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Abstract

A vortex dynamics approach is used to study the underlying mechanisms leading

to polar vortex breakdown during stratospheric sudden warmings (SSWs). Observa-

tional data are used in chapter 2 to construct climatologies of the Arctic polar vortex

structure during vortex-splitting and vortex-displacement SSWs occurring between

1958 and 2002. During vortex-splitting SSWs, polar vortex breakdown is shown to

be typically independent of height (barotropic), whereas breakdown during vortex-

displacement SSWs is shown to be strongly height dependent (baroclinic).

In the remainder of the thesis (chapters 3-7), a hierarchy of models approach is

used to investigate a possible resonant excitation mechanism which is responsible for

the vortex breakdown seen in our observational study. A single layer topographically

forced vortex model is shown to exhibit vortex-splitting behaviour similar to that

observed during SSWs. Two analytical reductions, the first a fully nonlinear analytical

model of an elliptical vortex in strain and rotation velocity fields, the second a weakly

nonlinear asymptotic theory applied to a topographically forced vortex, show that

vortex-splitting in the model occurs due to a self-tuning resonance of the vortex with

the underlying topography.

Resonant excitation of an idealized polar vortex by topographic forcing is then
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investigated in a three-dimensional quasi-geostrophic model, with emphasis on the

vertical structure of the vortex during breakdown. It is shown that vortex breakdown

similar to that observed during displacement SSWs occurs due to a linear resonance

of a baroclinic mode of the vortex, whereas breakdown similar to that observed dur-

ing splitting SSWs occurs due to a resonance of the barotropic mode. The role of

self-tuning in these resonant behaviours is then discussed in relation to the analytic

reductions of the single layer model.
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Chapter 1

Introduction

1.1 The stratospheric polar vortex

Conventionally, the atmosphere is divided up into several layers. The lowest layer

is the troposphere, which is characterized by an overall decrease in temperature as

height increases. At the tropopause, approximately 10-20 km above the Earth’s sur-

face, there is an abrupt change in the vertical gradient of temperature, and above

this level temperature increases slowly with height. The main reason for this reversal

in the vertical temperature gradient is the presence of large concentrations of ozone

(O3) above this region, with the absorption of solar radiation by the ozone being re-

sponsible for the increase in temperature. The layer in which the temperature slowly

increases with height is referred to as the stratosphere and is characterized by strong

stratification, meaning that it is highly stable to vertical displacements of fluid. The

flow in the stratosphere is consequently layerwise two-dimensional to a good approx-

imation. The temperature continues to increase until the stratopause is encountered

12



Chapter 1: Introduction 13

Figure 1.1: Schematic showing the structure of the atmospheric layers, with the mean
vertical temperature profile corresponding to radiative equilibrium shown by the red
line.

at an altitude of approximately 50 km, at which point the vertical temperature gra-

dient reverses once again, with the region directly above the stratopause being the

mesosphere. The large concentrations of carbon dioxide (CO2), which emit radia-

tion into space, are responsible for the decrease in temperature with height which is

observed in the mesosphere. A schematic of this atmospheric structure is shown in

Fig. 1.1.

In the winter hemisphere, there is a strong pole-equator temperature gradient

throughout the extratropical stratosphere, as shown by the zonal-mean temperature

plots of Fig. 1.2 for Northern and Southern Hemisphere winters. From thermal wind

balance, this latitudinal temperature gradient is in balance with strong vertical gradi-



Chapter 1: Introduction 14

km

km

Figure 1.2: Latitude-height cross section of zonal-mean temperature in January (top)
and July (bottom). The contour interval is 5 K (figure from Atmospheric Circulation
course notes by David A. Randall).
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ents in the zonal (east-west) wind and hence strong westerly circumpolar jets exist in

the winter polar stratosphere. The ultimate cause of the latitudinal temperature gra-

dient, and hence the polar jets, is the differential in net radiative heating between the

equator and polar regions. However, it is important to note that the active dynamics

of the stratosphere lead to the stratosphere being far from radiative equilibrium, i.e.

large scale motion means heating and cooling due to absorbed and emitted radiation

respectively need not balance locally.1 It is this region of strong westerly flow in the

winter polar stratosphere that is referred to as the stratospheric polar vortex.

The stratospheric polar vortex forms at the start of the winter in each hemi-

sphere, and breaks down during the following spring, when the net radiative heating

differential which drives the westerly flow weakens. The bottom of the polar vortex,

or sub-vortex, exists at heights of approximately 15 − 20 km in the lower strato-

sphere, with the main vortex structure existing in the region between 20 km and the

stratopause at ∼ 50 km (Schoeberl and Strobel 1978). The zonal jet associated with

the polar vortex is shown in the zonal-mean zonal wind (ū) plots in Fig. 1.3, where

an increase in westerly ū is seen at 60◦ N in January and 60◦ S in July above 15 km,

with the peak occurring at heights greater than 30 km in both cases. In addition to

the circumpolar jet which characterizes the polar vortex, a subtropical jet between

20◦-40◦ at a height of 7-15 km exists in both the winter and summer hemispheres, as

seen in Fig. 1.3. The subtropical jet in the winter hemisphere is stronger and located

closer to the equator when compared to the summer hemisphere subtropical jet, with

1As explained in Andrews et al. (1985, chapter 7), the radiative disequilibrium is maintained by a
large scale meridional (latitude-height) circulation, known as the Brewer-Dobson circulation, which
is understood to be driven by the active dynamics of the stratosphere.
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km

km

Figure 1.3: Latitude-height cross section of zonal-mean zonal wind in January (top)
and July (bottom). The contour interval is 5 m s−1, and easterlies are shaded (figure
from Atmospheric Circulation course notes by David A. Randall).



Chapter 1: Introduction 17

the zonal-mean zonal wind at heights above the summer hemisphere jet being weak

and easterly.

In both hemispheres, Waugh and Randel (1999) showed that the polar vortex has

on average an approximately circular cross section and is centred slightly off the pole.

However, it was shown that the location and shape of the vortex differs marginally

between the two hemispheres, with more variability observed in the Northern Hemi-

sphere polar vortex compared to its southern counterpart.

In the middle and lower atmosphere, quasi-horizontal layerwise stirring of chem-

icals occurs due to large scale turbulence. To a good approximation this stirring

takes place on isentropic surfaces, or surfaces of constant entropy S, or equivalently

constant potential temperature θ which is related to S by S = cp ln θ, where cp is

the specific heat of dry air at constant pressure. Note that for an ideal gas, such as

dry air, the potential temperature is related to the temperature T and pressure p by

θ = T (p0/p)
R/cp, where R is the ideal gas constant for dry air, and p0 is a reference

pressure usually taken to be 103 hPa.

In situ data from the Arctic Airborne Stratospheric Experiment (AASE) and

the Antarctic Airborne Ozone Experiment (AAOE) have shown that for the polar

vortex in both hemispheres, the chemical composition of the airmass within the vortex

and that outside the vortex are distinct (see Loewenstein et al. 1989; Proffitt et al.

1989, and the review issues of Journal of Geophysical Research vol. 94 D14 1989,

Geophysical Research Letters 17 no. 4 1990, Science, 261 1993). In particular,

anomalously low ozone concentrations were seen to coincide with the location of the

polar vortex, with the Southern Hemisphere exhibiting the largest anomaly (Proffitt
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et al. 1989).

A useful diagnostic for stratospheric flows is that of Ertel’s potential vorticity

(PV hereafter), which is a materially conserved dynamical quantity in the absence of

diabatic heating and frictional processes. Due to the relatively short time scales on

which advection occurs in the winter polar stratosphere, when compared to the time

scales of diabatic processes, it is generally assumed that PV is a materially conserved

quantity on timescales of approximately 5 to 10 days.

Observations of the distribution of PV in the stratosphere have shown that the

polar vortex is characterized by PV values which are anomalously high when compared

to that of the surrounding “surf zone” (McIntyre and Palmer 1983, 1984; Nash et al.

1996). The surf zone exists throughout the stratosphere and on average extends in

latitude from the edge of the polar vortex at approximately ±70◦ latitude to the

subtropics (approximately ±20◦). It is so named due to the large scale dynamical

stirring of chemical species in this region, in a process which has been compared to

waves breaking on a beach (McIntyre and Palmer 1983) and which also results in the

PV being well mixed in this region.

The AASE and AAOE missions, have also shown that the transition between surf

zone and polar vortex air masses is characterized by steep gradients in trace chemicals,

as well as PV and other long lived chemical tracers, for example nitrous oxide (N2O)

(see Fahey et al. 1990; Loewenstein et al. 1990, and the issues dedicated to the AASE

and AAOE given above). The polar vortex edge is defined by the region of these

steep gradients, and acts as a transport barrier between the cold, chemically isolated

airmass within the vortex and the warmer, vigorously mixed air of the surf zone (e.g.
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Hartmann et al. 1989). Transport of air out of the polar vortex and into the surf zone

still occurs however, via small scale turbulence in the vicinity of the vortex edge, weak

transport due to radiative processes, and most significantly, ejection of filaments of

vortex air (with typical scales of order 100 km).

For the main part of the polar vortex, filaments ejected in the middle stratosphere

(850 K) were shown by Clough et al. (1985), McIntyre and Palmer (1983, 1984) and

Waugh et al. (1994) to be quickly mixed with the air of the surrounding surf zone.

During the AASE, strong internal mixing was observed in the polar vortex interior

through which air at the centre of the vortex was transported to the vortex edge.

Combined with PV filament ejection and mixing in the middle stratosphere, this

resulted in air from deep within the vortex interior being advected out of the vortex

and mixed into the surrounding surf zone. In this way, Waugh et al. observed that

during the AASE approximately 50% of the interior air of the Northern Hemisphere

polar vortex was advected out of the vortex and mixed into the surf zone, such that

the transport barrier of the vortex edge could more accurately be described as a

“leaky” transport barrier. Waugh et al. found that air which was ejected from the

vortex in this way was replenished by downwelling from the upper stratosphere and

other diabatic processes, such that the cross sectional area of the vortex remained on

the whole constant despite these ejections.

For the sub-vortex in the lower part of the stratosphere (around 450 K), this pro-

cess of filamentation is somewhat different. Waugh et al. (1994) found that filaments

in this region were of significantly smaller scale than in the main vortex and, once

ejected, do not mix with the air of the surf zone but encircle the polar vortex core,
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reducing the sharpness of PV gradients at the vortex edge.

In comparison to these extrusions of air from the polar vortex into the surrounding

surf zone, Plumb et al. (1994) found that over the same aircraft mission period,

intrusions of air from the surf zone into polar vortex were quite modest.

1.2 Stratospheric sudden warmings

Stratospheric sudden warmings are phenomena occurring in the winter polar

stratosphere in both hemispheres. The World Meteorological Organization (WMO)

defines a stratospheric sudden warming as occurring whenever the meridional gradi-

ent in 10 hPa zonal-mean temperatures between 85◦ and 60◦ is positive for more than

5 days (Andrews et al. 1985).2 This is marked by a sharp increase in temperature

over the polar cap, in some cases as large as 40 K, an example of which is shown

in panel A of Fig. 1.4 for the sudden warming which occurred in February 1979.

Within this definition, there are four sub-classifications of stratospheric warming (for

a thorough review of these warming classifications see Labitzke 1977):

1. A major warming occurs when reversal of the meridional temperature gradient

is accompanied by a reversal of the zonal-mean zonal wind at 60◦ latitude on

the 10 hPa pressure level, reversing from the westerly flow of the climatology to

easterly flow (Andrews et al. 1985, see also panel B of Fig. 1.4). A distinguishing

feature of major stratospheric sudden warmings is that they are accompanied

by a dramatic breakdown of the polar vortex, followed by a gradual recovery of

2Latitudes here, and in the description of warming classifications, refer to latitudes in the winter
hemisphere, for example 85◦-60◦ N in January, 85◦-60◦ S in August.
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the polar vortex to its pre-warming state. The polar vortex behaviour during

this breakdown will be discussed shortly.

2. Minor warmings occur when the meridional temperature gradient reverses from

its climatological state, as described in the WMO definition, but there is no

reversal of the zonal-mean zonal wind or breakdown of the polar vortex during

minor warmings.

3. Final warmings occur at the end of every winter, as the polar night draws

to an end and temperatures in the stratosphere steadily increase. As strato-

spheric temperatures increase, meridional temperature gradients driving the

strong westerlies in the stratosphere disappear, leading inevitably to a reversal

of the zonal-mean zonal wind, accompanied by complete destruction of the po-

lar vortex. Unlike major sudden warmings however, the polar vortex does not

reform as the westerlies do not return, hence the term “final warming”.

4. The final sub-classification is that of Canadian Warmings which are only ob-

served in the Northern Hemisphere. These events are identified using the major

and minor warming criteria, but were determined by Labitzke (1977) and Lab-

itzke and Naujokat (2000) to be distinct from major and minor warmings as

they are characterized by a displacement of the polar vortex from the pole by the

Aleutian anticyclone, typically occurring earlier than other types of warming in

November as opposed to December-February.

A comprehensive list of all winters in which major and Canadian warmings have

occurred is given in Labitzke and Naujokat (2000), along with other information
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A

B

Figure 1.4: Panel A: Area weighted polar cap temperature on the 10 hPa pressure
surface during the 1978-1979 Northern Hemisphere winter. Panel B: zonal-mean zonal
wind at 60◦ N on the 10 hPa pressure surface during the 1978-1979 Northern Hemi-
sphere winter. In both panels, the red portion of the curve represents the warming
period defined in Charlton and Polvani (2007), and the thin grey line shows the cli-
matological polar cap temperature and zonal-mean zonal wind for all winters in the
period 1958-2002. The shaded region shows plus/minus one standard deviation, cal-
culated from a climatology of all winters in the period 1958-2002. Figures produced
using ERA-40 re-analysis data and taken from the Stratospheric Sudden Warmings
Online Library http://www.appmath.columbia.edu/ssws/index.php.
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including whether the final warming for each winter was observed to occur earlier or

later than usual.

Recently, Limpasuvan et al. (2004) performed a study in which observational data

were used to analyze typical behaviour during stratospheric sudden warmings. Using

data from major and minor warming events in the period 1958-2001, Limpasuvan et al.

(2004) created composites of zonal-mean zonal wind and zonal-mean temperature, to

investigate typical behaviour in the stratosphere and upper troposphere. It was found

that sudden warmings exhibit a life cycle spanning approximately 75 days. By setting

a central date for each warming, defined as being when conditions similar to those

of the WMO warming definition are satisfied, the life cycle was divided into five

stages which were onset (-37:-23 days), growth (-27:-8 days), mature (-7:+7 days),

decline (+8:+22 days) and decay (+24:+37), where all days are given relative to

the central date. It was found that during the onset, growth and mature stages,

a weakening of the zonal-mean zonal flow and warming of the polar cap descended

from the middle to lower stratosphere. Anomalies of the zonal-mean zonal wind

and zonal-mean temperature from their respective climatologies peaked during the

mature stage, before each returned to their climatological value during the decline

and decay phases. Similar to the findings of Baldwin and Dunkerton (1999, 2001), it

was noted that the largest disturbances occurring in the stratosphere descended into

the troposphere as the life cycle developed.

The work presented in this thesis will focus solely on the dynamics responsible

for major warmings. Due to their dependence on the radiative annual cycle, the

dynamics of final warmings are distinct to those of major warmings. In particular, a
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single final warming occurs at the end of every winter in both hemispheres, whereas

the occurrence of major warmings is more unpredictable, with winters having at most

one or two major warmings or none at all. A study of the dynamical behaviour of final

warmings can be found in Black and McDaniel (2007). As we are only considering

major warmings, the acronym SSW for stratospheric sudden warmings is taken in the

remainder of this work to refer exclusively to major mid-winter warming events.

Traditionally, SSWs have been labelled either “wave-1” or “wave-2” events. This

naming convention comes from observations on pressure surfaces of geopotential dis-

turbances, where the geopotential is the potential energy per unit mass relative to

sea level, which have either wavenumber-1 or wavenumber-2 as the dominant Fourier

mode in the longitudinal structure. The way in which the polar vortex breaks down

during these two classifications of SSW is distinctly different. During wave-1 SSWs

there is typically an increase in displacement of the polar vortex from the pole, while

wave-2 SSWs are characterized by a complete split of the polar vortex into two sep-

arate fragments. An example of this difference in behaviour is given by observing

shaded contours of vertically weighted PV on the 840 K isentropic surface during

the wave-1 SSW occurring in January 1987 and wave-2 SSW occurring in February

1979, as shown in Fig. 1.5.3 For the disturbed vortex states which typically occur

during polar vortex breakdown associated with SSWs, the overall PV distribution is

seen to depart significantly from that corresponding to zonal flow around the pole,

meaning that classifications relying purely on zonal averages, and waves defined as

3The vertically weighted is derived using the data and methodology described in chapter 2. It is
noted that the vertically weighted PV distribution on each isentropic surface is identical to that of
Ertel‘s PV.
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Figure 1.5: Contours of vertically weighted PV on the 840 K isentropic surface during
the wave-1 SSW in January 1987 (left panel) and wave-2 SSW in February 1979
(right panel). In both panels, the dark blue contour denotes the vortex edge, which is
calculated using the methodology of chapter 2, and blue shading corresponds to PV
belonging to the polar vortex interior.

disturbances relative to these, may obscure a realistic and physically based picture of

the vortex structure (O’Neill and Pope 1988; Waugh 1997).

Recently, a new algorithm for an objective classification of SSWs was introduced

by Charlton and Polvani (2007), in which the observed absolute vorticity distribution

of the vortex was used to classify all Northern Hemisphere SSWs in the period 1958-

2002 as either vortex-displacement or vortex-splitting SSWs, closely corresponding to

the wave-1 and wave-2 categories above. The algorithm of Charlton and Polvani

(2007) identifies an SSW as having occurred when the zonal-mean zonal wind at

60◦N reverses on the 10 hPa pressure level. Once an SSW has been identified, the

ratio of the two largest distinct regions of absolute vorticity on the 10 hPa pressure

level is calculated, with the SSW being classified as a vortex-splitting SSW if the
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ratio exceeds a given threshold value. If not classified as a vortex-splitting SSW, the

SSW is instead classified as a vortex-displacement event. In this thesis, all references

to SSWs and their classifications will refer to SSWs defined using the algorithm of

Charlton and Polvani (2007).

The SSWs identified using the algorithm of Charlton and Polvani (2007) occur in

the Northern Hemisphere with a frequency of approximately 0.62 per year, equivalent

to two SSW events every three years (note that this is slightly higher than the fre-

quency of 0.5 per year given in Andrews et al. 1985). To date, only one major warming

has been recorded in the Southern Hemisphere, occurring in September 2002 (see J.

Atmos. Sci. Special Issue, 62, no. 3; see also Fig. 1.6). One other strong warming

event occurring in the Southern Hemisphere during July 1974 was documented by

Barnett (1975). Although this warming was similar in intensity to observed SSWs in

the Northern Hemisphere, a reversal of the zonal-mean zonal wind was not observed

meaning this event was still in fact a minor, rather than major, warming (see Quiroz

1974). Although not discussed here, minor warmings are observed more frequently

than major warmings, and are known to occur in both hemispheres.

One of the main findings of Charlton and Polvani (2007) was that vortex-displacement

and vortex-splitting SSWs are dynamically distinct, and should therefore be treated

separately when studying stratospheric behaviour during SSWs. As part of their

study, Charlton and Polvani (2007) found that vortex-splitting events in the Northern

Hemisphere most often occurred in January and February, while vortex-displacement

events occurred with almost constant frequency throughout the winter period of

November-March.
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Figure 1.6: Comparison of stratospheric ozone concentrations on 24 September in
the Southern Hemisphere between a “typical” winter observed in 2001 and the 2002
winter, in which the vortex-splitting SSW was observed. Data are provided by the
Total Ozone Mapping Spectrometer (TOMS) instrument, and the figure has been
provided by the NASA Ozone Hole Watch web resource.

The reason for treating vortex-splitting and vortex-displacement SSW separately

can be seen by looking at the observed behaviour of the polar vortex during each type

of SSW.

A particularly intense vortex-splitting event which has been the focus of many

studies is that which occurred in February 1979 in the Northern Hemisphere (An-

drews et al. 1985; Jung et al. 2001; Manney et al. 1994, see also Fig. 1.5). During

this SSW, an almost columnar polar vortex was seen to split into two smaller daugh-

ter vortex columns of comparable size. Furthermore, the split was seen to occur
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almost simultaneously at all heights (Manney et al. 1994, see their Fig. 14). Another

vortex-splitting SSW which has attracted much attention is that observed during the

Southern Hemisphere SSW in September 2002. In this instance, an initially columnar

polar vortex was seen to split into two in the middle stratosphere while remaining

columnar in the lower stratosphere, such that the overall vertical structure of the

polar vortex was reminiscent of the letter “Y” (see J. Atmos. Sci. Special Issue,

62). This Southern Hemisphere split was also observed in the distribution of strato-

spheric ozone, highlighting the role of the vortex edge as a barrier between air within

the polar vortex and that outside (see Fig. 1.6). An example of the polar vortex

behaviour observed during vortex-displacement events is provided by the SSW oc-

curring in December 1998, discussed in Manney et al. (1999) and Naujokat et al.

(2002). In Manney et al. (1999) (their Fig. 12), three-dimensional representations of

the polar vortex show that the evolution is quite different to that of the February 1979

vortex-splitting SSW, with the polar vortex exhibiting a strong tilt with height while

developing a cross sectional “comma” shape, with the “comma” becoming more elon-

gated the higher up the vortex one looks (see Fig. 1.5 for an example of the January

1987 vortex-displacement SSW).

1.3 Dynamical theories of stratospheric sudden warm-

ings

The underlying mechanisms responsible for the onset and development of SSWs

are not entirely understood, in that there is no deterministic theory that fully explains
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why SSWs occur in some years and not in others. However, there is a general con-

sensus that the large scale disturbances observed during SSWs, along with the short

timescales on which these disturbances develop, indicate that the phenomenon is of

a dynamical rather than radiative nature. That is, rather than chemical or radiative

heating effects, it is the isentropic transport of warm air masses into the polar regions

during the polar vortex breakdown that is responsible for the temperature increases

observed during SSWs.

There is a long history of investigation into the dynamical mechanisms which can

lead to the breakdown of the polar vortex observed during SSWs. Early work (see

Charney and Stern 1962; Fleagle 1958; Lindzen 1966; McIntyre 1972; Murray 1960)

aimed to clarify the role of instabilities of the polar vortex as a possible mechanism for

the breakdown of the polar vortex during SSWs (see also McIntyre 1982). However,

it was found that even if the polar vortex were unstable to Rossby wave-like distur-

bances, the scale and behaviour resulting from such instabilities would not resemble

that observed during the polar vortex breakdown during SSWs (McIntyre 1972). As

a result, other ideas were investigated which looked to external factors such as tropo-

spheric forcing or interactions between the polar vortex and other vortex structures

(McIntyre 1982). Three of the most prominent theoretical ideas, upward propagating

Rossby wave theory, resonant excitation theory and vortex-vortex interaction theory,

will be introduced below.

Before looking at each of these theoretical ideas, it is useful to introduce two

important concepts, each of which plays an important role in the study of SSWs. The

first concerns conditions under which Rossby waves generated in the troposphere are
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permitted to propagate vertically into the stratosphere. Rossby waves (also known as

Planetary waves) are large scale wave-like disturbances which propagate on latitudinal

gradients of PV in the atmosphere, similar to the way in which gravity driven water

waves propagate on the density gradient between water and air (Andrews et al. 1985).

The steep gradients in PV which are observed at the polar vortex edge therefore act

as a wave-guide for the propagation of latitudinally trapped Rossby waves.

The ability of Rossby waves generated in the lower stratosphere to propagate

to higher altitudes was investigated by Charney and Drazin (1961). In their seminal

paper, Charney and Drazin (1961) found that for Rossby waves to propagate vertically

into the stratosphere, the relationship

0 < ū− c < ūcrit, (1.1)

must be satisfied, where ū is the zonal-mean zonal wind of the stratosphere, c is the

phase-speed of the Rossby wave in the zonal direction, and ūcrit is a critical value

dependent on parameters including the zonal wavenumber of the Rossby wave. For

disturbances which are quasi-stationary with respect to the Earth’s surface, that is

Rossby waves with c close to zero, this condition dictates that vertical propagation of

Rossby waves will only take place if the zonal-mean zonal winds in the stratosphere

are moderate and westerly. That is, should upward propagating Rossby waves reach a

height at which the zonal-mean flow is easterly, or strongly westerly, the waves will be

unable to propagate any further in the vertical and are reflected or absorbed. In other

words, if easterly zonal-mean zonal winds occur at some height in the stratosphere,

any Rossby waves generated in the lower stratosphere will be trapped between the

lower stratosphere and the height at which easterlies occur. The easterly zonal flow
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which characterizes the stratosphere in the summer hemisphere (see Fig. 1.3), in

addition to the absence of a persistent wave-guide such as the polar vortex edge,

ensures that vertical propagation of Rossby waves into the stratosphere in summer is

much less than that in winter.

The parameter ūcrit exhibits an inverse dependence on the zonal wavenumber of

the Rossby wave, such that ūcrit is close to zero for disturbances with large zonal

wavenumber. As a result, in the winter stratosphere vertical propagation is only

generally observed for Rossby waves with zonal wavenumber 1, 2 or 3, with vertical

propagation of higher wavenumber disturbances being suppressed.

The second concept is that of the Eliassen-Palm (EP) flux S, and its associated

wave-activity A, which were first introduced by Eliassen and Palm (1961) for internal

gravity waves, and generalized in Andrews and McIntyre (1976, 1978) for Rossby

waves. The EP-flux S is defined such that a conservation relation exists for the

wave-activity A in the form of the “generalized Eliassen-Palm relation” (Andrews

and McIntyre 1976, 1978)

∂A

∂t
+ ∇ · S = D,

where D is due to frictional and diabatic effects, such that in frictionless adiabatic

flow, increases in wave-activity A arise directly from a divergence of the EP-flux

S. Use of the EP-flux as a diagnostic for geophysical flows was first introduced

by Edmon et al. (1980), who noted that studying the EP-flux S in a meridional

height cross section gave insight into the behaviour of eddy disturbances to a zonal-

mean flow. In particular, by representing the EP-flux vector S with arrows, the

direction of the arrows represents the direction of wave propagation, the vertical
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component the northward heat flux due to the eddies, and the horizontal (meridional)

component the northward momentum flux due to the eddies.The divergence of S has a

further interpretation as it equals the magnitude of the northward potential vorticity

flux due to the eddies. Importantly, under conditions of a monochromatic plane

wave propagating in a slower varying background flow, the EP-flux also satisfies

a group velocity property S = cgA, where cg is the Rossby wave group velocity.

Consequently, the EP-flux is often interpreted as being indicative of a Rossby wave

packet propagating with its group velocity.

We now give an overview of the three theoretical ideas regarding the dynamical

mechanisms of SSWs, as mentioned earlier in this section. Although presented sepa-

rately, it is pointed out that these three ideas are not necessarily mutually exclusive,

and that the true dynamical mechanisms responsible for the onset of SSW events may

well include properties of some, if not all, of these different ideas.

1.3.1 Upward propagating Rossby waves

A well established view of the dynamical mechanism responsible for SSWs is that

they are caused by upward propagating Rossby waves generated in the troposphere.

An outline of this follows. One of the important conceptual features of this theory is

that the troposphere is thought of as acting independently of the stratosphere over

the period in which warmings occur. Unusually high amplitude disturbances in the

troposphere are manifest in the lower stratosphere as an anomalous forcing which ex-

cites Rossby wave disturbances (Nishii and Nakamura 2004; Peters et al. 2007). Due

to the moderate westerly zonal-mean zonal winds which characterize the stratosphere
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during winter, these Rossby waves are able to propagate to higher altitudes in accor-

dance with the theory of Charney and Drazin (1961). The vertical propagation can

be diagnosed in the meridional cross sections of the EP-flux as an upward vector S.

Due to the exponential decrease in density with height, the amplitude of these upward

propagating Rossby waves increases until wave saturation occurs in the upper strato-

sphere, and the Rossby waves break. This wave breaking initiates strong mixing in

the upper stratosphere, which reverses the meridional temperature gradient which in

turn reverses the zonal-mean zonal flow to easterlies. Following Charney and Drazin

(1961), this easterly mean flow acts as a barrier to further upward propagation of

Rossby waves, such that subsequent Rossby waves must deposit their energy below

this height, initiating mixing and reversal of the meridional temperature gradient at

lower altitudes. This process continues, with the height at which easterlies are first

encountered descending through the stratosphere as the SSW develops.

This mechanism was first proposed in Matsuno (1971), who used a novel dynamical

model of the stratosphere, perturbed by lower boundary forcing simulating forcing at

the tropopause, to produce the first semi-realistic model SSWs. As the model flow

evolved, SSW-like behaviour was observed in the model for lower boundary forcing

with both wavenumber-1 and wavenumber-2 zonal structure. In particular, it was seen

that reversal of the zonal-mean wind to easterly flow descended steadily through the

stratosphere as SSWs developed. A more realistic form of this model was developed

by Holton (1976), whose simulations agreed with those of Matsuno (1971) with the

exception that the reversal of the zonal-mean zonal wind to easterly flow was seen

to occur almost simultaneously throughout the stratosphere, rather than the steady
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descent observed by Matsuno. This model was also used by Butchart et al. (1982) to

simulate the SSW which was observed in February 1979.

One important question which must be asked with respect to the upward propa-

gating Rossby wave theory outlined above is the interpretation of the upward pointing

EP-flux in the vortex edge region. In idealized dynamical model studies, Scott et al.

(2004) and Scott and Polvani (2004) showed that when considering stratospheric dis-

turbances due to lower boundary forcing, the upward EP-flux at the lower boundary

is not only dependent on the forcing amplitude, but on the state of the stratosphere

itself. That is, large EP-flux at the lower boundary is partly due to the excitation of

Rossby waves by the lower boundary forcing, and partly due to the state of the strato-

sphere “inviting” the excited Rossby waves to propagate up into the stratosphere (see

also Gray et al. 2003). The strong variability of upward EP-fluxes seen in modelling

studies remains a difficulty for the upward propagating Rossby wave theory, in which

the EP-flux at the lower boundary is conceptually attributed to the constant forcing

at the lower boundary, at least in idealized models. One apparent shortcoming of the

theory of upward propagating Rossby waves is that it fails to explain why SSW-like

behaviour is not always observed for large amplitude forcing in the lower stratosphere.

1.3.2 The resonant excitation theory

An alternative theory for the large and sudden wave growth of Rossby waves on

the polar vortex edge during SSWs is that a resonant excitation of a free Rossby wave

mode internal to the stratosphere occurs, with the excitation due to remote forcing

(e.g. forcing from the troposphere).



Chapter 1: Introduction 35

Resonance of atmospheric flows subject to topographic forcing was studied by

Charney and DeVore (1979) as a possible mechanism for blocking phenomena in the

troposphere. Charney and DeVore (also see Tung and Lindzen 1979a, b) found that

as disturbances in the flow became stationary with respect to the forcing, resonance

between the two resulted in a large and sudden increase in the amplitude of the dis-

turbance. This concept of resonant wave growth had previously been applied to the

study of SSWs by Clark (1974), who postulated that resonant excitation of strato-

spheric disturbances with forcing from the troposphere, in addition to an increase in

amplitude of the forcing, was required for SSW-like behaviour to be observed. This

would appear to account for the fact that an increase in forcing amplitude alone does

not generate SSW-like behaviour in all instances. The linear theories presented in

Clark (1974) and Tung and Lindzen (1979a, b) were further developed by Plumb

(1981), who quantified the effects of nonlinearity when determining the evolution of

the stratosphere during near resonant wave growth. It was found that for strato-

spheric flows close to resonance, nonlinear effects due to wave growth can act to

“self-tune” disturbances closer to resonance. Plumb also pointed out that any growth

of disturbances in an initially exactly resonant system would act to de-tune the sys-

tem from resonance, causing disturbance amplitudes to decay over time. The process

of self-tuning resonance in a more realistic model of the stratosphere was then studied

by Smith (1989), who found that a self-tuning resonance of disturbances with topo-

graphic forcing produced zonal-mean diagnostics which were similar to those observed

during real SSWs.

One limitation of the Tung and Lindzen and Plumb studies is the use of the
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β-plane channel model. The PV distribution of this model, which does not closely

correspond to that observed in the real polar vortex, in conjunction with its channel

geometry, means that the β-plane model is unable to predict the realistic evolution

of the polar vortex during vortex-splitting and vortex-displacement SSWs.

By using a more suitable three-dimensional f -plane model (see chapters 3 and 6),

with an explicit representation of the polar vortex edge as a sharp jump in PV, Esler

and Scott (2005) showed that a resonant excitation of Rossby waves on the vortex edge

by topographic forcing leads to vortex-splitting behaviour similar to that observed

during SSWs. The same model was then used by Esler et al. (2006) in which more

realistic polar vortex configurations were used to construct a conceptual model of the

September 2002 vortex-splitting SSW in the Southern Hemisphere. In both of these

studies, numerical experiments indicated that the effects of nonlinearity in highly

disturbed vortex states acted to either self-tune the vortex towards resonance, or to

de-tune the vortex away from resonance, depending on conditions in the stratosphere

during the experiment. These findings reinforced those of Tung and Lindzen (1979a)

and Plumb (1981) in a somewhat more realistic model framework.

Quantifying the effects of nonlinearity on the resonant excitation of Rossby waves

by topography, leading to vortex behaviour similar to that observed, during SSWs,

will be of central importance to the work in this thesis.

1.3.3 The vortex-vortex interaction theory

As mentioned previously, the fact that the vortex is often displaced from the

pole means that partitioning the stratospheric flow into a zonal-mean component and
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small scale disturbance component may lead to an unrealistic picture of the vortex

behaviour during SSWs. To avoid partitioning the flow in this way, another theoretical

mechanism for the onset and development of SSWs instead focuses on interaction of

the cyclonic polar vortex with large deep anticyclonic vortex structures which form

during the winter in the stratosphere.

Large and deep anticyclonic vortex structures have been observed in the strato-

sphere by O’Neill et al. (1994) and Lahoz et al. (1996), and were seen to form from

the vortex merger of smaller anticyclonic vortices. For the minor warming occurring

in 1992, O’Neill et al. found that a large anticyclonic structure was formed from

the merger of the “Aleutian high”, a relatively stationary stratospheric anticyclonic

vortex structure located over the Aleutian islands at approximately 10 hPa during

the winter, and another transient anticyclonic vortex, with their merger contributing

to the onset of the warming. The merger of travelling anticyclonic vortices in the

Southern Hemisphere was observed by Lahoz et al., who noted that the large anticy-

clonic vortex resulting from the merger interacted with a weakened polar vortex to

contribute to the onset of the final warming.

A simple dynamical model of vortex-vortex interaction was used by Scott and

Dritschel (2006) in an attempt to understand the nature of such interactions on

polar vortex deformation. It was found that for a relatively small anticyclonic vortex

structure in the lower stratosphere, interaction with a large and deep cyclonic polar

vortex leads to significant deformation of the polar vortex, with very little deformation

of the anticyclonic vortex.

An important question regarding this mechanism is the formation of the anti-
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cyclonic vortex playing a role in such vortex-vortex interactions. Using idealized

model experiments as well as observational data, Gray et al. (2004) found that in

the Northern Hemisphere, the development of the anticyclonic vortex associated with

the Aleutian high was dependent on both the phase of the Quasi-Biennial Oscillation

(QBO) and the solar cycle. It was found that when the QBO was in its east phase, cor-

responding to easterly zonal-mean zonal winds in the equatorial lower stratosphere,

and the solar cycle was at its maximum, easterly anomalies were observed in the

zonal-mean zonal winds in the tropical upper stratosphere. These easterly anoma-

lies were seen to enhance the anticyclonic vortex associated with the Aleutian high,

which in turn speeded up the onset of SSWs. In contrast, when the QBO was in its

west phase, corresponding to westerly zonal-mean zonal flow in the equatorial lower

stratosphere, and the solar cycle was at its minimum, westerly anomalies were ob-

served in the tropical upper stratosphere, suppressing formation of the Aleutian high

anticyclone and delaying, or in some cases prohibiting, the onset of SSWs. These

results are consistent with the Holton-Tan mechanism (Holton and Tan 1980), which

suggests that Rossby wave refraction makes SSWs more probable during the QBO

east phase, although the Holton-Tan mechanism places more emphasis on wave re-

fraction in the lower stratosphere while Gray et al. (2004) highlighted the possible

role of the background winds in the upper stratosphere.

1.4 Summary of thesis

Stratospheric sudden warmings (SSWs) are studied from a vortex dynamics per-

spective with the aim of identifying the underlying mechanism that causes such events.
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In chapter 2, observational data are used to investigate the behaviour of the Arc-

tic polar vortex during vortex-splitting and vortex-displacement SSWs. Utilizing

moments of the potential vorticity distribution in the stratosphere, an objective di-

agnostic is introduced and used to obtain climatologies of the polar vortex behaviour

during vortex-splitting and vortex-displacement SSWs.

In the remainder of the thesis, a hierarchy of models approach is used to de-

velop a resonant excitation theory as a possible mechanism leading to polar vortex

breakdown similar to that observed during SSWs, as detailed in chapter 2. In chap-

ter 3, a single layer quasi-geostrophic shallow-water model and a three dimensional

quasi-geostrophic compressible atmosphere model are introduced and the numerical

algorithms used to perform fully nonlinear experiments for each type of model are

discussed.

Chapters 4 and 5 focus on developing nonlinear analytical theories to explain the

behaviour of the numerical models, which are shown to reproduce vortex-splitting

behaviour reminiscent of that observed during SSWs. A simple model of elliptical

vortices in strain flow (the Kida vortex) is shown to be a good approximation to the

quasi-geostrophic shallow water model in which vortex-splitting behaviour is observed.

A three-dimensional idealized columnar vortex model is used in chapter 6 to in-

vestigate the relevance of resonant excitation theory in predicting vortex breakdown

similar to that observed during vortex-displacement SSWs. Finally, in chapter 7, the

three-dimensional model is used to investigate resonant behaviour in more realistic

vortex structures.

In the modelling aspects of this thesis, when investigating the underlying mech-
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anisms leading to polar vortex breakdown during SSWs, the main focus will be on

the role of a resonant excitation mechanism, rather than upward propagating Rossby

waves or vortex-vortex interactions.



Chapter 2

Observations of Stratospheric

Sudden Warmings: Polar Vortex

Evolution and Vertical Structure

2.1 Introduction

This study is the third in a series investigating the observed dynamical behaviour

of major mid-winter stratospheric sudden warmings (SSWs). Observational bench-

marks derived from the studies in Charlton and Polvani (2007), Charlton et al. (2007)

and this chapter will serve to characterize typical dynamical behaviour in the polar

stratosphere during both vortex-displacement and vortex-splitting SSW events. Part I

of the series (Charlton and Polvani 2007, CP07 hereafter) was primarily concerned

with the identification and classification of all SSWs in the period 1957-2002, and

on the development of diagnostic benchmarks. In particular, in CP07, the evolution

41
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of temperature, geopotential height, zonal wind and eddy flux fields during SSW

events of each type were documented using a composite method. In part II (Charlton

et al. 2007), the diagnostic benchmarks developed in CP07 were used to evaluate

the performance of several stratosphere-resolving models in simulating SSWs. Here,

the aim is to extend the study further by analyzing SSWs from the perspective of

three-dimensional vortex dynamics.

It is well-established (e.g. McIntyre and Palmer 1983; Nash et al. 1996) that the

Arctic polar vortex can be identified with an airmass of elevated Ertel’s potential

vorticity (PV hereafter), and that the vortex itself is strongly disrupted during an

SSW (e.g. O’Neill 2003, and references therein). The aim of this chapter is therefore

to investigate the structure of the Arctic polar vortex during SSW events of each type,

by a detailed analysis of the PV distribution in the Arctic polar region in the altitude

range 15-45 km. Following Limpasuvan et al. (2004) and CP07, time-lag composite

diagnostics are used to characterize the development of the vortex leading up to and

following each type of SSW. The aim is to answer the following questions:

• What is the vertical structure of the Arctic polar vortex during the vortex-

displacement and vortex-splitting SSWs identified in CP07? Does each type of

SSW event have a characteristic vertical structure, or does the vertical structure

vary between individual events.

• What is the location and orientation of the Arctic polar vortex with respect

to the Earth’s surface during the development of each type of SSW event? To

what extent are SSW events ‘phase-locked’ to stationary tropospheric planetary

waves generated by surface topography and land-sea contrast?
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• How does the shape of the Arctic polar vortex develop prior to, during, and sub-

sequent to the onset time of SSWs? Is there a characteristic life cycle associated

with the development of the polar vortex during each type of SSW?

It is anticipated that our results, and the answers to the above questions in particu-

lar, will be of assistance to modellers attempting to simulate SSWs in stratosphere-

resolving general circulation models. Additionally, the results should be of use to

researchers seeking to validate different dynamical theories of SSWs, as will be dis-

cussed in detail below.

A number of authors have analyzed the evolving vertical structure of the vor-

tex during specific SSW events in both the northern and southern hemisphere (e.g.

Manney et al. 1994, 2005b, c). However, we are not aware of a study attempting a

comprehensive analysis of the three-dimensional structure of the polar vortex during

all recorded SSWs. One relevant, complementary investigation is that of Limpasu-

van et al. (2004), who compiled composite diagnostics such as zonal mean winds and

temperatures, and Eliassen-Palm flux fields during the life cycles of 48 SSW and mi-

nor warming events. Limpasuvan et al. (2004) did not, however, distinguish between

vortex-displacement and splitting events, which from the perspective of vortex dy-

namics are fundamentally different phenomena. Nor did they consider the evolution

of the vertical structure of the polar vortex itself during the SSW events. As will

be seen below, the shape of the polar vortex undergoes robust and distinctive life

cycles during each type of SSW, details of which emerge when the above aspects are

considered. Another relevant study is Liberato et al. (2007), who used NCEP/NCAR

data to investigate the vertical structure of planetary wave energetics in relation to
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the variability of the northern hemisphere polar vortex during SSW events. In their

work, composite analysis of displacement and splitting SSWs showed the dynamics

of the two SSW types to be distinct. Displacement SSWs were forced by planetary

wave energy anomalies with strong vertical dependence, whereas splitting SSWs were

forced by planetary wave energy anomalies with predominantly barotropic structure

in the vertical.

A detailed study of the climatological behaviour of the Arctic and Antarctic polar

vortices has been carried out by Waugh (1997), who introduced the methodology of

‘elliptical diagnostics’ in order to produce time series describing the main aspects of

the evolution of the Arctic and Antarctic polar vortex structure during their respective

winter seasons. These time series were subjected to statistical analysis, resulting in

reference climatologies for the position and the variability of the polar vortex centroid,

aspect ratio and orientation. Three key results of Waugh and Dritschel (1999, see in

particular their Fig. 4) that are specifically relevant to the work of this chapter, relate

to the climatology of the Arctic polar vortex during the winter period (late November-

March), when all of the SSWs identified in CP07 occur. Firstly, the centroid of the

vortex is found to be displaced off the pole; at all levels throughout the winter it

is located near latitudes 80◦N (December) to 75◦N (March). Secondly, the vortex

is found to have a significant westward tilt with height; the longitude of the vortex

centroid is located around 20-30◦E at low levels (450 K), near the 0◦ meridian in the

mid-stratosphere (850 K), and around 30-40◦W in the upper stratosphere (1300 K).

Finally, the aspect ratio of the vortex is generally in the range 1.5-1.9, with the largest

values occurring in February in the lower stratosphere. Results will be presented below
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with reference to this climatology.

Nevertheless, the focus in the Waugh (1997) and Waugh and Dritschel (1999)

studies was not the three-dimensional evolution of the polar vortex during SSWs

themselves. Here, the elliptic diagnostic approach, which was adapted from tech-

niques developed in the fluid dynamics literature to investigate two-dimensional vor-

tex dynamics (Dritschel 1993; Legras and Dritschel 1993; Melander et al. 1986), is

further adapted to study the structure of the Arctic polar vortex during SSW events

of each type. One important novelty in this work is that we have removed the need to

start by choosing the vortex edge, such as a specific isopleth of N2O mixing ratio or of

PV, before applying the elliptical diagnostics methodology. This modification allows

independent results from the elliptical diagnostics method to be compared with those

from a separate vortex edge-selecting algorithm. Results from the two techniques

will therefore act to cross-validate each other and help confirm the robustness of our

results.

The remainder of the chapter is structured as follows. Section 2.2 describes the

datasets used to identify SSWs and the methodology employed to objectively define

the boundary of the Arctic polar vortex, and to generate the composite fields used

to characterize SSWs of each type. The elliptical diagnostics are then introduced,

the new aspects described, and their utility demonstrated. In section 2.3 the vertical

structure, orientation and elongation of the Arctic polar vortex are described for both

vortex-splitting SSWs and vortex-displacement SSWs. Particular attention is given

to the temporal evolution of these quantities relative to the SSW onset time. Both

composites and representative individual events are compared and contrasted. In
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section 2.4 a list of proposed modelling benchmarks are presented and section 2.5

contains our conclusions.

2.2 Datasets and methodology

2.2.1 Dataset, SSW definition and categorization

The methodology used to identify SSWs, and then classify them into vortex-

displacement and vortex-splitting events, is described in detail in CP07. CP07 use

data from both the NCEP/NCAR re-analysis (Kistler et al. 2001), and the ECMWF

ERA-40 re-analysis dataset (Uppala et al. 2005), to establish a climatology of SSW

events between the winter seasons 1957/58 and 2001/2002. The results from the two

re-analysis datasets are very similar, as expected given that they are created using a

largely common observational dataset. In this chapter, the vertical structure of SSWs

is investigated using Ertel’s potential vorticity (PV) from the ERA-40 re-analysis

only, because PV is directly available at a higher vertical and temporal resolution in

ERA-40 than in the NCEP/NCAR re-analysis.

Following CP07, our study is confined to major mid-winter SSWs which occur

during the extended boreal winter season, November to March. SSWs are defined to

occur when the zonal mean zonal wind at 10 hPa and 60◦N changes direction from

westerly to easterly. An additional criterion, that the zonal mean zonal winds at this

location recover to westerlies for at least 10 or more consecutive days following the

SSW, is used to remove events which are final, as opposed to midwinter, warmings.1

1The CP07 definition differs slightly from those in the existing literature in that it includes
warming events which occur in March, and can be robustly ascertained not to be final warmings. In
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The dynamics of Northern hemisphere final warmings have recently been discussed in

detail by Black and McDaniel (2007). During the 1957-2002 period of investigation,

29 SSWs that satisfy these criteria are identified by CP07. These 29 events are then

classified into vortex-displacement and vortex-splitting events, using an algorithm

based on first identifying the vortex edge from the absolute vorticity field, and then

comparing the size and amplitude of cyclonic vortices. CP07 divide the 29 SSWs into

15 vortex-displacement events and 14 vortex-splitting events using this algorithm.

For the purposes of the current study ECMWF ERA-40 Ertel’s potential vortic-

ity and temperature fields were obtained from the British Atmospheric Data Centre

(BADC, http://badc.nerc.ac.uk/home/). Global fields were obtained at 1◦× 1◦ hor-

izontal resolution on 16 standard pressure levels between 400 hPa and 1 hPa with a

vertical distance of approximately 2.6 km between each level. The temperature fields

were used to interpolate the PV onto 36 isentropic levels in the range 380-2850 K.

