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Abstract

Our work in this thesis have provided two distinctive contributions to WSNs in the

areas of data handling and topology control.

In the area of data handling, we have demonstrated a solution to improve the

power efficiency whilst preserving the important data features by data compression

and the use of an adaptive sampling strategy, which are applicable to the specific

application for oceanography monitoring required by the SECOAS project. Our work

on oceanographic data analysis is important for the understanding of the data we are

dealing with, such that suitable strategies can be deployed and system performance

can be analysed. The Basic Adaptive Sampling Scheduler (BASS) algorithm uses

the statistics of the data to adjust the sampling behaviour in a sensor node according

to the environment in order to conserve energy and minimise detection delay.

The motivation of topology control (TC) is to maintain the connectivity of the

network, to reduce node degree to ease congestion in a collision-based medium access

scheme; and to reduce power consumption in the sensor nodes. We have developed

an algorithm Subgraph Topology Control (STC) that is distributed and does not

require additional equipment to be implemented on the SECOAS nodes. STC uses

a metric called subgraph number, which measures the 2-hops connectivity in the

neighbourhood of a node. It is found that STC consistently forms topologies that

have lower node degrees and higher probabilities of connectivity, as compared to k-

Neighbours, an alternative algorithm that does not rely on special hardware on sensor

node. Moreover, STC also gives better results in terms of the minimum degree in the

network, which implies that the network structure is more robust to a single point

of failure. As STC is an iterative algorithm, it is very scalable and adaptive and is

well suited for the SECOAS applications.
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Chapter 1

Introduction

1.1 Motivations

With the advancement of low-cost microprocessing chips and wireless technology,

infrastructure free ad-hoc networks have become attractive alternatives to more tra-

ditional wired sensor monitoring in terms of cost, readiness of deployment, robust-

ness and flexibility. Sensors equipped with wireless communication devices can be

deployed on bridges, glaciers, in the ocean, on landfills, and other remote locations

that are difficult to gain access to for environmental monitoring purposes. A network

can be set up in a day with data being sent back to the users almost immediately.

Network maintenance involves only replacing the faulty sensors or the used up bat-

teries once every few years. And the network will still function properly with a few

sensors missing.

Wireless Sensor Network (WSN) has opened up new challenges for the researchers.

Sensor nodes are low-cost devices that have limited processing and memory power.

Most sensor nodes are battery operated since a mains power supply is scarce in our

researched environment (for example, the ocean). Moreover, to support scalability,

sensor nodes are required to be autonomous and self-organising. Preferably, the

network would have no communication infrastructure to maintain and would be able

to function with a few failing nodes, a changing environment and node mobility.

21



22

This thesis is based on the research work for the Self-Organised Collegiate Sensor

Network (SECOAS) project and similar environmental monitoring applications (see

Section 2.4). The SECOAS project aimed to explore the benefit of using WSN in

oceanographic monitoring. Traditionally, oceanography monitoring is achieved by a

small number (often only one) of expensive and high precision sensing unit. Sensing

data are retrieved directly from the equipment at the end of the experiment after the

unit is recovered. The implementation of a WSN provides an alternative solution

by deploying a larger number (10-100) of disposable sensor nodes in one site. The

nodes are equipped with sensors with less precision, however, the network as a whole

provides better spatial resolution of the area to the oceanographers and the user can

have near-to-real-time access to the data.

Our first task is to develop a power efficient data handling technique to relay data

and alerts back to the user. It is important to understand the user requirements and

the environment that we are dealing with, such that we can evaluate the performance

of the data handling algorithms and make sure that the requirements are met. This is

the reason why the analytical work of the SECOAS oceanographic data is important.

On the other hand, it is preferable that the developed algorithms can be reused in

other WSN projects as well as the SECOAS project. Hence, the algorithms are

required to be as generic as possible and independent of the data features.

Relaying raw data back to the user is expensive in term of power consumption and

in-network processing of data is encouraged. This is because sending and receiving

data via radio uses a lot more power than data processing in a sensor node. Moreover,

a long distance radio path costs more energy than a multi-hop path from the same

source to destination. Neighbour coordination is generally used to improve a sensor

node’s view on the local measuring environment. As a mean to conserve power, it

is preferable to send compressed data, reports and alerts rather than raw data back

to the user to reduce the number of nodes-to-basestation communications in the
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network.

Whilst it is possible to compress data in a sensor node based on redundancy

or irrelevancy in the data, a more radical solution is to minimise the number of

samples taken at the time. Such a strategy can reduce the power used for both

sampling and relaying data back to the user. For example, if the resolution required

for the temperature reading is 0.5oC, then a new sample is only required when the

temperature has risen or dropped 0.5oC from the last reading. Another application is

event detection where readings are only important when they cross certain thresholds.

Both of these applications require the sampling algorithm to either predict or track

the rate of change of the environment and determine when sampling is needed.

Most existing sampling algorithms require the use of statistical prediction models,

which are heavily dependent on the data characteristics of the measured environment.

The models require training and re-training to maintain the accuracy of the predic-

tions, which imposes high processing and memory requirements on the sensor nodes.

An alternative sampling method is sought for the SECOAS project. This must also

be capable of being used on other WSN projects, have lesser processing and memory

requirements and be simple to implement.

The second part of the thesis researches on topology control (TC), which is the

automatic construction of a reliable communication network in WSN by varying the

transmission power of each sensor node. In addition to the general requirement of

reducing the total power consumption in the network for communication, another

motivation of TC is to reduce the node degree (number of neighbours) of sensor nodes

in order to control the collision rate in the networking layer and simplify routing and

broadcasting mechanisms.

The challenge of TC is that WSNs are irregular networks where nodes are mostly

deployed at points of interest. The placements are restricted by the deployment

environment but relaying nodes may be added to strengthen the network structure.
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Hence, node density varies in different parts of the network.

As WSNs are required to be distributed, scalable and self-organising, sensor nodes

can only evaluate local connectivity by exchanging messages with their local neigh-

bours. Long distance communication is discouraged due to high energy cost. It is

important to find a metric that can represent local connectivity and provide addi-

tional insight into the whole network. TC optimisation should result in a connected

and resilient network topology.

Currently, there are TC algorithms that guarantee connectivity in the network,

however, they depend on information, e.g., position estimate and directional infor-

mation of neighbouring nodes that requires special hardware to implement. The

k-neighbours algorithm only uses the number of neighbours as its TC metric, which

is readily available in a sensor node. However, k-neighbours does not guarantee con-

nectivity and is prone to the island effect, where a highly-clustered group of nodes is

disconnected from the rest of the network. Therefore, we explore an algorithm which

does not require special hardware to implement and gives better results in terms of

connectivity than k-neighbours. Moreover, we would like to improve on the reliability

of the network structure such that redundancy routes are available in the network.

These criteria are important in the SECOAS project, where communications are

easily affected by the weather and sea conditions.

1.2 Thesis Structure

This thesis has two distinctive parts researching on the data handling and topology

control aspects of WSN. Data analysis, data compression and sampling scheme, which

are directly related to the SECOAS project can be found in Chapters 3 and 4 in Part

II of the thesis. The development of a topology control algorithm and a thorough

performance analysis can be found in Chapters 5 to 8 in Part III of the thesis.

The contents of the individual chapters are listed below.
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• In Chapter 2, we introduce the general aspects of WSN common to both the

data handling and topology control parts of our research, which include the

characteristics, literature review and modelling of the WSN. We also introduce

the philosophy and background of the SECOAS project in this chapter.

• In Chapter 3, the results of data analysis of the temporal oceanography data for

temperature, salinity, wave pressure and sediment concentration are reported.

The analysis has led to the development of a threshold-based wavelet compres-

sion strategy to compress the raw data based on the quality requirement.

• In Chapter 4, we introduce a novel sampling technique, BASS, using exponentially-

weighted moving average (EWMA) for the determination of sampling frequency

at that instance. The algorithm is compared to eSense [LCS06] with regards

to their efficiency of capturing events, sampling rates and preliminary require-

ments.

• In Chapter 5, we describe the motivations, background theories of topology

control in wireless sensor network followed by a literature research of the ex-

isting algorithms.

• In Chapter 6, we introduce Subgraph Topology Control (STC) and propose the

use of the metric Subgraph Number for measuring local connectivity. We then

describe the basic algorithm and the feedback mechanism of STC for event

detection.

• In Chapter 7, the parameters of STC are analysed by varying the network

size and density so that we can understand the capacity of STC under vari-

ous environmental conditions. The performance of the algorithm is benchmark

against the Critical Transmission Range (CTR) [SB03] and k-Neighbours al-

gorithms [BLRS06] for their ability to maintain connectivity and the resulting
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node degree and their power efficiency.

• In Chapter 8, we investigate the behaviour of STC in dynamic conditions simi-

lar to the actual deployment scenario. We simulate the situations where nodes

are added or removed and when the nodes are deployed one-by-one.

1.3 Contributions

My personal contributions to the SECOAS project and research in WSN for envi-

ronmental monitoring are listed as follow.

• Developed a robust Subgraph Topology Control (STC) algorithm for SECOAS

type of environmental monitoring applications. (Chapter 6-8). STC was an it-

erative algorithm which constructed a communication network in a distributed

manner, maintained a good network connectivity and reduced power consump-

tion in the network. The performance of STC was simulated against a pop-

ular algorithm k-Neighbours, which had similar implementation requirement

as STC. The results showed that STC achieved better network connectivity,

lower physical degree and higher minimum degree compared to k-Neighbours

algorithm. The adaptability of STC was also simulated against addition and

removal of nodes in the network.

• Analysed the temporal oceanographic data (Chapter 3) for the SECOAS project

to identify characteristics in the data that may be useful in the development

of a data compression algorithm and a sampling strategy. Times series of the

data were observed, spectral analysis was used to investigate the wave and

tidal characteristic of the data. Multi-resolution analysis was performed on the

sediment concentration data to prepare for the wavelet threshold compression

in section 3.5. Three different self-similarity estimators were also evaluated for

their accuracy when used on data with trends and periodic features.
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• Developed Basic Adaptive sampling Scheduler (BASS) for the SECOAS project

(Chapter 4), which scheduled the sensor nodes to sample more often when

events were likely to happen. The performance of BASS was simulated against

eSense, a model-based adaptive sampling algorithm for their event detection

and sampling rates.

• Developed a wavelet threshold compression strategy for the SECOAS project

(Chapter 3). The compression strategy used wavelet transform and run-length

zeros coding techniques. The performance of the compression strategy was

tested against the sediment concentration data analysed in Section 3.4.

1.4 Publications

The research in this thesis has led to the following publications.

• L.Shum and J.Mitchell, “An Adaptive Subgraph-based Topology Control Al-

gorithm for Wireless Sensor Networks” IEEE Journal on Selected Areas in

Communications (JSAC) - Simple Wireless Sensor Networking Solutions (sub-

mitted).

• L.Shum and L. Sacks, “Localised Topology Measurement and Control in Wire-

less Sensor Network”, London Communications Symposium, 2006.

• L.Zhang, L.Shum, L.Sacks, “Network Topological Analysis Utilizing Significent

Profiles for Sensor network application”, London Communications Symposium,

2005.

• L.Shum and L.Sacks, “A Data-centric and Statistical-based Random Sensing

Scheduler for Rare Event Detection in Distributed Wireless Sensor Networks”,

London Communications Symposium, 2005.
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• M.Britton, L.Shum, L.Sacks, H.Haddadi, “A biologically-inspired approach to

designing wireless sensor networks”, proceedings of the second European work-

shop on wireless sensor networks, Istanbul, 2005.

• I.Wokoma, L.Shum, L.Sacks, I.Marshall, “A Biologically-inspired clustering al-

gorithm dependent on spatial data in sensor networks”, poster section, proceed-

ings of the second European workshop on wireless sensor networks, Istanbul,

2005.

• L. Shum and L. Sacks, “Data Analysis and Investigation of Self-Similarity in

Oceanographic Sediment Data”, London Communications Symposium, 2004.

• L. Shum, I. Wokoma, T. Adebutu, A. Marbini, L. Sacks and M. Britton, “Dis-

tributed Algorithm Implementation and Interaction in Wireless Sensor Net-

works”, 2nd International Workshop on Sensor and Actor Network Protocols

and Applications 2004.



Chapter 2

Wireless Sensor Networks

Nomenclature in this chapter

symbol description equation page no.

d distance 2.3.1 29

Pr receive power 2.3.1 29

Pt transmission power 2.3.1 29

α path loss exponent 2.3.1 29

δ dimension of the network - 30

l length of the world - 30

n number of nodes 30

r transmission range - 30

rmax maximum transmission range - 30

Wireless sensor networks (WSN) are a particular type of ad hoc networks, in

which the nodes are sensors equipped with wireless transmission capability. Hence,

they have the characteristics, requirements and limitations of an ad hoc network

[San05a].

The term ad hoc network describes a type of wireless network without a fixed

infrastructure. Conventional wireless networks including WiFi and cellular networks

have supporting backbones and are hierarchical. Nodes communicate with each

other via the base stations. In an ad hoc network the nodes can communicate with

each other directly via multi-hops paths. Usually the network does not have any

29
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coordinating node and hence, ad hoc networks are decentralised, self-organised and

self-healing. Messages may be duplicated on the way to the base station to provide

extra resilience [ASSC02].

A WSN is usually composed of a large number of sensing nodes in the order

of tens, hundreds or even thousands scattered in a sensor field and one or a few

base stations/ sinks, which connect the sensor networks to the users via the Internet

or other networks. The nodes are deployed either inside the observed phenomenon

or very close to it. Sensor nodes are equipped with sensing, data processing and

communicating components to accomplish their tasks. Each of the sensor nodes are

capable of collecting data and routing the data back to the sink by multi-hopping,

as illustrated in Figure 2.1.

Figure 2.1: Basic structure of a wireless sensor network

The work in this thesis is based on the Self-Organised Collegiate Sensor Network

(SECOAS) project (see Section 2.4). In this Chapter, we first describe the general

characteristics, motivations and structure of common wireless sensor network for

environmental monitoring in Section 2.1 and 2.2. We then discuss the WSN modelling

techniques used in this thesis in Section 2.3. Finally we introduce the goal, system

design and research objectives of the SECOAS project in Section 2.4.
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2.1 Characteristics

The design of a WSN can be divided into data handling and communication as-

pects. Data handling tackles areas including the sensing interface, data sampling

rate, data compression and fusion, clustering, decision making and result reporting.

The communication aspects of a WSN include the radio module, network synchroni-

sation, Medium Access Control (MAC) scheduling, topology control and networking

strategy and information dissemination.

The protocol stacks of a WSN can be variable with different applications. Figure

2.2 is the protocol stack used in the SECOAS project. The communication and data

parts of the stack run in parallel in the lower layers providing the basic infrastruc-

ture to support the implementation of the higher layer intelligent algorithms, which

includes data dissemination and network topology adaptations.

Figure 2.2: Example protocol stack for WSN

• Physical layer : IEEE 802.15.4 WPAN has suggested 3 frequency bands for

WSN operations, 16 channels in the 2.4GHz ISM band, 10 channels in the

915MHz band and one channel in the 868MHz band. In general, the minimum

output power required to transmit a signal over a distance d is proportional to
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dn where 2 ≤ n ≤ 4 depending on the transmission environment. WSN nor-

mally has low lying antenna and near-ground channels and thus, n is normally

closer to 4 [PK00]. The higher frequency band relies mainly on line-of-sight

paths. Multi-hop relaying in ad-hoc network can normally ease this problem as

every node can serve as a router and nodes are separated by a short distance.

• MAC layer : There are a few competing MAC technologies. IEEE 805.15.4

suggested carrier sense medium access - collision avoidance (CSMA-CA) as the

medium access technology. Nodes listen to the wireless channel to see if it is free

for transmission. Other TDMA/ FDMA based MAC control has been proposed

in [SCI+01] [Net06]. These schemes involve time and frequency slot allocation

and have strict synchronisation and delay requirements. TDMA/FDMA based

schemes achieve better energy efficient. However, these schemes are more com-

plicated to implement and have stricter time synchronisation requirement and

may not be achievable in all systems.

• MAC scheduling : MAC scheduling is a power saving scheme that puts the sen-

sor nodes (or the transceiver module) to sleep in synchronisation, such that

the nodes wake up and listen at approximately the same time (network-wide

synchronisation is not usually necessary). The basis of MAC scheduling is

network synchronisation. The nodes in the network, or at least in the neigh-

bourhood must have the same notion of a clock to determine the timing of

the scheduling cycle. The nodes are required to start the transmission within

the wake cycle and hence, idle listening time is reduced. Proposed schemes in-

clude Sensor-MAC(SMAC) [YHE02], Wise-MAC [EEHDP04], Timeout-MAC

(TMAC) [LKR04] and Dynamic Sensor-MAC(DSMAC) [LQW04].

• Topology Control : Topology control determines the transmission power of in-

dividual nodes and how they connect to the neighbouring nodes. The basic
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idea is to form a connected network with satisfactory delay requirement while

minimising the power consumption in the network. A throughout review and

research on topology control is included in Part III.

• Network and transport : The networking and transport layer provides services

for the information to pass across the network to other nodes, and to and

from the sink. We consider the scenario where most traffic goes from node to

sink, sink to node or node to neighbours (for synchronisation and algorithmic

optimisation). Hence, the requirement of routing is not mandatory. Simpler

transport mechanisms such as flooding, directional flooding and broadcast trees

[HKB99] are preferred in most WSN networks, which also provide redundancies

to the network. Gossiping [MTL88][WLP+02], directed diffusion [IGE+03],

backbone building such as SPIN [HKB99], or simple routing such as EAR

[SGAP00] are other commonly used strategies to disseminating messages in

the network.

• Data handling : The data handling problem in WSN varies from application to

application. For example, some applications require clustering for grouping the

nodes that measure similar characteristics into the same clusters [WSSM05],

data compression [GEH02] for minimising the amount of raw data required

for transmission, data fusion for fusing data coming from different sensors, or

event detection for detecting forest fire, landslide, etc. Some of these projects

are reviewed in Section 3.1.

2.2 Challenges of Remote Environmental Moni-

toring

The work in this thesis focuses on a particularly type of sensor network application,

remote environmental monitoring. This type of research can be very different from
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other types of WSN applications including body sensing networks or in-building

monitoring.

Traditionally data are logged locally by one of a variety of methods including

a paper plotter or some form of on-site memory, and then manually downloaded at

specific intervals to a central location for analysis. Pervasive wireless sensor networks

have provided a cheaper, more robust and enhanced alternative to the data logging

method. A group of sensors are deployed in the field and the data are transmitted

via the some gateways to the user. Not only can the user get access to nearly-real

time data from the sensor network, the group of sensors has also provided further

spatial resolution for analysis. Moreover, the sensor network is autonomous and has

built-in intelligence enabling it to alert the user when the data are different to what

is normally observed.

One examples of these applications is habitat monitoring. The Center for Embed-

ded Network Sensing (CENS) has several projects to monitor ecology and biological

life forms [SOP+04] and other environmental applications [RSE+06]. Berkeley Uni-

versity also has a habitat monitoring project at Great Duck Island [SPMC04].

WSNs are also used to monitor and forecast environmental phenomenons. Such

projects include the CORIE project which studies the Columbia river estuary [SBM+00],

the NASAs project in Antarctica [PMR+05] for glacial monitoring and Volcano Sen-

sorweb [SC07] for monitoring volcano eruption. In the UK, the Envisense centre,

part of the Next Wave Technologies and Markets programme sponsored by the DTI,

has three projects undertaking remote environmental monitoring applications in haz-

ardous locations. FLOODNET aims to provide flood warning in the UK, SECOAS

[SBW+03] monitors coastal erosion around small islands intended for wind-farms,

and GLACSWEB [MHO04] aims to develop a system to work in a glacial environ-

ment. All of these may be transferable to other remote environments.

In addition to the common problems faced by all WSN applications, WSNs for
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remote environmental monitoring have additional challenges due to the environment

and location they are deployed in. Overall, the challenges for WSNs undertaking

environmental monitoring can be summarised as follows.

• Power Management

Most WSNs have a requirement of increased battery life-time. In remote mon-

itoring applications, this becomes more important as the location may be very

difficult to get access to, and hence, it is very difficult to change the batteries

or deploy a new system.

• Standardisation

At the moment there are very few standards governing the design and im-

plementation of WSNs. IEEE has developed the 802.15.4 standards for low

data-rate WSN applications, and Zigbee has additional items for routing and

security measurements. However, WSN applications cover a very wide area

and have very different communication and data requirements, which has made

standardisation difficult.

• Scalability

WSNs are required to be self-organising and self-healing, and must be able to

cope with configuration and topology changes. Hence, a sensor network should

be distributed. The size of a sensor network can range from a few nodes to

hundreds to thousands of nodes and the nodes can be mobile. Hence, scalability

is essential for WSN protocols.

• Security

Security is necessary in WSN to protect the data gathered and malicious tam-

pering to the system. However, as with most algorithms in WSN, the security

system is required to be simple and distributed as sensor nodes have limited

processing power and memory resources.
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• Communication

The systems are often operated in hazardous locations such as ocean, glacier

or volcano. Radio communication can be a major challenge as the environment

can vary significantly over time. Moreover, nodes can be damaged or destroyed,

hence the communication protocol should be fast adapting to the changes of

the network.

• Remote management

As access to the deployment area can be difficult, it is important to have

facilities for remote management to cater for policy changing or even software

updating. The telemetry to transfer the data from the sensor network to the

user has to be robust and reliable.

WSNs undertaking environmental monitoring have different characteristics, re-

quirement and challenges compared to other applications. The algorithms developed

in this thesis are intended to fulfil the objectives of environmental monitoring, and

may not be suitable for other WSN applications including body sensing or intelligent

building.

2.3 Modelling Wireless Sensor Networks

The wide range of sensor network applications have created big challenges for the

research. The differences in applications imply that researchers can be dealing with

very different WSN characteristics. In the case of modelling the networking topology,

these include placement of nodes, mobility, infrastructure, deployment environment,

etc.

Hence, we need to define a specific set of characteristics and requirements that our

model and algorithms are intended to work with, on the other hand it is important to

keep the algorithms as generic as possible such that they can be used in a wide range



37

of applications with small modifications. The models we have used are adapted from

environmental monitoring, which has the following characteristics.

• The network has irregular/random node placement. We assume that for en-

vironmental monitoring purpose, nodes are either purposefully placed at loca-

tions which are best for monitoring, or they are randomly scattered to fulfil a

density requirement. In most applications it is more likely that the nodes are

specially placed for maintenance, controllability and health and safety issues.

However, we have generalised the node placement as random in our simulation

model. The deployment space can be 1-dimensional (along rail embankment),

2-dimensional (on a plain), 3-dimensional (on trees and posts).

• The node has little or no mobility. This is very different from body sensor

application where nodes are attached to entities that are mobile. In environ-

mental monitoring we deploy the nodes at a point and the nodes themselves do

not have mobility element. However, the position of the nodes may still move

depending on the environment it is deployed in, such as drifting in the sea

or wind. The environmental changes may also cause changes to the network

connectivity such as temporal unavailability of a radio connection.

• The model does not assume any infrastructure and most deployments are as-

sumed to be outdoors and remote places. All nodes are equipped with the

same, or similar hardware. The gateways in the network may possess more

functionality, processing power and memory but we assume they have the same

radio transceiver and have the same contribution to networking as other sensor

nodes.
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2.3.1 The Wireless Channel

The wireless channels in our simulated environment are represented by the log-

distance path model for deriving the relationship of transmit Pt and receive power

Pr and the distance d between the nodes.

The log-distance model has been derived combining analytical and empirical

methods. Empirical methods are based on field measurements and reverse curve

fitting on the experimental data. The model can be adjusted to suit different trans-

mission media by the parameter α, which is called the path loss exponent or distance-

power gradient. The path-loss model is [Rap02],

Pr(d) ∝
Pt

dα
. (2.3.1)

The radio coverage region in this model is a disk of radius proportional to α
√
Pt

centered at the transmitter. The value of α depends on the environmental conditions,

and it has been experimentally evaluated in many scenarios [Rap02]. Table 2.1

summarised these values.

Environment α

Free space 2
Urban area 2.7-3.5
Indoor Line of sight (LOS) 1.6-1.8
Indoor no LOS 4-6

Table 2.1: Values of the distance-power gradient for log-distance model in the differ-
ent environments

There are limitations to the accuracy of the log-distance model to the actual en-

vironment as the log-distance propagation model predicts only the average received

power at a certain distance. However, for our purpose the model is adequate to rep-

resent the relationship between transmission power and distance of communication,

and for the comparison of the efficiency of different algorithms. α is set to 2 for all
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the simulations in this thesis as the SECOAS environment is an open space in the

ocean.

2.3.2 The Communication Graph

The communication graph defines the network topology, which includes the set of

wireless links the nodes can use to communicate with each other. The presence of a

wireless link is dependent on transmission power, the distance between the nodes and

environment factors. The former two factors are accounted for in the log-distance

model as described in section 2.3.1.

Sensor nodes are often equipped with omni-directional antennas because of their

low cost. Nodes within the transmission range can be ‘heard’ in one hop and are

neighbours to each other. In an asymmetric transmission environment where nodes

are transmitting with different power, neighbour connections are often made sym-

metric by simply truncating all the asymmetric links.

We apply graph notation in representing our communication graphs. We denote

n as the number of sensor nodes located in a bounded space [0, l]δ, where l > 0

and δ = 1, 2, 3 . Each node u has a transmission range ru ∈ (0, rmax], where rmax

is the physical maximum transmission range of each node. The transmission range

of node u denotes the range within which data transmitted by u can be correctly

received. Note that in real radio equipment this transmission range is likely to be

discrete with a number of steps. A node v is a 1-hop neighbour of u if it is within

the communication range of u, and an edge (u, v) exists from u to v. If u is also a

neighbour of v, then the link is said to be bi-directional and the pair of nodes are

symmetric neighbours.

A network with all the nodes transmitting at rmax is a maximum graph. A graph

with all the nodes transmitting with r is called r-homogenous, or simply homogenous.
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A homogenous graph is undirected1.

Because of the irregular and random nature of the deployment of sensor nodes

for environmental monitoring, we adopted a special case of geometric random graph

(GRG) as our model. This assumes that nodes are randomly located in the space

with uniform distribution and the nodes are connected if they are within the com-

munication range of each other. In the study of sampling strategy in Chapter 4,

the graph is homogenous and a unit-disk graph (UDG) may be used to describe the

model. A UDG is a graph in which every two nodes are connected with an edge if

and only if they are at distance of at most 1 unit. The unit distance in this case is r.

The rules for node connectivity for our topology control models are more complicated

than a UDG graph. However, the basic idea is similar.

These models have limitations representing the communication of a real sensor

network. One of them is the assumption of perfectly regular radio coverage. The

radio coverage varies largely by the environment (e.g. open air, forest, in-building,

hill, sea etc) that the nodes are in and therefore the radio coverage region is likely to

be irregular. A map based simulation model can be used if the actual deployment

area is fixed. Moreover, the model assumes that nodes are distributed randomly in

the field. In reality they may be distributed in a certain way to enhance network

connectivity and communication. For example, one may set the minimum and max-

imum distance allowed between 2 nodes in deploying a WSN. These rules can be

added to the models to make them closer to the actual deployment.

2.4 The SECOAS project

The work presented in this part of the thesis contributes to the Self-Organised Colle-

giate Sensor Network (SECOAS) project, one of projects funded by the UK Depart-

ment of Trade and Industry (DTI) as part of the NextWave initiative. Its objective

1bi-directional/symmetric
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is to investigate the use of self-organising sensor networks for environmental monitor-

ing. SECOAS aims to achieve this by building a platform for distributed algorithms

and emphasising on the development of the algorithms based on the spatial parti-

tioning of the phenomena of interest. The target environments are by their nature

turbulent and dynamic; the locations are not always safe and easily accessible. The

combination of the need for an autonomous system and the limited power supply

makes centralised management mechanisms unreliable and ineffective for such net-

works. Distributed and decentralised approaches observable in biological models

show an adaptable style of network management suitable for the dynamic nature of

the environments. The localised nature of algorithms will allow simple modification

of individual algorithms without influencing other algorithms [SBW+03].

2.4.1 Project Introduction

The SECOAS sensor network was deployed at Scroby sands off the coast of Great

Yarmouth and its purpose will be to monitor the impact of a newly developed wind

farm on coastal processes in the area. A map of Scroby Sands can be found in

Appendix A.

There is a need for a new monitoring approach for oceanography. Traditional

methods for this kind of environmental monitoring involve using costly and immobile

sea-bed landers that reside in fixed locations for long periods of time. Users are

required to retrieve the equipment in order to download a large amount of data that

give little spatial characteristics. This method has the following disadvantages.

• The high precision equipment is expensive and therefore, only one or a few can

be deployed.

• The data collected lack spatial resolution.

• Data are collected in regular bursts. Interesting features may be missed in the
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intervals. The burst frequency caters for worst weather so most of the time

energy is wasted to collect data too frequently.

