contrasts in the methods used to create the datasets are likely to result in some 

discrepancies. In the 2001 census the householder identifies their residential type, and so 

there may be differences between definitions commonly used by residents and the 

geometrical definitions that form the basis of the Built Environment Model. One example 

for instance could be classifying an end of terrace as a semi-detached. As in all censuses, 
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the 2001 census is affected by under-enumeration. It so happens that London, particularly 

Inner-London, has by far the highest under-enumeration of any Government Office 

Region UK with a 10% lower response rate than the average (Office for National 

Statistics, 2006). The Office of National Statistics have modelled the characteristics of 

those missing individuals to improve accuracy, but this process will have errors and will 

likely affect the dwelling type data (Orford and Ratcliffe, 2007). 

 

To make the Built Environment Model data comparable with the 2001 census, it must be 

spatially aggregated to the census zonation used, in this case, to the Output Area. The 

fine-scale nature of the model makes this process straightforward. A more significant 

obstacle to data comparability is temporal variation, as the MasterMap data used to form 

the Built Environment Model is from 2008, while the census is from 2001. Therefore 

buildings constructed after 2001 needed to be removed from the Built Environment 

Model. This was achieved using a combination of the temporal attributes stored in OS 

MasterMap Topographic Layer, and the postcode-based temporal data stored in the All 

Fields Postcode Directory (AFPD). This process may not remove all the new buildings as 

the AFPD only includes those developments large enough to require a new postcode, and 

for the OS MasterMap attributes it is difficult to assess the temporal accuracy. 

 

The totals by residential type are shown in Table 7. There is a reasonable correspondence, 

but two main errors can be seen- an overestimation in the total number of flats and 

terraced houses, and an underestimation in detached and semi-detached houses. There is a 

discrepancy of over 250,000 dwellings in the total number of flats. Likely causes of this 

difference are a failure to remove all new residential developments built after 2001 (as 

recent new build in London has been overwhelmingly in the form of flats), an over-count 

of residential functions from the Address Layer 2 data, and errors related to under-

enumeration in the 2001 census (which is most prevalent in Inner-London where flats are 

predominantly located). The validation process carried out here is not detailed enough to 

gauge the influence of each of these factors and this is therefore an avenue of future 

work. 
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Table 7: Residential Type Totals from Built Environment Model and 2001 Census. 

 

A second trend evident in Table 7 is the under-estimation of detached and semi-detached 

residences compared to the census, combined with an over-estimation of terraced houses. 

Figures 10 A-D further highlights this error. This is very likely to result from the trivial 

building links error discussed in Section 5.4 that will cause detached or semi-detached 

houses to be misclassified as terraced. In fact the number of over-classified terraced 

dwellings (216,791) is very close to the number of under-classified detached and semi-

detached houses (212,424). Figure 10E sums these dwelling types together and shows a 

very close correspondence which backs up this conclusion. An improvement in the 

algorithm to identify these trivial links is therefore a priority for future developments of 

the model. 

 

The graphs in Figure 10 highlight the classification errors clearly. Where the Built 

Environment Model is under-predicting the results are skewed towards the top left with 

high census results and low Built Environment Model results, as seen in the semi-

detached graph Figure 10B. The opposite effect of over-prediction is seen in Figure 10C 

and most strongly in the flats graph Figure 10D. 
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A: Detached B: Semi-detached 

  

C: Terraced D: Flats 

 

 

E: Sum of Detached, Semi-detached and Terraced  

Figure 10: Built Environment Model and 2001 Census Residential Type Totals at Output Area Level. 

 

In conclusion the residential classification validation has shown that the Built 

Environment Model data can be easily spatially aggregated to be compared against 

demographic data. The validation process highlighted two main errors in the 

classification. One is the under-prediction of detached and semi-detached houses, 
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misclassified as terraced. This could be reduced using roof line analysis similar to that 

proposed by Orford (2010), however such a method is computationally expensive for 

such a large study area. The second issue of a large over-estimation of flats may be due to 

either temporal comparison issues or errors in the census related to under-enumeration. 