Note that Manney et al. (2005b), Manney et al. (2005a) and Simmons et al. (2005)

have reported an erroneous vertical oscillation in temperature in the polar regions in

ERA-40. We have found that this oscillation, which is of lower amplitude in the

Arctic compared to the Antarctic and is only significant in the last few years of the

period of interest, is not of sufficient amplitude to impact on our results. A direct

comparison between ERA-40 and ERA operational analysis data for the February

2002 event (not shown) reveals no significant differences in any of our diagnostics.

addition, some researchers may be uncomfortable with use of the term ‘midwinter warming’ when
discussing SSW events occurring in November, preferring to use ‘Canadian warming’ for these events.
For consistency with CP07, we have chosen to adhere to the dynamically based SSW definition given
there, and have therefore included any November SSWs in CP07 in our analysis.
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2.2.2 Definition of the arctic polar vortex boundary

In order to investigate the Arctic polar vortex during each SSW period, an objec-

tive definition of the vortex airmass is required. A natural way of defining the vortex

airmass is to select a surface in three-dimensional space to define its outer boundary.

The edges of the polar vortices throughout the stratosphere and lower mesosphere

are identified with strong isentropic gradients in trace gas concentrations and in PV;

hence any surface defining the outer boundary of the vortex should coincide with

these strong gradients where they exist. For the purposes of this study, the vortex

is assumed to extend between the 400 K and 1600 K isentropic surfaces (approxi-

mately 14 and 44 km) in the vertical. For each SSW identified in CP07, the vortex

outer boundary within this range is selected to coincide with the region of strong PV

gradient using the following method.

Firstly, the Ertel PV q, on each isentropic surface θ, is expressed as a function

of equivalent latitude φe (Butchart and Remsberg 1986) during the 20 day period

surrounding each SSW. In order to obtain a quantitative snapshot of the vortex

before the development of each SSW, q(φe, θ) is considered 9 days before the SSW

onset date identified in Table 1 of CP07. A time lag of 9 days was found to be

sufficient for the vortex to be in a relatively undisturbed state prior to the SSW.

To proceed, the equivalent latitude φm(θ) corresponding to the maximum latitudinal

gradient in PV, i.e. max{|∂q/∂φe|}, is identified on each isentropic level θ. At nearly

all times and levels, the ‘vortex edge’, defined by φm(θ), lies in the equivalent latitude

range 45◦ − 80◦ N.

In theory, it might be desirable to proceed using the function φm(θ) to identify
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the vortex edge during each SSW. In practice, however, there are numerical problems

associated with discontinuities and noise in φm(θ), due for example to (occasional)

spurious maxima in the latitudinal gradient of PV. Additionally, such an approach

requires a significant amount of information to be stored in conjunction with each

SSW. Here, an alternative method, exploiting a transformation of the PV, is em-

ployed. Lait (1994) pointed out that the exponentially increasing component of PV

q can be removed without affecting its conservation properties, by a transformation

of the form

Q = q

(
θ

θ0

)α
, (2.1)

where θ0 and α are constants. Müller and Günther (2003) point out that variation

in the vertical temperature structure of the polar stratosphere is sufficiently large to

warrant different values of α being used for different events. Hence, we aim to choose

α so that a single isosurface of the vertically weighted PV, Q = Q∗, gives a good

approximation to the vortex edge as defined by the equivalent latitude φ = φm(θ)

on all isentropic surfaces. Without loss of generality, we can take θ0 = 475 K for all

events. For each SSW, a particular choice of α and Q∗ that leads to a good fit to the

vortex edge is obtained by setting

Q∗ = q(φm(θ1), θ1)

(
θ1
θ0

)α
= q(φm(θ2), θ2)

(
θ2
θ0

)α
, (2.2)

i.e. Q∗ is set equal to the vertically weighted PV at the vortex edge (defined by

φm) at two isentropic levels θ1 and θ2. The system (2.2) constitutes two equations in

two unknowns, Q∗ and α, and can be straightforwardly solved numerically to obtain

a unique solution. We take θ1 = 600 K and θ2 = 1400 K, representative of the

vortex in the lower and upper stratosphere respectively. For each SSW identified in
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CP07, except for the March 1971 event, the vortex edge is found to be well-defined

at both of these levels, and the surface Q = Q∗ lies close to the equivalent latitude

φm throughout the potential temperature range of interest.2

The three-dimensional isosurface Q = Q∗, bounded below and above by the 400 K

and 1600 K isentropic surfaces respectively, serves to define the outer boundary of the

Arctic polar vortex throughout the period of each SSW. In addition to being a good

fit to the location of the maximum latitudinal gradient of PV, the Q = Q∗ isosurface

is straightforward to calculate and plot, requiring only the values of α and Q∗ for each

SSW. Following the above procedure for each event, the vortex edge was found to be

within the range Q∗ = 38± 7 PVU (1 PVU ≡ 10−6 K m2 s−1 kg−1), and the vertical

scaling parameter α = −4.25 ± 0.35. The vertically weighted PV Q thus generated

can also be used to generate composite SSWs, as will be described next.

It is worth noting that this method of deriving an isosurface of PV Q = Q∗ rep-

resenting the vortex edge at any time is not restricted to SSW events. By generating

a value of Q∗ corresponding to the vortex edge, whether on a daily basis or by using

a single value over a given time period, the three-dimensional evolution of the vortex

can be easily represented at any time. However, the fact that PV is not conserved

over long time periods in the stratosphere implies that at large times before or after

the time at which Q∗ is calculated, the isosurface Q = Q∗ may no longer correspond

closely to the vortex edge.

2For the March 1971 event the vortex was found to have an unusual structure in the upper
stratosphere, and the above method could not be applied. This is most likely due to the March
1971 event occurring late in the winter, and to the polar vortex being relatively weak at upper
levels. Although the algorithm of CP07 identifies the event as a midwinter SSW, it in fact shares
many dynamical features with final warmings. The March 1971 event is therefore excluded from our
analysis below, leaving 15 displacement events and 13 splitting events.
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2.2.3 Construction of composite fields

The evolution of the Arctic polar vortex during ‘typical’ vortex-displacement and

vortex-splitting events can be investigated using time-lag composites of the vertically

weighted PV Q. The advantage of using Q to create the composites, rather than for

example PV q, is that the component of the PV field that increases exponentially with

height has been removed from Q by the transformation (2.1) on a case-by-case basis.

This ensures that the effects of the seasonal cycle and interannual variability on that

part of the untransformed PV that grows exponentially with height are removed, and

thus avoids biasing the resulting composites towards a few individual events.

In order to generate the time-lag composites an onset time (τ = 0) must be

selected for each event. For the vortex-displacement events, τ = 0 is taken to be the

event onset date given in CP07. For vortex-splitting events, the dominant feature of

the SSW is the time at which the vortex splits from a single vortex into two smaller

daughter vortices. This time is not necessarily the onset time as given in CP07. More

physically meaningful composites are generated if τ = 0 is taken as the first recorded

time at which the vortex, defined as the region Q > Q∗, splits into two pieces of

comparable area on the 850 K isentropic surface, rather than using the onset date

given in CP07. In most cases this time differs by less than 2 days compared to the

onset time identified by CP07, with 6 vortex split SSWs having an observed onset

before that given in CP07 and 7 vortex split SSWs having an observed onset after

that given in CP07.

Time-lag composites of Q can be used to examine the typical evolution of the

vortex, relative to the SSW onset time, for events of each type. The composite PV
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field Q̄(τ) is constructed by averaging the vertically weighted PV fields at time lags

τ , relative to the onset time. Here, we focus on the time-lag range τ = −10 to τ = 10

days. A simple average of all relevant events is taken

Q̄ =

∑N
i=1Qi

N
, (2.3)

where N is the number of individual events of each type. For vortex-displacement

events N = 15, corresponding to the events identified by CP07, and for vortex-

splitting events N = 13, corresponding to the 14 events identified by CP07 minus the

March 1971 event. For each event, the composite vortex edge is defined as Q̄ = Q̄∗,

where Q̄∗ is the average of Q∗ over all the events.

2.2.4 Vortex moment diagnostics and the equivalent ellipse

Next, an alternative methodology is described that can be used to generate objec-

tive measures of the vortex centroid, orientation and ellipticity. The method consists

of a novel adaptation of the elliptical diagnostics methodology of Waugh (1997). The

basic idea is to exploit the approach of vortex moments (e.g. Melander et al. 1986),

in order to define an ‘equivalent ellipse’; an elliptical vortex of uniform PV that has

identical moment diagnostics to the polar vortex on a given isentropic level. The main

modification to the technique as applied by Waugh (1997) is that we avoid altogether

the definition of a vortex edge prior to calculating the vortex moments. A significant

advantage of this modification to the technique is that the new diagnostics can serve

to verify that our results are independent of the choice of vortex edge described above.

Note, however, that Waugh (1997) in fact found that the results of his climatological

study were not very sensitive to the choice of vortex edge.
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Specifically, the equivalent ellipse at a given time t and on the isentropic surface

with potential temperature θ, is calculated as follows. The Ertel’s PV q(λ, φ, θ, t) is

considered initially as a function of longitude λ and latitude φ. As we are interested

in diagnosing the location, strength and orientation of the polar vortex only, q is first

modified to remove any anomalously low values of PV near the pole. Air with low

PV is likely to have originated in the tropics and will have its own distinct dynamical

significance, which could be investigated separately if required. A modified PV field

q̂ is defined by

q̂ =






q where q ≥ qb,

qb where q < qb.

(2.4)

Here qb(θ, t) is a representative background value of PV calculated by averaging q

polewards of 45◦N. The moment diagnostics are then applied to the modified field

q̂, after first transforming to Cartesian coordinates (x, y), to facilitate the direct ex-

ploitation of the results of Melander et al. (1986). Although it is possible to generalize

the moments approach to spherical polar coordinates (Dritschel 1993), Waugh (1997)

found that the transformation to Cartesian coordinates greatly simplified the moment

calculations, and has minimal impact upon the results obtained. Hence, Lambert’s

azimuthal equal-area projection is employed giving x = R cosλ, y = R sinλ and

R = a
√

2(1 − sinφ) , with a the Earth’s radius. Note that this choice of R en-

sures that the mappings from spherical to Cartesian coordinates and back again are

area-preserving.

It is useful to introduce the absolute vortex moment Mk l(θ, t), given by

Mk l =

∫ ∫
(q̂(x, y) − qb)x

kyl dx dy, (2.5)
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where the integral is taken out to the ‘equator’ at R =
√

2a. Note that because q̂ = qb

nearly everywhere where R > a/
√

2, the region between R = a/
√

2 and R =
√

2a

seldom contributes to the moment integrals. The equivalent ellipse is uniquely defined

by its centroid (x̄, ȳ), its aspect ratio r, its angle of orientation ψ and its area A. These

are determined as follows. Firstly the centroid is obtained

(x̄, ȳ) =
1

M0 0

(M1 0,M0 1) , (2.6)

allowing the relative vortex moments

Jk l =

∫ ∫
(q̂(x, y) − qb)(x− x̄)k(y − ȳ)l dx dy, (2.7)

to be defined. Then ψ, defined as the angle between the x-axis and the major axis of

the ellipse, and the aspect ratio r are obtained as

ψ =
1

2
arctan

(
2J1 1

J2 0 − J0 2

)
, (2.8)

r =

∣∣∣∣∣
(J2 0 + J0 2) +

√
4J2

1 1 + (J2 0 − J0 2)2

(J2 0 + J0 2) −
√

4J2
1 1 + (J2 0 − J0 2)2

∣∣∣∣∣

1/2

. (2.9)

Importantly, the value of the aspect ratio r is invariant under both translations and

rotations of the modified PV field q̂.

Finally, the equivalent area of the ellipse is defined to be

A =
M0 0

qb
. (2.10)

The definition (2.10) implies that the equivalent area A is an objective measure of not

only the actual area but also the intensity of the polar vortex. The area can therefore

be regarded as an objective measure of the total strength, and hence dynamical

significance, of the vortex on a given isentropic level. This is a substantial difference
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from Waugh (1997), where the area represents the area within a closed PV contour

selected by a separate algorithm. Note that here the PV anomaly associated with

the vortex is normalized by the background value of PV qb, so that if the PV in

the polar vortex is significantly less than 2qb, then the equivalent ellipse will appear

smaller than the original vortex. Conversely, the equivalent ellipse will be larger if

PV in the polar vortex significantly exceeds 2qb. Once calculated, the values of x̄, ȳ,

r, ψ and A allow the coordinates of the boundary of the unique equivalent ellipse to

be determined parametrically. The Cartesian coordinates of this boundary are then

mapped back to longitude-latitude coordinates.

The result of the above procedure applied to the February 1979 vortex on the 850 K

isentropic surface, 2 days before the warming onset time at 0600UTC on February 21

1979, is shown in Fig. 2.1 a, plotted together with the actual PV distribution at that

time. It is clear that the equivalent ellipse corresponds closely to the actual polar

vortex (note that the shaded region corresponds to the vortex as defined by the edge-

finding method described above). The equivalent ellipse method therefore serves to

reduce the essential elements of a two-dimensional field to a few key parameters.

The above method is found to work well whenever there is a single, relatively well-

defined polar vortex. In order to investigate vortex-splitting SSWs, however, we also

need to investigate situations where the vortex splits into two. The above procedure

can be adapted when a vortex split has taken place, i.e. when τ > 0 during the

vortex split SSWs, as follows. Firstly, the vortex centroid (x̄, ȳ) and the orientation

of the modified PV field q̂ are determined as above. Next the Cartesian domain is

divided into two regions R1 and R2 by the straight line (y − ȳ) = −cotψ(x− x̄), i.e.
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Figure 2.1: Top panels: Ertel’s potential vorticity q on the 850 K isentropic surface on
February 19 1979 at 0600UTC (A: τ = −2 days) and February 21 1979 at 0600UTC
(B: τ = 0 days). Shaded regions correspond to q > q∗ where q∗ = 370 PVU (1 PVU
≡ 10−6 K m2 s−1 kg−1) is the vortex edge value (for the vertically weighted PV
Q∗ = q∗(θ/θ0)

α = 27.5 PVU, where α = −4.467 for the February 1979 event). The
black ellipses show the ‘equivalent ellipses’ calculated as described in section 2.2. The
location of the ellipse centroids are marked by white crosses. Note that in (B) a
vortex split has occurred and therefore two ellipses are found following the algorithm
described in the text. Panel (C) illustrates the dependence of the excess kurtosis
parameter κ4 on the parameter A1 (in equation 2.13) that controls the extent to
which an idealized vortex of uniform vorticity differs from an ellipse.
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the straight line through the centroid that is perpendicular to the major axis of the

q̂ distribution. Two new modified PV distributions are then defined as

q̂(1) =






q̂ in R1,

qb in R2,

q̂(2) =






q̂ in R2,

qb in R1.

(2.11)

The method described above is then applied to q̂(1) and q̂(2) in turn to derive two

equivalent ellipses. The results of the application of this method to the polar vortex

on 850 K on February 21 1979, i.e. at the SSW onset date (τ = 0) two days later

than Fig. 2.1 a, is shown in Fig. 2.1 b. The method clearly captures the location,

shape, size and orientation of each of the two vortices following the split.

It is perhaps undesirable to be reliant on a vortex split definition based on the

behaviour of a particular vortex edge contour (e.g. the vortex edge contour on the

850 K surface as described above). Instead, can the vortex moments themselves

be used to define when a vortex split takes place? To answer this question, higher

order moments of the q̂ field must be considered. In statistics, the bipolarity of a

given distribution with respect to a reference distribution is measured by the excess

kurtosis κ4 = J4/J
2
2 −F , where J4 and J2 are the 4th and 2nd order moments relative

to the centroid, and F is determined by the reference distribution. Ideally, we would

like an analogous quantity which measures the bipolarity of the PV distribution, while

satisfying the following properties:

• It is invariant to translations of q̂.

• It is invariant to rotation of q̂.

• It is independent of the size of the vortex (or equivalently, the horizontal scale

of the q̂ distribution).
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• It is equal to zero for a vortex of uniform PV that is exactly elliptical, whilst

it takes negative values if the vortex becomes ‘pinched’ in a manner that might

lead to a split, and takes positive values (for example) for a diamond-shaped

vortex or a vortex undergoing strong filamentation.

After some working, it can be shown that the following quantity satisfies the above

five properties

κ4 = M0 0
J4 0 + 2J2 2 + J0 4

(J2 0 + J0 2)2
− 2

3

(
3r4 + 2r2 + 3

(r2 + 1)2

)
, (2.12)

where r is the aspect ratio (2.9). The second term in (2.12) serves to ensure that

κ4 = 0 for an ellipse of uniform vorticity. We refer to κ4 as the ‘excess kurtosis’

parameter, following the terminology for the fourth order moments in statistics, and

it serves as a measure of the bipolarity of the PV distribution q̂. Fig. 2.1 c shows κ4

as a function of A1 for the idealized vortex patch of uniform vorticity with boundary

in polar coordinates given by

r = 1 + A1 cos 2θ. (2.13)

As A1 is increased (see Fig. 2.1 c), the patch vortex becomes progressively more

pinched, and the corresponding value of κ4 falls uniformly. This allows us to define

a practical criterion κ4 < −0.1 that can serve as an indicator of whether or not a

split has taken place. The evolution of κ4 during actual vortex split SSWs will be

discussed in the following section.
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2.3 Results

2.3.1 Vortex structure prior to stratospheric sudden warm-

ings

Fig. 2.2 shows the vertically weighted PV field Q̄, as a function of equivalent

latitude and potential temperature, 9 days before the SSW onset. The aim is to

illustrate the initial structure of the polar vortex prior to the SSW taking place,

both in a mean sense, as illustrated by the splitting and displacement composites in

Fig. 2.2 a and 2.2 b, and also for the January 1987 and February 1979 individual events

in Figs. 2.2 c and 2.2 d. The advantage of choosing equivalent latitude and potential

temperature, is that when viewed in these coordinates the PV distribution is relatively

insensitive to particular synoptic conditions, and the results are consequently largely

independent of displacements or distortions of the polar vortex. The January 1987 and

February 1979 events are chosen as case studies because they have been previously

identified as archetypal SSWs of the displacement and splitting type respectively.

The February 1979 event in particular has been much studied (Andrews et al. 1985;

Dunkerton and Delisi 1986; Jung et al. 2001; Labitzke 1981; Manney et al. 1994;

Palmer 1981), although not primarily from a vortex dynamics perspective as here.

Aspects of the January 1987 SSW are discussed by Manney et al. (2005b).

In each panel the polar vortex is clearly visible as a region of elevated Q̄ at high

latitudes. The thick black contour shows the vortex edge Q̄ = Q̄∗ defined above, with

the black crosses marked on Figs. 2.2 c and 2.2 d showing the equivalent latitudes

φm(θ) of the local maxima in PV gradient. In each case the vortex edge isosurface
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Figure 2.2: (a) Composite vertically weighted potential vorticity Q̄ at time lag τ =
−9 days, as a function of equivalent latitude and potential temperature, for the vortex
split events. The contour interval is 2.93 PVU (1 PVU ≡ 10−6 K m2 s−1 kg−1), and
every fourth contour is heavy. The thick black contour dividing the shaded (vortex)
region from the white (background) plots the vortex edge value Q̄ = Q̄∗ = 38 PVU.
(b) As (a) but for the vertically weighted PV Q on February 12 1979 0600UTC
(τ = −9 days before the calculated onset date of the February 1979 event). Contour
interval, 3.19 PVU, Q̄∗ = 27.5 PVU. The black crosses show the location φm(θ) of
the maximum of the gradient |∂Q/∂φe|, used in determining the vortex edge. (c) As
(a) but for Q̄ at τ = −9 days for the vortex-displacement events. Contour interval,
2.78 PVU, Q̄∗ = 38.0 PVU. (d) as (b), but for Q on 0000UTC January 23 1987.
Contour interval, 4.51 PVU, Q̄∗ = 54.5 PVU.
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Q̄ = Q̄∗ is a good fit to the equivalent latitudes of the PV gradient maxima across a

large altitude range. The region of elevated PV associated with the vortex is located

largely between the 400 K and 1600 K isentropic surfaces, justifying our choice of

these levels as the upper and lower boundaries of our three-dimensional isosurface

plots.

Does the vortex, viewed in this framework, have a characteristic structure that

is distinct to the type of SSW that is about to take place? To answer this question

comprehensively requires a detailed statistical study that is beyond the scope of the

current work. However, Fig. 2.2 a and 2.2 c reveal that in a mean sense the vortex is

somewhat stronger prior to splitting SSWs compared to displacement SSWs.3 Never-

theless, there is substantial variability between individual events in the pre-warming

vortex structure, particularly in the slope of the vortex edge and in the vortex strength

as a function of height.

The February 1979 and January 1987 vortices have some distinguishing features.

Fig. 2.2 b shows that in February 1979 the polar vortex edge slopes significantly

poleward with height, i.e. the vortex has a distinctive conical shape. The conical

shape may be a consequence of the dynamical activity ‘preconditioning’ the vortex,

as described by Labitzke (1981), and interestingly the Antarctic vortex had a similar

conical shape prior to the September 2002 SSW (e.g. Esler et al. 2006). The February

1979 vortex also remains well-defined at altitudes as low as 15 km (400 K). By con-

trast, the January 1987 vortex shown in Fig. 2.2 d is poorly defined below 20 km, i.e.

3Note that the equivalent latitude transformation negates the possibility that the difference in
vortex strengths is due to differences in the displacement or distortion of the vortex, as might be
the case if a straightforward zonal average were taken.
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there is relatively little contrast below 20 km between the vortex and surf-zone PV.

The question of whether or not the prior vortex structure is important in determining

the subsequent evolution of the polar vortex during the SSW will be the subject of

further investigation.

2.3.2 Vortex-splitting stratospheric sudden warmings

The three-dimensional evolution of the Arctic polar vortex, defined here as the

airmass enclosed by an isosurface of the vertically weighted PV between the 400 K

and 1600 K isentropes, during vortex-splitting SSWs is shown in Fig. 2.3. The left

panels show the evolution of the vortex during the composite SSW, illustrated by the

isosurface Q̄ = Q̄∗ defined above, whereas the right panels show the corresponding

pictures of the isosurface Q = Q∗ for the February 1979 event. Snapshots of the

isosurfaces at time lags τ = −9,−2, 0, and +5 days are shown to illustrate the vortex

behaviour prior to and during the SSW. For comparison, Fig. 2.4 shows the equivalent

ellipses on the 505, 715, 1010 and 1425 K isentropic surfaces at the same time lags.

Note that for visualization purposes the equivalent ellipses are not shown at their full

size (see Fig. 2.4 caption for scaling details).

Figs. 2.3-2.4 reveal that the composite SSW and February 1979 SSW share many

key features. At time lag τ = −9 days, i.e. 9 days before the onset time when

the vortex edge contour on the 850 K isentrope divides, the composite vortex has a

relatively circular cross section at all levels. The composite vortex centroid location

ranges between (75◦E, 84◦N; 450 K) and (40◦W, 80◦N; 1425 K). This location is

somewhat polewards and eastwards of the climatological values for most of the winter,
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Composite February 1979

Figure 2.3: Left panels: A three-dimensional isosurface of the composite vertically
weighted PV Q̄ = Q̄∗ = 38 PVU, shown between isentropic surfaces 400 K and
1600 K at time lags τ = −9,−2, 0 and 5 days, for the composite vortex split SSW.
Right panels: The isosurface Q = Q∗ = 27.5 PVU for the February 1979 SSW at the
same time lags, this time relative to the SSW onset defined to be at February 21 1979
at 0600UTC.
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Figure 2.4: The two-dimensional ‘equivalent ellipses’ on isentropic levels 505 K, 715 K,
1010 K and 1425 K prior to and during the composite SSW (left panels) and February
1979 SSW (right panels), at time lags τ = −9,−2, 0 and 5 days measured relative to
the SSW onset time defined in the text in each case. For visualization purposes the
equivalent ellipses are plotted at 0.6 times (left panels) and 0.3 times (right panels)
their actual area, as defined in equation (2.10).
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as seen in Waugh and Dritschel (1999, see their Fig. 4d,f).

As the SSW onset time approaches, the vortex begins to slowly elongate and, for

both the composite and February 1979 events, the major axis of the vortex rotates

cyclonically. The February 1979 vortex rotates through approximately 60◦ between

τ = −9 days and −2 days. By τ = −2 days the cyclonic rotation slows and the vortex

elongates rapidly along an axis approximately parallel to the 80◦E-100◦W longitude

circle. Both the composite and February 1979 vortices have by this stage become

‘pinched’, and begin to roll-up into two distinct centres located on either side of the

original centroid.

By τ = 0, the polar vortex has split completely and two distinct ‘daughter’ vortices

have formed. At τ=0 the centroids of the daughter vortices at 850 K are located

approximately 4500 km apart, and are approximately located at 90◦W 65◦N (Hudson

Bay, NE Canada) and 60◦E 65◦N (Siberia) respectively. The two daughter vortices

initially have a relatively ‘barotropic’ vertical structure, although each has a slight

westward tilt with height. As the SSWs develop further, the two vortices begin to

rotate in retrograde motion around their (weighted) mean position. The rotation rate

varies strongly with altitude, with stronger rotation in the upper stratosphere, as can

be seen in Fig. 2.4 at τ = 5 days, when the vortices at 1425 K are at 10◦E and 170◦E

respectively.

The differential rotation inevitably leads to the breakdown of at least one of the

vortices. For both the composite and February 1979 event, it is clear that it is the

Siberian vortex that is the dominant one. By τ = 5 days the Canadian vortex is no

longer detectable in Fig. 2.3 except at high levels. In contrast to at earlier times,
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however, the details at this stage vary significantly between individual events. Hence

the composite at later times is no longer a meaningful guide to ‘typical’ behaviour.

The most striking aspect of Figs. 2.3 and 2.4 are the similarities between the com-

posite and February 1979 SSWs. Compositing or otherwise averaging observational

data can easily obscure important information. However Figs. 2.3 and 2.4 reveal that:

• The composite vortex undergoes a vortex split resembling the individual events

without any filtering of the data other than the PV transformation described

above. This is because the vortex-splitting SSWs generally occur at the same

orientation in relation to the Earth’s surface. At a given time-lag τ the vortex

(or vortices) has a fixed characteristic orientation relative to the Earth’s surface,

and this orientation evolves systematically during the life cycle of the SSW.

• The composite vortex has a ‘life cycle’ of elongation and cyclonic rotation,

followed by splitting and then retrograde rotation of the two resulting vortices

about their mean position.

• During the composite SSW, the vortex elongation and split occur near-simultaneously

at all altitudes, and both vortices remain coherent for several days.

• For both the composite and February 1979 SSWs it is the Siberian ‘daughter’

vortex that dominates. A few days after the SSW onset, the Canadian vortex

has become sheared out at upper levels (> 1010 K).

Despite the similarities detailed above, there remain some notable differences be-

tween the composite and the February 1979 SSW. Firstly, the pair of vortices that

result from the February 1979 vortex split have a significantly larger cross sectional
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A  Composite

B  February 1979

Figure 2.5: Evolution in time and altitude / potential temperature of the ‘excess
kurtosis’ parameter κ4, defined in equation (2.12). Upper panel shows the composite
SSW and lower panel the February 1979 event. The contour interval is 0.1 in each
panel. Values below zero are lightly shaded and values below -0.1 are heavily shaded.

area than those of the composite. The explanation is that, as will be seen below, the

composite vortices are unrepresentatively small as they are an average over an ensem-

ble of vortices with slightly different locations. Secondly, the February 1979 vortex

extends much lower in the stratosphere, as discussed in connection with Fig. 2.2 b.

In fact there is considerable variability in the vortex structure at low levels between

SSWs. Finally, the vortex is substantially more elongated prior to the February 1979

SSW, and the vortex major axis rotates cyclonically much more rapidly prior to the

warming (through 60◦ as opposed to 10◦ for the composite).
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The near-simultaneous splitting of the vortex at all heights can be highlighted

further by examining how the vortex-splitting parameter, or ‘excess kurtosis’, κ4

evolves during the composite and February 1979 SSWs. Fig. 2.5 shows a contour plot

of κ4 as a function of altitude and time lag τ in each case. Dark shaded regions indicate

where κ4 < −0.1, i.e. where a vortex split is diagnosed to have taken place. In each

case, it is clear from Fig. 2.5 that the split occurs near-simultaneously over a wide-

altitude range, with the split criterion κ4 < −0.1 being widely satisfied by τ = −1 day.

One unexpected feature of the February 1979 event is the relatively high values of κ4

in the altitude range 600-750 K throughout the period of the SSW. These high values

can be explained by the large difference in the magnitude of the ‘daughter vortices’ at

these levels, with the Siberian vortex being around 3 times greater in magnitude than

the Canadian vortex. If the asymmetry between the vortices is sufficiently large, the

excess kurtosis parameter does not indicate that a split has taken place. In summary,

the κ4 parameter serves as a useful, objective definition of the onset of a vortex split,

although some care is necessary in its interpretation.

To give an impression of the inter-event variability, Fig. 2.6 shows the equivalent

ellipses for all 13 splitting events, plus the composite (filled black ellipse) on the

600 K isentropic surface. Note that, as with Fig. 2.4, in order to emphasize differences

between events the equivalent ellipses are scaled to be smaller than the actual vortex

size. To facilitate comparison with Fig. 2.4 the February 1979 event is also highlighted

in Fig. 2.6 as a filled blue ellipse. Fig. 2.6 reveals why the composite method has been

successful in describing a ‘typical’ splitting SSW: 9 out of the 13 events follow quite

closely the sequence of rotation, elongation and splitting described for the composite /
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Figure 2.6: The equivalent ellipses for all 13 vortex-splitting SSW events at time lags
τ = −9,−2, 0 and 5 days, on the 600 K isentropic surface. The composite SSW is
shown as a filled black ellipse, and the February 1979 SSW as a filled blue ellipse.
Four further events discussed in the text are highlighted as unfilled coloured ellipses,
January 1977 (blue), December 1987 (cyan), March 1988 (yellow), February 1999
(red), and the remaining events are all solid black ellipses. The equivalent ellipses are
plotted at 0.3 times their actual area (as in Fig. 2.4).



Chapter 2: Observations of Stratospheric Sudden Warmings: Polar Vortex Evolution
and Vertical Structure 70

February 1979 events above.

Four events can be singled out as exhibiting somewhat different behaviour. These

are the SSWs of January 1977 (thick blue ellipse), December 1987 (cyan), March 1988

(yellow) and February 1999 (red). The January 1977 event stands out amongst the

four events, because the vortex split occurs in a direction parallel to the 160◦W-20◦E

great circle. Notably, it is not selected as an SSW by the CP07 algorithm when NCEP

re-analysis data are used in place of ERA-40. For the remaining three events the split

occurs approximately parallel to the 20◦W-160◦E great circle. Further examination of

these latter three ‘outlier’ events reveals significant vertical structure of the daughter

vortices compared to the composite ‘barotropic’ splitting SSW. The European vortex

in particular has a baroclinic structure and location that is reminiscent of the vortex

structure during displacement SSWs, which will be described next.

Although not pursued here, further investigation of these hybrid characteristics

may go some way to determining which SSW behaviour is dominant during warming

events which exhibit conditions favouring both types of SSW.

2.3.3 Vortex-displacement stratospheric sudden warmings

The evolution of the Arctic polar vortex during both the composite vortex-displacement

and the January 1987 SSW is shown in Figs. 2.7 and 2.8. The time lags relative to the

SSW onset time (taken to be 0000UTC January 23 1987 in our case study, following

CP07) shown in Figs. 2.7 and 2.8 are τ = −10,−1, 1 and 4 days. As above, Fig. 2.7

shows the three-dimensional isosurface defined by Q = Q∗ (or Q̄ = Q̄∗ for the com-

posite), whilst Fig. 2.8 shows the equivalent ellipses of the polar vortex on a number
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Composite January 1987

Figure 2.7: Left panels: A three-dimensional isosurface of the composite vertically
weighted PV Q̄ = Q̄∗ = 38 PVU, shown between isentropic surfaces 400 K and 1600 K
at time lags τ = −10,−1, 1 and 4 days, for the composite vortex split SSW. Right
panels: The isosurface Q = Q∗ = 54.5 PVU for the January 1987 SSW at the same
time lags, this time relative to the SSW onset defined to be at 0000UTC January 23
1987.
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Figure 2.8: The two-dimensional ‘equivalent ellipses’ on 8 isentropic levels between
450 K and 1510 K prior to and during the composite vortex-displacement SSW (left
panels) and January 1987 SSW (right panels). Time lags of τ = −10,−1, 1 and 4 days
are relative to the SSW onset time defined in the text in each case. For visualization
purposes the equivalent ellipses are plotted at 0.2 times (left panels) and 0.1 times
(right panels) their actual area, as defined in equation (2.10).
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of isentropic surfaces (450-1510 K). As above, the composite and January 1987 SSWs

share many key features. At τ=-10 days, i.e. 10 days before the SSW onset date, the

composite and January 1987 vortices each have a near circular cross section in the

lower stratosphere. The composite vortex centroid tilts westward and equatorward

with altitude, ranging between (70◦E, 77.5◦N; 450 K) and (15◦E 72◦N; 1425 K). The

vortex is therefore significantly further equatorward, and has a substantially greater

tilt with altitude prior to a displacement SSW than a splitting SSW. Also, the vor-

tex is displaced further from the pole than the climatological displacement of 10-14◦

(Waugh and Dritschel 1999, see their Fig. 4,f), indicating that the vortex may be

somewhat ‘pre-conditioned’ prior to a displacement SSW (see e.g. Labitzke 1981).

Both the composite and January 1987 vortices are seen to be more elliptical at higher

levels. The major axis of the ellipse is roughly parallel to the direction of the westward

tilt along the 70-80◦N latitude band in each case.

As the onset time for the SSW draws closer, the westward tilt of the vortex

with altitude increases, and the entire vortex simultaneously moves equatorwards, so

that by τ = −1 day the composite vortex centroid lies within the 67-74◦N latitude

band. The lower vortex moves slowly eastwards whilst the upper vortex moves rapidly

westwards so that at τ = −1 day the composite vortex centroid at 450 K is separated

from that at 1425 K by 135◦ longitude. The process continues through the SSW

onset itself, and by τ=1 day the composite vortex centroid position ranges between

(95◦E, 75◦N; 450 K) and (53◦W, 68◦N; 1425 K), i.e. the vortex spans nearly half

the globe in longitude. During this period the upper vortex is strained by the large-

scale flow, and by τ=1 day the vortex consequently has a crescent-like cross section.
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During the next few days the deformation of the upper vortex continues until it is

thinned and stirred into the background. By τ=4 days the averaging process used

to create the composite acts to diffuse the upper level composite vortex over a wide

region, hence the upper vortex is entirely absent from the τ=4 days three-dimensional

representation. In the January 1987 event the upper and lower parts of the vortex

have become largely disconnected. At this stage the life cycle of the displacement

SSW is essentially complete. The remnants of the vortex in the lower stratosphere

are located equatorward and eastward compared to the vortex at the beginning of

the life cycle (at τ = −10 days). This typical life cycle displayed by the composite

vortex is in agreement with individual SSWs as discussed in Manney et al. (1999),

Manney et al. (2005b), and references therein.

Apart from minor details of vortex orientation and timing, remarkably few differ-

ences are apparent between the January 1987 SSW and the composite in Figs. 2.7

and 2.8. The January 1987 event is revealed to be somewhat stronger than typical

(Manney et al. 2005b), as the vortex at middle levels (850 K) is displaced as far

equatorwards as 55◦N, compared to 67◦N for the composite.

An impression of the inter-event variability for all 15 displacement SSWs is given

in Fig. 2.9. The vortex centroids at 450 K, 850 K and 1425 K are plotted for each event

at τ = −10,−1, 1 and 4 days. The lines joining these three points intersect the vortex

centroids at the intermediate levels. A remarkably consistent picture is revealed for

all of the SSWs, with the centroids quite tightly clustered at all levels at both early

times and as the SSW develops. Differences in timing and vertical structure cause the

largest variability in centroid position to occur for the middle vortex level (850 K).
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Figure 2.9: The location of the vortex centroid (circles) at different isentropic lev-
els (white circle 450 K, grey circle 850 K, black circle 1425 K) for all 15 vortex-
displacement SSWs, at τ = −10,−1, 1 and 4 days. The lines joining the points trace
out the centroid location at intermediate levels.
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For some events the 850 K centroid remains close to the lower vortex (450 K) centroid

during the SSW onset, whereas for other events the 850 K centroid follows the upper

vortex (1425 K) as it moves rapidly westwards and equatorwards. By τ = 4 days

the upper vortex (1425 K) centroids also exhibit a large scatter. This is consistent

with the lack of coherence of the upper vortex at this time, due to the effects of the

straining flow thinning out and mixing the vortex into the background at upper levels.

Overall, however, Fig. 2.9 reveals a remarkable degree of similarity between all of the

displacement SSW events.

2.4 Proposed benchmarks

The results above suggest that a new set of modelling benchmarks may now be

defined, against which the dynamical performance of GCMs may evaluated. These

new benchmarks, in contrast to those proposed in section 7 of CP07, are primarily

qualitative in character and relate to the evolving shape of the polar vortex during

SSWs.

Specifically, after analyzing model output for vortex-splitting events, one might

answer the following questions:

S-1. Does the vortex split near-simultaneously, and with an approximate barotropic

structure, over the 20-40 km altitude range?

S-2. Is the mean vortex orientation at the onset time of the vortex split such that

the daughter vortices are approximately located over Canada and Siberia?

S-3. Is the SSW followed by a retrograde rotation of the daughter vortices about a
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common centroid, and is this rotation more pronounced in the upper strato-

sphere?

S-4. Is the Siberian daughter vortex typically larger than its Canadian counterpart?

For the displacement SSWs different questions must be asked.

D-1. Is the vortex centroid located in the 90◦E-0◦E sector prior to the warming, with

a distinct westward tilt with height?

D-2. Is the vortex evolution primarily baroclinic, with the westward tilt with height

increasing rapidly as the onset time approaches and an accompanying equator-

ward displacement of the vortex centroid at all heights?

D-3. At the end of the SSW, does the longitude of the vortex centroid vary strongly

with altitude, with up to 180◦ separating the centroid position in the lower

stratosphere (450 K) from that in the upper stratosphere (1425 K)?

D-4. At the end of the SSW is the polar vortex almost entirely contained within the

Atlantic hemisphere (90◦E-90◦W)?

It is proposed that straightforward application of the methodology of section 2.2

to absolute vorticity GCM output fields (or PV output fields if available) should be

sufficient to reveal the bulk behavioural properties of the vortex during a SSW, which

can then be compared with the benchmarks above.
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2.5 Conclusions

The current investigation has focused on the evolution of the Arctic polar vortex

during major midwinter stratospheric sudden warmings (SSWs). Time-lag composites

and vortex moment diagnostics have been used to investigate the distinctive behaviour

of the polar vortex during both displacement and splitting SSW events. The main

results, answering, as far as possible, the questions posed in the introduction, can be

summarized as follows:

• The Arctic polar vortex has a highly characteristic vertical structure during the

two different types of SSW. During vortex-splitting events, the vortex remains

nearly barotropic, with the vortex split occurring near-simultaneously over a

large altitude range (at least 20-40 km, see Figs. 2.3 and 2.4). In contrast, during

vortex-displacement events, the vortex displacement off the pole increases with

altitude above 30 km, as does the accompanying elongation of the vortex during

the SSW, as can be seen in Figs. 2.7 and 2.8)..

• For both types of SSW, there is relatively little variation between individual

events in the orientation of the developing vortex relative to the underlying

topography, i.e. SSWs of each type are to a large extent fixed in relation to

the Earth’s surface. For displacement events the vortex is located in the 90◦E-

0◦E sector prior to the warming, and by the end of the warming spans the

entire Atlantic hemisphere from 90◦E (lower vortex) to 90◦W (upper vortex).

There is somewhat more variability in the case of vortex-splitting events (see

Fig. 2.6), but the dominant direction for the splits is found to be parallel to the
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60◦E-120◦W great circle.

• Each type of SSW exhibits a distinct life cycle, in the sense that the centroid

position, orientation and elongation of the Arctic polar vortex evolves in a sim-

ilar fashion during the onset and occurrence of individual splitting events, with

a separate behaviour during displacement events. Splitting events are charac-

terized by a rapid increase of the aspect ratio of the vortex a few days prior to

the SSW (τ = −4 to −2 days), followed by the roll-up of the elongated vortex

into two distinct ‘daughter’ vortices (τ = −2 to 0 days). The daughter vortices

propagate rapidly apart to a distance of up to 5000 km by τ = 1 day, after which

they experience a retrograde rotation around their common centroid, usually

leading to the destruction of the weaker Canadian vortex and reformation of

the main vortex around the stronger Siberian vortex. For vortex-displacement

events, the separation in longitude between the lower vortex (450 K) and the

upper vortex (1425 K) increases uniformly during the SSW from 85◦ longitude

(at τ =-10 days) to 150◦ longitude (by τ =1 day). By the end of the displace-

ment SSW life cycle (at τ =4 days) the upper part of the vortex is destroyed by

deformation, and the vortex subsequently reforms around its remnants in the

lower stratosphere.

In addition to providing the modelling benchmarks listed above, it is intended

that the results of this study will be of use to researchers seeking to differentiate

between alternative dynamical theories of SSWs. The vertical structure of the vortex

is necessarily a key diagnostic of the vertical propagation and nonlinear behaviour of

Rossby waves in the polar stratosphere. Following Matsuno (1971), SSWs of either
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type are often described as resulting from the vertical propagation and breaking of

stationary planetary waves generated in the troposphere. Alternatively, it has been

suggested (O’Neill and Pope 1988; Scott and Dritschel 2006) that the interaction

between the polar vortex and Aleutian anticyclone may be important in the develop-

ment of SSWs. Further, Tung and Lindzen (1979a) and Plumb (1981) have suggested

that SSWs might occur following the resonant excitation of a normal mode of the

stratosphere, an idea recently developed by Esler and Scott (2005) and Esler et al.

(2006) who have suggested that the ‘barotropic’ mode of the polar vortex is the rele-

vant mode in the case of vortex-splitting events. Note that if the resonant excitation

of the vortex normal modes in the above theories is due to stationary waves, then

the resulting SSWs will be fixed in relation to the Earth’s surface as observed in this

study. The ‘vortex dynamics’ view of SSWs may be of particular relevance to split-

ting events, as the vortex split occurs rapidly and in a manner strongly reminiscent of

Love’s instability of Kirchhoff’s elliptical vortex in two-dimensional hydrodynamics

(Dritschel 1986; Love 1893), an aspect that will be further investigated. The cli-

matology presented here, of the vertical structure of the Arctic polar vortex during

observed SSWs, should be of considerable assistance in quantitatively distinguishing

between the above theories.



Chapter 3

A Hierarchy of Models for the

Winter Polar Stratosphere

3.1 Introduction

In this chapter, a hierarchy of models is introduced with which we will investigate

polar vortex breakdown during SSWs in the following chapters of this thesis. Using

this approach, vortex behaviour in simple models is used to predict behaviour in

increasingly complex models of the stratosphere. By gaining an understanding of

mechanisms leading to SSW-like vortex breakdown in the simplest systems, we can

therefore investigate the role of similar mechanisms when studying vortex breakdown

in more realistic models.

When introducing the hierarchy of models, we will start with the most complex

models and will work backwards towards more idealized models. At first, this may

seem at odds with the concept of simple models predicting behaviour in more complex

81
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models. However, by introducing the most complex models first, it is easier to justify

the conditions and assumptions leading to the next, more idealized, member of the

hierarchy.

The structure of the chapter can be broadly split into two sections. The first

section will start with a brief description of the primitive equations governing fluid

motion in an idealized three-dimensional model of the stratosphere, giving the as-

sumptions under which they are valid. From the primitive equations, we will then

derive the three-dimensional quasi-geostrophic equations (QG hereafter), which will

be the most complex member of the hierarchy of models used in this thesis. This

derivation includes a discussion on appropriate boundary conditions for the system,

including the representation of forcing at the lower boundary. As part of this deriva-

tion, the Lamb vertical modes of the model are introduced. It is then shown that

fluid motion in the atmosphere can be approximated by a single layer of fluid which

satisfies the two-dimensional shallow water QG equations.

In the second section, starting from the most idealized member of our hierarchy

of models, numerical algorithms are introduced which will enable us to perform fully

nonlinear simulations of vortex behaviour in each of our models.

3.2 Equations of motion in the atmosphere

Fluid motion of the air in the Earth’s atmosphere is governed by the equations of

motion

Du

Dt
+ 2Ω × u = −1

ρ
∇p−∇Φe + F, (3.1)
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subject to the mass conservation relation

∂ρ

∂t
+ ∇ · (ρu) = 0. (3.2)

Here, F represents nonconservative forces (e.g. frictional), u is the fluid velocity, Ω

is the rotation vector due of the Earth’s rotation, p is pressure, ρ is the fluid density,

Φe = Φ−∇(Ω×(Ω×r)) is the effective gravitational potential, Φ is the gravitational

geopotential and r is a position vector in spherical coordinates. The operator D/Dt

is defined as

D

Dt
≡ ∂

∂t
+ u · ∇,

and the gravitational geopotential is defined as the work required to raise a unit mass

from mean sea level to height z∗ above the Earth’s surface

Φ =

∫ z∗

0

gdz.

In addition to these equations of motion, we also have the ideal gas law

p = ρRT, (3.3)

where R is the ideal gas constant for dry air, and the first law of thermodynamics

applied to isentropic flow

Dθ

Dt
= Q, (3.4)

where Q is a diabatic heating term which is zero for adiabatic flow. The potential

temperature θ in this context is defined as being “the temperature that a parcel of dry

air at pressure p and temperature T would acquire if it were expanded or compressed
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adiabatically to the reference pressure ps = 1000 hPa”. In equation form, θ is given

by

θ ≡ = T

(
ps
p

)κ
, (3.5)

where κ ≡ R/cp ≈ 2/7 and cp is the specific heat at constant pressure.

3.2.1 Primitive equations

In most cases, these equations are far more complicated than is necessary when

considering flows which are observed in the stratosphere. A comparatively more

simple framework governing fluid flow in the atmosphere is that of the primitive

equations. In order to derive the primitive equations, we first note several assumptions

regarding the behaviour and geometry of the Earth’s atmosphere. These assumptions

are (e.g. Vallis 2006):

1. Shallow fluid approximation: If H is a scale height for the atmosphere and a

the radius of the approximately spherical Earth, it is assumed that H/a≪ 1.

2. Traditional approximation: The horizontal component of the rotation vector Ω

is neglected.

3. Spherical geopotential approximation: If the Earth is approximately spherical,

surfaces of constant geopotential are taken as spherical shells around the Earth.

4. Anelastic approximation: All variables are expressed as deviations from a ver-

tically varying reference profile, e.g. p(x, y, z, t) = p0(z) + p′(x, y, t), where

p′/p0 ≪ 1.
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5. Hydrostatic approximation: The vertical pressure gradient and forces due to

gravity balance one another.

6. f -plane approximation: The coordinate system is defined in terms of Cartesian

coordinates (x, y, z) which lie in the tangent plane to a given point on the

Earth’s surface. The height coordinate in this Cartesian coordinate system is

taken to be the log-pressure height, given by z = H ln(ps/p).

It can be seen from observational data that the winter polar stratosphere is close

to being isothermal, with very little variation in temperature with height (Andrews

et al. 1985). Therefore, it is specified that the reference profile for the temperature is

constant at all heights such that T0 = Ts, where Ts ≈ 210 K from observations.

Once these assumptions have been made, simplification of the equations of motion

(3.1) and mass conservation (3.2), in conjunction with the first law of thermodynamics

(3.4), gives

(
∂

∂t
+ u · ∇H + w

∂

∂z

)
u + 2Ωk × u = −∇HΦ, (3.6)

∂Φ

∂z
=

RT

H
, (3.7)

(
∂

∂t
+ u.∇H

)
θ + w

dθ0
dz

= 0, (3.8)

∂u

∂x
+
∂u

∂y
+

1

ρ0

∂(ρ0w)

∂z
= 0. (3.9)

Here, ∇H = (∂x, ∂y) is the horizontal gradient operator, u = (u, v) is the horizontal

velocity, w is the vertical velocity, and diabatic heating terms and nonconservative
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forces have been neglected such that Q = 0 and F = 0. In equation (3.7), the vertical

momentum equation has been replaced by the hydrostatic approximation, and the

geopotential has replaced pressure using

∂Φ

∂(ln p)
= −RT,

where H = RTs/g.