• It has a single point of failure. Data are collected at the end of the exercise

only. If the equipment is lost or damaged by trawlers, effort can be wasted.

• Equipment needs to be recovered at the end of the data gathering exercise.

The SECOAS project provides an alternative solution by deployment of a large

number of low-cost sensor nodes forming a sensor network. These nodes will provide

for temporal and spatial resolution of data to the users. Data are transmitted via

wireless radio links back to the user in regular intervals. The network will be opti-

mised to lengthen battery life by adaptive scheduling of tasks as well as intelligent

sampling strategy. The nodes are low-cost and hence can be disposable at the end

of the exercise if preferred. The SECOAS project also serves as a test bed for the

implementation of distributed algorithms.

2.4.2 System Design Overview

Figure 2.3: SECOAS sensor node architecture. MCU stands for micro-controller unit
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A sensor node is physically divided into two parts, the sensor module that resides

in the bottom of the sea, and the buoy module that floats on the surface. The

sensor module houses a sensor micro-controller unit (MCU) that is designed for the

operation of the sensors with averaging of data to remove excessive noise. The buoy

module houses a radio MCU for radio communication and a MCU board with a

kOS (kind-of Operation System) for the operation of intelligent algorithms. Figure

2.3 shows the main components in a SECOAS node. The buoy is tethered to the

submerged sensor module which logs data locally. The sensor module passes data

to the kOS module, which either directly relates the data, or processes the data and

passes the results to the base station.

Figure 2.4: Network scenario of SECOAS

Figure 2.4 illustrates the SECOAS network architecture, where sensor nodes and

base stations are shown. The sensor nodes and the base stations form an ad hoc

network. The sensor nodes transmit their data to the base stations, which will then

transmit the data back to the land station. The base stations are sensor nodes

equipped with additional functionalities, batteries supply and have larger communi-

cation range. The data are then sent back to the users from the land station via a

wired network.

The protocol stack for a SECOAS sensor node is depicted in Figure 2.2. kOS is a

light-weight operating system that provides scheduling, parameter sharing, hardware
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Figure 2.5: Layers of data handling aspects in SECOAS

interfaces and other facilities to the intelligent layer of the project. All the distributed

algorithms are situated above the kOS layer. Vertically the protocol is divided into

network related and sensing/ data related protocols. The 2 planes united at upper

layer and the facilities provided by the lower layers are used by applications such

as data fusion and location estimates, where spatial coordination is required in the

protocol.

On the radio side of the project, Network synchronisation and MAC scheduling

(sleep and wake cycles) are situated on top of the MAC layer for energy conservation.

Nodes are only allowed to transmit during the wake-up period of a cycle. Above the

layers, Topology Control is used for determining the transmission power of each node,

for generation of a reliable network while minimising the node degree (number of

neighbours within transmission range) and energy usage of the network. Networking

and Transport strategy are on the upper layer of the communication stack.

For the data handling aspect of the project, temporal data processing uses data

passed from the sensor module for compression in time and produces parameters for

the clustering algorithm. The clustering algorithm also uses location information

algorithm for estimating the location of sensor nodes. Spatial data processing, in-

cluding data fusion and sampling strategy, sits on top of the clustering algorithms as

it uses both the cluster information and temporally compressed data for operation.
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The relation of the algorithms is depicted in Figure 2.5.

Figure 2.5 also represents the relationship between sensor nodes and task for-

mations of the distributed algorithms, which are considered as separate functional

planes in the network. Within a sensor node, individual algorithms communicate

and exchange parameters with other algorithms. They are, however, separate enti-

ties in the network, which have functionalities and characteristics of their own. Each

algorithm requires inter-node messaging to accomplish their task in the network.

The 3 types of information passing across the network are data, network policies

and algorithmic messages. They are generated by different sources, have different

destinations and hence, they should be distributed by separate transport mecha-

nisms.

Traffic type Sources − > destination Dissemination strategy
Data Sensor nodes − > base station Point-to-point/Gossip
Data Base station − > land station Point-to-point/Gossip
Network Policies Base stations − > sensor nodes Broadcast/Gossip
Algorithmic messages Sensor nodes − > sensor nodes One-hop broadcasting

Table 2.2: Types of information and dissemination strategies

Table 2.2 illustrates the types of information in the network and their distribution

strategies. Sensor data, results, alerts and reports are originated from the sensor

nodes and destined to the base station. Although point-to-point communication,

such as routing, is more suitable for this type of traffic, gossip can achieve the task

and is simpler to implement as the nodes are not required to have a knowledge

of the network structure. Network policies have multiple recipients and therefore,

a broadcast or gossip strategy is suitable for the distribution of this information.

Algorithmic messages are often sent to the direct neighbours only. Hence, simple

one-hop broadcasting is adequate for this type of messages.

Information dissemination in WSNs requires a decentralised and scalable solu-

tions. Gossip protocol is chosen in SECOAS for distributing both data and policies
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in the network through a sequence of delayed communication events. The nodes

forward messages to a subset of their surrounding neighbours that are chosen prob-

abilistically [LM99]. Gossip protocols are ideal for systems with weak consistency

because delays in propagating new messages are acceptable [SBW+03] and the even-

tual message delivery to all the nodes is guaranteed regardless of the network size or

the prospect of node failure, as long as the final network is connected.

For the maintenance of the network-wise parameters that are common to all the

nodes, a hash table is used in each node for keeping the latest parametric values and

policy. The hash table has an entry for every parameter. A hash function 2 is then

used to calculate the hash value based on the entries in the hash table. Hash values

are exchanges between neighbours periodically. When a node receives a different

hash value from its own, it sends out its entire hash table in the next transmission.

A node which receives a hash table will compare the time attached to every entry

and update its entries with the newer ones.

For example, in our proposed algorithm Basic Adaptive Sampling Scheduler

(BASS), which will be discussed in Chapter 4, parameter k1 is used to adjust the

minimum sampling rate in nodes. It is a network-wise policy to be set by the user

and has an entry in the hash table. If the user decides to change the value after the

WSN has been deployed, the new value will be gossipped in the network and the

hash entries for k1 will be overwritten. However, in BASS the parameter di, which

measures the reading difference between neighbouring nodes, is not be included in

the table because di changes with each reading and is not the same for all the nodes.

The use of hash table is good for maintaining parameters that do not change very

often, and it is guaranteed that the node will receive the latest parameters eventually

if the network is fully connected [WLP+02].

2A hash function can be any equation that uses the hash table entries to calculate the final hash
value. For example, hash function can be the sum of all the bytes in the hash table.
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2.4.3 Algorithmic Development in SECOAS

SECOAS is a collaboration project involving multiple parties working on different

areas of the problem including radio, networking, data handling, sensors and the

physical casing of the equipment. The Advanced Communications Systems Engi-

neering (ACSE) group at UCL is responsible for the design of kOS, data handling

and node positioning of the project (See Figure 2.2). The group aims to build an

intelligent system with the following characteristics and contributions.

• Use of distributed algorithms concept

Distributed algorithms are adopted in this project because a global knowl-

edge of the system is not required and it allows for easy addition, removal

and alteration of individual algorithms [SWA+04]. It makes the integration of

algorithms in the system a easier task.

• Clustering approach to feature extraction

The objective for clustering in WSN is to find interesting groupings of the

sensor readings such that strategies can be applied to individual group. Since

the interesting groupings of features would change with time, the strategies

need to be adaptive and dynamic.

• Use of biologically inspired algorithms

SECOAS applies complex system concept for algorithm development, where

simple rules lead to global desirable results. Many characteristics of complex

systems are analogue to the sensor network environment as only local knowl-

edge is available to a node and cooperation of the nodes are required to achieve

a global objective. Many biological entities are very simple and have very sim-

ilar characteristics to a distributed system, that the results can be compared

and applied to developing algorithms [SBW+03].
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2.5 Chapter Summary

In this chapter, we discussed the general characteristics and different compositions of

wireless sensor networks (WSN) and included an overview on the challenges of WSN

in remote environmental monitoring applications. The modelling of communication

channel and geometric random graph (GRG) was then introduced. We then described

the SECOAS project with a system overview, description of the communication

protocol used and research interests of the project.
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Chapter 3

Data Analysis for Wireless Sensor
Network

Nomenclature used in this chapter

symbol description equation page no.

α parameter for long range dependency 3.2.1 48

B backward shift operator used in fractionally

differenced process

3.2.10 50

BH fractional Brownian motion 3.2.6 49

C channel capacity 3.5.1 89

Cj wavelet coefficients 3.5.2 90

Cs
j scaling coefficients 3.2.13 54

D fractional dimension – 51

δ long range dependence parameter used in

fractional differenced process

3.2.10 50

εt white noise with mean zero and variance σ2
ε 3.2.10 50

η degree of freedom for Chi-square distribu-

tion

3.3.2 61

H Hurst parameter 3.2.5 49

HE Entropy 3.5.1 89

j wavelet octave/dyadic scale 53

k wavelet translation factor 3.2.12 54

50
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symbol description equation page no.

N number of data or number of wavelet coef-

ficients

– 54

Ncomp number of compressed coefficients 3.5.5 93

Nj number of wavelet coefficients at octave j – 52

ψ mother wavelet – 52

Ψ frequency transform of wavelet analysing

function

– 62

r number of vanishing moments 3.2.2 52

R Range in R/S statistics – 56

S rescaled factor in R/S statistics – 56

Sx spectral density function of sample X 3.2.1 48

SX Autocorrelation of sample X 3.2.2 48

τ Time lag 3.2.2 48

τj wavelet scale at octave j – 62

x(·) instance of (discrete) time series 54

Xt time series X = x(t), t = 1, 2, ....n, n is

total number of samples

3.2.6 49

The requirement for long battery life has promoted the work on in-network pro-

cessing in the data handling area of WSN. Instead of just sending a large amount

of raw data in the network, data are interpreted and processed. The network only

needs to send back the processed information, reports and alarms to the user, which

is a very efficient way of conserving energy for long-distance communication.

The major challenge of data handling is that it can be very specific to applica-

tions. The data characteristics, goal of data handling and technique applicable can

vary a lot for different type of applications, for example, oceanographical monitoring

and animal target tracking. Thus, it is very important to understand the specific

requirement for the application.

In this chapter, we report on the data analysis work done on Scroby Sands
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oceanographic data. Firstly, a review of WSN data handling projects, self-similarity,

wavelets and the tools used for time series analysis is included in Section 3.2. In

Section 3.3, we evaluate 3 different estimators for self-similarity detection in data in

the presence of trends and periods. This is to prepare for the use of the estimators

for our analysis in latter sections. Section 3.4 is a thorough time series data anal-

ysis on our oceanography data, which includes temperature, conductivity, sediment

concentration and pressure. The results of the analysis have formed the foundation

of the proposed techniques using wavelet for raw data compression in Section 3.5.

The analysis results also assist in the performance analysis of the adaptive sampling

scheduler in Chapter 4. In Section 3.5, we propose a wavelet threshold compression

technique for the sediment concentration data and the performance is evaluated.

3.1 Related Projects

We review the data handling requirements of some sensor network projects and

summarised them in Table 3.1. The emphasis of different types of applications are

also given in the table.

In the tracking and event detection applications, data are processed in the network

and only the results are sent back to the user. Data collection applications aim to

gather data for post-processing off-site by the users. Sampled data stored in the

sensor nodes are sent back to the user when queried or at regular intervals. Most

academic projects including, EYES [EYE] and SCADD [SCA], Centre for Embedded

Networked Sensing (CENS), have both in-network processing and relaying of raw

data in their research, however, they put emphasis on different aspects of intelligence.

SECOAS is a data gathering project and places emphasis on multi-resolution

data collection in relation to quality. The sea environment makes it a challenge for

both hardware and software development since all algorithms must cope with the

communication constraints of under various weather conditions.
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Application Emphasis Applications Projects

1 Tracking - Target identification
- decision fusion
- localisation
- multi sensor fusion
- association

- Military surveillance
- habitat monitoring

WINS

2 Event
detection

- multi-sensor fusion
- adative sampling
- data compression
- event-detection
- reporting

- Building monitoring
- traffic feedback
- fault detection
- condition-based mon-
itoring
- forest fire detection

WINS
XYZ
DSSN
DARPA

3 Data
collection

- Query processing and
dissemination
- Multi-resolution fu-
sion
- in-network aggrega-
tion
- adaptive sampling
- data compression

Data gathering for
offline analysis

COUGAR
DIMENSIONS
TAG
SECOAS

Table 3.1: Classification of sensor network applications

We have researched on some of the data gathering projects in comparison to the

objectives and emphasis of the SEOCAS project.

3.1.1 TAG

TAG [MFH02], which stands for Tiny AGgregation, is a service built for operating in

the TinyOS environment. It aims to provide core aggregation services by the system

software for the user. TAG functions similarly to the aggregation functions of Struc-

tural Query Language (SQL) of a database. It contains two phases: a distribution

phase in which aggregate queries are pushed down into the network, and a collective

phase, where the aggregate values are continually routed up from children to parents.

Aggregation functions are pre-defined in the system and users can query the network

using one of these functions. Examples of aggregation functions are maximum, min-
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imum, count, sum average, histogram (example of query: SELECT AVG(volume),

room FROM sensors where floor = 6 GROUP BY room EPOCH DURATION 30s).

TAG operates as a database query service. It differs from our data fusion goal in

many ways. Firstly, SECOAS regularly sends data back to the base station without

user query. Secondly, data compression, or fusion in SECOAS is done autonomously

and statistically without user intervention. The user merely defines the qualities of

the data. This contrasts to TAG where the aggregation functions used are selected

by the user. The objectives of the two services are different.

3.1.2 LEACH

LEACH stands for Low-Energy Adaptive Clustering Hierarchy [HCH00]. It is an

adaptive clustering algorithm designed for the use in MEMS-based sensor technology.

Its principle features are adaptive clusters and rotating cluster-heads allowing the

energy requirements of the systems to be distributed. It works on the notion of

comparing the power usages of transmission, amplifying and reception of sensor

nodes in the network using different topologies, and concludes that their clustering

approach elongate network lifetime and has better results in sensor distribution when

some of the sensors start to die out. The clustering algorithm allows each node to

have an equal opportunity to become a cluster-head by setting a threshold value

controlling the probability of becoming a cluster head. Further versions of work will

include an energy-based threshold to account for non-uniform energy nodes.

LEACH is a very simple clustering algorithm; nonetheless it brings out the im-

portance of clustering in energy conservation in sensor network. It differs from our

approach in that clustering in LEACH is energy based while in SECOAS, clustering

should be done based on the environmental characteristics. Moreover, in LEACH the

cluster size is fixed and the cluster group is static, which contrasts to the dynamic

clustering approach in SECOAS.
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3.1.3 DIMENSIONS

DIMENSIONS [GEH02] is a general purpose query and mining scheme for in-network

storage sensor network. Its specialities are: progressive aging of summaries in support

of long-term querying in storage and communication-constrained network, tempo-

spatial multi-resolution summary, and drill-down queries. Users can request for an

overall summary with low-resolution first and then query for a detailed summary

for the particular area and time of interest. It uses wavelet for both temporal and

spatial summarization.

DIMENSIONS works on a database type sensor network with in-network storage,

where users trigger the resolution of data delivery from the network by sending out

a query. This is different from SECOAS in that data are sent back to the user

at regular intervals and in-network storage is minimum. However, the principle

in DIMENSIONS that user queries determine the resolution of the summary sent

is similar to the SECOAS project where users define the qualities of data to be

delivered. Moreover, both projects have the requirement for temporal and spatial

compression. In DIMENSIONS, spatial compression is achieved by using wavelet,

this however, would not be suitable for the SECOAS project since sensor nodes are

irregularly placed and the routing of data cannot be guaranteed. The irregularity of

temporal and spatial sampling issues in DIMENSIONS is addressed in [GGP+03].

3.1.4 TARGET tracking

Several papers have suggested the use of Kalman filter and transferable belief model

(TBM) for data fusion for the purpose of object recognition or target tracking

[PMMM04][SR03]. These works have the common goal to fuse the data or deci-

sion coming from different sensors to obtain a final decision. Kalman filter is an

optimal recursive data processing algorithm that takes into account the reliability of

the measurements and predictions in producing the final results [May79].
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Target Tracking have different objective to SECOAS in the way that processed

data are required by the user. Sensor raw data are used to process some decisions

such as object type, target identification and these decisions from different sensors are

fused. In SECOAS, data are interpreted by the sensor network to reduce redundancy

and irrelevancy statistically. The ”decision” or ultimate analysis on the data are

made by the scientists on-shore. Kalman filter or other decision functions may be

used for policy or decision making in the network within the nodes in a cluster.

3.1.5 TinyDiffusion

TinyDiffusion is an attribute naming scheme [HSI+01] that replaces rather than aug-

ments the underlying networking routing layers. Its aims are to eliminate the over-

head of communication required for resolving name binding and to enable activation

of application-specific processing inside the network. The architecture of TinyDiffu-

sion is based on three components: directed diffusion for disseminate information in

the distributed system and data are managed as a list of attribute-value-operation

tuples, matching rules for identifying when data has arrived at its destination, and

intermediate filters for data processing. The user expresses an interest, which is an

attribute-value pair and this interest disseminates into the network by direct dif-

fusion, sensor nodes identify if they have the information by using matching rules.

They may perform some in-network processes such as aggregation before relaying

the information back to the user.

Attribute-based naming to address the data by its attribute, which is the user

interest in this case, is an efficient concept to reduce network complexity and overhead

of communication. Its use may be explored in the SECOAS project. The attributes

of interest of a datum in SECOAS are location, time and metric. The efficiency

and benefit of such a scheme instead of conventional IP type addressing can be

investigated.
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3.2 Literature Review

3.2.1 Self-similarity and Long-Range Dependency

Self-similarity is one of the characteristics that result from a Long-Range Dependency

(LRD) or 1/f random process. A stationary LRD process has the characteristic of:-

lim
f→0

Sx(f)

Cs |f |α
= 1, −1 < α < 0 (3.2.1)

where Sx denotes the Spectral Density Function (SDF), f is the frequency, and

Cs > 0 is a constant. Sx(f) ≈ Cs |(f)|α with f approaches zero. An alternative

definition stated in terms of Autocorrelation Function (ACF) is such that:-

lim
τ→∞

SX,τ

Cs |τ |β
= 1, −1 < β < 0 (3.2.2)

where SX,τ denotes the Autocorrelation Function (ACF) and τ denotes the time

lag. A stationary process has SX,τ ≈ Csφ
τ where a LRD process has SX,τ ≈ Csτ

β for

large τ . φ and β are some arbitrary constants. In both case SX,τ → 0 as τ →∞, but

the rate of decay toward zero is much slower for a long memory process, implying that

observations that are widely separated in time can still have a covariance that cannot

be neglected [PW00] [Ber92], thus, long memory because the current observations

retain some “memory” of the distant past. Another characteristic of LRD processes

is that the sample variance decays slower than 1/n. For a process with normal

distribution, the sample variance var(Xt) is related to the true variance σ by

var(Xt) = σ2n−1 (3.2.3)

The sample variance of LRD process decay much slower and is approximated as

var(Xt) ≈ σ2c(SX)n−α, (3.2.4)
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where −1 < α < 0 and c(SX) is a constant derived from the autocorrelation

function SX . We explore some common stationary and non-stationary self-similarity

models as follow:

Fractional Gaussian Noise (fGn) By definition, if Xt is a fGn, then it is a

stationary process whose Autocovariance Sequence (ACVS) is given by

SX,τ =
σ2

X

2
(|τ + 1|2H − 2 |τ |2H + |τ − 1|2H). τ = ...,−1, 0, 1, ... (3.2.5)

σ2
X = var(Xt) is the sample variance and is a positive number. H denotes the

Hurst (or self-similar) parameter satisfying 0 < H < 1. fGn can also be regarded as

increments of Fractional Brownian Motion (FBM) BH(t) : 0 ≤ t ≤ ∞ with parameter

H, and

Xt = BH(t+ 1)−BH(t), t = 1, 2... (3.2.6)

BH(0) ≡ 0; BH(t) for t > 0 is a zero mean Gaussian random variable with

variance σ2
Xt

2H ; and the covBH(t), BH(s)−BH(t) = 0 where s ≥ t ≥ 0. Discrete

Fractional Brownian Motion (DFBM) can be created by cumulatively summing Xt:.

Bt ≡ BH(t) =
t−1∑
u=0

Xu, t = 1, 2, ... (3.2.7)

Details derivatives can be found in [PW00]. For small frequency,

SX(f) ∝ |f |1−2H (3.2.8)

Processes with 1/2 < H < 1 have increasingly prominent low frequency compo-

nents as H increases, and we have log(SX(f)) ∝ (1− 2H)log(f).
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Pure Power Law process (PPL) The discrete parameter process Xt is a

Pure Power Law (PPL) process if its SDF has the form

Sx(f) = Cs |f |α (3.2.9)

where Cs > 0 is a constant. Note that in some literature, Sx(f) ∝ |f |−α is used

These processes can be stationary −1 < α < 0 and non-stationary with −1 ≤ α

with stationary backward difference. For α = 0, a PPL process becomes a white

noise process with variance Cs. All PPL processes with α > 0 a deficiency in low

frequency components, which is reflected in the fact that Sx(0) = 0 [PW00].

Fractionally Differenced process (FD) A Fraction Differenced (FD) process

is a stationary long memory process Xt related to a white noise εt with mean zero

and variance σ2
ε through (1−B)δXt = Xt −Xt−1; −1

2
≤ α ≤ 1

2
; B is the backward

shift operator and (1−B)δ is

(1−B)δ =
∞∑

k=0

(
δ

k

)
(−1)kBk (3.2.10)

SDF is defined as [PW00]:

SX(f) =
σ2

ε

4 sin2(πf)δ
, −1

2
≤ f ≤ 1

2
(3.2.11)

For small f , sin(πf) ∼ πf and we have SX(f) ∝ |f |−2δ approximately. FD is a

stationary long memory process when 0 < δ < 1/2.

Relation of parameters fGn, PPl and FD processes are similar in that each

depends upon just two parameters, one controlling the exponent of the approximating

power law as f → 0 ; and the other, the variance of the process (or the level of the

SDF).

The Hurst parameter H is particularly used to characterise fGn where 0 < H < 1

indicates a stationary LRD fGn process. Although fGn is always stationary while
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Non-Stationary
LRD process

Stationary LRD
process

White noise Stationary not
LRD process

H ≥ 1 1/2 ≥ H ≥ 1 H = 1/2 0 < H ≤ 1/2
α ≤ −1 −1 < α < 0 α = 0 α > 0
δ ≥ 1/2 0 < δ < 1/2 δ = 0 δ ≤ 0

Table 3.2: Relation of H, α and type of random process

LRD processes can be stationary or non-stationary, H and α are particularly used

interchangeably in literature for any LRD process with the relation of α = 1 − 2H

(Table 3.2). H is also related to the fractal dimension D by D = 2−H.

3.2.2 Wavelets and Applications

Wavelets, meaning small waves, are mathematical tools for analysing time series

or images. They cut up data into different frequency components and study each

component with a resolution matched to its scale [PW00] [Gra95], while preserving

the temporal characteristics. This is possible because wavelets are finite, or local in

both time and frequency domain and allow us to analyse the signal in a specific time

and frequency resolution as shown in Figure 3.1.

Figure 3.1: Partitioning of time, frequency and scale by wavelet analysis

Wavelets are functions that satisfy certain mathematical requirements and are

used in representing the data in another form. Scale is an important concept in

wavelet analysis similar to frequency in Fourier Transform. It represents the anal-

ysis resolutions for data processing. An analysing wavelet or mother wavelet is a
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wavelet prototype function which can be dilated and shifted for temporal frequency

analysis. This creates a wavelet series or a wavelet transform. Wavelet analysis has

the advantages over transitional methods such as Fourier transform in that it pre-

serves the location (time) information. For example, any discontinuity which exists

in a time series can be located using wavelet analysis. The mother wavelet ψ(· ) has

the special property based on
∫∞
−∞ ψ(u)du = 0 and

∫∞
−∞ ψ2(u)du = 1. This special

characteristic means that the wavelet transform generated by dilation and shifting

of ψ(·) is analysing the average of the difference of data within the wavelet intervals.

Wavelets are often characterized by the number of vanishing moments, which is

defined as the number of moments Nm =
∫∞
−∞ tmψ(t)dt for m = 0, 1, ...r− 1 equal to

0. The significance of vanishing moments stems from the fact that if ψ(· ) and r − 1

of its derivatives are continuous everywhere and satisfy certain bounded conditions,

then ψ(· ) has r vanishing moments. Continuity of ψ(· ) and enough of its derivatives

helps eliminate artefacts in the analysis of a signal due to the wavelet function itself

- loosely speaking, the more vanishing moments that ψ(· ) has, the smoother is the

transition from one approximation space to the next [PW00].

As shown in Figure 3.1, wavelet analysis partitions frequencies from the high

frequency end, which is determined by the sampling frequency, towards the low

frequency end. In each scale, the frequency width of analysis is halved. To avoid

using an infinite number of scales, a low pass filter is used to cap the low frequency

analysis. The iteration of the low pass filter generates the scaling function.

Some common wavelets and their definitions are given in Table 3.2[Mat04] (Wavelet

toolbox user guide, [Res]):

Discrete Wavelet Transform

Similar to Fourier transform that analyses data in the frequency domain, Discrete

Wavelet Transform (DWT) is used to analyse data in both time and scale domains.
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Figure 3.2: Common Wavelets and their characteristics

DWT transforms the data in dyadic scale [Gra95], where wavelet scales are only

defined for 2j−1 where j = 1, 2, 3,... denotes the wavelet octave [VA99]; and the

samples in time are picked at locations that are multiples of 2j . We usually associate

the scale 2j to frequency of 1/2j+1 to 1/2j approximately [PW00]. There are Nj ≡

N/2j wavelet coefficients and the time associated with these coefficients are taken to
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be (2n+ 1)2j+1 − 1/2, n = 0, 1, ..., Nj − 1, where N is the total number of samples.

For each scale, the product of the number of coefficients and their spacing in time is

always N , which is the length of the original data. In DWT, the mother wavelet is

dilated and shifted according to the equation:

ψj,k(t) = 2j/2ψ(2jt− k) (3.2.12)

k is the translation factor and the scale factor is only defined at 2j interval, for j =

0, 1, 2, .... What makes wavelet functions especially interesting is the self-similarity

caused by the scaling and dilation [Gra95]. This is briefly discussed in section 3.2.2.

Each level of DWT decomposition gives two sets of coefficients, the wavelet coeffi-

cient and scaling coefficients. Wavelet coefficients represent the difference of averages

across scales. Scaling coefficients serve as a low-pass filter and are proportional to

the averages of the original data.

When the scale is chosen appropriately, scaling coefficients show the trend of

data. Wavelet and scaling coefficients from DWT are calculated by the equations:-


Cj,k =

∑
t

x(t)ψj,k(t)

Cs
j,k =

∑
t

x(t)ϕj,k(t)
(3.2.13)

where ϕx,τ (t) is a scaling function for calculating the scaling coefficients Cs
j , and

ψj,k(t) is a wavelet function for calculating the wavelet coefficients Cj. x(t) is the

time series for analysis.

The multi-resolution analysis (MRA) enabled by wavelets is advantageous be-

cause features such as discontinuities and extreme values may be localised in both

time and frequency domains [PW00] [Gra95]. Wavelet compression can also be ap-

plied to different types of signals. Hence, the technique developed can be re-used in

other sensor network projects.
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(a) (b)

Figure 3.3: Wavelet decomposition of multiresolution analysis. (a) hierarchy of MRA.
(b) retrieval of approximate and detail coefficients.

Multiresolution Analysis

Multiresolution Analysis (MRA) uses wavelets to decompose a time series in time

domain to different scales. In MRA the wavelet function is related to the impulse

response of a high-pass filter and a low-pass filter is also defined. Figure 3.3 illustrates

MRA, in each scale, the signal, or lower-scale approximations go through a low pass

and a high pass filter to obtain approximate and detail coefficients. The coefficients

are down-sampled so each higher scales would have half the number of coefficients of

the lower scale [PW00][Mat04]. Overall, DWT includes the detail coefficients (cDj)

of each scale and the approximate coefficients (cAj) from the largest scale.

MRA is used to analyse any special features across different scales of the time

series. It is useful for extracting anomalies, discontinuity in the time series and

identifying the scales where interesting features occur. For details of MRA and

examples applications, please refer to [PW00][Mat04].

Detection of Long Memory Processes

Self-similarity can be detected in the time domain or frequency domain in most

stationary data sets. An example of time domain estimators is the rescaled range

analysis, or R/S statistics, where R denotes the range given by the difference between



65

the maximum and minimum value of Ym =
m∑

i=1

|(x(i)− X̄m)| over the first m time

steps, where X̄m is the moving average over m steps, and S is the standard deviation

of Xm. The relation of R/S and m is given by R/S ∝ mH [Ber92][Spr03]. Detection

of self-similarity in the frequency domain usually means least squares regression in

the spectral domain. These methods work well with stationary data but not with

data that have linear or periodic trend.

