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Abstract

This thesis concerns applications of topology in magnetic fields. First, we examine

the influence of writhe in the stretch-twist-fold dynamo. We consider a thin flux

tube distorted by simple stretch, twist, and fold motions and calculate the helicity

and energy spectra. The writhe number assists in the calculations, as it tells us how

much the internal twist changes as the tube is distorted. In addition it provides

a valuable diagnostic for the degree of distortion. Non mirror-symmetric dynamos

typically generate magnetic helicity of one sign on large-scales and of the opposite

sign on small-scales. The calculations presented here confirm the hypothesis that

the large-scale helicity corresponds to writhe and the small-scale corresponds to

twist. In addition, the writhe helicity spectrum exhibits an interesting oscillatory

behaviour.

Second, we examine the effect of reconnection on the structure of a braided mag-

netic field. A prominent model for both heating of the solar corona and the source

of small flares involves reconnection of braided magnetic flux elements. Much of

this braiding is thought to occur at as yet unresolved scales, for example braiding of

threads within an EUV or X-ray loop. However, some braiding may be still visible

at scales accessible to Trace or the EIS imager on Hinode. We suggest that attempts

to estimate the amount of braiding at these scales must take into account the de-

gree of coherence of the braid structure. We demonstrate that simple models of

braided magnetic fields which balance input of topological structure with reconnec-

tion evolve to a self-organized critical state. An initially random braid can become

highly ordered, with coherence lengths obeying power law distributions. The energy

released during reconnection also obeys a power law.
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Preface

This thesis considers the topology of magnetic field lines in solar dynamos and the

solar atmosphere. We begin in chapter 1 by reviewing turbulence theory and mag-

netohydrodynamics (MHD). A description of the statistical quantities observed in

MHD turbulence is presented in chapter 1 to give a tangible picture of the phenom-

ena discussed in the rest of the thesis. The properties of magnetic field lines are also

discussed using the idea of flux surfaces in MHD equilibrium.

In chapter 2, we review magnetic dynamos and their energetics. In sections 2.2-

2.7, we describe large and small-scale dynamos as well as fast and slow dynamos

and their energies. We proceed in sections 2.8-2.10 to review the stretch-twist-fold

(STF) picture in solar dynamos. We investigate the influence of writhe in the STF

process in chapter 3, where our model is a thin flux tube distorted by stretch, twist

and fold motions. Section 3.2 reviews helicity, twist and writhe. In section 3.3, we

calculate the magnetic field inside a twisted torus, followed by magnetic energy and

magnetic helicity calculation for a thin tube. Numerical simulations concerning the

behaviour of helicity in the STF picture are presented in section 3.4.

We review the structure of magnetic field lines in the solar corona in chapter 4.

Sections 4.2-4.4 provide a review of a number of different models representing coronal

loops and their energy transfer. In chapter 5 we review the trigger and energy

release process of solar flares. The discussion in section 5.2 reviews the collision

and reconnection of twisted magnetic flux tubes that result in solar flares before

proceeding in section 5.3 to review the frequency distribution of solar flares. Chapter

6 examines the effect of reconnection on the structure of braided magnetic field.

Sections 6.2-6.4 provide an estimate of braiding inside coronal loops. Section 6.5

presents a model of braided field lines in a self-organized critical state. A numerical

model involving complex braiding pattern is given in section 6.6.

12



Chapter 1

A Survey of Turbulence Theory

1.1 Introduction

This chapter aims to give an overview of turbulence theory. Following this, we pro-

vide an overview of magnetohydrodynamics (MHD) and MHD turbulence that form

the basis of our research in solar dynamo. We will primarily follow the treatments

of Uriel Frisch [88] for turbulence theory, and Glenn Bateman [22] for MHD.

The equations used to describe the behaviour of an incompressible fluid in a flow

are the Navier-Stokes equations:

∂tvi + vj ∂jvi = −∂ip+ ν ∂jjvi, (1.1)

∂ivi = 0. (1.2)

Equation (1.2) describes the velocity field v divergence free condition and p and ν

are the pressure and the viscosity respectively. The above equations are sufficient to

describe many turbulent flows; however it is important to look at experimental data

and numerical simulations in order to find out the consequences of the equations.

For a given geometrical shape of the boundaries, the Reynolds number is the only

control parameter of the flow and is defined as

R =
Lv

ν
, (1.3)

where L and v are the characteristic scale and velocity of the flow, and ν is the

kinematic viscosity. Similar equations for magnetic Reynolds number are defined in

chapter (2).

13



Table 1.1: Typical Reynolds numbers for various flows.
L[m] v[ms−1] ν[m2s−1] R

Flow past wing of a Jumbo jet 3 200 1.5× 10−5 4× 107

Moving a finger through water 10−2 3× 10−2 10−6 3× 102

Spin-down of a stirred cup of tea 5× 10−2 10−1 10−6 5× 103

Glycerine draining from a spoon 3× 10−2 10−2 1.8× 10−3 2× 10−1

Table 1.1 provides a summary of Reynolds numbers for various flows. There

typically exists a Reynolds number threshold beyond which the flow becomes chaotic

in its time-dependence.

1.2 Symmetries and Turbulence

Symmetry considerations are central to the study of the transition phenomena and

fully developed turbulence. Here, we give a brief review of symmetry in turbulence

theory by Frisch [88]. Consider a flow of uniform velocity v = (v, 0, 0) (at infinity),

parallel to the x-axis, incident from the left on an infinite cylinder, of circular cross-

section with diameter L where the axis is along the z-direction and the boundary

conditions are fixed (figure 1.1). This flow has the following symmetries:

Left-right (x-reversal),

Up-down (y-reversal),

Time-translation (t-invariance),

Space-translation parallel to the axis of the cylinder (z-invariance).

All of the above symmetries, except the first, are consistent with the Navier-Stokes

equations and the boundary conditions. To be more specific, consider the velocity

field with components (u, v, w). The left-right symmetry is

(x, y, z) → (−x, y, z), (u, v, w) → (−u, v, w), (1.4)

and the up-down symmetry is

(x, y, z) → (x,−y, z), (u, v, w) → (u,−v, w). (1.5)

The left-right symmetry (x, y, z) → (−x, y, z) is not consistent in this case with the

Navier-Stokes equations. However it is consistent with the Stokes equation for slow

viscous flow which is obtained by dropping the non-linear term and time derivative

in the Navier-Stokes equations

0 = −∂ip+ ν ∂jjvi, ∂ivi = 0. (1.6)
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A symmetry is spontaneously broken if it is consistent with the equations of

motion and the boundary conditions, but is not present in the solution. As the

Reynolds number is increased, the various symmetries permitted by the equations

(Navier-Stokes or Stokes) and the boundary conditions are broken. However, at very

high Reynolds number the symmetries are restored in a statistical sense far from

the boundaries. Fully developed turbulence occurs when at very high Reynolds

numbers, all or some of the possible symmetries are restored in a statistical sense.

For this to happen, the flow should not be subjected to any constraint such as a

long-scale shear, which would prevent it from accepting all possible symmetries.

Figure 1.1: Uniform flow with velocity v, incident on a cylinder of diameter L.

1.2.1 Periodic Boundary Conditions

To achieve maximum symmetry, it is useful not to have any boundaries. However,

since the unboundedness of the space leads to mathematical difficulties, we assume

periodic boundary conditions in the space variable r = (x, y, z):

v(x+ nL, y +mL, z + qL) = v(x, y, z), (1.7)

for all x, y, z and the integers m, n, q. The positive real number L is called the

period. It is then possible to consider the restriction of the flow to a periodic box

such as BL : 0 ≤ x < L, 0 ≤ y < L, 0 ≤ z < L (figure 1.2) with the the case of a

fluid in unbounded space R3 obtained by letting L → ∞. The space of L-periodic

boundary functions v(r) satisfying ∇ · v = 0 is denoted by H.

Let G denote a group of transformations acting on space-time functions v(t, r),

that are spatially periodic and divergence-free. G is a symmetry group of the Navier-

Stokes equations if, for all v that are solutions of the Navier-Stokes equations, and

for all g ∈ G, the function gv is also a solution. Here is a list of known symmetries

of the Navier-Stokes equations:

• Space-translations gspace
ρ : (t, r, v) 7−→ (t, r + ρ, v) ρ ∈ R3.

15



• Time-translations gtime
τ : (t, r, v) 7−→ (t+ τ , r,v) τ ∈ R.

• Galilean transformations gGal

U : (t, r,v) 7−→ (t, r + U t,v + U) U ∈ R3.

• Parity P : (t, r,v) 7−→ (t,−r,−v).

• Rotations grot
A : (t, r,v) 7−→ (t, Ar, Av) A ∈ SO(R3) (three dimensional

rotation group) but not in T 3 (T 3 = 3 - torus).

• Scaling gscal
λ : (t, r,v) 7−→ (λ1−ht, λr, λhv) λ ∈ R+, h ∈ R.

The space and time-translation symmetries are obvious. In the Galilean transfor-

mations, we substitute v(t, r − Ut) + U for v(t, r), and there is a cancellation of

terms between ∂tv and v · ∇v.

Under parity, all the terms in the Navier-Stokes equations change sign (in partic-

ular ∇ 7−→ −∇). The symmetry v 7−→ −v is not consistent with the equations,

except when the non-linear term is negligible. Continuous rotational invariance is

not consistent with periodic boundary conditions, since the latter singles out certain

directions. For the scaling transformations, when t is changed into λ1−ht, r into λr,

and v into λhv, all the terms in the Navier-Stokes equations are multiplied by λ2h−1,

except the viscous term which is multiplied by λh−2. Therefore for finite viscosity,

only h = −1 is permitted. The corresponding symmetry is then equivalent to the

well-known similarity principle of fluid dynamics, since the scaling transformations

must keep the Reynolds number unchanged. If the viscous term is ignored or if it

tends to zero, as it may be justified at very high Reynolds numbers, then there are

infinitely many scaling groups, labelled by their scaling exponent h, which can be

any real number.

We finally note that all the listed symmetries, except the scaling symmetries

are just macroscopic consequences of the basic symmetries of Newton’s equations

governing microscopic molecular motion. The pressure can be eliminated from the

Navier-Stokes equations in a number of ways. Firstly we have

∂i (vj ∂jvi) = ∂ij (vivj) = −∂iip = −∇2p, (1.8)

which is an instance of the Poisson equation:

∇2p = σ. (1.9)

The Poisson equation can be solved within the class of L-periodic functions provided

that σ(r) has a vanishing average:

〈σ〉 =
1

L3

∫
BL

σ(r)dr = 0. (1.10)
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The function, σ = −∂ij(vivj), being composed of space-derivatives of periodic func-

tions, satisfies (1.10).

The solution of the Poisson equation can be found by going from the physical

space (r-space) to the Fourier space (k-space), using Fourier transforms. Let

σ(r) =
∑

k

eik ·r σ̂k, k ∈ 2π

L
Z3, (1.11)

p (r) =
∑

k

eik ·r p̂k, (1.12)

where Z is the set of signed integers and the Fourier coefficients are given by

σ̂k =
〈
e−ik ·rσ(r)

〉
, (1.13)

p̂k =
〈
e−ik ·rp(r)

〉
. (1.14)

According to (1.10), σ0 vanishes and from (1.9), we have

p̂k = −
σ̂k
k2 k 6= 0, (1.15)

where k is the modulus of the wave-vector k. The coefficient p̂0 is arbitrary. The

solution of the Poisson equation is defined up to an additive constant. Adding this

constant to the pressure does not change the Navier-Stokes equations. This solution

will be denoted in the physical space as ∇−2σ. In physical space, this is a non-local

operator. After eliminating the pressure by solving the Poisson equation and using

∂l∇−2 = ∇−2 ∂l, (1.16)

we write the Navier-Stokes equation as

∂tvi + (δil − ∂il∇−2)∂j(vj vl) = ν∇2vi. (1.17)

It is now sufficient to impose the divergence condition ∂jvj = 0 at t = 0, since (1.17)

will propagate this condition at all times.

Another way to eliminate the pressure is to use the definition of vorticity

ω = ∇∧ v. (1.18)

From taking the curl of the Navier-Stokes equation (1.1), and using the identity

∇v2 = 2v · ∇v + 2v ∧ (∇∧ v), the vorticity is obtained as follows

∂tω = ∇∧ (v ∧ ω) + ν∇2ω. (1.19)
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In order to rewrite (1.19) in terms of the vorticity field only, we solve (1.18) for

the velocity. This is done by taking the curl of (1.18) and solving the resulting

Poisson equation. Thus, the same non-local operator ∇−2 appears as in the velocity

formalism of (1.17).

Figure 1.2: The periodic box.

1.2.2 Laws of Conservation

The conservation laws are usually discussed with symmetries. Noether’s theorem

[163] gives a rationale for this association. This theorem states that for each symme-

try there is a corresponding conservation law. For example, momentum conservation

corresponds to the invariance of the Lagrangian under space-translations.

Here, we discuss the global conservation laws. These involve an integration over

the whole volume occupied by the fluid. Consider an arbitrary periodic function

f(r) described over a fundamental periodicity box:

〈f〉≡ 1

L3

∫
BL

f(r)dr, (1.20)

where f(r) is an arbitrary periodic function. First, we list some useful identities of

functions that are periodic.

〈∂if〉 = 0. (1.21)

〈(∂if)g〉 = −〈f∂ig〉 . (1.22)

〈
(∇2f)g

〉
= −〈(∂if)(∂ig)〉 . (1.23)

〈u · (∇∧ v)〉 = 〈(∇∧ u) · v〉 . (1.24)
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〈
u · ∇2v

〉
= −〈(∇∧ u) · (∇∧ v)〉 , if ∇ · v = 0. (1.25)

We list the main known conservation laws as:

Conservation of momentum (space translation symmetry)

d

dt
〈v〉 = 0. (1.26)

Conservation of energy (time translation symmetry)

d

dt

〈
1

2
v2

〉
= −1

2
ν

〈∑
ij

(∂ivj + ∂jvi)
2

〉
= −ν

〈∣∣ω2
∣∣〉 = 0, (1.27)

where ω = ∇∧ v.

Conservation of helicity (Moreau [158] gives a complicated symmetry ; translation

along vortex direction)

d

dt

〈
1

2
v · ω

〉
= −ν 〈ω · ∇ ∧ ω〉 = 0. (1.28)

We now introduce some important notations:

E ≡
〈

1

2
|v|2
〉
, Ω ≡

〈
1

2
|ω|2

〉
, (1.29)

H ≡
〈

1

2
v · ω

〉
, Hω =

〈
1

2
ω · ∇ ∧ ω

〉
. (1.30)

Also, the energy and helicity balance equations may be written as:

d

dt
E = −2ν Ω,

d

dt
H = −2νHω, (1.31)

where we consider E as the mean energy per unit mass, H the mean kinetic helicity,

Ω the mean enstrophy and Hω is the mean vortical helicity. The mean energy

dissipation per unit mass

ε ≡ −dE

dt
, (1.32)

is one of the most frequently used quantities in turbulence.

1.2.3 Energy Scale

We start by introducing another energy balance equation

d

dt
Ω = −2νP, P ≡

〈
1

2
|∇ ∧ ω|2

〉
, (1.33)
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where P is called the mean palinstrophy, Ω the mean enstrophy and ω as introduced

earlier is vorticity. Equation (1.33) does not have any contribution from non-linear

terms in the Navier-Stokes equations. The important question is then: what is the

role of non-linearities in relation to the energy? We show in this section that the non-

linear term redistributes energy among various scales of motion without affecting

the global energy budget. In a similar manner, the non-linear term in the MHD

equations (section 1.4) redistributes magnetic helicity and energy among various

scales [192]. For that we need a definition for the concept of scale. As an example,

consider figure 1.3, and imagine it is shown using an overhead projector somewhat

out of focus. It is obvious that the finest details will be blurred. Defocusing amounts

approximately to a linear filtering which removes or attenuates high harmonics in

the spatial Fourier decomposition of the image above a cut-off K which depends on

the defocusing. There is an associated scale l ∼ K−1 over which there is smoothing.

This can be formalized if we restrict ourselves to L-periodic functions. Given a

function f and its Fourier series

f(r) =
∑

k

f̂k e
ik ·r, k ∈ 2π

L
Z3, (1.34)

there are two families of functions depending on r and on the additional parameter

K > 0. One is the low-pass filtered function

f<
K(r) ≡

∑
k≤K

f̂k e
ik ·r, (1.35)

and the other is the high-pass filtered function

f>
K(r) ≡

∑
k>K

f̂k e
ik ·r. (1.36)

The length l = K−1 is the scale of filtering. Also

f(r) = f<
K(r) + f>

K(r), (1.37)

where f< and f> are known as f ‘lesser’ and f ‘greater’ respectively. Using the

above definitions, we describe the magnetic field in terms of its Fourier transform in

section 3.2.2. To illustrate the idea of low/high pass filtering, consider the example

of a one-dimensional function (figure 1.4). The function possesses structures on

two very different scales: a small-scale (of the order of a few millimetres) and a

large-scale (of the order of a few centimetres). Choose l = K−1 to be 1cm. The

corresponding low- and high-pass functions are shown in figures 1.4(b) and 1.4(c).

It is important to note that f<
K(r) and f>

K(r) are not Fourier transforms of f(r):

they depend on the same space variable r as f(r) and they also depend on an

additional scale variable.
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Figure 1.3: Turbulent water jet (Van Dyke 1982). Photograph P. Dimotakis, R. Lye

and D. Papantoniou.

When the concept of filtering is applied to a three-dimensional turbulent velocity

field, two functions v<
K(r) and v>

K(r) are obtained. The former is described as

eddies of scale larger than l and the latter as eddies of scale less than l. Additional

properties of filtering are presented in Appendix A.
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(a)

(b)

(c)

Figure 1.4: Signal (a) subject to low-pass filtering (b) and high-pass filtering (c).
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1.3 The Kolmogorov Theory

There are two laws established by experiment of the fully developed turbulence:

1. Two-thirds law:

In a turbulent flow at very high Reynolds number, the mean square velocity incre-

ment 〈(δv(l))2〉 between two points separated by a distance l behaves approximately

as the two-thirds power of the distance.

2. Law of finite energy dissipation:

If, in an experiment on turbulent flow, all the control parameters are kept the same,

except for viscosity, which is lowered as much as possible, the energy dissipation per

unit mass dE/dt behaves in a way consistent with a finite positive limit.

There is currently no fully deductive theory that starts from the Navier-Stokes

equations and leads to the two basic experimental laws stated above. However, it

is still possible to formulate hypotheses, compatible with these laws that results

in leading to additional predictions. This was the purpose of the Kolmogorov 1941

theory (in short K41). In the next section, we emphasize on postulated symmetries.

Forcing Terms

Kolmogorov assumes a freely decaying turbulent flow in his 1941 paper on the four-

fifths law. In order to maintain ‘Realistic turbulence’, mechanisms used are the

interaction of an incoming flow with boundaries, thermal convective instability, etc.

The inhomogeneities induced by the maintaining mechanism may be weak enough

to be partially ignored at small-scales and far from boundaries. To renew the energy

dissipated by viscosity, a simple device is to add a forcing term f(t, r) in the Navier-

Stokes equations:

∂tv + v · ∇v = −∇p+ ν∇2v + f,

∇ · v = 0. (1.38)

The ‘stirring force’ is assumed to be active only at large-scales, so as to model

the mechanism of production of turbulence which often involves some large-scale

instability [76, 77]. The random force f(t, r) is considered to be stationary and ho-

mogeneous, i.e. its statistical properties are invariant under translations in time and

space. Also the solution of the Navier-Stokes equations is assumed to be homoge-

neous, but not necessarily stationary, so as to cover instances where the external

force vanishes. And finally we consider that all moments required in subsequent

manipulations are finite as long as ν > 0.
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We define ε(l) as

ε(l) ≡ −∂t
1

2
〈v(r) · v(r + l)〉 |NL, (1.39)

where the notation ∂t(.)|NL stands for ‘contribution to the time-rate-of-change stem-

ming from the non-linear terms (advection and pressure) in the Navier-Stokes equa-

tions’ [88]. ε(l) has the dimension of a time-rate-of-change of an energy per unit

mass and will be called the physical-space energy flux.

1.3.1 Kolmogorov 1941 and Symmetries

In section 1.2 we made a list of known symmetries for the Navier-Stokes equations

(time -and space-translations, rotations, Galilean transformations, scaling transfor-

mations, etc). Here, we investigate their implications for turbulence.

First consider time-translations. For a laminar flow, at low Reynolds numbers, if

the boundary conditions and any external driving force are time-independent, the

flow is steady and therefore does not break the time-invariance symmetry. When

we increase the Reynolds number, bifurcation may occur. This makes the flow

time-periodic and results in turning the continuous time-invariance symmetry into a

discrete one. Once the Reynolds number is increased further the flow will eventually

at some point, become chaotic. The continuous time-invariance symmetry is then

restored, not for individual solutions but at the level of the invariant measure of the

dynamical system.

It is important to see if this result can be extended to other symmetries of

the Navier-Stokes equations. Consider, for example, the invariance under space-

translations. The difficulty associated with this case is, in instances where the

turbulence is generated by flow around a rigid body such as a cylinder. The pres-

ence of the cylinder will trivially break the translation symmetry and the root mean

square (r.m.s.) velocity fluctuations at the point very close to the cylinder cannot

be the same as at the point somewhere in the wake, since the velocity and its fluc-

tuations must vanish at rigid boundaries. Therefore such a turbulent flow can never

be strictly homogeneous (i.e. statistically invariant under space-translations). How-

ever, it is possible to develop discrete translation-invariance if the bodies generating

the turbulence are arranged in a spatially periodic fashion, such as for the flow past

a grid. The geometry of the flow is preserved by translations parallel to the grid by

a multiple of the mesh. This leaves the flow invariant as long as the Reynolds num-

ber is sufficiently low. As the Reynolds number is increased and the flow becomes

turbulent, its statistical properties will be invariant under such translations.
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The same can be said about all the other symmetries of the Navier-Stokes equa-

tions where one can conclude that the mechanisms responsible for the generation

of the turbulent flow are usually not consistent with most of the possible symme-

tries presented in section 1.2. However, the qualitative aspect of many turbulent

flows suggests some form of homogeneity, isotropy and possibly scale-invariance.

The power law behaviour of the second order structure function resulting from Kol-

mogorv’s two-thirds law (section 1.3) is an indication of some form of scale invari-

ance. We will discuss power law distribution of solar flares in chapters 5 and 6.

The following hypothesis will help to reconcile some of the conflicting aspects of

symmetries of Navier-Stokes equations.

H1 In the limit of infinite Reynolds number, all possible symmetries of the Navier-

Stokes equations, usually broken by the mechanisms producing the turbulent flow,

are restored in a statistical sense at small-scales and away from boundaries.

Small-scales are scales of l� l0 where l0, the integral scale, is characteristic of the

production of turbulence. Small-scale homogeneity is considered to be the property

of having homogeneous increments, i.e. in terms of velocity increments:

δv(r, l) ≡ v(r + l)− v(r). (1.40)

It is assumed that

δv(r + ρ, l) = δv(r, l), (1.41)

for all increments l and all displacements ρ which are small compared to the integral

scale.

In this context by isotropy, we mean that the statistical properties of velocity

increments are invariant under simultaneous rotations of l and δv. For parity, l and

δv can be reversed simultaneously.

H2 Under the same assumptions as in H1, the turbulent flow possesses a unique

scaling exponent h, i.e. it is self-similar at small-scales. This is what is needed to

describe the scale-invariance since there are infinitely many scaling groups which

depend on the choice of the scaling exponent h. Therefore, there exists a scaling

exponent h ∈ R such that

δv(r, λl) = λhδv(r, l), ∀λ ∈ R+, (1.42)

for all r and all increments l and λl small compared to the integral scale.
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As described below, the unique scaling exponent h in Kolmogorov’s four-fifths law

is equal to 1/3.

H3 Under the same assumptions as in H1, the turbulent flow has a finite non-

vanishing mean rate of dissipation ε per unit mass. For H3, the integral scale l0

and the r.m.s velocity fluctuations v0 are fixed and ν → 0. Otherwise, ε must be

non-dimensionalised through division by v3
0/l0.

It is important to mention that in his 1941 paper, Kolmogorov postulated the

following hypothesis which is quite different from the hypotheses listed so far and is

described thus:

Kolmogorov’s second universality assumption

In the limit of infinite Reynolds number, all the small-scale statistical properties

are uniquely and universally determined by scale l and the mean energy dissipation

rate ε. The first universality assumption of Kolmogorov will be described in section

1.3.4.

To illustrate the universality assumption clearly, consider the second-order struc-

ture function 〈(δv(l))2〉. Simple dimensional analysis shows that this quantity has

dimensions [L]2[T ]−2, where [L] and [T ] are units of length and time. Since the mean

energy dissipation rate per unit mass ε, has the dimensions [L]2[T ]−3, it follows from

the universality assumption that〈
(δv(l))2

〉
= Cε2/3 l2/3, (1.43)

where C is a universal dimensionless constant. Also, by the Hypothesis H2, the

second order structure function should be proportional to l2h. Hence h = 1/3 is the

only consistent value.

Kolmogorov’s four-fifths law

Kolmogorov found in his 1941 turbulence paper how an exact relation can be derived

for the third-order longitudinal structure function which is the average of the cube

of the longitudinal velocity increment. His assumptions were homogeneity, isotropy

and hypothesis H3 about the finiteness of the energy dissipation. He obtained the

following result from the Navier-Stokes equations without any further assumptions:
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Four-fifths law: In the limit of infinite Reynolds number, the third-order (lon-

gitudinal) structure function of homogeneous isotropic turbulence, evaluated for

increments l small compared to the integral scale, is given in terms of the mean

energy dissipation per unit mass ε by〈
(δv‖(r, l))

3
〉

= −4

5
εl, (1.44)

where ε is assumed to remain finite and non-vanishing. The above equation is one of

the most important results in fully developed turbulence. Uriel Frisch [88] calls this a

‘boundary condition’ on theories of turbulence: for these theories to be acceptable,

they must either satisfy the four-fifths law, or explicitly violate the assumptions

made in deriving it. There is not much detail in Kolmogorov’s derivation of the

four-fifths law since he used a previously derived relation of Kármán and Howarth

[116].

1.3.2 The Energy Flux for Homogeneous Turbulence

The starting point here is the scale-by-scale energy budget equation (A.11) which

relates the (mean) cumulative energy ζK , the (mean) cumulative enstrophy ΩK , the

(mean) cumulative energy injection FK and the (mean) energy flux ΠK . Here, we

use random homogeneous functions rather than periodic functions. The Fourier

series used in Section 1.2.3 to define filtering is replaced by Fourier integrals. For

instance, the low-pass filtered velocity v<
K is related to the velocity field v and its

Fourier transform v̂ by the following relations

v(r) =

∫
R3

d3k eik ·rv̂k,

v̂k =
1

(2π)3

∫
R3

d3r e−ik ·rv(r),

v<
K(r) =

∫
|k|≤K

d3k eik ·r v̂k. (1.45)

Angular brackets are interpreted as ensemble averages rather than spatial averages

over the periodicity box. With this reinterpretation, all the results from Section

1.2.3 remain literally true.

For convenience, the scale-by-scale energy budget relation (A.11) is written as

∂tζK + ΠK = FK − 2νΩK , (1.46)

and the energy flux through wave-number K is expressed in terms of third order

velocity moments by

ΠK = − 1

8π2

∫
R3

d3l
sin(Kl)

l
∇l ·

[
l

l2
∇l ·

〈
|δv(l)|2 δv(l)

〉]
. (1.47)
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The energy flux through wave-number K is expressed in terms of the third-order

longitudinal structure function S3(l) =
〈
(δv‖(r, l))

3
〉

by

ΠK = − 1

6π

∫ ∞

0

dl
sin(Kl)

l
(1 + l∂l) (3 + l∂l) (5 + l∂l)

S3(l)

l
, (1.48)

where ∂l ≡ ∂/∂l.

Homogeneous isotropic turbulence satisfies the following energy transfer relation:

∂tE(k) = T (k) + F (k)− 2νk2E(k), (1.49)

where

T (k) ≡ − ∂

∂k

Πk

=

∫ ∞

0

cos(kl)(1 + l∂l) (3 + l∂l) (5 + l∂l)
S3(l)

6πl
dl, (1.50)

and

E(k) =
∂

∂k

1

2

〈
|v<

k |
2
〉
, F (k) =

∂

∂k

〈
f<k · v<

k

〉
, (1.51)

are the energy spectrum and the energy injection spectrum respectively [88].

1.3.3 From the Energy Flux Relation to the Four-Fifths Law

In our calculations so far, we have considered homogeneity and isotropy. Here, we

introduce additional assumptions specific to fully developed turbulence.

(i) The driving force f(t, r) is acting only at large-scales. The force has no essential

contributions coming from wave numbers � Kc ∼ l−1
0 , where l0 is the integral scale.

In fact,

f<K(t, r)' f(t, r), forK � Kc, (1.52)

where f<K(t, r) is the low-pass filtered force defined in Appendix A.

(ii) For large times, the solution of the Navier-Stokes equations reaches a statistically

stationary state with finite mean energy per unit mass.

(iii) In the infinite Reynolds number limit (ν → 0), the mean energy dissipation per

unit mass ε(ν) tends to a finite positive limit (hypothesis H3 of section 1.3.1)

lim
ν→0

ε(ν) = ε > 0. (1.53)

(iv) Scale-invariance (hypotheses H1 and H2) is not assumed.

It is important to look at the consequences of these assumptions. Item (ii) results in

the omission of the time-derivative terms in both the global energy budget equation

∂t
1

2

〈
v2
〉

= 〈f(r) · v(r)〉+ ν
〈
v(r) · ∇2v(r)

〉
, (1.54)
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and in the scale-by-scale energy budget equation (1.46), which become respectively

〈f · v〉 = −ν
〈
v · ∇2v

〉
= ε(ν), (1.55)

and

ΠK = FK − 2νΩK . (1.56)

Consider the energy injection term FK for K � Kc, using properties of (i) and

(A.14), we have

FK =
〈
f<K · v

〉
' 〈f · v〉 = ε(ν). (1.57)

And, considering the energy dissipation term 2νΩK , for fixed K,

lim
ν→0

2νΩK = 0, (1.58)

and

2νΩK = ν
〈
|ω<

K |
2
〉
≤ νK2

〈
|v<

K |
2
〉

≤ νK2
〈
|v|2
〉

= 2νK2E, (1.59)

where E is the mean energy assumed bounded by (ii). The first equality follows

from the cumulative enstrophy (A.13) and the first inequality follows from the fact

that the curl operator, acting on low-pass filtered vector fields with a cut-off at

wave-number K, has a norm bounded by K.