Using Φz = RT/H and θ = Ts(ps/p)
κ = Ts exp{κz/H}, it is convenient to make

another change variables in (3.8) to rewrite the thermodynamic equation in the form

(
∂

∂t
+ u.∇H

)
θ + w

dθ0
dz

=

[(
∂

∂t
+ u.∇H

)
T + w

(
dT0

dz
+
κ

H
T0

)]
eκz/H ,

=
H

R

[(
∂

∂t
+ u.∇H

)
∂Φ

∂z
+ wN2

]
eκz/H ,

where the constant buoyancy frequency N in (3.10) is the Brunt-Väisälä frequency

given by

N2 =
κRTs
H2

.

For an isothermal stratosphere with Ts = 210 K, the buoyancy frequency is N ≈

0.02 s−1. Therefore, an alternative to the thermodynamic equation in (3.8) is

(
∂

∂t
+ u.∇H

)
∂Φ

∂z
+ wN2 = 0. (3.10)

The lower boundary of the domain is represented by setting the geopotential on

the log-pressure height z = zs(x, y, t) to be

Φ(x, y, zs, t) = gh(x, y), (3.11)
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where g is the acceleration due to gravity and h(x, y) is the height of the surface

z = zs in log-pressure coordinates. Taking the material derivative of (3.11) gives

D

Dt
(Φ − gh) = 0 on z = zs,

which is rewritten as

(
∂

∂t
+ u.∇H

)
(Φ − gh) + w

dΦ0

dz
= 0. (3.12)

Rearranging the thermodynamic equation (3.10) gives an expression for w

w = − 1

N2

(
∂

∂t
+ u.∇H

)
∂Φ

∂z
,

which when substituted into equation (3.12) yields

(
∂

∂t
+ u.∇H

){
Φ − gh− 1

N2

dΦ0

dz

∂Φ

∂z

}
= 0 on z = zs, (3.13)

where dΦ0/dz can be taken inside the curly bracket as the reference profile Φ0 is a

function of z alone. Finally, substitution of dΦ0/dz = g into (3.13) gives

(
∂

∂t
+ u.∇H

){
∂Φ

∂z
− κ

H
Φ +N2h

}
= 0 on z = zs, (3.14)

where N2/g = κ/H has been used for the middle term inside the bracket.

Equations (3.6)-(3.9) are the primitive equations in Cartesian coordinates. Note

that these equations describe a system which is semi-infinite in the vertical log-

pressure height coordinate, as no upper boundary has been specified in the model.

3.2.2 The quasi-geostrophic approximation in an isothermal

atmosphere

The primitive equations, while being a simplified set of equations when compared

to the full equations of motion for the atmosphere, are still in themselves relatively
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complex. In fact, for the stratospheric flows which we will be considering, further sim-

plifications may be made without significantly sacrificing the realism of the model. In

this section we will derive the QG equations, describing flow in a compressible atmo-

sphere in the presence of stratification and rotation. These equations are derived by

making a series of physical assumptions about stratospheric fluid flow in the primitive

equations.

We start by nondimensionalizing the primitive equations (3.6)-(3.10) by setting

x = Lx̃, u = U ũ and z = Hz̃, and take the Coriolis parameter f = f0 to be constant

and evaluated at the pole, giving

(
∂

∂t̃
+ ũ.∇̃H

)
ũ +

1

ǫ
k × ũ = −1

ǫ
∇̃H ψ̃, (3.15)

∂ψ̃

∂z̃
=

RT

f0UL
, (3.16)

(
∂

∂t̃
+ ũ.∇̃H

)
∂ψ̃

∂z̃
+ w̃

ǫ

Fr2 = 0, (3.17)

∂ũ

∂x̃
+
∂ṽ

∂ỹ
+

1

ρ0

∂(ρ0w̃)

∂z̃
= 0, (3.18)

where scaling of the vertical velocity w = (UH/L)w̃ and time t = τ t̃ = (L/U)t̃

are found as part of the scaling process. Other quantities in equations (3.15)-(3.18)

are ψ = Φ/f0 with ψ = (UL)ψ̃, ǫ = Ro with Ro = U/f0L ≪ 1, and Fr = U/NH =

Bu−1/2ǫ. Nondimensional parameters are Ro, which is the Rossby number, Fr which is

the Froude number, and Bu = (NH/f0L)2 which is the Burger number, with Bu ∼ 1

indicating that stratification and rotation play an equal role in the dynamics of the
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flow. By comparison with the Rossby number, it is seen that the time-scale has been

chosen to satisfy τ ≪ f0. This time scaling filters out effects due to high frequency

acoustic waves. The conditions Ro ≪ 1 and τ ≪ f0 are equivalent to restricting our

attention to “large-scale, low-frequency motions” (see Andrews et al. 1985, section

3.2.3).

For convenience, all tildes on dimensionless quantities are dropped, and it is as-

sumed that all variables are in dimensionless form unless specified otherwise. The

velocity field is now expressed as u = ug + ǫua
1, where the geostrophic velocity

ug = (ug, vg, 0) is defined as the solution of k × u = −∇Hψ, that is

ug = −∂ψ
∂y

, vg =
∂ψ

∂x
, (3.19)

and ua are ageostrophic corrections to the velocity field. To leading order in ǫ,

application of the conservation of mass (3.18) gives

∂ug
∂x

+
∂vg
∂y

= 0. (3.20)

Using this quasi-geostrophic assumption for the horizontal velocity u, the conservation

of planar horizontal momentum (3.15) becomes

(
∂

∂t
+ (ug + ǫua) .∇H

)
(ug + ǫua) −

1

ǫ
(vg + ǫva) = −1

ǫ

∂ψ

∂x
, (3.21)

(
∂

∂t
+ (ug + ǫua) .∇H

)
(vg + ǫva) +

1

ǫ
(ug + ǫua) = −1

ǫ

∂ψ

∂y
. (3.22)

Taking ∂x(3.22) − ∂y(3.21) gives

(
∂

∂t
+ (ug + ǫua) .∇H

)(
∂vg
∂x

− ∂ug
∂y

+ ǫ
∂va
∂x

− ǫ
∂ua
∂y

)

1Formally, a series expansion approach u =
∑

∞

i=0
ǫi
ui should be used here, similar to that seen

in section 3.2.3. However, in the interests of brevity, a less rigorous alternative is given here.
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+
1

ǫ

(
∂ug
∂x

+
∂vg
∂y

+ ǫ
∂ua
∂x

+ ǫ
∂va
∂y

)
= 0. (3.23)

To leading order O(1/ǫ), (3.23) gives

∂ug
∂x

+
∂vg
∂y

= 0,

which agrees with the non-divergence of the geostrophic velocities given in (3.20).

Investigation of O(1) terms in (3.23) gives

Dg

Dt

(
∂vg
∂x

− ∂ug
∂y

)
+

(
∂ua
∂x

+
∂va
∂y

)
= 0,

which when combined with the conservation of mass for the ageostrophic velocity

correction

∂ua
∂x

+
∂va
∂y

+
1

ρ0

∂(ρ0wa)

∂z
= 0,

gives

Dg

Dt

(
∂vg
∂x

− ∂ug
∂y

)
− 1

ρ0

∂ (ρ0wa)

∂z
= 0, (3.24)

where Dg/Dt = ∂t + ug.∇H is the material derivative following the geostrophic ve-

locity. Recalling that Fr = Bu−1/2ǫ and w = ǫwa, at order O(1) the thermodynamic

equation gives

wa = −Bu−1Dg

Dt

(
∂ψ

∂z

)
.

Substituting this expression for wa into (3.24) and simplifying gives

Dg

Dt

{
∂2ψ

∂x2
+
∂2ψ

∂y2
+

Bu−1

ρ0(z)

∂

∂z

[
ρ0(z)

∂ψ

∂z

]}
= 0. (3.25)
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Nondimensionalizing the lower boundary condition (3.14) in the same way as the

primitive equations, and considering small forcing heights in the nondimensional sys-

tem, h(x, y) = ǫη(x, y), gives the nondimensional boundary condition for the isother-

mal QG system as

Dg

Dt

{
∂ψ

∂z
− κψ + Bu η

}
= 0 on z = 0. (3.26)

Finally, redimensionalizing all quantities yields

Dg

Dt

{
∂2ψ

∂x2
+
∂2ψ

∂y2
+

1

ρ0(z)

∂

∂z

[
f 2

0

N2
ρ0(z)

∂ψ

∂z

]}
= 0, (3.27)

along with the the lower boundary condition

Dg

Dt

{
∂ψ

∂z
− κ

H
ψ +

N2

f0
h

}
= 0 on z = 0. (3.28)

Equation (3.28) is an advection equation for the potential temperature θ on the lower

boundary of the model. If initially we set

∂ψ

∂z
− κ

H
ψ +

N2

f0

h = 0 on z = 0

then for times thereafter, the lower boundary condition is given by

∂ψ

∂z
− κ

H
ψ = −N

2

f0

h on z = 0. (3.29)

Equation (3.27) can be interpreted as conservation of the QG potential vorticity

Dg

Dt
(q − f0) = 0,

where

q(r) = f0 + ∇2
Hψ +

1

ρ0(z)

∂

∂z

[
f 2

0

N2
ρ0(z)

∂ψ

∂z

]
. (3.30)

The ∇2
Hψ term on the right hand side of (3.30) represents the relative vorticity on a

given isentropic surface, and the final term on the right hand side represents potential

vorticity contributions due to “vortex stretching”.
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The form of the lower boundary condition

One of the important aspects of the QG f -plane model is the form of the lower

boundary condition arises from the fact that potential temperature θ is conserved on

the bottom boundary, as seen from equation (3.8). An important question to ask,

is how do approximations to this conservation of potential temperature on the lower

boundary affect the resulting dynamics of the system?

One common approximation is conservation of the normal temperature (T ) on

the lower boundary, rather than potential temperature (for example Dritschel and

Saravanan 1994; Esler and Scott 2005; Waugh and Dritschel 1999). This requires

that DgT/Dt = 0 on the lower boundary, which is equivalent to taking the value

of κ appearing in (3.14) to be zero. The corresponding “Neumann” lower boundary

condition for the streamfunction, termed the “ersatz” boundary condition by Esler

and Scott (2005), is

∂ψ

∂z
= −N(z)2

f0
h on z = 0. (3.31)

Another common approximation to the lower boundary condition is one in which

the geopotential is specified on the lower boundary, giving

ψ = h on z = 0. (3.32)

The choice of the lower boundary condition is important when calculating the

vertical normal modes of the model, as shall be seen in the following section.
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Vertical normal modes in a quasi-geostrophic compressible atmosphere

Vertical normal modes in a semi-infinite stratosphere

The vertical normal modes, which are of fundamental importance when consid-

ering disturbances in the semi-infinite three-dimensional QG model, are derived by

considering fluid flow governed by (3.30) when q− f0 = 0. It shall be seen in chapter

6 that the vertical normal modes provide an orthogonal basis which can be used to

perform integral transforms in the vertical coordinate z. When q − f0 = 0, the QG

potential vorticity equation (3.30) becomes

∇2
Hψ +

1

ρ(z)

∂

∂z

[
f 2

0

N2
ρ(z)

∂ψ

∂z

]
= 0,

subject to the lower boundary condition (3.29) in the absence of forcing

∂ψ

∂z
− κ

H
ψ = 0 on z = 0.

Radial symmetry implies that ψ is independent of the azimuthal coordinate φ, so

a separation of variables may be applied to the streamfunction ψ(r, z) = ψ̃(r)χ(z)

giving

χ(z)∇2
H ψ̃(r) + ψ̃(r)

1

ρ(z)

∂

∂z

[
f 2

0

N2
ρ(z)

∂χ(z)

∂z

]
= 0,

∂χ(z)

∂z
− κ

H
χ(z) = 0 on z = 0. (3.33)

Using the separation of variables method, the first expression in (3.33) can be rear-

ranged to give

1

ρ(z)

∂

∂z

[
f 2

0

N2
ρ(z)

∂χ(z)

∂z

]
+ γ2χ(z) = 0, (3.34)
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∇2
H ψ̃(r) − γ2ψ̃(r) = 0,

where γ ∈ R is a real valued constant. Setting χ(z) = ρ(z)−1/2χ̄(z) in equation (3.34)

yields an ODE for χ̄(z)

d2χ̄

dz2
+

(
N2γ2

f 2
0

− 1

4H2

)
χ̄ = 0, (3.35)

subject to the condition on the lower boundary

dχ̄

dz
+

1

2H
(1 − 2κ) χ̄ = 0, on z = 0. (3.36)

Solution of (3.35) subject to (3.36) gives a continuous spectrum of vertical wavenum-

bers 0 < m <∞ corresponding to a spectrum of orthonormal eigenfunctions

χ(z;m) =

√
2

π
ez/2H cos[mz + ǫ(m)], where ǫ(m) = arctan

[
1 − 2κ

2mH

]
, (3.37)

with χ(z;m) satisfying the orthonormality condition

∫
∞

0

χ(z;m)χ(z;m′)ρ(z)dz = δ(m−m′). (3.38)

For each wavenumber m, the eigenvalue associated with the eigenfunction χ(z;m) is

γ(m) =
f0

N

√
m2 +

1

4H2
. (3.39)

In addition to the spectrum of wave-like eigenfunctions χ(z;m) satisfying (3.34)

there is one other distinct solution of exponential form χ0(z) = χ̂0 exp{αz}, where

χ̂0 is a constant yet to be determined. Substitution of χ0(z) into the lower boundary

condition (3.33) gives

α =
κ

H
,
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which when substituted back into (3.34) gives the corresponding eigenvalue as

γ0 =
f0

NH

√
κ (κ− 1). (3.40)

If χ0(z) belongs to the same orthonormal basis as χ(z;m) it must satisfy the

orthonormality conditions

∫
∞

0

χ0(z)χ(z;m)ρ(z)dz = 0, (3.41)

∫
∞

0

χ0(z)χ0(z)ρ(z)dz = 1. (3.42)

Straightforward integration using the forms derived for χ0(z) and χ(z;m) shows that

condition (3.41) is true for all m. Using the derived form of χ0(z) to evaluate the inte-

gral in the second condition (3.42) sets the constant χ̂0 necessary for orthonormality,

giving the final eigenfunction of the orthonormal basis χ(z) = {χ0(z), χ(z;m)} as

χ0(z) =

√
1 − 2κ

H
e

κz
H . (3.43)

When referring to the vertical normal modes, the χ0(z) mode shall be referred

to as the zero-order Lamb mode (or external mode), and the spectrum of χ(z;m) as

the baroclinic Lamb modes. We note that when the ersatz boundary condition (3.31)

is used to derive the vertical normal modes, the zero-order Lamb mode becomes

“barotropic”, that is independent of height z. In this instance, the eigenfunction

χ0(z) and its associated eigenvalue become

χ0 =

√
1

H
, (3.44)

γ0 = 0, (3.45)
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by taking κ = 0 in the expressions for χ0(z) and γ0 when using the correct lower

boundary condition. The effect of using the ersatz lower boundary condition (3.31)

when calculating the baroclinic modes is also seen by taking κ = 0 in equations (3.37)

and (3.39). In this case, it is seen that the wave-like structure of the χ(z;m) and

the expressions for γ(m) remain unchanged, with the only difference appearing in the

phase shift of χ(z;m) which becomes

ǫ(m) = arctan

[
1

2mH

]
. (3.46)

Vertical normal modes in a bounded stratosphere

Many QG models of the stratosphere (e.g. Dritschel and Saravanan 1994; Waugh

and Dritschel 1999) bound the domain in the vertical by introducing an upper bound-

ary to the model. This is a necessary measure when dealing with numerical models of

the stratosphere, in which a model lid must be imposed. While this lid is somewhat

unrealistic, by imposing the lid at a sufficiently large height, a good approximation

to the unbounded atmosphere can still be achieved.

In the previous section it was shown that changing the lower boundary condition in

the QG model necessarily changed the expressions for the vertical normal modes χ(z).

This was crucial for the external mode χ0(z), which was seen to lose any dependence

on height should the ersatz condition (3.31), rather than the correct condition (3.29),

be used at the lower boundary. It is therefore to be expected that introducing an

upper boundary, with an associated upper boundary condition, will also have an

impact on the vertical normal modes χ(z).

Following Dritschel and Saravanan (1994), a rigid upper boundary is introduced
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in the QG model at z = D, with corresponding boundary condition

∂ψ

∂z
− κ

H
ψ = 0, on z = D. (3.47)

The most important implication of the upper boundary is that the solution of equa-

tion (3.34) becomes that of a Sturm-Liouville problem. Solving the resulting Sturm-

Liouville equation along with the boundary conditions for the bounded stratosphere

∂χ(z)

∂z
− κ

H
χ(z) = 0 on z = 0, D, (3.48)

gives a countable yet infinite set of discrete eigenfunctions χn(z). Imposing an or-

thonormality condition for these discrete eigenfunctions in the bounded domain

∫ D

0

χn(z)χn′(z)ρ(z)dz = δnn′, (3.49)

the orthonormal discrete eigenfunctions are

χ0(z) =

√√√√
2κ− 1

H
(
e

D(2κ−1)
H − 1

)eκz
H , (3.50)

χn(z) =

√
2

D
cos
[nπz
D

+ ǫn

]
, ǫn = arctan

[
D(1 − 2κ)

2nπH

]
, (3.51)

where n ∈ N/0 for the baroclinic modes χn(z) in equation (3.51), and δnn′ is the

Kronecker delta. The eigenvalue associated with the discrete external mode (3.50) is

the same as that given by (3.40) for the continuous case. The eigenvalue associated

with each of the discrete baroclinic modes in (3.51) is retrieved by substituting m =

nπ/D into equation (3.39) giving

γn =
f0

N

√(nπ
D

)2

+
1

4H2
, with n ∈ N/0. (3.52)
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The orthonormal basis {χ0(z), χn(z)}, derived above when the correct boundary con-

dition is used on the upper and lower boundaries, is seen to agree with the results

given in Waugh and Dritschel (1999) for the ersatz boundary condition by taking

κ = 0 in (3.50), (3.51), (3.40) and (3.52).

Green’s functions

One of the most powerful features of the QG PV equation is that by inverting the

operator for ψ in (3.27), the streamfunction, and therefore the velocity in the fluid,

can be determined wholly by the PV distribution. Inverting the operator in (3.27)

gives the streamfunction at point x = (x, y) as

ψ(x, t) =

∫∫∫
ρ0(z

′)G(x;x′)q(x′, t)dx′dy′dz′, (3.53)

where G(x;x′) is the Green’s function satisfying

∇2
HG+

1

ρ(z)

∂

∂z

[
f 2

0

N2
ρ(z)

∂G

∂z

]
= δ(x − x′), (3.54)

∂G

∂z
− κ

H
G = 0 on z = 0. (3.55)

The form of the Green’s function depends on the vertical modes of the system,

implying that a change in the form of the lower boundary condition will necessarily

distort the Green’s function (see Scott and Dritschel 2005). This in turn will have an

effect on calculation of the streamfunction via (3.53).
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3.2.3 Single layer quasi-geostrophic model of the stratosphere

Starting from the equations of motion and mass conservation which govern fluid

flow in a three-dimensional atmosphere, as given by equations (3.1) and (3.2), we

now discuss the intermediate member of our hierarchy of models, that of a single

layer shallow water QG model of the stratosphere.

Assuming fluid in the single layer model is homogeneous, that is the density is the

same throughout the fluid, by making the hydrostatic assumption, equations (3.1)

and (3.2) become

Du

Dt
+ f0k × u = −g∇Hh, (3.56)

DhD
Dt

+ hD(∇H · u) = 0. (3.57)

In equation (3.57) the depth of the fluid is hD(x, t) = h(x, t) − hT (x), where hT (x)

is topography at the lower boundary of the model, h(x, t) is the height of the free

surface of the fluid above z = 0, and x is a two-dimensional position vector in the

plane. In equation (3.56), the Coriolis parameter f = 2Ω is taken to be constant over

the domain, with f = f0 calculated at the origin.

We now nondimensionalize equations (3.56) and (3.57) using x = Lx̃, u = U ũ

and t = (L/U)t̃ (see Vallis 2006).

By expressing the height of the fluid surface in terms of perturbations around a

constant reference depth H

h(x, t) = H + bη(x, t),

where b is a parameter of the system (see Fig. 3.1), it is therefore possible to nondi-
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h(x, t)

hT (x)

hD(x, t)
H

η(x, t)

Figure 3.1: Schematic of the shallow water model, with H a reference depth, hT (x)
the topographic forcing height, h(x, t) the height of the fluid surface, η(x, t) the height
of the disturbance above H , and hD(x, t) = h(x, t) − hT (x) the depth of the fluid.
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mensionalize the fluid depth using hD(x, t) = Hh̃D(x̃, t̃) where

h̃D = 1 + bη̃(x̃, t̃) − bh̃T (x̃),

with η = Hη̃ and hT = Hh̃T . Here, the nondimensional disturbance amplitude η̃ and

lower boundary topography h̃T are chosen to be of the same order magnitude, hence

the factor of b in front of both terms. This yields the nondimensionalized shallow

water equations

ǫ

(
∂

∂t̃
+ ũ · ∇̃H

)
ũ + k × ũ = − gHb

f0UL
∇̃H η̃, (3.58)

(
∂

∂t̃
+ ũ · ∇̃H

)(
bη̃ − h̃T

)
+
(
1 + bη̃ − h̃T

)
(∇̃H · ũ) = 0, (3.59)

where ǫ = U/f0L = Ro is the Rossby number. For convenience, all tildes are dropped

from here on, with all variables being nondimensional unless stated otherwise. Taking

small Rossby number ǫ ≪ 1, we now make the assumption that, at leading order in

ǫ, the Coriolis terms in (3.58) are balanced by the terms on the right hand side of

the equation giving b = f0UL/gH = ǫB2, where B = f0L/
√
gH is the inverse of the

nondimensional Rossby radius of deformation.

This gives the geostrophically scaled shallow water equations as

ǫ

(
∂

∂t
+ u · ∇H

)
u + k × u = −∇Hη, (3.60)

ǫB2Dη

Dt
− (u · ∇H)hT +

(
1 + ǫB2η − ǫB2hT

)
(∇H · u) = 0, (3.61)

We now make the quasi-geostrophic approximation and express the velocity as an
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expansion in ǫ

u =
∞∑

i=0

ǫiui,

representing small ageostrophic perturbations from the geostrophic velocity u0. Sim-

ilarly, the disturbance to the fluid surface and bottom topography are also expressed

as expansions in ǫ

η =
∞∑

i=0

ǫiηi,

hT =
∞∑

i=0

ǫihTi
.

Substituting these expansions into equations (3.60) and (3.61), if the velocity com-

ponents are given by u = (u, v) we get to O(1)

(u0, v0) =

(
−∂η0

∂y
,
∂η0

∂x

)
,

∂u0

∂x
+
∂v0

∂y
= 0.

At O(ǫ) we get

Dgu0

Dt
− v1 = −∂η1

∂x
, (3.62)

Dgv0

Dt
+ u1 = −∂η1

∂y
, (3.63)

and

B2

(
Dgη0

Dt
− DghT0

Dt

)
+

(
∂u1

∂x
+
∂v1

∂y

)
= 0, (3.64)
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where the material derivative following the geostrophic velocity is

Dg

Dt
≡ ∂

∂t
+ u0

∂

∂x
+ v0

∂

∂y
.

Taking ∂/∂x(3.63)−∂/∂y(3.62), advection of the relative vorticity ζ0 where

ζ0 =
∂v0

∂x
− ∂u0

∂y
= ∇2

Hη0,

is given by

Dgζ0
Dt

= −
(
∂u1

∂x
+
∂v1

∂y

)
. (3.65)

Finally, substitution of (3.65) into (3.64) gives the conservation of QG potential vor-

ticity

Dg

Dt

(
∇Hη0 − B2η0 + B2hT0

)
= 0.

Redimensionalizing gives

Dg

Dt
(q − f0) = 0,

q(x) = f0 + ∇2
Hψ − L−2

R ψ +
f0

H
hT , (3.66)

where the dimensional Rossby radius of deformation is LR =
√
gH/f0, such that

B = L/LR, and the dimensional streamfunction in terms of the surface disturbance

is ψ = gη/f0.

3.2.4 Barotropic vorticity equation

The simplest member of our hierarchy of models arises from taking the the QG

shallow water formulation in the limit LR → ∞. Under these circumstances, the
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PV equation governing fluid flow is the purely two-dimensional barotropic vorticity

equation

q(x, t) = ∇2
Hψ +

f0

H
hT (x). (3.67)

In the absence of topographic forcing, this reduces to give the PV form of the

Euler equations

q(x, t) = ∇2
Hψ. (3.68)

3.3 Numerical models of polar vortex evolution in

a compressible quasi-geostrophic atmosphere

In order to study the behaviour of the polar vortex during SSW events, it is

useful to perform numerical experiments which simulate the vortex behaviour in our

hierarchy of models.

For the single layer models described in sections 3.2.3 and 3.2.4, the QG Contour

Dynamics with Contour Surgery (QGCS-2D) algorithm is used (see Dritschel 1988).

When simulating flow in the QG cylindrical f -plane model described in section 3.2.2

there are two algorithms used in existing studies which will be discussed in this section.

The first of these is a three-dimensional QG Contour Surgery model (QGCS) used

by Dritschel and Saravanan (1994), Waugh and Dritschel (1999) and Wang and Fyfe

(2000). The second is the Contour Advective Semi-Lagrangian (CASL) algorithm

of Dritschel and Ambaum (1997) (given in Macaskill et al. (2003) for the cylindrical

domain) used by Dritschel et al. (1999), Scott et al. (2004) and Esler and Scott (2005).
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3.3.1 Quasi-Geostrophic Contour Dynamics with Surgery (QGCS):

2-D

The QG contour dynamics with surgery (QGCS) algorithm is a member of the

contour dynamics family of numerical models (see Dritschel 1988, 1997). The promi-

nent feature of these models is that the evolution of the flow is determined by following

the motion of piecewise constant contours of potential vorticity.

Consider a vortex patch in a QG f -plane model in which the QG PV of the patch

and the streamfunction are related by (3.66). In this system, the Green’s function

satisfies

∇2
HG− L−2

R G = δ(x − x′),

which has solution

G(x;x′) = − 1

2π
K0

( |x − x′|
LR

)
, (3.69)

where K0 is the modified Bessel function of the second kind. The streamfunction for

the flow is then given by

ψ(x, t) =

∫∫
q(x′, t)G(x;x′)dx′dy′, (3.70)

where q is the PV distribution, which consists of a finite number of vortex patches.

Using Green’s theorem in the plane, the expression for ψ yields the horizontal velocity

u

u = − 1

2π

N∑

k=1

∮

Ck

∆kK0

( |x − x′|
LR

)
(dx′, dy′), (3.71)

where Ck is the boundary of the kth patch, N is the total number of patches, and ∆k

is the vorticity jump at the boundary Ck. Therefore, by representing each patch of
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vorticity by a series of nodes around its boundary, where the density of the nodes is

given by a parameter µ, the velocity at each node can be calculated relatively easily

by performing the contour integrals in (3.71) numerically.

To complete the dynamical advection in the system, the velocity field u(x, t) =

dx/dt is calculated at each PV node location and a 4th order Runge-Kutta integration

performed for small time-step dt to calculate the new location of each node.

The reduction of the area integral in (3.70) to an integral around vortex boundaries

on which there is a discontinuity in PV is one of the most attractive features of the

QGCS algorithm. That is, as the dynamics can be determined by the location and

strength of PV boundary nodes alone, there is no need perform numerically expensive

grid discretizations in the horizontal domain.

Another feature of the contour dynamics integration method is that if any two

adjacent nodes happen to move too far apart during the advection of a bounding

contour, extra nodes are inserted onto the contour to maintain the required spacing

between nodes resolution. In a similar way, should nodes become too clustered on a

bounding contour, nodes can be removed, decreasing computational expense without

any significant sacrifice in accuracy. This is in contrast to algorithms using a dis-

cretized grid method demanding that the number of grid points, and hence resolution

of the model, remain constant with time. In this way, the discretized grid method

forces the model to use the optimum resolution for all calculations which greatly

increases the expense of the calculation.

One other desirable feature of the QGCS algorithm is that the motion is un-

bounded in the horizontal. Therefore, no artificial horizontal boundaries must be
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introduced into the model when simulating vortex evolution (for an example of such

artificial boundaries see equations (3.83) and (3.84), and corresponding discussion in

the text, for the CASL algorithm).

Finally, in addition to the contour advection algorithm, the model incorporates a

contour surgery process which acts to remove filaments of PV on scales finer than a

specified “cut-off” scale. This is performed in the interests of computational efficiency,

as the advection of such fine PV filaments is computationally expensive while being

seen to have relatively little impact on the overall dynamics of the system. This PV

removal process, which violates the conservation of PV, may at first seem worrisome.

However, the quantities of PV which are removed from the system in this way are

usually small, such that no noticeable effect is usually observed in the dynamics of

the flow.

3.3.2 Quasi-Geostrophic Contour Dynamics with Surgery (QGCS):

3-D

In the three-dimensional QGCS algorithm, a vertical coordinate is introduced

such that the domain is bounded in the vertical by rigid boundaries at z = 0 and

z = D. Similar to the two-dimensional QGCS algorithm, the three-dimensional model

is unbounded in the horizontal.

The concepts of the model are essentially the same as for the two-dimensional

QGCS model, and a brief overview of the algorithm follows: The model is discretized

in the vertical into L layers of uniform thickness, each corresponding to a particular

log-pressure height. On each of these layers, the polar vortex is represented by nl
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continuous contours of piecewise constant PV qlk (PV of the kth contour, 1 < k < nl)

taken to be the PV of the vortex interior. Each contour is discretized by a series of

nodes, each node carrying a PV of qlk . In this discretized form, the Green’s function

for the vertically bounded cylindrical domain is (see section 3.2.2)

Gjl(x;x′) = − 1

2π

L−1∑

n=0

χjnχln(z)K0(γnr), (3.72)

where x and x′ are planar coordinates and χjn = χn(zj). Substituting this discretized

Green’s function into equation (3.53) gives the streamfunction on layer j as

ψj(x) = − 1

2π

∫∫ L∑

l=1

Nz∑

n=0

ρlχlnχjnK0(γn|x− x′|)ql(x′)dx′dy′, (3.73)

where Nz is the highest wavenumber permitted in the truncation of the infinite sum

over vertical normal mode wavenumbers n. As the integral in (3.73) has now been

reduced to an integral over the horizontal plane on each layer, standard contour

dynamics techniques can now be applied.

We now specify that the PV distribution on each layer, ql, comprises of nl finite

area vortex patches, each with a jump in PV of ∆k
l at the vortex boundary. Then by

differentiating (3.73) and noting that u = (−∂yψ, ∂xψ), utilizing Green’s Theorem in

the plane to convert the area integral into an integral around the boundary of each

vortex patch gives

uj(x) = − 1

2π

L∑

l=1

nl∑

k=1

∮

Ck
l

Nz∑

n=0

ρlχlnχjn∆
k
lK0(γn|x − x′|) (dx′, dy′) , (3.74)

at any point x on layer z = zj . In this expression, Ck
l is the boundary of the kth

contour on layer l, across which the jump in PV is ∆k
l . Advection of the nodes on the

vortex boundaries, and the removal of fine scale vortex filaments, is then identical to

that of the two-dimensional QGCS algorithm.
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Upper and lower boundaries in the QGCS model act as flat, rigid surfaces. There-

fore, topographic forcing at these boundaries cannot be represented by varying the

elevation of the surface. To get around this issue, Dritschel and Saravanan (1994,

section 2b) showed that boundary forcing in the model can be represented by placing

a non-advectable sheet PV distribution in the lower and upper model layers, inducing

a velocity field equivalent to physical forcing.

3.3.3 Contour Advective Semi-Lagrangian (CASL) algorithm

The Lagrangian treatment of fluid advection relies on following individual ele-

ments of the fluid, using the calculated velocity fields to determine the advection of

each element at every time step of the model. The QGCS model described above ap-

plies the Lagrangian approach, whereby each node is followed throughout the motion

with node locations being the only consideration when determining the overall dy-

namics. The CASL algorithm (Dritschel and Ambaum 1997), on the other hand, is a

hybrid of the Lagrangian approach seen in the QGCS model and a grid discretization

spectral method. At first glance, the CASL algorithm is much the same as the QGCS

algorithm outlined above in that:

• The model is discretized into L layers of uniform thickness.

• On layer l, the kth region of vorticity is represented by a series of nodes with

piecewise constant potential vorticity qkl . Each node carries a discontinuity in

PV of ∆k
l between the PV inside the vortex boundary and that outside the

vortex boundary.
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• Forcing at the lower and upper boundaries is represented by additional non-

advectable sheet PV contributions in the lowermost and uppermost layers re-

spectively.

• At each time step, the velocity field at each node is calculated and a 4th order

Runge-Kutta integration is performed to calculate the updated node positions.

• Contour surgery is performed to remove fine scale filaments of PV.

However, in contrast to the QGCS algorithm the velocities at node locations are

not calculated by performing an integral around each of the vortex bounding contours,

as seen in (3.74). Instead, velocities are calculated by interpolating the node positions

and their respective PV values onto a nonuniform cylindrical (r, φ, z) grid. Once

this interpolation has been performed, finite difference spectral methods are used to

calculate velocities at the grid points, which are then interpolated back to give the

velocities at the node positions. This approach requires the horizontal domain to be

bounded, in contrast to the unbounded horizontal domain of the QGCS.

A brief outline of the spectral aspects of the CASL algorithm and the implication

of the finite horizontal domain are now given following Macaskill et al. (2003). In

cylindrical polar coordinates (r, φ, z), subtracting f from both sides of (3.30) and

multiplying by r gives

∂

∂r

(
r
∂ψ

∂r

)
+

1

r

∂2ψ

∂φ2
+

r

ρ(z)

∂

∂z

(
f 2

N2
ρ(z)

∂ψ

∂z

)
=

(
q(r, φ, z) − f

)
r. (3.75)

Taking discrete transforms of ψ and (q− f)r with respect to z using the orthonormal

basis {χn} gives

ψ(r, φ, z, t) =
Nz∑

n=0

ψn(r, φ, t)χn(z), (3.76)



Chapter 3: A Hierarchy of Models for the Winter Polar Stratosphere 111

(q − f)r =
Nz∑

n=0

Qn(r, φ, t)χn(z), (3.77)

which gives the transform of (3.75) as

Nz∑

n=0

[
r
∂ψn
∂r2

+
∂ψn
∂r

+
1

r2

∂ψn
∂φ2

− r
f 2

0

N2
γ2
nψn

]
χn(z) =

Nz∑

n=0

Qnχn(z). (3.78)

By imposing an azimuthal grid structure and defining the discrete Fourier transform

of ψn and Qn in the azimuthal direction to be

ψn(r, φ, t) =

Nφ∑

k=−Nφ

ψ̂n,k(r, t) exp[ikφ], (3.79)

Qn(r, φ, t) =

Nφ∑

k=−Nφ

Q̂n,k(r, t) exp[ikφ], (3.80)

transformation of (3.78) in the azimuthal direction yields an ODE for ψ̂n,k(r, t)

r
d2ψ̂n,k
dr2

+
dψ̂n,k
dr

−
(
k2

r
+ r

f 2

N2
γ2
n

)
ψ̂n,k = Q̂n,k. (3.81)

It is now necessary to discretize the domain in the r-coordinate by introducing a

non-uniform radial grid. Macaskill et al. (2003) derived the discretized form of (3.81)

given uniform grid spacing ∆r in the r-direction. For the purposes of the current

study, it desirable to utilize an arbitrary non-uniform grid spacing in r in order to

retain the option of varying the grid resolution within the domain. In such a way,

grid resolution can be increased in areas where PV is expected to be advected (in the

polar regions, for example) while keeping lower grid resolution in regions in which

PV is not expected to be advected, thereby optimizing the computational efficiency

of the model.
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The derivatives of ψ̂n,k with respect to r at ri+1/2, ri−1/2 and ri are taken to be

∂ψ̂n,k
∂r

∣∣∣∣∣
r
i+ 1

2

=
ψ̂

(i+1)
n,k − ψ̂

(i)
n,k

∆ri+1
,

∂ψ̂n,k
∂r

∣∣∣∣∣
r
i− 1

2

=
ψ̂

(i)
n,k − ψ̂

(i−1)
n,k

∆ri
,

∂ψ̂n,k
∂r

∣∣∣∣∣
ri

=
ψ̂

(i+1)
n,k − ψ̂

(i−1)
n,k

∆ri+1 + ∆ri−1

,

∂2ψ̂n,k
∂r2

∣∣∣∣∣
ri

=

∂ψ̂n,k

∂r

∣∣∣
r
i+ 1

2

− ∂ψ̂n,k

∂r

∣∣∣
r
i− 1

2

ri+ 1
2
− ri− 1

2

,

where ∆ri+1 = ri+1−ri and ri+1/2 = ri+(1/2)∆ri+1. Substitution of these expressions

when differentiating ψ̂n,k with respect to r in (3.81) gives

2

∆ri+1∆ri (∆ri+1 + ∆ri)

[
ri+ 1

2
∆ri

(
ψ̂

(i+1)
n,k − ψ̂

(i)
n,k

)
−

−ri− 1
2
∆ri+1

(
ψ̂

(i)
n,k − ψ̂

(i−1)
n,k

)]

−
(
k2

ri
+ ri

f 2

N2
γ2
n

)
ψ̂

(i)
n,k = Q

(i)
n,k. (3.82)

The tridiagonal system of equations in (3.82) can be solved for ψ̂n,k at any grid

location ri given suitable boundary conditions imposed at r0 = 0 and rNr
= rD. By

introducing the outer wall at r = rD the domain of the CASL model is given by a

cylinder with radius r = rD and height z = D. Following Macaskill et al. (2003), the

boundary conditions in r are chosen to be

ψ̂n,k = 0 k 6= 0, (3.83)
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ψ̂
(0)
n,k = 2ψ̂

(1)
n,k − ψ̂

(2)
n,k, k = 0, (3.84)

ψ̂
(Nr)
n,k = 0. (3.85)

The above enables the streamfunction to be calculated at any point on a cylindrical

grid with Nr radial grid points, Nφ azimuthal grid points and Nz z grid points, given

that the potential vorticity q − f is defined at each point.

We summarize the CASL advection algorithm as follows:

• The location and potential vorticity q − f of all bounding contour nodes is

interpolated onto a nonuniform (r, φ, z) grid of dimension Nr ×Nφ ×Nz.

• The velocity at each grid point is calculated using the spectral/finite difference

technique above.

• The grid point velocities are interpolated back onto the nodes of each bounding

contour.

• At each time step, the velocity at each node is used to perform a 4th order

Runge-Kutta integration calculating the new node position.

The spectral/finite difference approach of the CASL algorithm above is consid-

erably less computationally expensive than the contour integral method used by the

QGCS algorithm. In particular, the fact that a relatively coarse cylindrical grid can

be used to calculate the velocity at each node means many numerical experiments can

be performed for a minimal sacrifice in accuracy. This is a considerable advantage
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should many experimental runs need to be performed, which shall be seen to be the

case in chapters 6 and 7.

However, inaccuracies arising from the relative coarseness of the spectral grid in

the CASL algorithm may still render it unsuitable for certain applications. In par-

ticular, attempts to investigate the structure of three-dimensional stationary vortex

structures have found the CASL algorithm to be unsuitable. Inaccuracies in velocity

calculations on the vortex boundary, although small, were too large for stationary

vortex solutions to be found without significantly increasing the grid-resolution, and

hence the computational expense of the exercise.

Another concern when using the CASL model is the influence of the horizontal

boundaries corresponding to the walls of the cylindrical domain. However, by taking

the horizontal scale of the domain to be large in comparison to the polar vortex (typ-

ically rD ≈ 10R where R is the typical vortex radius), the impact of these boundaries

on the flow is seen to be negligible.



Chapter 4

Single Layer Shallow Water Model

of Vortex-Splitting: the Kida

Vortex Approximation

4.1 Introduction

Sudden stratospheric warmings (SSWs) of the winter polar stratosphere are ac-

companied by two distinct types of breakdown of the polar vortex. The first type

are vortex-displacement SSWs which are characterized by displacement of the polar

vortex off the pole, with an accompanying westward tilt of the vortex with height

(for examples in the northern hemisphere see Manney et al. (1999)). Displacement

SSWs are commonly referred to as wave-1 SSWs as the polar vortex is characterized

by a growth of zonal wavenumber-1 waves on the vortex edge. The second type are

vortex-splitting SSWs, during which the polar vortex splits into two smaller, almost

115
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columnar vortices of comparable magnitude (for examples in the northern hemisphere

see Andrews et al. (1985) and Manney et al. (1994); for the southern hemisphere vor-

tex split in September 2002 see J. Atmos. Sci. Special Issue, vol 62). Vortex-splitting

SSWs are commonly referred to as “wave-2” SSWs as the breakdown of the vortex

is associated with the growth of zonal wavenumber-2 planetary-scale Rossby waves

on the vortex edge. From the perspective of vortex dynamics, it is desirable to treat

these two types of SSWs as distinct, yet related, phenomena (Charlton and Polvani

2007; Matthewman et al. 2009).

One possible mechanism for the breakdown of the polar vortex is that of a “self-

tuning” resonant excitation of disturbances to the vortex due to external forcing, for

example by tropospheric planetary waves. Resonance is characterized by an excita-

tion of free-travelling waves of the system by forcing. In a linear system, maximum

excitation of these waves occurs at linear resonance, when the forcing frequency mea-

sured relative to the background flow is the same as the frequency of the linear mode

being excited. Charney and DeVore (1979) investigated the resonant excitation of

large amplitude waves by topographic forcing as a possible mechanism for plane-

tary scale tropospheric disturbances, or “tropospheric blockings”, in the atmosphere.

Using an idealized β-plane model of the troposphere, it was found that the largest

disturbance amplitudes were observed in flows close to linear resonance, with the scale

and magnitude of such disturbances being similar to that observed during blocking

events.

However, in a nonlinear system, nonlinear interactions can correct the frequency

of the free mode being excited. In such systems, if forcing is initiated near linear reso-
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nance it is possible for the system to become more strongly resonant, as amplitudes of

excited waves increase and nonlinear frequency corrections become important. This

phenomenon is known as “self-tuning” resonance (see Plumb 1981). If the self-tuning

resonance mechanism is present, the maximum amplitude of excited waves in the

system will arise when the forcing is initially not at linear resonance.

Plumb (1981) applied the concept of self-tuning resonance to an idealized β-plane

model of the extratropical stratosphere. By investigating the interaction of free-

travelling weakly nonlinear waves with a non-stationary topographic forcing, a rela-

tionship was derived which determined how far from linear resonance the system must

be in order for nonlinear corrections to the free-travelling wave frequency to self-tune

the system towards resonance.

This chapter will use a fully nonlinear two-dimensional vortex model to investi-

gate the role of self-tuning resonance as the underlying mechanism of SSWs. We

concentrate here on vortex-splitting SSWs, as the height-independent, barotropic be-

haviour of the polar vortex which characterizes these SSWs suggests that a suitable

conceptual model is a barotropic single layer model of the stratosphere (see Liberato

et al. 2007; Matthewman et al. 2009, as shown in chapter 2).

A hierarchy of models approach is used; the dynamics of elliptical vortices in a

uniform strain flow in the two-dimensional Euler equations (Kida 1981) is used to gain

insight into the dynamics of topographically forced vortices in a fully nonlinear shallow

water model framework. Behaviour in the topographically forced vortex model is

then investigated from the perspective of self-tuning resonance. In particular, the

motivating questions for this and the following chapter are:
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Q1. Is vortex-splitting behaviour, similar to that observed in vortex-splitting SSWs,

observed in the topographically forced vortex in the shallow water model?

Q2. For a topographically forced circular vortex, does the excitation of waves on

the vortex edge display features of a linear resonance of the vortex with the

background flow? If so, from the perspective of self-tuning resonance, what is

the role of nonlinearity in bringing the vortex into, or out of, resonance with

the background flow?

Q3. Under what circumstances, and to what extent, can the behaviour of the vortex

in the fully nonlinear shallow water model be understood by reference to the

Kida vortex model? Can a mapping between the two models be established?

To answer these questions the chapter will proceed as follows: We start by in-

troducing an elliptical vortex patch in the absence of background flow, the Kirchhoff

ellipse, and discuss the conditions leading to instability of this vortex. Section 4.3

will provide a thorough review of the results of Kida (1981) for a vortex patch subject

to uniform background strain and rotation velocity fields. A topographically forced

circular vortex in a shallow water model is introduced in section 4.4. The relevance of

the Kida vortex to the topographically forced model is then discussed and it is shown

that the uniform strain in the Kida system acts as a good approximation to the to-

pographic forcing in the shallow water system. Within section 4.4, a wave-activity

diagnostic (Dritschel and Saravanan 1994) quantifying the disturbance to the vortex

is introduced. In section 4.5 this wave-activity diagnostic is used to analyze vortex

evolution in fully nonlinear numerical model experiments. The utility of the vortex-

splitting diagnostic κ4, introduced in chapter 2, in objectively classifying splitting of
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the vortex is also demonstrated. Finally, section 4.6 provides discussion of the fully

nonlinear numerical model results in relation to the key questions above.

4.2 The Kirchhoff ellipse and its instabilities

In purely two-dimensional vortex dynamics, the streamfunction ψ induced by a

uniform vortex patch with interior vorticity ∆ and area D in the absence of back-

ground flow is governed by

∇2
x
ψ =






∆ x ∈ D

0 x /∈ D.

(4.1)

Before proceeding, it is convenient to nondimensionalize all quantities using x = a0x̃,

t = t̃/∆ and ψ = ∆a2
0ψ̃, where a0 is a typical vortex radius, reducing the problem to

that of a vortex patch with unit interior vorticity

∇2
x̃
ψ̃ =






1 x̃ ∈ D̃

0 x̃ /∈ D̃,

(4.2)

where the D̃ has area π by construction. For the remainder of the chapter all tildes

will be dropped on nondimensional quantities with the proviso that, unless specified,

all variables are in nondimensional form.

Consider first an elliptical vortex patch of unit interior vorticity, with major and

minor semi-axes of length a and b, in the absence of background flow. The centre

of the patch is located at the origin, with the major axis making an angle of φe(t)

with the x-axis. Such a vortex configuration is known as the Kirchhoff vortex which



Chapter 4: Single Layer Shallow Water Model of Vortex-Splitting: the Kida Vortex
Approximation 120

rotates with angular velocity

φ̇e =
re

(re + 1)2 , (4.3)

where re = b/a ≤ 1 is the aspect ratio of the elliptical vortex (Saffman 1992).

The linear stability of the Kirchhoff ellipse to infinitesimal disturbances was stud-

ied by Love (1893), and recently revisited by Guo et al. (2004). A very brief overview

of their analysis will follow. Transforming to a coordinate system (ξ, ν), where ξ acts

as an “elliptic radial coordinate”, and ν as an “elliptic azimuthal coordinate”, the

boundary of the undisturbed ellipse can be expressed as

x = c cosh ξ0 cos ν,

y = c sinh ξ0 sin ν,

where c =
√
a2 − b2 and ξ0 is a constant elliptic radial coordinate. In this coordinate

system, the boundary of a perturbed ellipse can be expressed in complex form as

z(ξ, ν) = c cosh [ξ0 + ξ(ν, t) + iν] ,

where ξ(ν, t) is the disturbance to the ellipse. By rewriting this disturbance in the

form

η(ν, t) ≡ J0(ν)ξ(ν, t),

where J0(ν) = c2(cosh 2ξ−cos 2ν)/2, it is possible to express η(ν, t) as a Fourier series

in the ν coordinate

η(ν, 0) =

∞∑

m=1

[
Am cosmν +Bm sinmν

]
,
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where m acts as an “elliptic azimuthal wavenumber”. The following linear stability

analysis finds that unstable growth of perturbations occurs whenever L is positive,

where

L =

(
re − 1

re + 1

)2m

−
(

2mre
(re + 1)2

− 1

)2

.