High quality temporal data is therefore an important feature of the Built Environment 

Model and postcode-based data and the OS MasterMap attributes may not be sufficient in 

this regard. Using data sources such as planning permissions, one may be able to augment 

the temporal attributes of the model to reduce such errors.  

7: Analysis of the Built Environment in London 

With the data infrastructure for the London Built Environment Model in place, and the 

accuracy of the classifications assessed, it is now possible to use the model to explore and 

analyse spatial patterns in urban form and function. Two main examples are provided 

here to illustrate the capabilities of the model, the first focussing on spatial patterns in 

urban function, and the second exploring spatial patterns in residential types and density 

in London. 

 

The urban function and dwelling type data sets are extremely rich and detailed. A 

comprehensive analysis of the data is not provided here, rather we wish to illustrate the 

potential applications of such data sets that the methodology has produced. We use visual 

exploratory analysis techniques to gain an impression of general distributions and 

patterns. This visual analysis is intended to form the basis of more rigorous statistical 

analysis in future research. Furthermore, we are interested in exploring general questions 

regarding how useful the datasets are for enhancing the application of city models to 

urban planners and researchers. Does the addition of built environment data greatly add 

to the understanding of urban context and geography, as compared to typical thematic 

mapping approaches? What scales of visualisation and aggregation are most appropriate 

for particular applications? 

 

The latter issue of scale is of interest as the model enables multiple scales of output so 

visualisations and analysis can be tailored to applications. Urban processes generally 
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operate at multiple scales with interactions between local and city-wide levels (and 

indeed beyond to national and global scales). The Built Environment Model should be 

well suited to exploring the multi-scale nature of urban phenomena. 

7.1: Urban Function Analysis 

The functional classification data created by processing Address Layer 2 attributes (see 

Section 5.4) produces a rich dataset of urban functions at the building level (although 

with significant errors for commercial property data - as we discussed in Section 6.1). 

This data can be explored at a variety of scales, and we begin the analysis at the local 

urban scales and then move up through larger scales to city-wide analysis. 

 

At micro scales the data is of relevance to local planning and urban design applications 

concerned with issues such as urban massing, public space and local accessibility. For 

these applications the context of built form is significant. The addition of topographic 

mapping data such as MasterMap augments the visualisation in this regard. Building 

heights data also contributes to urban context, as patterns of building use and form are 

highlighted. Figure 11 shows an example from the Isle of Dogs in Inner London, with 

commercial high rise buildings at Canary Wharf, surrounded by lower rise residential and 

commercial clusters. The lack of sub-building data prevents the vertical classification of 

buildings, and mixed-use categories are used (see Section 5.4.3). The visualisation of 

2.5D building heights is difficult to employ over larger urban areas. This is partly a 

software problem, as GIS software is designed primarily for 2D visualisation with limited 

3D capabilities, and partly a visual clarity problem, as intelligibility decreases as the 

study area expands. 

 

To explore larger urban extents, we felt that 2D visualisation was more appropriate. As 

noted in Section 2 larger scales of analysis are more directly relevant to geographical 

research, as spatial patterns in function correspond to the agglomeration of commercial 

and service activities. We illustrate such patterns of urban function found in London in 

Figures 12 through to 15. The majority of the city is suburban in character such as that 

shown in Figure 12, which is dominated by residential functions, with small scale local 
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retail and service centres. Schools (shown in pink) serve local residential populations and, 

in contrast to the clustering of commercial activities, display negative spatial 

autocorrelation, generally locating in quiet suburban areas away from busier centres. 

 

 

Figure 11: Building Function and Land Use Classification Applied to Tower Hamlets. 

 

 

Figure 12: London Suburbs Function Map (North-West London). 