In equation (1.56) if we take K to be K � Kc and let ν → 0, using (1.53), (1.57),

(1.58), we have

lim
ν→0

ΠK = ε, ∀K � Kc. (1.60)

We can now conclude that in a statistically stationary state, the energy flux is inde-

pendent of the scale under consideration and is equal to the energy input/dissipation,

provided that there is no direct energy injection (K � Kc) and no direct dissipation

(ν → 0). Combining (1.60) with the relation (1.48) for the energy flux and changing

the integration variable from l to x = Kl, results in

ΠK = −
∫ ∞

0

dx
sin x

x
F (

x

K
) = ε, ∀K � Kc, (1.61)

where

F (l) ≡ (1 + l∂l) (3 + l∂l) (5 + l∂l)
S3(l)

6πl
. (1.62)

The large-K behaviour of the integral in (1.61) involves only the small-l behaviour

of F (l) and we have
∫∞

0
dx (sinx/x) = π/2. Therefore, for small l

F (l) ' − 2

π
ε, (1.63)
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and after substituting (1.63) into (1.62), we have a linear third-order differential

equation for S3(l). This equation can be solved using ln l as the independent variable

and S3(l)/l as the dependent variable. The only solution which tends to zero as l→ 0

is

S3(l) = −4

5
εl, (1.64)

and this completes the derivation of the four-fifths law [88].

1.3.4 Main Results of the Kolmogorov 1941 Theory

The four-fifths law can be rewritten as〈
(δv‖(l))

3
〉

= −4

5
ε l, (1.65)

where δv‖(l) is the longitudinal velocity increment and is defined as

δv‖(r, l) ≡ [v(r + l)− v(r)] · l

l
, (1.66)

with l = |l|. With hypothesis H2 from section (1.3.1), under rescaling of the in-

crement l by a factor of λ, the left hand side of (1.65) changes by a factor λ3h,

while the right hand side changes by a factor λ. This implies that h = 1/3. Also

from (1.47), which is valid irrespective of isotropy, and from the assumption of a

scale invariant velocity with exponent h, it can be shown that Πk ∝ K1−3h. This

is independent of K only if h = 1/3. One must remember that it is not correct to

infer h = 1/3 from the expression (A.15) for the energy flux. In fact this expression

involves both v<
Ks and v>

Ks. Using the hypothesis H2 of section 1.3.1, it can also be

shown that v>
K/λ = λhv>

K . Note that v>
K involves only small-scales. Since there is

no simple transformation property for v<
K , one cannot conclude the argument. This

observation confirms how important it is to reexpress the energy flux solely in terms

of velocity increments.

Now we examine the consequences for the moments of the longitudinal velocity

increments at inertial-range separations, assuming homogeneity and isotropy. A

further assumption that the moments of arbitrary positive order p > 0 are finite, is

required. The longitudinal structure function of order p is then defined by

Sp(l) ≡
〈
(δv‖(l))

p
〉
. (1.67)

It is important to note that the argument of the structure functions is taken to

be positive here, since l is the absolute value of the increment l. One alternative

definition, allowing for both positive and negative arguments x, is

Sp(x) ≡
〈
[(v(r + xl0)− v(r)) . l0]p

〉
, (1.68)
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where l0 is an arbitrary unit vector. The above relation reduces to Sp(l) for positive

x.

From the hypothesis H2 and h = 1/3, one can deduce that Sp(l) ∝ lp/3. Since

(ε l)p/3 has exactly the same dimension as Sp, then

Sp(l) = Cp ε
p/3 lp/3, (1.69)

where Cps are dimensionless. The Cps are independent of the Reynolds number,

since the limit of infinite Reynolds number is already taken. For p = 3 and from

(1.64), it follows that C3 = −4/5. This result is universal since it is independent of

the particular flow under consideration. Observe that in the derivation shown here

nothing requires the Cps for p 6= 3 to be universal.

The important point here is that the expression (1.69) for the structure functions

involves only the energy dissipation rate ε, the scale l and not the integral scale l0. It

therefore follows from the K41 that, if the limits ν → 0 and l0 →∞ are taken, while

holding ε > 0 fixed, all the structure functions have finite limits. Also if the structure

functions have finite non-vanishing limits when ν → 0 and l0 → ∞ while holding

ε > 0 fixed, then these limits display K41 scaling. In fact, for finite l0, dimensional

analysis suggests that the structure function of order p is given by the right hand

side of (1.69) times a dimensionless function S̃p(l/l0); this function has a finite non-

vanishing limit as l0 →∞, or, equivalently, as l→ 0, thereby ensuring K41 scaling.

Therefore, deviations from K41 require that structure functions of order other than

3 have an explicit dependence on the integral scale at inertial-range separations.

Returning to the consequences of K41, the fact that the second-order structure

function follows an l2/3 law implies a k−5/3 law for the energy spectrum. Considering

(B.17), (B.18) and (1.69) results in

E(k) ∼ ε2/3k−5/3. (1.70)

We will introduce the magnetic energy spectrum in section 3.2.2.

The experimental results support the K41 theory as far as the second-order struc-

ture function is concerned. However, the consistency between the K41 theory and

experimental data on structure functions is questionable when p > 3 [88].

More remarks on Kolmogorov’s four-fifths law are given in Appendix C.
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Effect of a finite viscosity

When the viscosity ν is small, there is an ‘inertial range’ in which direct energy

injection and energy dissipation are both negligible. This inertial range extends to

scales comparable to the Taylor scale λ = (5E/Ω)1/2. Using the results of section

1.3.4, we can show that in the K41 framework, the inertial range extends down to

the ‘Kolmogorov dissipation scale’

η ≡ (
ν3

ε
)1/4. (1.71)

Consider the energy flux-relation (1.56), and assume that K � Kc so that FK ' ε.

The dissipation term involves the cumulative enstrophy

ΩK =
1

2

〈
|ω<

K |
2
〉

=

∫ K

0

k2E(k)dk, (1.72)

and after substituting the inertial-range value (1.70) of the energy spectrum E(k)

into (1.72), we find the wave-number up to which the dissipation term 2νΩK in

(1.56) is negligible compared to the energy flux ε. This results in the following

‘dissipation wave-number’ (order unity constants have been omitted)

Kd =

(
ν3

ε

)−1/4

, (1.73)

which is precisely the inverse of the ‘Kolmogorov dissipation scale’ η defined above.

The range of scales comparable to or less than η is known as the ‘dissipation range’.

In this range the energy input from non-linear interactions and the energy drain

from viscous dissipation are in exact balance.

Kolmogorov’s first universality assumption

The first universality assumption states that at very high, but not infinite Reynolds

numbers, all the small-scale statistical properties are uniquely and universally de-

termined by the scale l, the mean energy dissipation rate ε and the viscosity ν (or,

equivalently, by l, ε and η).

‘Small-scale’ is considered to be scales small compared to the integral scale, i.e.

inertial range and dissipation-range scales. The first universality assumption results

in the following universal form for the energy spectrum at large wave-numbers

E(k) = ε2/3k−5/3F (ηk), (1.74)

where F (.) is a universal dimensionless function of a dimensionless argument. By

the second universality assumption of Kolmogorov (section 1.3.1), F (.) tends to a

finite positive limit (Kolmogorov constant) for vanishing argument. The universality

of the function F (.) has been questioned by Frisch and Morf [89].
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There have been several attempts to determine the functional form of F (.) at high

wave-numbers. The most interesting result is by von Neumann [161]. He observed

that an analytic function has a Fourier transform which decays exponentially at

high wave-numbers. The logarithmic decrement is equal to the modulus δ of the

imaginary part of the position of the singularity in complex space nearest to the

real domain. Hence, in von Neumann’s view, exponential decay at high k is more

likely than the rapid algebraic decay proposed by Heisenberg [104]. For a random

homogeneous function, the situation is a bit more complicated: since there is a

probability distribution P (δ) and therefore the form of the energy spectrum at high

k is the Laplace transform of P (δ) near its minimum value δ∗ [89]. An exponential

decay is obtained only if δ∗ > 0, i.e. if there is a tubular region around the real

domain in which almost all realizations are analytic. This is known as uniform

analyticity. The experimental results suggest that this condition may be satisfied

[90].

1.4 Magnetohydrodynamics (MHD)

1.4.1 Introduction

Magnetohydrodynamics (MHD) studies the dynamics of electrically conducting flu-

ids. Examples of such fluids are plasmas and liquid metals. Here, we present the

equations used to describe MHD model. In this section we allow compressibility

(div v 6= 0) [22]. The ideal MHD equations are

ρ
dv

dt
= −∇p+ J×B, (1.75)

J =
1

µ
∇×B, (1.76)

∂

∂t
B = −∇× E, (1.77)

E = −v×B, (1.78)

− ∂

∂t
p = −v · ∇p− Γp∇ · v, (1.79)

∂

∂t
ρ = −v · ∇ρ− ρ∇ · v, (1.80)
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where (1.80) is derived from the following relation

∂ρ

∂t
+∇ · ρv = 0. (1.81)

The state of the system at any point in space and time is given by the variables v,

B, p and ρ, where v is the macroscopic fluid velocity, B is the magnetic field, p is the

thermal pressure and ρ is the mass density. The MHD equations represent how this

state advances in time. The electric field E and the current density J are treated

as auxiliary quantities, where E is measured in the laboratory frame of reference.

The first MHD equation (1.75) describes the acceleration of the fluid in response to

local forces. The convective derivative

d

dt
=

∂

∂t
+ v · ∇, (1.82)

appearing on the left in (1.75), represents the time rate of change at a point that

follows the flow of fluid. The pressure gradient on the right in (1.75) is the force

resulting from a difference in thermal pressure on opposite sides of an infinitesimal

element of fluid. The J×B force is the sum of Lorentz magnetic forces Zievi ×B

on the individual charged particles that make up the plasma (Zie is the charge and

vi is the velocity of each particle).

Equation (1.76) is Ampere’s law with displacement current ε∂E/∂t ignored. This

magnetostatic approximation is valid when the Alfvén velocity vA ≡ B/
√
µρ is much

smaller than the speed of light. It is important to note that all electrical currents

are assumed to be explicit, i.e. we are not in a magnetized medium, therefore µ

stands for magnetic permeability in a vacuum

µ ≡ µ0 = 4π × 10−7 Henrys/meter. (1.83)

Equation (1.77) is Faraday’s law for the evolution of the magnetic field. A magnetic

field must be divergence free

∇ · B = 0. (1.84)

If ∇ · B = 0 is used as an initial condition, Faraday’s law guarantees that ∇.B
will be zero for all time. The electric field appearing in Faraday’s law is the electric

field in the laboratory frame of reference. In order to change to a frame of reference

moving with the fluid, the electric field must be transformed by the addition of a

v×B term. This transformation can be derived by assuming the Galilean invariance

of Faraday’s law as an approximation to its relativistic invariance. In fact (1.78)

follows from this transformation by taking the electric field to be zero in the frame of

reference moving with the perfectly conducting fluid. Therefore, (1.78) is a special
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form of Ohm’s law. The motion of the plasma changes the magnetic field through

Faraday’s law (1.77) and Ohm’s law (1.78), while the magnetic field acts on the

motion of the plasma through the equation of motion (1.75).

The mass density and pressure are altered by the plasma motion through the

thermodynamic equations (1.79) and (1.80). The v .∇p and v.∇ρ terms on the

right side of these equations represent the effect of convection and the effect of

compression and expansion is described by Γ p∇.v and ρ∇.v. As a result of these

terms, the pressure and density change as the fluid elements change size in response

to changes in pressure. The constant Γ = 5/3 represents the ratio of specific heat

for an ideal gas with three degrees of freedom.

In next section, we are concerned with the consequences of Faraday’s law (1.77)

in a perfectly conducting fluid.

1.4.2 Magnetic Flux

The magnetic field has the form of any three-dimensional vector field that is diver-

gence free (∇.B = 0). The divergence free property is the indicator of the fact that

there are no sources or sinks of magnetic field and it does not imply that all magnetic

field lines close upon themselves. A magnetic field line is everywhere tangent to the

magnetic field.

Magnetic flux is the amount of magnetic field passing through any given surface

ψ ≡
∫

dS · B. (1.85)

The divergence-free property of magnetic fields results in each of the following state-

ments:

1. The amount of flux leaving a volume is the same as the amount entering it.

2. The flux through any surface spanning a given closed curve is the same.

The above statements are proved using Gauss’s theorem∮
dS · B =

∫
d3x∇ · B = 0. (1.86)

Note that the equation ∇ · B = 0 is in fact the differential form of conservation of

magnetic flux. This can be shown by writing the expression (∇ · B) dx dy dz in

finite difference form within an arbitrary small rectangular box with surface areas

dx dy, dy dz, and dz dx. To prove the second statement, consider that there is a

volume enclosed between any two surfaces spanning the same closed curve and apply

Gauss’s theorem.

35



Faraday’s law (1.77) is the result of the following experimental observation: As

the flux through any closed loop of wire is changed, the electric field observed around

the wire is given by ∮
dI · E = − d

dt
ψ. (1.87)

It does not matter if the flux is changing because the field is changing or the wire is

moving. The wire may be replaced by any closed contour in space.

Now consider the case where the field is changing and the contour is moving or

deforming. In a differential interval of time, each element of the contour moves

a distance v · dt, and each differential length of the contour sweeps out an area

dI × v · dt. The flux through the new contour is equal to the flux through the old

contour minus the flux leaving the differential area swept out by the motion of the

contour. The total rate of change of flux is given by

d

dt
ψ =

∫
dS · ∂B

∂t
−
∮

dI× v · B, (1.88)

and this with (1.87) leads to∮
dI · [E− v×B] = −

∫
dS · ∂B

∂t
, (1.89)

where the electric field in (1.89) is the electric field moving with the contour.

The electric field around the fixed contour, which is coincident with any instan-

taneous position of the moving contour, is∮
dI · Efixed = −

∫
dS · ∂B

∂t
. (1.90)

Here, the Galilean invariance of Faraday’s law is an approximation to its relativistic

invariance. That is, the magnetic field at any point in space and time is independent

of the observer’s frame of reference. However the electric field is a function of

velocity at which the observer is moving. The difference between fixed and the

moving electric field is obtained by comparing (1.89) and (1.90) for arbitrarily chosen

contours so that

Efixed = Emoving − v×B. (1.91)

For a perfectly conducting plasma, the electric field is zero in the frame of refer-

ence moving with each fluid element. From (1.91) the electric field observed in the

laboratory frame of reference must be

Efixed = −v×B, (1.92)
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where v is the velocity of the fluid. Therefore, the ideal MHD Ohm’s law (1.78) is

the result of the Galilean invariance of Faraday’s law and the assumption that the

electric field moving with the plasma is zero.

It is important to note that the force acting on any moving charged particle is

ZieE. Considering the fixed frame of reference, the force is ZieEfixed + Ziev ×B,

where the second term is the Lorentz force acting on a moving particle in a magnetic

field. Summing over all the charged particles that make up the plasma, the v ×B

term leads to the J×B force in the MHD equation of motion (1.75).

1.4.3 Motion of Magnetic Field Lines

The motion of magnetic field lines within a perfectly conducting fluid is consistent

with Faraday’s law. The position of field lines at any instant in time is unique, but

the motion of field lines from one instant to the next is a matter of interpretation.

Consider a representation of the magnetic field in the form of

B = ∇α×∇β, (1.93)

where α and β are Euler potentials. One can prove that (1.93) results in ∇.B = 0,

by rearranging (1.93) to form B = ∇× (α∇β) or B = −∇× (β∇α), and note that

∇.∇ × . . . = 0. To prove that a divergence-free vector field can be represented by

(1.93), consider a pair of functions α′, β′ that are constant along each magnetic field

line. That is, the magnetic field is everywhere tangent to the surfaces of constant

α′ and constant β′, and these surfaces never coincide. It follows that ∇α′ ×∇β′ is

in the direction of the magnetic field at every point and it can be multiplied by an

appropriate function of space and time f(x, t) to make the magnitudes agree,

B = f(x, t) · ∇α′(x, t)×∇β′(x, t). (1.94)

Also, since the magnetic field must be divergence-free,

∇.B = ∇f · ∇α′ ×∇β′ = 0, (1.95)

then f(x, t) must be a function of α′ and β′ alone, f = f(α′, β′, t). And f can be

absorbed into the cross product ∇α′ ×∇β′ by defining,

α =

∫ α

0

dα′f(α′, β′) β = β′, (1.96)

in order to obtain (1.93).
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Note that α and β are not unique for any given magnetic field. For instance, any

function of β can be added to α, or any function of α can be added to β, without

changing ∇α×∇β, thus

B = ∇α×∇β = ∇[α+ f(β)]×∇β = ∇α×∇[ β + f(α)]. (1.97)

An equation for the time evolution of α and β can be derived by substituting B =

∇α×∇β into Faraday’s law for a perfectly conducting fluid

∂B

∂t
= ∇× (v×B), (1.98)

∇∂α
∂t
×∇β +∇α×∇∂β

∂t
= ∇× [v× (∇α×∇β)], (1.99)

∇× [
∂α

∂t
∇β − ∂β

∂t
∇α− v · ∇β∇α+ v · ∇α∇β] = 0, (1.100)

∇× [
dα

dβ
∇β − dβ

dt
∇α ] = 0, (1.101)

where d/d t is the convective derivative defined for any velocity field v(x, t). Then

we must have
dα

dt
∇β − dβ

dt
∇α = ∇ϑ, (1.102)

where ϑ is an arbitrary function of space and time. A perfectly valid choice for ϑ is

when ϑ = 0 and this leads to

d

dt
α = 0,

d

dt
β = 0. (1.103)

For this particular choice of ϑ, the scalar fields α(x, t) and β(x, t) move with the

fluid. Also, the lines of constant α and β, and therefore the magnetic field lines,

must move with the fluid. Hence field lines cannot break or change topology as long

as the fluid motion is continuous, in the sense that adjacent elements of fluid always

remain adjacent. Since this topological invariance is a conclusion about field lines,

which are unique regardless of the α, β representation, this conclusion must be true

for any choice of ϑ [22].

The physical interpretation of the arbitrariness of the motion of field lines is subtle.

When there is finite resistivity: at limit zero magnetic diffusivity, i.e. η = 0, field

lines can move uniquely.
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1.4.4 The Magnetic Force

The motion of a perfectly conducting fluid acts on a magnetic field through Faraday’s

law and the magnetic field, in turn, acts on the fluid through the J×B force in the

equation of motion (1.75). The J×B force can be written in terms of the curvature

of the magnetic field lines and the gradient of the magnetic field strength by writing

µJ×B = (∇×B)×B = B · ∇B− 1

2
∇B2. (1.104)

The unit vector along the magnetic field line is B̂ = B/ |B| and thus

µJ×B = B2 B̂ · ∇B̂ +
1

2
(B̂B̂ · ∇B2 −∇B2). (1.105)

The gradient of B̂ along the field line is just the curvature κ of the field line

κ = B̂ · ∇B̂, (1.106)

whose magnitude is equal to the reciprocal of the radius of curvature. One can write

the other two terms in (1.105) as the perpendicular gradient

∇⊥ ≡ ∇− B̂B̂ · ∇, (1.107)

of B2 and therefore

J×B =
1

µ
[B2κ− 1

2
∇⊥B

2]. (1.108)

The tension of the magnetic field lines produces a force (1/µ)B2κ that is directed

toward the centre of curvature, in the same way as tension acts on a string. Then

the pressure of the magnetic field produces a force (1/2µ)∇⊥B
2 directed away from

the region of high field strength. Bending the magnetic field produces tension and

compressing it produces a restoring pressure.

1.4.5 Conservative Forms of the MHD Equation

The conservative form of an equation is when the temporal rate of change of a

quantity is set equal to the divergence of its flux. The conservative form of the ideal

MHD equations in a fixed coordinate system can be written as,

∂

∂t
(ρv) = ∇ ·

[
−ρvv +

1

µ
BB− (p+B2/2µ)

]
, (1.109)

∂

∂t
B = ∇× (v×B) = ∇ · (vB−Bv), (1.110)

∂

∂t
ρ = −∇ · (ρv), (1.111)
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∂

∂t
( ρv2 +

p

Γ− 1
+

1

2µ
B2) = kinetic + potential energy

= −∇ ·
[(

1

2
ρv2 +

p

Γ− 1
+ p

)
v +

1

µ
E×B

]
= (convection of kinetic + thermodynamic energy + pressure)

+ Poynting flux. (1.112)

The above equations represent the time evolution of momentum, magnetic flux, mass

density, and total energy at any point in space. Integrating each equation over any

fixed volume and using Gauss’s theorem will result in the right hand side of each

equation representing a flux through the boundaries of the closed volume.

Conservative forms of equations like these are specially useful in computational

work. They can also be useful for determining the natural boundary conditions

which isolate the system under study from the outside world. Although the system

is isolated if the net fluxes through all the boundaries are zero, it is customary to

require that all the fluxes are zero through each differential element of the boundary.

For example, to conserve total mass, there must be no convection across the

boundary v⊥ = 0. To conserve energy, the Poynting flux must also be zero

(E×B)⊥ = 0. (1.113)

To conserve magnetic flux, there must be no electric field parallel to the boundary

E‖ = 0. To prove this final boundary condition, one can integrate Faraday’s law

(1.77) over any fixed differential area of the boundary

∂

∂t

∫
dS · B = −

∫
dS · ∇ × E = −

∮
dI · E. (1.114)

To determine the boundary conditions, the momentum equation is not generally

used, since the force that may have to be exerted by the wall on the plasma in

order to hold v⊥ = 0 as the system evolves, is not explicitly written into momentum

equation (1.109).

It is important to note that the boundary condition E‖ = 0 implies (E×B)⊥ = 0.

Also, if the boundary is initially a flux surface, B⊥ = 0, and if the adjacent fluid

is perfectly conducting, then E = −v × B, and the boundary condition v⊥ = 0

implies E‖ = 0, and the boundary always remains a flux surface. Under these

conditions a rigid wall v⊥ = 0 is the only boundary condition needed. Alternatively,

if the boundary is separated from the plasma by a vacuum region, or if the plasma
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adjacent to the boundary has zero pressure and density, then the condition v⊥ = 0

can be dropped and a perfectly conducting wall E‖ = 0 is all that is required.

Under all these conditions a rigid, perfectly conducting wall will completely isolate

the plasma in the MHD model.

Also, one can write the conservative forms of the MHD equations in a Lagrangian

coordinate system moving with the fluid. We have already shown that the elements

of magnetic flux, α and β, can be considered fixed in each perfectly conducting

fluid element (1.103). Also one can combine the equations for pressure (1.79) and

mass density (1.80) in order to show that the entropy, defined by e(x, t) ≡ p/ρΓ,

is conserved in each fluid element so that d/dt (p/ρΓ) = 0. However, this equation

does not mean that the entropy is uniform over the plasma volume.

1.4.6 MHD Equilibrium

In the MHD theory of magnetically confined plasmas, equilibrium means the com-

plete balance of forces. The standard MHD equilibrium equations are

∇p = J×B, (1.115)

J =
1

µ
∇×B, (1.116)

∇ · B = 0. (1.117)

These equations apply to plasmas with scalar pressure in a steady state (∂/∂t) = 0,

with no flow (v = 0), and no body forces such as gravity or neutral gas pressure.

These are the most commonly used assumptions for tokamaks and pinches.

These equilibrium equations can be written differently. For instance, when the

J×B force is written as the sum of magnetic pressure and magnetic tension , as in

(1.108), the equations become

∇⊥(p+B2/2µ) =
1

µ
B2κ, (1.118)

where as stated before κ = B̂.∇B̂ is the curvature of the field lines. Alternatively,

using (1.104) it can be written

∇(p+B2/2µ) =
1

µ
B · ∇B. (1.119)
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The stress tensor form of J×B results in

∇ · [
1

µ
BB− (p+B2/2µ)] = 0, (1.120)

and integrating this divergence of the stress tensor over an arbitrary volume and

using Gauss’s theorem provides an integral form of the equilibrium equations∮
dS · [(p+B2/2µ)n̂− n̂ · BB] = 0, (1.121)

where S is any closed surface with normal n̂.

1.4.7 Magnetic Surface

If a magnetic field line is followed long enough, it will either close upon itself or

continue indefinitely to cover a surface, or fill a volume, or leave the bounded domain.

Here, the magnetically confined plasmas of concern are those in which most of the

field lines continue indefinitely, ergodically covering a set of simply nested toroidal

surfaces. Any surface that is covered by a magnetic field line is considered to be

a magnetic surface. A field line covers a magnetic surface ergodically if it passes

arbitrarily close to any point on the surface. Magnetic surfaces covered ergodically

are topologically equivalent to a torus.

For some tori, the magnetic field lines close upon themselves after a finite number

of transits the long way around the torus. These closed field lines lie on toroidal mag-

netic surfaces, called rational surfaces, in between the ergodically covered toroidal

magnetic surfaces in much the same way as rational numbers are interspersed be-

tween irrational numbers. When the field lines on a particular rational surface have

the same topology as that of an instability being considered, the surface is called

a mode-rational surface. These surfaces play an important role in the theory of

instabilities.

There are many possibilities for magnetic fields besides the simply nested toroidal

configuration. Magnetic surfaces can break up into thin filaments called magnetic

islands that twist through the plasma. The islands themselves can carry smaller

islands within them and these smaller islands can, in turn, carry successively finer

and finer island structures. Alternatively, a magnetic field line can fill a volume

quasi-ergodically-randomly wandering around so that it comes arbitrarily close to

any point in the volume. At the other extreme, it is possible for all the field lines

to be closed, leaving no well-defined flux surfaces.
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Consider a given toroidal magnetic surface and consider the cut surfaces which

span across the hole in the toroid, Spol, and across a cross section of the toroid, Stor,

as shown in figure 1.5. The toroidal flux ψtor, through any cross section of the toroid

Stor, is

ψtor ≡
∫

Stor

dS · B = flux the long way around, (1.122)

and through any cut surface spanning the centre of the toroid, Spol, the poloidal flux

is

ψpol ≡
∫

Spol

dS · B = flux the short way around. (1.123)

The flux is the same for all surfaces spanning the same contour, and there is no flux

through the toroidal magnetic surface since the magnetic field is everywhere tangent

to it. Hence, the flux is the same through any topologically equivalent contour (Ctor

or Cpol) on the flux surface. It follows that both ψtor and ψpol are surface quantities,

where a surface quantity is any variable that is uniform over a magnetic surface.

Conversely, it can be shown that all flux surfaces (surfaces of constant ψtor and ψpol)

are magnetic surfaces.

There are many other surface quantities used in the theory of MHD equilibria.

For instance, the fact that pressure is a surface quantity follows from B.∇p = 0,

which is a direct consequence of ∇p = J×B. If the pressure changes from surface

to surface, so that |∇p| 6= 0 except at isolated magnetic surfaces, then the toroidal

and poloidal currents are also surface quantities

Itor ≡
∫

Stor

dS · J =
1

µ

∮
Cpol

dI · B, (1.124)

which equals total current the long way around within a magnetic surface, and

Ipol ≡
∫

Stor

dS · J =
1

µ

∮
Cpol

dI · B, (1.125)

which equals total current through the hole in a toroidal magnetic surface.

These follow from the fact that J.∇p = J · J × B = 0 implies that no current

passes through the magnetic surfaces [22].

1.5 MHD Turbulence

Most astrophysical flows such as solar winds are often in a turbulent state and are

coupled to magnetic fields. The ubiquity of turbulence in the universe is the direct
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Figure 1.5: Toroidal flux surface showing cut surfaces and contours.

result of the fact that the dynamics of most non-stationary astrophysical plasma

flows are characterized by a wide range of length scales and velocities [81]. There-

fore understanding and quantifying the properties of MHD turbulence is crucial to

explain these physical processes in the Cosmos and in industrial flows [1, 63]. The

theoretical description of these flows is one of the major keys for a better understand-

ing of many diverse phenomena such as the generation of large-scale magnetic fields

accompanying many celestial objects by the turbulent dynamo effect [38, 255]. A

few specific examples are: the dynamics of stellar winds and their action with plane-

tary magnetospheres [97]; the discrepancy between observed and predicted life-times

of star-forming molecular clouds in the interstellar medium [258]; and the angular

transport within accretion disks prone to magnetorotational instability [103].

It has been a major challenge to characterize the complexity associated with tur-

bulence from first principles based on theoretical treatment [81]. The development

of a rigorous statistical formalism for hydrodynamic turbulence was first initiated

in the 1930s by Taylor et al. [21], and it culminated during the 1970s in a variety

of stochastic models and statistical approximations [81]. For instance, Kraichnan’s

direct interaction approximation (DIA) [121] represents a self-consistent expansion

of the Navier-Stokes and MHD equations discussed in the previous sections. How-

ever, the problem with the DIA formalism is that it is not invariant under random

Galilean transformations and this results in an incorrect energy scaling spectrum in

the hydrodynamic (HD) case [81]. There are two assumptions used in the HD case

that are not necessarily true for the MHD case. In the MHD case, the assumption of
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isotropy used in the HD case breaks down because of the imposed uniform magnetic

field. Also, in the HD case, there is a local interaction between different scales, and

the effect of large eddies on smaller eddies is the advection of the smaller eddies (this

effect is taken away by Galilean Transformation). However, in MHD the effects of

large-scale fluctuations of the magnetic field cannot be eliminated. Therefore, in

MHD, smaller scales also interact and affect the larger scales [1].

The only statistical approximation that is being applied fruitfully to MHD turbu-

lence is the eddy-damped quasi-normal Markovian approximation (EDQNM) in the

field of dynamo theory [181]. The EDQNM approach results in evolution equations

for the second-order statistical moments of the turbulent fields by modelling the

fourth order cumulants as linear damping terms where the associated eddy damping

rate acts as a free parameter [81].

For the remainder of this section, we outline the current state of MHD turbulence

and review some of the recent theoretical developments.

1.5.1 Properties of MHD Turbulence

MHD flows have two fields, the velocity and magnetic fields, and there are two

energies associated with these fields. The two associated energies allow many possi-

bilities of energy transfer between smaller or larger scales. This makes the dynamics

more complex to address in theory and in modelling [1].

In MHD, the effects of large-scale fluctuations of the magnetic field cannot be

eliminated. Hence, this makes it possible for smaller scales to interact with larger

scales. If this is the case, one can not consider a “contiguous” transfer of energy in

wave-number space and cannot a priori follow the same arguments Kolmogorov used

for HD turbulence [1]. Therefore, it is important to have the knowledge of energy

transfer among different scales in order to construct MHD turbulence. The energy

transfer and locality of the interactions in MHD turbulence have been investigated

through various models. Present models consider Kolmogorov-like arguments and

take into account the effect of the magnetic field. The energy transfer has been

studied by Pouquet, Frisch and Léorat [181] within the EDQNDM and more recently

by Schilling and Zhou [204] where non-local interactions have been realized. The

transfer of energy in MHD turbulence has also been estimated by field-theoretical

calculation methods [243, 244].
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The locality of the energy transfer in MHD has been investigated through three-

dimensional direct numerical simulation (DNS) recently [64]. Debliquy, Verma and

Carati [64] measured the transfer of energy between different scales and fields using

free decaying MHD turbulence simulations with 5123 grid points. Their results

indicate that there is a local transfer of energy between the same fields, while the

transfer between different fields shows a less localised behaviour, in the sense that

a wider range of scales are involved in the interactions.

Mechanically forced MHD turbulence has been investigated by Alexakis, Mininni

and Pouquet [1], where they consider a mechanical external forcing that generates a

well-defined large-scale flow and small-scale turbulent fluctuations. This leads to an

interesting result for some astrophysical and geophysical flows where magnetic fields

are believed to remain unchanged against ohmic dissipation by a dynamo process

[154] and the only external source of energy driving the system is mechanical. In

this case, the energy is forced through the velocity field and the system reaches

a steady state with equipartition between the two fields. For this to happen there

must be a nonzero flux for all times from the velocity field to the magnetic field. The

result of their calculations show that the transfer of magnetic and velocity energy

from large-scales to small-scales is local. This is also the case for neutral fluids and

is compatible with the Kolmogorov theory of turbulence. However, the transfer of

energy from kinetic (velocity field) to magnetic remains a highly non-local process

in Fourier space [1].