Azimuthal wavenumber m = 1 gives L < 0, implying that the elliptical vortex is

linearly stable for all aspect ratios, and azimuthal wavenumber m = 2 gives L = 0,

implying neutral linear stability. When m ≥ 3, aspect ratios 1/3 < re ≤ 1 give L < 0,

corresponding to linearly stable elliptical vortices, whereas aspect ratios re < 1/3

give L > 0, corresponding to linearly unstable elliptical vortices. This result was

first presented by Love (1893). The analysis of Love (1893) was modified to include

nonlinear stability by Tang (1987), who found that the Kirchhoff ellipse is in fact

nonlinearly stable whenever the aspect ratio satisfies 1/3 < re < 1.

Using a fully nonlinear numerical model, Dritschel (1986) showed that for aspect

ratios re . 1/6, much smaller than that of the stability threshold re = 1/3, nonlinear

instability of elliptic azimuthal wavenumber-2 disturbances on the vortex edge leads

to splitting of the vortex. For aspect ratios 1/6 . re . 1/5, while elliptic azimuthal

wavenumber-2 disturbances are stable, wavenumber-4 disturbances are unstable, and

are characterized by erosion of vorticity from the end of the ellipse major axis via

filamentation. For 1/5 . re < 1/3, it was shown that wavenumber-3 disturbances are

unstable (see table 3 and Fig. 12 in Dritschel 1986).



Chapter 4: Single Layer Shallow Water Model of Vortex-Splitting: the Kida Vortex
Approximation 122

4.3 The Kida vortex

In order to understand the fully nonlinear shallow water dynamics of a circular

vortex patch subject to topographic forcing, it will prove helpful to first investigate

the behaviour of a class of elliptical vortices subject to uniform strain and rotation

velocity fields. Kida (1981) derived a class of exact analytic solutions for the evolution

of such elliptical vortices which will be referred to as the “Kida vortex” hereafter.

In real flows, any vortex is subject to the influence of other vortices, often much

larger than itself. To investigate the influence of remote vortices on the Kirchhoff

ellipse, Kida (1981) introduced an external background flow uE = (uE, vE) to the

Kirchhoff vortex system where

uE = Λx− Ωby,

vE = −Λy + Ωbx.

Note that ∇ · uE = 0, i.e. the external background flow is nondivergent. In this

formulation, the Λ(> 0) terms correspond to an external straining field and the Ωb

terms correspond to a solid body rotation of vorticity k · ∇ × uE = ξb = 2Ωb. The

streamfunction satisfying uE = −∇× ψEk is then given as

ψE = −Λxy +
Ωb

2

(
x2 + y2

)
, (4.4)

and including this external velocity contribution the total vorticity in the system is

q =






ξb + 1 x̃ ∈ D

ξb x̃ /∈ D.

(4.5)

To analyze the evolution of an elliptical vortex patch in this external velocity

field, Kida (1981) derived a system of equations for ṙe and φ̇ which describe the
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vortex behaviour at all times. Here, these equations are derived using the method of

Schwarz functions as seen in Saffman (1992), which is an elegant alternative to the

direct approach used in Kida (1981).

Following Saffman (1992), we now define the Schwarz function in terms of the

elliptical vortex patch. Davis (1974) defines the Schwarz function of a closed curve

∂D bounding a simply connected region D as the unique, locally analytic function

S(z) that is equal to z̄ everywhere on the curve ∂D. Taking the interior of the elliptical

vortex patch to be the simply connected region D with bounding contour ∂D, the

Schwarz function S(z) may be written as

S(z) = F (z) +G(z), (4.6)

where F (z) and G(z) are both functions of the complex variable z, with F (z) defined

as being analytic inside ∂D, and G(z) as being analytic outside ∂D. The complex

velocity field in the domain may then be expressed as

u− iv =






1
2
iF (z) − 1

2
iz̄ z ∈ D

−1
2
iG(z) z /∈ D,

(4.7)

where the boundary of the ellipse acts as a material surface in the flow.

It is now useful to consider the rational function conformal map

z(ζ) = α(t)ζ +
β(t)

ζ
, (4.8)

mapping the interior of the vortex patch in the z-plane to the interior of the unit disc

in the complex ζ-plane. Making ζ the subject of (4.8) inverts this map giving

ζ =
z ± (z2 − 4αβ)

1
2

2α
.
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Without loss of generality, the point ζ = 1 is mapped to the end of the major axis of

the elliptical patch and ζ = i is mapped to the end of the minor axis. This allows α

and β to be expressed in terms of the parameters of the ellipse where

α =
1

2
(a+ b) eiφe , (4.9)

β =
1

2
(a− b) eiφe . (4.10)

The Schwarz function for the ellipse can now be constructed explicitly giving

S(z) =
ᾱ

ζ
+ β̄ζ,

=
ab

αζ
+
β̄z

α
,

where F (z) = β̄z/α and G(z) = ab/αζ(z) from (4.6). In conjunction with (4.7) this

gives the velocity induced by the ellipse in the region z /∈ D as

u− iv = − iab

2αζ
.

To progress, we exploit the fact that the boundary of the ellipse acts as a material

surface in the flow. As the boundary of the ellipse corresponds to the curve |ζ | = 1

in the ζ-plane, the ellipse boundary at z = Z may be parametrised using ζ = eis to

give

Z(s, t) = αeis + βe−is where 0 ≤ s < 2π.

As the ellipse boundary is a streamline of the flow, the difference between ∂Z/∂t and

the velocity outside the ellipse is parallel to ∂Z/∂s, that is

∂Z

∂s

∣∣∣
∣∣∣

∂Z

∂t
− (u+ iv). (4.11)
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In complex form the external straining field is expressed as uE + ivE = Λz̄+ iΩbz,

giving the total velocity field on the ellipse boundary as

u+ iv =
iabζ

2ᾱ
+
(
Λβ̄ + iΩbα

)
ζ +

(Λᾱ + iΩbβ)

ζ
,

which when substituted into (4.11) yields

iαζ − iβ

ζ

∣∣∣
∣∣∣
(
α̇− iab

2ᾱ
− Λβ̄ − iΩbα

)
ζ −

(
β̇ − Λᾱ− iΩbβ

)

ζ
. (4.12)

The form of (4.12) has been chosen to emphasise that ζ and 1/ζ are orthogonal

coordinates. To satisfy (4.12), the ratio of coefficients of ζ and 1/ζ on each side must

be equal, which by using expressions (4.9) and (4.10) to calculate α̇ and β̇ yields

1

2

[
(aȧ− bḃ) cos 2φe − Λ(a2 + b2) +

(
Ωb(a

2 − b2) +
ab(a− b)

a + b
− (a2 − b2)φ̇e

)
sin 2φe

]

+
i

2

[
(aȧ− bḃ) sin 2φe +

(
(a2 − b2)φ̇e −

qab(a− b)

a+ b
− Ωb(a

2 − b2)

)
cos 2φe

]
= 0.

By equating real and imaginary parts and enforcing conservation of the patch area

Ae = πab, this reduces to give two equations describing the evolution of the ellipse

parameters re = a/b and φe in the Kida system, that is

ṙe = 2Λre cos 2φe, (4.13)

φ̇e = −Λ(r2
e + 1)

r2
e − 1

sin 2φe +
re

(re + 1)2
+ Ωb. (4.14)

By constructing the function ∂φe/∂re from (4.13) and (4.14) and integrating with

respect to re, the relationship

sin 2φe =
1

Λ
g(re, s,Ωb), (4.15)
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g(re, s,Ωb) =
re

r2
e − 1

ln

[
(re + 1)2

4sre

]
+ Ωb

(re − 1)

(re + 1)
, (4.16)

is derived, where s > 0 is a constant of integration. The rotation of the vortex can

also be written in terms of g(re, s,Ωb) as

φ̇e = re
∂g

∂re
. (4.17)

4.3.1 Regimes of behaviour in the Kida vortex model

Equations (4.13), (4.14) and (4.16) are now used to investigate the evolution of an

elliptical vortex patch in detail. It can be seen that g(re, s,Ωb) satisfies the properties

g(0, s,Ωb) = −Ωb,

lim
re→1

[g(re, s,Ωb)] =






−∞ s < 1

0 s = 1

∞ s > 1.

(4.18)

Given any particular pair of the parameters Λ and Ωb, the aspect ratio r0 is now

introduced as the maximum value of re achieved over the vortex evolution. The

behaviour of (4.16), and its consequence for the evolution of the vortex patch, is

discussed in Kida (1981) and Dritschel (1990) for general r0 values. For any choice

of s, from (4.15) it is clear that g(re, s,Ωb) must satisfy

|g(re, s,Ωb| ≤ Λ. (4.19)

Therefore, for all Λ and Ωb the resulting evolution of the vortex can be described by

the portion of g(re, s,Ωb) enclosed within this region.
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Of particular interest here is the special case of Kida vortex with r0 = 1, that is a

vortex which can be thought of as being initially circular. To gain an understanding

of the types of vortex evolution we investigate the function g(re, s,Ωb) in more detail

for this choice of r0. From (4.18) it is seen that for g(re, s,Ωb) to satisfy (4.19) when

re = r0 = 1, we must have s = 1.

Evolution of the Kida vortex

When r0 = 1 and the vortex is initially circular, it is helpful to define the function

g1(re,Ωb) = g(re, 1,Ωb). Fig. 4.1 shows g1(re,Ωb) for a selection of the parameters

(Ωb,Λ). As the vortex evolves to more elliptical shapes, the value of re decreases,

corresponding to movement to the left along the graph of g1(re,Ωb). However, it is

known from the relationship in (4.19) that |g1(re,Ωb)| < Λ, meaning that movement

along the graph must halt once g1(re,Ωb) = ±Λ. The value of re at this point is

the minimum aspect ratio and ṙe = 0. As the vortex continues to evolve, movement

along the graph of g1(re,Ωb) reverses, with movement now to the right until re = 1,

at which point the process repeats. At any point during the evolution, the magnitude

and direction in which the vortex is rotating φ̇ is given by the gradient of the graph

for g1(re,Ωb) at that point.

Panel A of Fig. 4.1 shows a graph of g(re,Ωb) which is representative of purely

anticlockwise rotating vortex states. In this regime, ∂g1/∂re > 0 at all points on the

portion of the graph to which motion is restricted (the heavy dark line); that is, the

direction of rotation is purely anticlockwise.

Panel B shows a graph which is representative of parameters (Ωb,Λ) lying on the
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Figure 4.1: Representative g1(re,Ωb) plots of the four regimes of the Kida vortex when
r0 = 1, with re = a/b the aspect ratio, Ωb the background solid body rotation and Λ
the external straining field. A: (Ωb,Λ) = (−0.168, 0.015) representative of anticlock-
wise rotating solutions (ACW). B: (Ωb,Λ) = (−0.168, 0.025) representative of solu-
tions lying on the ACW/oscillating regime boundary. C: (Ωb,Λ) = (−0.168, 0.030)
representative of oscillating solutions. D: (Ωb,Λ) = (−0.091, 0.151) representative of
extending solutions. E: (Ωb,Λ) = (−0.091, 0.091) representative of solutions lying on
the oscillating/extending regime boundary. F: (Ωb,Λ) = (−0.300, 0.035) representa-
tive of clockwise rotating solutions (CW). In all plots, the portion of the graph on
which motion is restricted is denoted by the heavy solid line, and the minimum aspect
ratio by the dark box.
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regime boundary between purely anticlockwise rotating and oscillating vortex states,

with the graph just touching the line at −Λ. As function g1(re,Ωb) has a stationary

point when touching the line at −Λ, the vortex ceases to rotate as φ̇e = ∂g1/∂re = 0.

For a small increase in Λ as shown in panel C, the graph no longer touches the line

at −Λ. For this set of graphs, it is seen that ∂g1/∂re takes both positive and negative

values on the portion of the graph to which motion is restricted. This represents

oscillating vortex states. From the location of the dark boxes in panels B and C, it is

seen that for an infinitesimal increase in Λ from that shown in panel B, corresponding

to a crossing of the regime boundary, the minimum aspect ratio will instantaneously

jump to much smaller values. This instantaneous jump in the minimum aspect ratio

of the vortex is discussed in the next section. Also, when considering the rotating

behaviour of the vortex for the limiting case in panel B between anticlockwise rotating

and oscillating vortex states, it must be the case that for parameters lying exactly on

the regime boundary between the two, the vortex will stop rotating but will take an

infinite amount of time to do so.

Panel D is representative of graphs which correspond to (Ωb,Λ) lying in the ex-

tending Kida regime. As g1(re,Ωb) never intersects with the lines at ±Λ there is no

reversal in the movement along the graph as seen in panels A-C. Instead, as time

increases the minimum aspect ratio continues to decrease (ṙ < 0), but with re = 0

not being reached in finite time.

The regime boundary between extending and oscillating solutions is shown in

panel E when the graph intersects the line for Λ when re = 0 exactly. That is, the

elliptical vortex will eventually achieve ṙe = 0 when re = 0, but will take an infinite
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Figure 4.2: Panel A: the four regimes of the Kida system with r0 = 1 in (Ωb,Λ)
parameter space. Crosses correspond to each of the parameter pairs (Ωb,Λ) shown
in Fig. 4.1. The heavy dashed line denotes the location of the background rotation
Ω0 = −0.25 calculated from (4.42) with k = 2 and B = 0. The arrow denotes the
shift between Ω0 and the tuning parameter Ωb = −0.07 at which the peak vortex
response occurs in the fully nonlinear model experiments of section 4.5, as measured
by the wave-activity W(t). The exact location (Ωb,Λ) = (−0.07, 0.11) of the peak
response is shown by the triangle. Panel B: the linear stability of the Kida vortex
in (Ωb,Λ) parameter space. No linear stability analysis exists in the extending Kida
vortex regime which is shaded.

amount of time to do so. The final panel F shows a graph of g1(re,Ωb) representative

of (Ωb,Λ) lying within the clockwise rotation regime. The derivative ∂g1/∂re < 0

for the entirety of the motion, before the minimum aspect ratio is attained when the

graph intersects with the line at Λ.

Regime boundaries in parameter space

We now determine the location of each of the four regimes of anticlockwise rota-

tion, clockwise rotation, oscillation and extension, in (Ωb,Λ) parameter space.
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Panel B of Fig. 4.1 gives an example of the function g1(re,Ωb) for parameters

(Ωb,Λ) = (−0.168, 0.025) lying on the regime boundary of the anticlockwise and

oscillating regimes. This graph is characterized by its intersection of both lines cor-

responding to ±Λ. It is also seen that the function just touches the lower of these

lines (−Λ) and intersects the upper line (Λ) when re > 0. Therefore given Ωb, the

corresponding Λ value of the anticlockwise and oscillating regime boundary is found

by solving

∂g1

∂re
= 0, when g1(re) = −Λ. (4.20)

As g1(0,Ωb) = −Ωb, it is straightforward to see that the process above can also

be used to identify the boundary of the anticlockwise rotation and extension regimes

by noticing that if

−Ωb = g1(0; Ωb) < Λ, (4.21)

is satisfied, then the boundary lies with the extending regime, and if it is not satisfied

then the boundary lies with the oscillating regime.

The function g1(re,Ωb) for parameters (Ωb,Λ) = (−0.091, 0.091) lying on the

boundary between the oscillating and extending regimes is shown in panel E of

Fig. 4.1. This class of functions is characterized by an intersection of g1(re,Ωb) with

the line for +Λ, rather than −Λ, with this intersection occurring when re = 0. There-

fore, for a parameter pair to lie on this regime boundary the necessary conditions are

|g1(re,Ωb)| < Λ for 0 < re ≤ 1 and that

−Ωb = g1(0; 1,Ωb) = Λ, (4.22)



Chapter 4: Single Layer Shallow Water Model of Vortex-Splitting: the Kida Vortex
Approximation 132

is satisfied. The point which serves as the boundary of the anticlockwise, oscillat-

ing, and extending regimes, must therefore satisfy both (4.20) and (4.22). When

∂g1/∂re < 0 at all times on the graph of g1(re), it is seen that oscillating solutions

make way to purely clockwise rotating states of the vortex. This regime boundary is

given by the value of Ωb such that ∂g1(re)/∂re = 0 when re = 1. This value of Ωb

is then the location of the oscillating and clockwise rotation regime boundary for all

Λ < −Ωb.

The regimes and their respective boundaries are shown explicitly in panel A of

Fig. 4.2, with each set of the parameters (Ωb,Λ) corresponding to the g1(re,Ωb) graphs

discussed above denoted by crosses. This regime diagram is similar to that given in

Kida (1981), with the choice of r0 = 1 and s = 1 allowing explicit regime boundaries

to be defined.

Although it was predicted by Kida (1981) that oscillating vortex states can exist

within the oscillating and clockwise rotating regimes seen in Fig. 4.2, for the special

case r0 = 1 at least, the existence of a vertical regime boundary separating oscillating

and clockwise rotating vortex states, and the existence of a regime in which only

oscillating vortex states are observed, is a new development in this work. As a result,

the regime diagram shown in Fig. 4.2 differs slightly from that seen in Dritschel

(1990), who also considered the special case r0 = 1, by the inclusion of an oscillating

sub-regime lying within the clockwise rotation regime of Dritschel (1990).
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4.3.2 Stability of the Kida vortex

A linear stability analysis of the periodic Kida regimes, specifically the clockwise

and anticlockwise rotation and oscillating regimes when r0 = 1, was performed in

Dritschel (1990) using Floquet theory. The monotonic, aperiodic extension of the

vortex in the extending regime, and the reliance of Floquet theory on periodic vortex

evolution, meant that a linear stability analysis does not make sense for flows in the

extending regime.

Panel B of Fig. 4.2 gives an overview of the linearly stable and unstable regions

of parameter space, as found in Dritschel (1990). For the periodic Kida regimes, it

was determined that the anticlockwise rotation (φ̇e > 0) regime is linearly stable,

whereas the clockwise rotation regime (collectively the clockwise rotation and oscil-

lating regimes in panel A) was found to be linearly unstable. Although, as previously

stated, this analysis draws no conclusions regarding the linear stability of the extend-

ing regime, it is perhaps to be expected that the regime boundary of the anticlockwise

rotation regime may form a barrier between linearly stable and unstable states of the

vortex, with stable solutions lying in the anticlockwise rotation regime and unsta-

ble solutions lying in the remaining three regimes in panel A of Fig. 4.2. This final

prediction, although not formally derived for the extending vortex case, may provide

insight into the stability of vortices in a shallow water system as seen in section 4.5.

4.3.3 The potential function for the Kida vortex

Another description of the behaviour of the Kida vortex can be derived by express-

ing the Kida theory in the form of a fully nonlinear oscillator. Using the expression
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for ṙe as given in equation (4.13), it is straightforward to show that

(
dre
dt

)2

= 4Λ2r2
e

(
1 − sin2 2φe

)
,

which by demanding that the vortex be initially circular gives

(
dre
dt

)2

+ Ve(re; Ωb,Λ) = 0, (4.23)

where Ve(re,Ωb,Λ) acts as a potential and is defined as

Ve(re; Ωb,Λ) = 4r2
e

([
re

r2
e − 1

ln

(
(re + 1)2

4re

)
+ Ωb

re − 1

re + 1

]2

− Λ2

)
.

It is seen that in order for dre/dt to take real values, the potential Ve must be negative.

When re = 1 and the vortex is circular, the value of the potential is Ve = −4Λ2.

Fig. 4.3 shows the maximum disturbance amplitude A = (1 − re)/2re attained

during the Kida vortex evolution. The reason A > 0 is chosen as a diagnostic, rather

than re < 1, is to enable direct comparison with disturbance amplitudes due to wave-

like perturbations to a circular vortex which will be the focus of section 4.4.

The region of parameter space to the right of the figure is characterized by small

maximum disturbance amplitudes, with the contours only becoming tightly clustered

in the vicinity of the curved regime boundary. In contrast, maximum disturbance

amplitudes in the region of parameter space on the left of the curved regime boundary

are noticeably higher, with maximum amplitudes Amax > 2 occurring for relatively

small values of the strain rate Λ. Furthermore, contours of Amax are much tighter

in this region than in the region to the right of the curved regime boundary. The

regime boundary between the two regions is marked by a discontinuity in Amax, as

also seen in the jump in min[re] between panels B and C in 4.1. Interestingly, the
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regime boundary between the oscillating and clockwise rotation regimes cannot be

discerned from the behaviour of Amax.

A prediction of the jump in Amax across the curved regime boundary comes nat-

urally from studying the behaviour of Ve(re,Ωb,Λ). Should the evolution of the el-

liptical vortex be periodic, then dre/dt = 0 at the extremal aspect ratio, which is

equivalent to V (re; Ωb,Λ) = 0 from (4.23). Fig. 4.4 gives examples of the Kida po-

tential function Ve(re; Ωb,Λ) for various values of Ωb and Λ lying in the anticlockwise

rotation, oscillating and infinite extension Kida regimes. In all panels, at t = 0 the

initial aspect ratio is re = 1. As the vortex evolves, one travels along the graph for

Ve in the region 0 < re ≤ 1 until the graph intersects with the re axis, at which point

Ve = 0. The re value of this root is then the minimum aspect ratio of the vortex,

and the evolution continues by retracing the Ve graph back towards re = 1. Once the

graph reaches re = 1, the evolution continues by reversing direction and travelling

back towards smaller values, giving a periodic motion. The only exception to this is

if the minimum aspect ratio is re = 0. In this instance, motion along the Ve graph

takes infinite time to reach re = 0.

Panels A1-A3, giving the Kida potential function near the regime boundary be-

tween the periodic clockwise and anticlockwise rotation regimes, show that there is a

jump in the minimum aspect ratio min[re] achieved by the vortex depending on which

regime the parameters (Ωb,Λ) are in, with the jump occurring when the second sta-

tionary point of Ve is also a root of Ve. It is worth noting that although this implies a

transition in the minimum aspect ratio of the vortex, we cannot make any conclusions

about the direction of rotation, or whether the rotation has changed direction, based
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Figure 4.4: The Kida potential Ve(re,Ωb,Λ) as a function of the Kida ellipse aspect
ratio re < 1. A1: Ve for (Ωb,Λ)=(-0.2036,0.0100) lying in the oscillating regime. A2:
(Ωb,Λ)=(-0.2056,0.0100) lying on the regime boundary between the oscillating and
anticlockwise rotation regimes. A3: (Ωb,Λ)=(-0.2076,0.0100) lying in the anticlock-
wise rotation regime. B1: (Ωb,Λ)=(-0.0490,0.0895) lying in the extending regime. B2:
(Ωb,Λ)=(-0.0500,0.0895) lying on the regime boundary extending and anticlockwise
rotation regimes. B3: (Ωb,Λ)=(-0.0515,0.0895) lying in the anticlockwise rotation
regime. In all panels, the heavy solid line denotes the portion of the graph for Ve
along which motion is permitted during the vortex evolution, starting from re = 1.
In plots B1-B3, magnifications are given for Ve in the interval 0 ≤ re ≤ 0.4.
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solely on the information presented here.

A similar transition in behaviour is shown in panels B1-B3. This transition in vor-

tex behaviour, which occurs when the second stationary point of Ve is also a root of

Ve, represents a regime boundary between anticlockwise rotating vortex states and in-

finitely extending vortex states. Once again, although we have identified the periodic

vortex evolution as an anticlockwise rotating vortex state, this information cannot

be derived solely from the plots of Ve shown, but is used to clarify which of the peri-

odic/extension regime boundaries we are referring to in the Kida system. Although

not shown, the final regime boundary between the clockwise rotation/oscillating vor-

tex states and infinitely extending vortex states occurs when the first stationary point

of Ve coincides with only real root of Ve at re = 0.

This study of Ve is analogous to that of g(re,Ωb) given earlier in this section

although, as has been stated, the direction of vortex rotation cannot be as easily

deduced from Ve. However, as shall be seen in chapter 5, the concepts surrounding

the derivation of the Kida potential Ve are important when deducing Amax in a shallow

water model, and as such it has been included here as a precursor to that work.

4.4 A topographically forced vortex model

In this section, the behaviour of a somewhat more realistic member of our hier-

archy of models is examined. Stratospheric dynamics are influenced by finite Rossby

radius effects, and it is unclear that the influence of ‘forcing’ from the troposphere

can be accurately represented by a uniform strain flow such as that present in the

Kida vortex system. Hence we next study the dynamics of a vortex patch in the pres-
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ence of topographic forcing using the quasi-geostrophic shallow water f -plane model

described in chapter 3.

In dimensional form, the shallow water representation of an idealized vortex patch

subject to topographic forcing hT (x) (see, for example Swanson 2000) is given by

∇2
x
ψ − L−2

R ψ +
f0hT
H

+ f0 = q =






f0 + ∆b + ∆ x ∈ D

f0 + ∆b x /∈ D.

(4.24)

where ψ is the streamfunction of the flow and q is the PV. In equation (4.24), D

is the patch interior, LR the Rossby radius of deformation, H the reference depth

of the single layer model, f0 the Coriolis parameter evaluated at the pole, ψ the

streamfunction of the flow, ∆ the uniform PV anomaly inside the vortex, and ∇2
x

the two-dimensional horizontal Laplacian in terms of the planar coordinates x. The

parameter ∆b represents a solid body rotation which is added to the flow. In the

dimensional system, topographic forcing is introduced in polar coordinates (r, φ) as

hT (r, φ) = h0Jk(lr) exp{ikφ}, (4.25)

where Jk is the Bessel function of the first kind, h0 is the forcing height, k ≥ 2 is

an integer, and l is a parameter enabling the topography to be scaled in the radial

coordinate.

As the operator ∇2
x
−L−2

R in (4.24) is linear, it is possible to express the streamfunc-

tion and PV of the system as linear combinations ψ = ψd+ψb+ψT and q = qd+qb+qT ,

where ψd is the streamfunction due to the disturbed vortex satisfying

∇2
x
ψd − L−2

R ψd = qd =






∆ x ∈ D

0 x /∈ D,

(4.26)
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ψb is the streamfunction of the solid body background rotation

∇2
x
ψb − L−2

R ψb = qb = ∆b, (4.27)

and ψT is the streamfunction component induced by the topographic forcing which

satisfies

∇2
x
ψT − L−2

R ψT = qT = −f0hT (r, φ)

H
. (4.28)

At this stage it is convenient to nondimensionalize these equations in the same

way as section 4.3 where x = a0x̃, where a0 is a typical vortex radius, t = t̃/∆ and

ψ = ∆a2
0ψ̃. Equations (4.26) and (4.28) are then rewritten as

∇2
x̃
ψ̃d − B2ψ̃d =






ξb + 1 x̃ ∈ D̃

ξb x̃ /∈ D̃,

(4.29)

∇2
x̃
ψ̃b − B2ψ̃b = ξb (4.30)

∇2
x̃
ψ̃T − B2ψ̃T = −h̃T (r̃, φ), (4.31)

where B = a0/LR. The nondimensional topography which appears in (4.31) is

h̃T (r̃, φ) = HJk(λr̃) exp{ikφ} (4.32)

where H = f0h0/∆H is a nondimensional forcing amplitude and λ = la0 is a nondi-

mensional radial wavenumber. The nondimensional background PV which appears

in (5.4) is ξb = 2Ωb = ∆b/∆. The nondimensional angular velocity Ωb is similar to

the background rotation in the Kida vortex model, with the two being identical when

B = 0 (LR → ∞).
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The nondimensional system can therefore be described by five nondimensional

parameters:

• Ωb: a tuning parameter with which the vortex can be brought into, and out of,

resonance with the topographic forcing.

• H, k, λ: forcing parameters with which the amplitude, azimuthal structure and

radial structure of the topographic forcing are controlled.

• B: the inverse of the nondimensional Rossby radius.

Now that the nondimensional equations of the system have been derived, for

aesthetic reasons we drop all tildes on nondimensional quantities and specify that all

variables from here on are assumed to be nondimensional.

4.4.1 The Kida vortex as an approximation to vortex dy-

namics in a shallow water model

When the nondimensional parameter B = 0, the dynamics in the shallow water

model reduce to that of purely two-dimensional flow. Therefore, as part of our hi-

erarchy of models approach, we now look for a link between the topographic forcing

in the shallow water system with B = 0 and the Kida strain forcing in the purely

two-dimensional system.

When B = 0 in the shallow water model, the streamfunction component ψT which

is induced by the topography is

ψT (r, φ, t) = −H
λ2
Jk(λr) exp{ikφ}. (4.33)
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In the purely two-dimensional system, we now recall the streamfunction due to the

strain component of the forcing in the Kida vortex model

ψE(r, φ) = −Λr2

2
exp{2iφ}. (4.34)

By taking k = 2 in (4.33), it is seen that the azimuthal structures of ψT and ψE are

the same, allowing a direct comparison to be drawn between the two streamfunctions.

We now demand that the forcing streamfunction, when calculated at the vortex edge

r = 1, be the same in both models. Thus, by equating (4.34) and (4.33) at r = 1, a

relationship is derived between the nondimensional parameters H, λ and Λ giving

Λ =
2HJ2(λ)

λ2
= F. (4.35)

Fig. 4.5 gives a comparison of the radial structure of the Kida and topographic

streamfunctions |ψE| = Λr2/2 and |ψT | = HJ2(λr)/λ
2 for various values of the to-

pographic radial wavenumber λ, when B = 0. It is seen that as long as λ is not

too large, the Kida strain streamfunction acts as a good approximation to the topo-

graphic forcing streamfunction in the region of the vortex r . 1. Therefore it is to be

expected that given λ is not too large, an initially circular vortex in the topographi-

cally forced model will evolve in a similar way to the Kida vortex; that is clockwise

rotating, anticlockwise rotating or oscillating vortex states should be observed. It is

clear, however, that the extending vortex solutions of the Kida vortex cannot exist in

the topographically forced system, as the vortex, however small initially, must even-

tually extend to values of r at which the Bessel function structure of the topographic

streamfunction becomes prominent.



Chapter 4: Single Layer Shallow Water Model of Vortex-Splitting: the Kida Vortex
Approximation 143

-0.04

-0.02

0.00

0.02

0.04

S
tr

ea
m

fu
nc

tio
n 

|ψ
|

 

 

 

 

 

     

     

λ=0.100

-1.0

-0.5

0.0

0.5

1.0

S
tr

ea
m

fu
nc

tio
n 

|ψ
|

 

 

 

 

 

     

     

λ=1.162

-1.0

-0.5

0.0

0.5

1.0

S
tr

ea
m

fu
nc

tio
n 

|ψ
|

 

 

 

 

 

     

     

λ=2.427

-1.0

-0.5

0.0

0.5

1.0

S
tr

ea
m

fu
nc

tio
n 

|ψ
|

 

 

 

 

 

0 1 2 3 4
Distance, r

     

λ=10.00

Figure 4.5: Magnitude of the streamfunction for the Kida strain |ψE| (heavy dashed
line) and topographic forcing |ψT | with k = 2 (solid line) as a function of the radial
coordinate r for four different values of radial wavenumber λ. The location of the
undisturbed vortex edge is marked at r = 1 by the dotted line. The values λ =
1.162 and λ = 2.427 correspond to “hemispheric scale” and “vortex scale” forcing
respectively (see Esler and Scott 2005). A factor of H/λ2 is omitted from |ψ| for both
streamfunctions.
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Stability predictions for the shallow water model

One of the key objectives of this chapter is to investigate how instabilities leading

to vortex-splitting in the topographically forced shallow water model may be predicted

by corresponding instabilities of the Kida vortex. As has been shown above, for a

sufficiently large value of λ in the shallow water model forced by (4.32) with k = 2

and B = 0, the resulting vortex shape will be approximately that of the elliptical Kida

vortex. Therefore, it is expected that the topographically forced model will exhibit

unstable behaviour when parameters (H, λ,Ωb) correspond to values of (Λ,Ωb) in

the Kida model for which the elliptical vortex is unstable, as previously discussed in

sections 4.2 and 4.3.2.

As discussed in section 4.2, for a Kirchhoff ellipse with re . 1/6, disturbances with

elliptic azimuthal wavenumber-2 become nonlinearly unstable, leading to a split of the

elliptical vortex. Hence, for (Λ,Ωb) lying in unstable Kida regimes where the minimum

aspect ratio of the ellipse is re < 1/6, it is proposed that vortex-splitting behaviour

may be observed in the topographically forced model for parameters (H, λ,Ωb) cor-

responding to (Λ,Ωb). On the other hand, for (Λ,Ωb) lying in unstable Kida regimes

where the minimum aspect ratio of the ellipse satisfies 1/6 . re . 1/4, it is proposed

that unstable growth of elliptic azimuthal wavenumber-4 disturbances will result in

vortex filamentation rather than vortex-splitting behaviour.

4.4.2 Excitation of linear disturbances on a circular vortex

To understand the predictions of the nonlinear Kida model, we next investigate the

properties of an unforced circular vortex in the shallow water model. We now derive
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a linear dispersion relation for infinitesimal waves on the edge of a circular vortex

in the nondimensional quasi-geostrophic f -plane model. The working presented here

will closely follow that seen in Swanson (2000).

Wave-like disturbances on the vortex edge are expressed using a linear normal

mode of the form

η(φ) = ǫα1 exp{ik(φ− ωt)}, (4.36)

where ω is the frequency at which the wave translates around the vortex boundary.

The streamfunction ψd resulting from this disturbance to the vortex boundary sat-

isfies equation (4.29) and can be expressed as ψd(r, φ) = Ψ(r)+ψ′(r, φ), where Ψ(r) is

the contribution due to the basic state and ψ′ is the contribution due to the infinites-

imal perturbations. When partitioned in this way, the basic state streamfunction

satisfies

∇2
HΨ − B2Ψ =






1 r < 1

0 r > 1,

giving

Ψ(r) =
1

B






K1(B)I0(Br) − I1(B)K0(B) r < 1

K1(B)I0(B) − I1(B)K0(Br) r > 1,

U(r) =
2Ωb + 1

B






K1(B)I1(Br) r < 1

I1(B)K1(Br) r > 1,

where I and K are the modified Bessel functions of the first and second kind respec-

tively and U(r) is the velocity of the basic state, which is purely azimuthal. The

streamfunction due to the infinitesimal perturbations then satisfies

∇2
Hψ

′ − B2ψ′ = 0. (4.37)
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Following Swanson (2000), the perturbation is expressed as ψ′(r, φ) = ψ̃(r)η(φ)

satisfying the jump condition

[ψ′

r]
r=1+
r=1− = −η, (4.38)

where the bracket denotes the jump in the radial derivative of ψ at the vortex edge

when r = 1. Substituting this streamfunction back into (4.37) yields an ODE for

ψ̃(r)

r2ψ̃rr + rψ̃r −
(
B2r2 + k2

)
ψ̃ = 0, (4.39)

which when used with (4.38) and the fact that ψ must be continuous on r = 1 yields

ψ̃(r; k) =






Kk(B)Ik(Br) for r < 1

Ik(B)Kk(Br) for r > 1.

(4.40)

As the vortex boundary is a material surface in the flow, the kinematic condition

∂η

∂t
+
ud + ub

r

∂η

∂φ
− vd = 0 on r = 1 + η(φ, t),

must be satisfied on the vortex edge. Here, ub = 2ΩbI1(Br)K1(B) is the azimuthal

velocity due to the solid body rotation streamfunction ψb satisfying equation (4.30).

By linearizing around r = 1, and noticing that the radial velocity component is

vd = −(1/r)ψ′

φ = ikIk(B)Kk(B)η, the linear dispersion relation is then given by

ω = I1K1 − IkKk + 2ΩbI1K1, (4.41)

where all Bessel functions are evaluated at B.

Resonance of a wave-like disturbance on the vortex edge in the topographically

forced system is expected to occur whenever the disturbance appears stationary with
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respect to the forcing. For a system in which the forcing is fixed, this is equivalent to

setting ω = 0 in (4.41), such that the tuning parameter necessary for these stationary

disturbances is

Ωb = Ω0(B) =
IkKk − I1K1

2I1K1
. (4.42)

For a particular choice of B, the function Ω0(B) returns a single scalar value. There-

fore, for convenience, the value Ω0(B) will simply be referred to as Ω0 when the value

of the variable B has been given explicitly.

By utilizing the asymptotic forms of the I and K modified Bessel functions

Ik(B) ∼ 1

Γ(k + 1)

(B
2

)k
, (4.43)

Kk(B) ∼ Γ(k)

2

(B
2

)−k

, (4.44)

when B → 0, where Γ(k) = (k − 1)! is the Gamma function, it is seen that in the

appropriate limit, Ω0(B) agrees with that corresponding to purely two-dimensional

disturbances

Ω0(0) = −k − 1

2k

as seen in Su (1979) and Saffman (1992, equation 6, page 172). Looking at the

rotation rate of the Kida ellipse in zero strain by taking Λ = 0 in equation (4.14), if

the ellipse is nonrotating we have

Ωb = − re
(re + 1)2

,

which, for re close to 1 gives

Ωb ≈ −1

4
.
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This is exactly the equal to Ω0(0) when k = 2.

4.5 Nonlinear model results

4.5.1 Topographic forcing and vortex conditions

The evolution of an initially circular vortex patch subject to topographic forcing

of the form

hT (r, φ, t) = HJk(λr) exp{ikφ}, (4.45)

is now investigated using a fully nonlinear quasi-geostrophic (QG) f -plane model

discussed in section 4.4.

By virtue of the nondimensionalization of section 4.4, the circular vortex patch

is initialized with unit radius and unit interior potential vorticity. To ensure that

the velocity field associated with the topographic forcing (4.45) can be approximated

by that of the Kida system, k = 2 is used in (4.45) and B = 0 in (4.29) for all

experiments, giving Ω0 = −0.25 corresponding to purely two-dimensional dynamics.

In addition to the topographic forcing, a background solid body rotation with

angular velocity Ωb is added to the flow. When investigating the role of resonant

growth of disturbances on the vortex edge, the angular velocity Ωb acts as a tunable

parameter of the system, the varying of which brings the vortex into or out of reso-

nance with the topographic forcing. A total of 31 values were chosen for the tuning

parameter Ωb in the fully nonlinear experiments. The smallest value is Ωb = −0.30,

with experiments performed at increments of 0.01, giving the largest value of the

tuning parameter as Ωb = 0.
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When presenting our results, the topographic forcing amplitude is given in terms of

F = 2HJ2(λ)/λ2 (see equation 4.35). The values of forcing parameter which are used

in the experiments are partitioned into two sets. The first consists of four experiments

representing small F values, F = [0.00178, 0.00357, 0.00535, 0.00714]. The second set

starts at F = 0.00892 and includes 12 experiments, going up to F = 0.10706 in

increments of 0.00892.

For all experiments, the radial dependence of the topographic forcing is scaled

using λ = 1.162, and results in the first peak in topographic forcing occurring at a

distance from the origin of approximately 2.67 vortex radii, as seen in panel B of

Fig. 4.5. This scale is chosen to agree with the ‘hemispheric scale’ forcing discussed

in Esler and Scott (2005) and to ensure that in the region of the undisturbed vortex

the topographic streamfunction can be approximated by that of the Kida strain.

4.5.2 Model details and numerical parameters

The numerical model used to perform these experiments is the contour dynamics

method of Dritschel (1988) (see chapter 3 for an overview of the contour dynamics

numerical algorithm).

The node resolution parameter used in the contour dynamics method of Dritschel

(1988) is taken to be µ = 0.025, the time interval used is dt = 0.05, and the maximum

time of the experiment is taken as tmax = 40. Data are generated at time intervals

of 0.25 nondimensional time units, giving a total of 160 time steps of data For the

κ4 vortex split diagnostic, the split threshold parameter is taken to be µ4 = −0.6,

such that if κmin = min[κ4] < −0.6 a vortex split is identified (see chapter 2.2.4 for a
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detailed discussion of the κ4 diagnostic). When interpreting the κ4 diagnostic, high

positive values indicate that the vortex is undergoing a process of filamentation.

4.5.3 Vortex moment diagnostics

To compare the behaviour of the Kida vortex with that of the fully nonlinear

model, it is useful to employ the vortex moment diagnostics as described in section

2.2.4 of chapter 2. For convenience, these are repeated here in the context of a single

layer numerical model.1

For a patch of constant interior vorticity with jump in vorticity ∆ at the vortex

boundary, the absolute and relative moments of vorticity are calculated using

Mmn = ∆

∫∫
xmyndx dy, (4.46)

Jmn = ∆

∫∫
(x− x̄)m(y − ȳ)n dx dy, (4.47)

where

(x̄, ȳ) =
1

M0 0
(M0 1,M1 0).

In a numerical model in which the contour dynamics algorithm is used, the integrals

in (4.46) and (4.47) are converted to integrals around the boundary of the patch using

Green’s theorem. These contour integrals are calculated from the locations of the PV

nodes which define the vortex boundary in the model. The orientation φe and aspect

1Note: vortex moments in the three-dimensional models of chapters 6 and 7 are calculated by
applying the single layer methodology presented here to each height layer of the three-dimensional
model in turn.
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ratio re of the equivalent ellipse associated with the vortex patch are then given by

φe =
1

2
arctan

(
2J1 1

J2 0 − J0 2

)
, (4.48)

re =

∣∣∣∣∣
(J2 0 + J0 2) +

√
4J2

1 1 + (J2 0 − J0 2)2

(J2 0 + J0 2) −
√

4J2
1 1 + (J2 0 − J0 2)2

∣∣∣∣∣

1/2

. (4.49)

4.5.4 Measures of finite amplitude vortex disturbances

When presenting the results in this section, one of the primary diagnostics used

in determining the behaviour of wavelike disturbances on the vortex edge of the form

η(φ, t) = ǫα1 exp{ikφ} is the amplitude of the first harmonic, ǫα1. To remove the

dependence on ǫ, which is an artifact of the treatment of the linear analysis, we define

the overall amplitude of the first harmonic as A = ǫα1. As previously discussed in

section 4.3.3, in the Kida vortex model an approximation to the amplitude of the

harmonic exp{2iφ}, equivalent to taking k = 2 in the topographically forced model,

is given by

A =
1 − re
2re

,

where re < 1 is the minimum aspect ratio attained by the Kida vortex.

For the fully nonlinear numerical model, the quantity A is derived from the angular

impulse of the vortex

I =
1

2

∫∫
r2dxdy,

which is an invariant of the system in the absence of topographic forcing. Note that

nondimensionalization of time by the constant interior potential vorticity ∆ removes
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a factor of ∆ from I. By subtracting I for the undisturbed vortex I0 = π
2

from the

angular impulse, the wave-activity (pseudomomentum) of the vortex is defined as (see

Dritschel and Saravanan 1994)

W(t) =
1

8

∫ 2π

0

[
(1 + η)2 − 1

]2
dφ,

=
π

2
ǫ2α2

1 +O(ǫ3).

So by calculating the wave-activity of the vortex in the fully nonlinear model, the

corresponding amplitude of the first harmonic of the wave-like disturbance η is ap-

proximated by

A =

√
2W(t)

π
.

4.5.5 Results from the single layer model

Classification of fully nonlinear experiments

To assess the similarities between the Kida vortex model and the topographically

forced model, we classify the vortex evolution in each experiment into one of six

categories:

− Clockwise rotation: φ̇e < 0 throughout the motion.

+ Anticlockwise rotation: φ̇e > 0 throughout the motion.
H Highly disturbed: Amax > 1.
H− Highly disturbed clockwise rotation: Amax > 1 with

φ̇e < 0 throughout the motion.
S Split: κmin < −0.6.
O Oscillating/other: all other vortex behaviour.

Fig. 4.6 shows the vortex evolution in the topographically forced model in relation to
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Figure 4.6: Classification of vortex evolution in the topographically forced model
when B = 0 as a function of Ωb and F . Classification definitions are as described
in the text. Dashed lines give the location of regime boundaries in the Kida vortex
model, and the dotted line shows Ω0 = −0.25. The heavy solid line gives the location
of the peak in Amax as predicted by the weakly nonlinear model in chapter 5.
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the regime boundaries of the Kida vortex model. It is clear that the transition bound-

ary between clockwise and anticlockwise rotating behaviour is accurately predicted by

the Kida vortex model. Of the 55 experiments lying in the clockwise rotation regime

of the Kida model, only 8 are not classified as clockwise rotating vortex states. Fur-

thermore, no clockwise rotating states are observed for parameters outside of this

region. Of the 122 experiments classified as anticlockwise rotating vortex states, only

5 lie outside of the anticlockwise rotation regime of the Kida model, with these 5

experiments occurring just to the left of the curved Kida regime boundary. For 125

experiments lying within the anticlockwise Kida regime, only 8 fully nonlinear exper-

iments are not classified as anticlockwise rotating vortex states. Between the vertical

(clockwise/oscillating) Kida regime boundary and the curved Kida regime boundary,

almost all experiments are classified as either oscillating, highly disturbed or vortex-

splitting vortex states. The sharp boundary observed between clockwise rotating and

oscillating behaviour also bolsters confidence that the oscillating regime, which is a

new finding of this work, having not been identified by Dritschel (1990), is a distinct

regime in the Kida vortex model. It is therefore seen that there is a strong link be-

tween vortex behaviour in the topographically forced model and that predicted by

the Kida model.

Panel B of Fig. 4.7 shows contours of the maximum disturbance amplitude Amax

for a range of parameter values (Ωb, F ) in the fully nonlinear topographically forced

model. For small values of the forcing parameter F , the peak in Amax occurs near

Ωb = Ω0 as predicted by linear theory. However, as the forcing parameter F increases,

the location of the peak in Amax migrates to the right, away from Ωb = Ω0. The
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Figure 4.7: Panel A: contours of the maximum disturbance amplitude Amax as a
function of background rotation Ωb and forcing parameter F for the Kida model.
The region in which Amax > 2 is shaded, and no contours are shown in this region.
Panel B: as panel A but for the topographically forced fully nonlinear numerical model
when B = 0. Experiments which are shown in Fig. 4.8 are marked by crosses. The
region in which Amax > 1 is shaded. Panel C: contours of κmax as a function of Ωb

and F for the topographically forced fully nonlinear numerical model with k = 2 and
B = 0. Panel D: as panel C, but for κmin. The region in which κmin < −0.6, and
a vortex split is detected, is shaded. In all panels, dashed lines give the location of
regime boundaries in the Kida vortex model, the dotted line shows Ω0 = −0.25 and
contours are shown at intervals of 0.1. In panels B-D, the heavy solid line gives the
location of peak Amax which is discussed in chapter 5.
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migration of the peak in Amax closely follows the curved anticlockwise rotation regime

boundary of the Kida vortex model, with only small differences between the two at

even the largest values of F . This difference between the Kida vortex model and

the topographically forced model once F becomes large is to be expected, as the

increasingly disturbed vortex states which correspond to such large forcing amplitudes

are expected to outgrow the horizontal length scales over which the Kida strain acts

as a good approximation to the topographic forcing (see Fig. 4.5).

In the region of parameter space to the right of the curved Kida regime boundary

there is very good agreement between Amax in the topographically forced model and

Amax as predicted by the Kida vortex model shown in panel A. In the region to the

left of the curved Kida regime boundary, the values of Amax differ between the two

models. However, there is still a good qualitative agreement such that when F is fixed,

Amax decreases as Ωb moves away from the the curved Kida regime boundary to more

negative values. Furthermore, in both panels Amax values to the left of the curved

Kida regime boundary are markedly higher than those to the right of the boundary.