 



41 

Metropolitan centres such as Croydon shown in Figure 13 feature larger scale clustering 

of commercial and service activities, and offer a wider range of functions including office 

activities, shopping centres, leisure activities and higher level education and health 

services. Figure 13 in fact combines two types of agglomeration commonly found in 

Outer London. The first, in the centre of the map is a metropolitan centre, Croydon, 

which is fine grained with small scale patterns of functional diversity. Secondly, to the 

west is an extensive retail and industrial park with large dispersed building footprints. 

The combination of metropolitan centres with industrial parks is fairly typical in Outer 

London, and other centres with similar characteristics can be found at Wembley and 

Stratford. With continued deindustrialisation, these parks are diversifying into retail and 

office functions, and remain highly car dependent. 

 

As we move to the inner-city as shown in Figure 14, functional diversity increases with 

inner-city centres linked by linear clusters of activity along major roads (or at least the 

major roads that function as streets). This is most visible in London along radial routes 

such as the historic Edgware Road (A5) and Kingsland Road (A10), but occurs at varying 

densities on a great number of links. The attraction of commercial functions (primarily 

retail) to high accessibility locations is a core part of theory in urban street network 

configuration research (see Hillier, 1996). The techniques and data developed here could 

be a useful evidence base to test such theories, though it is unlikely to support any 

straightforward relationship between accessibility and urban function. There are 

numerous complexities in relationships between accessibility and location, as different 

commercial functions have varying needs in terms of agglomeration, transport mode 

priorities, labour accessibility, customer accessibility, and ability to meet rental costs. 

 

In the city centre of London the diversity of function and density of urban grain reaches 

its peak. Figure 15 shows the functional pattern in Central London. The mix of functions 

is so fine-grained that the map appears as a dense multi-coloured patchwork. 

Agglomerations can be seen such as the dominance of blue coloured office activities in 
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the City of London (to the east) and greater frequency of retail and leisure functions in 

the West End
10

. 

 

 

Figure 13: Metropolitan Centre and Business Park Function Map (Croydon). 

 

 

Figure 14: Inner-City Function Map (North London- Kingsland Road). 

                                                
10

 The exact definition of the West End varies depending on the data source used however; many of the 

definitions include Oxford Street, Regent Street and Bond Street in the term. 
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Figure 15: City Centre Function Map (West End and City of London). 

 

We can now move up from meso-scale analysis to visualising the distribution of urban 

function across the whole of London. The fine grain diversity of function identified in 

Figures 12 through to 15 is problematic for city-wide visualisations as patterns are too 

intricate to be intelligible to the viewer. There are several approaches to solving this 

problem, such as simplifying the classification scheme, aggregation methods and 

statistical indices. Here we pursue the classification simplification method (aggregation 

techniques are used with the residential data in Section 7.2). 

 

Figure 16 shows the building level function data for the whole of London, classified into 

three groups: commercial, local services and residential. This basic classification method 

greatly improves the legibility of the map, allowing macro scale patterns across the whole 

of London to be identified. The graphic technique of using a black background also 

improves clarity. It is interesting that this city-wide visualisation is possible without 

performing any explicit data aggregation processes. The GIS software (ESRI ArcMap 

9.3) is itself is effectively performing some aggregation through its graphics engine, 
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particularly with respect to how the different classes of features are overlaid in the map. 

Changing the hierarchy of feature classes in the symbology options changes the map 

output. In Figure 16 the symbol hierarchy used is reflected in the Legend, with 

commercial and local service classes prioritised over residential. 

 

Figure 16: Macro-Scale Basic Functional Map of London. 

 

Macro-scale patterns of commercial activities can be clearly seen in Figure 16, with 

commercial centres at various scales linked by a network of linear agglomerations along 

major roads. The main hub of Central London forms by far the largest commercial 

agglomeration, while local centres, business and industrial parks form smaller outer 

clusters, linked to the central hub through a network of radial routes. These radials are 

highlighted by linear commercial activities, producing a ‘hub and spoke’ pattern. 
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The disadvantage of grouping all the commercial activities together (and of the 

incomplete commercial classification in the underlying data) is that we cannot distinguish 

between types of commercial centre (which was possible to a degree at the meso-scale 

analysis). In Figure 16 industrial parks tend to have added prominence due to the large 

building footprints. For example, Park Royal to the west of London which appears as the 

largest cluster outside of the city centre. Aggregation methods would give a greater 

degree of control and clarity over the macro-scale analysis, and would be necessary for 

any aggregate statistical analysis. 