1.5.2 Theory and Definitions

The equations describing the dynamics of an incompressible conducting fluid coupled

to a magnetic field in MHD turbulence are given by

∂tv + v · ∇v = −∇p+ B · ∇B + ν∇v + f, (1.126)

∂tB + v · ∇B = B · ∇v + η∇2B, (1.127)

with ∇ · v = ∇ · B = 0 where v is the velocity field, B is the magnetic field, p is

the total pressure, ν and η are the viscosity and magnetic diffusivity, respectively

and f is the external force that drives the MHD turbulence [1].

The dynamic state of MHD flow is characterized by the non-dimensional param-

eters

ν = Re−1 =
ν∗
Lv

, and η = Rm
−1 =

η∗
Lv

, (1.128)
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where Re is the kinetic Reynolds number defined with the kinematic viscosity ν∗

and Rm the magnetic Reynolds number involving the magnetic diffusivity η∗ of

the MHD fluid. The MHD flow undergoes a transition from a laminar state to a

turbulent state if both Re and Rm become sufficiently larger than unity. This state

is characterized by erratic and unpredictable fluid motions [81].

MHD turbulence is classified by the kinetic energy of the flow field

EK =
1

2

∫
V

dV v2, (1.129)

and the magnetic energy

EM =
1

2

∫
V

dV B2, (1.130)

where V is the spatial volume of the system. There are two extreme cases asso-

ciated with these two energies. One is characterized by EK � EM , where the

magnetic field is passively advected by the fluid, and the other is EK � EM , with

a strong magnetic field forcing the fluid motion into quasi-two-dimensionality [81].

The former condition is typical for the dynamo problem, for example resulting in

the amplification of a magnetic field by plasma turbulence. The latter is experi-

enced in solar corona or terrestrial laboratory experiments with magnetic plasma

confinement. To study the inherent properties of the non-linear interaction between

turbulent fields v and B, one needs to concentrate on turbulence with EK ∼ EM

and a magnetic Prandtl number Pm = ν/η = 1 [81].

1.5.3 The Ideal Invariants

If the turbulent system is closed with appropriate boundary conditions, there exists

a number of invariants in the ideal limit of ν = η = 0 [248]. For incompressible,

three dimensional MHD these ideal invariants are described with their decay rates

at finite viscosity and magnetic diffusivity:

total energy:

E = EK + EM =
1

2

∫
V

dV (v2 +B2), Ė = −
∫

V

dV (µω2 + ηj2), (1.131)

magnetic helicity:

HM =
1

2

∫
V

dV (A · B), ḢM = −η
∫

V

dV j · B, (1.132)

and

cross helicity:

HC =
1

2

∫
V

dV (v · B), ḢC = −µ+ η

2

∫
V

dV ω · j, (1.133)

where A is the magnetic vector potential and B = ∇×A [81].
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The above ideal invariants play an important role in characterizing the macro-

scopic properties of MHD turbulence. The magnetic helicity HM measures the

linkage and twist of the magnetic field lines, while cross helicity HC provides a

measurement of the overall correlation of magnetic and velocity fields [81].
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Chapter 2

Stretch-Twist-Fold in Magnetic

Dynamos

2.1 Introduction

Magnetic fields are ubiquitous in the universe. Magnetic energy powers activities

such as flares and coronal mass ejections in the sun and stars [195, 196, 197]. The

galactic magnetic field plays an important role in star formation; in particular as-

sisting in angular momentum transport, without which the sun and similar stars

would not spin as slowly as they do today [193]. The magnetic fields in the Sun,

galaxies and planets are generated and maintained by dynamo action, the pro-

cess in which growth of the magnetic field is caused by the motion of the electri-

cally conducting fluid, where the kinetic energy is converted into magnetic energy

[23, 125, 127, 128, 168, 225, 247, 251, 259].

At the photosphere the solar magnetic field is concentrated into isolated elements,

which are then grouped into active regions [112, 137]. The magnetic field in the Sun

rises through its convective zone (CZ) in the form of isolated strands known as flux

tubes [172]. Observations suggest that flux tubes emerging through the photosphere

possess internal twist [17, 178]. This indicates that flux tubes carry electrical current

(i.e. they have twisted field lines) prior to emergence. For example, Leka et al.

[130] have shown that the current increases in proportion to the flux during the

period of emergence. The twist in emerging flux tubes could originate deep in the

convection zone as part of the dynamo process [37, 42] or could be present due to

the effects of Coriolis forces on the rising flux [39, 137, 138]. Additional twist may

be created in pre-existing flux due to surface motions such as differential rotation

or shear motions [70, 239]. Vector magnetograms provide evidence that the coronal
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magnetic field carries current. Some of these currents appear to propagate into

the corona since the observations provide evidence that there is a good correlation

between photospheric and coronal force-free field α coefficient [50, 177]. The linear

force free field α parameter is taken as the ratio between the vertical current and

the vertical magnetic field [17].

In order to calculate the linear force-free field α-coefficient, Pevtsov, Canfield,

Metcalf [178] and Longcope, Fisher, Pevtsov [136] both used a photospheric active

region vector magnetogram from the Haleakala Stokes Polarimeter (HSP; Mickey

1985) at Mees Solar Observatory. Their findings were, α < 0 for 69% and 66%,

respectively, of regions in the northern hemisphere and α > 0 for ∼ 75% and 62%,

respectively, of those in the southern hemisphere. Pevtsov, Canfield and Metcalf

[178] then concluded that magnitude of the average helicity increases with solar

latitude, starting at zero near the equator, then reaching a maximum near 15◦−25◦

in both hemispheres, before decreasing to smaller values above 35◦ − 40◦.

The inherent twist in the emerging field lines may provide important information

on the nature of the solar dynamo [198, 199]. We cannot see below the photosphere,

although helioseismology [19, 109, 205, 224] provides extensive information on ro-

tational velocities in the interior of the sun. Observing the emergence of twist and

other helicity-containing structures (in either newly emerging flux or pre-existing

flux) may prove to be an invaluable diagnostic for magnetic field dynamics in the

solar dynamo [47, 66, 178, 179, 198].

The non-linear dynamics of a thin magnetic flux tube rising through the convection

zone has been investigated by several authors [4, 56, 57, 75, 82, 215]. Numerical

simulations of Spruit’s equations suggest that the magnetic flux tube rises from the

base of the convection zone in about 2-3 months [137]. These models follow from

applying the ideal MHD equations presented in section 1.4 to a slender tube of flux.

The tube is assumed slender in a sense that its cross-sectional radius is negligible

compared to both the atmospheric scale height and any scale of variation along the

tube. In Longcope and Klapper’s model [137], the presence of some twist is essential

in order to formulate a self-consistent picture of a flux tube. Without twist, a real

flux tube would lack integrity and would not behave as a single object for very long

[172]. Linear analysis [231] and numerical simulations [135, 206] confirm that an

untwisted magnetic flux tube is quickly fragmented by hydrodynamic forces. When

twisting the flux tube about its axis, the field lines provide a tension that helps to

prevent this fragmentation [159].
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The behaviour of thin flux tubes in a turbulent fluid provides excellent geometrical

insights into the dynamo process. The stretch-twist-fold (STF) dynamo (figure 2.1)

is a simple qualitative example of a fast dynamo [55, 155, 232, 233, 234, 255]. This

dynamo starts by first stretching a closed flux tube in two dimensions to twice its

length. If the flow is incompressible then the volume of the tube is preserved. In

the next step, the rope is twisted into a figure 8 and then it is folded so that there

are two loops with their fields pointing in the same direction and they occupy the

same volume as the original flux tube. The two loops merge through small diffusive

effects. This last step is important in the sense that the new field can not easily

undo itself and therefore the whole process becomes irreversible. The newly merged

loops are topologically the same as the original loop, with the field strength scaled

up by a factor of 2.

After repeating the algorithm n times, the field in the flux tube grows by a factor

of 2n, or at a growth rate T−1 ln 2 where T is the time for the STF steps. This

makes the dynamo a fast dynamo, where the growth rate does not decrease with

decreasing resistivity [155].

The twist part of the cycle allows the field in the folded loop to add coherently

rather than cancelling. To twist the loop the motions need to leave the plane and go

into the third dimension. The degree to which the flow twists the tube is important

here. For instance, if the field were twisted too far, or not far enough, then the

resulting field would not align itself with the original field. The net angle of rotation

is governed by the geometry of the flow.

Figure 2.1: The stretch-twist-fold (STF) process.

The outline of this chapter is as follows. In sections 2.2-2.7, we analyse dynamos

and their structure. Sections 2.8-2.10 then provide a review of stretch-twist-fold

picture and a physical interpretation of fast dynamos.
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2.2 Large and Small Scale Dynamos

The dynamo process is governed by the magnetic induction equation

∂B

∂t
= ∇× (U×B− ηJ), (2.1)

where U is the fluid flow, B is the magnetic flux density and η is the magnetic

diffusivity. The equation (2.1) has solution of the form B = b(x, y, z)e(iω+p)t where

p is the dynamo growth rate. The induction equation gives the kinematics of the

field and the dynamics of the field is given by the Lorentz force

J×B = µ−1
0 (−∇(

1

2
|B|2) + (B .∇)B), (2.2)

where J is the current and µ0 is the magnetic permeability in a vacuum.

Dynamos are divided into small-scale and large-scale dynamos. In the energy and

helicity spectra calculations in chapter 3, the small wave-numbers are indicators

of large-scale dynamos and large wave-numbers are the indicators of small-scale dy-

namos. Flows with significant amounts of kinetic helicity act as large-scale dynamos.

At the largest scales there are sunspots and their active regions, extending over a

significant fraction of the Sun’s surface [58, 100]. Large-scale dynamos are thought

to be responsible for the solar cycle [200]. They show large-scale spatial coherence,

and in the case of the Sun, they show long-term temporal order. The typical length

scale associated with large-scale solar magnetic field may correspond to the width of

the mid-latitude toroidal flux belt [43, 45]. This belt extends about 30◦ in latitude,

corresponding to about 300 Mm (1Mm = 1000km). The pressure scale height at the

bottom of the convection zone is about 50 Mm, and all scales shorter than that may

be associated with the small-scale field [46, 187]. Inhomogeneous and anisotropic

flows are potential candidates for producing large-scale dynamo action [46].

The generation of large-scale magnetic field is generically accompanied by the

rapid growth of small-scale fields. Small-scale dynamos produce magnetic fields

that are correlated on scales smaller than the energy carrying scale of the turbulence

[118]. At the smallest scale, there is evidence of a significant though intermittent

field associated with active regions. Non-helical turbulent flows are an example of

small-scale dynamos. Small-scale dynamos have a larger growth rate than large-scale

dynamos. There may be a clear boundary between small and large-scale dynamos,

however the two may interact [46, 187], and there are physical settings where large-

scale dynamos do not work, for example in clusters of galaxies or in elliptical galaxies

where rotation effects are negligible and therefore any turbulent flows lack helicity
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and persistent shear. In such systems, the turbulence leads to small-scale dynamo

action and generates relatively incoherent magnetic fields [23, 203].

2.3 The Solar Magnetic Field

The solar magnetic field appears in many different manifestations. For instance

at the largest scales there are sunspots that were first systematically observed by

Galileo [186]. He noted that the spots emerged in mid latitudes and they rotated at a

rate dependent upon latitude (figure 2.2). He also recognized that the sunspots had

a life time of about the order of one month. After Galileo, the sunspot observations

became more systematic. The locations of sunspots were observed to have a cyclical

component, with the median latitude decreasing in time over an 11 year cycle, and a

new cycle then beginning at higher latitudes. This leads to the “butterfly diagram”

(figure 2.3).

Figure 2.2: An early drawing of sunspots by Galileo. The drawings are thirty-six

of Galileo’s sunspot drawings and they illustrate the motion of sunspots across the

disk which is actually a sequence showing the rotation of the Sun. The equator

and rotation axis of the Sun can be determined after watching the direction of the

sunspots over time. These observations were made at approximately the same time

of day and the motion of the spots across the Sun can easily be seen. The images

are taken from Professor Owen Gingerich’s copy of the first edition of Istoria e

Dimostrazioni.
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Figure 2.3: Solar butterfly diagram of the latitude of sunspot occurrence with time.

Note the migration of sunspot activity from mid-latitudes toward the equator (cour-

tesy of D. N. Hathaway).

In the butterfly diagram there is a cyclical effect, with near symmetry between

the two hemispheres. The symmetry is not exact, and there are obvious modulations

between cycles in the range of altitudes at which sunspots appear. Continuation of

the record back in time shows that there have been periods of very low sunspot

activity, such as the Maunder Minimum in the 17th century [186].

The measurements of the Sun’s magnetic field started in 1913 by Hale’s discovery

of magnetic field lines in sunspots [186]. What followed was that sunspots are

associated with large magnetic field lines of the order of 3000 Gauss. Sunspots

are associated with magnetically active regions, which appear in pairs of opposite

polarity, with the leading spots measured in the direction of rotation having different

polarities in the north and southern hemispheres at any particular point in the cycle

[46, 186]. The polarity is reversed every year, so that the approximate period of

cyclic activity is about 22 years [95]. Another observation is that two sunspots in

a pair tend to be tilted by 5◦ − 10◦ with respect to the equator so that the leading

spot is closer to the equator (figure 2.4). This systematic effect has its origin in the

dynamics of magnetic fields in a rotating system [222]. The tilt is consistent with

the fact that a toroidal flux tube rises from deeper layers of the Sun to upper layers.

At the upper layers of the Sun the density is less, therefore the tube develops an

expanding flow field where as a result of Coriolis force reaches a clockwise swirl in

the northern hemisphere and an anti-clockwise swirl in southern hemisphere [46].

It is important to note that not all active regions have a fully developed sunspot

with a central dark umbra and a filamentary outer penumbra. There are smaller

umbral type structures without penumbrae, typically with smaller fluxes, and some-

times there are no spots at all [186]. The sunspot number is a sensitive function of
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the flux emerging in active regions.

At the solar surface the azimuthally averaged radial magnetic field is only a few

Gauss. This is rather weak compared with the peak magnetic field in the sunspots.

In the bulk of the convection zone, the magnetic field points mostly in the azimuthal

direction because of differential rotation and is probably higher near the bottom of

the convection zone due to an effect known as downward pumping [46].

The idea of downward pumping traces back to concepts such as flux expulsion,

turbulent diamagnetism and topological pumping [227]. The turbulent pumping

of magnetic flux by penetrative convection at the base of the convection zone is

responsible for cyclical activities in the Sun [44, 73, 164, 226, 227]. The numerical

simulations of three-dimensional, compressible, turbulent convection have unveiled

the true dynamical nature of this pumping mechanism. The vigorous sinking plumes

transport magnetic flux preferentially downwards out of the turbulent convecting

region and into a stably stratified region below. This is where the flux can be

increased and stored. The pumping mechanism is remarkably robust and works well

when the convective stability of the low layer is reduced. Therefore one would expect

the downward pumping by granular convection just beneath the solar surface to be

particularly effective [223].

Figure 2.4: The plot is a historical reconstruction of yearly-averaged sunspot group

counts (yellow curve), extending all the way back to the first telescopic sunspot

observations in the early seventeenth century. The purple curve is the Zurich nor-

malized sunspot number. The amplitude of the cycle, or the peak average number

of sunspots seen in a given year, varies from one cycle to the next. Also the cy-

cles are asymmetric, in that the rise from sunspot minimum to maximum occurs

more rapidly than the subsequent fall from sunspot maximum to minimum. An-

other striking feature on this plot is the dramatically reduced number of sunspots

observed in the time period spanning the years 1645 - 1715 (courtesy of NASA).
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2.4 Fast and Slow Dynamos

The distinction between ‘fast’ and ‘slow’ dynamos was first introduced by Vainshtein

and Zeldovich [234]. This distinction has been the basis for many published papers

and books [55, 255]. Consider the velocity field v(x) that is characterized by a length

scale L and a velocity scale v. We define two time-scales associated with the motion

of the field, the advective time τA = L/v and the diffusion time τD = L2/η (the

quantity η is the magnetic diffusivity) [186]. In order to characterize the effects of

a uniform magnetic field applied to a flow, using the definition of Reynolds number

in section 1.1 and based on the equation (1.128), magnetic Reynolds number Rm is

Rm =
τD
τA

=
vL

η
, (2.3)

where η = 1/(σµ), σ is the electric conductivity of the fluid and µ is the fluid

magnetic permeability. Also, there is a magnetic Prandtl number representing the

ratio of Rm to the kinetic Reynolds number Re given by

Pm =
ν

η
=
Rm

Re
, Re =

vL

ν
, (2.4)

and ν is the kinematic viscosity. The Sun operates at very large magnetic Reynolds

number (table 2.1) and therefore it is important to consider its limiting behaviour

when Rm → ∞. A dynamo with growth rate p is said to be slow if p → 0 as

Rm →∞ and it is a fast dynamo if p→ const > 0 as Rm →∞ [95, 155]. This will

be explained further in section 2.6. Also a fast dynamo is insensitive to the value of

η as η → 0. For most velocity fields that do not have chaotic paths, any resulting

dynamo is always slow, however most turbulent flows result in fast dynamos. The

evolved magnetic fields in fast dynamos are generally very highly structured, with

a fractal or multifractal structure in the large Rm limit. If a fast dynamo reaches

equilibrium due to dynamical interactions, it will not be fast or slow, but neutral

since its growth rate is zero [186].

In table 2.1, the magnetic diffusivity is calculated from

η = 104

(
T

106K

)−3/2(
ln Λ

20

)
cm2s−1, (2.5)

where ln Λ is a constant in the range of 5 and 20 (here it is assumed to be ln Λ = 20)

[46], the magnetic Prandtl number is obtained from

Pm =
ν

η
= 1.1× 10−4

(
T

106K

)4(
ρ

0.1gcm−3

)−1(
ln Λ

20

)−2

. (2.6)
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Table 2.1: Provides summary of some important parameters in various astrophysical

settings [46].
T[K] ρ[gcm−3] Pm η[cm2s−1] vrms[cms−1] L[cm] Rm

Solar CZ (upper part) 104 10−6 10−7 107 106 108 107

Solar CZ (lower part) 106 10−1 10−4 104 104 1010 1010

Galaxy 104 10−24 1011 107 106 1020 1019

Galaxy clusters 108 10−26 1029 10 108 1023 1030

The table also contains typical values of temperature and density in different as-

trophysical settings and rough estimates of typical rms velocities, vrms, and eddy

scales, L which are used in order to calculate magnetic Reynolds number Rm from

equation (2.3) .

2.5 The Flow of Energy in Dynamos

The dynamo mechanism provides a means of converting kinetic energy into magnetic

energy. Here, we focus on deriving the magnetic and kinetic energy equations.

By taking the dot product of equation (2.1) with B/(2µ0) and integrating over

the volume V , we have

d

dt

∫
V

B2

2µ0

dV = −
∫

V

U · (J×B) dV −
∫

V

J2

σ
dV −

∮
∂V

E×B

µ0

dS. (2.7)

This equation shows the magnetic energy increases if the work against the Lorentz

force (the first term) increases, provided this term exceeds resistive losses or losses

through the surface (the second and third terms) [46].

In order to derive the kinetic energy equation, we first define the momentum

equation. It is the Navier-Stokes equation in fluid dynamics (1.1) supplemented by

the Lorentz force, J×B,

ρ
DU

Dt
= −∇p+ J×B + f + Fvisc, (2.8)

where U is the velocity of gas, ρ is the density, p is the pressure, Fvisc is the viscous

force, and f subsumes all other body forces acting on the gas. By taking the dot

product of the equation (2.8) with ρU, we arrive at the kinetic energy equation

d

dt

∫
V

1

2
ρU2 dV = +

∫
V

p∇ ·U dV +

∫
V

U · (J×B) dV +

∫
V

ρU · g dV −
∫

V

2νρS2 dV,

(2.9)

57



where Sij = 1
2
(ui,j +uj,i)− 1

3
δijuk,k is the traceless rate of strain tensor, and commas

denote derivatives [46]. In order to avoid the loss of kinetic energy through the

boundaries in (2.9), we have assumed stress-free boundary conditions with no surface

terms. We note from the equation (2.7) and (2.9) that the generation of magnetic

energy goes at the expense of kinetic energy, without loss of net energy [46].

There are four different energy reservoirs involved in the dynamo process: mag-

netic, kinetic, thermal, and potential energy. In accretion discs the magnetic energy

comes ultimately from potential energy which is first converted into kinetic energy.

In solar convection the energy comes ultimately from the nuclear reactions in the

centre of the star. These act as a source of thermal energy which gets converted

into kinetic energy via the convection instability.

2.6 Kinematic Dynamos

The magnetic induction equation (2.1) can be non-dimensionalised using the scale

and turn-over time of the velocity field U

∂B

∂t
= ∇× (U×B)−R−1

m ∇2B, (2.10)

where R−1
m ∇2B is the diffusive term. In many astrophysical environments Rm is

very large and in kinematic dynamo theory the velocity field U is fixed. There is a

critical value of the magnetic Reynolds number Rm above which the magnetic field

grows exponentially. A lot of work has been devoted to the question of whether

the growth rate can remain finite in the limit Rm → ∞. This is the so-called fast

dynamo problem [55, 213, 191]. For a steady velocity field U, the equation (2.10)

has eigenfunctions of the form

B = b(x, y, z)e(iω+p)t, (2.11)

where p is the dynamo growth rate. As stated earlier, in the fast dynamos, p remains

positive and bounded away from zero. The general motivation for the study of

fast dynamo is that fast processes are observed in the non-linear solar dynamo, an

example of which is the 22-year solar cycle where Rm ∼ 108 [55].

In an idealized situation Rm = ∞, the fluid is perfectly conducting and magnetic

energy will still grow in general, but magnetic helicity H is conserved as the field

evolves. If for Rm = ∞, a growing eigenfunction of the form (2.11) can be defined,

it must have zero helicity [155].
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In the limit when magnetic Reynolds number is large but finite as Rm −→ ∞,

helicity will be approximately conserved. Therefore, the normalized helicity should

be small and tend to zero in this limit. Although the term R−1
m multiplies the final,

diffusive term in (2.10), this term is not generally neglected, since the field may

adopt small-scales. Such small-scale field structures are evident in the Sun.

2.7 Magnetic Helicity

Magnetic helicity plays an important role in dynamo theory. It is an important

observational tool in quantifying the complexity of the Sun’s magnetic fields [46, 47].

The main information about the magnetic helicity of the Sun available to date is

from surface magnetic fields, and these help us to identify some systematic trends.

In particular, the vector magnetograms of active regions show negative (positive)

current helicity in the northern (southern) hemisphere [18, 178, 179, 207].

Here, we give a brief account of magnetic helicity properties. It is the sum of the

Gauss linking number over every pair of field lines within a volume [33]. The Gauss

linking number is

L12 = − 1

4π

∮
1

∮
2

dx

dσ
.
r

r3
× dy

dτ
dτ dσ, (2.12)

where 1 and 2 are two interlinked curves, parametrized by σ and τ . The points on

curve 1 and 2 are labelled x(σ) and y(τ) and r = y−x. The magnetic field contains

an infinite number of field lines, each of them of infinitesimal flux. Some of these

field lines fill a volume or surface while others form simple closed curves. Hence, the

magnetic field is approximated in a closed volume as a set of N thin tubes. A closed

volume is one in which magnetic field lines are fully contained, so the field has no

component normal to the boundary, i.e. B .n = 0 [33]. If there are N tubes, each

tube will carry a flux ψi, i = 1, . . . , N , and the helicity is given by

H =
N∑

i=1

N∑
j=1

Lijψiψj. (2.13)

If N→∞ with ψi → 0, after combining (2.12) and (2.13), then

H = − 1

4π

∫ ∫
B(x) · r

r3
×B(y) d3x d3y. (2.14)

Using Coulomb gauge vector potential

A(x) = − 1

4π

∫
r

r3
×B(y) d3y, (2.15)
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the helicity integral is reduced to

H =

∫
V

A ·B dV. (2.16)

Observe that magnetic helicity is a conserved quantity and is invariant under the

gauge transformation A′ = A +∇Λ, because

H ′ =

∫
V

A′ · B′ dV = H +

∫
V

∇Λ · B dV = H +

∮
∂V

ΛB · n̂ dS, (2.17)

where n̂ is the normal pointing out of the closed surface ∂V and the last term must

vanish inside a magnetic surface when B · n̂ = 0.

From Faraday’s law, the evolution equation for A · B is

∂

∂t
(A · B) = (−E−∇ψ) · B + A · (−∇× E)

= −2E · B +∇ · (ψB + A× E). (2.18)

Integrating the above equation over the volume V , we obtain

dH

dt
= −2

∫
V

E · B dV +

∮
∂V

(A×B + ψB) · n̂dS = −2η C, (2.19)

where C =
∫

V
J · B dV is the current helicity. Here, we have used the Ohm’s law

E = −U×B+ηJ, in the volume integral and have assumed that the surface integral

vanishes for closed domains [46].

Now, we define the relative helicity based on the paper of Berger and Field [34].

Consider the case where the space V is divided into two simply connected thin tubes

of volume Va and Vb separated by a boundary surface S. A divergence-free field B

in volume V is denoted by the ordered pair B ≡ (Ba,Bb), the value of which at

point x is

B(x) =

{
Ba(x) if x ∈ Va,

Bb(x) if x ∈ Vb.
(2.20)

To ensure ∇ · B = 0, it is required that Ba · n̂ = Bb · n̂, where n̂ = n̂a = −n̂b

is a unit normal pointing away from Va.

The total helicity H(Ba,Bb) inside V can be decomposed into contributions from

two relative helicities, plus a term due to the potential fields

H(Ba,Bb) = HR(Va) +HR(Vb) +H(Pa,Pb), (2.21)
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where HR(Va) and HR(Vb) are the relative helicities of Va and Vb respectively and

H(Pa,Pb) is the helicity due to the potential fields Pa and Pb. The ‘relative helicity

of Va’, HR(Va) is defined by

HR(Va) = H(Ba,B
′
b)−H(Pa,B

′
b), (2.22)

where Pa is the potential field inside Va and B′
b is an arbitrary field. Similarly, the

‘relative helicity of Vb’ is

HR(Vb) = H(B′
a,Bb)−H(B′

b,Pb), (2.23)

with B′
a an arbitrary field and Pb the potential field inside Vb.

This addition law can be generalized for relative helicities into the case where the

space is divided into N simply connected volumes Vi, i = 1, . . . , n. Let the magnetic

field B = (B1, . . . ,BN) and Pi be the current free field determined by the normal

field component at the boundary of Vi. The relative helicity is then given by

HR(Vi) = H(P1, . . . ,Pi−1,Bi,Bi+1, . . . ,BN)−H(P1, . . . ,Pi−1,Pi,Bi+1, . . . ,BN).

(2.24)

2.8 Fast Dynamos:

The Stretch-Twist-Fold Picture

We mentioned fast dynamos briefly in section 2.6. Here, we look at its physical

interpretation. It is linked to the process of stretching, twisting and folding (STF)

[234]. When STF is applied to a magnetic flux-tube in a perfectly conducting fluid,

it will double the magnetic field strength. Thus the indefinite repetition of the STF

sequence will lead to exponential growth of the magnetic field on a time-scale deter-

mined by that of the motion, and independently of the molecular diffusion process

[54]. The STF sequence doubles the magnetic field-strength without increasing the

cross-section of the flux-tube. This is similar to mapping the cross section on to itself.

The stretching is usually associated with turbulent flow, twisting with convection in

a rotating medium and folding with geometrical constraint on such convection. The

degree that the field is twisted plays an important role in generating the dynamo.

As mentioned at the start of the chapter, if the field were twisted too far, or not far

enough, then the resulting field would not align itself with the original field. The

angle of twist is governed by the geometry of the flow. Folding brings together a

field that is largely aligned in the same direction, and the average field in a chaotic
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region therefore grows exponentially with time. The STF sequence has some basis

of reality in the turbulent convection within the convective zone of a rotating star

[54].

To translate STF into a mathematical form, Moffatt and Proctor [155] represent

the sequence as a three-dimensional time-dependent velocity field, where the STF

process leading to fluctuations in the magnetic field is a periodic motion. They

consider the centre line of the flux tube to be the circle x2 + y2 = a2
0 in the plane

z = 0 (figure 2.5(a)), and its cross section to be a circle of radius c� a0 while also

assuming that the diffusion is totally negligible, η = 0. In this section, we review

the Moffatt and Proctor stretch-twist-fold sequence [155].

2.8.1 Stretch

Moffatt and Proctor achieve the process of stretching (figure 2.5(b)) by the uniform

incompressible straining field

v1(x) = (αx, αy,−2αz), (2.25)

with α > 0. As a result, the equation of the field in three dimensions becomes

dx

dt
= αx⇒ x(t) = x0 e

αt,

dy

dt
= αy ⇒ y(t) = y0 e

αt,

dz

dt
= −2αz ⇒ z(t) = z0 e

−2αt, (2.26)

and the radius of the flux tube increases exponentially under the action of the field

a(t) = a0e
αt. (2.27)

As an example, consider the circular flux tube in the y = 0, t = 0, x0 = z0 = c plane

(figure 2.6(a)), then after stretching (figure 2.6(b)), at time t, the points P , Q, R

and S have the following coordinates:

P = ((a0 + c)eαt, 0, 0), semiaxis in x direction with length ceαt,

Q = (0, 0, ce−2αt), semiaxis in z direction with length ce−2αt,

R = ((a0 − c)eαt, 0, 0), semiaxis in x direction with length − ceαt,

S = (0, 0,−ce−2αt), (2.28)

where the ratio ceαt/ce−2αt = e3αt .
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It is important to note that at the time t1 = α−1 ln 2, the radius is doubled and

the cross section of the tube is flattened by the strain into an ellipse (figure 2.5(b))

1

4
(x− 2α0)

2 + 16z2 = c2, (2.29)

with semiaxes in the ratio of 8 to 1. The volume of the flux tube, however, remains

constant at V ≈ 2π2c2a0.

(a) (b)

Figure 2.5: Stretching of a circular flux tube in the xy plane.

(a) (b)

Figure 2.6: Stretching of a circular flux tube in the xz plane.
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2.8.2 Twist

Moffatt and Proctor present the twist about the x-axis (figure 2.7) by the velocity

field

v2(x) = (0,−ω(x) z, ω(x) y), (2.30)

where ω(x) is antisymmetric about x = 0. Solutions to equations

x(t) =

∫
vx(t) dt,

y(t) =

∫
vy(t) dt,

and z(t) =

∫
vz(t) dt, (2.31)

are obtained by going to the second derivative in time. The simplest possibility of

uniform twist is when ω(x) = −fx where f is constant. For a right-handed twist,

f > 0, the twist as a function of f is

v2(x) = (0, fxz,−fxy). (2.32)

If the object we are twisting is an elastic band or paper tape, then it may be difficult

to achieve the twist at the midpoint of the elliptic cross section since these materials

have a natural resistance to stretching. However such condition does not arise in

magnetic flux tubes so long as the Lorentz force is negligible. Also a strong magnetic

field subject to twist would respond in a nearly inextensible manner so that, in a

dynamic regime in which Lorentz forces are important, the elastic-band analogy may

then be more relevant.