As these larger values of Amax correspond to vortex states which are approximately

elliptical and with large aspect ratio, which are known to be linearly unstable to

small perturbations (Dritschel 1986; Guo et al. 2004; Love 1893), it is expected that

this region of parameter space will be populated by unstable vortex behaviour in the

topographically forced model.

Panels C and D show the maximum and minimum values of the κ4 parameter

observed in each experiment during the vortex evolution. It is worth noting again

that by design, κ4 = 0 for both an undisturbed circular vortex with uniform interior



Chapter 4: Single Layer Shallow Water Model of Vortex-Splitting: the Kida Vortex
Approximation 157

vorticity, and for an elliptical vortex. Therefore, κmax ≥ 0 and κmin ≤ 0. It is possible

to observe vortex evolution exhibiting both large positive values of κmax, indicating

intense filamentation of the vortex, and large negative values of κmin, indicating the

vortex has become pinched. One such example would be a vortex which splits before

undergoing intense filamentation and mixing with the background flow.

Looking at panels C and D, it is clear that large positive values of κmax and large

negative values of κmin only occur to the left of the curved Kida regime boundary.

That is, κ4 remains almost zero throughout the vortex evolution in the region to

the right of the curved regime boundary, indicating that the vortex remains elliptical

at all times in this region. This behaviour is hinted at by the stability analysis of

Dritschel (1990) for the Kida vortex model, as summarized schematically in panel B

of Fig. 4.2. That is, stability of the Kida vortex model in this region of parameter

space seems to imply stability of the topographically forced vortex in the same region.

In panel C, large values of κmax observed to the left of the unstable region indicate

that vortex instability in the topographically forced model leads to strong vortex

filamentation for these experiments. For the values of forcing parameter F shown

here, large negative values of κmin are only observed in the region between the curved

Kida regime boundary and the vertical (clockwise/oscillating) regime boundary. In

particular, vortex splits, defined as occurring when κmin < −0.6, are only observed

in a narrow wedge of parameter space immediately to the left of the curved Kida

regime boundary, and only for F > 0.05. As F increases, the vortex split sub-regime

widens, indicating that values of Ωb further from the curved boundary will also lead

to vortex-splitting. Low values of κmax in this vortex-splitting sub-regime indicate
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that in this region, instability manifests itself primarily as large scale splitting of the

vortex, rather than a combination of vortex-splitting and vortex filamentation. This

is a direct consequence of the unstable nature of an approximately elliptical vortex

state with large aspect ratio, and these are the states which are observed in this region

of parameter space, as shown by the large values of Amax in panel B of Fig. 4.7.

As previously discussed, nonlinear instability of a highly elongated elliptic vortex

leads to vortex-splitting, corresponding to growth of elliptic azimuthal wavenumber-2

disturbances on the vortex edge. For less extreme aspect ratios, nonlinear instability

occurs due to growth of elliptic azimuthal wavenumber-4 disturbances, leading to

filamentation of the vortex (Dritschel 1986).

Vortex structure and evolution

It is now useful to compare the vortex behaviour and instabilities predicted by

Fig. 4.6 and Fig. 4.7, with actual observations of the vortex evolution during the

experiments. In order to do this, a phase space representation of the vortex motion is

obtained by introducing the variables X = (re−r−1
e ) cos 2φe and Y = (re−re) cos 2φe

(Dritschel 1990). The different categories of vortex behaviour are then well illustrated

by plotting trajectories in (X, Y ) phase-space.

Fig. 4.8 shows snapshots of vortex evolution for each of the types of classification

appearing in Fig. 4.6, and Fig. 4.9 shows the corresponding trajectories of X =

(re − r−1
e ) cos 2φe and Y = (re − r−1

e ) sin 2φe over the vortex evolution. Note the

different range for the (X, Y )-axes in each of the panels in Fig. 4.9. For the quasi-

periodic motion exhibited by the topographically forced model in panels A-E, the
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Figure 4.8: Snapshots of vortex evolution in the fully nonlinear numerical model
when B = 0 for the experiments marked by crosses in panel A of Fig. 4.7. Panel A:
evolution classified as anticlockwise rotation when F = 0.062 and Ωb = −0.05. Panel
B: evolution classified as oscillating/other when F = 0.027 and Ωb = −0.22. Panel
C: evolution classified as clockwise rotation when F = 0.045 and Ωb = −0.29. Panel
D: evolution classified as highly disturbed clockwise rotation when F = 0.089 and
Ωb = −0.27. Panel E: evolution classified as highly disturbed oscillating/other when
F = 0.062 and Ωb = −0.20. Panel F: evolution classified as a vortex-splitting event
when with F = 0.062 and Ωb = −0.12.
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Figure 4.9: Phase plots of X = (re − r−1
e ) cos 2φe and Y = (re − r−1

e ) sin 2φe over
the vortex evolution for the experiments marked by crosses in panel A of Fig. 4.7.
Predictions for periodic evolution in the Kida vortex theory are shown by thick solid
lines. Results from numerical experiments in the topographically forced model when
B = 0 are shown by dashed lines and boxes. Boxes are shown for every fourth time
step, with filled boxes at t = 0, 20, 40. For the experiment in panel B, the maximum
time of the experiment is t = 60.
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(X, Y ) trajectory represents at least one full period.

In panel A, the vortex undergoes anticlockwise rotation while maintaining an

elliptic shape of varying aspect ratio, with the time taken for one complete revolution

being approximately t = 22 as seen from panel A of Fig. 4.9.

Oscillating behaviour is observed in panel B, with the maximum aspect ratio of

the vortex being much greater than that seen in panel A, even though the forcing

parameter F is much smaller. In terms of the (X, Y ) trajectory in panel B of Fig. 4.9,

the oscillatory behaviour appears as a dip in the trajectory near to the origin. The

shape of the vortex snapshot at t = 36 indicates that the tips of the major axes are

beginning to roll up, and that the structure is unstable.

Clockwise rotation, and highly disturbed clockwise rotation are shown in panels

C and D. It is seen from Fig. 4.9 that the vortex in panel C completes one full

revolution at approximately t = 32, and in panel D at approximately t = 24. In both

cases, vortex snapshots exhibit unstable behaviour of the vortex, with the instability

being characterized by a growth of elliptical azimuthal wavenumber-4 disturbances

on the vortex edge, leading to shedding of vorticity from the ends of the ellipse major

axes (see, for example, Fig. 12c of Dritschel 1986). Similar behaviour is observed in

panel E, classified as highly disturbed oscillatory motion. The vortex filamentation

observed in panels C-E is in agreement with the large positive of values of κmax for

these experiments, as seen in panel C of Fig. 4.7.

In panel F of Fig. 4.8, snapshots indicate that the aspect ratio of the elliptical

vortex becomes increasingly large, while exhibiting very little change in orientation,

remaining almost fixed in relation to the topographical forcing. From the (X, Y )
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trajectories in panel F of Fig. 4.9, it is seen that up until t ≈ 24 the evolution of

the vortex is roughly the same as that predicted by the Kida vortex. However, the

snapshots show that by t = 28 an elliptical azimuthal wavenumber-2 disturbance

is growing on the vortex edge (for example, Fig. 12a of Dritschel 1986) and the

vortex becomes pinched. As indicated by the large negative value taken by κmin

for this experiment, growth of this disturbance results in a complete split of the

vortex into two daughter vortices of comparable size. Although not shown, these

daughter vortices then proceed to rotate clockwise about their common centroid. This

splitting behaviour, in which the vortex orientation becomes fixed with respect to the

topographical forcing while becoming increasingly elliptical, followed by a complete

split of the vortex into two fragments, is highly reminiscent of the behaviour observed

in the northern hemisphere polar vortex during vortex-splitting events, as seen in

chapter 2.

4.6 Conclusions

In summarizing the results presented in this chapter, each of the questions Q1-Q3

presented as part of the introduction shall be addressed individually.

Q1: vortex-splitting in a single layer stratospheric model

In the topographically forcing shallow water model, in terms of vortex evolution,

large values of Amax are observed as an elongated elliptical vortex. Dritschel (1986)

showed that in the absence of background flow, very elongated elliptical vortices

(re . 1/6) are unstable to elliptic azimuthal wavenumber-2 disturbances, the growth
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of which pinches the vortex around its centre, eventually leading to vortex-splitting.

For elliptical vortices which are moderately elongated (1/6 . re . 1/5), the instability

of elliptic azimuthal wavenumber-4 disturbances dominate, leading to filamentation

of vorticity from the ends of the ellipse major axes.

One expectation is that the unstable regimes of the topographically forced model,

regions in which Amax is largest, will exhibit vortex-splitting instability, and regions

with moderate to large Amax will exhibit instability dominated by filamentation. The

numerical model results confirm that this is indeed the case, with vortex-splitting

behaviour observed near the curved regime boundary, where Amax values are largest,

and vortex filamentation behaviour observed in the unstable regimes away from the

curved regime boundary.

Resonance alone is not sufficient for vortex-splitting behaviour. For vortex-splitting,

Ωb must be sufficiently close to resonance and the forcing F must be sufficiently large.

For the choice of B = 0 used in this chapter, it was seen that the forcing parameter F

must exceed 0.05 for vortex-splitting. On the other hand, as F increases, the range

of values for Ωb resulting in vortex-splitting broadens, and splitting can occur further

from resonance.

Q2: Excitation of a linear resonance and the role of nonlinearity

In the topographically forced model with B = 0, for small values of the forcing

parameter F , the peak in Amax is seen to occur when Ωb = Ω0 as predicted by a res-

onance of free-travelling small amplitude waves with the background flow. However,

as F increases, the location of the peak in Amax migrates from Ω0. This is due to
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nonlinear effects, which modify the frequency of large amplitude free-travelling waves

away from that predicted by linear theory.

This migration of Amax is accurately predicted by the curved Kida regime bound-

ary when B = 0 in the topographically forced model. This is due to the quasi-

stationary behaviour of vortex states lying on this curved regime boundary in the

Kida model, behaviour which is a necessary condition for resonance of the vortex

with the background flow.

In chapter 5, weakly nonlinear theory is used to make quantitative predictions

of the effects of nonlinearity on the migration of resonance observed in this chapter.

This is particularly important for cases when B 6= 0, where no direct comparison

exists between the topographically forced model and the Kida vortex.

Q3: The Kida vortex model approximation and stability

The results of the previous section have shown that the Kida vortex model gives

excellent predictions of the behaviour of an initially circular vortex subject to topo-

graphic forcing in a quasi-geostrophic shallow water model.

In the barotropic shallow water model with B = 0 (which is equivalent to purely

two-dimensional fluid flow) and for small forcing parameter F , the behaviour classifi-

cation for the vortex evolution is almost exactly as predicted by the Kida model. This

agreement is also observed for large forcing amplitudes should the flow parameters

(Ωb, F ) lie in the anticlockwise rotation regime of the Kida model.

The stability of the topographically forced vortex can also be accurately predicted

by analogy with the stable and unstable regimes of the Kida model. That is, anti-
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clockwise rotating vortex states in the shallow water model are seen to be stable

throughout their evolution, remaining almost elliptical at all times, as predicted by

the stability of this regime in the Kida vortex model. In contrast, for flow parameters

(Ωb, F ) lying in the clockwise rotation, oscillating and extending regimes, which are

linearly unstable in the Kida vortex model, vortex evolution in the topographically

forced model is also unstable, with both vortex filamentation and vortex-splitting

type behaviour.

It has also been shown that for any choice of parameters (Ωb, F ), the maximum

aspect ratio predicted by the Kida vortex model offers an insight into the maximum

amplitude Amax of wave-like disturbances to the topographically forced vortex. In

both models, values of Amax are largest in regimes to the left of the curved Kida regime

boundary, with a jump in Amax at the curved boundary to much smaller values in

the anticlockwise rotation regime on the right.



Chapter 5

Single Layer Shallow Water Model

of Vortex-Splitting: Weakly

Nonlinear Theory

5.1 Introduction

In chapter 4 it was shown that regimes of vortex behaviour in the Kida vortex

model (Kida 1981) give accurate predictions for the behaviour of a circular vortex

subject to forcing from topography. In particular, it was seen that the boundary

between the anticlockwise rotation regime and oscillation or extension regimes in the

Kida vortex system also plays a critical role in the topographically forced system.

That is, forcing parameters (Λ,Ω) belonging to the linearly stable anticlockwise ro-

tating regime in the analogous Kida vortex problem lead to anticlockwise rotating

elliptical vortex states in the topographically forced system. Similarly, (Λ,Ω) belong-

166
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ing to the linearly unstable regimes in the analogous Kida vortex problem lead to

significant deformation of the circular vortex, in some cases resulting in a complete

split of the vortex into two smaller fragments.

This chapter will investigate the possible role of a self-tuning resonance in explain-

ing the abrupt transition between stable and unstable observed vortex evolution in the

topographically forced model. It will be shown that the topographically forced vor-

tex can be viewed as a forced weakly nonlinear oscillator, and consequently a regime

boundary in the topographically forced system can be successfully predicted. This

regime boundary in the nonlinear oscillator occurs as a result of initially off-resonant

waves on the vortex edge self-tuning towards resonance. The weakly nonlinear pre-

dictions for self-tuning resonance are not limited to disturbances exhibiting 2-fold

symmetry as typified by the elliptical vortex of chapter 4, but are shown to be valid

for any disturbances exhibiting k-fold symmetry.

The chapter is structured as follows. In section 5.2.3, velocity fields are derived

giving the velocity at points inside and outside a perturbed circular vortex in a quasi-

geostrophic shallow water model. These velocity fields are then used in section 5.3

to derive a weakly nonlinear dispersion relation for wave-like disturbances on the

vortex edge in the presence of a rotating background flow. The dispersion relation is

then used in section 5.4 to derive theoretical predictions for the conditions leading to

resonant wave growth in a linear, and then weakly nonlinear, shallow water model in

the presence of topographic forcing. In the results sections, these predictions are used

to interpret the findings of chapter 4, and are then used to interpret the results from

two new sets of model runs. Finally, the conclusions of the chapter are presented.
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5.2 Vorticity induced velocity fields in the single

layer quasi-geostrophic f-plane

5.2.1 A uniform vortex patch in the shallow water equations

As discussed in chapters 3 and 4, in the shallow water f -plane representation of

an idealized vortex patch, in the presence of topographic forcing hT (x), the stream-

function ψ is given in terms of the PV q as

∇2
x
ψ − L−2

R ψ +
f0hT
H

+ f0 =






f0 + ∆b + ∆ x ∈ D

f0 + ∆b x /∈ D.

(5.1)

In equation (5.1), D is the patch interior, LR the Rossby radius of deformation, H the

reference depth of the single layer model, f0 the Coriolis parameter evaluated at the

pole, ψ the streamfunction of the flow, ∆ the uniform PV anomaly inside the vortex,

and ∇2
x

the two-dimensional horizontal Laplacian in terms of the planar coordinates

x. The parameter ∆b represents a solid body rotation which is added to the flow.

Nondimensionalizing equation (5.1) in the same way as section 4.4 in chapter 4,

using x = a0x̃, t = t̃/∆, q = q̃/∆ and ψ = ∆a2
0ψ̃ where a0 is a typical vortex radius,

gives

∇2
x̃
ψ̃ − B2ψ̃ + h̃T (x̃) = q̃ =






ξb + 1 x̃ ∈ D̃

ξb x̃ /∈ D̃.

(5.2)

with B = a0/LR defined as the inverse of the nondimensional Rossby radius. The

nondimensionalized background rotation is ξb = ∆b/∆, and is related to the angular

velocity of the solid body rotation Ωb by ξb = 2Ωb. In the interests of clarity, in the
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rest of this chapter all tildes will be omitted, and all variables are assumed to have

been nondimensionalized as described above.

The linear property of the operator in (5.2) enables the streamfunction and PV

of the flow to be partitioned into a component due to the disturbed vortex (ψd, qd),

a component due to the solid body rotation (ψb, qb) and a component due to the

topographic forcing (ψT , qT ) satisfying

∇2ψd − B2ψd = qd =






1 x ∈ D

0 x /∈ D,

(5.3)

∇2ψb − B2ψb = qb = ξb, (5.4)

∇2ψT − B2ψT = qT = −hT (x), (5.5)

where ψ = ψd + ψb + ψT and q = qd + qb + qT (see 4.4).

The topography considered in this chapter is of the same form as the nondimen-

sional topography appearing in equation (5.5), and is given again for convenience

as

hT (r, φ) = HJk(λr) exp{ikφ}, (5.6)

where (r, φ) are polar planar coordinates. Here, H is a nondimensional topographic

forcing height, λ a nondimensional radial wavenumber for the topography and k an

azimuthal integer wavenumber.
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5.2.2 Velocity due to a uniform patch without topography

Considering a single vortex patch in the nondimensional system with interior area

D, the streamfunction ψd(x, t) induced in the flow by the vortex patch is found by

inverting the operator in (5.3) giving

ψd(x, t) =

∫∫

D

G(x,x1)d
2x1. (5.7)

In (5.7), the Green’s function G(x,x1) for the shallow water model is defined as

satisfying

∇2G− B2G = δ(x − x1),

giving

G(x,x1) = − 1

2π
K0 (B|x − x1|) , (5.8)

where K0 is the zero order modified Bessel function of the second kind.

An approach analogous to that of Su (1979) is now adopted in order to derive

an integral expression for the velocity induced by the vortex patch at any point in

the fluid. Utilizing the relationship between the streamfunction and the velocity

ud(x, t) = −∇×ψdk, in conjunction with Green’s Theorem in the plane, the integral

(5.7) yields an expression for the velocity ud in terms of an integral around the patch

boundary ∂D

ud(x, t) = −
∮

∂D

t̂(x1)G(x,x1)ds1, (5.9)

where t̂(x1) is the unit tangent vector counterclockwise along the boundary. Substi-

tuting t̂(x1)ds1 = dx1 and letting x1 = r(φ) cosφi+r(φ) sinφj, (5.9) can be rewritten
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as

ud(x, t) = −
∫ 2π

0

G(x,x1) ×

[
(r′(φ) cosφ− r(φ) sinφ) i + (r′(φ) sinφ+ r(φ) cosφ) j

]
dφ,

= −
∫ 2π

0

G(x,x1)
(
r(φ)′r̂1 + r(φ)φ̂

)
dφ. (5.10)

By taking the dot product of (5.10) with r̂ = cos θi + sin θj and θ̂ = − sin θi + cos θj,

the azimuthal and radial velocities u = uθ̂ + rr̂ are given as

ud(x, t) =

∫ 2π

0

G(x,x1) (−r′(φ) sin (θ − φ) + r(φ) cos (θ − φ)) dφ, (5.11)

vd(x, t) =

∫ 2π

0

G(x,x1) (r′(φ) cos (θ − φ) + r(φ) sin (θ − φ)) dφ. (5.12)

It is now useful to define the function Tn(r1, r2) defined by

Tn(r1, r2,B) =






In(Br1)Kn(Br2) r1 < r2

Kn(Br1)In(Br2) r2 < r1

where In is the order n modified Bessel function of the first kind. For r(θ) and

r(φ) shown in the schematic in Fig. 5.1, it is therefore seen that the form of

T (r(θ), r(φ),B) is dependent on whether r(φ) < r(θ) or r(θ) < r(φ). The modi-

fied Bessel function in (5.8) can be expressed using Graf’s formula (Watson 1944,

§11.3) as the infinite sum

K0 (Bw) =
∞∑

n=−∞

Tn
(
r(φ), r(θ),B

)
cosn(θ − φ). (5.13)
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φ

r(φ)

θ

r(θ)

Figure 5.1: Schematic of a disturbed vortex boundary given by r(φ) = 1 +A cos(kφ)
with A = 0.15 and k = 5. The region enclosing all points r(θ) which are not wholly
inside or outside the boundary lies between the dashed lines. The dotted line shows
r = 1. It is seen that r(θ) < r(φ) or r(θ) > r(φ) depending on the angle φ.
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where w =
√
r(φ)2 + r(θ)2 − 2r(φ)r(θ) cos(θ − φ) and µ = θ − φ. Substitution of

(5.8) and (5.13) into the integral expressions for the azimuthal and radial velocities

then gives

ud(x, t) =
1

4π

∞∑

n=−∞

∫ 2π

0

Tn
(
r(φ), r(θ),B

)
×

[
r′(φ) (sin [(n− 1)µ] − sin [(n+ 1)µ])

+ r(φ) (cos [(n− 1)µ] + cos [(n+ 1)µ])
]
dφ, (5.14)

vd(x, t) =
1

4π

∞∑

n=−∞

∫ 2π

0

Tn
(
r(φ), r(θ),B

)
×

[
r′(φ) (cos [(n+ 1)µ] + cos [(n− 1)µ])

+ r(φ) (sin [(n+ 1)µ] − sin [(n− 1)µ])
]
dφ. (5.15)

Utilizing the fact thatKn = K−n and In = I−n, the infinite summation can be reduced

to a summation over the positive integers n ≥ 2 only, that is

∞∑

n=∞

InKn [cos(n + 1)µ+ cos(n− 1)µ] = 2I1K1

+2
∞∑

n=2

(InKn + In−2Kn−2) cos(n− 1)µ,

and

∞∑

n=∞

InKn [sin(n+ 1)µ+ sin(n− 1)µ] = 2
∞∑

n=2

(InKn + In−2Kn−2) sin(n− 1)µ,
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the velocity integrals (5.14) and (5.15) are given in final form as

ud(x, t) =
1

2π

∫ 2π

0

T1

(
r(φ), r(θ),B

)
r(φ)dφ

+
1

2π

∞∑

n=2

{∫ 2π

0

[
Tn
(
r(φ), r(θ),B

)
+ Tn−2

(
r(φ), r(θ),B

)]
×

r(φ) cos [(n− 1)(θ − φ)] dφ

+

∫ 2π

0

[
Tn
(
r(φ), r(θ),B

)
− Tn−2

(
r(φ), r(θ),B

)]
×

r′(φ) sin [(n− 1)(θ − φ)] dφ

}
,

(5.16)

vd(x, t) =
1

2π

∫ 2π

0

T1

(
r(φ), r(θ),B

)
r′(φ)dφ

+
1

2π

∞∑

n=2

{∫ 2π

0

[
Tn−2

(
r(φ), r(θ),B

)
+ Tn

(
r(φ), r(θ),B

)]
×

r′(φ) cos [(n− 1)(θ − φ)] dφ

+

∫ 2π

0

[
Tn−2

(
r(φ), r(θ),B

)
− Tn

(
r(φ), r(θ),B

)]
×

r(φ) sin [(n− 1)(θ − φ)] dφ

}
.

(5.17)

Therefore, the velocity at any point x in the domain can be derived by evaluating the

integrals (5.16) and (5.17) around the vortex boundary.
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5.2.3 Velocities resulting from infinitesimal weakly nonlinear

perturbations of a circular vortex

The integral expressions for the azimuthal and radial velocities given in (5.16) and

(5.17) respectively are now used to derive the velocity field due to weakly nonlinear

perturbations of a circular vortex patch of unit radius with unit interior vorticity.

Without loss of generality the vortex patch is taken to be centred at the origin and the

distance between the origin and a general point x1 = r(φ)r̂1 on the vortex boundary

is given by

r(φ) = 1 + ǫα1 exp{ikφ} + ǫ2α2 exp{2ikφ} + ǫ3α3 exp{3ikφ}, (5.18)

where ǫ ≪ 1, αi are complex coefficients and it is implied that the real part of r(φ)

is taken. Note that in the dimensional system the vortex has radius a0, the length

scale used when performing the nondimensionalization.

Consider a reference point in the domain x = rr̂. It is necessary to demand that

x be wholly inside or outside the perturbed vortex boundary ∂D, such that r can

be taken to be either r < r(φ) or r > r(φ) for every 0 ≤ φ < 2π in the integrals

of (5.16) and (5.17). This is shown in schematic 5.1 where any r lying in the region

enclosed by the two dashed lines can be seen to be either inside or outside of the

vortex boundary depending on the angle φ. Choosing r lying wholly inside or outside

the vortex boundary, the velocity at any point x in the domain can be expressed as

a weakly nonlinear asymptotic expansion of the form

ud = u0 + ǫu1 + ǫ2u2,

vd = ǫv1 + ǫ2v2 + ǫ3v3.
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Evaluating the integrals in (5.16) and (5.17) when r < r(φ) gives

u0 = I1(Br)K1(B), (5.19)

u1 = −Bα1

2
Kk(B)

(
Ik−1(Br) + Ik+1(Br)

)
exp{ikθ}, (5.20)

u2 = −Bα2

2
K2k(B)

(
I2k−1(Br) + I2k+1(Br)

)
exp{2ikθ}

+
B2α2

1

32k

(
I2k+1(Br) + I2k−1(Br)

)
×

(
(2k + 1)K2k−1(B) + (2k − 1)K2k+1(B)

)
exp{2ikθ}

+
B|α1|2

4
I1(Br)

(
BK1(B) −K0(B)

)
, (5.21)

and

v1 =
ikα1

r
Ik(Br)Kk(B) exp{ikθ}, (5.22)

v2 = − i

8r

[
Bα2

1I2k(Br) ((2k − 1)K2k+1(B) + (2k + 1)K2k−1(B))

− 16kα2I2k(Br)K2k(B)
]
exp{2ikθ}, (5.23)

v3 = −iBᾱ1α2

4r
Ik(Br)

[
(k − 1)Kk+1(B) + (k + 1)Kk−1(B)

]
exp{ikθ}
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− ik|α1|2α1

16r

[
BIk(Br)

(
Kk−1(B) +Kk+1(B)

)

− 2
(
k2 + B2

)
Ik(Br)Kk(B)

]
exp{ikθ}

− iBα1α2

4r
I3k(Br)

[
(3k − 1)K3k+1(B) + (3k + 1)K3k−1(B)

]
exp{3ikθ}

− ikα3
1

16r

[
BI3k(Br)

(
K3k−1(B) +K3k+1(B)

)

− 2
(
(3k)2 + B2

)
I3k(Br)K3k(B)

]
exp{3ikθ}

+
3ikα3

r
I3k(Br)K3k(B) exp{3ikθ}. (5.24)

Similarly, taking r > r(φ) gives

u0 = K1(Br)I1(B), (5.25)

u1 =
Bα1

2
Ik(B)

(
Kk−1(Br) +Kk+1(Br)

)
exp{ikθ}, (5.26)

u2 =
Bα2

2
I2k(B)

(
K2k−1(Br) +K2k+1(Br)

)
exp{2ikθ}

+
B2α2

1

32k

(
K2k+1(Br) +K2k−1(Br)

)
×

(
(2k + 1) I2k−1(B) + (2k − 1) I2k+1(B)

)
exp{2ikθ}
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+
B|α1|2

4
K1(Br)

(
BI1(B) + I0(B)

)
, (5.27)

and

v1 =
ikα1

r
Kk(Br)Ik(B) exp{ikθ}, (5.28)

v2 =
i

8r

[
Bα2

1K2k(Br) ((2k − 1) I2k+1(B) + (2k + 1) I2k−1(B))

+ 16kα2K2k(Br)I2k(B)
]
exp{2ikθ}, (5.29)

v3 =
iBᾱ1α2

4r
Kk(Br)

[
(k − 1) Ik+1(B) + (k + 1) Ik−1(B)

]
exp{ikθ}

+
ik|α1|2α1

16r

[
BKk(Br)

(
Ik−1(B) + Ik+1(B)

)

+ 2
(
k2 + B2

)
Kk(Br)Ik(B)

]
exp{ikθ}

+
iBα1α2

4r
K3k(Br)

[
(3k − 1) I3k+1(B) + (3k + 1) I3k−1(B)

]
exp{3ikθ}

+
ikα3

1

16r

[
BK3k(Br)

(
I3k−1(B) + I3k+1(B)

)

+2
(
(3k)2 + B2

)
K3k(Br)I3k(B)

]
exp{3ikθ}
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+
3ikα3

r
K3k(Br)I3k(B) exp{3ikθ}. (5.30)

Once again, it is implied that the real part is taken in all velocity components given

in (5.19)-(5.30).

Comparisons of the weakly nonlinear velocity calculations with the actual velocity

observed in a fully nonlinear shallow water model are shown in Figs. 5.2-5.4. In each of

these figures, the top six panels show the coefficients u(i) and v(i) of the ith harmonic

in the discrete Fourier transform of ud and vd

ud = u(0) + u(1) exp{ikφ} + u(2) exp{2ikφ} + . . . , (5.31)

vd = v(1) exp{ikφ} + v(2) exp{2ikφ} + v(3) exp{3ikφ} + . . . , (5.32)

with the weakly nonlinear predictions denoted by solid lines and the fully nonlinear

model results by diamonds and dashed lines. The bottom two panels show contours

of the azimuthal (bottom left) and radial (bottom right) velocity fields as a function

of distance from the origin r and azimuthal angle φ.

Fig. 5.2 shows the velocity components in (5.31) and (5.32) when B = 0 and

ǫ = 0.15, corresponding to the purely two-dimensional perturbed vortex problem

discussed by Su (1979). For the harmonic coefficients u(i) and v(i) and full velocity

fields ud and vd, results are only shown for points which are wholly inside or outside

the vortex patch. For the full velocity fields ud and vd, the region between the heavy

solid lines denotes the region between the dashed lines in Fig. 5.1. There is excellent

agreement between the Fourier coefficients u(i) and v(i) and the total azimuthal and

radial velocity fields ud and vd for the weakly nonlinear theory and the fully nonlinear
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numerical model. This agreement is also seen when B = 1.0 in Fig. 5.3 and when

B = 3.0 and ǫ = 0.10 in Fig. 5.4.

The velocity expansions given above are formally valid for all values of B as ǫ→ 0.

However, when considering finite amplitude disturbances, for the higher order terms

in ǫ to remain small in the truncated expansions for ud and vd, we require that

ǫB ≪ 1. The lower value of ǫ = 0.10 used in the calculations of Fig. 5.4 when B = 3

ensures that ǫB ≪ 1, such that the weakly nonlinear theory is expected to give a

good approximation to the actual velocity.

5.3 Weakly nonlinear dispersion relation for in-

finitesimal disturbances

In this section, we derive a dispersion relation for weakly nonlinear wave-like

perturbations to the edge of an unforced circular vortex. Considering disturbances of

the form given in (5.18), translation of the wave around the vortex edge is introduced

using a first harmonic wave frequency ω such that

r(φ, t) = 1 + η(φ, t),

where

η(φ, t) = ǫα1 exp{ik (φ− ωt)}

+ ǫ2α2 exp{2ik (φ− ωt)}

+ ǫ3α3 exp{3ik (φ− ωt)}, (5.33)
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Figure 5.2: Velocity comparisons for B = 0, k = 3, ǫ = 0.15, α1 = 1.13, α2 = 1.67 and
α3 = 0.83. Top Panels: coefficients u(i) and v(i) of the ith harmonic in the Fourier
decomposition of the azimuthal and radial velocities for i = 1, 2, 3. Weakly nonlinear
predictions are given by solid lines, fully nonlinear results by diamonds and dashed
lines. Bottom panels: contours of the azimuthal and radial velocity fields ud and vd as
a function of azimuthal and radial coordinates (φ, r) for the weakly nonlinear theory
(solid lines) and fully nonlinear numerical model (dashed lines). Contours are shown
at intervals of 0.05 for ud and 0.01 for vd. Shaded regions in the contour plot for vd
denote regions in which the radial velocity is negative.
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Figure 5.3: As 5.2 but for B = 1.0.
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Figure 5.4: As 5.2 but for B = 3.0 and ǫ = 0.10. Contours are shown at intervals of
0.005 for vd.
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with αi being complex amplitudes and with the real part implied. It is straightforward

to show that the weakly nonlinear ud and vd velocity fields corresponding to this

disturbance are identical to those calculated for (5.18) but with exponential terms

modified to include the linear wave frequency as seen above. The frequency is now

expressed as an expansion in terms of the small parameter ǫ, that is ω = ω0 + ǫ2ω2.

In addition to the velocities (ud, vd) due to the disturbed vortex patch, the velocity

due to a solid body rotation of the flow corresponding to the streamfunction ψb

satisfying equation (5.4) is

ub = 2ΩbI1(Br)K1(B). (5.34)

In a similar vein to the first harmonic wave frequency, it is convenient to express Ωb

as an expansion in powers of ǫ using Ωb = Ω
(0)
b + ǫ2Ω

(2)
b .

The boundary of the vortex acts as a material boundary for the flow such that

the fully nonlinear kinematic condition

∂η

∂t
+
ud + ub

r

∂η

∂φ
= vd on r = 1 + η(φ, t), (5.35)

is satisfied on the vortex edge (note that the absence of topographic forcing means

(uT , vT ) = 0). Using the weakly nonlinear expansions for ud and vd from section 5.2.3

on the vortex edge, along with ub, the kinematic condition on the vortex edge can be

expressed as a weakly nonlinear expansion in powers ǫ.

There is, however, one small complication in using the kinematic condition on the

vortex edge. As discussed in section 5.2.3, the weakly nonlinear analytic forms for the

azimuthal and radial velocities ud and vd are only strictly valid for reference points

either wholly inside or outside the vortex patch, as seen in Fig. 5.1. Therefore, when
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using these weakly nonlinear expansions for ud and vd to calculate velocities on the

vortex edge, questions must be asked as to whether the inner or outer velocity repre-

sentations are used, and even then there may be concerns given that neither expansion

is strictly valid. This consideration was omitted in the work of Su (1979), who used

the inner velocity when deriving the dispersion relation for a perturbed vortex in a

purely two-dimensional vortex model, equivalent to setting B = 0 in our representa-

tion. However, although detailed calculations are not shown here, it is found that the

dispersion relation is independent of the choice of either inner or outer velocity when

representing the actual velocity on the vortex edge in (5.35). Furthermore, Figs. A.1-

A.3 in Appendix A, testing the results of the weakly nonlinear dispersion relation

against a fully nonlinear numerical model, confirm that the frequencies derived using

either the inner or outer velocities agree with results of the fully nonlinear numerical

simulations. A mathematical justification for this interesting property has, as yet,

proved elusive, and has therefore been left to the realm of future study. However,

as Figs. A.1, A.2 and A.3 indicate, we can be confident that the resulting weakly

nonlinear frequencies are correct.

Due to the independence of the final dispersion relation on the choice of either the

inner or outer velocity expansions for ud and vd in (5.35), it is assumed that when

referring to the velocity at the vortex edge a choice is made between the two possible

expansions, and that choice is carried throughout the entire calculation.

Following substitution of the expansions for ud, vd and ub into (5.35) and expand-

ing modified Bessel functions as Taylor series in the vicinity of B, equating powers of

ǫ and exp{ik(φ− iωt)} gives the second harmonic amplitude and first harmonic wave
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frequency as

α2 =
4kBI1K2 + BK2kC2k − 4kIkKk − 4kIkBRk − 8kBΩ

(0)
b I2K1

16k (Pk − P2k)
α2

1, (5.36)

ω0 = I1K1 − IkKk + 2Ω
(0)
b I1K1, (5.37)

ω2 =
B|α1|2

4

[
− 2I1K2 −KkSk + IkRk + I2kR2k + 4Ω

(0)
b I2K1

](
α2

α2
1

)

+

[
8BI0K1 + 11B2I1K1 + BI1K3

− 2BKkSk − 16(k2 + B2)IkKk − 6BIkRk

+
B2

2k
C2kR2k + 6B2Ω

(0)
b I1K1 + 2B2Ω

(0)
b I3K1

] |α1|
32

2

+ 2Ω
(2)
b I1K1, (5.38)

where all modified Bessel functions have been evaluated at B with the following

functions defined in the interests of brevity

Ck = (k + 1)Ik−1 + (k − 1)Ik+1,

Dk = (k + 1)Kk+1 + (k − 1)Kk−1,

Sk = Ik−1 + Ik+1,

Rk = Kk−1 +Kk+1,

Pk = KkIk.
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Verification of these results with a fully nonlinear numerical model can be found in

appendix A. Also, the linear frequency in equation (5.37) is seen to agree with that

already calculated in section 4.4.2 of chapter 4.

It is now useful to consider disturbances which appear stationary in the fixed

frame. By setting ω0 = ω2 = 0 in (5.37) and (5.38), this gives the background

angular velocity components which are required for stationary waves as

Ω
(0)
b = Ω0(k,B) =

IkKk − I1K1

2I1K1
, (5.39)

Ω
(2)
b = Ω2(k,B) = |α1|2

(
8

[
I2
1R1 − 2I2P2k

+ I1

(
S1K1 + SkKk −RkIk −R2kI2k

)](α2

α2
1

)

[
B2I1 (I1K3 −K1I3) − 8BP1 (I0 + BI1) − B2PkI3

+ I1

((
16k2 + 13B2

)
P2k + 6BRkIk + 2BSkKk

+ BR2k (R2k + 2I2k)

)])/(
I1P1

)
. (5.40)

Considering the asymptotic forms of the modified Bessel functions I1 and K1,

as given in equations (4.43) and (4.44), it is straightforward yet lengthy to show

that when B = 0, the wave amplitudes and frequency components of the stationary
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Figure 5.5: Nonlinear component of the background solid body rotation giving sta-
tionary disturbances, Ω2(k,B)/|α1|2, as a function of inverse Rossby radius B shown
for the first 20 azimuthal wavenumbers k ≥ 2.

disturbances agree with those of Su (1979), that is

α2(k, 0) =
2k − 1

4
α2

1,

Ω0(k, 0) = −(k − 1)

2k
,

Ω2(k, 0) =
(k − 1)

4
|α1|2.

One important consideration to the work which follows is whether Ω2 takes both

positive and negative values as the parameters k and B are varied. From Fig. (5.5), it

is seen that for any choice of k and B, Ω2(k,B) is positive. As a result, the background
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rotation leading to stationary disturbances on the vortex edge, Ωb = Ω0 + ǫ2Ω2, will

always be greater than Ω0 for any choice of k or B.

5.4 Wave amplification

5.4.1 Linear resonance

In order to understand and appreciate the role of nonlinearity in determining

the resonant behaviour of a circular vortex subject to topographic forcing, it is first

helpful to investigate a linear model of the response to forcing, analogous to that of

Tung and Lindzen (1979a). We now introduce a topographic forcing

hT (r, φ) = HJk(λr) exp{ikφ}, (5.41)

with corresponding streamfunction ψT which is found by inverting 5.5 giving

ψT (r, φ) = − H
λ2 + B2

Jk(λr) exp{ikφ}, (5.42)

where it is implied that the real part has been taken. Therefore, utilizing the re-

lationship between the streamfunction and the velocity field uT = −∇ψT × k, the

azimuthal and radial velocities induced in the flow by the topography are

uT (r, φ) = − Hλ
λ2 + B2

J ′

k(λr) exp{ikφ}, (5.43)

vT (r, φ) =
ikH

λ2 + B2
Jk(λr) exp{ikφ}. (5.44)

We now consider a system in which an initially circular vortex in a solid body

rotating background flow is subject to topographic forcing of the form (5.41) such
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that the forcing is stationary with respect to the fixed frame of the domain. In the

linear treatment, topographic forcing of the form (5.41) will excite waves on the vortex

edge of the form

η(φ, t) = ǫα1(t) exp{ik(φ− ωt)}, (5.45)

where the linear wave amplitude α1 is allowed to vary as a function of time t.1 Res-

onant excitation of this disturbance occurs when there is no translation of the dis-

turbance relative to the fixed topographic forcing. Therefore, we now set ω = 0 in

(5.45). To investigate linear resonance, we now specify that the topography enter the

analysis at O(ǫ) by setting

H = ǫH0 (5.46)

In order to study the growth of linear waves on the vortex edge, it is necessary

to construct an amplitude equation for α1 describing the evolution of α1 with time

t. As the vortex boundary r = 1 + η(φ, t) acts as a material boundary in the flow,

linearizing the kinematic condition (5.35) on the vortex edge gives

∂η

∂t
+

(ud + ub)

r

∂η

∂φ
= vd + vT on r = 1. (5.47)

Here, the azimuthal and radial velocities

ud = I1K1,

(5.48)

1Formally, the nondimensional wave amplitude and topography should consist of a single nondi-
mensional parameter, rather than ǫ and α1 or H. However, to enable the results of section 5.3 to be
used directly, the form given here has been chosen for convenience.
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and

vd = ikα1(t)IkKk exp{ik(φ− ωt)},

are the velocities due to the disturbed vortex patch in the absence of topographic

forcing and rotating background flow, as given by the expansions in section 5.2.3 with

α1 replaced everywhere by α1(t). The velocity ub = 2ΩbI1K1 is the linear contribution

to the background solid body rotation (5.34), with angular velocity Ωb acting as a

tunable parameter of the system. All modified Bessel functions are evaluated at B.

Solution of the linearized kinematic condition yields an ODE for α1(t)

dα1

dt
+ iqα1 = if,

where

q = 2k
[
Ωb − Ω0(k,B)

]
I1K1, (5.49)

and

f =
kH0

λ2 + B2
Jk(λ). (5.50)

The function Ω0(k,B) is as defined in equation (5.39), and takes a single scalar value

for a particular choice of k and B (i.e. when referring to Ω0 it is assumed to be the

scalar value corresponding to a particular choice of k and B).

Solution of this ODE for α1(t) is straightforward using an integrating factor of

exp{iqt} giving

α1(t) =
f

q

(
1 − e−iqt

)
.
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It is clear from looking at the solution for α1(t) that the system becomes resonant

when the value of the tuning parameter is Ωb = Ω0 for which q = 0. When Ωb 6= Ω0,

the maximum disturbance amplitude max |α1| is found from

|α1| =

∣∣∣∣
f

q

∣∣∣∣ |1 − (cos qt− i sin qt)| ,

=

∣∣∣∣
f

q

∣∣∣∣
√

2 − 2 cos qt,

giving

max |α1| =

∣∣∣∣
2f

q

∣∣∣∣ .

By writing A = ǫα1 and F = ǫf , the maximum disturbance of the first harmonic is

related to the physical forcing amplitude of the system by

Amax =

∣∣∣∣
2F

q

∣∣∣∣ . (5.51)

Contours of the maximum linear amplitude Amax as a function of the topographic

forcing F and background flow tuning parameter Ωb are shown in panel C of Fig. 5.6

for B = 0 and k = 2. The most striking feature is that Amax is symmetric, becoming

infinite when Ωb = Ω0 = −0.25, that is, linear resonance theory predicts that for off

resonant Ωb, the maximum amplitude of linear disturbances at the vortex edge will

be the same irrespective of which side of resonance Ωb lies.

5.4.2 Nonlinear resonance

In the previous section, it was shown that resonant excitation of waves on the

vortex edge in the linearized problem occurs when the tuning parameter Ωb is equal
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Figure 5.6: Contours of max |α1| as a function of topographic forcing f and tuning
parameter Ωb when B = 0 and k = 2. Regions where max |α1| > 2 are shaded.

to Ω0(k,B), the linear component of the background angular velocity for which sta-

tionary disturbances are observed on the vortex edge.

Resonance of waves on the vortex edge is characterized by a significant increase

in the linear wave amplitude α1. When α1 is large, it is to be expected that nonlinear

interactions will become increasingly important. As a result, linear predictions of

resonant wave growth predict the breakdown of the very conditions for which the

linear theory is assumed to be valid. Therefore, in order to gain a more detailed view

of the mechanisms governing resonant wave growth, it is necessary to expand upon

the existing linear theory to investigate the impact of nonlinearity in the system. The

treatment here is similar to that of Plumb (1981), with the notable difference being

that we consider only a single layer model and that the velocities required in the

analysis have already been derived in section 5.2.3 and do not therefore need to be

derived as part of the nonlinear analysis.
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We start by considering a system with topography of the form (5.6) with topo-

graphic streamfunction satisfying (5.5). The resulting azimuthal and radial velocities

are given by (5.43) and (5.43).

It is now useful to define a ‘long time’ variable in the problem by letting T = ǫ2t

such that T ∼ 1 when t ∼ ǫ−2. In a similar way to the linear problem, Rossby waves

excited on the vortex edge by the topography can be expected to exhibit the azimuthal

wavenumber k structure taken in the topography. In addition, the amplitude of all

excited waves are taken to be functions of the long time variable, that is αi(T ).

Therefore, disturbances to the edge of an initially circular vortex which is subject to

topographic forcing of the form (5.6) are given by

η(φ, t, T ) = ǫα1(T ) exp{ik(φ− ωt)}

+ ǫ2α2(T ) exp{2ik(φ− ωt)}

+ ǫ3α3(T ) exp{3ik(φ− ωt)}. (5.52)

Once again, as we are looking for conditions leading to resonance of η with the

topographic forcing, which occurs when the disturbances do not translate relative

to the fixed frame, it is now necessary to set ω = 0 in (5.52). Therefore, the only

time-dependence in η is a dependence on the long time variable, T . In addition, as we

are interested in the nonlinear effects of topography, we now express the topographic

forcing height as

H = ǫ3H0.

Introducing a solid body background rotation to the system with streamfunction

governed by equation (5.4) and angular velocity Ωb, which adds an azimuthal velocity
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ub = 2ΩbI1(Br)K1(B) to the flow, the fully nonlinear kinematic condition on the

vortex boundary becomes

ǫ2
∂η

∂T
+

(ud + ub + uT )

r

∂η

∂φ
= vd + vT on r = 1 + η(φ, T ). (5.53)

In (5.53), azimuthal and radial velocities ud and vd are the velocities induced by the

disturbed vortex in the absence of the topographic forcing and background rotation.

These are therefore just the velocity expansions given in section 5.2.3, with coefficients

αi everywhere replaced by αi(T ). We also adopt the approach of section 5.3 and

express the angular velocity Ωb as a power series in ǫ

Ωb = Ω
(0)
b + ǫ2Ω

(2)
b .

It can immediately be seen that the radial velocity due to the topographic forcing

will appear at O(ǫ3) whereas the azimuthal velocity due to the topographic forcing

will appear at O(ǫ4) due to the fact that ∂η/∂φ is at most O(ǫ).

By expanding the kinematic condition (5.53) in powers of ǫ, to leading order O(ǫ)

we get

Ω
(0)
b = Ω0(k,B),

where Ω0(k,B) is given in equation (5.39). Looking to O(ǫ2) simply re-derives the

expression for α2(T ) in terms of α1(T ) in exactly the same way as shown in equation

(5.36). The long time dependence of η(φ, T ) and the topographic forcing finally enter

the analysis at O(ǫ3) giving

dα1

dT
+
(
Ω

(2)
b − Ω2(k,B)

)
ikα1 =

ikH0Jk(λ)

λ2 + B2
, (5.54)
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where the function Ω2(k,B) is given in equation (5.40). Equation (5.54) is now

rewritten as

dα1

dT
+ iqα1 − iσ(k,B)|α1|2α1 = if, (5.55)

where

q = Ω
(2)
b k,

= ǫ−2
[
Ωb − Ω0(k,B)

]
k,

σ(k,B) =
kΩ2(k,B)

|α1|2
,

f =
kH0Jk(λ)

λ2 + B2
.

The nonlinear ODE in (5.55) is analogous to the forced amplitude equation de-

rived in Plumb (1981, equation 4.25), and describes a forced nonlinear oscillator. To

determine the long time behaviour of α1(T ), it is now necessary to tackle (5.55).

First, it is useful to re-scale (5.55) by taking A = (f/σ)−1/3α1 and τ = (f 2σ)1/3T

giving

dA

dτ
+ iµA− i|A|2A = i, (5.56)

where µ = q/(f 2σ)1/3. Equation (5.56) is an example of a forced weakly nonlinear

oscillator, so by expressing the complex amplitude as A = a(τ) exp{iθ(τ)}, where

a, θ ∈ R, the nonlinear oscillator equation can be rewritten as

[
da

dτ
+ ia

dθ

dτ

]
eiθ + iµaeiθ + ia3eiθ = i.