For this reason, wavelet transform has been explored for detection of self-similarity.

The “analysis by scales” concept as well as the intrinsic self-similarity characteristic

of wavelets mean that it can be a good tool for detecting the scale invariant self-

similar processes. Abry has proved that wavelet estimator for LRD works well with

linear trend and low-frequency periodic signal [AV98][APP93]. We look into the use

of wavelet estimator to detection LRD in Section 3.3.

Wavelet Compression

The JPEG 2000 standard1 has certainly brought a lot of attention to the research in

wavelet compression. The attraction of using wavelet transform is that it decorrelates

the data, allows multiresolution decomposition of the data and uses sub-band coding.

Thus, sub-bands containing important information can be given more bits represent-

ing the data. Wavelet compression can be used in spatiotemporal compression in

sensor networks. Example can be found in the DIMENSION project [GEH02].

Wavelet based compression can be achieved in different ways as listed below.

• Compression by resolution. Coefficients in small wavelet scales (e.g. j = 1, 2),

which are the details of the signal, are only included in the compressed file with

high resolution settings.

• Compression by accuracy. Coefficients with small amplitude below certain

thresholds in each scale will be represented by zeros. Usually, it is accomplished

1JPEG 2000 official site: http://www.jpeg.org/jpeg2000/
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by entropy coding such as Huffman coding or run-length zeros to achieve data

reduction.

• Identify regions of interest. More interesting areas of images, or regions of

time series are encoded with more bits compared to the background or less

important areas or regions.

Figure 3.4: Procedures for image compression using thresholding. IWT stands for
Inverse Wavelet Transform

An example of image coding procedure using wavelet thresholding technique can

be found in Figure 3.4. We can explore wavelet based spatiotemporal compression

technique for the use in the SECOAS project. JPEG2000 has given us an insight into

how spatial compression of images can be achieved by using wavelet. The practicality

and implementation issues will need to be investigated if a similar technique is to be

developed for the embedded and distributed environment.

3.2.3 Time Series Analytical Tools

This section gives a review of the analytical tools used for time series analysis. We

have especially evaluated the capability and limitations of various tools for deter-

mining self-similarity in the presence of trends and periods. This gives us an idea of

the accuracy of the results.
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Trends and periods

The time series are plotted to give us a first insight on any trends, periodicity,

non-stationary and anomalies present in the data. The data would be analysed in

at least 2 time scales, a sample series from one of the hour data bursts (bins, see

Figure 3.7) and the hourly mean of the bins. The hourly mean is calculated from the

expected values in a bin (1024 data points) and it is plotted against hours. Short

and medium-term behaviours are both observed.

QQ-plot/ Probability Plot

In some cases histograms are plotted for the observation of the distribution of a

random valuable. QQ-plot is used to aid the identification of the distribution. QQ-

plot stands for Quantile-Quantile plot and is a graphical technique for determining

if two data sets have a common probability distribution.

A QQ-plot is a plot of the quantiles of the first data set against the quantiles of the

second data set. By a quantile, we mean the fraction (or percent) of points below the

given value. For example, the 0.3 (or 30%) quantile is the point at which 30% percent

of the data fall below and 70% fall above that value. A 45-degree reference line is

also plotted. If the two sets come from a population with the same distribution, the

points should fall approximately along this reference line. The greater the departure

from this reference line, the greater the evidence for the conclusion that the two

data sets have come from populations with different distributions [STA04]. For the

verification of distributions the second set of data is taken from a theoretical random

variable of the distributions to be tested, e.g. normal or lognormal. This is sometimes

called a probability plot.

QQ-plot is used in this thesis in the wavelet compression section (Section 3.5)

as one of the techniques to determine the compression thresholds. It is used to

distinguish signal from noise, which is assumed to be Gaussian in the case.
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Spectral Analysis

Frequency domain analysis is useful to analyse a signal for its periodicities and assist

identification of the type of random process present in the data. Fourier transform

is used for extracting harmonics of different frequencies. When applied to stationary

processes, the frequency domain representation is called a periodogram and the spec-

tral density is analysed. The definitions of periodogram, DFT and spectral density

are [BD96][Mat04]:

DFT X:

X(k) =
N∑

t=1

x(t)e−2π(k−1)
(t−1)

N (3.2.14)

Periodogram I:

It(ω) =
1

N

∣∣∣∣∣
N∑

t=1

x(t)e−jtω

∣∣∣∣∣
2

(3.2.15)

Spectral density S:

S(ω) = It(ω)/2π (3.2.16)

x(t) denotes the discrete time series, N denotes the total number of samples, ω

denotes the frequency in radians and it relates to the physical frequency f (Hz) with

ω = 2πf/fs, where fs is the sampling frequency.

Frequency spectrums are obtained by first applying Fast Fourier Transform (FFT)

to the time series and then squaring the absolute values of the coefficients obtained

from FFT. These values are then plotted against frequency to obtain a frequency

spectrum. Spectral analysis on two different time scales is carried out because of the

discontinuous nature of the data and the large frequency scales that are observed.

Analysis on the hourly data in a bin (see Section 3.4 for the description of data)

gives us an idea on short term frequency performance from seconds to minutes. The

mean of hourly data form a series with the time scale in hours allowing investigation

on the longer-term periodic behaviour.
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Wavelet Multiresolution Analysis

The data analysis in this project utilises wavelet Multiresolution Analysis (MRA)

for discovery of discontinuity and anomalies in the time series. Moreover, MRA is

used for analysing the turbidity data to obtain the boundaries of values where the

data follow a normal distribution. Description of Wavelets and Wavelet MRA can

be found in Section 3.2.2.

3.3 Evaluation on Hurst Estimators for Self Sim-

ilarity Process

In this thesis, we use three self-similarity estimators for estimating the Hurst pa-

rameters (see section 3.2.1) in our analysis, which are the periodogram, wavelet

Least Squares fit Estimator (LSE) and wavelet Weighted Least Square fit Estimator

(WLSE) as proposed in [VA99]. Since our data exhibit both linear trends and pe-

riodicity, the simpler form of time domain estimators including the R/S (Rescaled

Range) statistics, correlogram and variance plot [Ber98][Ber92] have poor statistical

performance, notably high bias and sub-optimal variance [AV98][Ber98]. This effect

has been studied in many other research papers [AV98] [Haw99] [TT97]. We re-visit

some non-stationary effects on the three estimators specific to our data characteristics

in preparation for the data analysis section.

3.3.1 Periodogram

Periodogram (also see Section 3.2.3) is a tool for estimation of the Spectral Density

Function (SDF), which can be used to characterise LRD. The raw estimator Ŝx is

given by

Ŝx(f) =
∆t

N

∣∣∣∣∣
N−1∑
t=0

x(t)e−i2πft∆t

∣∣∣∣∣
2

, (3.3.1)
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where N is the total number of data, ∆t is the time interval between samples

and x(t) is the discrete time series data. The raw estimator Ŝx(f) is a function of

frequency and as N →∞,

Ŝx(f)
d
=

{
Sx(f)χ2

2/2, for 0 < f < fN

Sx(f)χ2
1, for f = 0 or fN

(3.3.2)

where χ2
η denotes a random variable with a chi-square distribution with η degrees of

freedom and the expected value E(Ŝx(f)) = Sx(f) [PW00][SM97].

Periodogram is an inconsistent estimator of SDF that its variance does not de-

crease with sample size. Smoothing technique is available to improve the performance

given by

S̄x(f) =
1

2M + 1

M∑
l=−M

Ŝx(fl−1), (3.3.3)

where M > 0, or modified estimator such as multitaper SDF and Burg method can

be used [PW00][SM97].

Periodogram decomposes the process variance into different frequency compo-

nents. This is similar to the concept of wavelet variance (see Section 3.3.2), which

decomposes the process variance into different scales. We use the simplest peri-

odogram without smoothing in this project as it is used as a comparison tool to the

other two estimators.

LRD is defined such that lim
f→0

Sx(f)
Cs|f |α = 1 where Cs > 0 (see Section 3.2.1 Equation

3.2.1). A stationary long memory process has an SDF Sx(f) such that Sx(f) ≈

CS |f |α and −1 < α < 0. A non-stationary LRD process would have α < −1

(see Section 3.2.1). Therefore, we can estimate α, or H = (1 − α)/2 by regressing

log(Ŝx(f)) over log(f) using least square estimate [Ber98][PW00].

3.3.2 Wavelet Least Square Fit Estimator (LSE)

This estimator is based on Discrete Wavelet Transform described in [PW00] (Section

3.2.2) for estimating a quantity called wavelet variance v̂2
x for time series Xt, which
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is defined as follow:

v̂2
x(τj) =

1

Nj

Nj−1∑
t=0

W 2
j,t (3.3.4)

where W 2
j,t denotes the wavelet coefficients at octave j or scale τj, Nj is the

number of wavelet coefficients at scale τj .

When exploring the relation of wavelet variance and α, we found two different

expressions in literature which need to be clarified. In [PW00] p.297 it is stated

that v̂2
x(τj) ∝ τ−α−1

j where Sx(f) ∝ |f |α. This is derived from the assumption of

v2
x(τj) ≈

∫ 1/2j

1/2j+1 SY (f)df , which states that the wavelet variances are equal to the

integral of the SDF across the wavelet scale. This however, contradicts the results

in [VA99] that v̂2
x(τj) ∝ τ−α

j based on E(v̂2
x(τj)) =

∫ 1/2j

1/2j+1 Sx(f)2j |Ψj(f)|2 df , where

Ψj(f) denotes the frequency transform of analysing wavelet at scale τj. The variance

is obtained by integrating both SDF and the frequency domain representation of the

wavelet. There are two major differences in the definitions:

• The approximation in [PW00] is based on a perfect wavelet filter with cutting

frequencies of 1/2j+1 and 1/2j, while [VA99] takes into the account of the

frequency response of the wavelet filter.

• [VA99]’s estimate has a multiplication factor of 2j. This is derived in [TT97].

These differences contribute to the discrepancy in the estimators. We have taken

out several experiments to test the estimators with fractional Gaussian noise (fGn)

with different Hurst parameters and it was found that v2
x(τj) ∝ τ−α

j gives accurate

results. Thus, the estimators, both LSE and Wavelet Weighted Least Square Fit

Estimator (WLSE, see the next section) used in this project will be based on v2
x(τj) ∝

τ−α
j and that α, or H = (1−α)/2 can be estimated by linearly regressing log(v2

x(τj))

on log(τj) using simple least square fit.
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3.3.3 Wavelet Weighted Least Square Fit Estimator (WLSE)

This estimator is based on the same theory of DWT and wavelet variance as the

LSE, except that weighted least square fit is used for regression instead of simple

least square fit. The weight Sj = (n ln2 2)/22+1 is the inverse of the theoretical

asymptotic variance of ηj [VA99], which depends on the number of data available in

each octave for calculating the wavelet variance and

H(j1, j2) =
1

2


j2∑

j=j1

Sjjηj −
j2∑

j=j1

Sjj
j2∑

j=j1

Sjηj

j2∑
j=j1

Sj

j2∑
j=j1

Sjj2 − (
j2∑

j=j1

Sjj
2)

+ 1

 (3.3.5)

3.3.4 Robustness of the Estimators

Experiments are performed to test the sensitivity and asymptotic behaviour of the

estimators in the presence of a linear trend and periodic signal. Amplitude and

frequency of the periodic signals in relation to fractional Gaussian noise (see Section

3.2.1 for definition of fGn, LRD and hurst parameters) are added to the test signal

in the experiment.

Figure 3.5 shows the performance of the three hurst-estimators. (a) shows that

in the presence of linear trend WLSE has the best performance overall. Both pe-

riodogram and LSE over-estimated the Hurst parameter where linear trend exists.

While the periodogram shows consistent results, although incorrect, that are consis-

tent with the presence of the trend, the LSE estimates increase in proportion to the

size of the linear trend.

Figure 3.5 (b) and (d) show that the performance of the estimators in the presence

of a periodic signal varies with amplitude. The diagram shows all the estimators fail

to estimate the theoretical value when the amplitude of the signal is over 10 times (b)

and 100 times (d) of the amplitude of fGn. At low amplitudes of the periodic signal
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Figure 3.5: Experiment on hurst estimators on fGn noise, H = 0.8 and amplitude of
fGn=1(unit). Testing of sensitivity to (a) amplitude of linear trend, (b) amplitude of
periodic signal (fs = 100), (c) frequency of periodic signal (amplitude of signal:fGn
= 1:1), (d) amplitude of periodic signal (fs = 1000)

in (b), the periodogram gives the best performance whilst in (d) WLSE shows better

performance. It is observed that whether the estimators over or under-estimate the

theoretical value depends on the frequency of the signal, which is explained in Figure
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3.5 (c).

Figure 3.5 (c) shows the effects of the frequencies of the periodic signal on the

Hurst estimation. In this experiment the ratio of the amplitude of the signal to fGn

is set to 1:1. It is observed that if the signal frequency is a fraction of a 1000 times

of the sampling frequency, both LSE and WLSE show better performance and are

not affected by the presence of the signal.

So far we have evaluated the effect of the three hurst estimators based on one

particular frequency (subfigure (c)), or a particular amplitude (subfigure (b) and (d))

of periodic signals. In figure 3.6, we evaluate the three estimators over a wide range

of frequencies and amplitude periodic signals to check the asymptotic behaviour of

the estimators. We can observe when each estimator fails to give accurate estimates.

In Figure 3.6 the ‘safe regions’, where estimators are robust, are investigated

versus signal period and amplitude. In the graph this region is flat and is shown

with the same colour throughout the region. In Figure 3.6(a), it is observed that the

‘safe region’ for periodogram estimator is actually independent on the frequency, but

only depends on the amplitude of the periodic signal. The estimator is robust when

the signal amplitude is equal to or smaller than the fGn amplitude.

As shown in Figure 3.6(b), LSE depends both on the frequency and amplitude

of the periodic signal. The estimator is reliable when the amplitude of the signal

is small and the frequency of the signal is low. In Figure 3.6(c) the case is similar

that the WLSE estimator is more reliable for small amplitudes and low frequencies

of the periodic signal. However, at low frequencies WLSE is more robust than the

LSE that the estimator gives satisfactory results independent on the amplitude of the

signal. WLSE also have a larger ‘safe region’ than LSE in this experiment. Hence,

if we estimate that the amplitude of the periodic signal in the data is small (signal

to noise ratio < 1 : 1), then Periodogram should be used as it gives good estimate

independent of signal frequency. However, if we know that the signal frequency is
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(a) (b)

(c)

Figure 3.6: Performance of Hurst estimates for fGn with H=0.8 with periodic signal
amplitude and frequency using (a) Periodogram, (b) Wavelet least square estimate,
(c) Wavelet weighted lease square estimate.

low, then WLSE should be used instead.

3.4 Analytical Results of Oceanographic Data

The objective for data analysis prior to algorithm development is to understand the

characteristics of the data in the application such that appropriate strategies can be
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applied. For example, statistics such as mean and variance can assist in setting the

thresholds for event detection. In this section, we extract the important features of

each parameter from our oceanographic data set in the available time scale. This

prepares us for the development of the compression strategy in latter sections.

The test data for data analysis are obtained from the Wavenet project2 at 3

locations around the Scroby Sands area (Appendix A). Location 204 is reported for

the more complete analysis. Data were obtained from 23 April (13:00) to 9 June

2003 (09:00) which consists of the following measurements and their corresponding

units.

Although there are 3 different locations of data available, the locations are too far

apart for spatial analysis for the scale of SECOAS WSN, which has node separation

between 20-100m. The parameters measured are,

• temperature (in oC),

• conductivity/ salinity (in mmho/cm),

• pressure (in bar),

• turbidity/ Sediment level (in FTU / Formazine Turbidity Unit).

The data were gathered in bursts of 1024 points every hour at 1Hz frequency

(a bin) for the 4 parameters measured, which is about 17 minutes of measurements.

The system then slept for the rest of the hour (2576 seconds) and woke up afterwards

for the measurement in the next hour. There are total 1126 hours of data. Figure

3.7 illustrates the time series of data collected.

The data are trimmed from bins 30 to 1110 due to the anomalies appear at the

beginning and the end of data. A total of 971 bins is available for data analysis after

trimming.

2Centre for Environment, Fisheries & Aquaculture Science (Cefas) Wavenet project http:\\
www.cefas.co.uk
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Figure 3.7: Characteristics of Wavenet data

3.4.1 Temperature and Salinity

Changes in temperature and salinity can increase or decrease the density of water

at the surface, which can lead to convection; If water from the surface sinks into the

deeper ocean, it retains a distinctive relation between temperature and salinity which

helps oceanographers track the movement of deep water; Moreover, temperature,

salinity and pressure are used to calculate density. The distribution of density inside

the ocean is directly related to the distribution of horizontal pressure gradients and

ocean currents. The distribution of temperature and salinity at the ocean’s surface

is influenced by heat fluxes, evaporation, rain, river inflow and freezing and melting

of sea ice [Ste03a].

Salinity measures the total amount of dissolved material in relation to water. Its

variability is very small. The salinity of most ocean water is from 34.6 to 34.8 parts

per thousand, and thus, the definition of salinity needs to be accurate and practical.

Temperature is defined in Kelvin (K). However, Celsius (oC) is also used and it

relates to K by K =o C + 273.15. The commonly used device found in the ocean

is a platinum-resistance thermometer. Usually it is calibrated with an accuracy of

a milli-degree (0.001oC) and the temperature scale itself has uncertainties of a few

milli-degrees. The distribution of temperature at the sea surface tends to be zonal,

which is independent of longitude. The deviations from a long-term average for

temperature are small, less than 1.5oC except in the equatorial Pacific where the

deviations can be 3oC [Ste03b].
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We analyse the temperature and Salinity data by analysing the time series, pe-

riods and trends in the data. We also investigate if cross-correlation exists for the

parameters.

Time Series

Figure 3.8 illustrates the time series of temperature and conductivity. We observe

from 3.8 (a) and (c) that the two parameters are slow varying signals. The fluctuation

between the two values is due to the precision of the measuring instruments. In our

data, the rate of change for temperature in an hour is between 0 to 0.0007oC per

1024 seconds; the rate of change for conductivity in an hour is between 0 to 0.0006

mmho/cm per 1024 seconds. (b) and (d) show the hourly mean of temperature and

pressure data of three months. Both graphs show an upward linear trend as well as

periodicity. The shape of the hourly mean data of temperature and conductivity are

alike.

Frequency Domain

In Figure 3.9 the periods of temperature and conductivity are captured. Fast Fourier

transform (FFT) is used to produce the spectrums and the peaks are captured and

translated automatically in Matlab. Periods of around 12 and 24 hours are present.

The periods captured in the spectrums are slightly different than the actual ones

because the spectrum is not smoothed. The downward shapes of both spectrums are

due to the obvious linear trend observed in the time series.

Parameter Correlation

The similar shapes of temperature and conductivity in the time series may suggest

that they are cross-correlated. Figure 3.10 shows the scatter plot for temperature

and conductivity. The result of the linear regression is,
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Figure 3.8: Time series of (a) temperature of bin 101, (b) hourly mean of tempera-
ture, (c) conductivity of bin 101, (c) hourly mean of conductivity

Conductivity = 0.84 ∗ Temperature+ 28.86 (3.4.1)

Parameter correlation of the temperature and conductivity data may be used in

data compression. For example, we can send only one set of the parameters together

with the coefficients of linear regression instead of both sets of data.
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Figure 3.9: Frequency spectrum of temperature and conductivity

9
 10
 11
 12
 13
 14
 15
 16

36


37


38


39


40


41


42


43


Temperature (degree C)


C
on

du
ct

iv
ity

 (
m

m
ho

/c
m

)


Scatter plot for mean hourly Conductivity vs Temperature


 

y = 0.8351*x + 28.86


data 1

   linear

Data x


Linear fit


Figure 3.10: Correlation between Temperature and Conductivity

3.4.2 Pressure

Pressure is a measurement of sea-level and its variations are contributed by ([MH03]):

• Short-term temporal fluctuations in the height of the sea surface from waves
and tides. Additional influences include changes of atmospheric pressure, wind-
induced current along the coast, river runoff and ocean circulation caused by
fluctuations in the oceanic wind field.

• Long-term temporal changes resulting from changes in the mass of the ocean,
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and heating of cooling of the ocean

• Long-term Coastal residence

• Large-scale crustal movement.

Long-term variations refer to period over 50 years. SECOAS mainly focuses on

the short-term variations, which are more related to the engineering aspect of the

design.

The short term variation mainly consists of tides and waves. For tidal movement,

the principle semidiurnal and diurnal tidal constituents with periods of 12.42 and

23.93 hours contribute to one of the regular periodicities of sea-level variations, and

is dependent on the location in relation to the equator.

In most coastlines, waves represent the dominant source of energy in the nearshore

zone and can be distinguished by regular and irregular waves. The motion of regular

waves is periodic. Regular waves can be described in terms of wave height Hw,

wave length Lw and wave period Tw. Wave height is the difference in elevation

between the crest and the trough of the wave, wave length is the distance between

successive crests and wave period is the time it takes for the wave to travel a distance

equal to its wave length. Wave-by-wave analysis is used for irregular wave and can be

described usingHw
s (significant wave height), Hw

rms (rms wave height), Tw
z ,(mean wave

period) and Tw
s (significant wave period). Wave spectrum can also be used to describe

irregular wave, for which peak spectral period Tw
p is used for description. The normal

wind waves are irregular waves. Typical significant wave heights and periods along

swell-dominated coastlines are 1-2m and 10s, respectively. Along locally-generated

wind waves dominated areas, wave heights and periods are generally 0.5-1m and

3s respectively. During storms, wave heights can be substantially larger and wave

exceeding heights of 10m can be found. Readers can refer to [ET01] for more details

of tides and waves in relation to pressure measurement.
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We analyse the pressure data by firstly looking into the time series. Analysing

the frequency spectrum can help us extract the tidal periods in the data. We then

introduce mean spectrum periods and spectrum width, which can help us to extract

the wave feature in the data. We also investigate if self-similarity exist in the raw

data itself and the standard deviation of the hourly data.

Time Series

Figure 3.11 shows the time series of pressure data across difference time scales. From

(a), we can see that pressure data exhibit both changing mean and periodicity in

the scale of seconds. The changing mean seems to be driven by a longer-term trend.

The mean and standard deviation of the first half of bin 100 is 15.7640 and 0.0664

bar. The mean and standard deviation of the second half of bin 100 is 15.6909 and

0.0640 bar. The non-stationarity of the first moment is very small and the variance

seems to be stable across this bin. In Figure 3.11 (c), we can observes the longer

term periodicity due to tidal movement. (c) also shows a drifting upward mean for

mean pressure data.

The short-term pressure variations are contributed by tides and waves. We can

associate the mean pressure of a bin with sea level and tides, and the variance or

standard deviation of a bin with wave height. The mean and standard deviation of

pressure over time is shown in Figure 3.11 (c). The standard deviation of pressure

shows periodic behaviours. However, it is not in synchronisation with the mean

pressure data and it seems that there is no correlation between the two statistics.

The standard deviation of pressure data in a bin can be used to characterise the

wave. For example, the variance around hour 500 is particularly high, which may

be due to stormy weather. While the low variance period from hours 700-900 may

represent calm weather.

The shape of the graph in Figure 3.11 (c) resembles a semi-diurnal tidal cycle.
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Figure 3.11: Time series analysis of pressure data. (a) 1024 data in bin 100.(b) mean
and standard deviation of hourly data of all bins.

For the definition of the tidal cycles, please refer to [MH03].

Frequency Domain

The two time scales we investigate in the frequency domain of pressure shows very

different characteristics. Fast Fourier transform (FFT) is used to produce the spec-
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Figure 3.12: Frequency spectrum of pressure data for (a) hour 100. (b) mean of
hourly pressure. (c) standard deviation of hourly pressure.

trums and the peaks are captured and translated automatically in Matlab. Figure

3.12 (a) shows the frequency spectrum for pressure data in hour 100. It is observed

that rather than having a sharp peak, the dominant frequencies spread over a range

of values. Figure 3.12 (b) shows the spectrum for mean hourly pressure data. A

dominant period of 12.3 hours is observed while another two less dominant periods

at 24.9 and 6 hours are visible. Figure 3.12 (c) shows the spectrum for the standard

deviation of hourly data. The dominant period here is 6.2 hour. This is double the

frequency of the period of mean pressure data.

It is also observed that, excluding the periodic characteristics, all three graphs

show a downward linear trend of a 1/f (LRD) process. It is most clear in Figure

3.12 (c) as the periodic peak is of relatively weaker power than the 1/f trend. We

will investigate this behaviour in the later section.
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As wave spectrum is not simple sinusoidal, it is necessary to derive additional

metrics for describing the short term frequency spectrum in order to understand the

characteristics of wave. The NIWA Instrument System3 has derived these quantities,

mean spectral period and spectral width to characterise wave.

Mean spectral period describes the main period of the wave, and is calculated

by the equation,

T̄ = 2πm0/m1 (3.4.2)

where mn is the nth moment of the spectrum of h(t), which is the time series of

“hydrostatic water depth” related to the raw pressure time series p(t) by,

h(t) =
p(t) ∗ F
ρg

+ zp −D (3.4.3)

where g is acceleration due to gravity, ρ is water density and F is a factor used to

convert pressure in pounds per square inch to pressure in kg/m2. zp is elevation of the

instrument above the seabed. D is a correction factor for the particular instrument.

The moment mn given by: mn =
∫ 1/T1

1/T2
fnSh(f)df . T1 is the minimum wave

period and T2 is the maximum period. In this project, it is found to be 3s (Nyquist

frequency) and 20s respectively. Sh(f) is the SDF of h(t).

Spectral Width describes the range of the wave period, and is calculated using

the equation:

v = µ2/w̄
2m0, (3.4.4)

where w̄ = 2π/T̄ is the angular frequency and µ2 = (m2m0 −m2
1)/m0.

We analysed these quantities and the results are shown in Figure 3.13. It is

observed that mean spectral period ranges from 4 to 12 seconds and mean spectral

3National Institute of Water & Atmospheric Research, http://niwa.cri.nz, technical note No.
98/5
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Figure 3.13: Mean spectral period and spectral width for pressure data

width is between 0 to 0.5. Note that there is no unit for spectral width. It is observed

that mean spectrum period generally increases with spectrum width.

Self-Similarity

Estimates within an hour Determining self-similarity in the pressure data is

difficult as short-term and long-term periods are the dominant signals in the data. In

Figure 3.14 all three estimators show inconsistent results. Since the results in section

3.3 show that we do not know the accuracy of the estimators unless we can acquire

some background information regarding the amplitude and frequency of the signal

in relation to the degree of self-similarity, we cannot conclude whether self-similarity

is present in the short term pressure data.

Standard deviation of hourly data Previously, we saw that in Figure 3.14

(c), the standard deviation of pressure may display self-similarity characteristics.

We further verify the Hurst estimates with periodogram, LSE and WLSE as shown
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Figure 3.14: Hurst estimate using periodogram, Wavelet least sq estimate and
Wavelet weighted least sq. estimate

in Figure 3.15 (a), (b) and (c) respectively. Although the three tools give slightly

different results, they all indicate the result of non-stationary LRD data (H > 1).

We can conclude that LRD is very likely to be present in the std. of hourly data.

3.4.3 Sediment Concentration

Sediment, or precipitation refers to both organic and inorganic loose material that

is moved from time to time by physical agents including wind, waves, currents and

gravity. The sediments found in coastal environments can be either imported from

external environments or locally produced [ET01].

“Turbidity” or cloudiness of water is a relative term describing sediment level. It

is an optical property depending on characteristics of the scattering particles, external

lighting conditions and the instrument used. Turbidity is measured in Nephelometer

units (NTUs) referenced to a turbidity standard, or in Formazin Turbidity Units

(FTUs) derived from diluted concentrations of 4000-FTU formazin, a murky white

suspension that can be purchased commercially. Since turbidity is a relative unit,
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Figure 3.15: Hurst estimates for standard deviation of all bins (a) by LSE, (b) by
WLSE, (c) by Periodogram.

calibration is a particularly important subject for the measurement.

We analyse sediment concentration by firstly looking at the time series, trend

and frequency of the data. We then apply multi-resolution analysis on the data to

break down the features into wavelet scales and extract important features in each
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scale. Finally we look to see if self-similarity is present in the data.

Time Series

It is observed that in the smaller scale in seconds within a bin in Figure 3.16 (b), there

is no obvious periodicity. The mean of the time series is drifting and the variance

is not constant and therefore, the series is non-stationary, which may be caused by

either a longer-term trend or the series may have non-stationary LRD which has

α < −1. The mean and standard deviation of the first half of bin 100 is 30.1182 and

1.5518. The mean and standard deviation of the second half of bin 100 is 33.3931

and 2.2133, which prove the non-stationarity of both 1st and 2nd moments.
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Figure 3.16: Figure 31: Time series analysis of sediment level. (a) mean hourly data
of all bins. (b) 1024 data in bin 100. (c) bin 1-450.