To achieve the twist at the points A and B (figure 2.7), the twist field (2.32) is

compressed along the y-axis by the strain field v3(x). This leaves the scale of the

loop along the x-axis undisturbed. The two dimensional strain field is

v3(x) = (0,−βy, βz), (2.33)

with β > 0. If the fields v2 and v3 act simultaneously for a time t2 = π/4a0f ,

then the distance between the points A and B will be reduced to δ = 2a0e
−βt2 =

2a0e
−πβ/4a0f . However, here a flux tube with an initially elliptic cross-section is

twisted and not simply a closed curve. As the figure 2.7 demonstrates, a right-

handed twist applied to a paper tape induces a left-handed twist of the tape about

its own centreline. If the tape is broken and reconnected at the points A and B

(simulating the diffusion process), then the two loops have created a form of Möbius

strip, where each one will have a net left-handed twist of π.
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Finally, as a result of the action of the velocity field v2(x) + v3(x), the flux tube

will develop what is described as ‘intrinsic twist’. Once the reconnection takes place,

this intrinsic twist manifests itself as the helicity of the magnetic field.

Figure 2.7: Twisting and reconnection of a flux tube of circular cross-section. The

figure eight has a helicity of 1. By conservation of helicity [34] each circular tube

has a twist of 0.5.
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2.8.3 Fold

The action of folding two loops (figure 2.8) is described by the velocity field v4(x)

v4(x) = (−γx, γy + gx2, 0), (2.34)

with γ > 0, g > 0. The gx2 term deforms the loops out of the (x, z)plane, and the

remaining part of the equation (2.34) compresses both loops towards each other on

the (y, z)-plane. A small value of g (ga0 � γ) is sufficient to achieve the necessary

effect, in a time interval of t4 satisfying γt4 & 1.

Now there is a double loop in the (y, z)-plane. In order to complete the process

and return to the initial configuration, a translation of order a0 and a rotation of

π/2 about the y-axis is required. This is achieved with the velocity field

v5(x) = (0, ω, 0) ∧ x− (0, U, 0), (2.35)

with U ≈ 2a0 ω/π in a time t5 = 2ω/π.

When applying the velocity fields v1(x),v2(x), . . . ,v5(x) in succession and over

suitable time intervals, we achieve an approximate doubling of the initial magnetic

field. However, this happens at a cost of generating a net twist in both of the new

flux tubes. If these velocity fields act simultaneously so that there is steady velocity

field

v(x) = v1(x) + v2(x) + . . .+ v5(x)

= (α′x+ ωz, β′y + gx2 + fxz − U, γ′z − ωx− fxy), (2.36)

where

α′ = α− γ, β′ = α+ γ − β, γ′ = −2α+ β, (2.37)

then the initial loop should continuously deform in a similar way and the doubling

process should be repeated again and again so long as the velocity field (2.36) is

sustained. The trajectories associated with equation (2.36) are

dx

dt
= α′x+ ωz,

dy

dt
= β′y + gx2 + fxz − U,

dz

dt
= γ′z − ωx− fxy, (2.38)

where α′ + β′ + γ′ = 0. The approaching of the two loops in the twist and fold

process is achieved if α′ < 0 and β′ < 0.
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Figure 2.8: Folding of two loops with translation U and rotation ω. Figure from

Moffatt and Proctor [155].

The vorticity associated with the velocity field in (2.36) is

ω(x) = (−2fx, 2ω + fy, 2gx+ fz), (2.39)

and the helicity, integrated over any sphere |x| < R is given by

H(R) =

∫
|x|<R

v · ω dV = −4

5
π R5fα′. (2.40)

The motion therefore has a net right-handed or left-handed sense according to

whether fα′ < 0 or > 0. The helicity (2.40) together with weak diffusion is re-

sponsible for generating helicity of opposite sign in the magnetic field.

The motion (2.36) is unbounded at infinity and there is no guarantee that the

trajectories of fluid particles will remain within a sphere r < R, no matter how

large R may be. Therefore the velocity field (2.36) is modified so that nearly all of

the trajectories return to the neighbourhood of the origin. To achieve this, consider

A(x) as the vector potential of v(x), which is a cubic function of the coordinates

A(x) = [gx2z − Uz +
1

2
fx(z2 + y2), γzx− 1

2
ω(x2 + z2),−βxy]. (2.41)

The modified vector potential is defined as

AM(x) = A(x)e−r/R, (2.42)

and the modified (solenoidal) velocity field is given by

vM(x) = ∇∧AM(x). (2.43)
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Note that vM coincides with v for r � R, but since it is exponentially small for

r & R, nearly all of the stream lines are forced to return to the interior of the sphere

r = R. Consequently, any magnetic field that is initially confined to the sphere

r . R will probably remain confined for all time under the frozen field assumption.

It is important to consider what happens when the STF cycle is repeated. The

stretch is now applied to two adjacent flux tubes each of 8:1 elliptical cross section

twisted in the form of a Möbius strip. The initial stretch in the (x, y)-plane again

flattens the cross section, where the long axis of the ellipse is initially parallel to

the plane. The ellipse is then further stretched until its axes are in the ratio 64:1.

Where the long axis is initially perpendicular to the plane, the cross section returns

to the original circular form (but with 1/4 of the original radius). The twist about

the x-axis again induces additional intrinsic twist in the flux tube where there is the

twisting and reconnection of a Möbius strip (twist π) and a strip with twist 2π. In

the case of flux tubes, if symmetry is maintained between the two daughter tubes,

then each will have a twist of 3π/2. The repetition of folding stage leads to the

superposition of these two tubes, which will be linked with the neighbouring tubes.

Even after only two stretch, twist and fold cycles, a field of considerable complexity

is generated. For a toroidal flux that has increased fourfold, a poloidal field varying

on a scale 1c/64 has been generated and after n cycles the scale of variation would

be c/23n. This is indeed an exponential decrease of scale lB ∼ ce−t/t0 , where t0 is the

time-scale of the stretch-twist-fold cycle. The molecular diffusion, neglected so far,

will result in eliminating these field variations as well achieving the reconnection of

flux tubes. It is important to remember the field dealt with here is a fast diffusive

dynamo rather than the non-diffusive type.

Suppose that the initial stretch (2.25) is maintained for a long time until the

smaller dimension of the cross-section of the tube is reduced to O(η/α)
1
2 . At this

cross section the magnitude of diffusion becomes important. The length scale does

not reduce further. However, the larger dimension of the cross-section continues to

increase like eαt and since the total toroidal flux in the tube is constant during the

stretch process, the field intensity must decrease like e−αt. Indeed the relevant local

solution of equation (2.10) with the velocity field given by (2.25) is B = (0, B(z, t), 0)

with

B(z, t) = B0 e
−αt e−αz2/η. (2.44)
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The behaviour in which the decrease of scale in one direction is limited by molec-

ular diffusion has been discussed in the context of scalar-field diffusion by Batchelor

[20] and its importance in dynamos has been emphasized by Zeldovich [254]. On a

length scale as small as this in the stretch-twist-fold cycle, the toroidal field is not

doubled - it is halved. The toroidal flux however is doubled, because there are now

two adjacent flux tubes each with double the original cross-section. Repetition of

the cycle results in continued increase of the net cross-section, and the structure of

the field that finally emerges from many repetitions will be very different from the

initial simple circular flux tube of small cross-section.

2.9 The α Effect

Central to the discussion of large-scale dynamos is the so-called alpha effect. It

explains the generation of a mean field if the turbulence lacks mirror symmetry, e.g.

if the flow has kinetic helicity. Turbulent flows recreate poloidal magnetic flux from

the toroidal field [126, 154, 255]. The overall effect of turbulence is highly non-linear;

however, to a first approximation the flows create an efficient electromotive force

ξ = αB− β∇×B, (2.45)

where B is the mean magnetic field [37]. In classical dynamo theory α is the result

of kinetic helicity and β corresponds to turbulent diffusion. Considering the time

derivative of helicity (2.19), the electric field becomes E = −ξ. Therefore α can

modify the helicity of the mean field [201, 208]. The appearance of the electromotive

force is known as the ‘α effect’. It is at the heart of dynamo theory. The reason

is that it provides the means for the dynamo cycle BP 
 BT to be completed as

the toroidal field BT can be generated from poloidal field BP by the process of

differential rotation.

After series expansion of (2.45), one can write

ξ(0) = αB0, (2.46)

and from Ohm’s law J = σ(E + v×B) with σ the electric conductivity, we have

J(0) = σξ(0) = σαB0, (2.47)

where J(0) is the mean current density. In terms of mean fields, equation (2.47)

demonstrates that the α effect generates toroidal current and, as a result, a poloidal

field from the toroidal field [154].
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2.10 Helicity in the Beltrami Dynamo

The property of fluid motion crucial to dynamo action is kinetic helicity. Helicity

in simple terms is the imbalance between the right-handed and left-handed helical

motion. A flow that has maximal kinetic helicity and, for this reason is of particular

interest, is the Beltrami flow. A Beltrami flow satisfies ∇∧v = k0v, where k0 is

constant. This is similar to the force-free field structure (∇ ∧ B0 = kB0). The

helical wave

v1(x, t) = (0, U1 sin(k0x− ω1t), U1 cos(k0x− ω1t)), (2.48)

satisfies the Beltrami condition, and its kinetic helicity is

H1 = 〈v1 · ∇∧v1〉 = k0 U
2
1 . (2.49)

Similarly, v2 and v3 are

v2(x, t) = (U2 cos(k0y − ω2t), 0, U2 sin(k0y − ω2t), (2.50)

v3(x, t) = (U3 sin(k0z − ω3t), U3 cos(k0z − ω3t), 0), (2.51)

and the velocity field

v(x, t) = v1(x, t) + v2(x, t) + v3(x, t), (2.52)

satisfies ∇∧v = k0 v and has helicity

H = 〈v · ∇∧v〉 = k0 (U2
1 + U2

2 + U2
3 ). (2.53)

The flow (2.52) is an exact solution of the Euler equation in a rotating fluid. The

Euler equation in a frame rotating with angular velocity Ω may be written as

∂v

∂t
+ 2Ω ∧ v = −∇(

p

ρ
+

1

2
v2) + v ∧ ω, (2.54)

and it is satisfied by (2.52) if

Ω = −1

2
(ω1, ω2, ω3), (2.55)

and if p is chosen suitably. When ω1 = ω2 = ω3 = 0, the flow is steady.

Flows of this type are capable of dynamo action on length scales L large compared

with k−1
0 [53, 190]. As discussed in section 2.9, there is an α associated with the

motion (2.52) and that is given by the tensor [154]

(αij) =

 α(1) 0 0

0 α(2) 0

0 0 α(3)

 ,
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where

α(n) = − ηU2
nk

2
0

ω2
n + η2k4

0

(n = 1, 2, 3). (2.56)

When the frequencies ωn are non-zero, α(n)→0 as η(magnetic diffusivity)→0. This

is a property that persists at all higher orders of perturbation theory [71], and as a

result the flow is not a fast dynamo.

For simplicity, consider the isotropic situation where

U1 = U2 = U3 = U, ω1 = ω2 = ω3 = ω, (2.57)

then αij = αδij, where

α = − ηk0H

3(ω2 + η2k4
0)
. (2.58)

The increase in the molecular diffusivity is similarly

β =
2ηk0E

3(ω2 + η2k4
0)
, (2.59)

where E = 3U2/2 is the mean kinetic-energy density of the motion (H = 2k0E)

[155]. It is important to note that

|α|
β

= O

(
|H|
E

)
= O (k0) , (2.60)

and this is expected to hold at higher orders of perturbation theory.

The evolution of the field B0 on a large-scale compared with k−1
0 is described by

∂B0

∂t
≈α∇∧B0 + (η + β)∇2B0. (2.61)

This has non-oscillatory dynamo solutions of force-free structure (∇ ∧B0 = KB0)

whose growth rate p is given by

p = αK − (η + β)K2. (2.62)

The maximum growth rate occurs for

K = Km =
|α|

2(η + β)
, (2.63)

and, by adopting expressions from (2.58) and (2.59), then

Km

k0

=
U2k2

0

2[U2k2
0 + (ω2 + η2k4

0)]
, (2.64)
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so that Km � k0, as required for self-consistency of the approximation (2.61) pro-

vided that

ω2 + η2k4
0 � U2k2

0. (2.65)

As U increases (for fixed ω and η), there is a decrease in the growth of the field

B0 towards the scale k−1
0 of the velocity field, and the approximate methods of

mean-field theory become less reliable [155].

An alternative approach [5, 91] would be to restrict attention to a field B(x, t)

with the same periodicity as the field v and with zero mean over a basic cube of side

2π/k0. In spectral terms, the spectrum of B may peak at wave numbers of order

k0, but the spectrum of ∇ ∧ B will have strong contributions at wave numbers of

order R
1
2
mk0, where Rm is the magnetic Reynolds number associated with the flow.

This is consistent with the statement of Galloway and Frisch [91] that “spectra of

the growing or decaying modes show that the value of the wave-number k at which

energy peaks is surprisingly insensitive to R, though the length of the tail appears

to increase roughly as the square root of R”. The magnetic spectrum M(k) has a

power law dependence of the form

M(k) ≈ k−q, 0 < q ≤ 3, (2.66)

in the range of wave-numbers k0 � k � R
1
2
mk0.

If the process of field distortion is similar to the stretch-twist-fold dynamo then

the fluctuation of ∇∧B, generated at any scale k−1, is related to the twist effective

at that scale and, for the motion (2.52), this twist is independent of k. This results

in (k2M(k)) k being independent of k, i.e. q = 3 in (2.66) and it leads to k2M(k)

becoming logarithmically divergent as η → 0, corresponding to the non-analytical

character of the magnetic field in this limit. The results available at present suggest

that M(k) in fact falls off more slowly than k−3 in the range of k0 � k � R
1
2
mk0

[155].
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Chapter 3

Stretch-Twist-Fold Picture in a

Thin Flux Tube

3.1 Introduction

This chapter looks at the influence of writhe in the stretch-twist-fold (STF) dynamo.

We consider a thin flux tube distorted by simple stretch, twist, and fold motions

and calculate the helicity and energy spectra. The results of this chapter have been

published in the following journal [10].

A thin flux tube can be specified by the geometry of its central axis, the radius

(and net magnetic flux) of the tube surrounding the axis, and a twist function: how

much field lines twist about the axis as a function of position along the axis. We

ignore the distribution of flux or twist in the radial direction. The axis geometry can

be described locally in terms of two intrinsic quantities, the curvature and torsion.

In addition, there are three important global quantities, the twist number, the writhe

[34, 156, 35] (briefly, a measure of coiling), and the helicity, the measure of linking

number of the field lines averaged over all pairs of field lines, and weighted by flux

[153]. Longcope and Klapper [137] have developed a detailed theory of the evolution

of a thin flux tube in terms of these geometric quantities. In particular, they allow

the distribution of twist to vary along the axis of the tube.

For the purposes of this chapter, we make a strong simplification: we assume that

the twist will at all times be uniformly distributed. Uniform distribution of twist is

valid in an equilibrium situation [137, 172]. In a dynamic situation, the assumption

will be justified if the time-scale for relaxation to a uniform distribution of twist is

small compared to the time-scales for evolution of the shape of the tube axis. As
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redistribution of twist operates at near Alfvén speeds this difference in time-scales

should be valid for tube motions much slower than the Alfvén speed.

The growing complexity of the field in the STF process can be characterized by

the evolution of the magnetic helicity [234]. This is discussed in [46] and [95] where

repeated application of the STF cycle leads to a large-scale writhe helicity associated

with the repeated crossings of the flux tube and oppositely signed twist helicity at

a much smaller scale.

Suppose that the twist process proceeds as in figure 3.1 (rather than the mirror

image process). Gilbert [95] notes that after folding, the twisted rope has a writhe

of approximately W ≈ −1. This gives the writhe contribution to the helicity of

Hwr ≈ −1. There is a compensating twist of field lines inside the tube, giving a

twist of +1, and the twist contribution to the helicity is Htw = +1. These figures

assume that the fold part of the cycle returns the field to a nearly flat state. If the

field shape is more three-dimensional, then the writhe and twist must be calculated

more carefully, as will be done in section 3.4. The total helicity after one STF step is

H = Hwr +Htw = 0. Gilbert suggests that the two forms of helicity are associated

with different scale of the field. The positive twist helicity is associated with the

tube’s internal structure, presumably at small-scales, whereas the negative writhe

helicity is related to the coiling of the tube at a larger scale.

Large-scale dynamos produce small-scale helical fields as a waste product that

quench the large-scale dynamo and hence quench the alpha effect [41, 84]. If most of

the helicity of the solar magnetic field were produced by the α effect, then one would

expect much of the solar magnetic field to be bi-helical [39, 40, 135, 252], in that the

field generated by the α effect has positive and negative magnetic helicity at different

scales, but hardly any net magnetic helicity. To the extent that the helical structure

lies in individual tubes (rather than linking between tubes) these different scales of

helicity could manifest themselves in the twist and writhe structure. Evidence for

bi-helical fields can be seen in the fact that bipolar regions are tilted according to

Joy’s law [75, 101], suggesting the presence of positive magnetic helicity in addition

to the negative magnetic helicity usually found in northern active regions.

On the other hand, if most of the Sun’s helicity is caused by differential rotation

[37], the helicity in each hemisphere would have a strong dominant sign (negative in

the north). Hence, the differential rotation causes segregation of magnetic helicity in
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physical space, i.e. between north and south, while the α effect causes a segregation

of helicity in wave-number space.

An emerging flux tube can carry helicity either as an internal twist within the tube,

or as writhe [140]. To assist in interpreting both dynamo theory and observations

of emerging helical structure, we investigate how the decomposition of helicity into

twist and writhe (defined in section 3.2) relates to the helicity and energy spectra.

Consider an STF dynamo with right-handed twisting motions (corresponding to

the effects of Coriolis forces in the northern hemisphere of the Sun). According

to Gilbert [95] and Brandenburg and Subramanian [46], the STF process generates

negative helicity at the large-scales, and positive helicity at small-scales. The large-

scale helicity is then interpreted as writhe, while the small-scale helicity corresponds

to twist. We wish to test this interpretation with explicit calculations.

The outline of this chapter is as follows. In section 3.2, we review the magnetic

helicity, twist, and writhe of flux tubes. This section also gives a review of the

helicity and energy spectra. Then, in sections 3.3-3.4, we provide details of our

thin flux tube model, present our calculations of magnetic energy and magnetic

helicity and the subsequent numerical simulations of helicity in the STF picture.

Conclusions are given in section 3.5.
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Figure 3.1: The stretch-twist-fold (STF) process. Top row: An initial circular flux

tube (W = 0) is stretched (W = 0) and twisted (W = 0.295). Bottom row: The

tube is compressed into a figure 8 (W = 0.739), folded (W = 1.12), and compressed

again (W = 1.15). Writhe can be computed by counting the (signed) number of

crossings seen in a plane projection, then averaging over all projection angles. Thus,

for the figure 8, a positive crossing is seen from 74% of all projection angles. Note

that the last two tubes have a writhe slightly >1; from some angles these tubes

exhibit two crossings (e.g. if rotated from their present positions by 45◦ about the

vertical).
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3.2 Helicity, Twist, and Writhe

3.2.1 Definitions

We described in section 2.7, the Gauss linking number L as the measure of the linking

of two curves [79]. Similarly, Magnetic helicity H was interpreted as the average

linking of pairs of magnetic field lines. Here, we consider a closed tube of magnetic

field lines with axial flux ψ. The helicity per unit flux H/ψ2 of the magnetic tube

can be divided into two components [34, 156] called the Writhe helicity W and the

twist helicity T .

Motions which do not break the curves conserve L, just as ideal motions conserve

magnetic helicity H. The relation H/ψ2 = T + W is analogous to the relation

L = T +W known to hold for the edges of a ribbon [59, 180, 246]. The twist T
measures how much a secondary curve (for example one edge of a ribbon) twists

about the first (the central axis of the ribbon). Let s denote arc length along a

curve, T(s) denote the tangent vector, and V̂(s) denote a unit vector pointing to

the secondary curve. Then

T =
1

2π

∮
T · V̂ × dV̂

ds
ds. (3.1)

For magnetic fields, this twist number measures field aligned current. In particular,

if J‖ is the current parallel to the magnetic field, and µ0 is the vacuum permeability,

then
dT
ds

=
µ0J‖
4π|B|

. (3.2)

The writhe number W is defined by the integral

W =
1

4π

∮ ∮
x(s)− x(s′)

|x(s)− x(s′)|3
· dx(s)

ds
×dx(s′)

ds′
ds ds′. (3.3)

Note that T is defined by a single integral and therefore has a well defined local

density. In contrast, W is defined by a double integral and thus has no local density;

it depends on the global geometry of the curve and can not be calculated by adding

contributions from individual short sections of the curve. However, simpler and

more efficient methods have been found for actually calculating W as described in

[35].

Because of the conservation of helicity, a reduction in twist will result in an in-

crease in W . Therefore, a change in writhe will have the opposite sign as the change
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in T . Using the measurement of writhe, we determine the internal twist by

T =
H

ψ2
−W . (3.4)

The opportunity to change twist into writhe and decrease the energy may result in

writhing instabilities where the axis forms helical structures [137, 228, 229, 230, 235].

3.2.2 Energy and Helicity Spectra

Following the definition of the Fourier transform of a random function in Appendix

B, the Fourier transforms of the magnetic field and vector potential are (using B =

∇×A)

B̃k =
1

(2π)3

∫
B(x)e−ik·rd3x = −ik× Ãk. (3.5)

With this convention, the magnetic energy spectrum is

Mk =
1

2

∫
k−shell

B̃∗
k · B̃k k2dΩk, (3.6)

and the helicity spectrum is

Hk =
1

2

∫
k−shell

(Ã∗
k · B̃k + Ãk · B̃∗

k)k
2dΩk, (3.7)

where dΩk is the solid angle element in Fourier space [154].

The helicity and energy spectra are normalized such that∫ ∞

0

Hkdk = 〈A · B〉 V ≡ H, (3.8)

∫ ∞

0

Mkdk =

〈
1

2
B2

〉
V ≡M, (3.9)

where H and M are magnetic helicity and magnetic energy, respectively, V is the

volume element and the angular brackets denote volume averages.

We can easily show that Hk is gauge invariant: if A → A + ∇φ, then Ãk →
Ãk + iφ̃kk. But as ∇ · B = 0, we have iφ̃kk · B̃k = 0. Thus equation (3.7) is

unchanged by the gauge transformation.
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We can decompose the Fourier transformed magnetic vector potential Ãk, into a

longitudinal component, h‖, and eigenfunctions h± of the curl operator

Ãk = a+
k hk

+ + a−k hk
− + a

‖
khk

‖, (3.10)

with

ik× hk
± = ±khk

±, k = |k| , (3.11)

and 〈
hk

+∗ · hk
+
〉

=
〈
hk

−∗ · hk

〉
=
〈
hk

‖∗ · hk
‖
〉

= 1. (3.12)

The longitudinal component a
‖
khk

‖ is parallel to k and vanishes after taking the curl

to calculate the magnetic field. It can also be set to zero by choosing a Coulomb

gauge potential, ∇ ·A = 0.

An example is to find B for k = (0, 0, 3l−1) and Ãk = 2.7h+
3l−1 , where l is some

length scale. We have B̃k = ik×Ãk = ik×(2.7h+
3l−1) and from (3.11) we obtain

B̃k = (3l−1) 2.7h+
3l−1 = 8.1l−1h+

3l−1 . The magnetic field B has magnitude 8.1l−1 and

is in the x and y directions.

The complex coefficients a±k (t) depend on k and t, and the eigenfunctions h±k ,

which form an orthonormal set, depend on k [46]. They are given by

h±k =
1√
2

k× (k× e)∓ ik(k× e)

k2
√

1− (k · e)2/k2
, (3.13)

where e is an arbitrary unit vector that is not parallel to k. Using the above relations,

we can then write the magnetic helicity spectrum as

Hk = k(
∣∣a+

k

∣∣2 − ∣∣a−k ∣∣2)V, (3.14)

and the energy spectrum in the form

Mk =
1

2
k2(
∣∣a+

k

∣∣2 +
∣∣a−k ∣∣2)V, (3.15)

where V is the volume of integration. From equations (3.14) and (3.15) we obtain

the realizability condition
1

2
k |Hk| ≤Mk. (3.16)

This condition becomes an equality for the eigenfields h+
k and h−k . The realizability

condition is tested for a twisted tube in section 3.4.8.
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The energy and helicity spectra are closely related to the Fourier transform of the

two-point correlation function Rij(r) of the magnetic field [154]. Define

Rij(r) =

∫
Bi(x)Bj(x + r)d3x. (3.17)

Then, in Fourier space, one finds that

R̃ij(k) =
1

(2π)3

∫
Rij(r)e

−ik·rd3r (3.18)

= B̃k iB̃
∗
k j. (3.19)

We can then integrate over spherical shells in k space as in equations (3.6) and (3.7),

with the help of (3.5) to find that:

Mk =
1

2

∫
k−shell

R̃ii k
2dΩk, (3.20)

Hk =

∫
k−shell

−iε`mnk`R̃mn

k2
k2dΩk. (3.21)

Thus, the trace of R̃ gives the energy spectrum, while the helicity spectrum comes

from the anti-symmetric (and perpendicular to k) component of R̃. This relation

between spectra and two point correlations is discussed further in section 3.2.4.

3.2.3 The Relation Between Helicity Spectrum and Spatial

Structure

The helicity spectrum measures the distribution of twist, shear, and linking on

different length scales. It fails, however, in detecting spatial fluctuations of helicity.

For example, consider the field

B = (sin 2x cos 2y,− cos 2x sin 2y, sin x sin y). (3.22)

This field consists of twisted flux tubes aligned along the z direction (figure 3.2).

The helicity spectrum for this field is identically zero, i.e. Hk = 0 for all k. While the

field contains individual helicity-containing tubes of alternating sign, the tubes have

the same size. Thus the positive helicity exactly cancels the negative helicity at the

same places in the spectrum. A quantity related to helicity which detects spatial dis-

tribution in weakly inhomogeneous turbulence has been proposed by Subramanian

and Brandenburg [219].

80



Figure 3.2: A field whose helicity spectrum Hk = 0 for all k.

Helicity-containing structures are inherently three dimensional. However, we can

create a simple field which only varies in one dimension to investigate how a simple

crossed field is represented in a Fourier spectrum:

B =
1√
2πσ

e−(z−w/2)2/2σ2

x̂ + e−(z+w/2)2/2σ2

ŷ. (3.23)

This field consists of two layers of flux separated by a distance w. Each layer has

unit flux (per unit length in x and y directions) distributed with Gaussian profiles

of width σ; their fields are perpendicular to each other.

Taking the Fourier transform in the z direction of the above magnetic field, we

have

B̃k = eikw/2 e−k2σ2/2 x̂ + e−ikw/2 e−k2σ2/2 ŷ, (3.24)

which gives a helicity spectrum of the form

Hk =
2

πk
e−k2σ2

sin(kw), (3.25)

(as shown in figure 3.3). Here the envelope has width σ/
√

2 and the periodicity is

2π/w. The helicity spectrum broadens as the width σ of the layers decreases; in the

limit σ → 0 it becomes

B = δ(z − w/2)x̂ + δ(z + w/2)ŷ; (3.26)

Hk =
2

πk
sin(kw). (3.27)
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Figure 3.3: Left: the helicity spectrum for two perpendicular thin slabs of magnetic

flux. The separation between the slabs has been set at w = 1. Curves are given for

σ = 0.2 (dashed), σ = 0.1 (thin solid), and σ → 0 (thick solid). Right: two crossed

thin tubes of magnetic flux. The separation between the tubes is w. The helicity

spectrum for this configuration is identical to that of the crossed slabs in limit of

zero radius (thick solid curve).

3.2.4 Why Does the Helicity Spectrum Oscillate for Local-

ized Flux?

What is the origin of the sin(kw) factor in the helicity spectrum? We can better

understand this effect by recalling the close relation between the helicity spectrum

and the Fourier representation of the two-point correlation function Rij(r).

For the two slab field above (3.26), as variations only occur in z, we can write

R12(z) =

∫
B1(z0)B2(z0 + z)dz0 = δ(z + w). (3.28)

Similarly R21(z) = δ(z − w). Fourier transforms give

R̃12 =
1

2π
e−ikw; R̃21 =

1

2π
eikw. (3.29)

The one dimensional helicity spectrum analogous to (3.21) is

Hk =
−iε3mnkR̃mn(k)

k2
− −iε3mnkR̃mn(−k)

k2
(3.30)

=
1

ik

(
(R̃12(k)− R̃21(k))− (R̃12(−k)− R̃21(−k))

)
(3.31)

=
2

πk

1

2i

(
eikw − e−ikw

)
=

2

πk
sin(kw), (3.32)

in accordance with our previous calculation.
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We can do a similar calculation for two crossed tubes (as shown on the right of

figure 3.3). Consider two thin unit flux tubes aligned along the x axis at z = w/2,

and along the y axis at z = −w/2. Then one finds R12(z) = δ(z +w) and R21(z) =

δ(z−w) as above (multiplied by flux squared). This leads to the same spectrum for

Hk.

Note that the above fields have net fluxes in the x and y directions. Despite the

infinite domain, the helicity is finite. A more physically reasonable field with zero

net flux has two oppositely directed tubes in the x direction intertwined with two

in the y direction:

B = δ(z − 3w/2)x̂ + δ(z − w/2)ŷ− δ(z + w/2)x̂− δ(z + 3w/2)ŷ. (3.33)

This field still has an oscillatory spectrum, albeit with two modes of oscillation:

Hk =
6

πk
sin(kw)− 2

πk
sin(3kw). (3.34)

3.3 The Magnetic Field Inside a Twisted Torus

We consider a magnetic flux tube in a shape of a torus, with minor radius a and

major radius R. The circular axis of the torus lies in a horizontal plane encircling

the z-axis. In cylindrical coordinates a point is given by (ρ, φ, z). We will also need

toroidal coordinates (r, θ, φ): here r denotes the distance of a point from the circular

axis of the torus, and θ denotes angle the short way around (with θ = 0 closest to

the z-axis). Thus

ρ = R− r cos θ.