Chapter 5: Single Layer Shallow Water Model of Vortex-Splitting: Weakly Nonlinear
Theory 197

Multiplying by exp{−iθ} and then equating the real and imaginary parts gives

da

dτ
= sin θ, (5.57)

dθ

dτ
=

cos θ

a
− µ+ a2, (5.58)

which can be combined to give

dθ

da
=

cos θ + a(a2 − µ)

a sin θ
.

In order to integrate this ODE, we make a change of variables using x = cos θ giving

dx

da
+
x

a
= µ− a2,

which can be shown using the integrating factor method to have general solution

x =
µa

2
− a3

4
+
C

a
,

where C is a constant of the integration. As da/dτ = sin θ from (5.57), da/dτ and x

are related through (da/dτ)2 + x2 = 1 giving

(
da

dτ

)2

+

[
µa

2
− a3

4
+
C

a

]2

− 1 = 0. (5.59)

If the vortex is initially circular, then α1 = 0 when t = 0 in the original system,

giving a = 0 and τ = 0 in the rescaled system. Therefore, for the C/a term in (5.59)

to be well behaved when τ = 0, the constant of integration must be C = 0 and

(
da

dτ

)2

+ V (a;µ) = 0, (5.60)

where

V (a;µ) = a2

[
µ

2
− a2

4

]2

− 1. (5.61)



Chapter 5: Single Layer Shallow Water Model of Vortex-Splitting: Weakly Nonlinear
Theory 198

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Disturbance, a

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

V
(a

; µ
)

µ<µ crit µ=µ critµ>µ crit

Figure 5.7: Plots of the potential function V (a;µ) for the weakly nonlinear oscillator
as a function of a for µ < µcrit, µ = µcrit and µ > µcrit. In each case, the heavy
solid line denotes the portion of the V (a;µ) curve corresponding to permitted vortex
evolution.

For a given value of µ, the extremal values of a over the vortex evolution occur when

da/dτ = 0, which is equivalent to finding the roots of the function V (a;µ). This is

similar to the potential function derived in section 4.3.3 of chapter 4 for the Kida

vortex.

Plots of V (a;µ) as a function of a, for three sample values of µ, are shown in

Fig. 5.7. The first thing to notice from the relationship in (5.60) is that in order for

da/dτ to take real values, the function V (a;µ) must be negative. So when analyzing

the behaviour of V (a;µ), it is necessary to restrict our attention to the branches of

V (a;µ) lying in the negative half plane. As a = 0 when τ = 0, it becomes apparent
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Figure 5.8: The maximum disturbance amax as a function of µ. The dotted line
denotes the location of the critical value µ = µcrit.

that the branch of V (a;µ) determining the evolution of the vortex for τ > 0 is the

branch of V (a;µ) lying between a = 0 and the point amax, the smallest positive root

of V (a;µ). For each value of µ in Fig. 5.7, this branch of V (a;µ) is denoted by a

heavy solid line.

Fig. 5.8 shows the value amax varying as a function of µ. It is immediately obvious

that there is a discontinuity in amax at µ = µcrit. For µ < µcrit, amax increases

monotonically, reaching a peak when µ = µcrit. There is then an instantaneous drop

in amax to much smaller values, with amax then decreasing as µ > µcrit increases

further.

An explanation for this discontinuity in amax can be deduced from Fig. 5.7. For
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µ < µcrit, very close to the critical value µcrit, it is seen that a local maximum in

V (a;µ) exists in the negative half-plane. When µ = µcrit, this peak just touches the

a-axis, such that the local maximum is also a root of V (a;µ). For both of the curves

µ < µcrit and µ = µcrit, the maximum in a over the evolution is seen to occur at

a ≈ 2.4. However, as µ increases past µcrit, the local maximum crosses the a-axis

giving a sharp transition to a situation where the smallest root of V (a;µ) now occurs

at a ≈ 1.0. By differentiating V (a;µ) in (5.61) with respect to a, stationary points

are found when

a =
√

2µ or a =

√
2µ

3
.

For real values of a, this implies that stationary points only occur when µ > 0.

Finding the value of V (a;µ) at these stationary points gives

V (
√

2µ) = −1 and V (
√

2µ/3) =
2µ3

27
− 1.

Therefore, a local minimum occurs when a =
√

2µ, and a local maximum when

a =
√

2µ/3. If the local maximum is also a root when the parameter µ = µcrit then

V (
√

2µcrit/3) =
2µ3

crit

27
− 1 = 0,

giving

µcrit =
3
3
√

2
≈ 2.38. (5.62)

So when µ < µcrit, the function V (a;µ) has one real root at amax. When µ > µcrit,

the function V (a;µ) has three real roots, with amax defined as being the smallest of

the three. By rewriting V (a;µ) as

V (a;µ) =
1

16

(
a6 − 4µa4 + 4µ2a2 − 16

)
, (5.63)
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and letting y = a2, the roots are then given by solving the cubic equation

g(y) = y3 − 4µy2 + 4µ2y − 16 = 0. (5.64)

When µ < µcrit Cardano’s formula gives the only real root of (5.64) as

y =
4µ

3
+

2

3

[
µ2
(
27 − µ3 + 3

√
3
√

27 − 2µ3
)−1/3

+
(
27 − µ3 + 3

√
3
√

27 − 2µ3
)1/3

]
.

When µ > µcrit, the smallest root of g(y) is found as

y =
4µ

3
− 4µ

3
cos

[
1

3
arccos

{
µ3 − 27

µ3

}]
.

So the smallest root of V (a;µ), at which the disturbance amplitude a is a maximum,

is

amax =

√
4µ

3
+

2

3

[
µ2
(
27 − µ3 + 3

√
3
√

27 − 2µ3
)−1/3

+
(
27 − µ3 + 3

√
3
√

27 − 2µ3
)1/3

]
,

amax =

√
4µ

3
− 4µ

3
cos

[
1

3
arccos

{
µ3 − 27

µ3

}]
,

when µ < µcrit and µ > µcrit respectively. The maximum amplitude of the first

harmonic of the disturbance in the original system is then given by

max[ǫα1] = ǫ

(
f

σ

)1/3

amax,

=

(
F

σ

)1/3

amax (5.65)

where F = ǫ3f is the rescaled height of the topographic forcing in the nondimension-

alized system.
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5.5 Results

The weakly nonlinear theory of section 5.4 is now used to quantify the impact of

self-tuning resonance on vortex-splitting in a quasi-geostrophic single layer f -plane

model.

5.5.1 Topographic forcing and vortex conditions

The PV in the nondimensional fully nonlinear experiments is governed by equa-

tions (5.3)-(5.5). All experiments are initiated with an initially circular vortex of unit

radius and unit interior vorticity, subject to topographic forcing of the form given

in (5.6). Of the five nondimensional forcing parameters (B,Ωb,H, k, λ), three sets of

experiments were performed with parameter choices:

SWM-1: B = 0 k = 2 λ = 1.162

SWM-2: B = 1.44 k = 2 λ = 1.162

SWM-3: B = 0 k = 3 λ = 2.575

For each set of experiments, the background rotation tuning parameter Ωb and

the topographic height H were varied between model runs.

When presenting the results for each set of experiments, the forcing amplitude is

given in terms of

F =
kHJk(λ)

λ2 + B2
.

For SWM-1 experiments, F is equal to the straining parameter Λ in the Kida vortex

model, as seen in section 4.3 of chapter 4.
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In all experiments, vortex moment diagnostics are calculated as described in sec-

tion 4.5.3 of chapter 4. Finite amplitude disturbances in the numerical experiments

are calculated as described in section 4.5.4 or chapter 3.

5.5.2 Model details and numerical parameters

The contour dynamics numerical method of Dritschel (1988) was used for all exper-

iments (see chapter 3 for an overview of the contour dynamics numerical algorithm).

In all experiments, the node resolution parameter used in the contour dynamics

method of Dritschel (1988) is µ = 0.025, the time interval is dt = 0.05, and the

maximum time of the experiment is tmax = 40. Data are generated at time intervals

of 0.25 nondimensional time units, giving a total of 160 time steps of data.

All vortex moment diagnostics are calculated as given in section 4.5.3 of chapter

4. For the κ4 vortex split diagnostic, the split threshold parameter is µ4 = −0.6,

such that if κmin = min[κ4] < −0.6 a vortex split is identified (see chapter 2.2.4).

When interpreting the κ4 diagnostic, high positive values indicate that the vortex is

undergoing a process of filamentation.

5.5.3 SWM-1 experiments

Experiments were performed for Ωb between -0.30 and 0 at increments of 0.01.

Values of the forcing parameter which are used in the experiments are partitioned

into two sets. The first consists of four experiments representing small F values,

F = [0.00178, 0.00357, 0.00535, 0.00714]. The second set starts at F = 0.00892 and

includes 12 experiments, going up to F = 0.10706 in increments of 0.00892.
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Figure 5.9: Panel A: contours of the maximum disturbance amplitude Amax as a
function of forcing height F and background rotation Ωb for the Kida model. Panel
B: as panel A but for the weakly nonlinear model with k = 2 and B = 0. Panel C:
as panel A but for the linear model with k = 2 and B = 0. In all panels, dashed
lines denote the location of the regime boundaries in the Kida model and dotted
lines denote the location of the linear component of the background rotation Ω0. The
shaded region is where Amax > 2 in Panels A and C and where Amax > 1 in Panel B.
Contours are shown at intervals of 0.1.

Kida, weakly nonlinear and linear model comparisons

Predictions for the maximum disturbance of an initially circular vortex in the

Kida model and linear and weakly nonlinear topographically forced models (referred

to herein as the linear model and weakly nonlinear model in the interests of brevity)

are now discussed. The maximum amplitude Amax as a function of parameters F and

Ωb is shown in Fig. 5.9 for the Kida theory (panel A), the weakly nonlinear theory

(panel B) and the linear theory (panel C).

It is clear that the discontinuity in Amax in the weakly nonlinear model closely

follows the curved regime boundary of the Kida model, as seen in panel B. That is,

for a given forcing height F , very small changes in the background rotation Ωb across

the discontinuity result in sudden increase (or decrease) in the maximum amplitude

Amax.
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This is in stark contrast to the linear theory in which the peak value of Amax

occurs at Ωb = Ω0 for all forcing amplitudes. Also, the peak in Amax is characterized

by a steady increase in Amax as one nears Ωb = Ω0 rather than a sudden jump in

Amax. Therefore, as the forcing amplitude increases, the linear model does not reveal

anything about the migration of the peak response in Amax away from Ω0. Also, at

any given forcing height, the peak Amax in the Kida and weakly nonlinear models

occurs at the line of discontinuity, and is finite. This is once again in contrast to the

linear model in which the peak value of Amax is infinite for all forcing amplitudes.

For disturbances which appear stationary with respect to the topography, the

tuning parameter is Ωb = Ω0 + ǫ2Ω2, where Ω2 > 0 as shown in Fig. 5.5. Therefore,

as resonance occurs when the wave-like disturbance is stationary with respect to the

fixed frame, resonance is expected to occur when Ωb = Ω0 +ǫ2Ω2 > Ω0. This accounts

for the rightward migration of the location at which the peak response occurs in panel

B of Fig. 5.9, and explains why resonance, as indicated by a jump in Amax, does not

occur at all in parameter space where Ωb < Ω0.

The Amax predictions in the region of parameter space to the right of the curved

regime boundary are seen to agree reasonably well between all three models, with

significant differences only appearing in the Kida model at large values of F . In the

region to the left of the curved Kida regime boundary, all three models are seen to

differ somewhat. Although the qualitative behaviour in Amax between the Kida and

weakly nonlinear models agrees, there is a discrepancy in magnitude, with values in

the Kida model exceeding those of the weakly nonlinear model. In this region the

linear model is in poor agreement with the other two models due to the fact that the
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location of the peak in Amax does not migrate from Ωb = Ω0. Another point worth

noting is that the regime boundary between the oscillating and clockwise rotating

regimes in the Kida model has no impact on the behaviour of Amax. That is, without

prior knowledge of this qualitative change in the rotating nature of the vortex, it

would be impossible to identify by looking at the behaviour of Amax alone.

From this comparison in the behaviour of Amax between the three models it is

clear that the predictions of the weakly nonlinear model when k = 2 and B = 0

accurately reproduces the major features of the fully nonlinear Kida model. The

linear theory, while capturing some of the features of the other models at very small

forcing amplitudes, is subject to two significant deficiencies; the location of the peak in

Amax is fixed at Ωb = Ω0, and the peak in Amax is infinite. Therefore, it is anticipated

that the Amax predictions of the weakly nonlinear topographically forced model will

closely resemble those of the fully nonlinear topographically forced model for any

given value of k and B. This prediction is put to the test in the following section.

Weakly nonlinear and fully nonlinear model comparisons

Comparisons can now be drawn between predictions of the maximum disturbance

amplitude Amax in the weakly nonlinear model with the fully nonlinear numerical

model results of chapter 4.

In chapter 4 it was shown that the wave-activity of an initially circular vortex

subject to topographic forcing of the form (5.6) with k = 2 and B = 0 could be

predicted by investigating the behaviour of the curved regime boundary in the Kida

vortex model. In particular, for sufficiently large forcing amplitudes, vortex-splitting
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Figure 5.10: Panel A: contours of the maximum disturbance amplitude Amax as a
function of forcing height F and background rotation Ωb for SWM-1 experiments.
Contours are shown at intervals of 0.1. The shaded region is where Amax > 1. The
experiments shown in Fig. 5.11 are marked by crosses. Panel B: as panel A but
for the weakly nonlinear model. Panel C: contours of κmin for the fully nonlinear
numerical model. Contours are shown at intervals of 0.1. The shaded region is where
κmin < −0.6 indicating that a vortex-splitting event has occurred. In all panels, the
dashed line marks the regime boundaries in the Kida model, the dotted line where
Ωb = Ω0, and the solid line is the line of discontinuity in the weakly nonlinear theory.

events were seen to lie in the unstable Kida regimes to the left of the curved regime

boundary in panel A of Fig. 5.9.

Fig. 5.10 gives a comparison of the maximum disturbance amplitude Amax in

the fully nonlinear model (panel A), Amax in the weakly nonlinear model (panel B),

and κmin in the fully nonlinear numerical model (panel C), for the SWM-1 set of

experiments. In panels A and B, parameter space in which Amax ≥ 1, for which

large deformation of the vortex occurs, is shaded. The shading in panel C represents

regions in which κmin < −0.6 and a vortex-splitting event has been identified.

The line of discontinuity in Amax in the weakly nonlinear model is excellently

reproduced in the fully nonlinear model results. In parameter space to the right

of the line of discontinuity, the behaviour of Amax agrees between the the weakly
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A

B

Figure 5.11: Snapshots of vortex evolution in the fully nonlinear numerical model
in SWM-1 experiments. Panel A: evolution classified as anticlockwise rotation when
F = 0.062 and Ωb = −0.10. Panel B: evolution classified as a vortex-splitting event
when with F = 0.062 and Ωb = −0.12.

nonlinear and fully nonlinear models. To the left of the line of discontinuity there is

still a high degree of agreement between the two models, with Amax magnitudes in

the fully nonlinear model slightly exceeding those predicted by the weakly nonlinear

theory. The location in parameter space of vortex-splitting events in panel C is seen

to lie entirely within the shaded region in panel B, with the right hand boundary

closely following the line of discontinuity. That is, prediction of large Amax values

in the weakly nonlinear model is a harbinger of vortex-splitting events in the fully

nonlinear model.

The existence of a sudden transition in behaviour due to very small changes in Ωb

(across the line of discontinuity) is shown by Fig. 5.11. These numerical experiments

are marked on panel A of Fig. 5.10 by white bordered crosses on either side of the

line of discontinuity. At a given forcing height F = 0.062, a small change in Ωb from

0.12 to 0.10 results in a transition of the vortex from a stable anticlockwise rotating

state to an unstable vortex-splitting event (see Fig. 4.6 in chapter 4, and discussion

in the text, for the classification of these experiments). As the parameter Ωb crosses

the line of discontinuity from right to left, the maximum disturbance amplitude Amax

jumps from small values to much larger values. It has been shown by Dritschel (1986)
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that for large aspect elliptic vortices in the absence of background flow, instability of

elliptic azimuthal wavenumber-2, leading to a complete split of the vortex (see section

4.2). Although our model includes a topographically forced background flow, it may

well be the case that a similar process of instability is found here.

The agreement between the fully nonlinear numerical model and the weakly non-

linear model when k = 2 and B = 0 is to be expected given the independent agreement

between each of these models and the Kida model. In order to ascertain whether this

agreement is retained for other values of k and B, we now compare the fully nonlinear

numerical model and weakly nonlinear model for the SWM-2 and SWM-3 experiment

sets.

5.5.4 SWM-2 experiments

We now discuss the results of the weakly nonlinear theory in relation to the SWM-2

set of experiments in the fully nonlinear model.

Experiments were performed for Ωb between -0.19 and 0.11 at increments of 0.01.

Values of the forcing parameter which are used in the experiments are partitioned

into two sets. The first consists of four experiments representing small F values,

F = [0.00178, 0.00357, 0.00535, 0.00714]. The second set starts at F = 0.00892 and

includes 12 experiments, going up to F = 0.10706 in increments of 0.00892.

Weakly nonlinear and fully nonlinear model comparisons

Fig. 5.12 shows contours of the maximum disturbance amplitude Amax as a func-

tion of forcing height F and background rotation Ωb for the fully nonlinear (panel A)
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Figure 5.12: As figure 5.10 but for the SWM-2 experiments (B = 1.44).

and weakly nonlinear (panel B) models for SWM-2 experiments.2

It is clear from Fig. 5.12 that, similar to the SWM-1 experiments seen in Fig. 5.10,

there is good qualitative agreement inAmax between panels A and B. Although a slight

offset is observed, the location of the line of discontinuity in Amax as predicted by the

weakly nonlinear theory is reasonably well represented in the fully nonlinear model.

A discrepancy does exist however in the magnitude of Amax in all regions, with Amax

values in the fully nonlinear model being approximately double that predicted by the

weakly nonlinear theory.

Panel C shows the diagnostic κmin for the fully nonlinear numerical model ex-

periments. In a similar way to the SWM-1 experiments, it is seen that the region

of parameter space in which vortex-splitting events occur coincides with the shaded

region of panel B in which large amplitude events with Amax > 1 are predicted. In

2The choice of B = 1.44 in the SWM-2 model runs approximately corresponds to the nondi-
mensional Rossby radius for the zero order Lamb mode in the three-dimensional quasi-geostrophic
f -plane model with a physical lower boundary condition, as introduced in section 3.2.2 of chapter
3. The importance of the zero order Lamb mode on the dynamics of the stratospheric polar vortex
during vortex-splitting events in a three-dimensional model will be the focus of chapter 7.
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A

B

Figure 5.13: Snapshots of vortex evolution in the fully nonlinear numerical model
experiments of SWM-2. Panel A: evolution classified as anticlockwise rotation when
F = 0.062 and Ωb = 0.05. Panel B: evolution classified as a vortex-splitting event
when with F = 0.062 and Ωb = 0.03.

fact, the correlation between the two is higher in this case than for the SWM-1 exper-

iments, with the majority of the shaded region in panel B being identified as vortex

splitting events in the numerical model. The primary difference in the behaviour

of κmin in these experiments, when compared to the SWM-1 experiments, is that

‘leakage’ of splitting-like behaviour is observed over the line of discontinuity. That

is, larger negative values of κmin are observed in the region to the right of the line of

discontinuity in the SWM-2 experiments shown here than in the SWM-1 experiments,

although the values are not so large and negative that vortex splits are identified. In

overall shape and size, the shaded region in panel C which denotes vortex-splitting

experiments is very similar to that seen in panel C of Fig. 5.10, with the region in

this case being slightly wider. In particular, there is no discernible change in the

minimum physical forcing height at which vortex splits are observed, with splits first

occurring when 0.45 < F < 0.50 in both SWM-1 and SWM-2 experiments.

A transition in vortex behaviour in the vicinity of the line of discontinuity in Amax

is demonstrated in Fig. 5.13 by snapshots of vortex evolution. Once again, for a fixed

forcing height F = 0.062, a relatively small change in the background rotation Ωb

from 0.05 to 0.03 results in a transition of the vortex from a stable anticlockwise
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Figure 5.14: Class identification for the fully nonlinear numerical model during SWM-
2 experiments. Classification definitions are as described in the text in section 4.5.5
of chapter 4. The solid dark line marks the line of discontinuity in Amax as predicted
by the weakly nonlinear theory. The dotted line marks the location of Ωb = Ω0.

rotating state to a vortex-splitting state.3 The existence of larger negative values

of κmin can be seen here in the slight pinching of the vortex over the course of its

evolution when (F,Ωb) = (0.062, 0.05). It should be pointed out however that the

vortex evolution remains stable and periodic in spite of this slight perturbation.

A further demonstration of the good agreement in the line of discontinuity be-

tween the fully nonlinear and weakly nonlinear models is seen in Fig. 5.14, in which

3Vortex classification is as described in section 4.5.5 of chapter 4.
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the classification of each numerical experiment is shown in the parameter space. It is

clear that the discontinuity in Amax predicted by the weakly nonlinear theory gives

an excellent indication of the region in which a transition in vortex behaviour occurs.

Another interesting feature of Fig, 5.14 is that the vortex classification in the param-

eter space is similar to that of the Kida vortex regimes (see Fig. 4.2, particularly for

small forcing heights). That is, the region of parameter space to the right of the line

of discontinuity is mainly characterized by stable anticlockwise rotating vortex states,

whereas the region to the left is characterized by over classifications of vortex states,

many of which appear to be unstable. Furthermore, clockwise rotating vortex states

only exist in the region to the left of the dotted line Ωb = Ω0, similar to the clockwise

rotation regime of the Kida model.

It has been shown that the weakly nonlinear theory successfully predicts the dis-

continuity in the maximum disturbance Amax in the SWM-1 and SWM-2 sets of

experiments in which k = 2. The SWM-3 experiments will now test the predictions

of the weakly nonlinear model for azimuthal wavenumber k = 3 in the topographic

forcing.

5.5.5 SWM-3 experiments

We now discuss the results of the weakly nonlinear theory in relation to the SWM-2

set of experiments in the fully nonlinear model.

Experiments were performed for Ωb between -0.38 and -0.08 at increments of 0.01.

Values of the forcing parameter which are used in the experiments are partitioned

into three sets. The first consists of one experiment representing small F values at
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Figure 5.15: Panel A: contours of the maximum disturbance amplitude Amax as
a function of forcing height F and background rotation Ωb for the fully nonlinear
numerical model SWM-3 experiments. Contours are shown at intervals of 0.1. The
shaded region is where Amax > 1. The experiments shown in Fig. 5.16 are marked by
crosses. Panel B: as panel A but for the weakly nonlinear model. The solid dark line
marks the line of discontinuity in Amax as predicted by the weakly nonlinear theory.
The dotted line marks the location of Ωb = Ω0.

F = 0.0008. The second set starts at F = 0.0042 and includes 14 experiments, going

up to F = 0.0584 in increments of 0.0041. The third set starts at F = 0.0668 and

includes 5 experiments, going up to F = 0.1085 in increments of 0.0083.

Weakly nonlinear and fully nonlinear model comparisons

Fig. 5.10 shows contours of Amax as a function of forcing height F and background

rotation tuning parameter Ωb. Once again, it is seen that the line of discontinuity in

Amax exists in the fully nonlinear model, and its location is predicted by the weakly

nonlinear theory. To the right of the line of discontinuity, the agreement in Amax is

excellent between the two models. In the region to the left, Amax in the numerical

model is larger than predicted by the weakly nonlinear model. Large amplitude events

where Amax > 1 occur for forcing heights of approximately F = 0.05, rather than

F = 0.10 as predicted in the weakly nonlinear theory. Even so, the most important
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A

B

C

Figure 5.16: Snapshots of vortex evolution in the fully nonlinear numerical model
during SWM-3 experiments. Panel A: evolution when F = 0.092 and Ωb = 0.16.
Panel B: evolution when F = 0.092 and Ωb = 0.17. Panel C: evolution when F =
0.092 and Ωb = 0.20.

feature, the location of the line of discontinuity in Amax characterized by a transition

in vortex behaviour, is well predicted by the weakly nonlinear theory.

For a given forcing height of F = 0.092, transitions in vortex behaviour for small

changes in Ωb (across the line of discontinuity) are shown in Fig. 5.16. When Ωb =

−0.16, the vortex in panel A exhibits stable periodic motion. With a small change

in tuning parameter Ωb = −0.17, crossing the line of discontinuity, panel B shows

that the stable periodic motion is replaced with unstable wave growth on the vortex

edge leading to a three-way split of the vortex around a small triangular vortex core.

When Ωb = −0.20 in panel C, still relatively close in terms of parameter space to

the experiments in panels A and B, a different type of unstable vortex behaviour is

observed. Rather than a three-way split, as seen in panel B, the vortex undergoes

intense filamentation which almost entirely destroys the organized vortex structure to

leave a diminished triangular vortex core. This highlights the importance of the line

of discontinuity in determining vortex behaviour in response to topographic forcing

with azimuthal wavenumber k = 3, in addition to that already shown when k = 2.
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5.6 Conclusions

5.6.1 Self-tuning resonance in the weakly nonlinear model

In a weakly nonlinear theory, as the forcing height increases, migration of the

tuning parameter Ωb at which Amax occurs, away from Ωb = Ω0 at which resonance

occurs in a linear theory, can be thought of as a self-tuning resonance of the system.

Resonant behaviour of the first harmonic wave on the vortex edge occurs when the

wave becomes stationary with respect to the fixed frame, that is stationary with

respect to the topographical forcing. It was shown in section 5.3 that for any choice

of k and B, the angular velocity of the background rotation for which wave-like

disturbances are stationary is Ωb = Ω0 + ǫ2Ω2 > Ω0. Hence, the behaviour of the

weakly nonlinear oscillator as shown in Figs. 5.10, 5.12 and 5.15, in which the line of

discontinuity in Amax migrates to values Ωb > Ω0, are representative of the weakly

nonlinear predictions for any value of k or B. That is, the line of discontinuity, which

represents the location of perfect resonance in the parameter space, will never migrate

to values Ωb < Ω0.

A visualization of resonant mechanisms in the linear and weakly nonlinear models

is presented in schematic form in Fig. 5.17. In all panels, the vortex is represented

by perturbations to a circular boundary

r = 1 + A exp{ikφ},

where k = 3.

Panel A describes the resonant process in the linear model. The background flow

is given by Ωb = Ω0. For resonance growth of the first harmonic wave to occur, the
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Figure 5.17: Schematic visualizing resonant and non-resonant vortex states in a vor-
tex subject to azimuthal wavenumber-3 type forcing. In all panels, the thin solid
line represents the direction and magnitude of the background rotation Ωb. For each
disturbed vortex state, the dotted line represents the direction and magnitude of
Ω = Ω0 + ǫ2Ω2 > Ω0, the background rotation for which the first harmonic of the dis-
turbance would appear stationary in the fixed frame. Waves are in perfect resonance
when Ω = Ωb. Panel A: linear resonance when Ωb = Ω0. Panel B: weakly nonlinear
theory when Ωb = Ω0 leading to non-resonant behaviour. Panel C: weakly nonlin-
ear theory when Ωb > Ω0 leading to resonant behaviour. Panel D: weakly nonlinear
theory when Ωb < Ω0 leading to non-resonant behaviour.
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angular velocity of the background rotation must be such that the first harmonic

wave becomes stationary with respect to the topography in the fixed frame. In linear

theory, the angular velocity for which the first harmonic is stationary is Ω0 irrespective

of wave amplitude. Therefore, as the background rotation Ωb = Ω0 the condition for

resonance in the linear model is satisfied. As this angular velocity does not change as

the first harmonic amplitude increases, the resonance is sustained and the amplitude

of the first harmonic grows indefinitely.

The remaining panels will focus on the weakly nonlinear theory. In the weakly

nonlinear theory of section 5.3, it was shown that the angular velocity of the back-

ground flow which ensures that the first harmonic is stationary with respect to the

forcing is

Ω = Ω0 + ǫ2Ω2,

= Ω0 + Ω̂2A
2 > Ω0, (5.66)

where Ω̂2 = Ω2/|α1|2 and A = ǫ|α1|. In panel B, background flow in the model

Ωb = Ω0 is the same as for the linear model in panel A. Initially, A is very small

such that the background rotation for which waves are resonant is Ω = Ω0. As

Ωb = Ω0 = Ω, the first harmonic is therefore in perfect resonance and the amplitude

of A increases. However, as the resonance increases the amplitude A, the value of

Ω also increases as can be seen in (5.66). Therefore, the initially resonant system

has now evolved to a state in which Ω > Ω0 and is further from resonance than

before. Therefore, the amplitude A decreases until it is small enough that Ω ≈ Ω0

once again, at which point the process repeats. From this it is seen that a system
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predicting resonant growth in the linear model will produce periodic non-resonant

behaviour in the weakly nonlinear system.

Panel C gives a weakly nonlinear model representation background angular veloc-

ity Ωb > Ω0 close to the linear resonance Ω0. Initially A will be small and Ω ≈ Ω0.

As the system is close to resonance, the amplitude A will increase giving a more dis-

turbed vortex. As A increases, the angular velocity Ω for which disturbances appear

stationary is now Ω0 < Ω < Ωb. As Ω is now closer to Ωb the system is closer to reso-

nance. Therefore the amplitude A continues to increase, with an associated increase

in Ω such that Ω → Ωb. Therefore, an initially off-resonant disturbance with Ωb > Ω0,

close enough to the linear resonance Ω0, will move into resonance by self-tuning the

value of Ω with which the wave is associated towards Ωb.

In contrast, panel D shows a system that can never achieve resonance. Initially,

Ωb < Ω0 is relatively close to resonance so the first harmonic amplitude A is at first

small and Ω = Ω0. Any amplification of A will act to increase Ω, such that Ω is now

even further from resonance and further growth of A is suppressed. Therefore, the

amplitude A will remain relatively small for the entirety of the vortex motion. This

suppression of the growth in A occurs for all Ωb < Ω0, with the case already discussed

in panel B when Ωb = Ω0 acting as a limiting case. In Fig. 5.9 the inability of these

states to achieve resonance is equivalent to the absence of a discontinuity in Amax in

the region Ωb < Ω0.
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5.6.2 Hierarchy of models

The results of section 5.5 show that the Kida vortex model acts as an excellent

approximation to the weakly nonlinear topographically forced model, which in turn

accurately predicts the location of self-tuning resonance in a fully nonlinear topo-

graphically forced model. Strictly speaking, the Kida vortex only approximates the

behaviour of the weakly nonlinear model when k = 2 and B = 0. However, Fig. 5.14

suggests that as long as k = 2, vortex behaviour classification in the Kida vortex

model still gives a reasonable prediction of classification in the fully nonlinear model

when B = 1.44 if one replaces the curved Kida regime boundary with the line of

discontinuity in Amax. This is particularly true for the stable anticlockwise rotation

regime.

As previously discussed in chapter 2, the behaviour of the stratospheric polar

vortex during vortex-splitting SSWs is primarily barotropic. That is, the vortex

splits near simultaneously at all heights. Furthermore, the way in which the vortex

splits, with pinching at the vortex centroid before complete splitting into two almost

equally sized daughter vortices, is similar to the vortex split observed during Love type

instabilities of an elliptical vortex. Therefore, as already discussed, a simple single

layer quasi-geostrophic f -plane model may offer significant insight into the underlying

dynamics of vortex-splitting SSWs. When interpreting the work of this chapter in

this context, our results have two main implications for the study of vortex-splitting

SSWs.

Firstly, it has been shown that from the perspective of self-tuning resonance, an

increase in physical forcing amplitude in the system is not strictly necessary in order
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to generate vortex-splitting behaviour. Rather, for time-independent forcing which

is of sufficient amplitude, an arbitrarily small change in the background rotation can

cause vortex-splitting behaviour. In terms of the stratospheric polar vortex, this

implies that an increase in wave forcing at the tropopause may not necessarily be

required for the onset of vortex-splitting SSWs. That is, given a constant forcing

at the tropopause which is of sufficient amplitude, a periodic stable polar vortex

evolution may make the transition to an unstable vortex-splitting evolution with only

a very small change in the background flowin the stratosphere.

The second implication comes from the relevance of the Kida vortex model in

identifying the regions in parameter space at which these transitions in vortex be-

haviour occur. In particular, should an observational study of the polar vortex prior

to a vortex-splitting SSW reveal anticlockwise rotation, one could confidently locate

the vortex in the stable regime of the Kida vortex model, and hence the low amplitude

disturbance region of the weakly nonlinear theory. With continued observations of

the vortex leading up to the onset of the SSW, it may be possible to track the location

of the vortex in the parameter space of the weakly nonlinear theory. In this frame-

work, it is expected that the onset of vortex-splitting SSWs would be accompanied

by a self-tuning of the vortex towards resonance in the weakly nonlinear theory, with

a transition from a low amplitude stable vortex state to a high amplitude unstable

vortex state by crossing the line of discontinuity in the parameter space of the weakly

nonlinear theory.



Chapter 6

Resonant Response in an Idealized

Three-Dimensional Model:

Vortex-Displacement

6.1 Introduction

In this chapter we will study the behaviour of an idealized polar vortex using the

three-dimensional quasi-geostrophic (QG) polar f -plane model already discussed in

chapter 3.

The anelastic three-dimensional QG polar f -plane model has been used exten-

sively in existing studies of the stratospheric polar vortex. One such study is that of

Dritschel and Saravanan (1994), who investigated the nature of wave breaking on the

polar vortex edge in the presence of topographic forcing at the lower boundary of the

model. Dritschel and Saravanan (1994) considered a stratosphere of finite height, in

222
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which the polar vortex was represented by a column of anomalously high PV, with

the PV and cross-sectional area of the vortex being the same at all heights of the

model (i.e. a “barotropic” vortex). Two types of behaviour were observed in the

vortex model depending on the amplitude of the underlying topographic forcing. For

large topographic forcing amplitudes, “local” wave breaking was observed, in which

greatest disturbance to the vortex was observed in the lower vortex. For smaller topo-

graphic forcing amplitudes, “remote” wave breaking was observed, whereby wave-like

disturbances to the vortex edge propagated up the vortex before breaking in the upper

vortex region.

In a following study by Waugh and Dritschel (1999), the cross sectional area and

PV of the vortex were varied with height to investigate the impact of the vortex

structure on the occurrence of wave breaking. Using a fully nonlinear numerical

model, it was found that if the PV of the vortex increased with height, wave breaking

at the vortex edge was less likely to be observed than for other vortex structures and

was restricted to the lower vortex. That is, vortex structures in which PV increased

with height were more resilient to topographic forcing than barotropic vortices.

A similar model was used by Esler and Scott (2005), who proposed that under

certain conditions, resonance of a barotropic polar vortex with topographic forcing

at the lower boundary (similar to that discussed in the β-plane models of Plumb

1981; Tung and Lindzen 1979a, b, and the single layer model of chapter 5 in this

thesis) can lead to behaviour similar to that observed during vortex-splitting SSWs.

By considering a semi-infinite stratosphere model, Esler and Scott (2005) developed

a linear theory predicting that for small amplitude topographic forcing, a resonance
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of barotropic disturbances to the vortex edge, that is disturbances which are the

same at all heights of the vortex, dominates the vortex behaviour. For relatively

large amplitude topographic forcing with azimuthal wavenumber-2 structure, fully

nonlinear numerical experiments showed that a resonance of the barotropic mode of

the vortex lead to an almost simultaneous split of the vortex at all heights. These

vortex splits exhibited a similar vertical structure and timescale to those seen in the

observations, for example Fig. 2.3 of chapter 2. As the forcing amplitude in the

nonlinear numerical model increased, Esler and Scott (2005) observed a migration

of the flow conditions leading to the greatest resonant excitation away from that

predicted by linear theory. Qualitatively similar behaviour had been previously found

by Plumb (1981) for a β-plane model.

In this chapter, using topographic forcing with azimuthal wavenumber-1 structure,

the linear theory of Esler and Scott (2005) is adapted to investigate resonant excitation

of disturbances on the polar vortex leading to behaviour similar to that seen during

vortex-displacement SSWs. Although it was shown by Esler and Scott (2005) that

a resonance of the barotropic mode of the vortex dominates the behaviour of the

vortex in their model, such a resonance is unlikely to be responsible for behaviour

observed during vortex-displacement SSW, due to the strong dependence on height

which characterizes the polar vortex during these events (see chapter 2). Therefore,

in an attempt to simulate polar vortex behaviour during vortex-displacement SSWs,

this chapter we will investigate the role of resonant excitation of the baroclinic modes

of the vortex, that is modes which are height dependent, as a possible mechanism for

vortex breakdown.
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The structure of this chapter is as follows. We will start with a thorough review of

the linear theory presented in Esler and Scott (2005), which predicts the background

flow conditions leading to greatest resonant excitation of the vortex in the presence of

topographic forcing. Using a fully nonlinear numerical model, these predictions are

then tested for topographic forcing with azimuthal wavenumber-1 structure, focusing

on resonant excitation of baroclinic modes of the vortex, leading to height-dependent

vortex behaviour. Three-dimensional evolution of the vortex during the fully nonlin-

ear model experiments is then discussed and a “Baroclinic Sudden Warming” event

(BCSW) is described, in which a resonance of the baroclinic modes of the vortex leads

to vortex breakdown similar to that observed during vortex-displacement SSWs. Fi-

nally, the conclusions of the chapter are presented.

6.2 Resonant excitation of normal modes: linear

theory

This section will present a thorough review of the work of Esler and Scott (2005)

giving linear predictions of the relative importance of barotropic and baroclinic dis-

turbances to an initially barotropic vortex in the presence of topographic forcing.

6.2.1 Quasi-geostrophic compressible atmosphere model

The theoretical model used in this formulation is the anelastic three-dimensional

quasi-geostrophic f -plane model in Cartesian coordinates introduced in chapter 3.

Following the discussion surrounding equation (3.30), the quasi-geostrophic PV
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is conserved following the geostrophic flow which has horizontal streamfunction u =

−∇× ψk. The streamfunction ψ and PV q are related by

f0 + ∇2
Hψ +

1

ρ(z)

f 2
0

N2

∂

∂z

(
ρ(z)

∂ψ

∂z

)
= q(x, z, t), (6.1)

where x is the horizontal position vector (x, y), z is log-pressure height, ∇H is the

horizontal Laplacian, the density ρ(z) = ρs exp{−z/H}, with H a reference height

and ρs a reference density, and f0 is the Coriolis parameter evaluated at the pole. N

is the Brunt-Väisälä buoyancy frequency, which is taken to be constant.

The model is semi-infinite in the vertical, and here we take the lower boundary

condition to be the ersatz boundary condition

∂ψ

∂z
+
N2

f0
hT = 0 on z = 0. (6.2)

The ersatz boundary condition is used here for analytical convenience, and a discus-

sion of the associated impact on the streamfunction of the flow is given in chapter 3.

By inverting the elliptic operator in equation (6.1) subject to condition (6.2) on the

lower boundary, the velocity u = −∇ × ψk can be determined at any point in the

domain from the PV field q(x, z, t).

6.2.2 Polar vortex representation

In the most general case, the vortex is defined at all heights of the model by its

local cross sectional area D(z), with bounding contour ∂D(z). The PV inside this

bounding contour is single valued and higher than that of the background PV outside
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the vortex such that

q(x, z) =






f + ∆(z) + ∆b x ∈ D(z)

f + ∆b x /∈ D(z).

(6.3)

The parameter ∆b controls the value of the ambient PV and corresponds to a solid

body rotation of angular velocity Ωb = ∆b/2. ∆b acts as a tunable parameter in the

model.

For the idealized polar vortex structure considered in the remainder of this chapter,

the interior PV anomaly ∆ is taken to be independent of height, and the undisturbed

vortex structure is columnar with radius R at all heights, i.e. the vortex is barotropic.

The analysis which follows will investigate the propagation of linear Rossby waves on

the edge of this barotropic vortex structure.

6.2.3 Dispersion relation

In the absence of topographic forcing, the streamfunction for the flow is partitioned

in a basic state streamfunction component Ψ satisfying

∇2
HΨ +

f 2
0

N2

(
∂2Ψ

∂z2
− 1

H

∂Ψ

∂z

)
=






∆ + ∆b r < R

∆b r > R,

(6.4)

∂Ψ

∂z
= 0 on z = 0, (6.5)

and a component ψ, corresponding to infinitesimal disturbances of the vortex edge η,

satisfying

∇2
Hψ +

f 2
0

N2

(
∂2ψ

∂z2
− 1

H

∂ψ

∂z

)
= 0, (6.6)
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∂ψ

∂z
= 0 on z = 0. (6.7)

In cylindrical coordinates (r, φ, z), the disturbed vortex edge location is given by

r(φ, z, t) = R + η(φ, z, t), and the kinematic condition can be written as
(
∂

∂t
+ u · ∇H

)
(η − r) = 0, on r = R + η, (6.8)

where u = (u, v) is the horizontal velocity, with azimuthal component u and radial

component v in the cylindrical coordinate system. Linearizing the kinematic condition

gives
(
∂

∂t
+ Ωe

∂

∂φ

)
η − v = 0 on r = R, (6.9)

where Ωe = (∆+∆b)/2 is the angular velocity of the the basic state and v is the O(η)

radial velocity due to the disturbance. By expressing the disturbance PV on the vortex

edge in terms of the Dirac-delta function q′ = ∆(z)δ(r − R(z))η, following Swanson

et al. (1997), the O(η) jump in azimuthal velocity at the vortex edge associated with

the infinitesimal disturbance η satisfies

[ψr]
r=R+
r=R−

= −∆η. (6.10)

Barotropic disturbance

Infinitesimal barotropic disturbances to the columnar vortex are given by

η0(φ, t) = ǫR exp [ikφ− iω0kt] , (6.11)

where the real part is taken, with k ≥ 1 an integer azimuthal wavenumber and ω0k a

frequency which is yet to be determined, with corresponding streamfunction

ψ0(r, φ, t) = ψ̃0(r)η0(φ, t). (6.12)
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Substituting (6.12) into (6.6) yields an ODE for ψ̃0(r)

r2ψ̃0rr
+ rψ̃0r

− k2ψ̃0 = 0, (6.13)

which by using the velocity jump condition (6.10) in conjunction with continuity of

ψ on r = R gives

ψ̃0(r; k) =
∆

2k






(
r
R

)k
for r < R

(
R
r

)k
for r > R.

(6.14)

In deriving (6.14), the streamfunction ψ is taken to be bounded everywhere.

The linearized radial velocity on the vortex edge corresponding to the barotropic

disturbance, v = (1/R)ψ0φ
, can now be derived from (6.12) giving

v =
∆

2
iη0,

which is substituted along with (6.11) into (6.9) to give the barotropic dispersion

relation

ω0k = kΩe −
∆

2
. (6.15)

Should the disturbance (6.11) be stationary in the fixed frame, this dispersion

relation can be rearranged to give

∆0 =
∆(1 − k)

2k
, (6.16)

that is, the value of ∆b which ensures that such disturbances are stationary. It is seen

that ∆0 is identical to that for wave-like disturbances of the form (6.11) in the single

layer problem (Su 1979), as shown in chapter 5.
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Baroclinic disturbance and the Charney-Drazin spectrum

For height-dependent baroclinic disturbances to the columnar vortex edge, we

consider linear normal mode solutions of the form

ηm(φ, z, t;m) = ǫR exp
[ z

2H
+ imz + ikφ− iωk(m)t

]
, (6.17)

where 0 < m < ∞, with a corresponding height-dependent disturbance streamfunc-

tion

ψ(r, φ, z, t;m) = ψ̃(r;m)ηm(φ, z, t;m). (6.18)

Substituting (6.18) into (6.6) yields an ODE for ψ(r)

r2ψ̃rr + rψ̃r −
(
γ(m)2r2 + k2

)
ψ̃ = 0, (6.19)

where

γ(m) =
f0

N

(
m2 +

1

4H2

)1/2

. (6.20)

Utilizing the velocity jump condition (6.10), solution of (6.19) with the lower bound-

ary condition (6.7) gives

ψ̃(r;m, k) = ∆R






Kk(γ(m)R)Ik(γ(m)r) for r < R

Ik(γ(m)R)Kk(γ(m)r) for r > R,

(6.21)

by demanding that ψ(r, φ, z, t;m) be continuous on the vortex edge and bounded

everywhere. The functions Ik and Kk appearing in equation (6.21) are modified

Bessel functions of the first and second kind respectively. Equations (6.18) and (6.21)

give the O(η) radial velocity v = (1/R)ψφ(r, φ, z, t;m) on the vortex edge as

v = ik∆Ik (γ(m)R)Kk (γ(m)R) ηm,
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which is substituted along with (6.17) into (6.9) to give the baroclinic dispersion

relation

ωk(m) = kΩe − ∆kIk (γ(m)R)Kk (γ(m)R) . (6.22)

The ωk(m) correspond to a spectrum of frequencies in the range ω−

s ≤ ωk ≤ ω+
s where

ω−

k (0) = kΩe − ∆kKk

(
R

2LR

)
Ik

(
R

2LR

)
,

ω+
k (∞) = kΩe,

where LR = NH/f0 is the Rossby radius of deformation. Following Charney and

Drazin (1961) this ‘Charney-Drazin spectrum’ corresponds to the possible frequencies

of Rossby wave which are permitted to propagate vertically on the vortex edge. Note

that this propagation may engender both upward and downward propagation of the

permitted Rossby waves.

The choice of ∆b that renders the mth baroclinic disturbance stationary with

respect to the fixed frame can be obtained by setting ωk(m) = 0 and is found to be

∆b(m) = ∆ [Kk(γ(m)R)Ik(γ(m)R) − 1] , (6.23)

and the largest and smallest values of ∆b(m) for which stationary forcing will excite

upward propagating Rossby waves are given by

∆− = ∆

[
Kk

(
R

2LR

)
Ik

(
R

2LR

)
− 1

]
,

∆+ = −∆.
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6.3 Vortex response to topographic forcing at the

lower boundary

The barotropic and baroclinic disturbances {η0,η(m)} form a complete basis with

respect to which all disturbances to the vortex edge can be expressed. Therefore,

when a lower boundary topographic forcing is introduced, linear theory dictates that

the resulting disturbance of the vortex edge will be some linear combination of η0 and

the spectrum η(m). In this section, an analytic expression for the combined linear

disturbance ηR is derived following Esler and Scott (2005).

The vortex is forced with a generalized time-dependent topographic forcing on the

lower boundary of the form

hT (r, φ, t) =
h

2
T (t)Jk(lr) exp{ikφ}. (6.24)

The general time-dependent function T (t) will be chosen to represent an isolated

pulse of forcing from the lower boundary. It can be expressed as a Fourier integral

transform of the form

T (t) =

∫
∞

−∞

T̂ (ω) exp{iωt}dω. (6.25)

with the forward transform given by

T̂ (ω) =
1

2π

∫
∞

−∞

T (t) exp{−iωt}dt.

The disturbance streamfunction of the resulting flow is partitioned into a topographic

component ψT and a response component ψR such that ψ = ψT + ψR with

∇2
HψT +

f 2
0

N2

(
∂2ψT
∂z2

− 1

H

∂ψT
∂z

)
= 0, (6.26)
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N2hT + f0
∂ψT
∂z

= 0 on z = 0, (6.27)

and

∇2
HψR +

f 2
0

N2

(
∂2ψR
∂z2

− 1

H

∂ψR
∂z

)
= q − f0, (6.28)

∂ψR
∂z

= 0 on z = 0. (6.29)

The linearized form of ψR is identical to that of the disturbance streamfunction in

the absence of topographic forcing, which satisfies (6.6) and (6.7), as derived in the

previous section . However it remains to solve (6.26) and (6.27) for ψT using (6.24).