In Figure 3.16(c), however, periodicity is observed. The periods exhibit an asym-
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Figure 3.17: Frequency spectrum of (a) Hour 1. (b) hourly mean sediment level.

metric look in that a cycle stays longer at the top than the bottom values. In this

scale the series appears to have a rather stable mean with varying variance. A few

outliners are observed. Note the discontinuity of the data where there is a gap of

2576 data after every 1024 data points, which appears as a thin straight line in the

graph. Figure 3.16 (a) plots the hourly mean of the 1024 data points in each bin.

It further confirms the periodic behaviour observed before. The time series shows a

drifting mean and varying variance overall. However, there is no obvious long-term

linear trend to this scale of data.

Frequency domain

Figure 3.17 (b) confirms the periodicity observed in the sediment level. There is a

sharp peak to the spectrum at 12.28 hours. A smaller frequency component appears

at 6.06 hour. The strong power observed at the very low frequencies is due to the

non-zero mean of the data.

There is no frequency peak in Figure 3.17 (a), which shows the frequency spec-

trum in bin/hour 1. However, it can be observed that the power decays with the

frequency with a 1/f manner. This may be an evidence of the presence of long-range
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dependency (LRD) in the data.

Multi-Resolution Analysis

Figure 3.18: Wavelet decomposition octave 1-6.

Wavelet transform is used to decompose and analyse all data in different scales.

Each octave j represents a time scale τj of resolution 2j−1. Figure 3.18 shows detail

decomposition of octave 1-6. Figure 3.19 shows detail decomposition of octave 10-14

of all the sediment concentration data.

In lower scale wavelet picks up the high frequency changes. In τ = 1 to 32 (octave

1-6), we expect to see the discontinuity of the data within each bin at every 1024 data

points. However, the discontinuities are not very obvious indicating the transition

from bin to bin is not particularly obvious. Figure ?? (b) shows the larger scale

wavelet decomposition from scale τ = 512 to 8192 (octave 10-14). Note that octave

11 equals scale 1024, which is the analysis across the bins. Hence, from this scale on

we can see the bigger picture of hourly change. And the shape and components of the
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Figure 3.19: Wavelet decomposition octave 10-14.

original time series start to appear. We can see that wavelet coefficients are larger,

indicating more changes, at bin 100 to 300 and around bin 500 to 600. Coefficients

are smaller, indicating less changes, at bin 400 and 800.

By breaking down the time series into scale we can observe the components

in details. For example, octave 1-6 has little resemblance to the original curves.

However, they are useful in highlighting the discontinuities, outliers and sudden

changes in the environment, while octave 10-14 contains the information of the shape

of the curve. Wavelet MRA is a very useful tool for analysing data in a different

domain and would help us to determine what is important in the signal, which is

used in our compression strategy in the next section.

Self-Similarity

There is no obvious periodicity within the sediment data in an hour, however, a

slight linear trend may be present. Therefore, we have chosen to use WLSE as the
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Hurst estimator for this series.
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Figure 3.20: Hurst parameter estimation using Wavelet. (a) Hurst estimate for each
bin across time using least square estimator. (b) Frequency spectrum for the Hurst
estimate in (a). (c) Histogram for Hurst estimate. (d) QQ-plot for Hurst estimate.

Figure 3.20 (a) shows the Hurst parameter estimates for data in each bin/hour.

We can observe a clear periodic behaviour similar to the one in the time series. In

(b) the frequency spectrum confirms the two frequency peaks at around 12.3 and

6.1 hour, which agree with the result from Figure 3.17 (b). H varies from 0.4 to 1.3

with an average value of 0.8867. This is the evidence of the presence of long-range

dependency in the data. The histogram in 3.20(c) shows that the hurst estimate

appears to be a random variable. Note that the WLSE Hurst estimate is a random
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variable itself which is chi-square distributed [VA99] [PW00]. The result from the

QQ-plot in 3.20 (d) shows that the distribution is closer to a Gamma distribution

than a normal distribution.

The likelihood of the presence of LRD in the short term sediment data is impor-

tant in the development of a sampling scheduler in Chapter 4. As our comparison

algorithm eSense assumes the data to be normally distributed (random walk model).

This assumption is hence invalid for the sediment concentration.

3.4.4 Summary on Data Analysis

Mean of
all data

Std. of
all data

Range of
mean of data
in a bin

Range of std.
of data in a
bin

Temp. (oC) 11.8975 1.3451 9.3940-15.1328 0.0045-0.2116
Cond.
(mmho/cm)

38.7955 1.1507 36.7237-
41.8000

0.0064-0.2007

Pressure
(bar)

15.9486 0.7099 14.4538-
17.2985

0.0147-0.1991

Turbidity
(FTU)

55.3299 25.8577 9.9911-
170.8694

0.4148-19.4791

Table 3.3: Basic statistics of data

In this section, the principal observations and values, which may be useful for

making engineering decisions are summarised in Table 3.3 and 3.5. Table 3.4 lists

out the important features observed in the time scale of hours, days and months.

These features can be used to characterise the data set in that time scale and for the

use of the other algorithms.
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Hourly feature Daily fea-
ture

Monthly fea-
ture

Temperature (oC) Mean, standard
Deviation and
linear trend

Periodicity Periodicity and
Linear trend

Conductivity
(mmho/cm)

Mean, standard
deviation and
linear trend

Periodicity Periodicity and
linear trend

Pressure (bar) Spectrum mean
and width, range
and standard
deviation

Periodicity Periodicity

Turbidity (FTU) Mean, standard
deviation and
hurst parameter

Periodicity Periodicity

Table 3.4: Important features in each time scale
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Temperature Conductivity Pressure Turbidity

P
er

io
d
ic

it
y Short

term
Not observed Not observed Wave pe-

riod 4-12s
Not observed

Medium
term

P ∼ 23.7 and
12.0* hours

P ∼ 23.7 and
12.3 hours

Mean of bin:
P ∼ 24.9 and
12.3* hours.
Std. of bin:
P ∼ 6.2 hours

P ∼ 12.3 and
6.1 hours

S
ta

ti
on

ar
it
y Short

term
Very slowly
varying. Max.
rate of change
in 1024s =
0.0007oC.
Can be
treated as
stationary

Very slowly
varying. Max
rate of change
in 1024s =
0.0006
mmho/cm.
Can be treated
as stationary

non-stationary Non-
stationary

Medium
term

Non-
stationary
Linear fit=
0.0047oC/971
hours, peri-
odic

Non-
stationary
Linear
fit=0.0040
mmho/cm/971
hours, peri-
odic

Non-
stationary
Linear
fit=0.0009
bar/971 hours,
periodic

Non-
stationary
Linear
fit=−0.0357oC
/971 hours,
periodic

S
el

f-
si

m
il
ar

it
y Short

term
Not observed Not observed May exist (un-

known H)
May exist
H ∼ 0.089

Medium
term

Not observed Not observed Mean of bin:
not observed.
Std. of bin:
may exist.
H ∼ 1.2

Not observed

C
or

re
la

ti
on Linear parameter correla-

tion between temp. and
cond.
cond. = 0.84× temp.+ 28.82

*major component

Table 3.5: Summary of the behaviour of all parameters
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3.5 Temporal Compression of Sediment Concen-

tration Data

Temporal compression can be used in the SECOAS project to conserve battery power

by reducing the number of transmissions required to send all the raw data back. A

robust algorithm is required to preserve the important features of the data. The

major constraint of temporal compression in SECOAS is the processing capacities

of the sensor nodes. The compression technique needs to be simple and capable of

deployment in the SECOAS nodes.

As discussed in the previous section, statistic-based wavelet transform allows

us to break down the time series into multi-resolution scales. We then perform

compression on the transformed signal in each scale. Wavelet compression technique

has the advantage that little prior knowledge of the data is required. This is a

contrast to model-based algorithms where the compression technique can only be

applied to data with the presumed characteristics. Wavelet compression allows us

to preserve details in different scales. It is a technique which is also used in the

JPEG2000 standards (Section 3.2.2).

This section explores the benefits and feasibility of a lossy data compression

strategy and the tradeoffs between data quality and compression ratio. We have

investigated the data characteristics of oceanic data and this has prepared us for

finding a suitable compression algorithm for the project. This section introduces

the basis of lossless and lossy compression theory and terminologies such as entropy.

We then explore a wavelet compression technique and investigate the benefits and

limitations of it.

3.5.1 Review on Data Compression

The key classification for data compression is whether the algorithm produces lossless

or lossy results. With lossless compression, a decoder can recover the exact original
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input message whilst with lossy compression, only an approximation of the input

message is recovered. Text compression is usually required to be lossless whilst

image and video can tolerate the use of lossy compression.

An important concept, entropy, is frequently used in coding technologies, espe-

cially lossless compression. Claude Shannon has taken the analogy of entropy in

thermodynamic to describe how ”spread out” the energy of a system is and applied

it to information technology. Entropy (HE) of a distribution is defined as:

HE =
∑

i

pi log
1

pi

= −
∑

i

pi log pi (3.5.1)

pi describes the possibility of an outcome and log is normally taken to be base 2

as the number of bits required to represent the information. A signal with uniform

distribution will have maximum entropy while a system with distribution concen-

trated at a fix point will have zero entropy. Entropy can be seen as a measure of

compressibility in that, with a channel with capacity C, it is not possible to transmit

an encoded signal at an average symbol rate greater the C/HE. Moreover, with a

file containing n samples, we cannot encode the file using fewer bits than nH bits.

Often, applying lossy compression would require some sort of prior knowledge of

the signals and user’s perception. For example, Pulse Code Modulation (PCM) is

used for telephony speech coding. Telephony speech is band-limited to 4kHz and

therefore, it is sampled at 8kHz and the signal is quantised using 8-bit to produce

64kbit/s speech coding. A prior knowledge that speech is band-limited is required. In

the case of JPEG coding, the image is divided into 8x8 pixel blocks. Discrete Cosine

Transform (DCT) is applied to the block and a coefficient matrix is obtained. The

matrix is quantized in such a way that high frequency components of the signal are

suppressed to zeros according to the compression requirement. In both cases, high

frequencies of the signal are less perceptible to human beings and hence, the com-

pression has achieved acceptable or even imperceptible loss in quality and obtained
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a high compression ratio.

Popular lossy compression techniques explore the redundancy and relevancy in

the data. Techniques such as transform coding and fractal compression look at the

correlation of the data to achieve compression. Model-based compression techniques

characterise the source data in terms of a strong underlying model. In general,

the more prior knowledge we have of the data, the better compression ratio can be

achieved. However, it also means the compression technique has less flexibility on

the type of applications it can deal with.

3.5.2 Temporal Compression

We explore the use of wavelet threshold compression in this section and use Discrete

Wavelet Transform (DWT) to convert the original series to wavelet coefficients, which

have the same length as the original time series. Coefficients that are smaller than

a threshold would be suppressed to zeros. We then combine lossless encoding tech-

niques such as run-length zeros (RLZ) or Huffman coding to shorten the series and

achieve compression. RLZ is chosen because of its simplicity to implement. A series

that is comprised of many sequential zeros would benefit most from RLZ coding.

In this section, we use two methods to determine the threshold of compression.

• Fix ratio of the largest magnitude coefficient (FRC) Taking a fix fraction of the

largest coefficient in a particular wavelet scale, the magnitude of the threshold

is determined by the equation,

threshold = max(abs(Cj))× threshold percentage, (3.5.2)

and Cj = 0 if |Cj| < threshold, where Cj represents wavelet coefficients at

scale j.

• Deviation from normal distribution (DND)
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Figure 3.21: (a) Histogram of wavelet coefficient at octave 11 (b) QQ-plot of coeffi-
cient against normal distribution. The solid line is the theoretical result if the data
is normally distributed.

The second method follow the analysis result in section 3.4.3 to choose the

thresholds based on the deviation from a normal distribution using QQ-plot.

From Figure 3.21 we can see that if we plot the wavelet coefficients against

a normal distribution, the coefficients with small amplitude follow the distri-

bution in a straight line, while the larger coefficients deviate from the line.

Hence, we set the boundaries of the data to be where the data deviate from

the normal distribution by a certain deviation ratio of the quantile, as shown

in Figure 3.22, which is determined by the equation:

boundary = range of quantile× deviation ratio (3.5.3)

The lower threshold is where data crosses the boundary on the left hand side to

zero. The upper threshold is where data crosses the boundary on the right hand
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Figure 3.22: Boundary and threshold

side to zero, and Cj = 0 if Cj ≤ lower threshold or Cj ≥ upper threshold.

Both methods distinguish the important wavelet components (signal) from the

irrelevant coefficients (noise).

Haar wavelet is chosen because of its simplicity. The wavelet and scaling functions

in each scale are pre-calculated and put in a maths table in the MCU. The remaining

operations at the time are multiplying the wavelet and scaling functions with the data

and summation. A 6-level wavelet transform referring to τj = 1 to 32 seconds (Octave

1-6) is used. The scaling coefficients at octave 6 approximates the trend of the data

with 1024/26 = 16 coefficients.

Proposed encoding procedure

1. 6-level Discrete Wavelet Transform (DWT) is performed using Haar wavelet.

2. For each wavelet scale, choose the threshold based on.

• Method 1: fix ratio of the largest coefficient.

• Method 2: deviation of the coefficients from the normal distribution.

3. If a coefficient is within the threshold, it is replaced by zero; if it is beyond the
threshold, it will be kept.

4. Calculate the mean of the wavelet coefficients that are within the range of the
thresholds and have been suppressed to zero.

5. Encode the wavelet coefficients using run-length zeros algorithm.

6. Suspend the mean at the end of the encoded coefficients.
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Proposed decoding procedure

1. Decode the coefficients using run-length zeros.

2. Substitute zeros in the coefficients with the mean of the suppressed coefficients.

3. Reconstruct using Inverse Discrete Wavelet Transform (IDWT).

3.5.3 Results

Two quantities are computed in the compression, the compression ratio and the error

incurred by the compression. They are defined as:

Compress ratio =
(N −Ncomp)

N
· 100% (3.5.4)

Error =

√
sum(X −Xcomp)2

N
, (3.5.5)

where X is the original series and N is the length of data, Xcomp is the re-

constructed series using IDWT and Ncomp is the length of the compressed wavelet

coefficient series.

Method 1: Fix Ratio of the Largest Coefficient Figure 3.23 shows the

result using method 1 and a threshold ratio of 0.01. Compression is performed to

each bin and observed over time. The magnitude of the error incurred by compression

is in the order of 10−2 FTUs (same unit as the turbidity), which is small compare to

the average values of turbidity of 55 FTUs. This is because the compression is only

done on the wavelet coefficients but not the scaling coefficients. The majority of the

energy in the data is in the scaling coefficients. The compression ratio over time is

around 46%.

Figure 3.24 shows the effects on the result by varying the threshold percentage

by compression bins 1 to 200 and the average of the compression ratios and errors

are obtained. It is observed that the compression ratio remains close to 50% until
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Figure 3.23: Result of compression using fix percentage over time

the threshold percentage is over 0.1 of the largest coefficient in that scale. At a ratio

of 1 the threshold percentage equals the largest wavelet coefficient in each scale and

only the scaling coefficients are preserves. The compression ratio achieved is 98%

and the error is 0.0065, which is still very small.

Method 2: Deviation of the Coefficients From Normal Distribution

Figure 3.25 shows the result of the compression ratios and errors over time, using

a deviation ratio of 0.1. The compression error is around 0.45 and the overall com-

pression ratio of this setting is around 50%. One major difference of method 2 from

method 1 is that the compression ratio varies between a few percentage to 80% in

contrast to method one, which has the range of only a few percentages for different

bins of data. This is reflected in the errors shown in figure 3.25. This may be due to

the deviation ratio chosen falling in the linear region of the curve in Figure 3.26 (a).

Figure 3.26 shows the effect on the results by varying the deviation ratio and

testing on bins 1 to 200. It is observed that both compression ratios and errors

increase with deviation ratio. The negative compression ratio means the length of
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Figure 3.24: Effect of thresholds (a) on compression ratio, (b) on compression error
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Figure 3.25: Result of compression using deviation threshold over time

the compressed vector is longer than the original series. In (b) the linear region of

compression error is between 10-5 and 100. After that the curve flattens and reaches

a maximum error of 0.05. It is also observed that the linear region of compression

ratio in (a) has a larger range running from 1 to 96 than method 1, which runs from
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Figure 3.26: Effect of deviation ratio (a) on compression ratio, (b) on compression
error

50 to 98.

3.5.4 Comparison and Conclusion

The difference in the reconstructed series resulting from method 1 and 2 are studied

here. Bin 1 of sediment data is chosen for the study because of the presence of two

anomalies of large amplitude.

Figure 3.27 is a comparison of the reconstructed series with different threshold

percentages using method 1. Graph (a) is the original series, where two spikes are

observed. The last series (d) is the result for a threshold percentage of 1, which

means all the wavelet coefficients are suppressed. The reconstructed series shows the

trend of the series only with all the high frequency changes missing. In (b) and (c),

the two spikes are observed with smaller amplitudes than the original.

Figure 3.28 shows the results of different deviation ratio using method 2. Similar

effects are observed where larger deviation ratios lead to more coefficients suppressed
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Figure 3.27: Compressed and reconstructed time series of sediment concentration
using method 1: threshold percentage of the largest coefficients.

to zeros and hence, the high frequency components are not preserved. However, as the

threshold is a ratio of the deviation from the theoretical values of normal distribution,

coefficients with large deviation will always be maintained and the anomalies are

kept. The two spikes are still observed with the ratio set to 5 and the compression

ratio achieved is 96%, 2% less than if only scaling coefficients are transmitted. The

following observations are obtained:

• From observing the time series in Figure 3.23 and 3.25, method 1 gives better

control of the compression ratios over time than method 2. This is because the

location of the linear region of method 2 (figure 3.26 makes the compression

sensitive to the data values.

• Observing the results from Figure 3.27 and 3.28, method 2 is more useful for

preserving anomalies.

• In general, method 2 is more complicated to compute and implement on an
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Figure 3.28: Compressed and reconstructed time series of sediment concentration
using method 2: deviation ratio.

MCU board. Performing a QQ-plot involves:

1. Obtaining an order statistics of the data

2. Getting a theoretical series from the tested distribution. This series can
be computed prior to implementation

3. Calculating the quantile/ percentile based on the data

Method 1 only involves a simple multiplication of the largest coefficients, hence,

it is a lot easier to implement. Hence, wavelet compression using method 1 is more

desirable in the SECOAS project. Moreover, it also gives a more consistent compres-

sion ratio over time.

3.6 Chapter Summary

In this Chapter, we reviewed different WSN data handling projects, data analy-

sis tools, self-similarity and hurst parameters and wavelet transform and compres-
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sion techniques. We then included a throughout data analysis on the oceanography

data for our projects. All the parameters, temperature, conductivity, pressure and

sediment concentration exhibited periodic features due to tides. Temperature and

conductivity data showed strong linear relationship, which might be used for data

compression purpose. We found that Sediment concentration showed long-range

dependency characteristics with the Hurst estimate of 0.89.

Wavelet data compression was explored for the use on sediment concentration

data using thresholding on wavelet coefficients followed by run-length zeros coding

technique. Two methods were explored to suppress wavelet coefficients: deviation

from normal distribution and fix percentage of the largest coefficient. It was found

that both methods achieved good compression ratio 50-95%, while using deviation

from normal distribution preserved the data abnormally better. However, the algo-

rithm was more complicated and hence, was less desirable for the SECOAS types of

environmental monitoring projects.
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A sampling scheme that can alter the sample rates according to the actual envi-

ronmental changes can be very attractive in WSN as it reduces the amount of energy

needed for taking samples and relaying the data back to the base station. This is

particularly useful for applications where data changes at different rates over time

and for rare-event detection.

In-network processing techniques have been developed to reduce communication

overhead at the expense of more processing. Energy is conserved because as many

as 1000 operations are required to consume the same power required to send one bit

of data. Thus, wherever possible, data are processed within the sensor network.

Traditionally, temporal samples are taken at regular intervals [ADJ+02] [BBB04],

governed by the Nyquist frequency if the data is periodic, to avoid aliasing. In the

cases where more than one frequencies are of interest and are wide apart in temporal

scale, such as wave and tidal periods in Oceanography analysis [RLW+04], burst

sampling technique may be adopted as a mean of conserving power. However, regular

or burst sampling techniques are not power efficient for rare-event detection. If the

sampling frequency is set to be very low there is a possibility that important events

may be missed. However, if the sampling frequency is set to a high value most

sampling is redundant as it takes place during normal (no event) circumstances.

We propose a stochastic sensing schedule that adapts the sampling frequency to

the chosen statistics collected from the environment. Compared to a regular sampling

strategy, the frequency of the required sampling rate decreases and yet the scheduler
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preserves and detects the phenomenon when it happens. The amount of information

that needs to be sent back to the user decreases, and therefore, greatly reduces the

power consumption in a node. Moreover, the sensor network will be able to predict

and detect when a rare-event happens and trigger further actions such as alarms

and alerts. Neighbour coordination can also be introduced to reduce event-detection

delay due to sparse random sampling when there is no event.

Although adaptive sampling can be beneficial in the respect of energy saving and

detection delay, temporal irregularity in data, which is a by-product of this type of

sampling techniques, means that we cannot use most of the commonly available tool

including Fourier and wavelet transform to analyse the collected data. Techniques

such as interpolation and extrapolation may be used to construct a regular data set

but it introduces uncertainty in the data series. Therefore, adaptive sampling is only

used on WSNs that have clear objectives such as the detection of an event, that only

the recent values are required by the user and data analysis is not required.

Previous works that have been done on adaptive sampling schedulers rely on

a prediction model. This has limited the use of algorithm to the particular data

type defined for the application. Moreover, the models require prior training and

re-training during the deployment in order to keep the accuracy of the predictions,

which impose additional processing and memory requirements in a sensor node. We

propose a model that use a quantity called Exponentially Weighted Moving Average

(EWMA) to calculate the probability of sampling, which adjusts to the rate of change

of the latest samples. The method requires very little prior knowledge on the data

and has low memory requirement. It is also applicable to most data types for event

detection.

We start the discussion with a literature review on data sampling techniques in

WSN. We then introduce the performance metrics that will be used in the evalu-

ation of the algorithm developed. Our work on the design of the Basic Adaptive
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Sampling Scheduler (BASS) is reported in the next session. After that, we evaluate

the parameters in the algorithms and elaborate the adaptive component in BASS

that has feedback from the measured data into the algorithm. In the final section,

BASS is compared to eSense for the resulting sampling ratios and their ability to

capture events.

4.1 Related Works

Research in sensing schedulers mostly focuses on exploiting redundancy in the net-

work to minimise battery usage. Some consider radio and sensing coverage redun-

dancy and optimise network life by putting the covered nodes to sleep [CAHS05]

[HLTC06] [RLW+04]. With this approach only the spatial but not the temporal

statistical redundancy is considered. However, the concept of using spatial redun-

dancy to reduce sampling frequency is similar to the spatial neighbour coordination

of BASS, the only difference is that the coordination in BASS is not organised and

scheduled, but probabilistic.

The work of Tulone et. al. attempts to reduce the communication budget by us-

ing forecasting models. They develop a probability query adaptable system [TM06]

which used a combination of autoregressive (AR) models located on each sensor

to predict local readings. Model updates are only sent to a sink whenever mea-

sured readings are outside specified bounds. Jinboa et al proposed a similar scheme

which dynamically adjusted the sampling frequency using a linear regression model

[LL07]. These works have highlighted the importance of reducing the amount of

communication in WSN by predicting whether the next reading is important to the

user. However, both methods are limited by their model assumptions. Hence, the

algorithms only apply to applications with defined data characteristics.

In [WAJR+05a], Werner et al developed an exponentially weighted moving aver-

age (EWMA) (see Section 4.3) detector to counteract sensitivity issues [WAJR+05a]
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in the project. Detection is triggered when the ratio between a long and short term

average is above some pre-specified threshold thus causing nodes to sample data con-

tinuously. The work has inspired us to develop our adaptive scheduler based on the

simple and robust statistics of EWMA, which requires very little physical memory

to implement on the sensor node. BASS uses similar concept of long term and short

term averages calculated by EWMA, however, in our proposed algorithm these av-

erages are used to drive a probabilistic state machine to whether a node samples or

idles, while in [WAJR+05a], the difference of the EWMAs are used to turn on the

detector.

In [LCS06], Liu et al proposed a stochastic sampling scheduler eSense achieving

similar objective to our requirements. The scheduler uses a biased random walk

method to predict the likelihood of an event happening in the k steps time and

determines whether a node should sample at that instance. The system also uses

false hit ratio (the recent number of sampling instances which do not detect an

event) to fine-tune the sampling probability. eSense has inspired our work in the

adaptive feedback in BASS. However, eSense is largely based on the assumption

that the environmental data follow a random walk model, while BASS based the

sampling probability on EWMA statistic. This is the major difference between the

two algorithms.

4.2 Performance Metrics

An adaptive sensing schedule is useful for two types of applications. The first ap-

plication is simply relaying data to the user. The scheduler works such that the

amount of data collected is proportional to the rate of change of the environment.

The second application is rare-event detection. When a rare event occurs, the sen-

sor network is required to respond to the event promptly and reliably and notify

the users. Examples of such applications are bridge collision monitoring, flooding
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detection, landslide warning systems and forest fire detection [AWSC02].

We define the following performance metrics to help us evaluate the sampling

schedulers for both type of applications.

4.2.1 Root Mean Square

Environmental Root mean squre (RMS) intends to show the difference in environ-

mental value and the last reading in a sensor node. It is defined as,

RMS = 1/N ∗

√√√√( ∑
all sensors

(environmental value− value last measured)2

)
,

(4.2.1)

where N denotes the number of sensors. RMS is particularly useful in analysing

the performance of an algorithm in time. It shows the delay of a state change

detection and the effect of coordination of the nodes in the network.

4.2.2 Relative and Absolute threshold

Relative threshold is applicable to the first type of data relaying application. Relative

threshold is defined as the difference between the last and the current measurements

to trigger an event. When the rate of change of the environment is fast, the sched-

uler should sample more often to track measurement that have crossed the relative

thresholds.

For event detection, an absolute threshold is more applicable. An absolute thresh-

old defines the absolute reading that the measurement needs to cross for an event

to happen. Detection of landslide for embankment monitoring is such an example.

The tilt must be read above a certain threshold to indicate the event of a landslide.

In both cases, a state change indicates when a reading crosses the threshold (both

relative and absolute), which triggers the reporting to the application.
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4.2.3 Baseline sampling frequency and periodic sampling

The sensor nodes has a maximum baseline sampling frequency that is bounded by

the sensor type and the ADC used. The baseline sampling rate determines the

maximum resolution of the system. The adaptive sampling schedule can only give

resolution equal to or lower than the baseline sampling frequency. In our simulated

environment, the baseline frequency is the resolution of the data set collected, or the

data set created for the simulation.

We used the oceanographic data sets for comparison and validation of our algo-

rithm. However, we could not use a discontinued data set in our simulation as in

reality the data does not jump from one state to another without intermediate steps

and these intermediate steps are very important to us as it determines the rate of

change of the environment. Hence, we could only use the coarse sets of the data and

the baseline frequency is 1 per hour.

In our experiment we also compared the performance of the scheduling algorithms

to periodic sampling. In theory, adaptive sampling algorithms adjust the sampling

rate based on the rate of change of the data, hence, we expected to see lower missed

ratio than using periodic sampling provided that the average sampling rate is the

same.

4.2.4 Missed Ratio and False Hit Ratio

Unnecessary sampling should be avoided using an adaptive sampling schedule, there-

fore, a sensor node only samples when a state change is expected. With this approach,

it is possible to miss certain state changes if data was not sampled at those particular

time instants. This is referred to as the miss ratio, which is defined as [LCS06],

γ =
nf

n
, (4.2.2)

where nf denotes the number of missed hits and n denotes the total number of
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sampling points corresponding to the base sampling frequency.

Conversely, when a node takes a sample when no state change is happening, it is

refer to as the false hit ratio, which is defined as,

ρ =
np

n
, (4.2.3)

where np denotes the number of false hits and n denotes the total number of

sampling points corresponding to the base sampling frequency.

Miss rate is also related to the delay of detecting a state change. For example, if

the state change happens one second after the last sample, but the algorithm only

schedules the next sampling event to happen after T seconds, the delay of detection

is (T − 1)s and the scheduler would have missed (T − 1) events compared to the

baseline sampling rate (1s), provided that the data remains at the same state after

the state change.

4.3 Design of Basic Adaptive Scheduling Algorithm

4.3.1 Temporal Design

Figure 4.1: State diagram for adaptive sampling

Inspired by the research in [WAJR+05b], we have designed a Basic Adaptive

Sampling Scheduler (BASS) to achieve our goal to track the environmental rate

of change. The scheduler is based on a simple 2-states model as shown in Figure

4.1. psense and pidle are the probability of the scheduler changing from one state to
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the other. At sense-state, the scheduler takes a sample from the environment and

updates psense and pidle with the current sample. The state-transitions are random

probabilities, which are based-on a statistical property called Exponential Weighted

Moving Average (EWMA) denoted in 4.3.1. Probabilistic approach de-synchronises

the regularity of sampling both temporally and spatially, hence, a node can detect

a regular event in due time and node coordination can be applied to improve the

system performance.