The field line equations are
dr

Br

=
r dθ

Bθ

=
ρ dφ

Bφ

, (3.35)

and so,

Bθ =
r dθ

ρ dφ
Bφ =

r

R− r cos θ

dθ

dφ
Bφ. (3.36)

If we replace φ by arc length s along the toroidal axis, this becomes

Bθ =
rR

R− r cos θ

dθ

ds
Bs, (3.37)

where Bs is the axial magnetic field and constant and the field line derivative dθ/ds

gives the rate of increase of twist T with arc length s, i.e.

dθ

ds
= 2π

dT
ds

(torus). (3.38)
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Substituting (3.38) in (3.37) and putting s = 2πR leads to Bθ for a torus

Bθ =
rT
R

(
R

R− r cos θ

)
Bs. (3.39)

And for a thin torus with R� r, the above equation becomes

Bθ =
rT
R
Bs. (3.40)

Next consider a thin flux tube of (almost) arbitrary shape. Locally, we can replace

major radius R in the above analysis by the curvature radius R(s) of the central

axis of the tube. We also lose the angle φ, replacing it by the arc length s along the

axis. The angle θ = 0 now points in the direction of the curvature vector. But, in

addition, there will be an extra source of twist due to the torsion τ of the axis [156]:

dθ

ds
= 2π

(
dT
ds

− τ

)
. (3.41)

We assume twist (and thus parallel current) to be uniformly distributed along the

total arc length L of the tube. In this case

dT
ds

=
H −W
L

, (3.42)

and so

Bθ =
2πrR(s)

R(s)− r cos θ

(
H −W
L

− τ

)
Bs. (3.43)

We keep Bs uniform inside the tube. In order to find the upper limit for a, in

the equation (3.43), the denominator R− r cos θ should be more than zero. Hence,

R > r cos θ and for θ = 0, we should have R > r. Also, since we have 0 ≤ r ≤ a,

the radius of curvature R(s) should always be larger than the minor radius a.

3.3.1 The Magnetic Energy of a Thin Torus

We define the magnetic energy ET of the torus by

ET =
1

2µ0

∫
B2d3x, (3.44)

where µ0 is the magnetic permeability. We have Bφ = Bs , Br = 0 and

Bθ =
2πrT
L

Bs. (3.45)

Substituting for Bθ, Bφ and Br in the energy integration (3.44) leads to

ET =
1

2µ0

∫ 2π

0

∫ 2π

0

∫ a

0

(B2
θ +B2

φ +B2
r ) r dr dφ ρ dθ, (3.46)
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where ρ =
√
R2 + r2 + 2rR cos θ. Performing the angular integration and letting

q = r/R, we obtain

ET =
2πB2

sR
3

µ0

∫ 1/p

0

(
1 + (T q)2

)
q

[√
(1− q)2E

(
−4q

(1− q)2

)
+
√

(1 + q)2E

(
4q

(1 + q)2

)]
dq,

(3.47)

where E is the complete elliptic integral of the second kind and p = R/a is the torus

aspect ratio. We calculate this energy integral numerically in section 3.4 for given

aspect ratio p, major radius R and an internal twist T .

3.3.2 The Energy Calculation for a Thin Tube

When the tube is very thin, its topology becomes equivalent to the topology of a

cylinder. Here the length of a cylinder is L and its volume is

V = L(πa2),

where a is the radius. The total energy is comprised of two parts

E = Eaxial + Etwist.

The axial energy component is

Eaxial =
1

2µ0

∫
B2

axial d
3x =

1

2µ0

∫
B2

s d3x. (3.48)

Substituting for volume element leads to

Eaxial =
πa2 L

2µ0

B2
s . (3.49)

The twist energy component is

Etwist =
1

2µ0

∫
B2

θ d3x. (3.50)

From (3.43) and when R� r, we have

Bθ = 2πr

(
H −W
L

− τ

)
Bs. (3.51)

Considering A = 2π
(

H−W
L

− τ
)
, we write

Bθ = ABs r, (3.52)

where A is a constant. Substituting for Bθ in (3.50), we obtain

Etwist =
1

2µ0

∫
(ABs r)

2d3x

=
1

2µ0

∫ a

0

A2B2
sr

22πrLdr

=
πA2a4L

4µ0

B2
s . (3.53)
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Therefore, the total energy for the thin torus is

E = Eaxial + Etwist

=
πa2 L

2µ0

B2
s +

πA2a4L

4µ0

B2
s

=
πa2 L

2µ0

(1 +
A2a2

2
)B2

s . (3.54)

By substituting for Bs in terms of flux Bs = ψ/(πa2) in the above equation, we find

E =
ψ2 L

2µ0πa2

(
1 +

A2a2

2

)
. (3.55)

3.3.3 Magnetic Helicity for the Thin Flux Tube

We consider a thin toroidal flux tube with well defined nested flux surfaces. We

define the flux function ψ with ψ = 0 on the magnetic axis, and let χ(ψ) be the

toroidal flux contained within the flux surface ψ. In the infinitesimal flux layer

[ψ, ψ+ δψ], there is a surface where the field lines go the long way round about the

major radius R and the short way round about the minor radius a before closing

back on themselves. If we consider the layer to consist of a single tube of axial flux

δχ/R, then we can write the helicity of the thin tube as

δH = 2ψ δψ T . (3.56)

Note that δH depends on T . The equation (3.56) then integrates to give

H = T ψ2. (3.57)

3.4 Numerical Simulations

In this section, we consider the behaviour of helicity in the STF picture. Our

aim is to understand how helicity is distributed over different scales, and how that

distribution relates to the twist-writhe decomposition. We start with a magnetic

flux tube of circular cross section and unit flux. The radius a of this tube is held

constant. At first, we consider a circular axis shape, then subject the shape to

stretch, twist, and fold operations. The writhe is calculated employing the methods

described in [35]. Using this measurement of writhe, we determine the internal twist

from equation (3.4).
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In order to calculate the helicity and energy spectra, the tube is placed inside

a three-dimensional cubic grid (we employ 1283). The central axis of the tube is

represented by n points (n = 300 seems sufficient). At each point on the grid the

code first determines whether it is within a distance a of the axis curve; if so then the

magnetic field is determined. A fast Fourier transform then leads to a determination

of the spectra.

We employ a uniform radius a = 1.6 in our study (the grid spacing is one).

Larger radii make it more difficult to separate large and small-scales in the spectra.

Smaller radii are more subject to edge effects (i.e. the boundary of the flux tube is

not properly resolved, resulting in significant changes to the spectra).

Helicity is measured in units of ψ2 (equivalently, we can set the flux to be ψ = 1

and let Bs = 1/(πa2)). Energy is measured in units of ψ2/a. In the graphs, wave-

number k is measured in units of k0 = 2π/N , where N is the size of the grid

(we use N = 128). Thus a wavelength of λ corresponds to a wave-number of

k = k−1
0 (2π/λ) = N/λ.

There is a valid concern that helicity is not always well-defined for periodic boxes

[32]. However, this problem only presents itself when there is net flux in some

direction, whereas the closed tubes here do not have a net flux in any direction.

3.4.1 Circular Tubes

Figure 3.4 shows the helicity and energy spectra for a circular magnetic flux tube

with major radius 41.3 (aspect ratio 26). Note that edge effects produce no fluctu-

ations whatsoever to the helicity spectrum, although they do appear in the energy

spectrum, particularly for wave-numbers above 50.

The minor radius a provides a significant length scale for the tube, which should

affect the spectra. For the tube with internal twist, the azimuthal field reverses over

one diameter, i.e. half a wavelength corresponds to 2a. Thus we infer a characteristic

wavelength λa = 4a and a corresponding wave-number ka = N/4a. For our chosen

parameters ka = 20, which corresponds well to the peak of the helicity spectrum

for the tube with internal twist (figure 3.4(c)). Also, the energy spectrum for the

T = 0 tube has a peak slightly below 20. This peak moves to the right for T = 1.
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Figure 3.4: Spectra of a circular tube of radius a = 1.6 placed in a 1283 grid. The

tube has aspect ratio = 26. (a) and (b): H = W = T = 0. The magnetic helicity

spectrum (a) shows that the helicity remains zero for large and small-scales (small

and large wave-numbers) despite any edge effects. The energy spectrum (b) shows a

maximum at the wave-number k = 17 and a minimum at the wave-number k = 48.

Edge effects prevent the energy in small-scales from reaching a zero value. (c) After

increasing the internal twist of the circular tube to one, we see an initial increase

in the helicity spectrum and a corresponding increase in the energy spectrum (d) of

the circular tube.
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3.4.2 Stretched Tubes

First we stretch the flux tube, where the semi-major axis is twice the size of the semi-

minor axis (figure 3.5), the helicity, writhe, and twist remain zero. Then we increase

the helicity to H = 1. The writhe remains zero W = 0. The helicity spectrum

shows an increase for large-scales and remains zero at small-scales (figure 3.5(c)).
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Figure 3.5: The flux tube is stretched. The total helicity is H = 0, W = 0 and T
= 0. The helicity spectrum (a) and energy spectrum (b) are similar to the circular

flux tube and they remain unchanged. We increase the helicity to H = 1, W = 0

and T = 1. The helicity spectrum (c) shows an increase for large-scales and drops

to zero for small-scales. (d) There is an increase in the energy values compared to

when H = 0.
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3.4.3 Twisted Tubes

Next we twist the flux tube, keeping the helicity zero. To easily see the effects on the

spectra, we have twisted the tube axis by a considerable amount: 3π (figure 3.6).

The measurement of writhe shows W = 1.152. With the stretched and twisted tube,

some new large length-scales become apparent. For example, the spacing between

two points on opposite sides of the tube gives a scale λ1 ≈ 25.1.

Here, the helicity spectrum shows strong oscillations. The oscillation period is

5.36, corresponding to a length-scale of 128/5.36 = 23.9. This is very close to the

typical separation between neighbouring sections of the tube (λ1 ≈ 25). Here we see

an effect similar to that discussed in section 3.2.4: the two-point correlation function

for the magnetic field of a thin tube will have sharp peaks at typical separation

lengths. The helicity spectrum oscillates with a wavelength determined by these

separation lengths.

We can separate the writhe and twist contributions to the helicity spectrum as

follows: first, obtain the spectrum Hk(H = 0) for a tube with zero net helicity. This

includes equal and opposite twist and writhe contributions. Next obtain Hk(T = 0),

the spectrum for a tube with the same shape but zero internal twist (thus zero inter-

nal electrical current). We will call this latter spectrum the writhe helicity spectrum.

Finally, the twist helicity spectrum will be defined as the difference between the two,

Hk(H = 0)−Hk(T = 0). The final two figures in figure 3.6 show these two spectra.

Figure 3.6(c) shows that writhe helicity takes both positive and negative values at

large-scales and at small-scales it reaches zero. Thus while it is concentrated at

large-scales, as expected, it also displays large oscillations.
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Table 3.1: Mean wave-numbers for the twisted tube of figure 3.6. The mean wave-

numbers are calculated in four different ways, employing weightings for energy, he-

licity, twist, and writhe.
k̄(M) (λ̄(M)) k̄(H) (λ̄(H)) k̄(H+) (λ̄(H+)) k̄(H−) (λ̄(H−))

T = −W (H = 0) 21.7(5.90) 9.20(13.1) 6.37(20.0) 12.0(10.6)
H = W (T = 0) 21.7(5.90) 8.50(15.0) 7.57(16.1) 9.77(13.1)
(H = 0) - (T = 0) (T only) 21.7(5.89) 22.0(5.81) 56.4(2.27) 21.5(5.95)

Table 3.1 provides the mean wave-numbers for the twisted tube. Using these

values, we find the wave length λ̄k = 128/k̄, where k̄ is the mean wave-number given

some weighting. For instance if we weight by energy,

k̄(M) =

∑
kMk∑
Mk

, (3.58)

while if we weight by helicity (actually |Hk|)

k̄(H) =

∑
k |Hk|∑
|Hk|

. (3.59)

We then compare the values of λ̄k with λa = 4a = 4× 1.6 = 6.4. We look at three

cases: zero helicity, writhe helicity, and twist helicity. When using energy as the

weighting factor for all three, λ̄k(M) is very close to λa. In the second column,

with helicity |Hk| as the weighting factor, there is a clear separation between the

twist helicity (at a length scale near λa) and the writhe helicity (at two-and-half

times larger scale). We can try to sharpen this separation by weighting with only

the positive values of the helicity spectrum(H+) or negative values (H−). Here the

positive writhe goes to slightly larger scales (slightly smaller k̄). The negative writhe

comes slightly closer to λa. The positive part of the twist helicity is at very large

wave-numbers, suggesting perhaps some slight edge effects or numerical noise.

3.4.4 Folded Tubes

We now fold the tube (figure 3.7) with writhe W = 1.118. Qualitatively the spectra

are similar to the twisted tube spectra. Here the oscillations in the helicity spectrum

have a smaller frequency of about 3.6, corresponding to a length-scale of 36. Taken

as a whole, the folded tube has a size of about 36× 55× 33.
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Figure 3.6: Spectra of a tube turned through an angle of 3π (W = 1.152). (a) Gives

the helicity spectrum for the tube with total helicity H = 0. Between the wave-

numbers k = 1 to k = 4 (indicator of large-scale) the helicity is positive. Then there

is a sharp decrease and change of sign in the values of helicity, and from then on the

helicity oscillates between negative and positive values. From Fourier analysis the

oscillation frequency is 5.36. (b) Shows the energy distribution of the twisted flux

tube. (c) The writhe helicity spectrum. (d) The twist helicity spectrum. Note that

the range on the y-axis of graph (d) is much smaller than that of graph (c).
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(d) Twist helicity spectrum

Figure 3.7: Spectra for a folded tube. (a) Gives the helicity spectrum. For wave

numbers k = 1 to k = 4 the helicity is positive. Then there is a sharp decrease

in the value of helicity and from then on helicity oscillates between negative and

positive values, with a frequency of 3.58. (b) Shows the energy distribution of the

folded flux tube. (c) The writhe helicity spectrum. (d) The twist helicity spectrum.

Note that the range on the y-axis of graph (d) is much smaller than that of graph

(c).
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3.4.5 The Writhe Spectrum of Compact Curves

Maggioini and Ricca [148] present several families of analytic closed curves, and give

a detailed analysis of the behaviour of both intrinsic quantities such as curvature and

torsion, and global quantities such as writhe and elastic energy. There is a possible

application in biology: many long biological molecules must be strongly coiled in

order to fit inside cells. This can require multiple levels of supercoiling. We note that

the technique of finding a Fourier spectrum for the writhe as presented here may

complement this study. A Fourier analysis shows how the writhe distributes itself

on different length scales. As a simple example, figure 3.8 shows two realizations of

the hypocycloid curve described by

x(t) = (cos 2t+ β cos 3t, sin 2t− β sin 3t, β sin t), (3.60)

with free parameter β. The usual oscillations still occur with these shapes; it may

be that for more irregular shapes the oscillations will smooth out.

Figure 3.8: Two hypocycloids with their writhe spectra. On the left β = 0.6 with

W = 1.1 (red solid line), while on the right β = 2 with W = 2.0 (blue dashed line).
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3.4.6 Detecting the Twist Bump

Here we compare the twist helicity for a folded, twisted, stretched and circular tube.
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Figure 3.9: Twist helicity spectrum for a folded, twisted, stretched and circular

tube. The twist helicity for circular and stretched flux tube is zero. The field lines

with zero helicity are lying in parallel planes. They cannot wrap around each other,

therefore the helicity is zero and as a result the twist helicity is also zero. However,

there are oscillations in the helicity spectrum for a twisted and folded tube. The

oscillations in the helicity spectrum of a twisted tube is more than that of folded

tube.
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3.4.7 The Twist Helicity for Grid Sizes of 343, 603 and 1283

We compare the twist helicity spectrum of a thin twisted tube (figure 3.6) for grid

sizes of 343, 603 and 1283 (figure 3.10).
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Figure 3.10: The twist helicity spectrum for different grid sizes. When comparing

the twist helicity for different grid sizes, the grid size 1283 provides the most accurate

model of the twist helicity spectrum. Also, total helicity and energy for grid size

1283 is the closest to our analytical results. The total energy from summing of the

Fourier series is 85% of the thin flux tube energy estimate.

96



3.4.8 Testing the Realizability Condition

Following our discussion in section 3.2.2, we test the realizability condition for a

twisted tube.
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Figure 3.11: From (a) and (b) it is clear that the realizability condition 1
2
k |Hk| ≤Mk

is satisfied for a twisted tube for the cases of H = 0 and H = 1.152. Note that at

very low wave-numbers the fields are helical as Mk

1/2k|Hk|
is not far from 1. However,

as the wave-number increases to 20 and more, Mk

1/2k|Hk|
� 1, the helical contribution

is small and therefore the realizability condition is easily satisfied.
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3.5 Conclusions

This chapter has analysed the influence of twist and writhe numbers on helicity and

energy spectra in the STF dynamo. Calculating the writhe number of a flux tube

has two purposes. First, it assists us in finding out how much the internal twist

changes as the tube is distorted. This greatly simplifies the modelling of a thin flux

tube. Second, the writhe provides a valuable diagnostic for large-scale structure. We

have compared this diagnostic with the more usual one: examining power spectra

at low wave-numbers. We showed that there is a strong correlation between the

helicity distribution over different scales and the twist-writhe decomposition. This

correlation shows up in the mean wave-number calculations (table 3.1). As expected

[46, 95], twist helicity appears at relatively large wave-numbers, while writhe helicity

appears at smaller wave-numbers. The mean wave-number for twist helicity corre-

sponds roughly to a wavelength of four times the radius of the tube. However, the

helicity spectrum for writhe helicity is more complicated. While there is net power

at low wave-numbers, the spectrum also oscillates within a wide envelope. Although

there is a great deal of cancellation between positive and negative helicity, there is

no clear boundary between negative helicity at large-scales and positive helicity at

small-scales.

Of course, an ensemble of flux tubes of many sizes will all have their own oscillating

spectra, somewhat out of phase with each other. Thus, in such an ensemble the

oscillations might cancel, leaving only the envelope. Similarly, irregular curves may

have oscillations with a broad range of frequencies, again resulting in a smoothing

out of the writhe spectrum. However the large gap between mean wave-numbers for

twist and writhe helicity should persist.
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Chapter 4

Solar Corona

4.1 Introduction

The solar corona has a temperature of more than 106 K [67]. In order to maintain this

temperature against radiative losses, energy is continuously supplied to the corona.

The heating rate of the corona is thought to depend on parameters such as the

strength of the coronal field and the length of the magnetic field lines [67]. The solar

corona (figure 4.1) is more than 200 times hotter than the chromosphere, its lower

boundary, although observational evidence suggests that the hot coronal plasma

originates in the chromosphere. The part of the solar corona that is topologically

connected to active regions makes up more than 80 percent of the heating energy

requirement and most of the energy of the corona is stored in this part [7].

The solar corona is considered to be a very high Reynolds number turbulent

plasma, producing intermittent bursts of radiation [12]. Observations of the solar

corona show loops of hot plasma emanating from magnetic concentrations at the

surface, which trace out the paths of the magnetic flux tubes [169]. The observations

demonstrate well defined, discrete entities such as magnetic concentrations and flux

tubes. As a result, one can treat the coronal magnetic field as made up of discrete

interacting loops [110]. Determining the structure of the coronal magnetic field is of

crucial importance in understanding the source of heating, the behaviour of waves

propagating through the corona, and the nature of flares. The magnetic structure

found in coronal loops has many sources [31].

In the solar corona, the increase of the magnetic energy is thought to be caused

by the creation of stresses in the magnetic field lines [240]. Whether fields emerge

through the photosphere in an already stressed state or that the stresses are the
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result of photospheric foot-point motions of the coronal field is still under debate,

as even perhaps both mechanisms are at work [240]. There are theoretical models

describing plasma-heating mechanisms that are suitable for operating in the coronal

environment [150].

Newly emerging loops can possess twist or other forms of structure and they start

with a particular connectivity. The newly emerging flux tubes can be misaligned

with the pre-existing ones [106, 210] and they twist or shear due to vorticity below

the photosphere [28, 114, 218, 257]. These tubes random walk about each other

[129] and this results in braiding of the magnetic field above [30, 173, 237]. If a

flux tube obtains twist deep below the photosphere, the twist may propagate along

the tube and then into the corona as a torsional Alfvén wave. One way a tube can

obtain twist is through reconnection with other tubes; this subject is discussed in

chapter 5.

Figure 4.1: Image of a small section of the solar corona made using the transition

region and coronal explorer (Trace) satellite.

Solar coronal loops are rooted in a dense and turbulent plasma below the pho-

tosphere. Coronal loops are the fundamental building blocks of the corona since

thermal conduction transports energy efficiently along the field lines, and not across

them. The purpose of a coronal-heating model is to identify the mechanisms re-

sponsible for the energy input at coronal heights. Models of coronal heating can be

divided into two main categories: stressing models and wave models [150]. These

models are sometimes referred to as direct current (DC) and alternating current

(AC) models respectively. They differ in the type of question they address such as

how the free magnetic energy or wave energy is dissipated or what is the origin of
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the magnetic energy [150].

In stressing models, the energy is extracted from coronal magnetic fields that

are stressed by slow foot-point motions. Photospheric and subphotospheric motions

displace magnetic foot-points in both random and systematic ways which include

translational and rotational components [150]. The magnetic energy pumped into

the field is then either released in real time or it is stored in the field to be released

later. As a result, the plasma heating can be steady, quasi-steady, or highly episodic,

depending on the model [150]. The quasi-steady heating refers to situations where

the time interval between heating events is short compared to the cooling time by

radiation and thermal conduction. Examples of stressing models are:

1. Stochastic build up [28, 218]: considers the random twisting of individual flux

tubes that produces a stochastic build up of energy.

2. Critical angle : when the random walk step-size is not short compared to the

correlation length, the field becomes entangled and braided, and the energy builds

quadratically with time in a monotonic fashion. This model assumes that heating

occurs when a critical angle θ is reached between adjacent misaligned flux tubes

[30, 174].

3. Critical twist: the energy release occurs when a flux tube reaches a critical twist

angle, φ, due to the onset of a kink instability [94].

4. Reconnection: the magnetic reconnection is assumed to occur at tangential dis-

continuities (current sheets) that are postulated to form even in simple magnetic

configurations when foot-points are displaced by continuous motions [173]. In all

these models reconnection releases the magnetic energy. Reconnection can occur at

either currents layers or current sheets.

Current layers: currents can become concentrated in layers of small but finite thick-

ness. Energy that is pumped into the field over large-scales gradually cascades to

smaller and smaller scales until the scale is small enough for ohmic dissipation to

be effective [237].

Current sheets: considers the formation and destruction of current sheets in mag-

netic configurations. These sheets dissipate by magnetic reconnection, in a sequence

of energy release events [2].

Other models include turbulent processes to describe the effect of many reconnec-

tion events such as:

1. Taylor relaxation: makes use of Taylor’s well-known conjecture [221] where mag-

netic fields relax via reconnection to the lowest energy state that conserves helicity,

the linear force-free state [48, 105, 242].

2. Turbulence: it is a coronal heating model in which the small spatial scales neces-
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sary for effective dissipation are produced by turbulence [72, 78].

In wave models, the energy is deposited by waves that are incident from below.

In coronal loops, if the time-scale of the motions is shorter than the end-to-end

Alfvén travel time, then we can regard these motions as waves [150]. The energy

that powers the waves feeds into the coronal magnetic fields. However, in models

mentioned here, the waves are generated at the base of the corona by photospheric

turbulence and they propagate upward to heat the corona [150]. Examples of wave

models are: resonance [108], resonance absorption [99, 166, 194], current layers [93]

and turbulence [111].

There are two major problems associated with most of these models. First is that

they are either based on non-observable parameters such as currents, non-potential

magnetic energies or coronal magnetic fields, or they simply do not fit the observed

data. Second is that, in many theoretical models, a coronal loop is approximated by

a straight cylindric tube where the magnetic field and the density are homogeneous

along the tube [7].

In summary, the stressing models involving the gradual stressing of the slow foot-

point motions seem likely to be the correct explanation of coronal heating model

as their predictions are in better agreement with observations compared to models

that attribute coronal heating to the dissipation of MHD waves [150].

The plan of this chapter is as follows. Section 4.2 reviews loop energetics based

on the Sturrock-Uchida model [218], used and analysed by Berger [31], where ran-

dom twisting generates the magnetic energy. Section 4.3 examines models involving

tangled field structures, before, finally in section 4.4, we present a review of energy

crossing relations by Berger [30] based on the dissipation of randomly braided flux

tubes.

4.2 Dissipation of Magnetic Structure in Coronal

Loops

The release of magnetic energy and the dissipation of MHD waves on the surface of

the Sun results in an increase of temperature in the coronal loops. The structure

of coronal loops plays a major role in both of these processes [31]. If the loops are

more tangled, the wave energy dissipates more efficiently and also a tangled field
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contains a large amount of magnetic energy which is released in reconnection events.

This magnetic energy can be estimated if the equilibrium energy before and after

reconnection is known. If the loop is highly tangled, it is very difficult to find the

solution to the equilibrium equations of the loop [31]. However, one can place lower

bounds on the energy of the equilibrium field, using a measure of the tangling known

as the crossing number [30]. This will be discussed in section 4.4.

There are a number of different methods for measuring the magnetic energy of

the corona and they are reviewed in the next few sections.

4.2.1 Root Mean Square Twist

The magnetic flux at the photosphere is localized into discrete elements. This section

considers the field lines from one photospheric element that form a single coherent

coronal tube. In this case the field lines emerging from one foot-point re-enter the

photosphere through only one other [31].

Rotational motions at or below the photosphere results in twisting of the coronal

flux tubes. Sturrock and Uchida [218] pointed out that the magnetic energy stored

in the twisted field could be a source of heating and the heating rate would be inde-

pendent of the dissipation time-scale. This is in contrast to the heating mechanisms

based on braided fields that will be discussed in sections 4.3 and 4.4. The Sturrock-

Uchida model has been investigated in detail by Berger [28] and Karpen et. al. [117].

Suppose that the photospheric velocity field v is random and two dimensional and

the radius of the photospheric tube is small compared to the coherence length of v.

The radius of a typical flux tube is 150-200 km compared to the granule size of 800

km. The twisting process for larger flux tubes is less efficient since the vorticity is

not coherent across the area of the tube. For small flux tubes the twist rate depends

on

∇v =

(
∂xvx ∂xvy

∂yvx ∂yvy

)
=

1

2

[
ω

(
0 1

−1 0

)
+ (∇ · v)

(
1 0

0 1

)
+ s

]

where

ω = ∂xvy − ∂yvx,

is the vorticity and s is the symmetric shear tensor. The term ∇ · v does not

contribute to rotation while s contributes up to almost half of the vorticity term for

a turbulent velocity field.
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Based on statistical analysis, one can define the mean square vorticity as ω2 =

4v2/λ2, where λ measures the correlation length and v2 is the mean square velocity.

Assuming T is the number of turns through 2π taken by a field line about the axis

of the coronal tube and and the fact that both senses of rotation are equally likely,

the mean twist T is zero. The mean square twist T 2(t), is due to rotations at both

ends of a coronal loop and grows linearly with time [218]. Starting at T 2(t) = 0 at

t = 0 and assuming infinite conductivity, one finds that [27]

T 2(t) ≈ 3τc ω2

8π2
t =

3τcv2

2π2λ2
t, (4.1)

where τc is the Lagrangian correlation time for the photospheric flow. The mean

energy also grows linearly with time, an example of the above equation will be given

in section 4.3.1.

To find the energy flux, consider the thin flux tube model of section 3.3 connected

to a single photospheric flux element of ψ as in Sturrock and Uchida [218]. It

is axisymmetric and uniformly twisted with length L, coronal radius ac, and field

strength Bs and the flux is ψ = πa2
cBs. In polar coordinates , the magnetic field

vector is

B = Bs(z + 2πrT L−1θ), (4.2)

with rotations at both ends providing a mean energy density

w =
1

πa2
cL

1

8π

∫ (
2πrT Bs

L

)2

d3x =
Bs ψ T 2

4L2
, (4.3)

where the mean energy per unit area is

P =
L

2

dw

dt
=

3Bs ψ v2 τc
16π2Lλ2

. (4.4)

At at the photosphere the magnetic field is squeezed into a small intense flux element

with radius a and magnetic field strength B [31].

The analysis stated here is based on passive motion in a simple two dimensional

random velocity field. In the next section we look at braided field lines.

4.3 Braided Magnetic Fields

A coronal loop can be modelled using a set of N flux tubes that are braided about

each other. The random motions of photospheric foot-points generate this braiding.

For one or two braided tubes, the magnetic energy grows linearly with time. As the
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number of tubes increases to three or more, the magnetic energy grows quadratically

with time [25]. Here, we give a brief review of braided flux ropes by Berger [25] where

he introduces a method that characterizes the flux rope structure using braids.

We know the main source of coronal heating is the dissipation of the magnetic

energy associated with the random component of the magnetic field lines [173, 218].

In order to measure the magnetic energy, one needs to know how fast the magnetic

energy builds up due to random boundary motions.

A loop satisfies a non-linear equilibrium equation such as J×B = 0 or J×B = ∇p.
For a field with given topology, there is some minimum energy satisfying one of the

above equations. Because the three dimensional solutions to these equations pos-

sess current sheets or very thin layers [152, 171, 238], the highly structured loops are

difficult to model numerically or analytically. However, in order to estimate mag-

netic energy it is not necessary to have an exact equilibrium solution. A magnetic

field that satisfies the same boundary conditions and topological constraints as an

equilibrium field will have a higher energy than the equilibrium field. For a field

with such characteristics, upper limits can then be placed on the equilibrium mag-

netic energy. This section describes the structure of these fields using an arbitrary

braiding pattern.

Berger models a coronal loop using a straight cylinder of length L and radius R.

Inside the cylinder is filled with N flux tubes that are braiding about each other.

Near the ends of the cylinder, the magnetic flux is contained in N foot-points with

a negligible radius, in order to prohibit the transition of flux tubes. This model is

able to approximate the actual solar conditions, where the flux at the photosphere is

highly localized [85, 253]. The N tubes are straight and parallel and the foot-points

random walk about each other. Due to this motion, the flux tubes become braided

in the absence of reconnection. The number of foot-points per unit area is measured

by
1

d2
=

N

πR2
, (4.5)

where d is the distance between the foot-points. If a foot-point approaches the

boundary at radius R, it bounces off elastically, hence keeping the foot-points in the

vicinity of radius R. This keeps the distance d constant as well.

By increasing N and R for a given d, the effects of the boundary conditions at

R can be reduced. Also, for large values of N and a fixed d, the magnetic energy

per unit area is independent of N . If this approximation method is based on a very
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good algorithm, then it is unnecessary to do the simulation for large values of N .

Below we examine this model for cases where N ≤ 3.

4.3.1 One Tube Model

Consider the case of N = 1, where a single flux tube fills the entire cylinder. The

transition regions where the tube narrows to a point at the photosphere is ignored.

The field lines twisting about the central axis produce the magnetic free energy. For

example, if λ = 800 km, v2 = 1kms−1, and τc = λ/v = 800s, then using (4.1), we

obtain T 2(t) = t/1.5. This implies an rms twist of about four turns after 24 hours.

4.3.2 Two Tubes Model

The situation for two tubes (N = 2) is similar to N = 1. The tubes have internal

twist of T1 and T2, and they wind about each other through an angle θ12. The angle

θ12 is known as the winding number and has attracted considerable interest in ran-

dom walk theory [36, 214]. The mean winding number is zero but the mean-square

winding number increases linearly with time. Note that coronal loops consisting of

two intertwined flux tubes have been discussed by Glencross [96].

Let us assume that magnetic energy dissipates over a time-scale τd. For N = 1

and N = 2, the energy input per unit time (power input) is independent of t, and

therefore independent of τd. In fact, the power input neither depends on the amount

of structure already built up within the cylinder, nor on how much structure has been

lost to dissipation. When calculating the heating rate, for simplicity, the extremely

difficult details of reconnection in the line-tied corona is ignored. Also, because of

the rapid reconnection events taking place in the corona, τd may be much shorter

than the resistive time.