Using separation of variables, the solution is expressed in the form

ψT (r, φ, t, z) = AT (t)F (z)Jk(lr) exp{ikφ}, (6.30)

where T (t) may be expressed as an integral transform following (6.25). Substituting

(6.30) into (6.26) yields an ODE for F (z),

d2F

dz2
− 1

H

dF

dz
+
N2l2

f 2
F = 0, (6.31)

which with the condition that F → 0 as z → ∞ gives

F (z) = e
z

2H e−αz, (6.32)

where

α2 =
1

4H2
+
l2N2

f 2
, (6.33)
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and only the positive root of α is taken. Using the above formulation for F (z), we

now substitute (6.30) into (6.27) giving

A =
f0L

2
Rh

H(2αH − 1)
.

Therefore, expressing the general time-dependent forcing as an integral transform,

the topographic streamfunction can be written as

ψT =
f0L

2
Rh

H(2αH − 1)

∫
∞

−∞

T̂ (ω)Jk(lr) exp

{
z

2H
− αz + ikφ− iωt

}
dω. (6.34)

It is now desirable to project ψT onto the vertical modes of the vortex defined in

section 3.2.2 of chapter 3 as

χ0 =

√
1

H
, (6.35)

χ(z;m) =

√
2

π
e

z
2H cos[mz + ǫ(m)], tan ǫ(m) =

1

2mH
, (6.36)

with corresponding associated eigenvalues

γ0 = 0, (6.37)

γ(m) =
f

N

(
m2 +

1

4H2

)1/2

, (6.38)

and m > 0. By construction, these vertical modes are orthonormal, satisfying the

orthogonality conditions (3.38), (3.41) and (3.42) given in section 3.2.2 of chapter 3.

We start by expressing exp{z/2H − αz} as an integral transform of these vertical

modes, that is

exp

{
z

2H
− αz

}
= a0χ0 +

∫
∞

0

a(m)χ(z;m)dm. (6.39)
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Multiplying by χ0 exp{−z/H} and making use of the orthogonality conditions for

χ0(z) and χ(z;m) gives

a0, =

∫
∞

0

χ0 exp

{
− z

2H
− αz

}
dz,

=
2H1/2

1 + 2Hα
. (6.40)

Similarly, multiplying by χ(z;m′) exp{−z/H} and integrating with respect to z gives

∫
∞

0

χ(z;m′) exp

{
− z

2H
− αz

}
dz =

∫
∞

0

a(m) ×

[∫
∞

0

exp

{
− z

H

}
χ(z;m′)χ(z;m)dz

]
dm,

=

∫
∞

0

a(m)δ(m−m′)dm,

= a(m′). (6.41)

Integrating the LHS by parts and using sin ǫ = 1/(4m′2H2 + 1)1/2 and cos ǫ =

2m′H/(4m′2H2 + 1)1/2 gives the a(m′) coefficient as

a(m′) =

√
2

π

m′(2αH − 1)

(4m′2H2 + 1)1/2(α2 +m′2)
. (6.42)

Substituting the integral transform expression for exp{z/2H −αz} into ψT yields an

expression for ψT as an integral transform in terms of the vertical modes

ψT = ψT0 + ψTm
, (6.43)
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where

ψT0(φ, t) =
f0h

2l2H
Jk(lr)

∫
∞

−∞

T̂ (ω) exp{ikφ− iωt}dω, (6.44)

ψTm
(φ, z, t;m) =

2f0L
2
Rh

πH
Jk(lr)

∫
∞

−∞

T̂ (ω) exp

{
z

2H
+ ikφ− iωt

}
×

[∫
∞

0

ψ̂(m) cos[mz + ǫ(m)]dm

]
dω, (6.45)

ψ̂Tm
(m) =

m

(1 + 4m2H2)1/2(α2 +m2)
. (6.46)

We now derive the disturbance to the vortex edge ηR(φ, z, t), which occurs in

response to the topographic forcing, as a linear combination of the barotropic and

baroclinic disturbances (6.11) and (6.17). As ηR(φ, z, t) is some linear combination

of η0(φ, t) and ηm(φ, z, t;m), it is convenient to treat the barotropic and baroclinic

contributions separately. Therefore, using the linear kinematic condition on the vortex

edge (6.9) we have

(
∂

∂t
+ Ωe

∂

∂φ

)
ηR0 +

1

r

∂

∂φ
(ψR0 + ψT0) = 0 on r = R, (6.47)

and

(
∂

∂t
+ Ωe

∂

∂φ

)
ηRm

+
1

r

∂

∂φ
(ψRm

+ ψTm
) = 0 on r = R. (6.48)

From the form of hT (r, φ, t) it can be deduced that ηt = −iωη and ηφ = ikη in both of

the equations (6.47) and (6.48). Utilizing this property with (6.47) and (6.48) yields

ηR0 =
kψT0

R
(
ω − kΩe + kψ̃0(R; k)

) , (6.49)
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=
kf0hJk(lR)

2l2RH

∫
∞

−∞

T̂ (ω) exp{ikφ− iωt}
ω − kΩe + ∆/2

dω, (6.50)

and

ηRm
=

kψTm

R
(
ω − kΩe + k∆ψ̃m(R;m, k)

) , (6.51)

=
2kf0L

2
RhJk(lR)

πRH

∫
∞

−∞

T̂ (ω) exp

{
z

2H
+ ikφ− iωt

}
×

[∫
∞

0

ψ̂Tm
(m) cos[mz + ǫ(m)]

ω − kΩe + ∆Ik(B(m))Kk(B(m))
dm

]
dω,

(6.52)

where B(m) = γ(m)R. The integration with respect to ω in (6.52) and (6.50) is now

approached using complex techniques.

If ζ is a complex coordinate, then for a holomorphic function f(ζ), Cauchy’s

Integral Formula gives the integral around a closed contour Γ in the ζ-plane as

∮

Γ

f(ζ)

ζ − ζ ′
dζ = 2πif(ζ ′).

Taking Γ to be a semicircular contour lying in the upper half of the ζ-plane, if

max |f(ζ)| → 0 as |ζ | → ∞, application of Jordan’s Lemma leaves us with

∫
∞

−∞

f(ζ)

ζ − ζ ′
dζ = 2πif(ζ ′).

The correct causality can be enforced by taking ζ = ω− iε where ε is a small param-

eter, the sign of which will be determined, after taking the limit ε→ 0. The integrals

with respect to ω in (6.52) and (6.50) transform to

∫
∞

−∞

T̂ (ω)

ω − ω′
exp{−iωt}dω = exp{εt}

∫
∞

−∞

T̂ (ζ + iε)

ζ − ζ ′
exp{−iζt}dζ,
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where ω′ can be either ω0k or ωk(m) and ζ ′ = ω′−iǫ. Demanding that the disturbance

disappears as t→ −∞ requires that ε > 0. Therefore, if T̂ is a holomorphic function

satisfying max |T̂ | → 0 as |ζ | → ∞, this gives

lim
ε→0

∫
∞

−∞

T̂ (ζ + iǫ)

ζ − ζ ′
exp{−iζt}dζ = 2πiT̂ (ζ ′ + iǫ) = 2πiT̂ (w′),

such that the long time behaviour of the disturbance can be expressed as

ηR0(φ) ∼ πsi

L2
Rl

2
T̂ (ω0k) exp{ikφ− iω0kt}, (6.53)

and

ηRm
(φ, z) ∼ 4si

∫
∞

0

T̂ (ωk(m))ψ̂Tm
(m) ×

cos[mz + ǫ(m)] exp
{ z

2H
+ ikφ− iωk(m)t

}
dm,

(6.54)

where

s =
kf0L

2
RhJk(lR)

RH
.

6.3.1 Wave-activity conservation and the Eliassen-Palm flux

Following Esler and Scott (2005) and Wang and Fyfe (2000), the vortex response

to lower boundary forcing is now investigated from the perspective of wave-activity

and Eliassen-Palm flux diagnostics. In this section, the radius of the vortex cross

sections R(z), vortex interior PV anomaly ∆(z), and fluid density ρ(z), are left as

general functions of z to demonstrate the applicability of these diagnostics to non-

barotropic vortex structures, which will appear in chapter (7).



Chapter 6: Resonant Response in an Idealized Three-Dimensional Model:
Vortex-Displacement 239

Similar to the angular impulse of a vortex patch in the single layer model, as

discussed in section 4.5.4 of chapter 4, the total angular impulse of a vortex described

at each height by a single circular vortex patch of uniform PV can be written

I0 =
1

2

∫
∞

0

∫ 2π

0

∫ R(z)

0

ρ(z)∆(z)r3drdφdz,

=

∫
∞

0

π

4
∆(z)R(z)4dz.

By subtracting the angular impulse I0 of the undisturbed vortex from that of the

disturbed vortex, the angular impulse associated with wave-like disturbances of the

vortex edge r = R(z) + η(φ, z, t) can be written

I =

∫
∞

0

A(z, t)dz,

where A(z, t) is the wave-activity density

A(z, t) =
1

8
ρ(z)∆(z)

∫ 2π

0

[
(R + η)2 −R2

]2
dφ. (6.55)

For linear disturbances, at leading order in η the wave-activity density is therefore

A(z, t) ≈ 1

2
ρ(z)∆(z)R(z)2η2, (6.56)

where η2 is the azimuthal mean of the square of the disturbance amplitude, calculated

at the vortex edge

η2 =
1

2π

∫ 2π

0

η(φ, z, t)2dφ. (6.57)

Taking the linearized kinematic condition on the vortex edge at each height

∂η

∂t
+
U

r

∂η

∂φ
− 1

r

∂ψ

∂φ
= 0 on r = R(z) (6.58)
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where U is the azimuthal velocity of the basic state, multiplying by ρ(z)R(z)2∆(z)η

and taking the azimuthal average as shown in (6.57) gives

∂A

∂t
− ρ(z)∆(z)R(z)η

∂ψ

∂φ
= 0. (6.59)

Next, the Eliassen-Palm flux S = [S(r), S(φ), S(z)] (Gill 1982, see also discussion in

the Introduction 1.3) is introduced where

S(r) = 0

S(φ) = −ρ(z)∂ψ
∂r

∂ψ

∂φ

S(z) = −ρ(z) f
2
0

N2

∂ψ

∂φ

∂ψ

∂z
,

satisfying

∇ · S = −ρ(z)q′ ∂ψ
∂φ

,

where q′ is the PV associated with the disturbance streamfunction ψ. For a single

wave-like disturbance, the S(φ) component becomes zero, leaving

∂S

∂z

(z)

= −ρ(z)q′ ∂ψ
∂φ

. (6.60)

By expressing the disturbance PV in terms of the Dirac-delta function q′ = ∆(z)δ(r−

R(z))η, multiplying both sides of (6.60) by r and then integrating with respect to r

gives

∂

∂z

∫
∞

0

ρ(z)
f 2

0

N2

∂ψ

∂φ

∂ψ

∂z
rdr = −ρ(z)∆(z)R(z)η

∂ψ

∂φ
. (6.61)
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Then, by substituting (6.61) into (6.59), it is seen that

∂A

∂t
+
∂F

∂z
= 0, (6.62)

where A is the wave-activity density and F (z, t) is the integral of the vertical com-

ponent of the Eliassen-Palm flux over the horizontal plane

F (z, t) =

∫ 2π

0

∫
∞

0

ρ(z)
f 2

0

N2

∂ψ

∂φ

∂ψ

∂z
rdrdφ.

Equation (6.62) takes the form of a conservation relation for the wave-activity

density A(z, t). Integrating this conservation relation with respect to z gives

dA
dt

= F (0, t), (6.63)

where

A =

∫
∞

0

A(z, t)dz. (6.64)

Integrating (6.63) with respect to time, and demanding that disturbances decay to

zero as t→ −∞ gives

A∞ =

∫
∞

−∞

F (0, t)dt = F . (6.65)

The quantity A is the total wave-activity, or angular pseudomomentum, of the system

(Dritschel and Saravanan 1994).

For disturbances to the semi-infinite barotropic vortex discussed in sections 6.2

and 6.3, the vortex edge disturbance at large times is given by taking the real part

ηR = ηR0 + ηRm
from (6.54) and (6.53). Substituting this value of ηR into (6.56) and

(6.64) enables A∞ to be calculated as

A∞ = F0 + FCDS
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= π2k2f 2
0h

2Jk(lR)2∆
[π|T̂ (ω0k)|2

2Hl4

4L4
R

H2

∫
∞

0

|T̂ (ωk(m))|2ψ̂T (m)2dm
]
. (6.66)

In this formulation, F0 represents waves which are generated by an excitation of the

barotropic mode of the vortex, and FCDS represents excitation of the baroclinic modes

corresponding to the Charney-Drazin spectrum previously discussed.

It was shown in Esler and Scott (2005) that the relative contributions of F0 and

FCDS are such that resonant excitation of the barotropic mode is dominant in terms

of wave-activity, compared to the excitation of the baroclinic modes in the Charney-

Drazin spectrum, i.e. F0 ≫ FCDS. Note, however, that the exponential increase in

wave amplitude associated with the Charney-Drazin modes means that they always

dominate at very high altitudes. The result F0 ≫ FCDS also generally holds for the

wave-1 case studied here, but in the wave-1 case the result is somewhat misleading,

because relatively large values of F0 are generated by small displacements of the entire

vortex relative to its initial centroid. The interesting dynamics in the wave-1 case are

entirely due to the baroclinic modes of the Charney-Drazin spectrum.
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6.4 Nonlinear response of the QG polar vortex to

topographic forcing

6.4.1 Lower boundary forcing and vortex conditions

In this section, a fully nonlinear model is used to examine the evolution of a

barotropic vortex when subject to topographic forcing at the lower boundary of the

model. The focus of these experiments will be on the role of resonance excitation

of baroclinic disturbances on the vortex edge leading to behaviour similar to that

observed during vortex-displacement SSWs.

Experiments were performed using the CASL numerical model (see chapter 3) of

the quasi-geostrophic f -plane in a cylindrical domain. Forcing of the form

hT (r, φ, t) =
h

2
T (t)J1(lr) exp{iφ}, (6.67)

is introduced at the lower boundary, corresponding to z = 0 in the model. As we

are focusing on vortex-displacement type behaviour, the topography is specified with

azimuthal wavenumber-1 structure. The time-dependent function T (t) in the forcing

is given by

T (t) = exp
{
−
(
t

τ

)2 }
, (6.68)

with associated transform

T̂ (ω) =
τ

2π
exp

{(τω
2

)2 }
.

The scale of the topographic forcing was taken to be lR = 1.647 (so that the fifth

zero of the J1 Bessel function coincides with the outer wall of the cylindrical model
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domain). Using the terminology of Esler and Scott (2005), this scale of forcing will be

referred to as ‘vortex scale’ (VS hereafter) as the peak in forcing occurs in the vicinity

of the vortex edge. Experiments were also performed with two other scales of forcing,

lR = 0.702 and lR = 1.017, (with the second and third zeroes of J1 coincident with

the outer wall of the domain), with the results being qualitatively the same as those

shown here for the VS forcing scale topography.

Experiments were performed with τ = 2 days, with the experiment time running

from t = −5 τ to t = 5 τ days. Atmospheric parameters are taken to be the same as

those in Esler and Scott (2005) and Waugh and Dritschel (1999), that is H = 6.14 km,

LR = 900 km, R = 3LR = 2700 km. A rigid lid is imposed at a height z = D, where

D = 12H corresponding to a height of approximately 73 km above the lower boundary.

In the Earth’s atmosphere, the vortex only inhabits the lowest 4-5 scale heights of the

model, but to minimize wave reflection from the upper rigid lid boundary, and to test

the results for a semi-infinite vertical domain in the preceding sections, we consider

a domain of twice this height.

For the PV distribution in the model (6.3), we set ∆ = 0.4f0 and ∆b acts as a

tunable parameter of the system with which a solid body background rotation can

be added to the flow. By varying ∆b, it is possible to fix the angular speed of linear

disturbances on the vortex edge to be zero, bringing such disturbances into resonance

with the lower boundary forcing. A value of ∆b = −0.1f0, which was used by Waugh

and Dritschel (1999), corresponds to a background flow correction which is typical

of that observed during the winter polar stratosphere. Therefore, varying ∆b from

this reference value of −0.1f0 represents stratospheric zonal winds which tend to be



Chapter 6: Resonant Response in an Idealized Three-Dimensional Model:
Vortex-Displacement 245

stronger, or weaker, than the climatological mean.

6.4.2 Model details and numerical parameters

The CASL model used for the fully nonlinear numerical experiments consists

of a cylindrical domain with outer walls at a distance 30LR from the origin. The

domain is discretized into 120 vertical layers of uniform depth. For the spectral

velocity calculations, contour node locations are interpolated onto a quadratically

spaced radial grid with a resolution of 192 azimuthal grid points and 96 radial grid

points. Quadratic grid spacing is chosen such that grid points are concentrated in the

inner domain, the region in which vortex advection primarily occurs. On each model

layer, the vortex initially has a single PV contour with 51 nodes, corresponding to

a node resolution parameter of µ = 0.18 in the contour dynamics component of the

CASL algorithm.

6.4.3 Measures of finite amplitude vortex disturbances

As discussed in section 6.3.1, a useful measure of vortex disturbance is that of the

vertically integrated wave-activity density A. In terms of the discretized model vortex,

the wave-activity density on layer l is calculated using the formula of Dritschel and

Saravanan (1994), which generalizes (6.55) to the case of strongly deformed contours,

Al =
1

8

Nl∑

k=1

∆lρl

∮

Ck

(x2 + y2)(x dy − y dx) − π

4
∆lρlR

4
l ,

where Nl is the number of PV contours on layer l, ρl is the density on layer l, Rl is

the initial radius of the vortex cross section on layer l (Rl is the same on all layers for
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the barotropic vortex considered here) and x and y are the node positions on each

PV contour. The diagnostic A is then calculated using

A =

L∑

l=1

Al.

For disturbances with azimuthal wavenumber-1 structure, large barotropic distur-

bances are observed as an almost uniform displacement of the vortex at all heights.

That is, for an initially columnar vortex structure, the vortex remains columnar while

being displaced from the pole. As we are interested in studying disturbances associ-

ated with the baroclinic modes of the vortex, it is desirable to find the wave-activity

due to these modes. In order to do this, it is necessary to find the mass weighted

centroid of the model vortex (x̄0, ȳ0) by calculating the first order moment of the

PV distribution on each layer. Just as for the single layer model of (4.5.3) the mass

weighted centroid can be calculated as a density-weighted average of the first moments

of vorticity on each layer,

x̄l =
1

4

Nl∑

k=1

∆l

∮

Ck

(x2 dy − 2xy dx),

ȳl =
1

4

Nl∑

k=1

∆l

∮

Ck

(2xy dy − y2 dx),

(x̄0, ȳ0) =
L∑

l=1

ρl(xl, yl). (6.69)

By transforming the x and y PV node locations to x′ = x − x0 and y′ = y − y0, the

total baroclinic wave-activity density can then be measured relative to mass weighted
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centroid giving

ACDS =
L∑

l=1

1

8

Nl∑

k=1

∆lρl

∮

Ck

(x′2 + y′2)(x′ dy′ − y′ dx′) − π

4
∆lρlR

4
l .

Barotropic wave-1 disturbances, which displace the vortex without changing its shape,

do not contribute to ACDS, which consequently measures the wave-activity in the

Charney-Drazin spectrum in which we are interested. In terms of the linear prediction

for the total wave-activity at large times A∞, given in equation (6.66), the vertical

integral of the baroclinic wave-activity density satisfies

ACDS = FCDS.

From the expressions for F0 and FCDS, it is seen that both depend quadratically

on the topographic height h. Therefore, to enable direct comparison of the vortex

response at various topographic forcing heights in the fully nonlinear model with the

linear predictions F0 and FCDS, the total wave-activity A is nondimensionalized by

multiplying by a factor of H2/I0h
2.

In the finite model, each of the baroclinic modes which contributes to ACDS has

an associated integer wavenumber n ≥ 1, where n comes from a discretization of the

continuous vertical wavenumber m in the baroclinic dispersion relation (6.22) using

m =
nπ

D
, 1 ≤ n ≤ 120, n ∈ Z.

6.4.4 Results from the three-dimensional numerical model

Wave-activity diagnostics

For the fully nonlinear numerical model results, we will start by looking at the

total wave-activity of the vortex at the end of the experiments, i.e. after the pulse of
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Figure 6.1: Top panel: the total nondimensional wave-activity FH2/I0h
2 as a func-

tion of the tuning parameter ∆b (in units of f0) for the experiments with τ = 2 days
and VS topographic forcing scale. The dashed line corresponds to the prediction of
the linear model and the symbols represent results obtained from the fully nonlinear
model for a selection of forcing amplitudes. Bottom panel: as top panel, but with
total nondimensional wave-activity measured relative to the mass weighted vortex
centroid FCDSH

2/I0h
2 as a function of the tuning parameter ∆b. In both panels, ∆0

denotes the value of ∆b for which ω0k = 0. The range of ∆b for which ωk(m) = 0 lies
between ∆+ and ∆−. White large black bordered boxes denoted experiments which
are discussed in connection with Fig. 6.2.
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forcing at the lower boundary has decayed. Fig. 6.1 gives the nondimensional wave-

activity as a function of tuning parameter ∆b for VS topographic forcing scale with

τ = 2.0. There is excellent agreement between the predictions of the linear model and

those of the nonlinear model with topographic forcing height h = 0.05H , in both the

location and amplitude of the peak response. As the amplitude of the forcing increases

however, the amplitude of the response decreases. It is emphasized, however, that the

location of the peak response remains at ∆b = ∆0, at which barotropic disturbances

of the vortex appear stationary with respect to the forcing in the linear theory, for

all forcing amplitudes. This point is interesting in particular, as for topographic

forcing with wavenumber-2 azimuthal structure, the ∆b location at which the peak

response occurs migrates from ∆0 as the topographic forcing amplitude increases

(see Esler and Scott 2005, see also the single layer model results in chapter 5 for

azimuthal wavenumber-2 and 3 forcing structures). Also, the distribution of the total

wave-activity around the peak at ∆b = ∆0 remains almost uniform at all forcing

amplitudes.

We now investigate the wave-activity due to disturbances with baroclinic struc-

ture in the vertical. In the linear model this corresponds directly to the wave-activity

generated by the FCDS component in the total wave-activity equation (6.66). The

bottom panel of Fig. 6.1 shows the nondimensional baroclinic wave-activity for the

fully nonlinear model experiments discussed above. Once again, excellent agreement

is observed between the linear prediction for FCDS, as shown by the dashed line, and

the nondimensional baroclinic wave-activity for the fully nonlinear model experiments

with h = 0.05H . In both cases, the peak response is located at ∆b = −0.24f0, cor-
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responding to the resonant frequency of the second baroclinic mode, i.e. the vertical

mode with wavenumber n = 2 (m = 0.523). For larger values of the topographic forc-

ing amplitude, the peak response in wave-activity migrates to more positive values of

the tuning parameter ∆b, away from the region [∆+,∆−] associated with the Charney-

Drazin spectrum. For forcing amplitude h = 0.2H , it is seen that the peak response

now occurs for ∆b = −0.18f0 near the uppermost limit of the Charney-Drazin spec-

trum at ∆−, and for h = 0.4H the peak response occurs at ∆b = −0.12f0 completely

outside the Charney-Drazin spectrum. In addition, the normalized amplitude of the

baroclinic wave-activity increases as the forcing amplitude increases, in contrast to

the barotropic wave-activity which decreases as forcing amplitude increases.

As the forcing amplitude increases, the distribution of the baroclinic wave-activity

around its peak becomes increasingly asymmetrical, with larger values seen to the left

of the peak, in the Charney-Drazin region [∆+,∆−], than to the right of the peak.

Three-dimensional evolution of the polar vortex

We now undertake a qualitative investigation of the three-dimensional structure

of the vortex during the nonlinear experiments highlighted in Fig. 6.1. Snapshots

of vortex evolution in the latter half of the numerical experiments with h = 0.2H

and ∆b = 0,−0.18f0,−0.24f0,−0.36f0 are shown in Fig. 6.2. The three-dimensional

representation is generated by shading the outer surface of the PV contours on each

layer of the model. In all panels, the peak forcing occurs at t = 10 days, before

decaying exponentially with time.

In panel A, the tuning parameter is ∆b = 0, at which the peak in total wave-
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Figure 6.2: Three-dimensional snapshots of the lowest 6 scale heights of the model
vortex for experiments with τ = 2 days, topographic forcing scale VS and forcing
amplitude h = 0.2H . The values of the tuning parameter shown are: (A) ∆b = 0
(B) ∆b = −0.18f0 (C) ∆b = −0.24f0 (D) ∆b = −0.36f0. Each of these experiments
corresponds to one of the highlighted model runs in Fig. 6.1. In all panels, the vortex
has been centred around its mass-weighted centroid.
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activity occurs for experiments with h = 0.2H . At t = 12 days, shortly after the

peak in topographic forcing has occurred, the vortex is displaced from the pole at all

heights, indicating a growth of azimuthal wavenumber-1 disturbances on the vortex

edge. The direction of this displacement is approximately the same at all heights of

the vortex, suggesting that the dominant mode of the disturbance is the barotropic

mode, which is perhaps unsurprising seeing as the tuning parameter ∆b = ∆0 for this

experiment. Over the next 8 days up to the end of the experiment at t = 20 days, the

vortex exhibits moderate wave-breaking towards the top of the vortex, while retaining

an almost barotropic structure.

The tuning parameter in panel B is ∆b = −0.18f0, corresponding to the upper

limit of the region [∆+,∆−] which marks the tuning parameter range for which baro-

clinic disturbances to the vortex edge can appear stationary in the linear theory. This

choice of ∆b also coincides with the peak in baroclinic wave-activity for experiments

with forcing amplitude h = 0.2H . Soon after the peak in topographic forcing has

occurred, the direction of the vortex displacement varies with height and the vortex

appears slightly twisted, indicating an excitation of baroclinic disturbances with small

vertical wavenumber. This is consistent with the choice of ∆b ≈ ∆−, for which distur-

bances with vertical wavenumber n = 1 (m = 0.262) appear stationary with respect

to the topography in the linear theory of section 6.2. As the experiment progresses,

the vortex edge becomes increasingly distorted the further up the vortex one looks,

with long tongues of PV being stripped away from the main vortex core in the upper

half of the vortex.

In panel C, for ∆b = −0.24f0 lying within the Charney-Drazin spectrum, the
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vortex behaviour at t = 12 days is similar to that observed in panel B, although

the twisting of the vortex is more pronounced. By t = 16 days, the variation of

wavenumber-1 disturbances to the vortex edge with height is such that ‘corkscrew’

like behaviour is observed. That is, the baroclinic disturbances are dominated by

higher vertical wavenumbers than in panel B. Once again, this is consistent with

the predictions of linear theory, for which the choice of ∆b = −0.24f0 is expected

to produce a resonance of baroclinic disturbances with vertical wavenumber n = 2

(m = 0.523). In both panels B and C, disturbances in the upper half of the vortex

lead to strong erosion of PV from the vortex via a process of filamentation, with

wave-breaking being far more pronounced than that observed in panel A, despite the

lower values of the total wave-activity for these experiments.

When ∆b = −0.36 in panel D, the behaviour of the vortex is qualitatively different

to that seen in panels B and C. Variation of the displacement of the vortex with height

results in the vortex structure becoming ‘bowed’, with very little sign of wave-breaking

on the vortex edge. At later times, disturbances on the vortex edge exhibit higher

vertical wavenumber than in any other panel. The vortex appears to wind around its

centroid, with more than one vertical wavelength being observed in the disturbance.

In the linear theory, this corresponds to the choice of ∆b = −0.36 leading to a

resonance of baroclinic disturbances with vertical wavenumber n = 13 (m = 3.403).

One important observation from the vortex behaviour in these panels is that the

large total wave-activity F and large disturbances of the vortex from its columnar

structure are not necessarily equivalent. Instead, it is the baroclinic wave-activity

which gives most insight into the occurrence of wave-breaking and overall vortex
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disturbance in this instance.

6.4.5 A ‘Baroclinic Sudden Warming Event’

Previous investigations of resonant wave growth on a cylindrical vortex (Esler

and Scott 2005) have made attempts to simulate observed vortex splitting events. In

particular, as part of that study, it was found that for a cylindrical vortex subject

to lower boundary forcing of the form (6.24) with k = 2, resonant excitation of the

barotropic mode of the vortex resulted in a vortex split similar to that observed

during vortex-splitting SSWs (for example, see Fig. 2.3 of chapter 2). This simulated

vortex-splitting SSW was labelled a “barotropic sudden warming”.

In the spirit of the barotropic sudden warming of Esler and Scott (2005), we now

investigate resonant excitation of the baroclinic modes of the vortex as a mechanism

for a “baroclinic sudden warming” (BCSW hereafter). For the purposes of the current

study, we define a BCSW to have occurred if a reversal of the zonal wind occurs at a

radius of r = 4LR and a height z = 4H , approximately corresponding to the WMO

criterion (1.2). The BCSW described below will feature a vortex breakdown similar

to that observed during vortex-displacement SSWs (see, for example, the behaviour of

the polar vortex during the composite and January 1987 vortex-displacement SSWs

in Fig. 2.7 of chapter 2).

BCSW: experiment set-up

The fully nonlinear numerical model set-up is similar to that detailed in sections

6.4.1 and 6.4.2 with the only difference being that experiments are performed with



Chapter 6: Resonant Response in an Idealized Three-Dimensional Model:
Vortex-Displacement 255

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2
0

2

4

6

8

10

∆0

∆+ ∆-

∆0

∆+ ∆-

∆0

∆+ ∆-

BCSWLinear

h=0.05H

h=0.1H

h=0.2H

HS

τ=4.0

F C
D
S
H

2
/I

0
h

2

∆b/f0

Figure 6.3: The nondimensional baroclinic wave-activity FCDSH
2/I0h

2 as a function
of the tuning parameter ∆b (in units of f0) for the experiments with τ = 4 days
and HS topographic forcing scale. The dashed line corresponds to the prediction of
the linear model and the symbols represent results obtained from the fully nonlinear
model for a selection of forcing amplitudes. The symbol for ∆0 denotes the value of
∆b for which ω0k = 0. The range of ∆b for which ωk(m) = 0 lies between ∆+ and
∆−. The large black bordered box denotes the BCSW experiment.

topographic forcing scale HS (lR = 0.702), and time decay parameter τ = 4 in (6.68).

The topographic forcing scale HS is chosen, rather than VS scale, as it has a hori-

zontal scale comparable to the zonal wavenumber-1 contribution to the climatological

geopotential height field on the tropopause (∼ 350 K isentropic surface), which plays

a similar role in the winter polar stratosphere to the lower boundary forcing in our

model.

In the following sections we discuss the fully nonlinear model experiment with

forcing amplitude h = 0.2H , and tuning parameter ∆b = −0.16f0. This value of ∆b
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gives the peak in baroclinic wave-activity when h = 0.2H (HS, τ = 4), as can be seen

in Fig. 6.3. For forcing amplitude h = 0.2H , several experiments in the vicinity of

∆b = −0.16f0 also exhibited behaviour similar to that described here for the BCSW.

Three-dimensional structure and polar vortex life cycle

Fig. 6.4 shows the evolution of the model vortex during the BCSW. Panel A

shows three-dimensional visualizations of the vortex for the lowest six scale heights

of the model; panel B shows cross sections of the vortex on model heights 0.85H ,

2.65H and 4.45H ; panel C shows the equivalent ellipses corresponding to each patch

of vorticity on a selection of model heights. The model layers in panel B correspond

approximately to the isentropic surfaces 450 K, 750 K and 1200 K, representative of

the lower, middle and upper vortex respectively. The underlying map in all three

panels has been introduced so that comparisons can be drawn with the polar vortex

behaviour during vortex-displacement SSWs, as seen in Figs. 2.7 and 2.8 (these figures

are summarized here in Fig. 6.5 for the composite vortex-displacement case). It is

noted that the map edge in panel B is the equator, whereas the map edge in panel

C is 45◦ N. From qualitative observations of the vortex evolution, the BCSW ‘onset

day’1, τ0 = 0, is taken to be at t = 3 days, such that the times shown correspond to

lagged times τ0 = −5 days, τ0 = −1 days, τ0 = +1 days and τ0 = +4 days, similar to

that shown for the observations in chapter 2.

At t = −2 days (τ0 = −5), the vortex is still relatively undisturbed, with only

a slight displacement off the pole and southward along the 90◦ E meridian while

1The ‘onset day’ as defined in chapter 2, that is, the day on which the Charlton and Polvani
(2007) SSW criteria are met in the case of observed SSWs.
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B CA

Figure 6.4: Evolution of the model vortex during a baroclinic sudden warming
(BCSW) event with τ = 4 days, topographic forcing scale HS and forcing ampli-
tude h = 0.2H . Panel A: three-dimensional vortex structure for the lowest six scale
heights. Panel B: contours of the vortex edge on model heights z = 0.85H , z = 2.65H
and z = 4.45H , approximately corresponding to the isentropic surfaces 450 K, 750 K
and 1200 K in the winter polar stratosphere. Panel C: equivalent ellipses of the model
vortex on a selection of model heights. Ellipse areas are scaled to be 0.1 times that
of the actual vortex area.
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maintaining an overall circular cross section at all heights. There is, however, a slight

tilt of the vortex with height, with the centroid of the top of the vortex located at

approximately (60◦ E, 70◦ N; 5.05H) in comparison with the centroid of the bottom

of the vortex at approximately (90◦ E, 80◦ N; 0.85H).

By t = 2 days (τ0 = −1), the vortex is seen to be highly disturbed above z = 1.5H ,

with the amplitude of the disturbance increasing with height. From panels B and C,

it is seen that the aspect ratio of the equivalent ellipse at each height of the vortex

has significantly increased from that at t = −2 days. Similar to the polar vortex

orientation seen in Fig. 2.8 for observed vortex-displacement events, the orientation of

the model vortex is approximately north-south along the 45◦ E meridian at the vortex

base, with the vortex orientation increasingly aligning itself with latitude circles as

height increases. In addition to the change in orientation of the vortex, there is a

displacement of the vortex centroid away from the pole. The centroid of the vortex

base remains almost stationary at (90◦ E, 80◦ N; 0.85H), while the vortex centroid is

seen to migrate southwards and to the west the further up the vortex one looks, with

the uppermost layer shown having approximate centroid (5◦ E, 55◦ N; 5.05H).

By t = 4 days (τ0 = +1), deformation of the vortex has become even more

pronounced at model heights above z = 2.65H . In comparison, at the lowest heights

z < 2.65H , disturbances are largely unchanged from those observed at t = 2 days.

At model heights z = 4.45H and z = 5.05H , filamentation of PV from the disturbed

vortex edge results in tongues of interior PV being drawn westward and away from

the main vortex core, with the filamentation increasing with altitude. For heights

above z = 2.65H , the equivalent ellipses indicate that the centroid of the vortex is
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advected westward, with no further increase in southward displacement. The upper

levels of the vortex continue to experience the greatest displacement, with the vortex

centroid now located at approximately (40◦ E, 55◦ N) at z = 5.05H . In contrast,

the base of the vortex (z < 2.05H) has remained almost stationary in relation to

the underlying topography. When referring to the underlying map, the variation of

the centroid displacement with height is so large that the centroids of the vortex on

the highest and lowest surfaces inhabit completely different hemispheres, which is

very similar to the observed displacement of the polar vortex centroid during typical

vortex-displacement SSWs (see Fig. 2.8).

As the time increases to τ = 27 days (τ0 = 4) it is seen that the BCSW event is

essentially complete. Wave-breaking at the vortex edge has resulted in filamentation

over the majority of the height of the vortex, with only the lowest heights (z <

2.05H) retaining a near elliptical cross sectional structure with no filamentation. The

three-dimensional visualization and cross sections of the vortex indicate that at the

highest levels of the vortex (z > 3.85H), the vortex core has been almost entirely

eroded by this filamentation, leaving no coherent vortex structure at these heights.

Upon completion of the BCSW event, the equivalent ellipses indicate that the overall

centroid of the vortex at all heights is displaced back towards the pole. This is

accompanied by a continuing westward displacement of the vortex centroid at all

heights, with the centroid on levels z = 3.85H ,4.45H ,5.05H being displaced by a

further 90◦ W.

Overall, the life cycle of the vortex during the BCSW shares many similarities

with that of the polar vortex during vortex-displacement SSWs. Comparison of the
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three-dimensional vortex structure seen in panels A and B of Fig. 6.4 with that seen

in Fig. 6.5 taken from chapter 2 shows that in both cases, the vortex is initially

displaced from the pole before tilting westward with height, with the location of the

lower vortex remaining largely unchanged over the vortex evolution.

Zonal winds

Zonal wind fields during the BCSW experiment described above are shown in

Fig. 6.6. The SSW definition of Charlton and Polvani (2007), which is in itself partly

derived from the major warming definition of the World Meteorological Organization

(WMO), demands that the zonal mean zonal winds in the stratosphere (ū) reverse

direction, becoming easterly at 60◦ N on the 10 hPa pressure level. For a BCSW

event, a zonal wind reversal at a distance 4LR from the pole at z = 6H is taken to

be equivalent to a reversal at 60◦ N on the 10 hPa surface in the real stratosphere.

Ten days prior to the BCSW onset, at t = −7 days, it is seen that the zonal mean

velocity is independent of height and westerly, with peak velocities of approximately

40 m s−1 at the vortex edge, at a distance of r = 3Lr (2700 km) from the pole.

However, by t = 3 days, given as the BCSW onset day, there is a significant weakening

of ū at model distances less than 4LR from the pole. The peak ū in this region is

now approximately 15 m s−1, and at r = 4LR a complete reversal of ū is evident at

heights greater than z = 3.5H . At the highest altitudes of the vortex, this reversal

extends almost to the pole. By the end of the experiment at t = 20 days, ū values

have increased once again in the region r < 4LR, although they are still smaller in

magnitude than pre-onset values. At r = 4Lr, easterlies are only observed at heights
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Figure 6.5: Summary of Figs. 2.7, 2.8 and 2.9 of chapter 2, detailing the evolution of
the time-lagged composite polar vortex during vortex-displacement SSWs, given here
for comparison with Fig. 6.4. Panel A: three-dimensional isosurface of the vertically
scaled PV of the composite vortex edge, Q∗ = 38 PVU. Panel B: equivalent ellipses
of the composite PV distribution shown on a selection of isentropic surfaces approxi-
mately corresponding to the model scale heights shown in panel C of Fig. 6.4. Panel
C: variability of the vortex centroid location during individual vortex-displacement
SSWs, for the isentropic surfaces 450 K, 850 K and 1425 K. Times are shown relative
to the SSW onset day τ = 0. For further details, please see chapter 2.
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Figure 6.6: Contours of the zonal wind profile as a function of distance from the pole
in Rossby radii (LR) and height measured in scale heights (H). Zonal winds are shown
at t = −7, 3, 20 days. The topographic forcing has horizontal scale HS and forcing
amplitude h = 0.2H . Contour intervals are 5 m s−1, with solid lines corresponding
to negative (easterly) velocities and dotted lines corresponding to positive (westerly)
velocities. Regions where the zonal wind is negative (easterly) are shaded.
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above z = 4LR. This persistent decrease in ū at the highest altitudes may in some

part be attributed to the destruction of the coherent vortex structure in this region

during the BCSW.

6.5 Conclusions

In this chapter, the response of a columnar vortex structure to a pulse of lower

boundary forcing with azimuthal wavenumber-1 structure in a rotating background

flow has been investigated using the linear theory of Esler and Scott (2005) along with

a fully nonlinear numerical model. Whereas Esler and Scott (2005) looked at forcing

with azimuthal wavenumber-2, here we have concentrated on azimuthal wavenumber-

1.

The main difference between the azimuthal wavenumber-1 and azimuthal wavenumber-

2 behaviours was found to follow from the significance of the barotropic mode in the

dynamical behaviour of the vortex. In Esler and Scott (2005), when the barotropic

mode of the vortex was resonantly excited by wavenumber-2 forcing of sufficient am-

plitude a barotropic (columnar) vortex split, strongly resembling an observed vortex

split SSW, was found to occur. Here, excitation of the barotropic mode by azimuthal

wavenumber-1 forcing leads to a uniform displacement of the vortex from the pole at

all heights. It is therefore the baroclinic component of the excitation to the vortex

which is of dynamical interest. It has been shown that greatest disturbance of the

vortex from its initially columnar state, and associated wave-breaking at the vortex

edge, do not coincide with the peak in total wave-activity. Rather, in determining

the background conditions leading to such disturbances, it is necessary to find the
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peak in the baroclinic wave-activity, which typically occurs as a result of a resonance

of baroclinic modes with the smallest vertical wavenumbers n = 1, 2.

For experiments in which resonant excitation of baroclinic modes with the smallest

vertical wavenumbers n = 1, 2 occurs, it has been shown that the three-dimensional

vortex behaviour shares many similarities with that seen in the polar vortex break-

down observed during vortex-displacement SSWs.

In these baroclinic sudden warming experiments (BCSW), the centroid of the

vortex on each layer was seen to vary strongly with height in a similar way to that

observed during vortex-splitting SSWs. Furthermore, by the end of the experiment,

wave-breaking at the upper vortex has destroyed the coherent vortex structure in this

region, which is once again similar to the destruction of the upper polar vortex during

vortex-displacement events, with the vortex base remaining relatively undisturbed

throughout the BCSW.

In light of these similarities in behaviour, it is tentatively proposed that a possible

mechanism for the onset of vortex-displacement SSWs may be that of a resonance

of baroclinic modes of the polar vortex with tropospheric forcing in the presence of

favourable stratospheric conditions (similar to the background flow conditions in our

idealized model).



Chapter 7

Resonant Responses of

Three-Dimensional Model Vortices

with Realistic Structure:

Vortex-Splitting

7.1 Introduction

In the final chapter of this thesis, self-tuning resonance as a mechanism for SSW-

like behaviour is investigated for the most realistic member of our hierarchy of mod-

els. As already discussed in chapters 3 and 6, the three-dimensional vortex models

of Dritschel and Saravanan (1994), Waugh and Dritschel (1999), Esler and Scott

(2005) and Esler et al. (2006) used an ersatz boundary condition on the model lower

boundary. By utilizing this ersatz boundary condition, the zero-order Lamb mode

265
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of the system became barotropic, that is independent of height. This property of

the zero-order Lamb mode was of particular importance to the analysis of Esler and

Scott (2005), as it enables the flow to be separated into a barotropic and baroclinic

(dependent on height) component.

Using a similar model and boundary condition, Esler et al. (2006) used the find-

ings of Esler and Scott (2005) to propose that self-tuning resonance was a plausible

mechanism for the onset of the southern hemisphere vortex-splitting SSW in Septem-

ber 2002. It was found that resonant behaviour leading to a partial split of the vortex,

similar to the observed behaviour during the SSW, occurred in a very narrow band

of parameter space in the three-dimensional model.

One complementary study using a more complex dynamical model was that of

Polvani and Saravanan (2000). By investigating the behaviour of a topographically

forced columnar vortex in a primitive equation model, Polvani and Saravanan found

that the vertical structure of the vortex was an important factor controlling wave

breaking on the vortex edge. In particular, their findings echoed those of Waugh

and Dritschel (1999), in that vortex structures with area increasing with height were

resilient to wave breaking at the vortex edge. Vortices with area decreasing with

height were, on the other hand, far less resilient to wave breaking at the vortex edge.

The purpose of this chapter is to conduct a study similar to that of Esler et al.

(2006) but using greater variety of realistic vortex structures along with the correct

lower boundary condition. We restrict our investigations to resonance of azimuthal

wavenumber-2 disturbances, in the interests of producing vortex-splitting behaviour.

When the correct lower boundary condition (3.29) is used, it was shown in chapter
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3 that the associated vertical modes do not include a barotropic mode. That is, the

external mode of the vortex has an exponential dependence on height when using

the correct lower boundary condition, meaning that in order to study resonance in

this more realistic system a modification of the analysis of Esler and Scott (2005) is

not straightforward. However, by using a three-dimensional fully nonlinear numerical

model in which the correct lower boundary condition is used, this chapter will seek

to answer the following questions:

Q1. Does the model reproduce observed vortex splitting behaviour?

Q2. Can vortex-splitting in the model be associated with resonance of a vertical

mode?

Q3. To what extent do realistic variations in vortex structure affect the onset and

development of vortex-splitting behaviour?

The content of the chapter is summarized as follows. The representation of realistic

polar vortex structures is discussed within the framework of the three-dimensional

quasi-geostrophic (QG) model with correct lower boundary condition (see chapter 3).

A model calculating the wave-speeds of linear disturbances to these structures is then

briefly discussed. Using the Contour Advective Semi-Lagrangian numerical model

(CASL hereafter, see section 3.3.3 of chapter 3), a selection of realistic polar vortex

structures are then chosen to test the hypothesis of Esler and Scott (2005) that, for

small topographic forcing heights, the greatest disturbance to the vortex occurs due

to a resonance of the external mode of the vortex.

For one of these vortex structures, a more thorough investigation of the vortex
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behaviour gives a qualitative view of the role of nonlinearity in self-tuning of the vortex

towards, or away from, resonance. The same vortex structure is also investigated for

signs of vortex-splitting behaviour similar to that observed during vortex-splitting

SSWs. Vortex-splitting behaviour is then shown for a selection of other realistic

vortex structures. The conclusions of the chapter are then given.

7.2 Model framework and polar vortex represen-

tation

7.2.1 Quasi-geostrophic compressible atmosphere model

The dynamical model used in this chapter is that of the three-dimensional QG

compressible atmosphere f -plane subject to the anelastic and hydrostatic approxi-

mations. As already shown in equation 3.30 of chapter 3, in this model, by assuming

a stratosphere in which the temperature T , buoyancy frequency N , and Coriolis pa-

rameter f0 are constant, the streamfunction at any point in the flow ψ(r, φ, z, t) is

related to the potential vorticity q (PV hereafter) by

∇2
Hψ +

1

ρ

∂

∂z

(
ρ
f 2

0

N2

∂ψ

∂z

)
+ f0 = q(x, t),

where x is a position in cylindrical polar coordinates, ∇2
H is the horizontal Laplacian,

f0 is evaluated at the pole and the density is ρ(z) = ρs exp{−z/H} where H is a

reference log-pressure scale height and ρs a reference density. In this chapter, ψ is

required to satisfy the ‘correct’ lower boundary condition (3.29)

∂ψ

∂z
− κ

H
ψ +

N2

f0
hT = 0 on z = 0, (7.1)
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where hT represents topographic forcing, equivalent to forcing from the tropopause.

In order to utilize the CASL numerical algorithm, it is convenient to impose an upper

lid in the model at z = D, with corresponding boundary condition

∂ψ

∂z
− κ

H
ψ = 0, on z = D. (7.2)

This boundary condition is chosen to match the form of the lower boundary condition

(7.1). It is noted however that the exponential decay of density with height means

that if D is large enough, the choice of boundary condition at z = D has very little

impact on the overall dynamics of the system.

7.2.2 Model representation of the polar vortex

In chapter 6, the polar vortex in the three-dimensional QG f -plane model was

represented by a semi-infinite columnar vortex structure. However, in the northern

hemisphere there is significant variability in the observed structure of the polar vortex,

meaning that the idealized structure in chapter 6 might not necessarily offer the most

realistic depiction.