 

In summary, visualisation of the urban function data clearly identified spatial patterns in 

land-use at a series of scales. Micro-scale visualisations relate to local building 

configurations and were most practical with the added context of topographic data and 

building heights. The lack of sub-building data is a shortcoming at this scale. Meso-scale 

analysis identified very clear patterns in the clustering of commercial functions, and has 

potential for use in geographical research. The macro scale visualisations showed the 

potential to visualise function over an entire city, highlighting large scale agglomeration 

patterns. This required simplification of the functional classification to make the map 

legible to the viewer. 

7.2: Residential Typology and Density Analysis 

Spatial patterns in dwelling types are the result of both micro and macro scale urban 

processes. The clustering and configuration of dwelling types is influenced by the nature 

of the developer (for example, state or private sector), the era of development, local 

geography, the wider historical evolution of local centres and transport infrastructure 

(particularly roads), and conversions through densification and gentrification processes. 

These local actions result in macro scale patterns as the attraction of major employment 

and service centres which in turn increases housing demand and increases residential 

density in accessible locations while suburban locations can offer larger properties and 

gardens. These processes were originally theorised in Alonso’s (1964) influential Bid 

Rent model. 
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The level of detail provided by the Built Environment Model highlights the great 

diversity and complexity of spatial patterns of housing in London, with small scale 

clustering leading to a wide range of housing types in close proximity. Some areas 

include the full selection of dwelling types from detached houses to flats within a few 

hundred metres as highlighted in Figure 17. At the meso-scale a patchwork of housing 

clusters is clearly evident dotted with local centres and parks as shown in Figure 18. 

Higher density flats can be clearly seen following major roads, indicating local 

accessibility effects. 

 

Figure 17: Local Scale Diversity of Housing Types in Outer London. 

 

While local diversity and clustering of housing types is clearly apparent, this does not 

outweigh the strong macro scale trend of a density gradient from the city centre to the 

low density outskirts. Figure 19 visualises the data at a 50m grid scale, with the most 

frequent residential building type (based on counts of buildings rather than dwellings) 

within each grid square shown. This is an example of a grid based aggregation technique 

being used to simplify the fine-scale built environment data (see Section 2.3). As one 

would expect flats dominate the city centre and are prevalent in the inner city. Terrace 

housing takes up the largest area, bridging between the inner-city and the suburbs. Major 

areas of lower density detached and semi-detached housing are found beyond the inner-
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city. There are small areas that break these general trends, such as outer town centres 

with local clusters of flats distant from Central London, but generally the monocentric 

housing density gradient is evident throughout London. 

 

 

Figure 18: Meso-Scale Neighbourhood Clustering of Housing Types in South London. 

 

This density gradient can be highlighted in graph form. Figure 20 shows mean residential 

density on the y-axis and distance from the city centre
11

 on the x-axis. The graph displays 

several characteristics in accord with Alonso’s (1964) Bid Rent theory. Firstly at the very 

centre of the city, residential density is low as commercial activities outbid residential 

functions in the most accessible locations. Outside of the commercial centre residential 

density peaks at five kilometres from the centre and then declines sharply, tailing off with 

an inverse distance relationship. The density decline is also reflected in the change of 

housing types with the prevalence of higher density flats declining with distance, while 

                                                
11

 There is no definitive central point for measuring distances in London. By historical convention Charing 

Cross is used. This falls between the central districts of the City of London, Westminster and the West End, 

and so we have followed convention in measuring from this point. 
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lower density detached and semi-detached housing takes a larger share in suburban areas. 