For flux tube numbers as low as N = 3, there are interesting effects due to

non-trivial braiding. However higher N must be considered in order to accurately

simulate tangled coronal loops.

4.3.3 Three or More Tubes Model

For N > 2, the system becomes more complex. In this case the tubes can be tangled

about one another. To see this clearly, consider a braid that is chopped into pieces

of X, Y, Z, . . . , and look at how these parts interact (figure 4.2). Note that a braid

XY consisting of pattern X between z = 0 and z = L/2, and pattern Y between
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z = L/2 and z = L, is not topologically equivalent to the braid Y X with pattern

X above pattern Y . Also, every braid X has an inverse X−1 (XX−1 = I = trivial

braid), where if X−1 is positioned above X, the whole thing unravels leaving a set

of parallel tubes.

Consider the example of two tubes for now. A braid between the two tubes (call

the tubes A and B) is described by the internal twists TA, TB, and the mutual wind-

ing θAB. For simplification, assume that the twists and the winding are represented

by discrete pieces; in units of one turn (we know that TA, TB and θAB evolve contin-

uously as foot-point motions proceed). Define a right handed twist γA of one turn

on tube A, with the inverse of γ−1
A (left handed twist) with twists on tube B as γB

or γ−1
B respectively, and the mutual winding between the tubes A and B as γAB or

γ−1
AB. The twists and the windings commute with each other.

A sequence of random motions of the foot-points of the tubes produce a braid

that is described by a sequence of γ and γ−1 symbols. For instance, the motions

might result in something like

γAγ
−1
B γ−1

A γABγ
−1
B = γABγ

−2
B . (4.6)

The internal twist TA equals the number of γA elements minus the number of γ−1
A

elements. Therefore, this braid has TA = 0, TB = −2, and θAB = 2π. The numbers

TA, TB, and θAB grow like a one-dimensional random walk on the integers where

their mean is zero and their mean-square is proportional to the number of steps.

Now consider a braid with three or more tubes. Since some of the braid patterns do

not commute with each other, the braid pattern XYX−1 cannot be reduced because

Y is positioned between X and X−1 and there won’t be any cancellations, but in

general the length of a sequence will grow linearly with the number of patterns.
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Figure 4.2: The braid XY on the left is not equivalent to Y X on the right. Thus

X and Y do not commute.

4.4 Energy-Crossing Relations for Braided Field

Lines

Following the information provided previously, this section represents a review by

Berger [30] of the energy calculation of the braided magnetic fields. Berger uses

the crossing number techniques pioneered by Freedman and He [87] to derive lower

bounds on the energy of braided field lines. In the early nineties Freedman and He

employed knot theory to find lower bounds on the energy of topologically complex

magnetic fields. These lower bounds are often used to constrain the equilibrium

states accessible to magnetized fluid with a given topology.

Numerical modelling of braided magnetic fields extending between two parallel

plates shows current densities increasing exponentially with topological complexity

[151]. This is where Freedman and He’s techniques become important since they do

not involve solving non-linear partial differential equations. The quantity they define

is known as the “asymptotic crossing number” and it provides a precise measure

of field-line entanglement. The asymptotic crossing number is not topologically

invariant. However, like the magnetic energy it has a positive minimum value for a

given magnetic topology. The minimum asymptotic crossing number, multiplied by

a constant coefficient, provides a lower bound for the equilibrium energy.

Braided magnetic fields are strongly aligned in one direction but possess significant

transverse structure. This two dimensionality makes the derivation for braided fields
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simpler than fully three dimensional knotted structures and thus minimum crossing

numbers become easier to calculate [29, 250].

We begin by considering two field lines stretching between parallel planes at z = 0

and z = L. Let φ be the polar angle in the x− y plane and observe the curves from

the viewing angle φ = π/2. At this angle, the curves exhibit a certain number of

crossovers c(π/2). Different viewing angles φ result in different crossing numbers

c(φ) (figure 4.3) and therefore an average crossing number can be defined as

c̄ =
1

π

∫ π

0

c(φ)dφ, (4.7)

which is independent of viewing angle.

Figure 4.3: From the viewing (projection) angle φ, two curves will be seen to cross

wherever the displacement vector r12 = φ or φ+ π.

One can compute the crossing number from the form of the curves. Consider

that the two field lines follow the curves x1(z) and x2(z) where x1(z) = (x1, y1) and

x2(z) = (x2, y2). The displacement vector r12 = x2(z)−x1(z) makes an angle θ12(z)

with respect to the x-axis and an observer viewing the curves from the angle φ will

see crossovers wherever θ12 = φ or φ + π. If r12(z) sweeps out a net angle ∆θ12 =
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∫
|dθ12/dz| dz, then a proportion ∆θ12/π of observers see a crossover. Therefore,

c̄ =
1

π

∫ L

0

∣∣∣∣dθ12

dz

∣∣∣∣ dz. (4.8)

Now, consider a set of magnetic field lines confined inside the cylinder x2 +y2 ≤ R2.

To obtain the crossing number for the magnetic field, one must sum c̄ over all pairs

of lines to obtain

C ≡ 1

2π

∫ L

0

∫ ∫
Bz1Bz2

∣∣∣∣dθ12

dz

∣∣∣∣ d2x1 d2x2 dz. (4.9)

If one lets

b1 ≡
dx1(z)

dz
=
B⊥(x1)

Bz(x1)
, (4.10)

then
dθ12

dz
=

1

r2
12

(b2 − b1) · θ12, (4.11)

where θ12 = z× r12. Substituting (4.11) in (4.9) results in

dC

dz
=

∫ ∫
Bz1Bz2

2πr12
|(b2 − b1) . θ12| d2x1 d2x2. (4.12)

For fields with a strong axial component such as Bz, the topology manifests itself

in the structure of the transverse field rather than in the relatively small variations

in Bz [236]. If one considers Bz = const, then

B = Bz(bx, by, 1) = Bz(b + z). (4.13)

In order to find the lower bounds on the free energy

Ef ≡
B2

z

8π

∫
b2 d3x with b = |b| , (4.14)

we apply the triangle inequality to the integral in (4.12) to get

dC

dz
≤ B2

z

2π

∫ ∫
r−1
12 (|b1 · θ12|+ |b2 · θ12|) d2x1 d2x2. (4.15)

After rewriting the second term in the above equation as b1 = b1b1 with |b1| = 1,

the inequality becomes

dC

dz
≤ B2

z

π

∫
b1

∫
|b1 · θ12|

r12
d2x2 d2x1. (4.16)

In order to estimate the above integral, we use the vector field n = z × x1 which

maximizes I(x1) =
∫

(|n · θ12| /r12) d2x2. The maximum value of I(x1) is Imax(x1) =

Rf(a), where a = |x1| /R and

f(a) = 2

(
1 + ln(1 + a2) +

1− a2

2a
tan−1 2a

1− a2

)
. (4.17)
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Therefore, we obtain
dC

dz
≤ RB2

z

π

∫
b1fd2x1. (4.18)

Define

f 2 = (πR2)−1

∫
f 2d2x1 ≈ 13.1. (4.19)

Using Schwarz inequality, leads to(
dC

dz

)2

≤ π−1R4B4
z f

2

(∫
b21d

2x1

)
. (4.20)

Now, considering

C2 ≤ L

∫ L

0

(dC/dz)2dz, (4.21)

one finds that

C2 ≤ π−1LR4B4
z f

2

∫
b2 d3x, (4.22)

and this results in a lower bound for the free energy of equation (4.14) of the form

Ef ≥
(
8f 2LR4B2

z

)−1

C2 (4.23)

= 9.54× 10−3
(
LR4B2

z

)−1
C2. (4.24)

In order to find how far off the lower bound of (4.23) is, consider a particular

configuration where b(x, z) is a random vector field with correlation length much

smaller than R and the distribution of field is Gaussian. If dC/dz in equation (4.12)

is averaged over many realizations, then 〈|(b2 − b1) · θ12|〉 should only depend on

the distance r12 and in the limit of zero correlation length, it will be constant.

Therefore 〈
dC

dz

〉
=
B2

z

2π
〈|(b2 − b1) · θ12|〉

∫ ∫
1

r12
d2x1d

2x2. (4.25)

For a Gaussian distribution the bracketed term is equal to
√

2/πbrms where b2rms =

〈b2〉1/2
and the double integral of r−1

12 equals 16πR3/3. Hence〈
dC

dz

〉
=

8

3

√
2

π
B2

z R
3brms, (4.26)

and it leads to

Ef = 9π × 2−10 〈C〉2B−2
z L−1R−4 (4.27)

= 2.76× 10−2 〈C〉2B−2
z L−1R−4, (4.28)

which is 3.01 times the lower limit.
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Energy-crossing number relation is a useful method if there is a way of calculating

the crossing number C. Now consider the case of N mutually entangled flux tubes

from section 4.3. We can approximate C by counting the cross overs of the N axis

curves of the flux tubes. The N curves form a braid between z = 0 and z = L.

Regard CN to be the dimensionless crossing number for the N axis curves with

minimum Cmin. For simplicity, we let the N tubes have equal flux ψ = πR2Bz/N .

Since C counts the crossings between two field lines within the same tube and

CN counts crossings between different tubes, C counts more crossings than CN .

Therefore C ≥ ψ2CN ≥ ψ2Cmin and one can write the lower bound of the equation

(4.23) as

Ef ≥
(
π2

8f 2

C2
min ψ

2

N2L

)
(4.29)

=
9.04× 10−2C2

min ψ
2

N2L
. (4.30)

This equation has a quadratic dependence on Cmin. The important point here is

that braided fields with constant Bz have similar characteristics to a system with

two spatial dimensions plus time (let z −→ t). In the case of a three dimensional

field, Freedman and He [87] found that the minimum energy grows linearly with

crossing number.

In the remainder of this section, we consider magnetic fields generated by random

motions. In order to investigate how photospheric motions generate structure in the

coronal field, Berger uses a model with discrete filaments [30]. Since magnetic flux is

extremely localized at the photosphere, the flux from one photospheric flux element

may bifurcate and connect to several photospheric elements of opposite polarity.

In order to accommodate this possibility, one can increase N and allow for variable

flux. This process includes N points in a plane corresponding to the N foot-points of

the filaments inside a coronal loop. The N points move about each other randomly

according to the laws of random walk, diffusion or motion in a stochastic velocity

field. This results in the braiding of the filaments. In order to find Cmin(t), the

minimum value for Cmin at time t for the braid structure, one can use the magnetic

energy Ef (t).

In a numerical simulation by Berger [26], he considers three photospheric flux

elements that are allowed to random walk about each other as they are restricted to

a disk of radius 1000 km. Once they reach the edge of the disk, they bounce back

inside the disk. They move with an average velocity of v = 1 km/s. For step sizes
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of λ = 1000 km, Berger obtains

C(t) ≈ 1

4

vt

λ
. (4.31)

In order to find out how crossing number Cmin varies with N after the braid is

generated by random motions, one needs to fix the flux ψ and the typical diameter

D of the flux tube. The flux can then be written as ψ = πD2Bz/4 and R = N1/2D/2.

The intensive quantity brms known as field strength can be written as

brms ≥ 0.27CminDL−1N−3/2, (4.32)

where brms depends on the amount of tangling per unit area. The equation (4.32)

thus demonstrates that Cmin increases with N3/2. To see this clearly, consider N

foot-points in a square array, with N1/2 points in each row and a distance D between

points. Once a point moves by distance D, then in projection up to N1/2 extra

crossings will be made. Therefore if all N points move, the increase in Cmin would

be N3/2.

In order to find the power per unit area, consider N foot-points that are in random

motion about each other. If the distance between photospheric points is d, then

Cmin(t) = β
vt

d
N3/2, (4.33)

where β is a dimensionless parameter. Because of the clumping of flux at super-

granule boundaries, the photospheric distance d may be less than the diameter of

coronal tubes D. Using the lower bound of equation (4.29), the power input per

unit area is given by

P =
(
NπD2/4

)−1
dEf/dt

=
(
π3/16f 2

)
β CminN

−3/2
(
B2

z D
2 v/Ld

)
. (4.34)

When the mean value of b reaches some critical value µ, the energy input saturates.

This is the result of reconnection releasing energy at the same rate as the energy is

pumped in at the photosphere. In this case, the energy is

Ef = LNπ (D2/4)B2
z µ

2. (4.35)

From (4.29) and (4.35), the minimum crossing number is

Cmin =
25/2 f 2

1/2
N3/2 Lµ

π3/2D
. (4.36)

And the power at saturation is

P =
(
π3/2/23/2 f 2

1/2
)
β µ

(
v B2

z D/d
)
. (4.37)
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Since π3/2/23/2 f 2
1/2

= 0.543, if Bz = 100G, β = 0.06 (as indicated by Parker

[174]), v = 1 km/s and µ = 0.25, then P = 8×106D/d ergs cm−2 s−1. This power

is sufficient for an active region, provided D/d & 2. Berger concludes that since

d measures typical distances between foot-points at the photosphere, gathering of

foot-points at the boundaries reduce d relative to the coronal flux tube diameter D.

4.4.1 The Fragmentation of Flux Tubes

The coronal flux tubes have a finite lifetime. This is because the reconnection of

coronal loops releases magnetic energy and heats the corona and, as a result, the

foot-points regularly fragment and reform. Hence, the fields inside one newly formed

foot-point may have belonged to several old foot-points and the new foot-points

may connect to the old coronal tubes. However, the energy calculation in previous

section may not be strongly affected by this fragmentation. To calculate power P in

terms of the lifetime of coronal flux tubes, Berger [31] supposes that photospheric

foot-points have a lifetime of τf . For simplification, he assumes a separation of

time-scales: τc � τf � τd, where τc is the velocity correlation time and τd is the

dissipation time. Consider a loop of length L with many individual tubes of flux ψ∗.

If between time t = 0 and t = τf each tube is independently twisted, the rms twist

at t = τf on one tube from equation (4.1) is

T (τf ) =
v

πλ

(
3τcτf

2

)1/2

. (4.38)

If, at time τf , the foot-points of this tube fragment and the fragments are gathered

into new foot-points, then the twist described by equation (4.38) will survive in the

corona. Also, subsequent foot-point rotations push a more twisted structure into

the corona and the result is a highly braided system. The twist at time t is then

T (t) ≈ T (τf ) t

τf
=

v

πλ

(
3τc
2τf

)1/2

t. (4.39)

As in (4.4), using the energy density w and the length of the braid, one can find the

power

P =
L

2

dw

dt
=
Bzψ

∗

4L
T dT

dt
=
Bzψ

∗

4L
T v

πλ

(
3τc
2τf

)1/2

, (4.40)

which has a direct correlation with the value of T , where T is an indicator of how

excited the field is. At a certain level of stress, power input balances losses to

reconnection, and this level of stress is described by the parameter µ

µ =
B⊥

Bz

=
8πw1/2

Bz

=
21/2πRcT

L
. (4.41)
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Using the above relation and (4.40), one can write the power as

P =
µRcB

2
z v

8π λ

(
3τc
τf

)1/2

, (4.42)

where Rc is the radius of the coronal flux tube and is approximately equal to the

distance between photospheric foot-points.
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Chapter 5

Solar Flares

5.1 Introduction

One of the fundamental problems of solar physics is explaining the trigger and energy

release process of flares. The magnetic energy stored in the coronal magnetic field is

the energy source of flares. Magnetic reconnection is the key to this energy process:

when misaligned magnetic field lines are brought together, they can reconnect and,

as a result release the stored magnetic energy in the form of a flare [132, 241]. Flares

(figure 5.1) are composed of many smaller events [175, 217], and therefore the corona

is heated by many small non-thermal events [174, 216]. The random foot-point

motions of magnetic fields anchored in the photosphere will lead to many current

sheets in the corona with associated tangential discontinuities in the magnetic field

[141]. As stated in chapter 2, observations [86] suggest that the magnetic field of the

Sun occurs in flux-tube bundles in the solar atmosphere, thereby flare models invoke

flux tube collision as the trigger for flares. One major proposal is that the flares

could be the result of an interaction between two or more flux tubes [80, 102, 119].

In fact, the collision and reconnection of flux tubes could be involved in two ribbon

flares [120, 146, 217], X-ray bright points [185], and compact flares [113]. In all

of these models, the magnetic field lines are brought into contact by the collision

of flux tubes, and their subsequent reconnection releases energy stored in the flux-

tube configuration, resulting in a flare. This interaction may take place when a

new flux tube appears into the solar atmosphere below the existing one and the two

tubes collide as the new flux tube rises into the corona [83, 107]. Other collisions

could be the result of the foot-point motions of two existing coronal flux tubes

where differential rotations or convective motions move the tubes and they hit the

photosphere, bringing them into contact higher up in the corona [102]. In either

case, there is a complex active region with several flux tubes present and the flux
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tubes are close enough to collide. This is in agreement with observations of those

such as Machado [145] who found that many flares are the result of an interaction

between two or more bipoles. A study by Raoult et al. [188] on a large sample

of flares concluded that impulsive flares are due to rapid interactions between two

or more magnetic structures. Also, the soft X-ray flare observations from Yohkoh

demonstrate that the flares occur because of interactions in complex loop magnetic

structures [83].

Figure 5.1: Image of solar flares from Yohkoh.

A complete theory of solar flares or of any astronomical objects is expected to

address the question of the physics underlying individual events as well as the overall

distribution of the observed events, since these two issues are intimately related. An

example is the physics of stellar structure and evolution, and the distribution of

stars on the H-R diagram. Solar flare observations indicate that the flares have a

large dynamic range in both energy and duration. Their total energy release ranges

from less than 1027 ergs in the smallest observable flares to of the order of 1033 ergs,

while their durations range from order of less than one second to several thousand

seconds [143]. Also, the distribution of solar flare peak luminosities is observed to be

a power law over a range of more than four orders of magnitude, extending down to

the limits of observation [68, 131]. The morphology of flaring regions demonstrate
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that there is structure on all length scales from more than 109 cm down to below 108

cm [220]. Therefore, any complete theory of solar flares must consider not only the

observed emissions and morphology of flares, but also the reasons behind these broad

distributions [143]. According to Parker [172, 173, 175], the statistical properties of

large-scale dynamics of complex magnetized plasmas can arise from energy release

processes.

As stated earlier, the occurrence of solar flares is the result of rapid release of

magnetic energy in active regions. This energy is built up by the convective motion

of gas in the photosphere and below [143]. The magnetic field below the photosphere

is convected by the highly conducting fluid. This is the result of the fact that the

ratio of gas to magnetic pressure is more than one, i.e. β = nkT/(B2/8π) � 1

(n is the number density of gas, k is Boltzman’s constant and T is the absolute

temperature of gas). Therefore, the magnetic field which extends up into the low-

density corona where β � 1 is continually shuffled by the random fluid motions.

These convective velocities are much slower than the Alfvén velocities and thereby

the behaviour of the large-scale coronal magnetic field is described by a quasi-static

evolution of the equilibrium magnetic field. This equilibrium configuration is a

response to the changing boundary conditions at the photosphere. It is important

to note that instabilities can occur in these structures, resulting in rapid changes

in the magnetic field on time-scales of the order of the Alfvén crossing time. The

magnetic energy released in such an instability in the form of flare is converted

into thermal energy, energetic particles, and radiation [143]. The solar particles

accelerated by the flares, interact with the Earth’s magnetic field and ionosphere.

This results in disruption to radio communications and damage to satellites [132].

The plan of this chapter is as follows. The following section examines the collision

and reconnection of magnetic flux tubes resulting in solar flares. We analyse a model

by Linton, Dahlburg and Antiochos [132], where the reconnection process is studied

by a simulation of the collision of pairs of twisted flux tubes. Section 5.3 provides a

review of solar flare distribution based on self-organized criticality models.

5.2 Reconnection of Twisted Flux Tubes

As we discussed in chapter 3, a right-handed twisted tube has positive helicity, where

as a left-handed twisted tube has negative helicity. Flux tubes pairs are then either

co-helical, with helicities of the same sign, or counter helical, with opposite helicities.

It is therefore important to distinct between the two, since when counterhelicity flux
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tubes interact, they annihilate each other’s helicity and, as a result, release magnetic

energy. On the other hand, the helicity of co-helicity flux tubes will add together,

and the energy release possibilities are reduced [132].

Linton et al. [132] simulated flux tube interactions in a box of size 2π where the

tubes come into contact in the centre of the box (x = y = z = 0). As soon as the

tubes are initialized, one is in front with an angle (x = π/4) and the other has angle

(x = −π/4) and their axes form an angle φ (figure 5.2) where each tube holds a

uniform twist. In a two dimensional reconnection, the symmetry and the restriction

to a single spatial plane result in the reconnected field lines being pulled away from

the interaction region by magnetic tension [182]. In three dimensional reconnection,

the fields of equal strength reconnect with each other if any component of the two

fields is oppositely directed [212]. This section looks at the case when two field lines

from the same radial shell of the flux tubes interact. It is important to note that

with twisted flux tube interactions reconnected, there is no guarantee that the field

lines can be pulled away from the reconnection region. There is a possibility that

reconnected field lines wrap around unreconnected field lines, and this wrapping

may result in enhancing the reconnection rate by pulling the flux tubes together

more quickly or else curb it by congesting the reconnection region. For example in

the simulations of flux tube reconnection performed by Ono et al. [167], for parallel

or anti-parallel flux tube collisions, the reconnection rate increases with increasing

radially averaged field line angles. Their results demonstrate that a flux tube pair

with an averaged field line angle of π has three times the reconnection rate of a

flux tube pair with an averaged field line angle of π/2. And when the angle is

between π/2 and π, the field lines reconnect in such a way as to clear the interaction

region and then pull the flux tubes together [202]. Furthermore, the field lines that

reconnect with angles of less than π/2, remain between the two tubes and may even

remain in the interaction region, preventing the tubes from coming closer together.

Thus, magnetic reconnection depends on the angle between the magnetic field

lines when they come into contact. One can find the exact field-line angles if one

assumes that the tubes are not deformed before hitting each other. For instance

if the tube axes sit in y − z plane at x = ±π/4, the tubes first come into contact

along the x-axis, and since the tubes have the same size and same radial profiles,

the field line pairs that interact will be in the same radial shell as in their respective

tubes. In order to find the interaction angle of these field lines, one needs to look at

B1(r) · B2(r) on the x-axis, where B1(r) is the field of the reference tube, tube 1,

and B2(r) is the field of the rotated tube, tube 2.
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Figure 5.2: A pair of right-hand flux tubes with a contact angle of φ = π/4. Figure

from Linton et al. [132].

To perform the field-line angle calculation, one needs the field of each tube along

the segment of x-axis running from the centre of the tube to the edge of the tube

near to the interaction region. Tube 1 is centred at x = −π/4 and it is parallel to

the z-axis, so the magnetic field is

B1(r1) = −zBz(r1)− y T r1 Bz(r1), (5.1)

with

Baxial(r) =
B0

1 + T 2r2
, (5.2)

and

Bazimuthal(r) = T rBaxial(r). (5.3)

where r1 = π/4 + x is in the range of −π/4 < x < −π/4 + R, 0 ≤ r ≤ R, T is the

twist parameter and B0 is the magnetic field strength. The tubes profile is given in

cylindrical coordinates with 0 ≤ r ≤ R where R is the major radius of the cylinder.

Tube 2 is centred at x = π/4, and it is oriented at an angle φ to the z-axis. Its

magnetic field is then

B2(r2) = −Bz(r2) (z cosφ+ y sinφ)± T r2 Bz(r2)× (−z sinφ+ y cosφ), (5.4)

where r2 = π/4− x and it is in the range π/4−R < x < π/4. The plus/minus sign

is for a right- or left-hand tube respectively. The angle θ where the two field lines

meet at radius r1 = r2 ≡ r is

cos θ =
B1(r) · B2(r)

|B1(r)| |B2(r)|
. (5.5)

Substituting the appropriate expressions into equation (5.5), one finds that

cos θ =
(1± T 2 r2) cosφ+ (1± 1) sinφ

1 + T 2r2
. (5.6)
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Therefore, the field line angle θ for right-left (RL) pair at a collision angle φ is

θ = φ. (5.7)

For anti-parallel field lines (θ = π), the lines reconnect most easily. As a result,

for counter helicity (RL) tube interactions, tubes with contact angles near φ = π

reconnect most efficiently. However if, on the other hand, the contact angle of an

RL tube collision is decreased to φ = π/2, the reconnection loses its efficiency [167].

And, as θ and φ decrease below π/2, the reconnection becomes inhibited by field lines

blocking the interaction region, and this results in the reconnection being stopped

as soon as it starts. The relation between θ and φ demonstrates that there should

be a symmetry in the interactions for counter helicity collisions. For instance any

tube at φ = θ + π will interact in the same way as a tube at φ = π − θ.

Linton, Dahlburg and Antiochos [132] conclude that there are four types of inter-

actions that can take place between the tubes. They are: bounce, merge, slingshot

and tunnel. We discuss each of these four types in following subsections.

5.2.1 Bounce Interaction

If two field lines are brought together in such a way that their magnetic fields point

in the same direction, they do not reconnect. Therefore, if in the collision of the flux

tubes, the pair are nearly parallel, the reconnection would be limited. This happens

for the case RL0, where the axes of the two tubes are parallel and the angle between

the field lines is exactly zero. In this case, there is no reconnection since the tubes

bounce off each other (figures 5.3(a) and 5.3(b)) [202]. The same process occurs in

the collision of anti-parallel right-hand tubes (figures 5.3(c) and 5.3(d)).

Apart from the weak reconnection and the resulting bounce off of the flux tubes,

figure 5.3 shows how the current-driven kink instability is excited when the tubes

hit each other. Such kinks are excited because of the contact at the middle of the

tubes (figures 5.3(a) and 5.3(c)) and it results in the tubes arching away from this

point. The kink dispersion relation for a flux tube indicates that a right hand kink

will develop for a right-hand twisted tube (T > 0) and vice-versa for a left-hand

tube [133].

The magnetic energy released from the reconnection in the bouncing interaction

is negligible, since more than seventy percent of the magnetic energy is lost due to

the direct conversion of magnetic energy into heat as a result of magnetic diffusion.
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Figure 5.3: Bounce interaction. Figure from Linton et al. [132].

5.2.2 Merge Interaction

In merge interaction, reconnection starts and continues efficiently as the flux tubes

come into contact and then gradually shuts off as the tube axes approach each other

(figure 5.4). The field line in figure 5.4(a) has reconnected twice and goes from the

left-hand tube completely around the right-hand tube and returns to the left-hand

tube. As it can be seen, it has moved out of the reconnection region between the

two tubes, allowing field lines at the inner radial shells also to reconnect. Also, as

the tubes wrap around each other, the magnetic tension pulls the tubes together

intensifying the reconnection rate. As figure 5.4(c) indicates the two parallel right-

hand tubes merge into a single right-hand tube. It is important to note that the

merge reconnection brings the tubes into a configuration with weaker magnetic field

gradients than that of the unreconnected tubes. Therefore, diffusion is less effective

at dissipating the field of merged tubes than at dissipating that of the bounced

tubes, so despite the fact that energy is released from the reconnection, here the

merged tubes will have the same magnetic energy as that of the bounced tubes. On

the surface of the Sun however, this is not the case since diffusion occurs on a much

longer time-scale.

Figure 5.4: Merge interaction. Figure from Linton et al. [132].
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5.2.3 Slingshot Interaction

Slingshot interaction takes place when a right and left-hand tube with antiparallel

axial fields collide. The axial and azimuthal fields are antiparallel when the flux tubes

collide and they remain so as the reconnection continues (figure 5.5). The slingshot

occurs when flux tubes of opposing helicity collide in the range of π/2 ≤ φ ≤ 3π/2,

releasing enough energy to cause a flare. Here, reconnection takes place quickly

and it results in annihilation of the magnetic flux. Because the tubes are pushed

together at the centre of the simulation box, the field lines reconnect first (figure

5.5(a)) before being annihilated (figure 5.5(b)). In fact, the tubes reconnect into

new tubes that form elbows at the interaction region and then they slingshot away

from the interaction region. This is the result of the tension among the field lines.

It is the most energetic of the interaction types because the flux is annihilated and

the twist is cancelled.

Figure 5.5: Slingshot interaction. Figure from Linton et al. [132].

In chapter 6 we consider the case of micro-flares, where after the braiding is built

up along the flux tubes, once the angle between the strings reaches π/6 or over, the

reconnection occurs.
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5.2.4 Tunnelling Interaction

The final basic interaction is the tunnelling case (figure 5.6) where two right-hand

flux tubes collide at φ = 3π/2 . The field lines in these tubes undergo two reconnec-

tions each [3, 60] and this allows the tubes to pass through each other (figure 5.6(b)).

There is similarity between the tunnelling interaction and both the slingshot and

merging case since there is significant reconnection occurring and the topology of the

flux tubes are changed. However the major difference is that here the two flux tubes

keep their identity rather than integrating into a new combination. The topological

change is the result of how the tubes move around each other. The energy release

associated with this type of reconnection is small however because hardly any flux

is annihilated and less twist cancelled.

Figure 5.6: Tunnelling interaction. Figure from Linton et al. [132].

5.3 Distribution of Solar Flares

Observations show that the distribution of solar flare hard X-ray bursts is a power

law in peak photon flux with logarithmic slope 1.8 [62, 68, 131]. The power law

index of this distribution is independent of the solar cycle. This indicates that the

underlying mechanism giving rise to the power law distribution is insensitive to the

level of coronal activity. Lu and Hamilton [142] suggest that there is a connection

between the distribution of solar flares and a phenomenon known as self-organized

criticality (SOC).

In order to explain the prevalence of power law, or scale-invariant correlations ex-

tending over many decades in complex dynamical systems, Bak, Tang and Wiesen-

feld [14, 15] proposed the concept of self-organized criticality. Their models suggest

that extended systems with many metastable states can naturally evolve into a

critical state with no intrinsic length or time-scale. Experiments [11], as well as

numerical simulations [51, 115], have proved the existence of such critical states.
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This section looks at two SOC models. The first model is the avalanche model by

Lu and Hamilton [142] and the second is the forest fire model by Bak, Chen, Tang

[13] and Drossel and Schwabl [74].

5.3.1 Avalanche Model

A simple example of a critical state is an avalanche model. As sand is added to the

sand pile, the average slope of the sandpile increases. It then reaches a state where

it remains approximately constant. As this self-organized critical state is reached,

the addition of more sand results in avalanches which readjust the local shape. Note

that the critical state is insensitive to the initial condition. It does not require any

fine tuning of parameters and it is an attractor of the dynamics of the system. As

soon as the perturbations cause disturbances that are able to propagate the length

of the system, the system becomes stationary. When the system is in a critical

state, it has a distribution of minimally stable regions of all sizes. Therefore small

perturbations give rise to avalanches of all sizes from the smallest possible avalanche

such as a single sand grain up to the size of the entire system. A featureless power

law spectrum of avalanche sizes results since there is no characteristic length scale

in the system. In numerical sand pile models, the sand grains are added at random

to the system. The grains then shift downward whenever the local shape transcends

some critical value. As the slope is readjusted by shifting grains to neighbouring

sites, this results in forcing the slope at a neighbouring site to transcend the critical

value, this causes the avalanche to grow. The avalanche continues for as long as

the slope is greater than the critical value. The spectral index of the resulting

power law avalanche size distribution is persistent and insensitive to the value of

critical slope [15, 115]. It is important to note that different physical systems have

different spectral indices, which depends on the number of spatial dimensions and

the symmetry of the system [15, 115, 165]. The existence of a self-organized critical

state requires a local instability. This instability takes place whenever some local

parameter transcends a critical value, resulting in a transport process which changes

the value of this quantity at nearby sites with the possibility of causing the value of

the parameter at neighbouring sites to also exceed the critical value.