E(t) = α·x(t) + (1− α)·E(t− 1), (4.3.1)

where E is short term (Eshort) or long term (Elong) EWMA, x(t) denotes the

current sample, α is a gain parameter between 0 and 1.

EWMA is a way of preserving memory when calculating the expected values. α

determines the weights of the current sample and the last average when calculating

the new average. Current values are weighted more than historical values if α > 0.5.

In BASS, we define a long-term average Elong and a short-term average Eshort

which uses the same EWMA equation 4.3.1 with 0 ≤ αlong < αshort ≤ 1 and we

defined normalised probability pt as a normalised ratio as below:

 pt =
∣∣∣(Elong−Eshort

Elong+Eshort
)
∣∣∣ , Elong + Eshort 6= 0

pt = 0, , Elong + Eshort = 0
(4.3.2)

The temporal components of p̂sense and p̂idle are:

p̂sense = k1 + (1− k1) ∗ pt

p̂idle = 1− ˆpsense,
(4.3.3)

where 0 ≤ k1 ≤ 1 is the minimum sampling probability, pt is the normalised

probability and ˆpsense and ˆpidle are the temporal element of probability of sensing

and idling. 0 ≤ pt ≤ 1 and pt increases with the difference between Elong and Eshort.

Without k1, p̂sense is simply pt and p̂idle is equal to 1 − pt, which means that
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Figure 4.2: Relation of k1 and network awareness in loglog scale. αlong = 0.01, αshort

= 0.05. Environment changes from 0 to 50 at iteration 200.

sampling probability increases with the difference of long-term average and short-

term average. k1 is an integrity threshold that makes sure sampling probability does

not fall to zero when the difference between Elong and Eshort is very small. When

the environment is stable, the sensor nodes are sampled asynchronously at a random

rate close to k1. One can visualise a problem when k1 is very small, i.e., there would

be a long delay for the detection of an event, or it is simply missed. The experiment

set in Figure 4.2 demonstrates how k1 affects the time for network to be aware of a

change occurring to the whole network. The measured environment value changes

from 0 to 50 (arbitrary units) at time instance 200. The time for awareness of the

change in the network has an exponential relationship to k1 as shown in Figure 4.2.

A small k1 sets a small sampling rate when no event happens in the environment,

meaning a higher energy efficiency in long term.

4.3.2 Spatial Coordination

Setting k1 to a small value can enhance energy saving in the network, however, the

sensing rate is so slow after the settling period that it would take a long time for
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the sensor nodes to pick up on any event happening in the environment. There-

fore, neighbour coordination is introduced to improve detection delay, given that the

neighbouring nodes are providing spatial sensing coverage for each other. When a

single node detects some change in the network, it alerts the neighbours with its

discovery. We introduce a spatial component in relation to the reading difference be-

tween the two nodes d̄u to the equation in determining psense and pidle. The distance

of node u from its neighbours v (if information is received from v) is defined in Eq.

4.3.4 and is the summation of the absolute differences of pt of all neighbours.

d̄u =
1

n

∑
j

|ptu − ptv | (4.3.4)

The final equations (Eq. 4.3.5) for psense and pidle are such that the probability

of sampling is high when either d̄u or ptu is high; and the probability of sampling is

low when both d̄u and ptu are low.

psense = k1 + (1− k1)(1− (1− d̄u)(1− pt))

pidle = (1− pt)(1− d̄u)
(4.3.5)

In the model developed, we use a push-approach to the information dissemination

problem among neighbours. A sensor node sends a report to its neighbours when

its pt is above a defined threshold (pt > T ), which indicates a significant change

in the environment measured. Currently, psense and pidle are updated at every time

step, even when a node is at idle state, because the messages received from a node’s

neighbour may change the sensing schedule of a node. To minimise the communi-

cation expenses, a node which has broadcast its pt to its neighbour will wait for

M time steps before considering re-broadcasting its pt information. We set up an

experiment to observe the effect of neighbour communication in the algorithm. T is

set to 0.6 and M is set to 10 in the experiment. The network consists of 100 nodes in

a [100× 100] space. The environment is a step function that changes from 0 to 10 at
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time instance 0. The result is presented in figure 4.3 and 4.4. We can see from figure

4.3 that where the number of sampling events is measured, when no communication

exists between the neighbour, individual nodes rely on their probability of sampling

to detect the change in environment. The sensor nodes in the network gradually

realise there is a change to the environment and increase their sampling probability

accordingly until their long-term average has adjusted to the new value. Hence, the

detection peak is flattest among the comparison. With neighbour communication,

the rate of detection for all nodes is much earlier and most nodes are aware of the

changes at a similar time, hence, the peak of detect is much sharper. The delay is less

for communication range = 20 (average degree = 10.18) than range = 10 (average

degree = 3.22) and range = 5 (average degree = 0.68) since the nodes have more

neighbours that are within the communication range.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sampling Instance

F
ra

ct
io

n 
of

 s
am

pl
in

g 
no

de
s

time instance

range=0
range=5
range=10
range=20

Figure 4.3: Number of sampling instances vs time. n = 100, l2 = [100, 100], αlong =
0.05, αshort = 0.01, T = 0.6, M = 10. The environment is a step function from
abitrary values 0 to 10 at time 0. Number of iterations is 1000.

Figure 4.4 shows the results of the RMS over the network with time. At time

instance 0 the environment changes from 0 to 10. From time 0 onwards, the sensor
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Figure 4.4: Environmental RMS over time

nodes in the network gradually realise there is a change to the environment and

increase their sampling probability accordingly until their long-term average has

adjusted to the new value. The percentage of node sampling in the network settles

to a value close to k1, which is set to 0.01 in this experiment, at time 500. Figure

4.4 shows the environmental RMS defined in section 4.2.

We can see from both figures that a larger communication range means a node

can exchange their pt with more neighbours. The environmental RMS converges

much quicker to zero when communication range is set to 20, meaning a much faster

response of the network to the environmental changes and information disseminates

more efficiently across the network. As a result, nodes which are monitoring the

same area can share their responsibility of sensing and hence, k1 can be set to a

lower value in the group of nodes.
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4.4 Setting the Parameters

4.4.1 Relation of α and pt

We can see from equation 4.3.1, 4.3.2 and 4.3.5 that pt, i.e. αlong and αshort, defines

the probability of sampling in relation to environmental changes. The value of α is

between 0 and 1, the smaller the value of α is, the quicker the scheduler can adapt

to the changes. However, the scheduler is also more exposed to noise and short

term variations that we may not want to capture. We can exclude the short term

variations and noise by choosing a larger α values, however, this may also mean our

scheduler reacts more slowly to changes.

In order to investigate the combined and distinctive effect of the long and short

term alphas and the averages, we have created a normalised parameter α̂ to relate

the αlong and αshort in our analysis as in the following equation:

α̂ = (
1

αlong

)− (
1

αshort

) (4.4.1)

α̂ can be seen as the difference in the sampling instances (1/α) to create the long

term and short term EWMA averages, and the convergence time of E is approxi-

mately 5 ∗ 1/α. α̂ has a direct relation in the calculation of pt as shown in figure 4.5

and figure 4.6. In this experiment, the experimental time series is a step function

from 0 to 10 at time instance 0.

As an approximation, αshort ∼ α̂·αlong, as αshort � α̂.

Figure 4.5 shows the maximum pt obtained in the experiment plotted against α̂.

Even at a high value of α̂ where the difference of Elong and Eshort is large, to get

a good ratio between the two averages, the value of αshort is required to be greater

than 0.05 to get a full range of pt given a reasonable value of αlong > 0.001 to avoid

slow convergence.

The sampling ratio is only dependent on α̂ for all the combination of αshort and
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4.4.2 Curve Shifting Parameter s

The parameter pt should depend mainly on the statistical averages Elong and Eshort,

provided that αlong and αshort are chosen appropriately. We have a look at the

relation of pt and both E in this section.

From figure 4.7, the linear section of pt is positioned at around E ′ ∼ 100%

(pt ∼ 0.5 when E ′ ∼ 100%) but this sensitivity setting of pt may not be suitable to

all applications. Hence, we modify equation 4.3.2 such that we can shift the curve

according to our requirement, and produce a new parameter p̂t as shown in equation

4.4.2 with adjustable sensitivity. Note that equation 4.4.2 is equal to equation 4.3.2

when s = 1, v = 1 and |Eshort| >> |Elong| (or |Eshort − Elong| ∼ |Eshort|), which

means that there is a significant change in the readings. Note that the probability

is maintained at 0 ≤ p̂t ≤ 1 during the shifts.

p̂t = 1− |Elong|
|Elong|+ s· |Eshort − Elong|v

(4.4.2)
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Figure 4.7: Curve Shifting using Equation 4.4.2

We can see from figure 4.7 that, the shapes of curves produced by the two equation
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are similar, however, by setting s > 1 the linear region of the curves have been shifted

to the left. The parameter v controls the slope of the linear section. The larger the

value of v, the steeper is the curve. We choose v = 1 for simplicity of implementation.

The linear section of the curve can be shifted to the centre at 50% by setting s = 10.

We experimented on different values of s on the salinity data as analysed in

section 3.4.1, and plotted the result in terms of missed ratio and sampling rate as

shown in Figure 4.8. We can see that as s increases, the number of missed events

decreases. The rate of decrease is the greatest between s = 1 to 10, whilst little

improvement shows for s > 80. The number of samples taken has a much slower

rate of increase than the missed ratio. Hence, for salinity data, 10 < s < 20 gives

the best missed event to sampling rate relation.

In figure 4.9 we experimented on the sediment data as analysed in section 3.4.3.

The variation of sediment concentration is much higher than salinity. Hence, the

improvement of missed ratio is the greatest between 1 < s < 20 because the rate of

increase of sampling is slower than the decrease of missed ratio between these values.

4.4.3 Adaptivity in BASS

In the last section, we have seen that s is related to the amount of variation in the

data, and that increasing s would improve the missed events ratio but increase the

sampling rate. Moreover, the optimal s differs for each data set. In this section,

we modified BASS so that it adapts the value of s based on the measured feedback

values of the environment.

Curve shifting parameter s is adapted differently for capturing the relative thresh-

old and the absolute threshold. For the relative threshold, s is adapted iteratively

based on the absolute difference of the last and current measured value.
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tration data. Results are averaged over 100 simulations. k1 = 0.01, αlong = 0.001,
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Hence,

if |x(t− 1)− x(t)| > TH ∗ ρ
s(t+ 1) = s(t)× 2

else

s(t+ 1) = s(t)/2
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where ρ is an adjustment parameter for the sensitivity of adaptation and is a

percentage of the relative threshold. A lower ρ means the algorithm is more sensitive

to change in readings. It is set to between 0.4 to 0.6 in our experiments to obtain a

comparable value to eSense. smin < s < smax and TH is the relative threshold.

The mechanism for capturing the absolute threshold requires a different mecha-

nism than capturing relative thresholds. eSense uses the same algorithm for captur-

ing absolute thresholds, which is based upon the calculated probability of the future

data crossing the threshold line. This is similar to the relative case but is required to

react more quickly. Hence, we tune the sensitivity parameter s based on how close

the latest measurements (Eshort) are to the threshold. Hence,

s(t+ 1) = s(t) ∗
∣∣∣∣(THabs − Elong)

(THabs − Eshort

∣∣∣∣ , smin ≤ s ≤ smax (4.4.3)

Therefore, s increases when the data approach the threshold value and decreases

when the trend moves away from the absolute threshold.

The final algorithm is presented in the pseudo-code in table 4.1.

4.5 Performance Analysis

In this section, we apply the adaptive sampling algorithm to the oceanography data

set described in chapter 3 for the comparison of BASS with eSense adaptive algo-

rithm. We only compare the temporal aspect of BASS with eSense as the eSense

algorithm does not have spatial coordination.

In addition, we compare the results to periodic/regular sampling. We obtain

the equivalent sample rates from both algorithms and translate it to the closest

regular sampling rate. The translation may not be exact, for example, if the average

sampling interval obtained from one of the algorithm is 2.5s 1, we can only achieve

1This is calculated by dividing the number of samples taken by total number of samples in
baseline samples
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Psuedocode:
Initialisation:

αlong ← 0.001
αshort ← 0.1
initialise k1

initialise smin and smax

s = sinit

Elong = x1 /*x1 is the first measurement*/
Eshort = x1

Iteration
FOR i = 1 to maximum round {
evaluateNodeStatus
IF nodeStatus = sample {
take a sample
updateS }

updateProbs }
Proc evaluateNodeStatus:

generate random probability p
IF nodestatus = idle
{IF p < ps, nodestatus = sample }

ELSE IF nodestatus = sample
{IF p < pi, nodestatus = idle }

Proc updateProbs:
Elong = αlong ∗ sensorvalue+ (1− αlong) ∗ Elong

Eshort = αshort ∗ sensorvalue+ (1− αshort) ∗ Eshort

pt = 1− Elong

Elong+s∗|Elong−Eshort|
ps = k1 + pt

pi = 1− pt

Proc updateS:
IF Relative Threshold {
IF |sensorvalue− lastMeasuredV alue| > TH ∗ ρ {
s = s*2 }

ELSE {
s = s/2 }}

IF Absolute Threshold {
s = s ∗ abs((TH − Elong)/(TH − Eshort)) }
IF s > smax, {s = smax }
IF s < smin, {s = smin }

Table 4.1: pseudo-code of Adaptive BASS
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either 1/2s or 1/3s sampling rate for regular sampling. Therefore, we define,

• Upper bound (UB) regular/periodic sampling rate. It takes the lower integral

number of baseline sampling intervals and converts it into the sampling rate.

Therefore, UB sampling has a higher or equal sampling rate than our input

sampling rate.

• Lower bound (LB) regular/periodic sampling rate. It takes the higher integral

number of baseline sampling intervals and converts it into the sampling rate.

Therefore, LB sampling has a lower or equal sampling rate than our input

sampling rate.

To minimise the error caused by randomness in eSense and BASS, we repeated

the simulation 100 times to obtain each result. For regular sampling, the sampling

moments and therefore, the starting instance can be a variable contributing to the

miss ratio. Hence, we repeat the experiment with different starting instances between

0 and (sampling interval−1) and average the results.

4.5.1 Comparing with eSense Algorithm

To adopt eSense algorithm for comparison in our experiment, a set of training data is

required for the biased random walk model for data prediction [LCS06]. We used the

same experimental data as the training data, which should give eSense the optimal

results for the algorithm.

4.5.2 Relative Threshold

The hourly time series of the four oceanographic data sets are re-plotted in figure

4.10. The data sets have very different characteristics in terms of their periodic

behaviours, the rate and level of change and statistical distributions and hence, we

can observe the strengths and weaknesses of BASS and eSense in the presence of

these different characteristics.
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Figure 4.10: Raw hourly temperature data, conductivity data, Pressure data and
Sediment concentration

We used the parameter Fn = 0.1, w = 100 and ρ = 0.8 for eSense and with BASS

the parameters αlong = 0.001, αshort = 0.1 and k1 = 0.05 are adopted. The parameter

ρ in BASS varies slightly for different data sets so that the resulting sampling rates

are comparable to the one of eSense and we can compare their miss ratios.

We re-capture the properties of the two algorithms to help us analyse the results

of the experiments in this sections.
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• eSense calculates the probability of the sample crossing the threshold level at

certain time in the future based on a biased random walk model trained by

some data. The data are assumed to be Gaussian and the accuracy of the

model depends heavily on the training data.

• BASS algorithm bases its sampling rate on the rate of change of the data,

which is a ratio of the short term and long term averages. The latest event is

fed into the system to tune the sensitivity of the sampling probability. If the

difference of the current and last events are close to the threshold level, the

sensitivity is increased to capture the change.
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Figure 4.11: Comparison of BASS, eSense and lower bounded periodic sampling on
sediment concentration data. ρ = 0.6, 0.01 < s < 100

Figure 4.11, 4.12, 4.13 and 4.14 shows the comparison for BASS, eSense and lower

bound (LB) regular sampling with different threshold level. The sampling rate for

BASS and eSense is derived from taking the number of sampling instants from the

algorithms divided by the total number of baseline sampling instance.

We used LB regular sampling rate as a comparison by taking the larger integral

sampling intervals derived from BASS and eSense’s sampling rates. Hence, the LB
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Figure 4.12: Comparison of BASS, eSense and lower bounded periodic sampling on
temperature data. ρ = 0.45, 0.01 < s < 100

regular sampling always has a lower sampling rate than (or equal to) the algorithm

itself. Note that there is no regular sampling rate between 0.5 to 1 as the sampling

interval relative to the baseline sampling is either 1 or 2.

Among the four data sets, BASS performs the best on the sediment concentration

data (figure 4.11) as compare to eSense. It gives a comparable sampling rate to the

eSense algorithm between 10 to 40 FTUs for threshold level, but BASS has achieved

a lower miss ratio below 0.1 for all the threshold levels. eSense has failed to maintain

the miss ratio below 0.1 for threshold levels between 15 to 45 FTUs. The major

reason for the failure of the eSense algorithm is that the sediment concentration

data has the least Gaussian distribution out of the four data sets (discussion of self-

similarity characteristic is found in section 3.4.3) and hence, the assumption for a

normal distribution is not valid in this case. Moreover, the 2nd moment of the data

varies largely over time and hence, the eSense algorithm is not effective using just

one normal distribution for the whole series. On the other hand, BASS just measures

the rate of change in the data and s is adaptive based on the threshold levels. It has
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succeeded in tracking the change of this data series.
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Figure 4.13: Comparison of BASS, eSense and lower bounded periodic sampling on
conductivity data. ρ = 0.4, 0.01 < s < 200
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Figure 4.14: Comparison of BASS, eSense and lower bounded periodic sampling on
pressure data. ρ = 0.5, 0.01 < s < 200

The four sets of results exhibit one common feature for both algorithms. The

results appear to be worse when the threshold level is close to the peak to peak
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short-term periodic variation. This phenomenon is most obvious in the tempera-

ture and conductivity results as shown in figure 4.13 and 4.12. The temperature

and conductivity data also have the strongest trends. eSense’s sampling pattern

throughout the reconstructed series is more even because the same model is used.

The adaptivity (the proportion of false negatives) has limited effect on the sampling

probability; while BASS’s sampling rate varies based on the measured variation in

the data. And because of this characteristic in BASS, when the sampler captures the

data at non-peak moments during the periods, the difference in the measurements

does not reflect the true variation in data and BASS is not as accurate in responding

to the true variations in the data.

Both algorithms can capture the trend of the data effectively as shown in Figure

4.15. The difference between the two sampling rates at high threshold levels is largely

based on the fact that in our adopted eSense model, the maximum interval between

2 samples is 100, while in BASS, the value k1, which determine the lowest sampling

probability, is set to 0.05 (around 1 in 20 samples).

eSense shows better performance than BASS for the pressure time series as shown

in figure 4.14 especially for threshold levels between 0.7 and 1.3 bars. For BASS, the

poorer performance is for the same reason as for the temperature and conductivity

data at around the peak to peak periodic variation. The pressure data is heavily

dominated by periods (rather than trends) and this variation is captured by the

eSense model.

It is worth noting that when comparing the result of eSense and BASS to LB

regular sampling, LB sampling always achieves a lower miss ratio with less sampling

instances for these data sets, except when the sampling rate is between 0.5 and 1.

That is one of the advantages of adaptive sampling as it can adjust the sampling

rate between these values. However, if the sampling rate is lower than 0.5, and if we

know the required sampling rate to use (which may not be easy), regular sampling
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works just as well as, if not better than adaptive sampling for these oceanographic

data sets.
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Figure 4.15: Reconstructed BASS and eSense data using Relative TH = 1.5 for
temperature time series

4.5.3 Absolute Threshold

We adopted αlong = 0.01 and αshort = 0.3 for a faster response in BASS to capture

the absolute threshold. Conductivity data is used in this experiment because it has

a strong trend and is similar to what we want to capture in the presence of an event.

The resulting sampling rate for eSense is 0.14 averaged over 100 simulations for

conductivity data. The threshold is set at 39 mmho/cm. The missed ratio for BASS

is slightly higher at 0.020 mmho/cm and eSense is 0.017 mmho/cm. Both algorithms

demonstrate the ability to sample more often when the measured data is close to the

absolute threshold level.
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Figure 4.16: Reconstructed conductivity series using BASS with absolute threshold
39 mmho/cm
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Figure 4.17: Reconstructed conductivity series using eSense with absolute threshold
39 mmho/cm

4.6 Conclusion

BASS and eSense are designed to achieve similar objectives via different measures.

In eSense, the probability of sampling is directly related to the probability of the
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future data crossing the threshold(s). The ratio of false positive events is used as

a feedback to fine tune the sampling probability. In BASS, we intend to relate the

sampling rate to the rate of change of the data. The sensitivity parameter in BASS

is tuned based on the latest measured values and the pre-defined threshold levels.

eSense is better at dealing with strongly varying periodic data with little trend

as compared to BASS, i.e., the pressure data in our data sets. The biased random

walk model can accurately calculate the probability of the future data crossing the

thresholds in signals predominated by periodicity.

However, the eSense algorithm has the prerequisite of an accurate model. Hence,

we would need to either obtain some training data beforehand, or guess the param-

eters and fine-tune it on the way. The results can be very poor if the model does

not accurately describe the data characteristics. Figure 4.18 shows such an example,

using temperature data to train the model and test it on pressure data. However, if

the training data has similar features as the tested data, eSense gives very satisfac-

tory results on all data types, providing eSense has the ability to re-train the model

to keep track on the variation in the data.

Moreover, the re-training of eSense model can only be done on a node with

adequate memory resource and processing power. The model may need to be trained

for individual nodes for accuracy due to spatial variation. This means that this super-

powerful node would require all the data from all the nodes in the network, which is

not a scalable solution for a wireless sensor network. The re-training of the models

would also incur significant delays in the network to detect changes in the data.

On the other hand, BASS uses EWMA statistics to capture the change of rate in

the data, hence, it should work on most data sets without the requirement of model

training. The objective of BASS is to track the changing rate in the data, and hence,

BASS does not perform as well in tracking fast periodic changes with peak to peak

values close to the threshold levels. It is possible to improve the miss ratio by tuning
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the sensitivity thresholds ρ, but this would also significantly increase the sampling

rate overall. In such applications where the strongly varying periodicity features is

to be traced, it is recommended to use eSense, or if the period is known, periodic (or

nyquist) sampling would give a better miss ratio when compare to both eSense and

BASS.
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Figure 4.18: The results of the eSense algorithm using the same and different training
data from the testing data.

BASS shows especially good results in sediment concentration data in compare to

eSense, which verifies the limitation of eSense’s prediction model and data feature.

On the whole, BASS gives satisfactory results on the four data sets on the detection

of both relative and absolute thresholds. Moreover, it has the advantage that very

little prior knowledge of the data is required and it works on data with different

characteristics.
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Chapter 5

Topology Measurement and
Control

Nomenclature used for Topology Control in Chapter 5, 6, 7 and 8.

symbol description equation page no.

η or η4 subgraph number

d dimension of Region – 140

δ normalised density

G the Graph G = (N,E) produced by all the

nodes N and edges E.

G′ an arbitrary subgraph of G

G = (n,E) Graph G contains node set n and edge set

E

k node degree – 139

l length of the region – 140

n number of nodes 140

r transmission range – 139

rc critical transmission range 5.4.1 140

R Region

Network topology is the study of the arrangement or mapping of the elements

(links, nodes, etc.) of a network, especially the physical and logical interconnection

between nodes. A node in a network will have one or more links to one or more nodes

in the network. The mapping of these links onto a graph results in a geometrical

140
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Notation Intuition Definition
f(n) = O(g(n)) f is asymptotically up-

per bounded by g (up
to constant factor)

∃(C > 0), n0 : ∀(n > n0) |f(n)| ≤
|Cg(n)|

f(n) = Ω(g(n)) f is asymptotically
lower bounded by g (up
to constant factor)

∃(C > 0), n0 : ∀(n > n0) |Cg(n)| ≤
|f(n)|

f(n) = θ(g(n)) f is bounded tightly by
g asymptotically

∃(C,C ′ > 0), n0 : ∀(n >
n0) |f(n)| < |Cg(n)| < |C ′g(n)|

f(n) = o(g(n)) f is dominated by g
asymptotically

∀(C > 0),∃n0 : ∀(n > n0) |f(n)| <
|cG(n)|

f(n) = ω(g(n)) f dominates g asymp-
totically

∀(C > 0),∃n0 : ∀(n >
n0) |cG(n)| < |f(n)|

f(n) ∼ g(n) asymptotically equal lim
n→∞

f(n)
g(n)

= 1

Table 5.1: Notation of Computational Complexity used in Part III

shape that determines the physical topology of the network. While the mapping of

the flow of data between the nodes in the network determines the logical topology

of the network.

In a WSN, a node is connected to the other nodes within its radio transmission

range. In general, a WSN, or an ad hoc network, would have a meshed network

topology with at least 2 multihop pathways to any node in the network. If one of

the paths fails, the other is still available. However, a mesh network is not always

achievable within a WSN. Other elements like star or linear topology may be found in

part of the network because some of the factors contributing to the resulting topology,

e.g. placement, mobility, geographic constraints, etc. may not be controllable.

Hence, WSNs are mostly irregular networks. Research on topology control (TC)

is introduced to tackle the uncontrollability of the above factors to maintain good

connectivity throughout the network at all time, together with the general require-

ment of power conservation in a wireless sensor network. It is achieved by either

tuning the transmission power of the sensor node, or pruning the logical connection

for data relaying purpose.
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Whilst there are existing TC algorithms that can achieve connectivity in the net-

work, some of them require special hardware to implement, for example, directional

antennas, and position estimate. These equipment are not available in the SECOAS

sensor nodes. We propose Subgraph Topology Control (STC) algorithm that uses

neighbour tables for the calculation of the local connectivity metric, subgraph num-

ber. The metric has provided additional insight into the network compared to node

degree, which is used by our compared k-Neighbours algorithm. STC provides better

result in terms of the overall connectivity and minimum node degree as compared to

the k-Neighbours algorithm, which indicates that the networks formed by STC has a

more robust structure. STC is an iterative algorithm, which makes it a very scalable

solution.

In this part of the thesis, we investigate TC and report on the design (Chapter

6) and evaluation (Chapter 7) of Subgraph Topology Control (STC) algorithm, and

STC’s adaptivity in dynamic environment(Chapter 8). This Chapter focuses on the

background of topology control including literature research and discussion on the

motivation and classification of TC.

5.1 Motivations

The major requirement of topology control in WSN is to maintain connectivity in

the network. Once the connectivity is ensured, the second goal is usually to reduce

the radio transmission power of individual nodes for 2 reasons. The first aim is to

reduce the power used for transmitting packets. The second one is to reduce the

node degree in the neighbourhood. A sparse network is desirable because it can

enhance the performance of the MAC protocol. If a CSMA type scheme is used, low

network degree means less probability of contention. If a TDMA scheme is used,

slot assignment is easier with fewer nodes and there is less chance of congestion.

Moreover, routing is simpler in a sparse network than a dense network because there
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Figure 5.1: A generated example network for the discussion of network irregularity

are less routes to consider.

In addition to these TC specific goal, the common goal to WSN algorithms ap-

plies, which includes self-organisation, energy efficiency and adaptivity.

Most existing TC algorithms only have connectivity as their goal. However, we

argue that connectivity on its own is not adequate for measuring the health of an ad

hoc sensor network. This is obvious in a lot of other wired and wireless networks, as

redundancy is always provided to combat node and link failure. Hence, in our work

we aim to find a metric that can also represent local network redundancy.

One characteristic of WSN is that nodes are only connected to the geographical

neighbours. All we can control, once the network is deployed, is the radio range of the

nodes. In general the number of nodes we can communicate with increases with the

transmission range, thus, more redundancy is provided because additional routes to

the destination are available. Topology control is a research in optimising this radio

range, so as to ensure connectivity and provide a certain amount of redundancy,

while minimising power usage and resulting node degree.

In an example shown in Figure 5.1, although the network is connected, node 7

and 8, which are connected to 2 separate clusters, are linked by only 1 edge. The

removal of this edge would separate the two clusters of nodes. Both node 7 and 8
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has node degree of 4 and has redundancy in their own clusters and it is not easy to

determine the weakness locally. When visualising the entire network it is easy to pick

up weaker locations of the network, however, is it possible for a node to look around

its neighbour and conclude the above observation in a distributed environment?

This brings out 2 questions, how to measure redundancy in an ad hoc environment

effectively and how to achieve it in a distributed manner. Our thesis aims to find

out the solution to the above problems and design a topological control algorithm to

generate a healthy wireless ad hoc sensor network.