This change in housing type is more clearly highlighted in Figure 21 where the total 

number of dwellings by distance is shown. Terraced housing is the largest group and is 

prevalent over a greater range of distances compared to other housing types. 

 

 

Figure 19: Most Frequent Residential Building Type in London, 50m Grid. 

 

Alonso’s (1964) Bid Rent theory provides a useful framework to describe the macro-

scale patterns of residential type and density in London, highlighting the continued 

dominance of the historic monocentric structure. This is however a rather static view and 

it would be interesting to consider whether more recent urban development is reinforcing 

the historic structure or if new trends are evolving. There are current debates surrounding 

the densification of the suburbs in London, which implies that denser housing types are 

becoming more prevalent in outer London locations. Temporal data linked to the built 
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environment database could enable this kind of analysis, for example, through planning 

permission data. 

 

 

Figure 20: Graph of Mean Dwelling Density by Type and Distance from Centre. 

 

 

Figure 21: Graph of Total Dwellings by Type and Distance from Centre. 
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In addition to new build, another significant process in housing dynamics is building 

conversion. Micro scale patterns in dwelling type highlight a great variety of probable 

conversions that have occurred, particularly of terraced housing into flats and 

maisonettes as highlighted in Figure 22 (where yellow is for terraces, blue is for flats). 

These patterns indicate that densification processes are frequent and widespread. 

Gentrification can later result in the reversal of these trends. A more comprehensive 

temporal analysis than is provided here is required to understand these patterns, and this 

is a promising area for future research. 

 

In summary the residential typology data can be applied in a range of analyses at both 

micro and macro scales. In the London context there is both highly complex micro scale 

clustering of housing types, and a clear macro scale monocentric pattern of declining 

densities from the centre. The visualisation and aggregation methods employed are 

successful in translating between these scales. The analysis could be enhanced with more 

detailed temporal data to explore evolution over time. Many data sets, such as house sales 

and geodemographic data, would be interesting to analyse in combination with the 

residential typology data and we intend to explore these in future research. 

 

 

Figure 22: Probable Conversions of Terraced Housing. 
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8. Conclusions 

This research has successfully demonstrated the viability of developing a Built 

Environment Model of a large city with micro-scale building level data. The flexibility 

and power of this approach are highlighted in the ability to integrate datasets together at 

an address level, and to perform spatial analysis on these datasets to create the functional 

and residential classifications described. This flexibility also extends to how the data is 

output, with visualisation and aggregation at multiple scales illustrated. This approach is 

a complementary method to the traditional aggregate approach in quantitative geography 

and overcomes several of the problems associated with scale and the lack of direct built 

environment representation in geographical analysis. 

 

A host of research opportunities are possible with such a model, particularly around 

relationships between urban form, function and accessibility; detailed analysis of 

residential property markets, and analysis of urban change and development. The 

analysis section of this paper has introduced patterns of form and function in London, 

highlighting both micro and macro scale clustering of urban functions and residential 

types. 

 

While such fields have great potential for the application of the Built Environment 

Model, this paper has also identified challenges to the geography and geometry approach. 

These issues are principally the limitations of 2D data, data accuracy, algorithm 

complexity and difficulties with temporal data. 

 

The ability to link geometrical data to other address-based data sources hinges on linking 

spatial addresses to topographic mapping data. The OS MasterMap address and 

topographic layers have been key to this process, and this research has shown how the 

data model for integrating addresses and buildings can be extended. There are however 

some fundamental limitations with using 2D topographic data as vertical changes in 

premises geometry are missing; therefore the size of premises in mixed-use buildings 

(the majority of commercial buildings) is not known. Solutions to this problem can either 

involve using 3D data (which is not widely available for the UK) or introducing attribute 
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based measures of premise size, such as from the VOA surveys. The integration of the 

VOA data could also help with the incomplete commercial classifications in the Address 

Layer 2 data. 