If the magnetic energy release process has a local instability, it triggers the release

of magnetic energy at nearby sites and therefore results in the coronal magnetic

field system being driven to a self-organized critical state. Lu and Hamilton [142]

suggest that the coronal magnetic field corresponds to a sand pile. In their model

the random twisting of the magnetic field by photospheric convective motions plays
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the same role as the addition of sand grains. Parker [174] suggests that when the

magnetic discontinuity angle θ between the magnetic field vectors on opposite sides

of a particular current sheet is less than some critical angle θc, magnetic reconnection

continues slowly due to the high conductivity of the coronal plasma. This results

in energy being stored in the twisted magnetic field. When θ > θc, reconnection

continues, this reduces θ rapidly, and hence dissipates the energy in the transverse

magnetic field. The change in the magnetic field strength and topology is the result

of reconnections, and it corresponds to the sliding grains of sand to neighbouring

sites. If the discontinuity angle at some neighbouring current sheets is increased

above θc, it will cause additional reconnection events. Therefore, one can conclude

that the coronal magnetic field is driven to a state with regions of all sizes on the

verge of instability. Lu and Hamilton identify the reconnection avalanches with solar

flares. The energy process in these solar flares is thus understood to be avalanches

of many small reconnection events [143]. Flares of all sizes are the result of the same

physical process whereby the size of a given flare is determined by the number of

elementary reconnection events.

To illustrate the properties of the self-organized field configuration, Lu and Hamil-

ton construct a lattice model of reconnection. Consider a three dimensional grid of

points with a three component vector Bi representing the average magnetic field in

a cell, where i represents the spatial location on the grid. The local magnetic field

gradient dBi is the difference between the local magnetic field and the average of

its six nearest neighbours Bnn,

dBi = Bi −
1

6
Σnn Bnn. (5.8)

When the magnitude of the gradient is greater than a critical value |dBi| > Bc,

the configuration is unstable to reconnection. When a reconnection instability takes

place, the magnetic field is vertically cancelled by transporting one-seventh of the

gradient vector onto each of its six nearest neighbours

Bi → Bi −
6

7
dBi, Bnn → Bnn +

1

7
dBi, (5.9)

therefore the local field becomes equal to the average of its neighbours, and dBi → 0.

If the field at nearby positions then satisfies the instability condition, it results in

additional reconnection events. The amount of energy released by each reconnection

event is

∆
∑

j

B2
j =

(
6

7

)
|dBi|2 . (5.10)
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Lu and Hamilton start their computation with a uniform magnetic field where they

drive the system by adding a random vector δB to a random position on the grid. If

the magnetic gradient exceeds the critical value Bc, the field is readjusted according

to equation (5.9). After the magnetic gradient is recalculated, each new unstable

point undergoes a reconnection according to equation (5.9). The field is permitted

to relax until the magnetic gradient is again everywhere less than the critical value

Bc. Another random vector is then added, and this process is repeated.

As Lu and Hamilton anticipated, the field is driven to a self-organized critical

state with a power law distribution of event sizes. The occurrence distributions of

events versus total energy, peak flux, and duration follow a power law distribution.

The energy release distribution is

N(E) ∝ E−τ , (5.11)

and it is a power law in total energy released E with logarithmic slope τ = 1.4. The

peak flux distribution is

N(P ) ∝ P−α, (5.12)

which is also a power law in peak flux P with logarithmic slope α = 1.8. The

duration distribution is predicted to be a power law. However, it has a cutoff due

to the finite size of the grid [115]. Finally, the distribution of solar flare avalanche

or energy release time T is also a power law

N(T ) ∝ T−η. (5.13)

The determination of the energy release time distribution from X-ray observations

is a difficult task since the duration of flare emissions can be substantially longer

than T . This is due to a number of effects including thermal emission from plasma

heated during the impulsive phase of the burst [144]. Also, measuring the lifetime

of small flares is hard because of the obscuring effect of the background that comes

from nonsolar sources. All three distributions demonstrate deviations from power

law behaviour at large sizes due to the finite-sized grid and at small sizes due to the

finite resolution of the lattice.

Note that if the random values of the components of δB are symmetric about

zero, the magnetic field is decreased as often as it is increased. Therefore the field

configuration is not driven to a self-organized critical state. This is similar to the

situation whereby sand grains are subtracted from a sandpile as often as they are

added, so the sandpile never reaches the critical value. The self-organized critical
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system has randomly occurring events. These events release energy E in time T

giving rise to an energy release rate L(x, t) which is a function of position and time.

The integration of energy release rate L(t) over position results in a time-varying

signal whose spectral power S(ω) is a power law [15] in frequency ω

S(ω) =

∣∣∣∣∫ ∞

−∞
L(t) exp(iωt)dt

∣∣∣∣2 ∝ ω−β, (5.14)

where β = (τ − 3)(1− η)(τ − 1). This provides a direct relation between the power

law indices which can be tested by observations. Lu and Hamilton’s model results

in a power law S(ω) with β ≈ 2.

Although admittedly, Lu and Hamilton over simplify the picture of flares, their

model contains some essential physics underlying the distribution of flares. The

natural consequences of a self-organized critical state are that first the flare size

spectrum is a featureless power law, and second that the spectral index of the flare

distribution is constant over the solar cycle, even though the total flare occurrence

rate changes. One can explain the variation in flare occurrence rate with the solar

cycle by either the average energy released in an elementary reconnection event, or

by the rate of energy input into the magnetic field with the solar cycle.

Lu and Hamilton conclude that since the classification of flares into nanoflares,

microflares, and giant flares is arbitrary, there is no preferred scale and therefore

the fundamental energy release structure is the same for all flares of all sizes. How-

ever, observations suggest that flares of different sizes have different characteristics.

For example, the larger flares tend to have harder X-ray spectra, and the X-ray

spectral index is hardest during the peak of the flare. This may be explained that

because electrons are initially accelerated in a particular reconnection region, they

can be further accelerated as they propagate through other reconnection regions.

Also, larger flares will have more reconnection events, and the number of active

reconnection sites will be greatest at flare maximum. It is important to note that

the duration of an elementary reconnection must be less than the rise time of a

solar flare which consists of many elementary events since the time it takes for the

reconnection avalanche to spread to neighbouring sites is roughly the duration of a

single event. Therefore the energy release time of an elementary reconnection event

is expected to be much less than one second [69].
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5.3.2 Forest Fire Model

The forest-fire model is a model that consists of dynamical systems displaying self-

organized criticality. However it does not behave critically on very large physical

scales. The forest fire model was introduced by Bak, Chen and Tang [13], where

they studied the distribution of fire and its dependence on the driving force. In

this model there is a d-dimensional hypercubic lattice with Ld sites. Each site is

occupied by either a tree, a burning tree or is empty. The state of the system is

defined by the following rules:

(i) trees grow with small probability p from empty sites at each time step.

(ii) trees on fire will burn at the next time step.

(iii) the fire on a site will spread to trees at its nearest neighbour sites at the next

time step.

The important parameter in this model is the growth rate of the trees. The forest

is characterized by the correlation function ξ(p) ∝ p−ν . The system is critical in the

limit p → 0 where the fire correlation length diverges. This results in the system

being in a critical state as long as trees grow slowly. If the correlation length is

larger than the size of the system, the fire will die out within a time of the order of

the linear size of the system. However, when the correlation length is smaller than

the size of the system, the forest fire is sustained [13]. If the system size is larger

than the correlation length of the fire, the model assumes a steady state with finite

fire density [74].

Bak, Chen and Tang [13] start their simulation of the forest fire on lattices of

sizes up to 2562 in 2d and 643 in 3d. Also, periodic boundary conditions are chosen.

Starting with a homogeneous distribution of trees and fires, the forest fire evolves to

a stationary state for p > pc, where pc ∝ L−1/ν . Measuring the number distribution

D(r) of fires at a distance r from a chosen site on fire (D(r) ∝ rD−1), one obtains

the fractal dimension: D = 1.0 ± 0.2 in 2d and D = 2.5 ± 0.2 in 3d. This value

of D agrees with experimental observations for turbulence [149]. Using the fractal

dimension, one obtains the power law dependence of ξ on p where the total number

of trees burned down is equal to the total number of trees grown and that is Ldp. It

is also equal to the total number of uncorrelated domains (L/ξ)d multiplied by the

number of trees burned down in a given domain ξD. Therefore, we have ξ(p) ∝ p−ν

with ν = 1/(d−D), with ν ≈ 1.0 in 2d and ν ≈ 2.0 in 3d [13].

Grassberger and Kantz [98], as well as Mossner, Drossel and Schwabl [160], per-

formed computer simulations of the forest-fire model with values of p smaller than
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those used by Bak, Chen, and Tang. These simulations demonstrate that the forest-

fire model is not critical but it becomes more and more deterministic with decreasing

p and develops regular fire fronts. The size of these spirals, as well as the distance

between them is of the order 1/p. The temporal fire-fire correlation function oscil-

lates regularly with a period proportional to 1/p. In comparison, a critical system

should contain fire fronts of all sizes up to the correlation length, and their temporal

correlation function should show a power law spectrum of frequencies. Drossel and

Schwabl [74] argue that the reason there are no fire fronts smaller than 1/p is that

the trees that are next neighbours belong to the same forest cluster. A tree only

catches fire when one of its neighbours burns. Therefore a small forest cluster can

not be ignited and as a result it grows until it becomes part of a burning cluster.

Since the fire burns constantly in the steady state, a burning forest cluster must

be so large that trees grow at one end while the fire burns the other end, i.e. the

diameter of a burning forest cluster is proportional to 1/p, and thereby the size of

a fire front is also proportional to 1/p.

The forest-fire model becomes critical once a mechanism allows the burning of

small forest clusters. Drossel and Schwabl therefore introduce a lightning parameter

f and a rule that a tree ignites with probability f even if no neighbour site is burning

and an empty space fills with a tree with probability p. Therefore, the controlling

parameter of the model is f/p and (f/p)−1 gives the average number of trees planted

between two lightning strikes. In order to understand how criticality grows in the

forest fire model, they assume a forest cluster where a cluster is assumed to be a

coherent set of cells, all of which have the same state and are being burned down

instantaneously as a result of one of the trees being struck by lightning. This is the

case where the dynamics are invariant except for a change in the time-scale when

f and p are multiplied by the same factor. If ρ̄ is the mean overall forest density

in the system in the steady state, the average number of lightening strikes in the

system during t time steps is tf ρ̄Ld. Also, the average number of trees grown in the

system during t time steps is tp(1− ρ̄)Ld. Accordingly, the average number of trees

extinguished by a lighting strike is

s̄ = (f/p)−1 (1− ρ̄)/ρ̄. (5.15)

To prevent finite-size effects, one should choose the number of sites Ld to be much

larger than the largest forest cluster. For finite values of f/p, the value of s̄ is

independent of L. If, for small values of f/p, the limf/p→0 ρ̄ < 1, then equation

(5.15) corresponds to a power law of the following form

s̄ ∝ (f/p)−1. (5.16)
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Also, if for small values of f/p, the mean forest density ρ̄ was near 1, the largest

forest cluster would include a finite percentage of all trees in the system, and the

average number of trees burned by a lightening strike would diverge in the limit

L → ∞. This happens in contradiction to equation (5.15). Therefore a critical

point in the limit f/p→ 0 is expected.

The critical behaviour of the forest fire model can be compared to the sandpile

model whereby a separation of time-scales is needed. Sand should be added slowly

compared to the lifetime of an avalanche. This corresponds to the condition that a

forest cluster burns promptly. In the forest-fire model, the power law distribution

of fire clusters is a result of a second separation of time-scales p−1 � f−1. This

guarantees that a large amount of energy is deposited in the system between two

lightning occurrences and thereby a large number of trees is destroyed by a lightning

strike [13, 74].
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Chapter 6

Self-Organized Braiding of

Coronal Loops

6.1 Introduction

Observations of coronal loops by Trace and Stereo reveal a beautiful and highly

regular structure. In many regions the loops seem to be of similar diameters and

almost parallel. This coherence in and between loops is surprising, considering the

fragmented nature of magnetic field generation and release in the solar atmosphere.

How can the random processes thought to exist in the corona lead to such well-

organized structures?

This puzzle may relate to two others: how are the coronal loops heated? And why

is the distribution of flare energies a power law? The structure of a loop must be

strongly affected by magnetic reconnection within the loop, as well as larger scale

reconnection with other loops. In the Parker theory of coronal heating, a large num-

ber of small flares (nanoflares) exist as reconnection of small flux elements within

loops [174, 216]. The net effect of these tiny unresolvable events provides an in-situ

heating of the coronal plasma. On larger scales, microflares, of energies of about 1026

ergs or more, may involve reconnection between loops. These nanoflares and mi-

croflares reorganize the magnetic field within the loops. This chapter examines how

a highly braided field responds to this reorganization using mathematical models.

As such we hope to supplement numerical simulations of weakly braided line–tied

fields (e.g. [189]).

The classic picture of solar activity set out by Parker [170, 172], Sturrock & Uchida

[218], and others, describes a highly conducting plasma evolving quasi-statically due
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to the random motions of the photospheric foot-points. Random rotations of the

foot-points twist the field lines above, while a random walk of the foot-points braid

the overlying loops about each other. The corona field finds an equilibrium state

(i.e. state of minimum energy) given its topology, but must gradually adjust this

equilibrium as the topology changes. In Parker’s theory, smooth equilibria do not

exist for sufficiently complex topologies, so electric current sheets form. There is

some controversy as to whether (in ideal MHD) true current sheets of zero thickness

form, rather than thin current layers [162]. The physical consequences for a finite

conductivity plasma will be the same, however: resistive effects will change the

field topology and release magnetic energy. Numerical [93] and theoretical evidence

[65] strongly suggest that current layers of exponentially decreasing thickness will

soon be produced when the magnetic field topology reaches even a small level of

complexity. These current layers may either burn slowly as, say, a tearing mode,

or burn quickly in a rapid reconnection event. Numerical simulations [61] suggest

that rapid reconnection does not occur until sufficient stresses have built up in the

magnetic field.

Delaying rapid reconnection allows the buildup of substantial energy reserves in

the magnetic field. As the magnetic field becomes more and more braided and

twisted, its energy will generally increase quadratically in time [28, 173]. If recon-

nection occurs too early, there will not be enough energy stored to power flares or

coronal heating.

This classic picture has recently run into some difficulties. First, as will be dis-

cussed in the next section, present observations of loops do not clearly display a

braided structure. Even if most of the braiding is at smaller scales, some braid

structure might be expected to be visible at the sub-arcsecond resolutions of Trace

and Stereo. Furthermore, random braiding of field lines within loops may expand

the diameters of the loops beyond what we observe [92].

Secondly, the distribution of energy deposition along a loop is not easy to de-

termine and remains controversial [8, 49, 176]. Some observations suggest that the

deposition is largely at the base of the loops [7] while others suggest a uniform de-

position along the loop [183]. If most of the deposition is at the base of the loop,

then the predominant heating mechanism occurs at low heights, for example recon-

nection with field lines in the magnetic network or carpet [9, 184]. Note that coronal

loops will only be observed if they contain a sufficient density of plasma, as emission

scales with the square of the density. This plasma can be supplied in upflows from
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the chromosphere. In chromospheric heating models the upflows are caused by heat

deposition in the chromosphere or transition region. In nanoflare heating models

energy is first released in the corona; this energy quickly spreads along the field lines

down to the chromosphere, which then heats up and sends plasma upwards.

Several subsequent authors have presented self organized critical (SOC) models

resembling forest fire models or avalanches [52, 147, 245, 257]. Most of these models

involve a grid (2D or 3D) with magnetic field vectors at the nodes. At each time

step, small perturbations are added to the field, in analogy with input of structure

to the coronal field at the photosphere. The nodes become unstable if some criterion

is satisfied, for example high field strength or high field gradients. In this case a

small ‘nanoflare’ occurs, and the node shares some of its excess magnetic energy with

neighbouring nodes. This spread of energy may make neighbouring nodes unstable,

leading to more nanoflares. Thus a single small event can avalanche to a much larger

set of events. In SOC models a grid set up in an arbitrary initial state will evolve

due to both the input perturbations and the output events until a statistical steady

state is reached. This ‘critical’ state has no intrinsic length scale (apart from the

grid spacing on the smallest scale) and generally exhibits power law behaviour; in

particular, the total energy released in a set of events obeys a power law distribution.

One great challenge of solar SOC theory is making a close correspondence with the

specific geometry of the coronal magnetic field. The grid models do not explicitly

possess a photospheric boundary. Also, one might wish to see coronal loops, or at

least distinct flux regions bounded by separatrices [134].

Zirker and Cleveland [256] created an SOC model where the two dimensional

grid represents a cross-section through a set of coronal flux tubes. They tuned the

energy inputs and outputs according to what would be expected for a set of flux

tubes undergoing twisting and braiding [28]. Longcope and Noonan [139] built a

model based on the topological structure of the field. In particular, they relate the

build up of stresses in a 2D grid to current flows along separatrices. Here we look

at braided magnetic field evolving to an SOC state through reconnection.

The outline of this chapter is as follows. In section 6.2 we estimate the extent

of braiding inside a coronal loop, assuming that most of the free energy stored in

the loop results from braiding of flux elements. Section 6.3 briefly discusses whether

braiding can be detected with present instruments. Section 6.4 reviews several mech-

anisms for generating braid structure within or between loops. Section 6.5 presents
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an analytic model for the evolution of a loop where braiding is added by endpoint

motions and removed by reconnection. Because the reconnection selectively occurs

at critical points along the braid, the loop evolves to a self-organized state with a

power law distribution of coherence lengths. The energy release distribution is also

power law. Section 6.6 presents a numerical model involving a braiding pattern. An

elastic force model shows that the stresses on the braided field are highest at certain

places along the loop where the tangling is most complex. A numerical algebra

routine is used to evolve the braid pattern according to additions to the braid at

the endpoints and reconnection at the stress points. Finally, conclusions are pre-

sented in section 6.7. The result of this chapter is being submitted to astronomy

and astrophysics journal.

6.2 The Amount of Braiding Inside Loops

As stated in chapter 4, when we look at a braid in projection, we see a certain number

of crossings between the individual strings (for example the braid in figure 6.1(a) has

6 crossings) . Suppose a braid has N strings of diameter D and exhibits C crossings.

If N is small, say N = 3 or N = 4, then each crossing will require two neighbouring

strings to rotate around each other. If the strings are magnetic flux tubes, this

means that the flux tubes must have a transverse magnetic field B⊥, hence extra

magnetic energy. Thus the magnetic energy increases with the number of crossings.

We derived the inequalities relating magnetic energy to crossing number C in section

4.4 based on the work of Berger [30].

Here, we make a simple estimate of how the transverse field grows with C. Suppose

the braided tubes stretch vertically between planes z = 0 and z = L. We ignore the

contribution to the transverse field from the twisting of individual flux elements, i.e.

we assume that the transverse field arises predominantly from braiding.

Each crossing involves two strings out of the N strings. Thus, on average, each

string takes part in 2C/N crossings. This implies a single crossing takes place in a

vertical distance of about

δz =
NL

2C
. (6.1)
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(a) (b)

Figure 6.1: (a) A braid with six crossings. (b) A cartoon of three coronal loops with

the same braid structure.

Consider the centre lines of two tubes that rotate about each other between

heights z and z + δz. Assuming the tubes have a circular horizontal cross-section,

the transverse distance each tube travels is δ` = πD/2. Then the typical ratio of

transverse field strength to axial field strength will be

B⊥

B‖
=

πD

2δz
(6.2)

=
πCD

NL
. (6.3)

Now tan−1B⊥/B‖ gives the typical angle of the flux tubes with respect to the ver-

tical. Two crossing flux tubes will be misaligned by as much as twice this angle.

When the crossing number becomes large enough, neighbouring tubes will be suf-

ficiently misaligned to trigger reconnection [132]. If a misalignment of about π/6

triggers reconnection, then B⊥/B‖ ≈ tan π/12 ≈ 0.27, and the crossing number will

be

Ccritical =
NL

πD
tan π/12 ≈ 0.085

NL

D
. (6.4)

For flux elements with aspect ratio L/D = 100 and N = 3, we find Ccritical ≈ 25.

We also note that the free energy is proportional to the square of the crossing

number. Let

Efree =
1

2µ

∫
B2
⊥d3x. (6.5)

The volume of the N tubes is approximately NπD2L. Then by equation (6.3)

Efree ≈
(
NπD2L

2µ

)(
πCDB‖

NL

)2

=

(
π3D4B2

‖

2µNL

)
C2. (6.6)
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6.3 Observation of Braided Coronal Loops

Observations of coronal loops, like the famous Hinode image (figure 6.2), display

a well-combed set of almost parallel loops. The observed structure seems far away

from mathematical diagrams of braids, such as 6.1(a). The mathematical diagrams,

however, are designed to most clearly display the geometrical structure. If we elon-

gate, compress, and arch the strings in the braid diagram, then the braid structure

becomes much more difficult to see. Figure 6.1(b) demonstrates this. One can see

that a braid with, say, 6 crossings might be difficult to distinguish from a collection

of slightly irregular but parallel loops. Detailed forward modelling would be likely

to further obscure the braid structure. For example, figure 6.1(b) shows tubes with

circular cross sections. Three circular tubes bundled together, as in the diagram,

have an empty space in between while physical magnetic flux tubes will expand into

the space between (consider a cross-section of three neighbouring loops. If the loops

are modelled with circular cross sections, then we obtain three close-packed circles

in a plane; they can only touch each other at three points. But in cross section

three more realistic flux elements might resemble one big circle divided into three

pie slices).

Figure 6.2: Magnetic loops observed by Hinode. JAXA/NASA.

The possibility of directly observing braiding also depends on details of the braid

structure. As described in details in chapter 4, a braid in mathematics is a set of

curves stretched between two planes. The simplest non-trivial braid consists of two

curves twisted about each other. Suppose the number of twists between curves 1 and

2 is T12 (we adopt the convention that one turn through an angle 2π corresponds to
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T12 = 1). Two magnetic flux tubes braided in this fashion will also possess internal

twists T1 and T2 (we will assume uniform internal twists here). Of course, if we are

looking at two neighbouring coronal loops or two threads in an erupting prominence

then the large-scale structure represented by T12 will be easier to see than the smaller

scale twists. Suppose, however, that the two tubes are tightly wound about each

other. In this case, they might appear as a single tube. In the particular case

where T1 = T2 = T12 = T , the two flux tubes will be topologically identical to a

single tube with uniform twist T . If the internal and external twists differ from

each other, then current sheets will develop between the two tubes. This will lead

to reconnection. If that reconnection is not too fast, then the two tubes may persist

as topologically distinct entities. However, both tubes will light up due to emission

caused by the reconnection, so in practical terms they may still be indistinguishable

from one single tube.

Suppose that the braid is generated by random rotational motions at the photo-

sphere. As it was shown in section 4.4.1, if the average rotation is zero, then the

mean twist vanishes, but there will be a root-mean-square twist growing in time as

t1/2 [28, 218].

With three or more curves, there are many more possible braid patterns. Rather

than merely recording the twist between each pair of curves, we must record the

actual sequence of windings. We can measure the complexity of the braid by count-

ing the number of crossings C exhibited when the curves are projected onto the

x− y plane. In this case random motions do not generally cancel each other out. In

particular, if the braid is generated by random photospheric motions, then C will

grow linearly with time, and the resulting magnetic energy will grow quadratically

in time [30, 173]. Eventually the corona reaches a critical state where it cannot take

any more braiding, and reconnection removes crossings at the same rate as they are

generated at the photosphere.

However, not all braided fields will look the same, even if the number of curves N

and the number of crossings C are the same. Figure 6.3 shows two braid structures

which both have four strings and 13 crossings. Some descriptive terminology will be

useful here. The sections of the braid where the two strings on the left twist about

each other will be called coherent sequences. The single crossings which swap the

middle string with the string on the right will be called interchanges. The second

structure (figure 6.3(b)), however, is much more coherent. Apart from the crossing

in the middle, the braid consists of two distinct pairs of twisting tubes. Such a braid
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pattern would look well combed in comparison to the randomly tangled pattern of

figure 6.3(a).

In this chapter we suggest that self-organization will add coherence to the braid

pattern. This additional coherence has some practical consequences for any attempt

to observe coronal braiding. First, the interchanges may be a signature of braiding.

If the two tubes twisting about each other appear like one larger tube, then at the

interchange this larger tube will appear to branch and/or merge with a neighbouring

tube. Secondly, a coherent braid pattern may not spread out as much in radius as a

random pattern. Galloway, Helander, and MacKinnon [92] suggest that limits can

be placed on braiding of threads within an X-ray loop because randomly braided

field lines will random walk perpendicular to the axis of the loop. As a consequence

the loop spreads out laterally as it rises from the photosphere. However, a more

well-combed braid pattern within a loop will not spread out as much.

(a) (b)

Figure 6.3: (a) A random 4-braid with 13 crossings. (b) A highly coherent four

braid with 13 crossings. Here there are two coherent sequences where only pairs of

curves twist about each other, separated by an interchange in the middle.
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6.4 Generation of Braid Structure

There are several mechanisms which will braid coronal magnetic flux. First, random

motions of photospheric magnetic foot-points will braid the flux elements above.

Secondly, a coronal flux tube may be fragmented at its foot-points. Imagine that

part of a foot-point rotates, twisting the flux above. Then the fragments at the

foot-point rearrange themselves, and subsequently another part rotates. Even if the

second rotation is opposite in sense to the first, the twists generated in the magnetic

field do not cancel. The non-cancellation makes random photospheric rotations

much more efficient in heating the coronal plasma [31].

Third, the fragmentation of the foot-points of large coronal loops can be inter-

preted in terms of the coronal flux connecting to small-scale chromospheric loops.

These loops can reconnect with each other, leading to an effective motion of the end-

points of the coronal field lines [184]. Evidence for fragmentation and reconnection

near foot-points of coronal loops can be seen in the work of Shibata et al. [209].

Fourth, Reconnection may occur on several scales. Suppose two large bundles of

flux reconnect. This has two effects on the smaller flux elements inside. First, their

small-scale braid patterns are cut in half and reshuffled. Symbolically, if large tube

1 has an internal braid pattern A below the reconnection point and braid pattern

B above, and tube 2 has patterns C below and D above, then after reconnection

the new tubes will have patterns AD and BC. In addition, when two flux tubes

reconnect, each acquires a half unit of twist [24, 211, 249]. Thus the smaller flux

elements inside will now twist about each other, adding to the braid patterns addi-

tional structure. (Symbolically, if a half twist is represented by the Greek letter ∆,

then the final patterns are in fact ∆AD and ∆BC.)

Fifth, reconnection is not always clean and simple. For example, if two tubes

with five units and seven units of flux reconnect, then there will be two units of

flux left over in a topologically distinct third tube. Moreover, if there are multiple

reconnection sites, then the end product may be several topologically distinct tubes.

Finally, internal braiding may already be present in newly emerging flux.

140



6.5 Analytic Braid Model Exhibiting Self-Organization

6.5.1 Description of the Model

Here we present a simple model which gives a power law distribution of energy re-

leases. We consider a braid on three strings, with lower boundary fixed (figure 6.4).

At the upper boundary, braid structure is generated in the strings below by a suc-

cession of motions. We suppose at the boundaries the endpoints line up on the x

axis.

In this model, two motions alternate with each other. The first motion rotates the

leftmost and middle endpoints through some net twist angle φ, where φ is a multiple

of π. This generates a twist T corresponding to C = 2T crossings in the strings

below, i.e. C = φ/π. The sign of C tells us whether the crossing is right-handed

or left-handed. The second motion gives a single half twist between the middle and

right hand end point.

In figure 6.4(a), there are two coherent sequences with twists 3/2 and -3/2, i.e.

C = +3 and C = −3. Note, however, that the twists cannot cancel because of the

interchange. This constraint can only be removed by reconnection. Figure 6.4(b)

shows the result immediately after reconnection of the curves at the interchange.

Now the positive and negative twists connect to each other. They can now cancel

out through purely ideal motions.

The braid on the left can be generated as follows: start with three straight curves

of figure 6.4(c). First, let the leftmost endpoints rotate through three anti-clockwise

half turns (C = +3), giving the strings below three positive (right-handed) half

twists. Next, the second motion exchanges the third string with the middle string.

Finally, a twist of three clockwise turns gives the two strings on the left (no longer

the same two strings) three negative half-twists (C = −3).
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(a) (b) (c)

Figure 6.4: (a) A 3-braid with two coherent sequences separated by an interchange.

(b) Reconnection removes the interchange. (c) The curves can now relax, cancelling

out their crossings.

6.5.2 The Distribution of Twists

Suppose the braid as a whole has M sequences separated by M − 1 interchanges.

The number of sequences with crossing number C is n(C). Thus

M =
∞∑

C=−∞

n(C). (6.7)

Also, the total number of crossings (ignoring the sign and the interchange) is

Ctot =
∞∑

C=−∞

|C|n(C). (6.8)

We will simplify the calculation by assuming C is a continuous rather than

discrete variable. In this case, the number of crossings between C and C + δC

is (considered as an ensemble average) n(C)δC. We will normalize by letting

f(C)δC = n(C)/M . Thus ∫ ∞

−∞
f(C)dC = 1. (6.9)

At each time step, one new sequence and one new interchange is added, while

reconnection removes one of the interior interchanges. The crossing number of the

next sequence is distributed with probability function f(C). At each time-step

the function f(C) changes by δf(C): first, there is a probability of p(C) that the
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new sequence will add to f(C). Next, the sequence to the left of the reconnecting

obstruction may have twist C. This sequence disappears, so there is a probability

f(C) that the number Mf(C) of sequences with crossing number C will decrease by

one. Similarly, the sequence to the right of the obstruction has probability of f(C)

of removing a C-sequence. Finally, if the left sequence has crossing number w and

the right sequence has crossing number C − w, a new C-sequence will be created.

Thus

Mδf(C) = p(C)− 2f(C)

+

∫ ∞

−∞
f(w)dw

∫ ∞

−∞
f(u)d(u)δ(C − (u+ w)) (6.10)

= p(C)− 2f(C) +

∫ ∞

−∞
f(w)f(C − w)dw. (6.11)

In a steady state, the left–hand side vanishes. Thus

p(C)− 2f(C) +
√

2π(f ∗ f)(C) = 0, (6.12)

where f ∗ g is the Fourier convolution. To solve this, we take the Fourier transform,

f̃ 2(k)− 2 f̃(k) + p̃(k) = 0. (6.13)

This has solution

f̃(k) =
(
1±

√
1− p̃(k)

)
. (6.14)

Note that we must choose the negative square root in order to insure that f̃(k) → 0

as k →∞.