In the SECOAS project the sensing modules are located in the bottom of the sea,

and the radio transceivers are floated above the sea level. The radio signal is affected

by sea conditions. In stormy weather the communication between nodes can be very

unreliable. Moreover, the nodes can drift on the seabed. Hence, a topology control

algorithm is required to maintain communications in the network

The SECOAS radio modules are equipped with 8-bit microprocessors, radio chips

and sensor modules connecting the measuring sensors to the nodes. There is no

physical means of knowing the location of the nodes nor the directional information

of the neighbours. This has limited us to use some of the competitive TC algorithms

including CBTC and LMST. Moreover, we have also limited a node to communicate

with neighbours no more than 2-hop away for scalability purpose. If the algorithm

requires the nodes to use information from neighbours that are many hops away, it

will take a long time for the network to reach stability and the network would not

be able to react to a fast changing environment.

There is a tradeoff between resources and performance and hence, we expect a

localised TC would produce sub-optimal result compare to an algorithm that uses

global knowledge of the network. We aim to improve our results over the existing

algorithm with the same objective. The keys of our algorithm development is to find

a representative metric to measure local redundancy and utilise this to generate our
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Figure 5.2: Classification and examples of topology control algorithms

global objective of connectivity and power conservation in the network.

5.2 Classification/ Taxonomy

Figure 5.2 is a summary of the classification of TC. Some TC base their research

on the construction of a backbone such as connected dominant set (CDS) [BCar] for

efficient communication. Some researches divide the whole network into communi-

cation clusters for management and energy conservation [PHC+03]. In our scenario

we consider the network has no obvious hierarchy.

The hierarchical and non-hierarchical structures that form our upper categories of

TC algorithms are shown in Figure 5.2. We further classify the non-hierarchical cat-

egory into physical or logical topology controls based on their optimisation objective.

In general physical topology control determines the optimal transmission ranges of

nodes, while logical topology control determines the optimal neighbour sets of nodes.

We can view logical TC as ‘pruning’ a communication graph to remove redundant

edges on the graph. The major contribution of a physical TC is to generate a reliable

underlying structure for connectivity, while a logical TC focuses on a generating a

sparse graph, which can simplify the process of routes finding. Physical TC is also

known as the range assignment problem, which will be discussed in Chapter 6.

Looking from the algorithmic approaches, a major difference in the various work
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Figure 5.3: Topology control in relation to other communication layers

on TC is the assumption and objective of the algorithms. Some TC research assumes

that the maximum graph1 of the network is connected and that the algorithm op-

timises the maximum graphs while preserving connectivity. Another group of work

does not assume connectivity, but the algorithm aims at generating a networks that

is connected with high probability (w.h.p.). Both methodologies have their merits in

different sensor network applications. We use the second scenario and do not assume

maximum graph connectivity but work on generating a network that is connected

w.h.p.

In the networking protocol, TC sits between the MAC layer and the upper level

networking protocols as depicted in figure 5.3. A physical TC provides extra reliabil-

ity in the link layer connectivity, while a logical TC prepares the network for routing

and broadcasting optimisation in the networking layer.

5.3 Challenges

Although TC in an ad hoc sensor network would improve the overall performance of

the network, there are a number of factors that make the design and implementation

of the algorithm difficult.

• The control parameter

The major challenge of TC is finding the right measurable parameter for the

1A maximum graph is formed by all nodes transmitting at maximum power.



147

algorithm. However, in the SECOAS project some parameters such as location,

angle of arrival, etc. are not available in the sensor nodes. Moreover, we cannot

use information that requires global knowledge of the network such as path

length, hop count to the basestation, etc.

• Hardware limitation of the radio module

This is a practical consideration as to how much we can control the radio

module in a sensor node. In some radio modules the transmission power is not

a tunable parameter, while in others there are only a couple of transmission

level settings so it is difficult for a TC algorithm to make a significant difference

on the connectivity and energy performance. However, in our simulation we

adopt a radio module that has 31 levels of transmission power from -20dBm to

10dBm. This has given us a chance to develop our TC algorithm.

• Overheads

The cost of a distributed TC algorithm includes the processing power required

and the message exchange overheads between neighbours. Hence, we aim to

develop a simple TC algorithm that gives good results rather than a very

complicated one that gives the best results. Moreover, a simple algorithm can

be easily implemented on an MCP board with less processing and memory

requirement and this is a very important factor to a WSN.

• Adaptability

TC is required to operate in different geographical terrains and environments.

A lot of TC algorithms have only been tested in a 2D symmetric space, however,

Real environments are most likely to be not symmetric and can be 1D, 2D or

3D.

Moreover, TC needs to adapt to node mobility, environmental changes and

even terrain changes. The deployment area can be the ocean, in which nodes
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may be drifted or washed away by the waves and tides. TC is required to

recognise these changes and react correspondingly to maintain connectivity.

5.4 Review on the Existing Topology Control Al-

gorithms and Methodology

In the last Chapter the requirements for our TC algorithm was discussed. It needs

to preserve network connectivity, be operable on a simple micro-controller and radio

transceiver, and adaptive to a changing environment. In this chapter, we review the

existing TC algorithms and discuss their suitability for the SECOAS project.

We start with some background literature related to the TC problem. Firstly we

introduce the concept of critical transmission range, then move onto the theoretical

background of k (node degree) for connectivity. We then look at the generation of

some interesting proximity graphs related to the CBTC algorithm.

In this section we evaluate the existing TC algorithms based on its control pa-

rameter and control logistic. The control parameter is the heart of a TC algorithm

as it defines how accurately a node can measure the local connectivity, which in turn

triggers the control activities. We also discuss the suitability of the algorithms in the

SECOAS project environment.

Unless stated otherwise, this Chapter uses the following mathematical notations

5.4.1 Critical Transmitting Range

A simplified case of physical TC is a study of Critical Transmitting Range (CTR).

CTR is a type of homogenous range assignment where every node in the network

transmits with the same range r to achieve connectivity. CTR also represents the

longest edge in a minimum spanning tree. Given a connected, undirected graph,

a spanning tree of that graph is a subgraph which is a tree and connects all the

vertices together. A minimum spanning tree (MST) or minimum weight spanning
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tree is then a spanning tree with weight less than or equal to the weight of every

other spanning tree. In a WSN node density varies in places due to irregular node

placement and it is necessary to find the minimum transmission range that generates

a connected network taken this randomness into consideration. We have taken the

theory of CTR and introduce the concept of normalised density, which takes care of

the relationship between CTR, density of nodes and the size of the world. This will

help us to understand the local redundancy problem in the later part of this thesis.

The problem of CTR for connectivity as a study based on probability is stated

as: Suppose n nodes are placed in a certain region R = [0, l]d, with d = 1,2, or 3.

Which is the minimum value of r such that the r-homogeneous range assignment is

connecting? [San].

CTR has also been studied in other more complicated contexts including mobility

[San], k-connectivity [WY04] and connectivity with Bernoulli Nodes [San05a]. How-

ever, we only study the fundamental theory, CTR in Sparse and Dense Network, in

the SECOAS context and use it as a step to understand the baseline of TC algorithm.

Dense Networks

This was the first CTR problem studied. CTR is deduced in a define space [0, l]2

with n→∞ and has led to the following result by Penrose.

Theorem 5.4.1. [Pen97]
Assume n points are distributed randomly with uniform distribution in the unit

square [0, 1]2, and let Mn be the random variable denoting the length of the longest
MST edge built on the n nodes. Then

lim
n→∞

P [nπ(Mn)2 − log n ≤ β] =
1

exp(e−β)
(5.4.1)

for any β ∈ <

Based on this theorem and its derivatives, we can deduce the theoretical values

of rc in different dimensions.

In 1-D space, rc = logn
n
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Figure 5.4: A plot of the theoretical critical transmission range against number of
node in a sparse network based on the derivative value of Theorem 5.4.1

In 2-D space, rc =
√

logn+f(n)
nπ

In 3-D space, rc = 3

√
logn−loglogn

nπ
+ 3

2
1.41+g(n)

nπ

We plotted the above relation in Matlab in figure 5.4 for different n. It is observed

that CTR is Θ( d

√
log n

n
), (refer to Table 5 for computational complexity) which means

that CTR generally decreases with the number of nodes n but with a much slower

rate as n increases. We can also see that the CTR for 1D network is much greater

than 2D and 3D network for any value of n. This is due to the giant component

phenomenon.2

Sparse Networks

The above theorem only works on a dense network on n → ∞, however, this is

not the case for most ad hoc wireless sensor network. Hence, Santi et al. proposed

2Giant component is a network theory term referring to a connected subgraph that contains a
majority of the entire graph’s nodes. Percolation theory is based on adding nodes and connections
to an empty graph until a giant component surfaces. [Pen99]
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to investigate the CTR problem in a sparse network by using l as an independent

variable and looked for the asymptotic values of r and n for connectivity w.h.p. as

l→∞.

Proposition 5.4.2. [San05a]
If R = [0, l]d, with d = 2,3, and n nodes are distributed uniformly at random in

R, the CTR for connectivity is

rc =
d

√
k
ldlogl

n
(5.4.2)

where k is a constant with 0 ≤ k ≤ 2dd
d
2
+1

Details of the proof can be found in [San05a]. Similar to the result obtained for

dense network, rc grows in the order of d
√
ld log l as l→∞.

Normalised Length and Critical Density

To help us explain k-Neighbours and the density-based metric Subgraph Number

used in our TC algorithm, we have introduce the concept of normalised length and

critical density in this section. The equation of critical density is derived from

proposition 5.4.2.

Theorem 5.4.1 shows us the CTR for a dense network as n→∞ and proposition

5.4.2 shows us the relation of rc, l and n as l → ∞ in a sparse network. These

two equations are not dissimilar. As n → ∞, or l → ∞, the boundary effect on

the network becomes minimal. Another observation is that in both cases, the size

of the world [0, l]d in relation to the transmission range r becomes infinity, which is

also necessary for the derivatives of asymptotic values when boundary effect can be

ignored.

Hence, we say that the size of the world [0, l]d is a relative concept and should

always be considered in conjunction with the transmission range of the radio. Hence,

we introduce normalised length ln = l/r and modify proposition 5.4.2 to obtain the

following asymptotic results for a sparse network.
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Proposition 5.4.3. Assume n nodes, each with transmitting range r, are placed
uniformly at random in [0, l]d, with d = 2, 3 and assume that

rdn = kldlog(l/r), (5.4.3)

for some constant k > 0. If k > d2ddd/2, the resulting communication graph is
asymptotically almost surely (a.a.s.) connected.

The proof is similar to the one given in [San05b]. Rearranging the equation 5.4.3,

we get

If R = [0, l]d, with d = 2, 3, and n nodes are distributed uniformly at random in

R, critical density for connectivity is,

δc =
n

ln
d

= klogln (5.4.4)

where k is a constant with k < d2ddd/2 and ln = l/r, is the normalised length.

We see that the critical density for connectivity δc = n/(ln)d is in the order of

log ln based on the theoretical results. Since l can be represented in the order of r and

l = k̂ ∗ r, klogln is reduced to δ̂c > d2ddd/2 ∗ logk̂ >> 1, which means that it would

take a lot more than one node per unit coverage to achieve connectivity. This is of

course due to the probabilistic nature of the calculation. In reality if we have some

control over the position of the sensor nodes, the required density for connectivity

should be a lot less.

5.4.2 k for connectivity

Node degree k, the number of edges incident to the vertex (a graph theory reference),

is used in a number of topology control literature [BLRS03][BLRS06] due to its sim-

plicity. The metric can be easily obtained by each node recording the number of

1-hop neighbours within its receiving range in a fully distributed manner. As k is a

density-based metric and its information requirement is similar to our proposed con-

trol parameter Subgraph Number, we put more emphasis in discussing its theoretical
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background in this section. k-Neighbours, which uses k as the control parameter, is

used as a comparison to the performance of STC in section 7.4.

A k-Neighbours graph is a type of proximity graph introduced in the theory

of computational geometry which is based on the proximity relationships between

nodes. They are called proximity graphs because the set of links incident in any

node u of the computed graph can be calculated on the basis of the position of the

neighbour nodes. Thus, proximity graphs can be constructed in a fully distributed

and localised way.

k-Neighbours, introduced by Santi et.al., is one of the first algorithms to use k

as the control parameter in topology control [BLRS03]. k-Neighbours is intended to

develop an interference bounded TC algorithm using k. Their goal is to generate a

graph Gk such that Gk is strongly connected with high probability (w.h.p.).

We can deduce the theoretical minimum k by using the equation of critical density

as in eqn.5.4.4 as follow.

Providing the radio transmission range r is a symmetric line (1D), circle (2D) or

sphere (3D), the number of neighbours required for connectivity is,

• 1D space,

kc = 2× n

l/r
= 2klogln (5.4.5)

• 2D space,

kc = π × n

(l/r)2
= πklogln (5.4.6)

• 3D space,

kc =
4

3
π × n

(l/r)3
=

4

3
πklogln. (5.4.7)

The above equation gives us the critical k for connectivity dependent on ln. On

the other hand, Xue and Kumar [XK04] has developed another set of results for k

for connectivity in terms of n. They have also found the explicit values for c1 and c2
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to be c1 = 0.074 and c2 > 5.1774 [XK04]. Since k=Θ(logn) = o(n), its asymptotic

value for n→∞ is independent on n, and thus, k is interference bounded regardless

of the number of nodes. Hence, the theoretical optimal k value for n = 100 is

0.34 < k < 23.8. Recently, the upper bound of c2 has been improved to βe log n.

[WY04].

Santi et. al. has further evaluated the value of k by simulations [BLRS03]. They

found that k = 9 produces a symmetric graph which is connected with probability

at least 0.95 for values of n in the range 50-500. If the requirement relaxes to only

95% of the nodes are connected in the largest component in the graph, then k = 6

is sufficient due to the giant component phenomenon.

They also found that the preferred value of k is determined only by the number

of nodes n in the network and not by the size of the region [0, l]2 in which the nodes

are deployed. This is consistent with the calculations in Section 5.4.1. In fact, as

(n, l)→∞, k should be independent of both n and l as the critical density, as defined

in Section 5.4.1, becomes asymptotically independent of n and l, k = Θ(Clogn) or

k = Θ(Clogl), as the network grows. As a result, using k as the parameter can

generate an interference bounded topology connected w.h.p.

Node degree k represents local normalised density and indicates where the net-

work is more or less dense. By keeping k as a constant the variation of node density

is compensated by the change of the transmission range. However, the optimal value

of k is not necessarily the same for different dimensional networks (1D, 2D or 3D).

We have performed a simple k-Neighbours simulation looking at the requirement of

k for connectivity against different network shapes, keeping the size and density of

the simulated environment constant. The relationship between k and the fraction of

connected networks is plotted in Figure 5.5. With the same value of k, the fraction

of connected networks is less for 1D than 2D or 3D networks. Hence, the require-

ment of k for connectivity w.h.p. is higher for 1D networks. This is because of the



155

-


Area symmetricity and k-neighbour requirement


F

r
a


c
t

i
o


n
 

c
o


n
n

e
c


t
e

d


Target k


Figure 5.5: Relation of percentage of connected topology G−
k and different value of

k. Each data point is the average result of 100 simulations

giant component phenomenon in 2D and 3D networks. Therefore, for networks with

irregular terrain the preferred value of k should vary accordingly.

5.4.3 Existing Topology Control Algorithms

In this section we evaluate several popular TC algorithms by their control parameters

and the performance of the algorithms in terms of preserving network connectivity

and their suitability in deploying in the SECOAS project. Out of the several ap-

proaches for topology control, we place emphasis on evaluating k-Neighbours as it

does not utilise special hardware and has similar implementation requirements as

our proposed algorithm. k-Neighbours is used as a performance benchmark to our

algorithm in Section 7.4.

Physical TC can also be seen as a range assignment problem to find out the min-

imum power cost in the network to maintain network connectivity. Mathematically,

we consider a set of n points in a d-dimensional region denoting the node positions
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with transmission powers u. The problem is to determine a connecting range as-

signment (RA) of minimum energy cost, such that
∑

(RA(u))α is minimum. The

algorithm should be distributed. Hence, each node would have to make local decision

not knowing the current network state.

Cone-Based Topology Control (CBTC) [LHB+05] is based on an angular sepa-

ration parameter α, and distance estimate between the nodes and the neighbour.

The fundamental concept of CBTC is that, a node u tries to find the minimum

power pu,α such that transmitting with pu,α ensures that in every cone of degree α

around u, there is some node that u can reach with power pu,α. It was proven in

[LHB+05] that if α ≤ 5π/6 then connectivity is preserved. CBTC also has an opti-

misation stage (logical TC) to identify energy inefficient stages. CBTC guarantees

connectivity provided that the network is connected when all nodes are transmitting

with their maximum power. However, the major problem of implementing CBTC is

the requirement for directional information, which may not be available in common

sensor nodes.

XTC [WZ04] is a logical TC that aims at generating a graph optimised for routing.

It uses a general control parameter “link quality” of neighbours, which can be signal

attenuation, Euclidean distance or packet arrival rate to evaluate the quality of a

neighbour connection. The operation of XTC starts with neighbours ordering by

their link quality. The ordering is then broadcasted to all the neighbours so all

nodes will have a copy of this information about their neighbours. Then every node

chooses their edges according to this local information. XTC is a simple algorithm

that preserves the connectivity of the original graph and does not require special

hardware. However, it is a logical TC algorithm and has different objective to our

proposed algorithm.

Local Minimum Spanning Tree (LMST) designed by Li et al [LHS05] is another

logical TC that chooses energy efficient edges in the final communication topology.
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The concept is similar to finding the minimum spanning tree (MST) for a graph,

except that the trees are constructed locally using direct neighbours within a node’s

maximum transmission range R. It was found that a topology constructed using

LMST has a maximum degree of six and network connectivity is preserved [LHS05].

However, its major disadvantage is the requirement for location information. Al-

though the author proposes that the location requirement can be substituted by

nodes estimating the distance to all the visible nodes and then exchanging the list,

this solution involves a lot more overheads and is less scalable. Moreover, a tree-like

structure is not desirable in WSN as it increases the network diameter (the maximum

of the shortest path between any two nodes) and is vulnerable to a single point of

network failure.

The k-Neighbours protocol [BLRS03] is based on the control parameter, node

degree k as discussed in section 5.4.2, with the additional distance information es-

timated by radio signal strength or time of arrival. k-Neighbours is a physical TC

algorithm for generating networks connected with high probability (w.h.p.). The ba-

sic algorithm requires initially that every node broadcasts its ID at maximum power.

Upon receiving broadcast messages from other nodes, every node keeps track of its

neighbours and estimates the distance associated with them. The nodes then com-

putes its k-closest neighbours and these becomes their k-Neighbours list. The nodes

exchanges their neighbour lists at maximum power and hence, each nodes would

know the symmetric neighbours in the neighbourhood. Unsymmetrical neighbours

are deleted. k-Neighbours has also proposed a logical optimisation stage to remove

energy inefficient edges. Simulation results show that k = 9 is required for 95%

connectivity [BLRS03] for 50− 500 number of nodes.

k-Neighbours is a simple algorithm that does not require special hardware but

does not guarantee connectivity. It is also degree-bounded by k. The number of

messages exchanged in each update is exactly 2n, where n is the number of nodes.
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However, the initialisation and update of k-Neighbours involve all the nodes broad-

cast at maximum power, which can cause serious contention problem if CSMA is

used for medium access.

5.5 Chapter Summery

In this Chapter, we reviewed the background of topology control (TC). TC is a

distributed way of controlling the network topology using local knowledge of the

nodes to preserve network connectivity, minimise average node degree and conserve

power.

In general physical TC algorithms determine the optimal transmission range of

nodes, while logical TC algorithms determine the optimal neighbour sets of nodes.

We consider mainly physical TC solutions in the SECOAS project. The control

parameters are used by TC algorithms to evaluate local connectivity and may require

the sensor nodes to equip with special hardware for the information.

Critical transmission range is the minimum homogenous range in the network to

achieve connectivity. We argued that the transmission range, number of nodes and

network size were all related factors in a WSN and introduced the concept of critical

density for connectivity, which is also related to k (node degree) for connectivity,

that k-Neighbours is based on, and subgraph number η in our proposed algorithm, .

We reviewed and evaluated several TC algorithms. In the SECOAS project,

the sensor nodes are not equipped with location or directional information. Hence,

CBTC and LMST are not suitable for the network. XTC is a second stage logical TC

algorithm that should be implemented on an optimised physical topology especially in

a dense network because of the communication overheads and memory requirement.

k-Neighbours is a simple algorithm, that only uses neighbour information (neighbour

ID) and distance estimate. However, a topology generated by k-Neighbours does not

guarantee connectivity. Moreover, k-Neighbours has different optimal k for different
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dimensional networks. We aim to develop a topology that utilises similar information

to the k-Neighbours algorithm but has a better performance in term of connectivity

and can be used on different dimensional network. We have developed Subgraph

Toplogy Control (STC) based on the above requirement, which will be discussed in

the following chapters. The performance of STC against k-Neighbours is included in

Chapter 7.



Chapter 6

Subgraph Topology Control
Algorithm

In the last chapter, we evaluated different topology control algorithms and found that

some of them require information including location and direction that may not be

available in sensor nodes due to hardware restraints. k-Neighbours uses the simplest

form of information, which is node ID and the operation is simple. However, k-

Neighbours does not guarantee connectivity and its performance degrade with higher

node density.

In the light of this, we propose a neighbour-based algorithm that utilises ba-

sic node IDs for the control parameter, but has improved performance over the

k-Neighbours protocol.

This Chapter begins with an introduction to subgraphs in the local neighbour-

hood. We propose a new control parameter Subgraph Number, which uses 2-hops

neighbouring information, and can give more width (see explanation in Section 6.1)

to our local views than node degree k. Subgraph Topology Control (STC) is then

introduced in full detail. We demonstrate the Subgraph Number is a better metric

for measuring local connectivity, thus, STC has an improved performance compared

to the k-Neighbours protocol. Details of the performance comparison will be shown

in Chapter 7.

160
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The control parameter is very important to a TC algorithm. It measures the sta-

tus of local connectivity and trigger topology control actions. The control parameter

should have a direct relationship with the global objective. Since individual nodes

only measure their own parameters and exchange this information with their direct

neighbours and adjust their transmission range correspondingly, they have a limited

view on global connectivity. The nodes need to coordinate with each other and be

self-organised.

Most existing algorithms have connectivity as their goal and their control param-

eters do not measure redundancy and reliability. Hence, in this section, we introduce

a new parameter called Subgraph Number, which is developed to represent local

network redundancy. The metric is formed by 2 hops neighbours information and

hence, it provides extra insight into the network as compare to node degree used

by our competitive algorithm k-neighbours. We analyse its suitability for topology

control at the end of the section. We then introduce the Subgraph Topology Control

(STC) and describe its approach to tackle the TC problem.

6.1 Subgraph Number

In graph theory, k, the node degree, is one of the parameter that has been examined

often to help our understanding of the nature of the graph. k can be seen as a

summary of the 1-hop neighbourhood. We look for an alternative parameter to k

that can be calculated locally and would give us more information about the local

neighbourhood.

The clustering coefficient (CC) γ, a parameter that can measure local redundancy

was studied at first. However, it is not suitable because it is a relative metric. It is

the number of neighbour connections in relation to the maximum allowed neighbour

links. When a node has small node degree, CC can give a false impression that it is

very well connected while the truth is that a group of nodes have formed an island
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Figure 6.1: Subgraphs 1-4 formed by 1 and 2 hops neighbours. The white circles
are the originating node u and the black circles represent 1 and 2 hops neighbours
vi & wi. SG1 represents a branch that terminates at node vi; SG2 is an angular
subgraph extending to the outside world other than the immediate neighbourhood;
SG3 is a triad where the immediate neighbours are connected to each other; SG4
is a quadrilateral and the second order neighbours are connected to each other. All
other subgraph formed by 1 and 2 hops neighbours are a combination or breakdown
of SG1-4.

that is isolated from the rest of the graph. Moreover, whilst CC represents link

redundancy in the neighbourhood, it is not directly related to transmission power,

that most 2-dimensional GRG has an intrinsic γ value of 0.75. Hence, we cannot use

CC to represent connectivity or redundancy and a new metric is required.

The use of subgraph to examine the nature of a graph has been used in literature,

such as using cycle probability of various length in analysing the structure of neuro-

networks in [EG01] and [STE00]; significant subgraphs of length 3 have also been

used to analyse network structures in [MIK+04]. Subgraphs formed by nodes that

are within 2 hops away can easily be measured locally. We consider the properties

of 2-hops subgraphs that give us extra information beyond that of k.

We observe that by exchanging neighbouring table with the immediate neigh-

bours, a node u can also obtain a list of its 2-hop neighbours. This extra width of

knowledge that can be obtained at very little extra cost, should provide us a more

accurate view on the connectivity status within the network than k. The subgraph

formed by 1 and 2 hops neighbours (η1 to η4) are shown in figure 6.1.

We explore the idea of using the number of subgraph η formed by the links

between nodes in the neighbourhood to measure the connectivity of the network.

The white node in figure 6.1 is the node u that is counting the subgraphs in the

neighbourhood. Note that when we are counting η1, we do not include the link in η2,
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Figure 6.2: An example of subgraphs counting from node A. η1 = 1 (AB), η2 = 1
(AGH), η3 = 3 (ACD, ACE, ADE), η4 = 1 (AGFE)

Figure 6.3: A linear network of counting subgraphs with R = 5

which extends further into the network. Hence, η1 is k minus all the neighbours that

are connected to each other. Similarly, η3 only includes all the 2 hops nodes that are

not 1-hop and are not already counted in the forming η4. η4 also does not include

any quadrilaterals formed by 1-hop nodes. Figure 6.2 is an example of subgraph

counting. Note that link AG does not count as a η1, and quad ACDE does not count

as η4.

We have chosen to use η4 as the control parameter in our TC algorithm. The

extended information obtained by 2 hops neighbours gives us a more accurate view

of the network connectivity in the neighbourhood than the 1 hop parameters η1 and

η3. Moreover, the number of η4 reflects the amount of redundancy in 2 hops, or

the number of 2 hops alternative links to the same neighbour. η4 is a density based

metric, which can reflect the local node density of the network. Its characteristic will

be shown in Section 6.1.2.
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1-hop 2-hop η4

2 7 4
3 7,8 4+3
4 7,8,9 4+3+2
5 7,8,9,10 4+3+2+1
6 7,8,9,10,11 4+3+2+1+0

Table 6.1: Neighbour table for node u

6.1.1 Theoretical Results of 1-D network

η4 is obtained by node u exchanging neighbour tables with immediate neighbours

N = {v1, v2, ....vn}. The subgraphs formed by 1 and 2 hops neighbours are illustrated

in figure 6.1 and η1−4 is the number of SG 1-4

We use a linear uniform network to derive the theoretical result of η4. Figure

6.3 shows the neighbours of node u on one side with R = 5. Table 6.1 depicts

the neighbouring relationship for node 1. Node 1 has Γ(1) = {2, 3, 4, 5, 6} 1-hop

neighbours and its 2-hop neighbours that do not belong to 1-hop members are node

{7,8,9,10,11}. From node 2, node 7 is also connected to 4 other 1-hop nodes (3,4,5)

and hence, η4(1 − 2 − 7) is 4. From node 3, node 8 is connected to 3 other 1-hop

nodes and η4(1− 3− 8) is 3 and so on. We can fill in all the η4 for all the 1 to 2 hop

routes. Note that after we have counted all the η4 for each route, each SG4 has been

considered twice in the table and the final sum needs to be divided by 2 (however,

this graph only shows one side of the linear network). We can derive an expression

η4 for node u in relation to range R,
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η4 =
R−1∑
k=0

k +
R−1∑
k=1

k +
R−1∑
k=2

k + .......
R−1∑

k=R−1

k

=
R∑

r=1

R−1∑
k=R−r

k

=
R∑

r=1

(R− r +R− 1) · (R− 1−R + r + 1)

2

η4 =
1

3
(R3 −R) . (6.1.1)

Equation 6.1.1 shows the relation of η4 in relation to transmission range. We

can see that in the 1-dimensional case, η4 is a degree 3 polynomial of R. Hence, the

number η4 rapidly increases as the transmission range increases.

The above assumes that node density of the network is 1. Hence, there is 1 node

in 1 unit range (R nodes in range R). Similar to k, η4 is also a density based metric.

It is dependent on the normalised density, largely defined by the number of nodes

and the transmission range of the network. Hence, the theoretical result for critical

density derived in section 5.4.1 also applies to η4 with the relationship of range in

equation 6.1.1.