 

The algorithms used in this research to assess address geometry and classify residential 

types are based on straightforward adjacency relationships. This approach has limitations 

as shown in the residential classification errors (See Section 6.1). More advanced 

algorithms including some morphological techniques such as roofline analysis would 

improve these algorithms and should be a priority in future advances of the London Built 

Environment Model. These advanced algorithms will have to be computationally feasible 

for the large extend of the study area. 

 

Finally the comparison of the model with the 2001 census and the analysis of residential 

form patterns (Section 6.2) have highlighted the importance of temporal data. While the 

Built Environment Model has great spatial flexibility this is not yet mirrored in its 

temporal representation. Neither the OS MasterMap temporal attributes (which are 

incomplete for buildings built earlier than the MasterMap release in 2001) nor the 

postcode-based AFPD approach are sufficient in this regard. Future research should 

investigate how richer temporal data can be integrated with the Built Environment 

Model, possibly through data sources such as planning permission data. 

Acknowledgements 

The authors would like to thank the Greater London Authority Economics Unit 

especially Margarethe Theseira, without which this work would not have been possible. 

We also wish to thank the following data providers for this research: the Ordnance 

Survey, Infoterra and the Greater London Authority. 

 

 



53 

References  

Aguilera, A. (2005), 'Growth in Commuting Distances in French Polycentric 

Metropolitan Areas: Paris, Lyon and Marseille', Urban Studies, 42(9): 1537-1547. 

 

Alonso, W. (1964), Location and Land Use: Toward a General Theory of Land Rent, 

Harvard University Press, Cambridge, MA. 

 

Atisreal (2005), Property Value Study - Assessing the Change in Values Attributable to 

the Jubilee Line Extension, Transport for London, London, UK, Available at 

http://www.tfl.gov.uk/assets/downloads/JLE-Final-Report-May-2005.pdf. 

 

Banister, D. (2005), Unsustainable Transport: City Transport in the New Century, 

Routledge, London, UK. 

 

Batty, M. (1976), Urban Modelling: Algorithms, Calibrations, Predictions, Cambridge 

University Press, Cambridge, UK. 

 

Batty, M. (2000), 'The New Urban Geography of the Third Dimension', Environment and 

Planning B, 27(4): 483-484. 

 

Batty, M. (2007), 'Model Cities', Town Planning Review, 78(2): 125-178. 

 

Batty, M., Chapman, D., Evans, S., Haklay, M., Kueppers, S., Shiode, N., Hudson-

Smith, A. and Torrens, P.M. (2001), 'Visualizing the City: Communicating 

Urban Design to Planners and Decision-Makers', in Brail, R.K. and Klosterman, 

R.E. (eds.), Planning Support Systems: Integrating Geographic Information 

Systems, Models and Visualisation Tools, ESRI Press, Redlands, CA, pp. 405-

443. 

 



54 

Batty, M. and Hudson-Smith, A. (2002), 'Virtuality and Cities: Definitions, 

Geographies, Designs', in Fisher, P. and Unwin, D. (eds.), Virtual Reality in 

Geography, Taylor & Francis, London, UK, pp. 270-291. 

 

Batty, M. and Hudson-Smith, A. (2005a), Imagining the Recursive City: Explorations 

in Urban Simulacra, Centre for Advanced Spatial Analysis (University College 

London): Working Paper 98, London, UK. 

 

Batty, M. and Hudson-Smith, A. (2005b), 'Urban Simulacra', Architectural Design, 

75(6): 42-47. 

 

Brail, R.K. and Klosterman, R.E. (eds.) (2001), Planning Support Systems: Integrating 

Geographic Information Systems, Models and Visualisation Tools, ESRI Press, 

Redlands, CA. 

 

Bruhns, H., Steadman, P. and Herring, H. (2000), 'A Database for Modeling Energy 

Use in the Non-Domestic Building Stock of England and Wales', Applied Energy, 

66(4): 277-297. 

 

Clarke, M. and Holm, E. (1987), 'Microsimulation Methods in Spatial Analysis and 

Planning', Geografiska Annaler. Series B, Human Geography, 69(2): 145-164. 