Say the input is a Poisson process, so that for some λ,

p(C) =
λ

2
e−λ|C|. (6.15)

Then

p̃(k) =
λ2

λ2 + k2
, (6.16)

f̃(k) =

(
1− |k|√

λ2 + k2

)
. (6.17)

We can solve the inverse transform using standard integrals:

f(C) =
λ

2
(I1(λC)− L−1(λC)) . (6.18)

where I0 is a Bessel–I function and L0 is a Struve–L function (see figure 6.5). The

function f(C) falls asymptotically as C−2.
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Figure 6.5: The distribution f(C) of braid sequence lengths given by equation (6.18),

shown with a log-log plot. The asymptotic slope is -2.

6.5.3 The Energy Distribution

From section 6.2, the free energy of a set of braided magnetic flux tubes is Efree =

aC2 where the constant a depends on the length and diameter of the tubes. Suppose

that a reconnection reduces the number of crossings from Cinitial to Cfinal. We ignore

the constant a and define the ‘flare energy’ to be

W = δE/a = C2
initial − C2

final. (6.19)

Given the distribution f(C) of coherent braid sequences, what is the corresponding

distribution of flare energies f(W )?

We first consider a braid consisting of just two sequences separated by an inter-

change, as in figure 6.4(a). Suppose the sequences have size (number of crossings)

C1 and C2. After the sequences merge, they form one sequence of size C1 + C2. If

C1 and C2 have opposite signs, once they merge they release energy.

For large crossing numbers C1 and C2, we can ignore the energy release due to

the loss of the interchange. The change in energy is W = 4 |C1C2|.
To obtain the distribution of flare energy, we integrate over all combinations of

C1 and C2 (with their corresponding probabilities f(C1) and f(C2), but insert a

delta function to pick out the combinations which yield the correct energy change

W :

f(W ) =

∫ ∫
f(C1) f(C2) δ(W − 4C1C2) dC1 dC2. (6.20)

Thus

f(W ) =

∫
1

4C1

f(C1) f

(
W

4C1

)
dC1. (6.21)

For a power law distribution of crossings, i.e. f(C1) = bC−α
1 , using the energy
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distribution relation (6.21), we have

f(W ) =
1

4

∫ Cmax

Cmin

1

C1

bC−α
1 b

(
W

4C1

)−α

dC1

=
b2

4

∫ Cmax

Cmin

(4)αW−α dC1

C1

= b2(2)2α−2W−α

∫ Cmax

Cmin

dC1

C1

= b2(2)2α−2W−α ln
Cmax

Cmin

. (6.22)

Thus f(W ) ∝ W−α for large W . The distribution could be modified for smaller

W where the energy of the interchange cannot be neglected. The unit of crossing

corresponding to the interchange gives an effective length scale to the problem, which

modifies the power law behaviour at low W .

Next we calculate the energy distribution assuming that reconnection occurs

when the total crossing number reaches some critical value Ccrit. Here two coherent

sequences of length C1 and C2 merge. Suppose that |C2| > |C1| and that they are

of opposite sign. They merge to form a single sequence of length |C2| − |C1|. As

we had two sequences of total length |C2|+ |C1| beforehand, the loss of crossings is

2|C1|. The change in crossing number squared is

W = C2
crit − (Ccrit − 2|C1|)2 = 4Ccrit|C1| − 4C2

1 . (6.23)

To find the slope of the distribution of W for high W , we assume C1 � Ccrit and we

choose C1 to be positive, and multiply f(W ) by 2. There is a constraint here: the

second sequence has a larger crossing number, i.e. |C2| > |C1|. Thus the probability

of obtaining W is

f(W ) = 2

∫ ∞

0

∫ −C1

−∞
f(C1) f(C2) δ(W − 4C1Ccrit) dC2 dC1. (6.24)

For a power law distribution of crossings, we let f(C) = b|C|−α for C ≥ 1. Then

f(W ) = 2b2
∫ ∞

1

C−α
1

C1−α
1

1− α
δ(W − 4C1Ccrit) dC1 (6.25)

=

(
2b2

1− α

(
1

4Ccrit

)2−2α
)
W 1−2α. (6.26)

Thus f(W ) ∝ W 1−2α. For example, if α = 2 as in the model of the previous section,

then the distribution of flares with energy W decreases as the third power of W , i.e.

f(W ) ∝ W−3.
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6.6 Numerical Models

6.6.1 The Braid Group

The theory of braids was first developed by Artin [6]. Figure 6.6 shows the elemen-

tary braid patterns for a braid consisting of three strings. Each pattern is labelled

according to which strings are involved in a crossing. Thus σ1 refers to a crossing of

string 1 under string 2 (as numbered from left to right at the top), σ2 refers to string

2 crossing under string 3, etc. The inverse crossing σ−1
1 refers to string 1 crossing

over string 2. An algebraic n-braid is a word over the generators of the braid group

Bn, that is the set σ±1
i for 1 ≤ i < n. Two words in Bn represent the same braid if,

and only if, one can be transformed into the other using the following relations:

σiσ
−1
i = e, (6.27)

σiσj = σjσi, (6.28)

σiσi+1σi = σi+1σiσi+1, (6.29)

where |i− j| > 1 and e is the identity in Bn (topologically e is the braid with no

crossings; it consists of n vertical strings). The word length for Artin braids equals

the number of crossings in the braid.

(a) σ1 (b) σ−1
1 (c) σ2 (d) σ−1

2

Figure 6.6: The braid group for three strings.

The diagram in figure 6.7 shows a projection of the braid into a plane. The strings

may be regarded as beginning and ending each crossing by aligning themselves

parallel to the x-axis, and deviating in the y direction only to move around each

other. Other projections are also possible, for example onto a cylinder [26].

Let us consider three-braids in particular. The special braid pattern

∆ = σ1σ2σ1 = σ2σ1σ2 (6.30)

twists the entire braid through half a turn. The square of this, ∆2 gives a full turn,

and commutes with all other braid words in the group (in group theory terminology,
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Figure 6.7: The braid word representing this braid is σ2σ1σ1.

powers of ∆2 constitute the centre of the braid group). Half turns almost commute

with other group elements, in the sense that

∆σ1 = σ2∆; ∆σ2 = σ1∆. (6.31)

Because the full turns commute with other braid patterns, they can be placed

anywhere along the braid. All three braids can be converted to the normal form

B = ∆nσa
1σ

−b
2 σc

1σ
−d
2 . (6.32)

6.6.2 Selective Reconnection

A crucial element of our self-organization model is the hypothesis that reconnection

will occur preferentially at certain places along the braid. In other words, a magnetic

braid will have weak points where the stresses are largest, and reconnection is most

likely to be triggered.

Figure 6.8 shows a fairly coherent braid pattern. In this braid, two coherent

segments are stacked on top of each other. This braid could be generated by a

rotational motion at one boundary of one pair of tubes, and at the other boundary

by a rotational motion entangling a different pair of tubes. Alternatively, if the

motions are at just the lower boundary, the motions could be an anti-clockwise

motion of two of the endpoints followed by a clockwise motion with a different pair.

The Artin representation for the braid is

B = σ−4
2 σ4

1. (6.33)

Starting with a set of braided strings with this topology, we employed an elastic

relaxation code [16] to relax the braid to its lowest energy state (shown in figure

6.8(a)). The code balances curvature forces and pressure forces between the strings.

We hypothesize that the most likely place where the reconnection occurs is where

the balanced forces are the strongest. In figure 6.8 the position of the reconnection
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point is indicated by an arrow. Note that this is precisely where the braid pattern

changes. We assume that the stresses will cause the two outside strings (red and

yellow) to reconnect. The result of relaxing the resulting braid further is shown in

figure 6.8(c)).

(a) (b) (c)

Figure 6.8: In figure (a) the braid has been relaxed so that the pressure force between

the strings balances the curvature forces. The arrow points to the region of maximum

stress. Figure (b) shows the structure of the braid right after a reconnection has

been made. In figure (c), the relaxation code has again been used to reach a new

minimum energy state.

6.6.3 Algebraic Simulation

We run simulations of braids undergoing both random input of crossings at the

boundary planes, plus random reconnections in between sequences. We find that

initially random braids evolve into a self-critical power law state. Figure 6.9 shows

that the frequency distribution of the sequence size becomes a power law. In this

case, we consider a braid word with size 358 and 1000 reconnections with 500 runs.

This is a power law fit with exponent -3.06.

In figure 6.10 we demonstrate the power law fit for braid size 400 with 1000

reconnections and different number of runs. And figure 6.11 shows the power law

fit for braid size 400 with 2000 reconnections.
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Figure 6.9: For braid size 358 with 1000 reconnections the distribution is a power

law. The power law exponent is -3.06.

(a) Size = 400, reconnections = 1000, runs = 200 (b) Size = 400, reconnections = 1000, runs = 1000

Figure 6.10: Here we increase the braid size from 358 (figure 6.9) to 400, the distri-

bution is a power law. (a) The power law exponent is -3.03. (b) The number of runs

is increased from 200 (figure 6.10(a)) to 1000 (figure 6.10(b)) where the power law

exponent is -3.02. The increase in the number of runs provides a better statistics.

(a) Size = 400, reconnections = 2000, runs = 1000

Figure 6.11: The power law exponent for a braid with 400 crossings and 2000 re-

connections is -3.06. The increase in the number of reconnections provides more

opportunity for strings to relax to a critical state.
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Figures 6.12 and 6.13 demonstrate the power law distribution of the braid se-

quence and energy release when the braid size is 400 with 1000 reconnections taking

place.

(a) Size = 400, reconnections = 1000, runs = 500

Figure 6.12: The power law exponent for a braid with 400 crossings and 1000 re-

connections is -3.02.

(a) Size = 400, reconnections = 1000, runs = 500

Figure 6.13: The distribution of energy releases. The best power law fit gives a slope

of -3.32.
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6.7 Conclusions

In this chapter, using braid theory, we have modelled coronal loops as collections of

braided strings with large numbers of crossings. Reconnections simplify the braid

structure while new crossings are introduced at the boundaries. We showed that the

resulting solar flare distribution is a power law.

Our model is similar to a one dimensional forest fire model. It differs significantly

from avalanche models since in avalanche models a small reconnection triggers more

reconnection; this triggering has not been included in our model. The braid structure

in our model is a self-organized critical state. Avalanche models attain a particular

slope while our braid model attains a particular structure. Most of the self-organized

critical models applied to solar physics bear relatively little resemblance to solar

coronal structure. Our model is designed to reflect both input of structure at the

photosphere and release of structure during reconnection.

The braid model certainly warrants more investigation since there is agreement

between the theoretical results presented by others and our results. Also, using

our model one can perhaps make testable predictions which can lead to a better

understanding of energy release and flare distribution size. To expand our model,

one way is allowing reconnection to trigger more reconnection, in fact making our

model similar to avalanche models.
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Appendix A

In order to introduce the energy budget, we first introduce a few technical results.

The low-pass filtering operator is defined by

PK : f(r) → f<
K(r), (A.1)

and this operator sets to zero all Fourier components with wave-number greater

than K. Some of the properties of PK are as follows:

1. PK is a projector, P 2
K = PK .

2. PK commutes with ∇ and ∇2. Also, PK is self-adjoint for the L2 inner product,

where for all real periodic functions f and g ,

〈fPKg〉 = 〈(PKf)g〉 =
∑
k≤K

f̂kĝ−k. (A.2)

3. High and low-pass filtered functions with the same cut-off wave-number K are

orthogonal :

〈f>
Kg

<
K〉 = 0. (A.3)

Relation 1 follows from the Fourier decompositions of f , ∇f and ∇2f :

f =
∑

k

f̂k e
ik ·r, ∇f =

∑
k

(ik)̂fk eik ·r, ∇2f =
∑

k

(−k2)̂fk eik ·r. (A.4)

Relations 2 and 3 are consequences of Parseval’s identity:

〈fg〉 =
∑

k

f̂kĝ−k. (A.5)

To apply the above definitions to the Navier-Stokes equations, let us write them in

a slightly more general form, including a forcing term:

∂tv + v · ∇v = −∇p+ ν∇2v + f, (A.6)

∇ · v = 0. (A.7)
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The force f is assumed to be periodic in the space variable. Also it may depend on

the time and the velocity. Applying PK to (A.6), using (1.37) and relation 1, we

obtain

∂tv
<
K + PK(v<

K + v>
K) · ∇(v<

K + v>
K) = −∇p<

K + ν∇2v<
K + f<K ,

∇ · v<
K = 0. (A.8)

Now taking the scalar product of (A.8) with v<
K , averaging and using relations 1, 2

and 3, we obtain an energy budget of the low pass filtered velocity:

∂t

〈
|v<

K |
2

2

〉
+ 〈v<

K · [(v<
K + v>

K) · ∇(v<
K + v>

K)]〉

= −〈v<
K · ∇p<

K〉+ ν
〈
v< · ∇2v<

K

〉
+ 〈v<

K · f<
K〉 . (A.9)

The above equation can be simplified using some of the transformations used in

section 1.2.2. For instance, 〈v< · ∇p<
K〉 = 0 and ν 〈v<

K · ∇2v<
K〉 = −ν

〈
|ω<

K |
2
〉
. The

main difference is that now the contribution from the non-linear term in the Navier-

Stokes equations does not vanish. When this term is expanded, it produces four

terms, of which two are identically vanishing:

〈v<
K · (v<

K · ∇v<
K)〉 = 〈v<

K · (v>
K · ∇v<

K)〉 = 0. (A.10)

Equation (A.10) can be proved using incompressibility, equation (1.21) and equation

(1.22). The vanishing of the leftmost side means that interactions among ‘lesser’

scales can not change the energy content of the lessers. Also, the vanishing of the

middle term means that advection of lessers by greaters does not change the energy

content of the lessers. After collecting the remaining terms from (A.9), we write the

scale-by-scale energy budget equation as:

∂tζK + ΠK = −2ν ΩK + FK , (A.11)

where the cumulative energy between wave-number 0 and K is

ζK ≡ 1

2

〈
|v<

K |
2
〉

=
1

2

∑
k≤K

|v̂k|2 , (A.12)

and the cumulative enstrophy is:

ΩK ≡ 1

2

〈
|ω<

K |
2
〉

=
1

2

∑
k≤K

k2 |v̂k|2 . (A.13)

The cumulative energy injection (by the force) is:

FK ≡
〈
f<K · v<

K

〉
=
∑
k≤K

f̂k · v̂−k, (A.14)
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and the energy flux at wave-number K is:

ΠK ≡ 〈v<
K · (v<

K · ∇v>
K)〉+ 〈v<

K · (v>
K · ∇v>

K)〉 . (A.15)

Equation (A.11) is interpreted as follows: the rate of change of the energy at scales

down to l = K−1 is equal to the energy injected at such scales by the force FK

minus the energy dissipated at such scales (2ν ΩK) minus the flux of energy (ΠK)

to smaller scales due to non-linear interactions. At high Reynolds numbers it is

typical to have the energy injection confined to large-scales (O(l0)) and the energy

dissipation confined to small-scales (O(ld)) with ld � l0.

It is traditional in turbulence theory to derive an energy budget equation in Fourier

space under the assumptions of statistical homogeneity and isotropy. Since the scale-

by-scale energy budget equation derived above makes no use of probabilistic tools,

it is therefore applicable to a much wider range of situations [88].
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Appendix B

A random function is a family of random variables that depend on one or several

space or time variables. A random function v(t,$) is Gt-stationary if for all t and

$

v(t+ h,$) = v(t, Gh$), ∀h ≥ 0, (B.1)

where the time-shift Gt is the map Gt : $ 7−→ v(t). It also maps v(s) into v(s+ t).

The most common practical method for analysing a stationary random function

is to determine its power spectrum. Here, we introduce a definition of the power

spectrum. Let v(t,$) be a centred and stationary random function and its Fourier

variable denoted by f . We therefore have

v(t,$) =

∫
R

eiftv̂(f,$)df, (B.2)

v<
F (t,$) =

∫
|f |≤F

eiftv̂(f,$)df, F ≥ 0, (B.3)

where averages of v<
F (t,$) are stationary. The Fourier transforms of homogeneous

random functions are random distributions, so v̂(f,$) is not an ordinary function

of f , although v<
F (t,$) is an ordinary function of t.

The cumulative energy spectrum is defined as

ζ(F ) ≡ 1

2

〈
[v<

F (t)]
2
〉
, (B.4)

which, being assumed stationary, does not depend on the time variable. The factor

1/2 is introduced into the definition in order to agree with the standard definition

of the kinetic energy. ζ(F ) may be interpreted as the mean kinetic energy in (tem-

poral) scales greater than ∼ F−1. Using Parseval’s theorem, the cumulative energy

spectrum can be shown to be a non-decreasing function of the cut-off frequency F .
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The energy spectrum of a stationary random function v(t,$) is defined by

E(f) ≡ d

df
ζ(f) ≥ 0, (B.5)

where the positivity follows from the non-decreasing property. E(f)df is interpreted

as the contribution to the mean kinetic energy of those Fourier harmonics which have

the absolute value of their frequency between f and f + df .

When F →∞, the filtered velocity field reduces to the unfiltered one. With that

in mind and from (B.4) and (B.5) we have

1

2

〈
v2
〉

=

∫ ∞

0

E(f)df. (B.6)

Therefore, the mean kinetic energy (one-half of the variance of the random func-

tion) is the integral of the energy spectrum over all frequencies. Since the Fourier

transform of dv/dt is if v̂f , we obtain

1

2

〈(
dv(t,$)

dt

)2
〉

=

∫ ∞

0

f 2E(f)df. (B.7)

And using the identity ∫ +∞

−∞
ei(f−f́)tdt = 2πδ(f − f ′), (B.8)

we have

E(f) =
1

2π

∫ +∞

−∞
eifsΓ(s)ds, (B.9)

where Γ(s) = 〈v(r) · v(r′)〉 and s = |r− r′|. The correlation function Γ(s) and

the energy spectrum are Fourier transforms of each other. Equation (B.9) is known

as the Wiener-Khinchin formula. It also demonstrates that the Fourier transform

of the correlation function of a stationary random function must be non-negative.

Using the above definitions, the energy and helicity spectrum for a thin flux tube is

discussed in chapter 3.

The equation (B.9) also results in an expression for the second order structure

function, defined as the mean square of the velocity increment from time t to t′

which is 〈
(v(t′)− v(t))2

〉
= 2

∫ +∞

−∞

(
1− eif(t′−t)

)
E(f)df, (B.10)

where E(f) is extended to negative frequencies by E(−f) = E(f).

156



When a random function has stationary increments without being stationary (B.9)

is not applicable, however (B.10) remains valid. A particularly relevant case for

turbulence occurs when the energy spectrum E(f) is a power law (Kolmogorov

1940):

E(f) = C |f |−n , C > 0. (B.11)

When the above equation is substituted into (B.6) this gives a divergent integral.

The divergence happens either at high frequencies (ultraviolet divergence) when

n < 1 or at low frequencies (infra-red divergence) when n > 1 or at both when

n = 1. This suggests that there cannot exist a stationary random function with

finite variance and a power law spectrum. Now if we substitute (B.11) into (B.10),

we find that no divergence occurs as long as 1 < n < 3. The calculation shows that〈
(v(t′)− v(t))

2
〉

= CAn |t′ − t|n−1
,

An = 2

∫ +∞

−∞
(1− eix) |x|−n dx. (B.12)

Therefore, v(t) has stationary increments, in a mean square sense.

Random functions with stationary increments usually appear as limits of station-

ary random functions with an infra-red cut-off, when the cut-off frequency tends to

zero. An example is the stationary Gaussian random function, called the ‘Ornstein-

Uhlenbeck process’, which has the correlation function Γ(t) = f−1
0 e−f0|t| and the

spectrum E(f) = (1/π)(f 2
0 + f 2)−1 [88].

We can extend everything presented in this section from the time domain into the

spatial domain when the latter is unbounded. For instance, the cumulative spatial

energy spectrum is defined by

ζ(k) ≡ 1

2

〈
|v<

k (r)|2
〉
, (B.13)

where v<
k is the low-pass filtered vector velocity field containing all harmonics with

wave-number less or equal to K. The spatial energy spectrum is then

E(k) ≡ dζ(k)

dk
. (B.14)

Although the space is three-dimensional, the variables k and K are wave-numbers,

i.e. positive scalars. Therefore, the mean energy is obtained from E(k) by the same

one-dimensional integral as (B.6) substituting with the variable k in place of f .
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We can also define a three-dimensional energy spectrum E3D(k) which is the three-

dimensional Fourier transform of the spatial correlation function 〈v(r) · v(r′)〉. In

the incompressible isotropic case, the Wiener-Khinchin formula reads

E(k) = 4πk2E3D(k) =
1

π

∫ ∞

0

kρΓ(ρ) sin kρ dρ, (B.15)

where

Γ(ρ) ≡ 〈v(r) · v(r′)〉 , ρ = |r− r′| . (B.16)

Once we use L-periodic boundary conditions, the cumulative energy spectrum

defined by (B.13) will change discontinuously with K because the only admissible

wave-vectors are in (2π/L)Z3. Therefore , the energy spectrum E(k) will be a sum

of δ-functions. Also, the continuous case can be recovered by letting L → ∞ and

2πn/L = k = constant (thus n→∞ as well).

Finally, we find the energy spectrum is a power law

E(k) ∝ k−n, 1 < n < 3, (B.17)

and the second order spatial structure function is also a power law:〈
|v(r′)− v(r)|2

〉
∝ |r′ − r|n−1

. (B.18)
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Appendix C

Kolmogorov worked with freely decaying turbulence (no driving force). He also

assumed the existence of an inertial range of values for l: (i) sufficiently small to

approximate the time-rate-of-change of the velocity correlation function for sepa-

ration l by its value for zero separation, namely -2ε, and (ii) sufficiently large so

that the dissipation term ν∇2
l 〈v(r) · v(r + l)〉 can be neglected. In the calculations

presented by Uriel Frisch [88], he emphasizes that the turbulence is maintained by

a driving force. With this, it follows from (1.56) that consistency is established if

the following relations

K � Kc ∼ l−1
0 and |2νΩK | � ε, (C.1)

simultaneously exist. The range of wave-numbers for which the above conditions

(C.1) are satisfied is, by definition, the inertial range. It is called the inertial range,

because, at these wave-numbers, the dynamics are dominated by the inertia terms

in the Navier-Stokes equations, i.e. all terms except the viscous and forcing terms.

Considering (1.59), the second condition in (C.1) will be satisfied if

K � (
ε

2νE
)1/2 = (

Ω

E
)1/2 =

√
5

λ
, (C.2)

where E and Ω are the mean energy and mean enstrophy as defined before. The

right-hand side is the inverse of the Taylor scale λ, defined as

1

λ2
=

Ω

5E
. (C.3)

For small ν, the Taylor scale λ ∝ ν1/2 (since ε and E are assumed to stay finite).

Therefore, when the viscosity is small, the inertial range extends from scales ∼ l0

down to at least scales ∼ λ ∝ ν1/2.

Next, we see that (1.64) is invariant under random Galilean transformations. In

the absence of forcing and boundaries, the Navier-Stokes equations are invariant

under Galilean transformations, since for any vector U, if v(t, r) is a solution, so is

v′(t, r) ≡ v(t, r−Ut) + U. (C.4)
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If v(t, r) is homogeneous and stationary, so is v′(t, r). However, isotropy is not

preserved, since U introduces a preferred direction. Therefore, Galilean invariance

cannot be easily used to test predictions of a theory of homogeneous and isotropic

turbulence. To overcome this difficulty Kraichnan [122, 123, 124] considered taking

U to be random and isotropically distributed. With such a Galilean transforma-

tion, all of the structure functions, and specially S3(l), remain invariant. In fact, the

velocity-shift U cancels in the velocity increment and the shift Ut in the spatial ar-

gument cancels by homogeneity. Also the mean dissipation ε is invariant. Therefore,

as a result the whole four-fifths relation (1.64) remains invariant. It is important to

note that the presence of a driving force breaks Galilean and random Galilean in-

variances of the Navier-Stokes equations, however this does not affect the derivation

of the four-fifth law since the (single-time) correlations of the velocity and force are

invariant under Galilean transformations.

Also, in deriving the four-fifths law, there are several limits taken: First, the limit

t → ∞ gives a statistical steady state. Second, the limit ν → 0 eliminates any

residual dissipation at finite scales. Third, the limit l → 0 eliminates the direct

influence of large-scale forcing. The correct formulation of (1.64) is therefore

lim
l→0

lim
ν→0

lim
t→∞

S3(l)

l
= −4

5
ε. (C.5)

Note that attempts to take the limits in a different order result in difficulties. For

instance, if we take l → 0 before ν → 0, the third order structure function is

expected to behave as l3; in fact, in the presence of viscosity, for small separations

the velocity increments will be linear in l because the flow is expected to be smooth.

Whether or not the ν → 0 and the t → ∞ limits can be interchanged depends

on the smoothness of the solution to the three dimensional Euler equations (the

Navier-Stokes equations with ν = 0). If there are no singularities in finite time,

then one can show that at any finite time, the energy dissipation tends to zero with

the viscosity, and not to a finite positive limit as required for the derivation of the

four-fifths law.

Finally, it is important to note that without the assumption of isotropy, a relation

analogous to the four-fifths law can still be derived. With all the other assumptions

remaining, it can be shown that in the limit of ν → 0 and for small l

−1

4
∇l ·

〈
|δv(l)|2 δv(l)

〉
= ε. (C.6)

The above relation was also derived by Monin and Yaglom [157]. They addressed the

interesting question as to what happens if the flow is homogeneous at all scales while
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being isotropic only at small-scales. As a result of velocity increments appearing in

(C.6), when l is small, the above equation should become equivalent to the four-fifths

law (1.64). However, (1.64) involves exclusively longitudinal velocity increments,

while (C.6) involves both longitudinal and transverse velocity increments.

Another important point is the case in which the flow is isotropic but has only ho-

mogeneous increments, as assumed in the K41 theory (section 1.3). One must point

out that random functions with homogeneous increments can be considered as limits

of strictly homogeneous random functions. If a small-scale flow with homogeneous

isotropic increments can be embedded in a large-scale homogeneous isotropic flow,

then the four-fifths law remains valid. The embedding flow does not need to be a

solution of the Navier-Stokes equations, as long as it is incompressible [88].

Finally one can conclude that at the moment the best available experimental

evidence supports the validity of the four-fifths law.
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Physiques, Université de Grenbole. 1987.

168



[91] D. Galloway and U. Frisch. A numerical investigation of magnetic field gener-

ation in a flow with chaotic streamlines. Geophysical and Astrophysical Fluid

Dynamics, 29:13–18, 1984.

[92] R. K. Galloway, P. Helander, and A. L. MacKinnon. Cross-field diffusion of

electrons in tangled magnetic fields and implications for coronal fine structure.

The Astrophysical Journal, 646:615–624, 2006.

[93] K. Galsgaard and A. Nordlund. Heating and activity of the solar corona 1.

boundary shearing of an initially homogeneous magnetic field. Journal of

Geophysical Research, 101:13445–13460, 1996.

[94] K. Galsgaard and A. Nordlund. Heating and activity of solar corona 2. kink

instability in a flux tube. Journal of Geophysical Research, 102:219–230, 1997.

[95] A. Gilbert. Magnetic helicity in fast dynamos. Geophysical and Astrophysical

Fluid Dynamics, 96:135–151, 2002.

[96] W. M. Glencross. Heating of coronal material at X-ray bright points. The

Astrophysical Journal, 199:L53–L56, 1975.

[97] M. L. Goldstein and D. A. Roberts. Magnetohydrodynamic turbulence in the

solar wind. Physics of Plasmas, 6:4154–4160, 1999.

[98] P. Grassberger and H. Kantz. On a forest fire model with supposed self-

organized criticality. Journal of Statistical Physics, 63:685–700, 1991.

[99] G. Halberstadt and J. P. Goedbloed. Alfven wave heating of coronal loops:

photospheric excitation. Astronomy and Astrophysics, 301:559–576, 1995.

[100] G. E. Hale. On the probable existence of a magnetic field in sun-spots. The

Astrophysical Journal, 28:315–343, 1908.

[101] G. E. Hale, F. Ellerman, S. B. Nicholson, and A. H. Joy. The magnetic polarity

of sun-spots. The Astrophysical Journal, 49:153–178, 1919.

[102] Y. Hanaoka. A flare caused by interacting coronal loops. The Astrophysical

Journal, 420:L37–L40, 1994.

[103] J. F. Hawley and S. A. Balbus. Transport in accretion disks. Physics of

Plasmas, 6:4444–4449, 1999.

[104] W. Heisenberg. Zur statistischen theorie der turbulenz. Zeitschrift für Physik,

124:628–657, 1948.

169



[105] J. Heyvaerts and E. R. Priest. Coronal heating by reconnection in DC current

systems - A theory based on Taylor’s hypothesis. Astronomy and Astrophysics,

137:63–78, 1984.

[106] J. Heyvaerts, E. R. Priest, and D. M. Rust. An emerging flux model for the

solar flare phenomenon. The Astrophysical Journal, 216:123–137, 1977.

[107] J. Heyvaerts, E. R. Priest, and D. M. Rust. An emerging flux model for the

solar flare phenomenon. The Astrophysical Journal, 216:123–137, 1977.

[108] J. V. Hollweg. Energy and momentum transport by waves in the solar at-

mosphere, in “Advances in Space Plasma Physics”. ed. by B. Buti, World

Scientific, Singapore, 77–141, 1986.

[109] R. Howe, J. Christensen-Dalsgaard, F. Hill, R. W. Komm, R. M. Larsen,

J. Schou, M. J. Thompson, and J. Toomre. Deeply penetrating banded zonal

flows in the solar convection zone. The Astrophysical Journal, 533:L163–L166,

2000.

[110] D. Hughes, M. Paczuski, R. O. Dendy, P. Helander, and K. G. McClements.

Solar flares as cascades of reconnecting magnetic loops. Physical Review Let-

ters, 90:131101–131101.4, 2003.

[111] G. W. Inverarity and E. R. Priest. Turbulent coronal heating 3. Wave heating

in coronal loops. Astronomy and Astrophysics, 302:567–577, 1995.

[112] R. Jain and S. Yashiro. Filling factors and magnetic field strengths of

nanoflare-heated coronal active regions: Yohkoh and MDI observations. As-

tronomy and Astrophysics, 394:1111–1116, 2002.

[113] J. Jakimiec, M. Tomczak, R. Falewicz, K. J. H. Phillips, and A. Fludra. The

bright loop-top kernels in Yohkoh X-ray flares. Astronomy and Astrophysics,

334:1112–1122, 1998.

[114] C. A. Jones and D. J. Galloway. Axisymmetric magnetoconvection in a twisted

field. Journal of Fluid Mechanics, 253:297–326, 1993.

[115] L. Kadanoff, S. R. Nagel, L. Wu, and S. Zhou. Scaling and universality in

avalanches. Physical Review A, 39:6524–6537, 1989.
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Proceedings-Royal Society. Mathematical and Physical Sciences, 439:411–429,

1992.

[157] A. S. Monin and A. M. Yaglom. Statistical fluid mechanics, volume 2: Me-

chanics of turbulence. 1975.
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