The vertical structure of the polar vortex, as shown in the vertically weighted PV

distribution as a function of equivalent latitude and height, is shown for a selection

of polar vortex structures prior to observed northern hemisphere SSWs.1 Panel A

closely corresponds to what has so far been referred to as a barotropic vortex, with

the location of the vortex edge and the rescaled vortex PV remaining approximately

the same at all heights. However, panels B and C show that in some winters, the

1The vertically weighted PV here was generated using the methodology presented in chapter 2
using European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 data.
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Figure 7.1: Vertically weighted PV Q as a function of equivalent latitude and altitude.
A: 0000UTC 22nd January 1958, prior to the January 1958 vortex-splitting SSW, B:
0000UTC 13th February 1979, prior to the 1958 vortex-splitting SSW, C: 0000UTC
19th January 1963, prior to the January 1963 vortex-splitting SSW. Crosses show the
location of greatest latitudinal (equivalent) PV gradient on each isentropic surface.
Circled crosses represent the locations of the 450 K, 840 K and 1200 K isentropic
surfaces. Boxed crosses correspond to isentropic surfaces θ1 and θ2 used in the vertical
scaling of PV, as given in equation (2.2). The dark lines show the scaled PV isosurface
Q∗ corresponding to the polar vortex edge calculated using scaling index α where (A)
Q∗ = 3.96438e − 05, α = −3.91947, (B) Q∗ = 2.74528e − 05, α = −4.46688, (C)
Q∗ = 4.43907e− 05, α = −3.58890.
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polar vortex edge location varies considerably with height, with the location moving

both poleward (B) and equatorward (C) as altitude increases, when compared with

the barotropic vortex of panel A. Observations also show that the rescaled vortex PV

can increase or decrease in magnitude with height, while also being generally stronger

during some winters and weaker during others. To reflect this observed variability

in polar vortex structure prior to SSWs, the shape and strength of the polar vortex

which is initialized in our fully nonlinear numerical model will be allowed to vary in

a similar way.

Another observation from Fig. 7.1 is that in many cases, the region of high PV

corresponding to the polar vortex does not reach down to the polar tropopause, which

resides at an altitude of approximately 10 km. Furthermore, in the observed winter

polar stratosphere, the strong westerly winds which characterize the polar vortex do

not reach far into the mesosphere, being mostly confined to the region between the

lower stratosphere and the stratopause. Therefore, consistent with these observations,

the polar vortex used in the fully nonlinear numerical model will be of finite height,

with the bottom of the vortex starting a short distance above the tropopause and

the top of the vortex occurring at the approximate height of the stratopause in the

model.

The resulting ‘realistic’ polar vortex structure in the three-dimensional numerical

model, with shape and interior PV varying with height between the lower stratosphere

and the model stratospause, is similar to that used by Esler et al. (2006). For each
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experiment, the PV q in the model is expressed as

q(r, z) =






f0 + ∆b + ∆(z) r < R(z)

f0 + ∆b r > R(z),

(7.3)

where the polar vortex is initialized with radius R(z) and PV anomaly ∆(z) given by

R(z) =






0 z < H

R [1 + sr (z − 3.5H) /7.5H ] H < z < 6H

0 6H < z < D,

(7.4)

and

∆(z) =






0 z < H

∆0(1 + 0.2sp) [1 + sq0.75 (z − 3.5H) /2.5H ] H < z < 6H

0 6H < z < D.

(7.5)

In these expressions, R0 and ∆0 are reference values of the polar vortex radius and

PV anomaly respectively, and sr, sp, and sq are parameters with which the shape and

strength of the initial vortex structure is varied to reflect the various polar vortex

structures observed in the winter polar stratosphere in the northern hemisphere.

In this preliminary study, we investigate vortex structures corresponding to 7

choices of the parameters sr, sp, and sq:
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Vortex name sr sp sq Description

B 0 0 0 Barotropic (control) vortex

U-S 0 0 1 PV increasing with height (Up-Stronger)

U-W 0 0 -1 PV decreasing with height (Up-Weaker)

U-O 1 0 0 Area increasing with height (Up-Outward)

U-I -1 0 0 Area decreasing with height (Up-Inward)

B-S 0 1 0 Barotropic Strong

B-W 0 -1 0 Barotropic Weak

7.3 Stationary disturbances: linear calculations

Resonance of linear disturbances on the vortex edge occurs when these distur-

bances appear stationary with respect to the underlying forcing. In order to investi-

gate the conditions leading to such stationary disturbances, it is now useful to review

the work presented in section 4 of Waugh and Dritschel (1999), in which a linear

dispersion relation was derived for a spectrum of vertically propagating waves on the

edge of a three-dimensional vortex in a QG f -plane model.

Discretizing the three-dimensional model into L vertical layers, by defining Rj to

be the reference vortex radius on layer j, linear wave-like disturbances to the vortex

edge can be expressed as rj = Rj + ηj(φ, t), where

ηj(φ, t) = Aj(t) exp{ik(φ− ω)t}.

It is now convenient to express the azimuthal and radial velocities on each layer

as discrete transforms using the orthogonal eigenfunctions χln as a basis, where χln
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correspond to the discrete forms of the normal modes χ0(z) and χn(z) given in chapter

3, with χln = χn(zl). By first defining the function

Xk
jl(r1, r2) = ρl∆l

r1
r2

L−1∑

n=0

χlnχjndzl






Ik(γnr1)Kk(γnr2) r1 < r2

Kk(γnr1)Ik(γnr2) r1 > r2,

at leading order, the azimuthal and radial velocities on the jth layer, uj = ūj +O(η)

and vj = v′j exp{ik(φ− ωt)} +O(η2) are

ūj =
L∑

l=1

rX1
jl(Rl, r),

v′j = ik

L∑

l=1

AlX
k
jl(Rl, r).

The background PV parameter ∆b is now added to the PV in the system, equiv-

alent to adding a solid body rotation to the flow of angular velocity Ωb = ∆b/2. This

additional PV gives an azimuthal velocity contribution ubj when calculating the flow

at the vortex edge on layer j.

On each layer, the linearized kinematic condition on the vortex edge is then written

(
∂

∂t
+

(ūj + ubj)

r

∂

∂φ

)
ηj − v1j

ηj
Aj

= 0 on r = Rj ,

which becomes

[
L∑

l=1

X1
jl(Rl, Rj) +

ubj
Rj

− ω

]

Aj −
L∑

l=1

AlX
k
jl(Rl, Rj) = 0. (7.6)

Equation (7.6) corresponds to the jth row of an L×L matrix equation, the solution

of which yields L eigenvalues ωl where 1 ≤ l ≤ L. These ωl are the propagation

frequencies of disturbances with vertical structure corresponding to each of the L

vertical modes of the vortex.
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Figure 7.2: Phase speed of linear disturbances on the vortex edge in the three-
dimensional QG model with correct lower boundary condition. In the case of
weak/strong (B-W/B-S) vortex configurations, the vortex parameter corresponds to
sp, in inward/outward (U-I/U-O) sr, and in up-weaker/up-stronger (U-W/U-S) sq.
The ‘BT mode’ represents the phase speed of the wave associated with the external
mode of the vortex when k = 2, and the ‘1st BC mode’ the phase speed associated
with the first vertical mode of the Charney-Drazin spectrum when k = 1.

As seen in chapters 4 and 5, in order for one of these disturbances to be stationary

with respect to the fixed frame, the corresponding frequency of the free-travelling

wave, ωi, must be zero. Therefore, similar to the approach already seen in section

5.3 of chapter 5, by setting ωi to zero, the matrix equation yields a corresponding

value of ∆b for which this wave is stationary. This value of ∆b is the value at which

resonant excitation of disturbances associated with the ith vertical mode is expected

to occur.

When ∆b = −0.1f0, the phase speed associated with the frequency ωi is shown in
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figure 7.2.2 For the various vortex structures given in table 7.2.2, the phase speeds

are seen to vary significantly for both the external mode when k = 2 and and the first

mode of the Charney-Drazin spectrum when k = 1. In the k = 1 case, a strengthening

of the vortex PV with height reverses the direction in which disturbances travel

around the vortex boundary, when compared to a vortex in which the PV weakens

with height.

7.4 Nonlinear response of QG polar vortices to to-

pographic forcing

7.4.1 Lower boundary forcing and vortex conditions

Fully nonlinear numerical experiments were performed using the CASL algorithm.

The reference values for the vortex structure parameters in section 7.2.2 were R0 =

3LR and ∆0 = 0.7f0. The lid of the model is imposed at height D = 12H , chosen

to be large enough that wave reflection and other unrealistic effects due to the upper

boundary are minimized.

The stratosphere in the model is initialized with parameters H = 6.14 km, N =

0.02 s−1, LR = 900 km, f0 = 4π day−1, with κ = 2/7 used in the correct lower

boundary condition (3.29). The maximum time in all model runs is t = 40 model

time units.

Forcing from the tropopause is represented in the model by a constant topographic

2Figure kindly provided by Dr J. G. Esler, and used with permission.
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forcing of the form

hT (r, φ) =
h0

2
HJ2(lr) exp{2iφ}, (7.7)

where, as already stated, only azimuthal wavenumber-2 is used for the topographic

forcing in an attempt to excite vortex-splitting behaviour. The radial scaling param-

eter l is given by lR0 = 1.162, for which the peak of the topographic forcing occurs

at a distance of r = 7214 km from the pole.

The background PV ∆b acts as tunable parameter with which the vortex can be

brought into and out of resonance with the topographic forcing.

7.4.2 Model details and numerical parameters

The CASL model used for the fully nonlinear numerical experiments consists

of a cylindrical domain with outer walls at a distance 30LR from the origin. The

domain is discretized into 120 vertical layers of uniform depth. For the spectral

velocity calculations, contour node locations are interpolated onto a quadratically

spaced radial grid with a resolution of 192 azimuthal grid points and 96 radial grid

points. Quadratic grid spacing is chosen such that grid points are concentrated in

the inner domain, the region in which vortex advection primarily occurs. The node

resolution parameter in the contour dynamics algorithm is µ = 0.18, such that each

PV contour in the “B” set of experiments has initially 51 nodes.
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7.4.3 Measures of wave-activity and vortex moment diagnos-

tics

The vertically integrated wave-activity A is calculated as described in section 6.4.3

of chapter 6.

As the forcing amplitude in equation (7.7) remains constant for each experiment,

the physical interpretation of A∞ is not the same as seen in chapter 6, in which

a pulse of topographic forcing was considered. Therefore, in an approach which is

similar to the maximum amplitude diagnostic of chapters 4 and 5, it is enlightening

to interpret the wave-activity of the vortex using Amax = max[A], which gives the

maximum amplitude of disturbances to the vortex over the experiment.

Vortex-splitting is diagnosed using the parameter κ4 as derived in section 2.2.4,

with vortex moments in the model being calculated as described in section 6.4.3. For

each height of the vortex, vortex-splitting is diagnosed if min[κ4] = κmin < −0.6.

Experiments are classified as “vortex-splitting experiments” if κmin < −0.6 on model

layer z = 2.5H , which would approximately correspond to a split of the vortex on

the 840 K isentropic surface in the stratosphere which is used in the SSW definition

of Charlton and Polvani (2007).

7.4.4 Results from the three-dimensional numerical model

Wave-activity and vortex splitting

Fig. 7.3 shows the maximum vertically integrated wave-activity Amax for fully

nonlinear numerical model experiments initialized with the vortex structures in table
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Figure 7.3: The maximum vertically integrated wave-activity Amax (dashed lines
and diamonds) as a function of tuning parameter ∆b in the numerical model when
h0 = 0.01. Panels correspond to the vortex structures given in table 7.2.2. The
∆b values for which disturbances associated with the external mode of the vortex
become linearly resonant with the topographic forcing are marked by dotted lines.
Experiments shown in Fig. 7.6 and panel B of Fig. 7.5 are marked on the ∆b-axis by
crosses.
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7.2.2. For each set of experiments, the dotted line shows the tuning parameter ∆b

at which linear resonance of the external mode of the vortex with the topographic

forcing occurs.

In most cases, the location of the peak in Amax coincides with the dotted line,

indicating a resonant excitation of disturbances associated with the external mode

of the vortex by the topographic forcing. The response in the vicinity of the dotted

line is far larger than at other values of Ωb, implying that resonant excitation of the

external mode dominates over the excitation of disturbances associated with modes

in the Charney-Drazin spectrum.

For experiments with initial vortex structure “B”, contours of the maximum ver-

tically integrated wave-activity Amax are shown in Fig. 7.4 as a function of tuning

parameter ∆b and topographic forcing height h0. The overall appearance of the fig-

ure is highly reminiscent of the contours of maximum disturbance amplitude seen in

chapter 5 (see, for example, Fig. 5.10). For small forcing amplitudes, the location of

the peak response in Amax occurs at ∆b ≈ −0.062f0 as already shown in Fig. 7.3.

As the forcing amplitude increases, the increasing nonlinearity of the disturbance is

observed as a migration of the peak in Amax to the right.

Vortex-splitting experiments are denoted by the shaded region. As seen in the

single layer experiments of chapters 4 and 5 (see Figs. 4.7, 5.10 and 5.12), the vortex-

splitting sub-regime has a distinctive wedge shape, and coincides with the region in

which Amax is greatest. The left-hand boundary of the sub-regime occurs at Ωb = 0.03

at all forcing heights, whereas the right-hand boundary follows the the steep gradients

in A∞, sloping to the right. Also similar to the single layer models is the fact that
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Figure 7.4: Contours of the maximum in vertically integrated wave-activity Amax as
a function of tuning parameter ∆b and forcing height h0 for numerical experiments
initialized with the vortex configuration “B” (barotropic vortex). Outlined white
crosses correspond to experiments which are shown in Fig. 7.5. The black cross shows
the location of the peak in Amax when h0 = 0.01, and the vertical dotted line gives
the location of ∆b = −0.062f0 at which disturbances associated with the external
mode of the vortex are in linear resonance with the topographic forcing. The heavy
solid line marks the steepest gradient in Amax with respect to ∆b. The shaded region
denotes the vortex-splitting sub-regime in which min[κ4] < −0.6 on model height
z = 2.5H . Contours are shown at intervals of 0.1.
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Figure 7.5: Snapshots of vortex evolution at model times t = 7, 11, 15, 19, 23, 40 during
numerical experiments initialized with the ‘control’ vortex configuration (sr = sp =
sq = 0). The forcing amplitude is h0 = 0.4 in all panels. Panel A: ∆b = 0.0. Panel
B: ∆b = −0.01. Panel C: ∆b = −0.04. Panel D: ∆b = −0.05.

splits only occur for sufficiently large forcing amplitudes, in this case when h0 & 0.2.

The remarkable similarities between Fig. 7.4 and Figs. 5.10 and 5.12 show that the

barotropic single layer model offers excellent insight into vortex-splitting dynamics in

an idealized three-dimensional stratosphere.

Vortex structure and evolution

Three-dimensional views of evolution of the polar vortex boundary during exper-

iments initialized with vortex configuration “B” are shown in Fig. 7.5. Each panel
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(top-bottom) corresponds to one of the outlined white crosses in Fig. 7.4 (right-left).

In panel A, disturbances to the vortex edge result in periodic, anticlockwise rotating

vortex evolution, with disturbances giving the vortex cross sections an approximately

elliptical shape. The aspect ratio of these cross sections varies periodically at all

heights of the vortex. Aspect ratios of the quasi-elliptical cross sections are generally

larger at the base of the vortex and smaller in the upper half of the vortex. In addi-

tion to this periodic evolution, there is no evidence of either filamentation or pinching

type instabilities on the vortex edge at any height.

A small change in the tuning parameter, moving into the vortex-splitting sub-

regime shown in Fig. 7.4, results in a dramatic change in vortex evolution as shown

in panel B. Between t = 7 and t = 15, disturbances to the vortex edge appear almost

stationary, with deformation of the vortex resulting in almost elliptical vortex cross

sections, the aspect ratio of which increases over time. The greatest aspect ratios

of quasi-elliptical cross sections are once again observed in the lower vortex. By

t = 19 the vortex is showing signs of splitting behaviour in the lower vortex, which

by t = 23 has resulted in a split of the vortex at all heights into two approximately

columnar daughter vortices. The daughter vortices remain coherent to much later

times, such that by t = 40, both vortex columns are relatively unchanged from their

state immediately after the split, with only mild erosion of PV at high altitudes.

Another example of vortex behaviour lying in the vortex-splitting sub-regime is

observed in panel C. For ∆b = −0.04 lying on the left hand boundary of the vortex-

splitting sub-regime, vortex-splitting occurs at earlier times than for ∆b = −0.01,

which was shown in panel B. The orientation of the vortex with respect to the under-
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lying topography is not fixed between t = 7 and t = 15, with the vortex exhibiting

clockwise rotation. In contrast to the coherence of the daughter vortices observed

in panel B, at t = 23, soon after the split has occurred, interaction of the daughter

vortices with the background flow and one another quickly acts to destroy both struc-

tures. At t = 40, long after the vortex split, the remnants of the daughter vortices

are seen to have merged again, reforming into a single columnar vortex structure, as

can be seen by examining PV cross sections on each model level. Further investiga-

tion of vortex cross-sections during the split in both panels B and C reveals that the

orientation or the vortex with respect to the underlying topography, and location of

each of the daughter vortex centroids, is the same at all heights of the vortex.

For ∆b just to the left of the vortex-splitting sub-regime as shown in Fig. 7.4,

the vortex evolution does not exhibit vortex-splitting behaviour at all. Instead, the

orientation of the vortex oscillates with respect to the underlying topography, while

instability of disturbances leads to filamentation of PV from the lower vortex.

From these results it is clear that the stability and qualitative behaviour of these

vortex structures, when compared to the location of each experiment in parameter

space as shown in Fig. 7.4, is remarkably similar to that observed in the single layer

models (see, for example, Figs. 4.2, 4.6 and 5.14). Three-dimensional experiments

with ∆b to the right of the steepest gradients in Amax, as marked by the heavy solid

line in figure 7.4, are characterized by anti-clockwise vortex rotation, with very little

indication of instability. In comparison, for model experiments with ∆b lying to the

left of the steepest gradient in Amax, vortex evolution is either oscillatory or clockwise

rotating and disturbances to the vortex structure are far larger. Also, experiments
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Figure 7.6: Snapshots of vortex evolution during vortex-splitting experiments:

B-W: h0 = 0.2, ∆b = −0.02
U-W: h0 = 0.4, ∆b = −0.07
U-S: h0 = 0.4, ∆b = −0.04
U-I: h0 = 0.2, ∆b = −0.02

Times are shown as model times.

in this region of parameter space are unstable. This is similar to the findings for

the single layer topographically forced model of chapters 4 and 5, the stability of

which was in turn predicted by the stability of the Kida vortex model in a purely

two-dimensional system (e.g. Dritschel 1990).

We now demonstrate that vortex-splitting behaviour, similar to that observed

in panels B and C of figure 7.5, also occurs for a range of non-barotropic vortex

structures.



Chapter 7: Resonant Responses of Three-Dimensional Model Vortices with Realistic
Structure: Vortex-Splitting 286

Fig. 7.6 shows evolution of the model vortex boundary for a choice of experiments

with different initial vortex structures (see table 7.2.2). For all vortex structures,

splitting of the vortex can occur when ∆b is greater than the ∆b at which linear

resonance occurs, as shown by the relative locations of the crosses and dotted lines

in Fig. 7.3. In all experiments shown in Fig. 7.6, the vortex undergoes a process of

elongation of its quasi-elliptical cross sections, followed by a pinching of the vortex

at its centroid. This pinching then leads to a complete split of the vortex at all

heights. It is pointed out that in all cases, the narrow filaments of PV which connect

the columnar daughter vortices have very little impact on the subsequent dynamics,

which are dominated by the daughter vortex structures.

While vortex-splitting was observed for all of the vortex structures in table 7.2.2,

the minimum forcing amplitude necessary for vortex-splitting behaviour to be ob-

served varied between model runs. That is, to generate vortex-splitting experiments,

model runs U-S and U-W required forcing amplitudes h0 = 0.4, approximately dou-

ble that of model runs B-W and U-I in which splitting occurred for h0 = 0.2. The

most resilient vortex structures were B-S and U-O, which required the largest forcing

amplitudes (h0 = 0.6) for vortex-splitting to be observed. This result for U-O exper-

iments is in agreement with Waugh and Dritschel (1999) and Polvani and Saravanan

(2000), who found that vortex structures with area increasing with height were most

resilient to lower boundary forcing.
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Comparisons with the January 1958 SSW

Although it must be stressed that this work is only a preliminary step in explaining

the role of a resonant excitation mechanism in the generation of realistic SSWs, it is

nevertheless of great interest to compare the idealized model results with observed

vortex-splitting events.

The barotropic structure of the control vortex in the fully nonlinear model is

qualitatively similar to that observed in the polar vortex prior to the January 1958

vortex-splitting SSW, as shown by the vertical structure of the vertically weighted

PV for this event (see panel A of Fig. 7.1). Therefore, simple comparisons are now

made between vortex-splitting behaviour in the fully nonlinear numerical model and

vortex-splitting behaviour observed during the January 1958 vortex splitting SSW.

Left-hand panels of Fig. 7.7 show cross sections of the mid-vortex during the nu-

merical model experiment shown in panel A of Fig. 7.5. Right-hand panels show

vertically weighted PV cross sections on the 840 K isentropic surface during the Jan-

uary 1958 vortex-splitting SSW. The 840 K isentropic surface is chosen due to its role

as the reference level on which SSWs are identified in both the World Meteorologi-

cal Organization and Charlton and Polvani (2007) SSW definitions. It is pointed out

that the map has been added to the model results in the left-hand panels for reference

purposes only.

Vortex behaviour during the numerical experiment mirrors that of the observed

SSW remarkably well. In both panels, the vortex is initially seen to be approximately

elliptical, with slight deformation over the pole. Over the next two days, pinching of

the vortex over the pole becomes more extreme, such that by t = 20 in the model (28
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Figure 7.7: Left panels: filled contours of the vortex boundary at model times
t = 18, 19, 20, 21 days for the numerical model experiment shown in panel B of fig-
ure 7.5 with (Ωb, h0) = (0.09, 0.4). The model height shown is z = 2.5H . Right
panels: contours of vertically weighted PV (PVU) on the 840 K isentropic surface,
corresponding approximately to model height z = 2.5H , during the January 1958
vortex-splitting SSW.
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January in the observations), the vortex consists of two diametrically opposite lobes

of PV (located over Siberia and Canada in the observations) connected by a narrow

filament of PV. After one more day has passed, in both the numerical model and the

observations, the vortex has split into two smaller daughter vortices of comparable

magnitude, with only a narrow filament of PV connecting the two. In both cases,

there is very little change in the orientation of the vortex over the duration of the

vortex split, implying that disturbances leading to elliptical deformation of the vortex

are stationary with respect to the topography.

7.5 Conclusions

Below, the three questions posed in the introduction to the chapter are addressed.

Does the model reproduce observed vortex-splitting behaviour

Using a fully nonlinear numerical model of the stratosphere in which a realistic

lower boundary condition is used, it has been shown that vortex-splitting behaviour

is observed for a range of vortex structures. Comparison of one vortex-splitting ex-

periment with the vortex-splitting SSW occurring in January 1958 showed that the

qualitative nature of the split, and the time scale on which the split occurs, are similar

between the two.

The qualitative features of vortex-splitting in the three-dimensional model are

also highly reminiscent of vortex-splitting behaviour seen in the single layer model in

chapter 5. That is, growth of disturbances on the vortex edge leads to vortex cross

sections taking on an elongated elliptical shape. For model parameters leading to
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large aspect ratios in these elliptical cross sections, unstable growth of disturbances

is observed on the vortex edge. For the greatest aspect ratios, this unstable growth

is dominated by elliptic azimuthal wavenumber-2 disturbances, leading to vortex-

splitting (see section 4.2 of chapter 4). The results of this preliminary study suggest

that, in most cases, vortex-splitting behaviour occurs almost simultaneously at all

vortex heights.

Can vortex-splitting in the model be associated with resonance of a ver-

tical mode?

By investigating wave-activity response to small amplitude forcing in the three-

dimensional model, it has been shown that for a range of vortex structures, the

location of greatest response in the model parameter space is close to that predicted

by a resonance of the external mode of the vortex. That is, disturbance of the vortex

resulting from resonant excitation of the vertical modes lying in the Charney-Drazin

spectrum is far smaller than that of the external mode.

When considering larger amplitudes of topographic forcing, resonant excitation of

disturbances associated with the external mode of the vortex lead to vortex-splitting.

In contrast, resonant excitation of disturbances associated with the vertical modes of

the Charney-Drazin spectrum seem to lead to filamentation of the vortex.

This suggests that the analytical predictions of Esler and Scott (2005), that for a

semi-infinite barotropic vortex and ersatz lower boundary condition vortex-splitting

is generated by resonant excitation of the barotropic mode, are directly relevant

when considering finite non-barotropic vortex structures with realistic lower boundary
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condition.

A thorough investigation into the peak response of a barotropic vortex to topo-

graphic forcing has shown that nonlinearity acts to tune the vortex either towards, or

away from, resonance. As forcing amplitude increases, the location of the tuning pa-

rameter ∆b at which the greatest response occurs migrates away from that predicted

by linear theory. This migration is remarkably similar to that observed in the single

layer model in chapter 5 when B = 1.44.3

Furthermore, in the parameter space, the regime boundary between stable, peri-

odic vortex motion and vortex-splitting events tracks the migration of the location at

which resonance occurs. This, once again, is remarkably similar to the results for the

single layer model of chapter 5, in which similar behaviour was observed.

To what extent do realistic variations in vortex structure affect the onset

and development of vortex-splitting behaviour?

Resonant excitation of the external mode of the vortex has been shown to lead

to vortex-splitting behaviour for a wide range of realistic vortex structures. That is,

the initial structure of the vortex seems to have little to no effect on the potential

for vortex-splitting behaviour. However, some vortex structures are more resistant

to splitting than others. In general, vortex structures which have anomalously weak

PV, or which have area decreasing with height, require smaller amplitude forcing for

splits to be observed, when compared to vortex structures which have anomalously

3This choice of B = 1.44 corresponds approximately to the Rossby radius of the external mode
when using the correct lower boundary condition.
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strong PV or which have area increasing with height. In contrast, variation of the

vortex PV with height seems to have little impact on the forcing amplitudes required

for vortex-splitting.



Chapter 8

Conclusions

The objective of this dissertation has been to establish a greater understanding

of the fundamental dynamics responsible for polar vortex breakdown during major

midwinter stratospheric sudden warmings (SSWs). The primary focus has been on a

hierarchy of models approach using idealized dynamical models of the winter polar

stratosphere, with a secondary focus on the observed behaviour of the polar vortex

during all Northern Hemisphere SSWs since 1958. Due to the pivotal role of the

potential vorticity (PV) in determining the dynamical behaviour of the winter polar

stratosphere, a vortex dynamics approach has been adopted in both the choice of

dynamical models and the techniques used in our observational data analysis.

Conclusions relating to the observational and modelling aspects of this work will

now be summarized, with a final comment on future avenues of research which stem

from these conclusions.

293
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8.1 Observational study

An observational study, using European Centre for Medium Range Weather Fore-

casts (ECMRWF) ERA-40 re-analysis data, focused on the evolution of the Arctic

polar vortex during SSWs. Time-lag composites and PV moment diagnostics were

used to investigate the distinctive behaviour of the polar vortex during both displace-

ment and splitting SSW events.

The motivating questions and their respective conclusions, as provided by our

results, are now summarized.

1. What is the vertical structure of the Arctic polar vortex during vortex-

displacement and vortex-splitting SSWs? Is there significant variation

in vertical structure between individual SSWs within these classifications,

and if not, does the typical vertical structure for displacement SSWs differ

to that of splitting SSWs?

The Arctic polar vortex has a highly characteristic vertical structure during the

two different classifications of SSW. Vortex-displacement events are highly baroclinic

in nature, with vortex displacement off the pole and elongation of the vortex both

increasing with altitude above 30 km. In contrast, during vortex-splitting events the

vortex remains nearly barotropic, with the split occurring near-simultaneously over a

large altitude range (at least 20-40 km).
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2. Is there a preferred location and orientation of the Arctic polar vortex

with respect to the Earth’s surface during the development of each type

of SSWs?

For both types of SSW, there is relatively little variation between individual events

in the orientation of the vortex breakdown relative to the underlying topography, i.e.

SSWs of each type are to a large extent fixed in relation to the Earth’s surface.

For displacement events the vortex is located in the 90◦E-0◦E sector prior to the

warming, and by the end of the warming spans the entire Atlantic hemisphere from

90◦E (lower vortex) to 90◦W (upper vortex). There is somewhat more variability in

the case of vortex-splitting events, but the dominant direction for the splits is found

to be parallel to the 60◦E-120◦W great circle, such that the vortex splits into two

daughter vortices approximately located over Canada and Siberia.

3. Does the three-dimensional structure of the Arctic polar vortex exhibit

a characteristic life cycle during each type of SSW?

Each type of SSW exhibits a distinct life cycle, in the sense that the centroid

position, orientation and elongation of the Arctic polar vortex evolves in a similar

fashion during the onset and occurrence of individual splitting events, with a separate

behaviour during displacement events.

For vortex-displacement events, the separation in longitude between the lower

vortex (450 K) and the upper vortex (1425 K) increases uniformly during the SSW,

from 85◦ longitude 10 days prior to the SSW onset day to 150◦ longitude just after

the onset day. By the end of the displacement SSW life cycle, the upper part of the



Chapter 8: Conclusions 296

vortex is destroyed by deformation, and the vortex subsequently reforms around its

remnants in the lower stratosphere.

Splitting events are characterized by a rapid increase of the aspect ratio of the

vortex a few days prior to the SSW, followed by the roll-up of the elongated vortex

into two distinct ‘daughter’ vortices by the onset day. The daughter vortices then

propagate rapidly apart to a distance of up to 5000 km, after which they experience a

retrograde rotation around their common centroid, usually leading to the destruction

of the weaker Canadian vortex and reformation of the main vortex around the stronger

Siberian vortex.

8.2 Hierarchy of models

The barotropic nature of vortex-splitting SSWs, as indicated in our observational

study, suggests that single layer models of the stratosphere are suitable candidates

for the most idealized members of our hierarchy, at least from the perspective of

vortex-splitting SSWs. A single layer quasi-geostrophic f -plane shallow water model

is therefore chosen for one of the least complex members of our hierarchy. Due to the

large Rossby radius of deformation which is typical for flows in the stratosphere, a

purely barotropic (two-dimensional) f -plane model is also chosen, as it is a limiting

case of the shallow water model when the Rossby radius of deformation becomes

infinite. The most complex member of our hierarchy is a three-dimensional quasi-

geostrophic f -plane model.

The overarching objective of the hierarchy of models approach is to investigate

whether vortex-splitting and vortex-displacement SSW-like behaviours are exhibited



Chapter 8: Conclusions 297

in these relatively idealized systems. One of the benefits of using such idealized mod-

els is that their modest complexity, when compared to General Circulation Models

(GCMs) for example, makes it more straightforward to apply analytical techniques

to study the dynamical processes responsible for this behaviour. Therefore, in addi-

tion to performing fully nonlinear numerical experiments of vortex behaviour in these

systems, a strong emphasis is on developing an analytical theory explaining vortex

breakdown in these models. In particular, in all hierarchy members the primary

objective of the mathematical analysis is to seek SSW-like behaviour resulting from

resonant excitation of waves on the edge of an idealized vortex. Within this remit, a

particular interest is on the role of nonlinearity in ‘self-tuning’ initially off-resonant

vortex states towards resonance.

8.2.1 Single layer models

The single layer members of our hierarchy of models investigate vortex-splitting

behaviour with an idealized vortex patch. In all of these models, the polar vortex

is represented by an initially circular vortex of uniform interior PV which is subject

to an external forcing in a solid body rotating flow. The strength of the solid body

rotation is represented by a rotation parameter Ωb.

There are two choices of experimental set-up. The first set-up is an idealized vortex

patch in a barotropic f -plane framework incorporating a straining velocity external

forcing, known as the Kida vortex (Kida 1981). A particularly attractive feature of

this model is that the vortex behaviour can be described using fully nonlinear ana-

lytical techniques. The second set-up is an idealized vortex patch in a shallow water
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f -plane framework, in which external forcing is provided by topography (hereafter

referred to as the ‘shallow water model with topography’, or SWT model). Due to its

association with vortex-splitting SSWs, the topographic forcing in the SWT model

is taken to have azimuthal wavenumber-2 structure when looking for vortex-splitting

behaviour.

The objectives of the single layer model study, and our findings in respect to these,

are summarized below.

1. Is vortex-splitting behaviour, similar to that observed during vortex-

splitting SSWs, observed in the SWT model?

By varying the strength of the background rotation parameter Ωb and the topo-

graphic forcing height H, a variety of vortex behaviours are observed in fully nonlinear

numerical simulations of the SWT model. Such behaviour includes anti-clockwise pe-

riodic rotation, clockwise periodic rotation and periodic oscillation of approximately

elliptical vortex states. In addition to these periodic vortex states, for sufficiently

large forcing heights vortex-splitting behaviour occurs in a narrow band of Ωb values,

with the width of this band increasing as the forcing height increases (see panel A of

Fig. 8.1).

The qualitative features of these vortex-splitting experiments are very similar

to those observed during vortex-splitting SSWs. That is, growth of wavenumber-2

disturbances on the vortex edge result in the vortex becoming almost elliptical in

shape, and once the aspect ratio of the ellipse becomes sufficiently large, unstable

disturbances act to ‘pinch’ the vortex around its centroid, eventually leading to a
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Figure 8.1: Panel A: Classification of vortex behaviour in the SWT fully nonlinear
numerical model experiments as a function of rotation parameter Ωb and nondimen-
sional topographic forcing height H (see chapter 4). The Rossby radius of deformation
in this case is taken to be infinite. Classification definitions are: − clockwise rotation,
+ anticlockwise rotation, H highly disturbed, S split, O oscillating/other. Panel B:
Regimes of behaviour in the Kida model. Panel C: Stability regimes in the Kida
model, with the shaded region showing the extending regime not considered by the
stability analysis. For each H in panel A, the heavy solid line shows the Ωb resulting
in maximum excitation of the vortex, as predicted by weakly nonlinear analysis, and
the dotted line shows the location of linear resonance at Ω0 = −0.25. In all panels,
dashed lines give the location of regime boundaries in the Kida model.

complete split.

2. Under what circumstances, and to what extent, can the behaviour of

the vortex in the SWT model be understood by reference to the Kida

vortex model? Can a mapping between the two models be established?

If the Rossby radius of deformation in the SWT model is infinite, and if certain

conditions are imposed on the topographic forcing structure, the SWT model and

Kida model are shown to be identical. Even when these conditions are not satisfied,

results from fully nonlinear numerical experiments show that there is still a close

relationship between the SWT and Kida models. That is, as long as the topographic
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forcing height is not too large, anti-clockwise rotation, clockwise rotation and oscillat-

ing regimes in the SWT model are accurately predicted by their counterpart regimes

in the Kida model (see panel B of Fig. 8.1). When the topographic forcing height

exceeds a certain threshold, the behaviour in the SWT model differs from that of the

Kida model as a vortex-splitting regime emerges, lying wholly within the oscillating

Kida regime.

Results from numerical experiments also indicate that stable and unstable regimes

in the Kida model have analogous stability regimes in the SWT model. For exam-

ple, highly disturbed and splitting behaviour in the SWT model only occur in the

analogous unstable Kida regime (see panels A and C of Fig. 8.1).

Although the Kida model does not predict the existence of the vortex-splitting

regime, it is seen that the regime boundary between unstable oscillating and stable

anti-clockwise rotating states in the Kida model separates unstable vortex-splitting

and stable anti-clockwise rotating states in the SWT model.

3. In the SWT model, does the excitation of waves on the vortex edge

display features of a resonance with the background flow? If so, what is

the role of nonlinearity in self-tuning the vortex towards resonance?

For small topographic forcing heights in the SWT model, numerical experiments

show that the location in (Ωb,H) parameter space of the most excited vortex states

is exactly as predicted by a linear resonance of waves on the vortex edge. As the

topographic forcing height increases, this location migrates from that predicted by

a linear resonance. These findings are shown to hold for the SWT model with both
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finite and infinite Rossby radii of deformation, and for several choices of topographic

forcing structure.

The role of nonlinearity in this migration is approached using two analytical reduc-

tions. The first analytical reduction uses the SWT model with infinite Rossby radius

of deformation in which the topographic forcing has wavenumber-2 azimuthal struc-

ture. Under these conditions, the Kida model acts as a good proxy when determining

the behavioural characteristics of the system, as previously discussed. In the Kida

model, the boundary between the oscillating and anti-clockwise regimes corresponds

to vortex states which, although initially in motion, eventually become stationary

with respect to the external straining field. From the perspective of wave-like dis-

turbances in the SWT model, such solutions correspond to nonlinear corrections to

a linear resonance, that is a self-tuning resonance. Therefore, the importance of

this regime boundary in separating stable anti-clockwise vortex states from unsta-

ble vortex-splitting states in the SWT model strongly suggests that the underlying

mechanism which causes such splits is that of a self-tuning resonance.

The second analytical reduction applies a weakly nonlinear asymptotic theory

to the SWT model with arbitrary Rossby radius. For small topographic forcing

heights, the weakly nonlinear theory gives quantitative predictions for self-tuning

of wave-like disturbances towards, or away, from linear resonance. Comparing the

weakly nonlinear predictions with results from fully nonlinear numerical experiments

shows excellent agreement between the two, even when the topographic forcing height

‘outgrows’ the weakly nonlinear assumption of small forcing amplitude. Also, for

experiments with azimuthal wavenumber-2 topographic forcing, the location of peak
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disturbance amplitudes predicted by the weakly nonlinear theory separates stable

anti-clockwise vortex states from unstable vortex-splitting states, indicating that the

process of self-tuning resonance is responsible for the transition to splitting behaviour

(see panel A of Fig. 8.1).

In summary, both analytical reductions show that as topographic forcing height

increases, greatest disturbance amplitudes occur for vortex states which are initially

offset from linear resonance, with the vortex self-tuning back towards resonance.

Accurate predictions of the offset resulting in the greatest disturbance amplitude

are given by each analytical reduction.

8.2.2 Three-dimensional models

The more complex members of our hierarchy of models use a stratified three-

dimensional quasi-geostrophic f -plane framework. Forcing in the model is introduced

in the form of an idealized lower boundary topography. When investigating vortex-

splitting behaviour the forcing has wavenumber-2 azimuthal structure, whereas for

vortex-displacement behaviour the forcing has wavenumber-1 azimuthal structure. At

each height, the vortex is represented by an initially circular vortex patch of uniform

interior PV. To investigate the impact of the vertical structure of the vortex on its

resonant behaviour, the vortex area and interior PV are allowed to vary with height.

To bring the vortex into or out of resonance with the forcing, a tuning parameter in

the form of a uniform PV distribution ∆b is added throughout the domain, which is

analogous to the solid body rotation in the single layer models.

When summarizing below, it is natural to address the conclusions for vortex-splits
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(S) and vortex-displacements (D) separately.

S-1. Is vortex-splitting behaviour, similar to that observed during vortex-

splitting SSWs, reproduced in the three-dimensional model?

When topographic forcing with azimuthal wavenumber-2 structure is used in the

idealized model, numerical experiments show that vortex-splitting behaviour is ob-

served for a range of vortex structures. However, for each choice of vortex structure

the topographic forcing height H must be sufficiently large for vortex splits to be ob-

served at all. For an initially barotropic vortex structure, a thorough investigation of

the (∆b,H) parameter space shows that vortex-splitting only occurs in a narrow band

of ∆b values, with the width of this band increasing the forcing height increases (see

Fig. 8.2). This behaviour agrees with that seen in the single layer model discussed

previously.

Comparison of vortex-splitting experiments with the vortex-splitting SSW occur-

ring in January 1958 shows that qualitative features of the split, and the time scale

on which the split occurs, are similar between the two. The qualitative features of

vortex-splitting in the three-dimensional model are also highly reminiscent of vortex-

splitting behaviour in the single layer model.

S-2. Does the vertical structure of the vortex have a significant impact on

the occurrence of vortex-splitting behaviour?

In the fully nonlinear numerical model experiments, vortex-splitting behaviour is

observed for a wide range of realistic vortex structures. That is, the initial vortex

structure in the idealized model has little to no effect on the potential for vortex-
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Figure 8.2: Contours of maximum disturbance amplitude as a function of tuning
parameter ∆b and topographic forcing height H for numerical experiments using an
initially barotropic vortex structure. The shaded region denotes experiments in which
the vortex is diagnosed as having split. The cross × shows the peak in maximum
disturbance amplitude when H = 0.01. The dashed line shows the ∆b at which
linear resonance occurs, and the heavy solid line traces the ∆b location of the peak
maximum disturbance amplitude at each forcing height.
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splitting behaviour. However, some vortex structures are more resistant to splitting

than others. In general, vortex structures which have anomalously weak PV, or

which have area decreasing with height, require smaller forcing heights for splits to

be observed, when compared to vortex structures which have anomalously strong PV

or which have area increasing with height. In contrast, variation of the vortex PV with

height seems to have little impact on the forcing heights required for vortex-splitting.

S-3. Can vortex-splitting be associated with a resonance of a particular

vertical mode?

By investigating vortex excitation in response to small forcing heights in the ide-

alized model, fully nonlinear numerical experiments indicate that greatest excitation

occurs due to a linear resonance of the external, or barotropic, mode of the vortex.

That is, vortex disturbances associated with resonant excitation of baroclinic vertical

modes are far smaller than disturbances associated with a resonance of the barotropic

mode.

Numerical experiments investigating the resonant response of an initially barotropic

vortex show that nonlinearity results in the vortex self-tuning either towards, or away

from, resonance. This self-tuning shares many similarities with the self-tuning exhib-

ited by single layer members of our hierarchy of models. This suggests that the

self-tuning mechanism responsible for vortex-splitting in our single layer models may

also be responsible for vortex-splitting in the more complex models in our hierarchy.
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D-1. Is vortex-displacement behaviour, similar to that observed during

vortex-displacement SSWs, reproduced in an idealized model?

When topographic forcing with azimuthal wavenumber-1 structure is used in the

idealized model, fully nonlinear numerical experiments show that sufficiently large

forcing heights result in a vortex breakdown similar to that observed during vortex-

displacement SSWs.

D-2. Can this vortex-displacement behaviour be explained in terms of an

excitation of one of the baroclinic modes of the vortex, in a similar fashion

to a linear resonance of the barotropic mode leading to vortex-splitting

behaviour?

For wavenumber-1 topographic forcing, excitation of the barotropic mode of the

vortex corresponds to an almost uniform displacement of the vortex from the pole

at all heights. Therefore, by measuring the disturbance of the vortex relative to this

displacement, it is possible to isolate the behaviour of disturbances to the vortex

which are baroclinic in nature.

Calculations of the corresponding baroclinic wave-activity, that is the wave-activity

measured relative to the displaced vortex centroid, show that the vortex breakdown

discussed above is accompanied by a peak in baroclinic wave-activity associated with

the smallest vertical wavenumbers of the baroclinic spectrum. This suggests that

a resonant excitation of these baroclinic modes, rather than the barotropic mode,

may be responsible for vortex breakdown similar to that observed during vortex-

displacement SSWs.
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8.3 Future work

The resonant excitation mechanism investigated here goes some way towards ex-

plaining why SSWs do not always occur in response to large amplitude forcing from

the troposphere, and why their onset is so sudden. That is, for SSW-like behaviour to

develop in our idealized models, the resonant mechanism requires not only large am-

plitude forcing but also favourable stratospheric conditions, and there exists a point

at which an arbitrarily small change in these stratospheric conditions can result in a

stable vortex state making an abrupt transition to an unstable vortex-splitting state.

While the conceptual models considered here are relatively idealized, it is proposed

that progression of this work may consider a similar experimental framework in more

complex primitive equation models. However, the nature of such models makes the

derivation of analytical results far more complicated. Therefore, it is suggested that

the first approach in such a study would be to compare patterns of resonant behaviour

in more complex models with those of the three-dimensional models of our hierarchy,

which in turn can be related back to the relatively well understood single layer models.

The ideal goal of this work is to find a quantifiable self-tuning mechanism leading

to the onset of SSWs in the observed winter stratosphere, though a significant chal-

lenge remains in relating the controlling parameters of our idealized models to tangible

quantities in the stratosphere. However, possible candidates may be the geopotential

height anomaly on the 350 K isentropic surface as a proxy for topographic forcing

height in our idealized models, or polar jet strength as a proxy for the background

PV tuning parameter.

At present, efforts are continuing along the research paths outlined above with the
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intention of developing the hierarchy of models approach towards more sophisticated,

and state of the art, GCMs.



Appendix A

Weakly nonlinear dispersion

relation: numerical verification

In this appendix, the weakly nonlinear dispersion relations given in equations

(5.37) and (5.38) of chapter 5 are verified in the absence of rotating background flow,

i.e. Ωb = 0.

Figures A.1 and A.2 show the nonlinear correction ω2 to the linear wave frequency

as a function of B for a fully nonlinear numerical model (diamonds) compared with

that predicted by the weakly nonlinear theory (solid lines). The vortex in the numer-

ical model is taken to have α1 = 1, hence ǫ acts as the sole parameter governing linear

wave amplitude, and comprises of a weakly perturbed vortex of the form (5.18) with

α2 and α3 given by (5.36). The ǫ3 weakly nonlinear wave amplitude of the perturba-

tion, α3, was derived in a similar way to α2 in (5.36), although the exact expression

is not given here for brevity.

When calculating the linear wave frequency in the fully nonlinear numerical model,

309
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Figure A.1: The linear wave frequency correction ω2 as a function of B when ǫ = 0.10
for weakly nonlinear wave-like disturbances with azimuthal wavenumber k = 2, 3, 4.

a discrete Fourier transform was performed on the perturbed vortex edge as it evolved

in time. From this transform, the frequency of the first harmonic was calculated and

an average taken over one period of the linear wave’s evolution T0. To calculate the

nonlinear correction ω2 in the numerical model, the contribution of ω0 given by (5.37)

was then subtracted from the total linear wave frequency.

Figure A.1 shows excellent agreement for ω2 between the numerical model and

the weakly nonlinear theory, with a small exception in the case of k = 4 and B < 1

for which there is slight disagreement between the two.

When the linear disturbance amplitude is marginally reduced to ǫ = 0.05, as shown

in figure A.2, it is seen that this disagreement is dramatically reduced such that the
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Figure A.2: The linear wave frequency correction ω2 as a function of B when ǫ = 0.05
for weakly nonlinear wave-like disturbances with azimuthal wavenumber k = 2, 3, 4.
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numerical model and weakly nonlinear theory agree for all shown values of k and B.

As ǫ increases, instabilities imply that the linear frequency correction is unlikely to

remain as predicted over one period of time T0. This is most readily apparent by

observing the value of ω2 for a single time increment at t = 0. At his time, before

instabilities can evolve, the ω2 observed does indeed agree with that predicted by the

weakly nonlinear theory.

In both A.1 and A.2 the arrows point to the frequency correction ω2 derived in Su

(1979), corresponding to taking B = 0 in the shallow water calculations for ω0 and

ω2. As expected, it is seen that the weakly nonlinear shallow water frequencies tend

towards their purely two-dimensional counterparts as B → 0 (as given in Su 1979).

Figure A.3 shows the total linear wave frequency ω = ω0 + ǫ2ω2 as a function

of linear wave amplitude ǫ when B = 3.0 for the fully nonlinear numerical model

(symbols) and weakly nonlinear model (solid lines). Once again, there is excellent

agreement between the two up until ǫ ≈ 0.3. At this point, the condition on the

validity of the velocity fields ǫB ≪ 1 is violated, and the weakly nonlinear theory

ceases to give a good approximation. Even so, it is encouraging that there is such good

agreement even for these large values of ǫB, and perhaps even more encouraging that

the agreement in the k = 2 case, which is of primary importance when investigating

vortex splitting events, remains very good for even higher values of ǫB.
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Figure A.3: The linear wave frequency ω as a function of linear disturbance amplitude
ǫ when B = 3.0 for weakly nonlinear wave-like disturbances with azimuthal wavenum-
ber k = 2, 3, 4. Symbols correspond to numerical model runs, and solid lines to the
weakly nonlinear theory.
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