 

Davidson, M. and Lees, L. (2005), 'New build 'gentrification' and London's riverside 

renaissance', Environment and Planning A, 37: 1165-1190. 

 

de Smith, M.J., Goodchild, M.F. and Longley, P.A. (2007), Geospatial Analysis: A 

Comprehensive Guide to Principles, Techniques and Software Tools (2nd 

Edition), The Winchelsea Press, Winchelsea, UK. 

 



55 

Department for Communities and Local Government (2005), Towards the National 

Spatial Address Infrastructure - Outline Prospectus, The Department for 

Communities and Local Government, London, UK. 

 

Fotheringham, A.S., Brunsdon, C. and Charlton, M. (2002), Geographically Weighted 

Regression & Associated Techniques, John Wiley and Sons, Chichester, UK. 

 

Galster, G. (2001), 'On the Nature of Neighbourhood', Urban Studies, 38(12): 2111–

2124. 

 

GLA (2002), London's Skyline, Views and High Buildings, The Greater London 

Authority, London, UK, Available at 

http://www.london.gov.uk/mayor/planning/docs/tr19_high_bdgs_lowres.pdf. 

 

GLA (2004), Defining and Analysing London's Housing Submarkets, The Greater 

London Authority, London, UK, Available at 

http://www.london.gov.uk/mayor/economic_unit/docs/workingpaper_07.pdf. 

 

GLA (2006a), DMAG Briefing 2007/32 – GLA 2006 Round Demographic Projections, 

The Greater London Authority, London, UK. 

 

GLA (2006b), Draft Alterations to The London Plan: Spatial Development Strategy for 

Greater London, The Greater London Authority, London, UK, Available at 

http://www.london.gov.uk/mayor/strategies/sds/lon_plan_changes/index.jsp. 

 

Gordon, P. and Richardson, H.W. (1996), 'Beyond Polycentricity: the Dispersed 

Metropolis, Los Angeles, 1970-1990', Journal of the American Planning 

Association, 62(3): 289-295. 

 

Gröger, G., Kolbe, T.H., Czerwinski, A. and Nagel, C. (2008), OpenGIS City 

Geography Markup Language (CityGML) Encoding Standard, Version 1.0.0 



56 

International OGC Standard, Open Geospatial Consortium, Doc. No. 08-007r1 

2008, Available at http://www.opengeospatial.org/standards/citygml. 

 

Hillier, B. (1996), 'Cities as Movement Economies', Urban Design International, 1(1): 

41-60. 

 

Longhorn, R.A. and Blakemore, M. (2007), Geographic Information: Value, Pricing, 

Production, and Consumption, CRC Press, Boca Raton, FL. 

 

Longley, P.A. (2003), 'Geographical Information Systems: Developments in Socio-

Economic Data Infrastructures', Progress in Human Geography, 27(1): 114-121. 

 

Longley, P.A. and Mesev, T.V. (2000), 'On the Measurement and Generalisation of 

Urban Form', Environment and Planning A, 32(3): 479-488. 

 

Longley, P.A. and Mesev, T.V. (2003), 'On the measurement and generalisation of 

urban form', Environment and Planning A, 32: 473-488. 

 

Lowry, I.S. (1965), 'A Short Course in Model Design', Journal of the American Institute 

of Planners, 31(2): 158-165. 

 

Masser, I. (2005), GIS Worlds: Creating Spatial Data Infrastructures, ESRI Press, 

Redlands, CA. 

 

Moudon, A.V. (2002), 'Thinking About Micro and Macro Urban Morphology', Urban 

Morphology, 6(1): 38–40. 

 

Office for National Statistics (2006), 2001 Census General Report For England and 

Wales, Office for National Statistics, Newport, UK, Available at 

http://www.statistics.gov.uk/StatBase/Product.asp?vlnk=14213. 

