

Design Rules for Polymer Waveguides and Measurement Techniques

Kai Wang, David R. Selviah, Hadi Baghsiahi and F. Anibal Fernández

Optical Devices & Systems, Department of Electronic & Electrical Engineering, UCL (University College London)

Ioannis Papakonstantinou

Sharp Laboratories of Europe Ltd (formerly at UCL)

Guoyu Yu

OpTIC Technium (Part of UCL)

Chairman: Henning Schröder, Co-Chairman: David R. Selviah

International IEEE Symposium on Photonic Packaging Electrical Optical Circuit Board and Optical Backplane Sponsored by Fraunhofer IZM, VDI/VDE, IEEE-CPMT and IEEE-LEOS Messe Munich, co-located with Electronica, Germany, 13th November 2008

Copyright © 2008 UCL

- 1. Motivation:
 - Optical versus Electronic interconnect
 - Demonstrator Structure
- 2. Waveguide fabrication techniques
- 3. Measurement technique
- 4. Crosstalk and loss measurement
 - Straight waveguides
 - Crossings
 - Bends
- 5. Optical system design

- 1. Motivation:
 - Optical versus Electronic interconnect
 - Demonstrator Structure
- 2. Waveguide fabrication techniques
- 3. Measurement technique
- 4. Crosstalk and loss measurement
 - Straight waveguides
 - Crossings
 - Bends
- 5. Optical system design

Optical versus Electronic Interconnect

- Copper tracks become inefficient as data rates rise above 10 Gb/s
 - Latency delay
 - Skin effects in the conductors
 - Cross-talk
 - Electromagnetic Interference (EMI)
 - Reflection
 - Signal loss and manufacturing cost increases.
- Optical interconnect has potential benefits
 - Less delay due to no RC components.
 - Low propagation loss 0.03 0.06 dB/cm at 850 nm wavelength in waveguide < 50 \times 50 μm in cross-section.
 - Do not require impedance matching.
 - Wide bendwidth
 - Wavelength division multiplexing is achievable.

5

Demonstrator Schematic

1. Motivation:

- Optical versus Electronic interconnect
- Demonstrator Structure

2. Waveguide fabrication techniques

- 3. Measurement technique
- 4. Crosstalk and loss measurement
 - Straight waveguides
 - Crossings
 - Bends
- 5. Optical system design

Fabrication Techniques and Waveguides Samples

Straight waveguides – Optical InterLinks

90° Crossings – Heriot Watt University

90° Crossings – Dow Corning

50° Crossings – Exxelis

Photolithographic Fabrication of Waveguides

End Facets of Waveguides

Through Nomarski Microscope with both front and back illumination

- 1. Motivation:
 - Optical versus Electronic interconnect
 - Demonstrator Structure
- 2. Waveguide fabrication techniques
- 3. Measurement technique
- 4. Crosstalk and loss measurement
 - Straight waveguides
 - Crossings
 - Bends
- 5. Optical system design

Optical Loss Measurement

VCSEL Array for Crosstalk Measurement

- 1. Motivation:
 - Optical versus Electronic interconnect
 - Demonstrator Structure
- 2. Waveguide fabrication techniques
- 3. Measurement technique
- 4. Crosstalk and loss measurement
 - Straight waveguides
 - Crossings
 - Bends
- 5. Optical system design

UCL

Design Rules for Inter-waveguide Cross Talk

- 70 μ m x 70 μ m waveguide cross sections and 10 cm long
- \bullet In the cladding power drops linearly at a rate of 0.011 dB/ μm
- Crosstalk reduced to -30 dB for waveguides 1 mm apart

Schematic Diagram Of Waveguide Crossings at 90° and at an Arbitrary Angle, θ

Design Rules for Arbitrary Angle Crossings

- Loss of 0.023 dB per 90° crossing consistent with other reports
- The output power dropped by 0.5% at each 90° crossing
- The loss per crossing (L_c) depends on crossing angle (θ), L_c =1.0779 · θ ^{-0.8727.}

Loss of Waveguide Bends

Width (µm)	Optimum Radius (mm)	Maximum Power (dB)
50	13.5	-0.74
75	15.3	-0.91
100	17.7	-1.18

- 1. Motivation:
 - Optical versus Electronic interconnect
 - Demonstrator Structure
- 2. Waveguide fabrication techniques
- 3. Measurement technique
- 4. Crosstalk and loss measurement
 - Straight waveguides
 - Crossings
 - Bends
- 5. Optical system design

Power Budget

Input power (dBm/mW)	-2.07 / 0.62						
Coupling loss (dB)	4.4 at both input and output ends						
Propagation loss (dB/cm)	0.08						
	Bend 90°						
Radii (mm)	15.000	15.250	15.500	15.725	16.000	16.250	
Loss per bend (dB)	0.94	0.91	0.94	0.94	0.95	0.95	
	Crossings						
Crossing angles (°)	22.27	29.45	36.2	23 42.10		47.36	
Loss per crossing (dB)	0.078	0.056	0.04	0.047 (0.037	
Min. detectable DC power (dBm/mW)	-15 / 0.03						
Min. DC power no BER at 2 ³¹ (dBm/mW)	-12 / 0.06						

Calculated Waveguides Output

	No. Crossings	No. Bends	Straight (cm)	Calculated output without index matching (dBm)	Calculated output with index matching (dBm)
1	0	4	2.17	9.71	7.31
2	0	4	2.17	9.71	7.31
3	0	4	2.14	9.72	7.32
4	3	4	2.24	10.00	7.60
5	5	4	2.04	10.09	7.69
6	3	4	5.95	10.22	7.82
7	3	4	5.78	10.25	7.85
8	2	4	6.80	10.24	7.84
9	4	4	9.67	10.66	8.26
10	0	4	12.99	10.89	8.49
11	0	6	16.30	13.10	10.70
12	0	6	20.19	13.48	11.08

System Demonstrator

Fully connected waveguide laid out using design rules

Copyright © 2008 UCL

Demonstrator Dummy Board

Waveguides were printed out using solder resist for visualization

Copyright © 2008 UCL

Demonstrator with Optical Interconnects

The Shortest Waveguide Illuminated by Red Laser

Copyright © 2008 UCL

Waveguide with 2 Crossings Connecting 1st to 3rd Linecard Interconnect

e x •

Output Facet of the Waveguide Interconnection

Conclusions

- Characterised photolithographically manufactured acrylate polymer multimode waveguide
- Design rules derived from the experiments

Acknowledgment

The authors thank

- EPSRC via *leMRC* for funding
- Xyratex Technology Ltd
 - Dave Milward, for managing the project,
 - Ken Hopkins, and Richard Pitwon, for helpful discussions.
- Exxelis Ltd
 - Navin Suyal and Habib Rehman, for waveguide fabrication.
- Cadence
 - Gary Hinde, for technical support.
- Stevenage Circuits Ltd
 - Jonathan Calver, Jeremy Rygate and Dougal Stewart for fabricating waveguide dummy board.
- David R. Selviah for being technical lead

The End

Thanks for Your Attention

Any Questions?