6.1.2 Simulated characteristics of Subgraph η4

We examine the behaviour of η4 with increasing transmission range R. In order to

compare the results from 1D, 2D and 3D network we plot the number η4 against

normalised density δ = n
(l/r)d . Figure 6.4 shows the results of the experiments. We

vary the radio transmission range from 0 to 150 units, keeping the number of nodes

and size of the space the same. We observed that when normalised node density

δ is less than 55, η4 rapidly increases. The results deviate at high δ as boundary

conditions become predominant. Note that η4 decreases to zero when a graph is

fully-connected. Hence, beyond the point of δ = 55 (60 and 65 for the case of 2D

and 3D), η4 decreases quickly to zero.
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Figure 6.4: Characteristics of η4 with increasing range. No. of nodes = 100 and size
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Figure 6.5: Comparison of experimental 1-D η4 with increasing range and theoretical
result derived in eq. 6.1.1. Each point is the mean of 100 simulations

Figure 6.5 is a comparison of the experimental η4 against the theoretical result

derived in eq. 6.1.1 with varying range from 0 to 50. At low δ, η4 for 1D network fol-

lows the theoretical result shown in black dotted line closely. The deviation becomes

greater as R increases and the boundary effect becomes more obvious. Boundary

effect is only observed in simulation by varying the size of the world or radio range.

When the radio range is large, comparatively the simulated environment becomes
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Figure 6.6: Characteristics of (a) η4, (b) Connectivity with increasing number of
nodes. Transmission range is 50 for 1D, 160 for 2D, and 230 units for 3D. The size
of the world is [0, 500]d. Each point is the mean of 100 simulations

small. The asymmetry of the boundary nodes then becomes dominant among all the

nodes.

Node density is the varying factor in Figure 6.6(a). The boundary condition does

not change throughout the experiment and η increases with n and therefore, δ. η4

for 2D and 3D graphs are considerably higher than the 1D graph, which is observed

in Figure 6.6(b). We can see that the required η4 for connectivity for a 1D graph is a

lot higher than 2D and 3D graphs. This is due to the giant component phenomenon

(see Section 5.4.1). Hence, in the case of 2D and 3D graphs the nodes quickly form

an entity containing most of the nodes and this boosts the η4 number.

We investigate k, node degree, which is used in the k-neighbours algorithm. k

in Figure 6.7 increases linearly with relative density and is bounded by the size of

the network. Thus, the boundary effect will stabilise k at high δ, while η4 decreases

when the boundary effect becomes dominant. If the graph is of infinite size, k would

just increase linearly with δ.
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Figure 6.7: Degree and normalised density for a 2D network with increasing range.
Network dimension = [0, 100]2. Number of nodes in the network is 100.
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Figure 6.8: Island Phenomenon. Topology generated by k-Neighbours k = 6. We
can see that node 4 and 41 are in separate clusters. They consider themselves “well
connected” and do not extend their radio range to connect to each other, as only the
closest 6 neighbours are considered.

6.1.3 Suitability for Topology Control

Subgraph number η4 is calculated using the neighbour tables obtained from nodes’

1-hop neighbour. It is simple and is derived in a distributed manner. It is a second

order metric that contains information of the connectivity 2 hops away.

η4 and k both measure the relative density in the network in terms of range
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Parameter Degree k Direction Distance Location SC

Source Neighbour
table

Angular
informa-
tion

Signal
Strength

Location Neighbour
table

Info.
reach

1-hop 1-hop 1-hop 1-hop 2-hop

Info. of
individual
neigh

No Yes Yes Yes No

Table 6.2: Comparison on the parameters

and node density at the local neighbourhood. Their information only extends to

1-hop for k and 2-hops for η4 neighbourhood. In a specific case where a highly

clustered group of nodes are positioned next to a very sparse area, these nodes

may consider themselves to be well-connected while they are separated from the

rest of the network. We call this the Island phenomenon. Figure 6.8 illustrates an

example of this. Although we cannot prevent island phenomenon with η4, as a second

order metric, η4 stretches further into the network and should show an improvement

towards the overall connectivity compare with k.

CBTC, LMST and XTC do not have this problem as they assume the original

maximum graph is connected and optimised from this graph. It is a fair assumption

to make, although we must note that not all sensor networks are connected at max-

imum graph as the positions of sensor nodes may not be manipulated. Moreover, as

η4 requires only node ID in its calculation, it is suitable to be used as the control

parameter for TC in the SECOAS project.

The number η4 rises very quickly with the density δ, however, we observe that

in figure 6.6 the requirement of δ for connectivity for 2-D and 3-D network is about

2-3. The characteristic η4 for δ = 3 is about 10-20. Hence, we are looking at a much

lower number η4 to work with in our TC algorithm.
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6.2 Characteristics of the STC Algorithm

Apart from the use of different control parameters, the approaches to the development

of a TC algorithm can be divided into 2 main streams.

• Optimised from the maximum graph

Algorithms including k-Neighbours, XTC and LMST derive their topology from

the maximum graph. They evaluate the ‘best’ connectivity when all nodes are

transmitting at maximum power, and reduce redundancy while maintaining

connectivity. When updating, the process is the same as when topology is first

derived from the maximum graph.

• Iterative approach Either starting from minimum or maximum transmission

power, the algorithms apply changes to the transmission power one step at

a time and evaluate their local connectivity after each change. The process

continue until the network is connected or defined criteria are satisfied. An

example of an iterative TC algorithm is CBTC. Nodes exchange messages to

detect if there are any changes to the local connections, which would violate

the set criteria and initiate local changes, which then spread to further changes

in the network.

We adopt the iterative approach in our TC implementation. Optimising from the

maximum graph can be problematic in a network. A typical transceiver can have

the transmission range of approximately 10m to more than 100m in an open space.

Assume the node density is 1 per 10m2, then each node would have just less than 100

neighbours in sight for a maximum graph. This would cause a lot of congestion and

interference problems for the radio communication. Moreover, each update requires

the construction of a maximum graph, while this method may be simple and incur

little delays as suggested in [San], it is not the most energy efficient way to achieve



171

topology control.

Whilst an iterative approach by definition is likely to take longer to first reach

stability depending on the node density, maintaining the topology requires the node

only to exchange messages with its neighbours until there is a change of state. The

updating of the topology is also localised involving only the nodes within the change.

A TC algorithm that starts with minimum broadcast power is more energy efficient

especially in a high density network.

Subgraph Topology Control (STC) is designed taking reliability into consider-

ation. Each node evaluates the local connectivity and redundancy, adjusting its

radio transmission power to fulfil the global requirement of connectivity, adaptivity,

reliability and energy conservation.

Subgraph number (SN) is used as the control parameter to measure the local con-

nectivity. The characteristics and theoretical results of SN are included in Section

6.1. SN utilises the proportion of local subgraphs to evaluate the amount of redun-

dancy in the neighbourhood. The calculation of SN only requires nodes exchanging

their neighbour tables.

STC is probabilistic and iterative. Some distance estimation technique is required

for a node to match the furthest neighbour’s power, however, overall STC is a very

simple algorithm and requires minimum hardware configuration to operate. It is

a distributed system with individuals making local optimum decisions, hence, it is

scalable and adaptive.

6.3 Basic Algorithm

The concept of Subgraph Topology Control (STC) is very simple. It uses the sub-

graph number η4 to evaluate the connectivity of individual nodes, and then tries

to keep the SN within the thresholds kL ≤ η4 ≤ kH . Each node u calculates η4

based on its own neighbour tables Γu and receives neighbours’ tables Γvi
, where
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Γ = {v1, v2...vn} is the neighbourhood of u.

STC uses an iterative approach with nodes gradually increasing their power to

improve connectivity. Neighbour tables are updated and the process is repeated until

η4 in individual nodes reaches a pre-defined threshold kL (which will be discussed in

chapter 7, or the nodes are transmitting with maximum power.

The transmission power used for topology control in topology control Pt is dif-

ferent from the one used for communication Pc. Pt is higher as a node may want

to discover new neighbours, while Pc is only required to be as high as to reach the

furthest node in the communication list. Pc is used in our cost evaluation of the

algorithms.

The basic transmission of STC uses an update broadcast packet to communicate

with the nodes in communication range. A node would transmit an update broadcast

packet when there are changes to its circumstances, which includes,

1. A node increases or decreases its transmission power,

2. A node notices a change of states, which includes,

• addition and removal of immediate neighbours,

• disconnection or connection to the base station from its neighbours,

• a change of its transmission power.

An update broadcast packet is received by all the nodes in the transmission range,

hence, it is considered to be broadcast. The different types of update broadcast

packets to fulfil the requirement of STC topology control are listed follow.

1. General update broadcast (Type 1)

The purpose of the packet is to inform the neighbours that some of the nodes

states have been changed. Nodes receiving the packet do not require actions

other than to update the information in their neighbour tables, if the sender

node is within their communication range. The packet is ignored otherwise.
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2. Increase power request update broadcast (Type 2)

This packet includes a request to the nodes in range to increase their power to

reach the sender node. In the basic algorithm, nodes which have received the

packet are forced to increase their power such that they can communicate with

the sender node if they are not already a neighbour of the sender node. The

receiver nodes also update the sender’s information in the neighbour table.

3. Decrease power notification update broadcast (Type 3)

This packet informs the existing neighbours that the sender node u is going to

decrease its transmission power in the next round. After u has decreased its

power, it would then send out a Type 1 broadcast to find the neighbours that

are still in range.

Upon receiving the Type 3 packet, node v would remove u from its neighbour

table. This would trigger v to initiate an Type 1 broadcast, which would reach

u. If the v is still in range of u after the power decrease then a link is formed. v

will decide whether u is still a neighbour when it receives the type 1 broadcast

from u after it has decreased its power.

In the basic algorithm, each node tries to maintain kL ≤ η4 ≤ kH . An upper

bound is necessary for the nodes to adjust to the dynamic nature of the system. We

study the effect of kH on the stability of the system in Chapter 7.

Initially nodes that have η4 below the threshold would increase their power and

initiate an increase power request. The receiving nodes will increase their power to

communicate with the sender node, if it is not already within the communication

range. A node will broadcast a Type 1 packet if there is a change to its states. It

will only issue a decrease power notification if its η4 is above the threshold kH .
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Pseudocode:

Initialisation
Γu ← ∅ //1-hop neighbours of u
ηu ← 0 //Subgraph Number of u
Pt = P0 //Available transmission power Pt = {P0, P1, ..., Pmax};
pr //Reply probability
Initialise kL and kH

Iteration
FOR i = 1 to maximum Round
IF (ηu < kL)
Proc UpdateBroadcast(Type 2)
ELSEIF (ηu > kH)
Proc UpdateBroadcast(Type 3)
END

END

Proc UpdateBroadcast(Type a) a = 1, 2, 3:
FOR all v = Neighbour in range
ReceiveUpdateBroadcast(Type a, u, v)

END

Proc ReceiveUpdateBroadcast(Type a):
IF a == 2 //this is an increase power request
p = random number from 0 to 1
IF p < pr

Add u as neighbour, increase power to match if needed.
END

ELSEIF a == 3 //this is a decrease power request
Drop neighbour u

END

Update η
Update Status

IF Change to Γ or status
UpdateBroadcast(Type 1)

END

Table 6.3: pseudocode of STC
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6.4 Chapter Summary

In this chapter, we introduced the Subgraph Number η4 (or η in the following chap-

ters) as the control parameter of our TC algorithm. η is a measure of the 2-hops

redundancy connectivity, the number of quadrilateral a node can see. η is a density

based metric and a degree 3 polynomial of the transmission range. Hence, the num-

ber increases rapidly with the number of neighbours. However, the simulated results

indicate that we are dealing with 0 < η < 200 for the guaranteed whole network

connectivity. When η is used in the Subgraph Topology Control (STC) algorithm,

we are dealing with the range of 1 < η < 10, which will be elaborated in the next

chapter when we look at the performance of STC.

We also discussed the design and characteristics of the STC algorithm. STC is

an iterative algorithm that sensor nodes only increase or decrease one power step

at a time to adjust their connectivity. The algorithm intends to bound η in each

node between kL and kH . An update message is broadcasted if a change occurs in

a node or a neighbour. The metric η used by STC can represent local density and

connectivity. Its iterative and distributed natures result in adaptivity and scalability,

which are the prime requirements in the SECOAS project.



Chapter 7

Performance Evaluation of
Subgraph Topology Control

7.1 Introduction

7.1.1 Simulation Environment

We adopt the parameters from a Chipcon CC1020 804MHz radio in our simulations

with Matlab v7 because of its wide range of transmission power. The programmable

transmission power is P = -20 to 10dBm inclusively with an incremental step of δp =

1dBm. We use a log-distance path model Pr(d) ∝ Pt

dα to estimate the transmission

range to be 3m to 100m with an α value of 2 representing outdoor space and receiver

sensitivity of -110dBm. The increments of the range is not linear.

We adopted a Unit-Disk Graph model in a symmetric 2-dimensional area in the

experiment unless stated otherwise. The dimension of the simulation environment is

[100, 100] metres.

The assumptions are,

• symmetric environment, in the basic simulation, the dimension of the space

is symmetric. In this case, 100m × 100m. We use a simple symmetric 2-D

dimension for prove of concept;

• open space,

176
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• flat terrain, no physical obstruction to the radio path,

• nodes are randomly and uniformly distribution,

• maximum graphs are connected.

7.1.2 Evaluation Criteria

In order to compare the results of the experiments, we use the following quantities

for,

• degree, we include the measurements of minimum degree, average symmetrical

logical degree and physical asymmetrical degree. Whilst average degree reflects

on average how many communicable neighbours a node has, physical degree

reflects the actual radio coverage of a node that contributes to the interference

in the neighbourhood.

Minimum node degree can indicate the reliability of a graph G as it has the

relation k(G) ≤ k′(G) ≤ δ(G), where k(G) indicates k vertices in G cut set,

k′(G) indicates k′ edges in G’s edge cut set, δ(G) is the minimum degree of the

graph.

• connectivity, this is the percentage of connected networks after STC optimi-

sation of all the simulations. In a single simulation, this is the percentage of

nodes in the largest component;

• average transmission power, this is measured as the average transmission power

or range used in the network. Lower transmission power is more desirable.

• number of broadcast messages, this is fixed in the k-Neighbours algorithm to

be 2n. However, STC is an iterative algorithm and the number of messages

depends on the density of the network and parameter settings. It can be used

to evaluate the effectiveness of the algorithm.
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• time to settle, this is the number of iterative rounds for the topology to reach

steady state. It is important to have a short settling time because of the need

to adjust to network changes.

7.2 Temporal Analysis of Single Simulation

Since STC uses an iterative approach, the study of temporal behaviour and the final

topology of a single simulation gives us the opportunity to observe the delay, time to

stability and oscillation, if any, of the system. We can also check if the algorithm is

behaving the way we expected, compare the generated topology to the ones generated

by other algorithms and observe the result.

As an example, we have 100 nodes randomly located in a 100× 100 space. Each

node has the same radio configuration but is allowed to select their transmission

power individually. We observe the dynamic through node degree, connectivity and

transmission power in the network.
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Figure 7.1: Homogenous network generated with critical transmission range

Figure 7.1 shows a homogenous network with every node transmitting at the

critical transmission range for this particular network, which is the minimum digitised

range that would connect the graph. We can see the uneven distribution of nodes due



179

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

1

2

3

4

5

6 7

8

9

10

11

12
13

14
15

16
17

18
19

20

21

22

23

24

25

26

27

28

29

30

31
32

33

34

35

36

37
38

39

40

41

42

43

44

45

46

47

48
4950

51

52

53

54

55

56

57

58

59

60
61

62

63

64

65

66
67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85 86

87

88
89

90

9192
93

94

95

969798

99

100

Figure 7.2: Network optimised with k-Neighbours k = 9 algorithm

to the random effect. The nodes in the middle (around node 1) are highly clustered

with the highest node density. The density at the bottom left corner is low and thus

nodes are sparsely connected. Nodes at the top right corner form a nearly regular

meshed network.
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Figure 7.3: Network optimised with STC η = 3 algorithm

Figure 7.2 and 7.3 shows the optimisation results using k-Neighbours k = 9

and STC kL = 3, which are comparative parameters in terms of connectivity as

illustrated in chapter 7. Both algorithms are density based to try to identify the
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difference in density in the network. We can see that while the connectivity of the

optimised graphs at the right-hand corner of the network is quite similar to the

homogenous CTR graph, both graphs are less clustered around node 1 and have

introduced more connections where the density of nodes is low. Both graphs have

achieved connectivity via local density measurement in this case. It is noted that k-

neighbours and STC do not always generate a connected network. In this particular

network the graph would not be connected using kneigh k = 6.

When analysing the time series of STC (Figure 7.4) of the graph, we can see

that the system reaches stability after 19 iterations. However, in Figure 7.4(a), we

observed that the network is connected after 16 iterations. The delay in achieving

stability can be explained by the lack of global knowledge, and the extra reliability

that is put into the network given that the final graph has a minimum degree of

2. kH , set to 20 in this experiment has no effect on the simulation since the final

network has η4 < 20 for all nodes.

In Figure 7.4(c), the number of increased power request broadcast packets (type

2) is maximum at the beginning when all nodes try to increase their connectivity and

decreases with time as more and more nodes have their connectivity requirements

satisfied. The number of update broadcast type 1 indicates the node activity in the

network. There are most changes in the network at around 12-13 cycles and the

network quickly settles after that.

The time it takes a simulation to settle is highly dependent on the network

capacity, or the average distance between nodes. Since the nodes only increase 1

power step at a time, in a more dense network a node is more likely to achieve the

required connectivity with less incremental steps.

Figure 7.5 shows the metric η4 distribution in the final optimised network. While

the majority of the nodes have η4 value much higher than kL, this is inevitable in

a Unit Disk Graph (UDG) type of network as a graph would have an intrinsic η4
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Figure 7.4: Temporal analysis for a single simulation using STC kL = 1. The time
to settle in this simulation is 19 cycles.

value. We can however obtain an idea of how to set kH for further optimisation.

7.3 Parameter and Density

We discuss in detail the effect of the parameter settings in the algorithm and the

node density on the resulting networks in the following sections.
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Figure 7.5: The final distribution of η4 in the network, kL = 1

7.3.1 kL - the lower threshold

Similar to the parameter k in k-Neighbours where k controls the link density of the

network, kL in STC controls the link redundancy and hence, robustness of the net-

work. A larger kL will give a higher probability of connectivity in a given topology.

However, this comes at a higher cost of transmission power and node degree. There-

fore, the optimal kL should be set to result in a high level of connectivity (> 98%)

and small node degree.

We use the normal setting in this set of experiments where 100 nodes are placed

in [100, 100] space. kH is set to a very high value such that nodes do not decrease

their power due to too much redundancy.

Figure 7.6 shows the topology generated by different values of kL. It is observed

that link density increases with kL. In Figure 7.6 (a) and (b) some areas appears to

be the same. This is because the intrinsic η4 to satisfy kL = 1 of these parts of the

network is already above kL = 3 as observed in Figure 7.5. The networks generated

with kL = 10 and kL = 50 are a lot more dense. It is also observed that comparing

the results of kL = 1 and kH = 3, links are added to the more sparse and asymmetric
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(a) kL = 1
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(b) kL = 3
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(c) kL = 10
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(d) kL = 50

Figure 7.6: Network Topology generated with different kL. N = 100, kH = 10, 000

part of the network.

In Figure 7.7 we show the connectivity results of STC with varying kL. In general

connectivity improves with higher kL. It is more noticeable in a higher density

network. The basic STC algorithm cannot guarantee connectivity and the networks

connect with high probability only. The probability is calculated to exceed 0.9 for all

cases with kL > 2 and exceed 0.99 for kL > 4. Since the probability for connectivity

is high at large kL, the difference for varying density is not obvious for the number

of simulations we carried out.

In Figure 7.8, we observed that node degree, minimum degree and physical degree
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Figure 7.7: connectivity varies with kL for n = 50, n = 100 and n = 200. The
simulations were run for 200 times to obtain the result in each case.
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Figure 7.8: Average node degree, minimum degree and physical degree varies with
kL for n = 50, n = 100 and n = 200. The simulations were run for 200 times to
obtain the result in each case.

also increases with higher kL, although the increase slows down as kL becomes pro-

gressively higher. It means that by increasing kL we can increase the link density in

the network and enhance the reliability by the improvement in the minimum degree.



185

One interesting phenomenon is that the degree characteristics for n = 50, n = 100

and n = 200 are nearly the same. This means that we can control the degree charac-

teristics in the network using kL in a manner similar to the k-Neighbours protocol.

However,with STC we do not see the same level of connectivity degradation with

increasing node density as in k-Neighbours.
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Figure 7.9: Average node degree, minimum degree and physical degree varies with
kL for n = 50, n = 100 and n = 200. The simulations were run for 200 times to
obtain the result in each case.

The results relating to average power usage per node (shown later in Figure

7.20(c)) are consistent with the degree characteristics. The average power required

increases with kL to achieve the increase in link density. Again, the increase slows

down with high kL. The power requirement is less in a dense network because the

average distance between nodes is less.

Figure 7.10 shows the average η4 value in the final graph generated from STC.

The resulting η4 is always above the required kL as the incremental steps of η4 of a

graph is not continuous, but is related to how the nodes are distributed. At low kL

the resulting η4 are nearly the same for all node density. At high kL, η4 is higher for
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Figure 7.10: Average η4 in the final graph varies with kL for n = 50, n = 100 and
n = 200. Each point shows the mean and standard deviation of 200 simulations.

lower node density and the different becomes more obviously as kL increases.

7.3.2 kH - the higher threshold and stability of the network

The parameter kH acts as an upper boundary to prevent a node from being too

clustered. It is necessary because STC uses a second-order metric η4, a parameter

update would take at most 2 hops, or 2 updating cycles, to reach all the nodes

involved. A node may have issued an increased power request too quickly before it

gets the message that its neighbour has already done so. Another scenario is when

new nodes are introduced to the network, a node needs to know if the local area has

become too clustered.

The parameter kH affects the performance of STC in two ways. It is possible for

kH to help further in optimising the node degree and power setting in the network

such that the normalised node density is more evenly distributed. However, if the

parameter is set too low it is possible for the network to oscillate between states and
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not settle 1.

We take an example network in Figure 7.6 with kL = 1 as an example to illustrate

the effect of kH . We have noticed that the network may go into oscillation for any

kH < 20 in this case. The probability of oscillation is higher for lower kH value. If

oscillation occurs, it is possible that the resulting network would not be connected.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

iteration

nu
m

be
r 

of
 c

ha
ng

in
g 

no
de

s

k
H
=2

k
H
=3

k
H
=5

k
H
=10

k
H
=20

k
H
=30

(a) Number of changing nodes

0 20 40 60 80 100
0

1

2

3

4

5

iteration

av
er

ag
e 

no
de

 d
eg

re
e

k
H

=2

k
H

=3

k
H

=5

k
H

=10

k
H

=20

k
H

=30

(b) average node degree

Figure 7.11: Effect of kH on node degree and number of changing nodes over time.
Network dimension=[100, 100], n = 100

Figure 7.11 shows the number of changing nodes and average node degree over

time with different kH values for the same sample network. We can see that oscillation

occurs with kH = 2 and kH = 3, but not with kH > 5 in this case. In this case,

kH = 5 does not result in network oscillation, however, the resulting degree statistics

is much lower (3.8 instead of 4.7) than the network without the kH restriction.

kH = 10 also gives a little optimisation on the node degree (4.6 instead of 4.7).

There is no optimisation for kH = 20 and kH = 30 and they behave the same way as

network with no kH boundary.

We observed that time to settle for all node density is within 40 iterations as

1Oscillation happens in a localised area where the nodes would alter their transmission powers
between some values even if there is no state change in the network
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shown later in Figure 7.22. If there are still nodes changing their transmission power

after 100 iterations in a single simulation, we define this parameter set as oscillating.
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Figure 7.12: Effect of kH on oscillating probability and node degree over 100 simu-
lations. Network dimension=[100, 100], n = 100

Figure 7.12 shows the effect of kH on oscillating probability and the resulting

node degree of the simulations. To compare the result with different kL on the same

graph, we have created a new metric k′H = (kH −kL)/kL to align the curves. We can

see that the oscillating probability decays very quickly with increasing kH , especially

with high kL. With kL = 10 it decreases to < 0.01 after k′H = 5. On the other hand,

the node degree increases in a much slower rate. The node degree only returns to

the level without the kH restriction with k′H > 10 with kL = 10. Hence, we can an

improvement on node degree for 5 < k′H < 10 for kL = 10 with very low probability

of oscillation. The advantage for small kL is less obvious as can be seen in the graph.

7.3.3 Network node density

In this section, we investigate the performance of STC against network density and

test the robustness of the protocol. We investigate node density in the range of 10
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to 200 in a [100 × 100] space to cover the more common density range of sensor

networks.

Broadly speaking, STC and k-Neighbours have the same characteristics in that

the probability of connectivity decreases with higher network node density. Experi-

menting with the node density we can observe other interesting characteristics with

STC.
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Figure 7.13: Connectivity vs node density for kL = [1, 2, 5, 10] over 150 simulations

Figure 7.13 shows the connectivity of STC with varying number of nodes. We

can see that at kL = 1, the connectivity is very sensitive to the node density and

drops to below 0.7 for n > 150 or d > 0.015. The connectivity improves with higher

kL and all the networks in the experiment are connected for kL > 10. STC does

not guarantee connectivity, thus, we expect the probability to drop at a higher node

density even for kL = 10.

Figure 7.14 shows the degree statistics with varying node density. We can see

that the average degree, minimum degree and physical degrees become quite stable

with increasing n for n > 50. The initial variation for n < 50, or d < 0.005, is due to

the edge effect of the graph since the majority of the nodes are edge nodes and are

connected to less neighbours than the middle nodes. This result is consistent with
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Figure 7.14: Degree statistics vs node density for kL = [1, 2, 5, 10] over 150 simula-
tions

Figure 7.8 in that the degree of the final graph is insensitive to different n. The other

observation is that the minimum degree of the graphs decreases slightly with higher

node density. The possible explanation for this could be the decrease in connectivity,

thus reliability reflected by the minimum degree.

In Figure 7.15, the average transmission power used per node and the time to
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Figure 7.15: Average transmission power used per node vs node density for kL =
[1, 2, 5, 10] over 150 simulations for each points

settle of the algorithm in Figure 7.22 have similar behaviour. As expected, they

both decrease with increasing node density as the average distance between nodes

decreases. The decrease slows down at the higher end of node density. Link density

increases with higher kL and therefore the power required for transmission is higher

for larger kL. We can conclude that η reflects the density of the network and that

different values of kL also represent the different node density requirements.
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Figure 7.16: Resulting η vs node density for kL = [1, 2, 5, 10] over 150 simulations
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Figure 7.16 shows the final average η in the network. Note again that each

network has their intrinsic η value to satisfy the required kL, which is density depen-

dent and therefore the resulting η is always higher than the required kL. η decreases

slightly with increasing number of nodes and this declining trend is more obvious

with high kL, which was also observed in Figure 7.10. This is again due to the edge

effect of the networks. The initial increase of η and the tuning is consistent with the

result in Figure 7.14 and is contributed by the edge effect. This experiment suggests

that the final η is independent of node density. Thus, STC is scalable.

7.3.4 Scalability

We investigated the scalability of STC by increasing number of nodes and keeping

the network density the same. kL is set to 2 for a general comparison. The results

are shown in Figure 7.17 and Figure 7.18. We can see that the average degree of the

network remains the same (k 5.7) for n > 50 (At n < 50 the result is dominated by

boundary effect). This implies η has a direct relationship with node degree and is not

affected by the network size. The connectivity decreases slightly with the increased

number of nodes (or network size). This is because the probability of island forming

increases with more nodes in the network. However, the connectivity remains above

0.95 in the region of 50 < n < 200.

7.4 Comparisons to k-Neighbours Algorithms

In this section, STC is compared to the k-Neighbours protocol because both algo-

rithms require similar information, i.e. Node ID, to operate. The control parameters

k and η4 are both density-based metrics (see Section 5.4.1) and both algorithms aim

to generate a topology that is connected with high probability. They are both simple,

fully-distributed and are examples of physical TC algorithms.

The major difference between the two algorithm is that k in k-Neighbours is a
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Figure 7.17: Average degree vs number of nodes. Network density = 0.01 m−2,
η = 2. 1000 simulations are performed for each point

0 50 100 150 200
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

number of nodes

co
nn

ec
tiv

ity

Figure 7.18: Percentage of connected network vs number of nodes. Network density
= 0.01 m−2, η = 2. 1000 simulations are performed for each point

zero order metric, while η4 in STC uses a second-order metric. Although the extra

requirement for distance information means that it takes longer for the algorithm

to stabilise because of its iterative nature, we expect the second order metric would

give us an improvement in connectivity over the k-Neighbours algorithm.

We use STC kL = 2 to compare with k-Neighbours k = 9, which is proposed in

[BLRS06] for 95% connected topology, to fulfil a higher requirement of connectivity.
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A lower requirement STC kL = 1 is compared with k-neighbours k = 6, proposed

in [BLRS06] such that 95% of the nodes are connected in the largest component for

lower connectivity requirement.