 



57 

Onsrud, H.J. (ed.) (2007), Research and Theory in Advancing Spatial Data 

Infrastructure Concepts, ESRI Press, Redlands, CA. 

 

Openshaw, S. (1984), The Modifiable Areal Unit Problem (Concepts and Techniques in 

Modern Geography: 38), Geo-Books, Norwich, UK. 

 

Ordnance Survey (2006), OS MasterMap Address Layer and Address Layer 2: User 

Guide (v1.0), Ordnance Survey, Southampton, UK, Available at 

http://www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/layers/address

layer2/detailedproductinfo/OSMMALandAL2userguide.pdf. 

 

Ordnance Survey (2007a), OS MasterMap Address Layer 2 Technical Specification 

(v1.3), Ordnance Survey, Southampton, UK, Available at 

http://www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/layers/address

layer2/detailedproductinfo/al2_tech_spec.pdf. 

 

Ordnance Survey (2007b), OS MasterMap Topography Layer: User Guide and 

Technical Specification (v1.3), Ordnance Survey, Southampton, UK, Available at 

http://www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/userguides/do

cs/OSMMTopoLayerUserGuide.pdf. 

 

Orford, S. (2010), 'Towards a Data-Rich Infrastructure for Housing Market Research: 

Deriving Floor Area Estimates for Individual Properties from Secondary Data 

Sources', Environment and Planning B, 37(2): 248-264. 

 

Orford, S. and Ratcliffe, J. (2007), 'Modelling UK Residential Dwelling Types using 

OS Mastermap Data: A Comparison to the 2001 Census', Computers, 

Environment and Urban Systems, 30(2): 206–227. 

 

Pryce, G. and Evans, G. (2007), Identifying Submarkets at the Sub-Regional Level in 

England, Department for Communities and Local Government, London, UK, 



58 

Available at 

http://www.communities.gov.uk/publications/planningandbuilding/identifyingsub

markets. 

 

Rabin, Y. (1987), 'The Roots of Segregation in the Eighties: The Role of Local 

Government Actions', in Tobin, G.A. (ed.) Divided Neighbourhoods: Changing 

Patterns of Racial Segregation, Sage Publications, London, UK, pp. 208–226. 

 

Skupin, A. (2000), 'From Metaphor to Method: Cartographic Perspectives on 

Information Visualization', Proceedings IEEE Symposium on Information 

Visualization (InfoVis 2000), 9th -10th October, Salt Lake City, UT. 

 

Smith, D.A. (2009), 'Polycentricity and Sustainable Development: A Real Estate 

Approach to Analysing Urban Form and Function in Greater London', 11
th

 

International Conference on Computers in Urban Planning and Urban 

Management, 16th -18th June, Hong Kong, PLC. 

 

Spooner, B. and Cooper, E. (2006), Working Paper 20- Employment Projections for 

London by Sector and Borough, The Greater London Authority Economics Unit, 

London, UK, Available at 

http://www.london.gov.uk/mayor/economic_unit/docs/wp_20_employment.pdf. 

 

Steemers, K. (2003), 'Energy and the City: Density, Buildings and Transport', Energy 

and Buildings, 35(1): 3-14. 

 

Talen, E. (2003), 'Measuring Urbanism: Issues in Smart Growth Research', Journal of 

Urban Design, 8(3): 195-215. 

 

Tuan, Y. (1977), Space and Place: The Perspective of Experience, University of 

Minnesota Press, Minneapolis, MN. 

 



59 

Urban Task Force (1999), Towards an Urban Renaissance: Final Report of the Urban 

Task Force, Routledge, London, UK. 

 

van Oosterom, P., Zlatanova, S., Penninga, F. and Fendel, E. (eds.) (2008), Advances 

in 3D Geoinformation Systems, Springer-Verlag, Berlin, Germany. 

 

Zlatanova, S. and Prosperi, D. (2006), Large-scale 3D Data Integration: Challenges 

and Opportunities, Taylor and Francis, Boca Raton, FL. 

 

 

 