In addition, the minimum transmission range (critical transmission range(CTR))

required for connectivity of each network is also simulated for comparison. This helps

us to understand the behaviour of the theoretical minimum of the networks.
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Figure 7.19: Topology generated by k-Neighbours and STC n = 50

Figure 7.19 shows the topology generated by k-Neighbours and STC in a network

of 50 nodes with the same placement. Among the four topology, k-Neighbours k = 6
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generated a topology with the lowest degree and there is an isolated island in the

least dense area and this particular network is not connected. k-Neighbours k = 9

generates a connected network with a higher average node degree. The networks

generated by STC were both connected in this case and the graph with kL = 1 has

lower degree than kL = 2. The topology generated by STC has different shapes than

k-Neighbours because of the difference in local connectivity evaluation.

Figure 7.20 shows the simulation results of the different protocols with vary-

ing network densities. We observe that in Figure 7.20(a) STC maintains a similar

level of minimum degree throughout all densities whilst the minimum degree of a

k-Neighbours graph decreases with density. This suggests that the STC topology

has more resilience to single point or link failures. Statistically the minimum degree

is the lowest for the CTR graphs, which are obtained from setting the lowest trans-

mission range to generate a connected network. The transmission range is the same

among all the nodes, while the node density varies at different part of the network.

In Figure 7.20(b), the density-based TC k-Neighbours and STC maintain similar

level of average degree with the increase in density, with CTR having an increasing

node degree. The result of CTR agrees with the theoretical results that the degree

should be a function of log n. k-Neighbours maintains the level of average degree at

around k − 2. STC also maintains the average node degree at a lower value than

k-Neighbours for similar connectivity. It is observed that k-Neighbours has a higher

node degree than STC at very low node density (number of nodes < 10) and the

phase change at 10 < n < 50 is due to the boundary effect as discussed before.

During the phase change when boundary condition is dominant, k-Neighbours still

requires the node to achieve the same node degree, which results in higher node

degree than necessary for connectivity as compared to STC and CTR.

Figure 7.20(c) confirms the result of Figure 7.20(b). In general for all control

algorithms the average power used per node decreases with node density. The start-
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Figure 7.20: Simulation results. The simulations were repeated 200 times STC
and 1000 times for k-Neighbours and CTR. The results of the different protocols
were compared using average and minimum node degree, transmission power and
connectivity.

ing power consumption of CTR is the lowest but the decrease is much slower when

density increases. The decreasing rate for k-Neighbours and STC is about the same.

Comparing the result of k-Neighbours and STC in Figure 7.20, we can see that

STC generates graphs with a higher minimum degree. We observe that STC kL = 2
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produces a graph with a lower node degree than k-Neighbours k = 8 but with

better connectivity (STC> 0.95, k-Neighbours> 0.91). The same is observed for

STC kL = 5 and k-Neighbours k = 10. It is harder to observe the performance of

STC and k-Neighbours with lower parameter setting as the lowest setting for kL in

STC is 1. However, we see from the result of Figure 7.13 that in order to achieve

connectivity> 95%, setting kL > 2 is the minimum requirement.

7.5 Complexity of STC
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Figure 7.21: Time to settle varies with kL for n = 50, n = 100 and n = 200 for
the same size of space. The simulations were run for 200 times to obtain the result
in each case. The time to settle parameter in 7.21 is not much affected by the kL

parameter but the node density.

STC is an iterative algorithm based on nodes exchanging their neighbour tables

with 1 hop neighbours. Only node IDs are required for the implementation of STC.

As nodes adjust their transmission power based on η, their neighbours are also chang-

ing, which would trigger re-calculation of η in the node. In the simulations in this

chapter the amount of time required for the network to stabilise, meaning that no

more nodes in the network changed their transmission power given a static condition,

is within 10-30 iterations dependent on mainly the network density as illustrated on
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Figure 7.22: Time to settle used per node vs node density for kL = [1, 2, 5, 10] over
150 simulations

Figure 7.22. However, it varies only slightly with different kL as shown in Figure

7.21. High density networks require less time to achieve stability because nodes are

closer together in a high density network. With STC, each node optimises from the

lowest power level, therefore, in a high density network it would take less number of

iterations to reach network stability.

Capacity and network contention is a major concern in the SECOAS project,

where CSMA is used for multiple media access. Although k-Neighbours states that

the initialisation and updates should only take up 2 cycles, one cycle for each node to

transmit its own id and one for transmit its neighbour list, measures such as random

delay have to be introduced to prevent all the nodes transmitting with maximum

power at the same time. Therefore, the length of one cycle should increase with the

network density to fulfil the requirement of SECOAS. This is different from STC

where the settling time decreases with node density.

The initialisation period of STC is longer than k-Neighbours because of its it-

erative nature, however, network updating in STC topology only involves 1 and 2

hop immediate neighbours that are affected by the change, whilst updating with k-
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Neighbours involves all the nodes transmitting with maximum power and rebuilding

the neighbour tables. With STC, nodes send out updating requests at random to

detect any changes in the network. The probability for sending out requests depends

on the rate of change in the network. Moreover, η is bounded below and above such

that any remedial actions, such as a power increase to cover a failing node, can be

reversed at a later time when a new node is introduced.
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Figure 7.23: Average number of messages exchanged per sensor nodes. Size of the
network is kept the same.

The number of messages exchanged with k-Neighbours is exactly 2n for each

update. In the case of STC, this is a function of network density as shown in Figure

7.23. The number of messages each node needs to exchange decreases with increasing

node density, as the number of iterations required to reach stability decreases.

7.6 Chapter Summary

In this chapter, we investigated the performance of Subgraph Topology Control

(STC) in terms of average degree, connectivity, transmission power and complex-

ity. The results of STC are compared to k-neighbours, a competitive algorithm

which has the same hardware requirement as STC, and critical transmission range,
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which has provided a theoretical benchmark for comparison.

In our experiments, we found that by setting kL = 3, the networks are connected

with probability greater than 0.97 for 50 < n < 200. This gives us an average node

degree of 6.1. Setting a larger kL value can improve connectivity, however, would

also increase the network power consumption and node degree. In fact, setting

kL ≥ 7 results in 100% connectivity in all our simulations for 50 < n < 200, and the

resulting node degree is around 8. From equation 6.1.1 we can see that η4 is a degree

3 polynomial of the transmission range, therefore, node degree rises very slowly with

the increase of range.

We investigated the scalability of STC by keeping the node density constant

and increase the number of nodes in the network. It was found that the resulting

node degree remains constant beyond the network size dominated by the boundary

condition. The connectivity only decreased very slightly to 0.95 at a network size of

200 nodes.

When compare to the performance of k-neighbours algorithm, we found that STC

has higher probability of connectivity with similar resulting degree and using similar

transmission power in 2-dimensional networks. STC also produces higher minimum

degree, which means that the resulting network is more resilience.

STC is iterative in nature. For a network density of 0.01m−2, STC takes less than

18 iterations to settle for this particular type of radio. It can take up to 30 iterations

for node density less than 0.001m−2. However, from Figure 7.4(a) we can see that

the majority of the nodes settle their power a lot more quickly than this depending

on their local density.



Chapter 8

Adaptability of Subgraph
Topology Control

In the last chapter, we have proven STC has an improvement performance in terms

of connectivity and node degree over the k-Neighbours algorithm in a static environ-

ment. However, the SECOAS environment is dynamic and changes over time due to

the following factors.

• Node position drift. SECOAS nodes are not designed to be mobile. However,

they drift from their original positions with waves and tides in the short term,

and with the movement of the sandbank in the longer term.

• Node status change. Nodes batteries can run down or the nodes may be dam-

aged or malfunction from time to time. On the other hand, new nodes can be

added by the user for measuring new points of interest, replacement of faulty

nodes or to improve the existing communication structure. These changes need

to be observed by the neighbouring nodes and a new topology is formed.

• Link dynamics. The wireless connections between nodes change with time. The

arrival signal strength varies due to fast and slow fading in the environment

and moving obstacles. A connection can disappear momentarily if it is blocked

by passing objects such as boats, buoys or animals.
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For waves and tides movement, the nodes are likely to move slightly to and fro

from their original position. For sandbank movement, nodes are likely to drift in the

same direction relative to each other. However, we consider the position drift to be

relatively small (order of cm) compared to the separation between nodes (50-100m)

because the sensor nodes are attached to a 10kg weight to prevent them from being

washed away and we will not include node position drift in our simulations.

In this Chapter, we evaluate the adaptivity of STC with addition, removal of

nodes. We also simulate the situation when the nodes are added to the network one

by one and observe the performance of STC.

8.1 Removal of Sensor Nodes

In this section, we consider the effect of the addition and removal of sensor nodes

upon the performance of STC. We measure the time for the network to settle after

an event (addition or removal of nodes) happens. We also measure the number of

nodes involved in the re-configuration, and the amount of messages passed between

the nodes.

When a node u disappears from the network, the event can be noted by the

neighbouring nodes only if they have already been receiving messages from the node.

This is achieved by nodes regularly broadcast their beacon/ heartbeat messages.

These messages contain the essential information to configure a network, including

its Tx power, hop count from the gateway and synchronisation information. If a

neighbouring node v does not hear a beacon from u for l number of times, it declares

u no longer exists and inform its neighbours of the change. The number l depends

on the reliability of a beacon being received. A collision based MAC scheme would

have higher l value as a node would not receive acknowledgements for the beacon it

transmits.

When node v discovers that neighbour u has disappeared from its neighbourhood,
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it updates its subgraph metric and broadcasts the new neighbours list. Subsequently

this would trigger a series of power changes and update broadcasts from this neigh-

bourhood.

Figure 8.2 shows an example of the self-healing property of STC. kL is set to 5

and kH is set to 50. Sub-figure 8.1 shows the topology after the network is opti-

mised and settled. In Figure 8.2(a), node 41 fails at time instance 70 and it neigh-

bouring nodes (5, 13, 21,28, 37, 42, 47, 50) immediately detect that its metric is

under the threshold. They start the power increase procedure to reinforce the net-

work structure and their neighbouring nodes which have low metric subsequently

follow. In this scenario, the set of nodes that issue update broadcast messages are

(1,5,7,9,13,14,15,16,17,21,28,34,37,38,42,47,50), which are all within 3 hops neigh-

bours of node 41 before its failure. The failing of node 41 affects a large number of

nodes in this case as a middle node and it has a major effect on the whole structure.

The failing of an edge node has less effect on its neighbourhood in general.
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Figure 8.1: Network topology after STC optimisation

In another example we failed five of the nodes at random [16, 33, 44, 45, 49] within

the same network as in figure 8.1. The result is shown in figure 8.3(a) and 8.3(b).

A total of 22 nodes are involved in the updating procedure this time. The re-
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(a) Node 41 fails
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(b) Self-healing in the neighbourhood

Figure 8.2: Simulation results for removal of a node in the network.
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(a) Node 16, 33, 44, 45, 49 fails
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(b) Self-healing

Figure 8.3: Simulation results for removal of 5 nodes in the network.

structuring mainly occurs near node 36. The assumed failure of node 33 and 45 does

not have much effect on the neighbourhood as all the neighbouring nodes have their

parameters satisfied, even with the missing connections.

We repeated the simulation 200 times for different networks and randomly failed 1

node in each case. The results are summarise in Figure 8.4(a), 8.4(b), 8.4(c). In most

of our simulations, the nodes involve in the update are just those within the direct

neighbourhood - hence, the low number of nodes (between 4 and 16) sending update
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messages. In most cases, the failure of one nodes does not cause any power changes

at all as depicted in figure 8.4(c) because STC has already provided redundancy

in the network. However, in some rare cases, failure of a middle node can cause a

major change in the network structure and over half of the nodes in the network

issue broadcast messages. In all the simulated cases, the networks remain connected

after STC optimisation.

8.2 Addition of Sensor Nodes

In this section, we investigate the effect of adding nodes to the network. The addi-

tion of sensor nodes should not affect the connectivity of the network, however, it

increases the local node density and node degree in the neighbourhood. Hence, the

neighbouring nodes may choose to decrease their power to bring the average node

degree down, or maintain their power if the local metric is still acceptable.

We reverse the process of the previous section to simulate the effect of the addition

of a node. We assume that at the beginning of the simulation node 41 is faulty and

then it becomes alive at time instance 70. The optimisation results before node

41 comes alive is very similar to the one in Figure 8.5(b). However, when node

41 becomes active, the final result is slightly different from the original optimised

network from Figure 8.1, which was optimised when all the nodes were active. This is

because all the nodes around node 41 have their metric requirement satisfied before

it joins and only node 41 needs to increase its power until its own metric is satisfied.

In this simulation, we have set kL to 5 and kH to 50. None of the surrounding nodes

need to decrease their powers to keep their parameters within the boundary.

In the simulated results shown in Figure 8.6(c), the number of nodes involved in

the addition of one node is a lot less than removal of nodes in the last section. The

purpose of the update messages are mainly to inform the neighbourhood that there

is a new node in the network. There is a margin between kL = 5 and kH = 50 to
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Figure 8.4: Histograms of 200 simulation results for removal of a node in the network.
kL = 5, kH = 50, n = 50 and the network size is 200x200

prevent oscillation in the network and hence, the nodes do not reduce their Tx power

unless the local area becomes very congested indicated by the metric exceeding the

kH threshold.
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(a) optimised network
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(b) Addition of sensor node

Figure 8.5: Simulation results for addition of 1 node in the network, showing the
network before and after the additional node

8.3 Deployment Scenario

In all our simulations so far, we have assumed that all the nodes are in place at

the beginning and STC starts to optimise the transmission power of all nodes at

the same time. This is unlikely in the deployment scenario, unless the nodes are

initially deployed in the field without broadcasting and the base station then issues a

command for the nodes to start performing STC at the same time. However, before

STC takes place the nodes would need to be transmitting at maximum power to

ensure connectivity, which results in power wastage and creates contention problem

with our CSMA scheme.

Hence, in this section, we simulate the actual scenario where the nodes are de-

ployed one by one. We assume that the node are deployed at one minute rate, and

each iteration of STC takes 10 seconds. The 10 seconds iterative period is taken

from the current duty cycles in our sensor nodes. Nodes are put to sleep unless they

need to communicate with each other to conserve power. Hence, we assume that the

nodes are deployed every 6 STC cycles, which is equal to 60 seconds. We have tested

the algorithm with the deployment rate between 1 (10 seconds) and 60 duty cycles
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Figure 8.6: Histograms of 200 simulation results for removal of a node in the network.
kL = 5, kH = 50, n = 50 and the network size is 200× 200

(10 minutes) and they show very similar results, but with a longer or shorter settling

time proportional to the deployment rate.

In Figure 8.7 we show the dynamics of the node deployment over time at 1

and 5 minute deployment rates. We see that both scenario will eventually result

in connectivity. There are always nodes changing their Tx power at the 1-minute
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(b) Node deployment rate = 1 minute

Figure 8.7: Number of changing nodes. Each iteration takes 10 seconds

deployment rate; whilst the number of changing nodes are observed in bursts in the

5-minute deployment rate as the long time between deployment allows the network

to settle before new nodes are added. The changes are restricted to the local area

unless the newly added node causes a major increase in the local node density. The

neighbouring nodes reduce their transmission powers, which in turn causes further

changes in the network. We observe such major change at time instance 1100 in

Figure 8.7(a) where 23 of the 36 deployed nodes change their transmission power.

The result of the deployment experience is shown in Figure 8.8. We observe

that the deployment rate/ interval has little effect on the final average power in the

resulting optimised network, as depicted in Figure 8.8(a). Figure 8.8(b) depicts the

relationship between the time to settle normalised by the deployment interval and

the deployment interval itself. The normalised settling time is dependent on the

deployment interval and converges to the number of nodes in the network, which is

50 in this case, for large intervals. When the deployment rate is slow, the network

spends most of the time staying at the last stabilised condition and only reacts when

new nodes are added.
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Figure 8.8: Statistics for the deployment scenario where 50 nodes are deployed one
by one separated by the time intervals. Each point is the averaged result of 50
simulations.

These results have demonstrated that STC can handle different deployment rates

from 1 to 200 seconds, and should continue maintain the performance for deployment

intervals more than 200 seconds.

8.4 Link Failure

In this chapter, we have demonstrated that STC is a dynamic algorithm, which reacts

to scenario where the nodes are deployed in the field one by one; and to changes in

the environment with the addition and removal of sensor nodes over time.

In fact, STC will be able to react to changes in the link dynamic as well as position

drift of the sensor nodes which are not simulated in this chapter. To a sensor node, if

a link fails and then recovers within the predefined time required for it to be regarded

as a lost neighbour1, then this would not cause a topology change as the neighbour

tables are not altered. The temporarily failed link should not affect message relaying

1All nodes periodically broadcast a beacon/heartbeat, if a node is not heard for l times it is
regarded as lost, see Section 8.1.
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as the topology created by STC provides redundancy and alternative paths in the

network for combating this type of instability.

If a link has failed for longer than the allowed period and a neighbour v is regarded

as lost from node u, u will evaluate its own metric and see if it still satisfies the kL

requirement. The failure link may or may not cause node u to increase its Tx power

depending on its resulting metric without node v. In the case when node u increases

the Tx power to connect to further neighbours, it may not need to reduce its Tx

power when the connection to v revived. This is because of the margin between kL

and kH , which is important to ensure network stability.

8.5 Conclusion to Topology Control

Subgraph Topology Control (STC) presents a novel topology control algorithm in

two ways. Firstly, a new control parameter subgraph Number η4 is proposed for use

in topology control, which is obtained from nodes exchanging neighbours tables with

immediate neighbours and is a measure of local redundancy. The goal of STC is to

generate a connected network with high probability and resilience as the underlying

physical topology, and do not require special hardware such as location and direction

determination.

STC is an iterative algorithm that nodes slowly increase or decrease transmission

power to improve their connectivity until each node has satisfied their local connec-

tivity requirement. STC sends out probabilistic update request to detect network

changes and only nodes that are local to the change will be involved in the update.

The probability and efficiency of the update should be related to node mobility and

system changing rate and would require further investigation. The results has shown

that the time taken for the system to reach stability depends on mostly node density.

In our experiments, we found that by setting kL = 3, the networks are connected

with probability greater than 0.97 for 50 < n < 200. This gives us an average node
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degree of 6.1. Setting a larger kL value can improve connectivity, however, would

also increase the network power consumption and node degree. In fact, setting

kL ≥ 7 results in 100% connectivity in all our simulations for 50 < n < 200, and the

resulting node degree is around 8. From equation 6.1.1 we can see that the relation

is η4 ∈ O(R3), therefore, node degree rises very slowly with the increase of range.

When compare to the performance of k-neighbours algorithm, we found that STC

has higher probability of connectivity with similar resulting degree and using similar

transmission power in 2-dimensional networks. STC also produces higher minimum

degree, which means that the resulting network is most resilience.

STC is iterative in nature. For a network density of 0.01m−2, STC takes less than

18 iterations to settle for this particular type of radio. It can take up to 30 iterations

for node density less than 0.001m−2. However, from Figure 7.4(a) we can see that

the majority of the nodes settle their power a lot more quickly than this depending

on their local density.

We simulated the effect of the network dynamic to the performance of STC. STC

adapts well when nodes are added or removed from the network. It can also adapt

to the case when nodes are added to the network one by one. Moreover, because of

the iterative nature of STC, only local nodes are involved in the adaptation. This,

makes STC very attractive in terms of power saving and ensures scalability.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

The work in this thesis was initiated by the SECOAS wireless sensor network (WSN)

project. The aim of the project was to collect oceanographic data to analyse the

impact of the on-shore windfarm to the nearby sandbank movement. The project

focused on developing a robust communication structure that could cope with dif-

ferent sea conditions and deriving an energy efficient data gathering strategy. The

WSN must be power efficient such that it would last for months at a time before

batteries are required to be replaced.

My contributions to the project and the research in WSN is divided into two

parts, data handling and topology control. They are concluded upon separately

below.

9.1.1 Data Handling

In this part of the thesis, a thorough time series data analysis for the SECOAS project

was included to establish an understanding to the environment and to verify the

results of the algorithms. The analysed parameters are temperature, conductivity,

pressure and turbidity (sediment concentration). The data were analysed for their

short and medium term characteristics.

Prior to the data analysis,the performance of 3 Hurst estimators, Periodogram,

214
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Least Square Fit Estimator (LSE) and Wavelet Weighted Least Square Fit Estima-

tor (WLSE), were studied in the presence of linear trends and periodicity so that

the validity of the estimators are known. It was found that WLSE is the most ro-

bust estimator against linear trends. When a period is present and its amplitude is

small (less than 1:1 to the False Gaussian Noise (fGn)), periodogram is the most re-

liable predictor. However, when the periodic signal amplitude is large, all predictors

overestimate the hurst parameter.

It was found that all four oceanographic parameters exhibited periodic charac-

teristics contributed by tides. The pressure data also shows short term periods of

wave movement, which can be characterised by spectral periods and spectral width.

Temperature, conductivity and pressure data also show long term trend, which is

likely to be the yearly variation of the environment. These trends and periods are

important features that are required to be preserved in the data compression and

sampling strategies.

Wavelet multi-resolution analysis was used to break down the sediment concen-

tration data by wavelet scales. A different perspective of the data in terms of time is

observed in each wavelet scale. This has helped us to separate the signal from noise

in each scale and to apply wavelet threshold compression technique to the data.

Two methods of finding the thresholds for suppressing the wavelet coefficients

were proposed, first by using a fix ratio of the largest coefficient(FRC), and secondly

by using deviation from a normal distribution (DND) derived from the coefficient

distribution. Both methods can achieve a compression ratio of over 45% and incur

very small error. Depending on the data quality requirement, a compression ratio

up to 90% can be achieved. FRC gives more consistent compression ratio over time

compared to DND. However, DND is better at preserving anomalies than FRC. FRC

is preferred in the SECOAS project because it is simpler to implement than DND

and it gives comparable compression ratios.
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We applied Hurst estimators to the turbidity data and found that there is strong

evidence that self-similarity is present in the short term data sets. The Hurst param-

eter (H) averages at 0.89 for all the sets and this indicates the presence of long-range

dependency (LRD) (H > 0.5). The presence of self-similarity characteristics has

assisted us to analyse the performance of the adaptive sampling algorithms.

The development of an adaptive sampling scheduler was then reported. A sam-

pling scheduler can be viewed as an alternative solution to data compression, in

that data are only sampled if they are predicted to be useful to the user. It is a

mean of conserving battery power by sampling less often and reducing the amount

of transmitted data. Most existing adaptive sampling algorithms require the use of

a prediction model, which has restricted their use to the specific environments they

are designed for. We sought an alternative algorithm that can be operated on most

data types.

Basic Adaptive Sampling Scheduler (BASS) is developed for adapting the sam-

pling rate based on environmental changes and for rare-event detection. BASS is a

2-stage state-machine, which calculates the probability of sampling and idling using

the statistic Exponentially-Weighted Moving Average (EWMA). The most recent

measurement and the thresholds for event detection are used for the adaption mech-

anism. It also has a spatial aspect to quicken up event detection by neighbour

coordination. BASS can be adapted for absolute and relative threshold detection.

We compared the performance of BASS and eSense and found that eSense shows

better results for data with fast periods, i.e. SECOAS pressure data; while BASS per-

forms better for data that is deviated from normal distribution, i.e. turbidity data.

Both eSense and BASS produce similar results on the temperature and conductiv-

ity data. Despite the differences, BASS is the preferable algorithm in the SECOAS

project because it does not rely on a prediction model. eSense requires model training

and re-training for prediction accuracy. This requires substantial memory require-
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ment, which may be performed on a central node, however, this would make eSense

a less scalable solution. Moreover, eSense shows poor performance if the data is

deviated from the random walk model, while BASS is consistent with all data types.

9.1.2 Topology Control

In a WSN, nodes are connected to neighbouring nodes within their transmission

range. There is an incentive to reduce the transmission power in each node to

conserve power and to reduce node degree in the local area. This is because high

node degree results in low traffic throughput in a collision based multiple access

scheme. On the other hand, it is important to ensure connectivity in the network

and that the network has redundancy for alternative routes. Topology control (TC)

studies the formation of a WSN network structure by adjusting the transmission

power in individual nodes.

The search for a suitable TC control parameter, which can accurately report the

local connectivity was first reported. Existing Algorithms that use the angle of arrival

(CBTC) and location (XTC and LMST) can guarantee connectivity in the network,

however, SECOAS sensor nodes are not equipped with directional antennas and

location-aware devices and hence, these algorithms are not applicable. The algorithm

k-neighbours uses the number of neighbours as the control parameter, which is easily

available in sensor nodes. However, k-neighbours does not guaranteed connectivity

and is particularly prone to the island phenomenon, where a cluster of highly dense

nodes that are far away from the rest of the network would form an unconnected

island.

Subgraph Topology Control (STC) was introduced using subgraph number η4

as the control parameter, which is deduced by the node’s neighbour tables and its

neighbour’s neighbour tables. Although STC does not guarantee connectivity, the

increased depth of information given by the 2nd hop neighbours compared to node
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degree has helped to improve judgement on local connectivity as compared to node

degree.

STC is an iterative algorithm. The node starts with one transmission range, and

then increment or decrement its power according to the reported η4 until η4 is within

kL, the lower boundary and kH , the upper boundary.

We evaluated STC against k-neighbours and critical transmission range (CTR),

which is the minimum homogenous power in the network for connectivity. It was

found that in all our simulated 2 dimensional networks, STC produces better connec-

tivity (STC> 95% using kL = 2 as compared to k-neighbours> 91% using k = 8, and

STC > 99.8% using kL = 5 as compared to k-neighbours> 99% using k = 10) whilst

using less transmission power in the nodes. Moreover, STC generates networks with

higher minimum degree, which indicates the networks have better resilience toward

node and link failure than the k-neighbours networks.

Although STC initially takes a longer time to reach stability compared to k-

neighbours due to its iterative nature. Studies in the adaptivity of STC for adding

and removing nodes have shown that only the local neighbourhood is involved in the

updating of the change, which makes STC a very scalable solution. We have also

simulated that STC can adjust quickly to node and link failure and the deployment

scenario where nodes are added to the network one by one.

9.2 Future Work

9.2.1 Data Compression

We suggest the following future investigation for the data compression strategy.

• The focus on the compression strategy in SECOAS should be put in developing

method 1, FRC compression. Further work can be carried out on the investi-

gation of the relationship between the threshold percentage and compression



219

ratio. This will enable the users to adjust the data quality, which leads to the

corresponding compression ratios and errors.

• The effect of the number of wavelet scales used in DWT on the compression

results can be investigated. Moreover, the use of different wavelets with a

higher number of vanishing moments can be more beneficial than the Haar

wavelet, as wavelets with higher number of vanishing moments are known to

give more consistent results.

• At the moment sediment level is obtained by summarising the data over a

period, e.g. 20 minutes by mean and standard deviation. This is a kind of

compression to send back statistics instead of raw data. We can compare the

compression ratio, quality of reconstructed data and robustness in a lossy com-

munication environment using wavelet compression and statistics and observe

the difference.

• From the result of section 3.4.1 we see a linear relationship between temperature

and conductivity values. We can use this property for further data compression.

9.2.2 Adaptive Sampling Scheduler

We suggest the following future investigation for the data sampling scheduler.

• The four oceanography data sets are not ideal for the experiments. The smallest

granularity of the baseline data is 1 hour and hence, the variation and trend

between data points are missed out. These missing trends are important to

maximise the performance of BASS. Continuous data with higher frequency

(e.g. 1 per second) can be collected to observe and compare the performance

of BASS.



220

• Data sets, such as embankment tilt readings for landslide detection can be used

as experiment to observe BASS’s ability for rare event detection

• The delay of detection of the three sampling mechanisms in relation to the rate

of change in data should be investigated in the presence of an event. Miss ratio

can reflect part of the delay of detection, but cannot accurately describe it.

• The threshold parameter ρ needs to be adjusted for different type of data in

the experiment. We should be able to adapt this parameter to the current data

measured similar to adapting s. One possibility is to combine ρ and s into one

parameter.

• The adaptation of s to relative and absolute thresholds may be combined to

simplify the algorithm.

• The advantage of the spatial aspect of BASS has not been fully investigated

due to the lack of spatial data in our experiment. The introduction of spatial

feature should significantly improve the delay and the miss ratio of the BASS

algorithm.

9.2.3 Topology Control

The major goal of topology control in this thesis concerns the tradeoffs between

connectivity and energy consumption. There are, however, other factors that may

be related to topology control that can be investigated.

• We have investigated topology control for connectivity. There are other aspects

of topology control, which optimise the network based on data traffic and

routing [GBH+06]. We can combine both and get a more complete picture of

the network structure.
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• We have used one subgraph η4 in our algorithm because it represents redun-

dancy in the network. We may be able to use other subgraphs to replace or

complement η4 in the algorithm.

• We can evaluate STC further in terms of node mobility.

• We can investigate the use of distributed biological algorithm such as game

theory, greedy algorithms, genetic algorithm, etc to obtain an optimal balance

between energy cost, traffic, connectivity and other factors.
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Figure A.1: map of Scroby Sands and location of the data loggers
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