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Abstract

The visual system must learn to infer the presence of objects and features in the world from the images it encounters, and
as such it must, either implicitly or explicitly, model the way these elements interact to create the image. Do the response
properties of cells in the mammalian visual system reflect this constraint? To address this question, we constructed a
probabilistic model in which the identity and attributes of simple visual elements were represented explicitly and learnt the
parameters of this model from unparsed, natural video sequences. After learning, the behaviour and grouping of variables
in the probabilistic model corresponded closely to functional and anatomical properties of simple and complex cells in the
primary visual cortex (V1). In particular, feature identity variables were activated in a way that resembled the activity of
complex cells, while feature attribute variables responded much like simple cells. Furthermore, the grouping of the
attributes within the model closely parallelled the reported anatomical grouping of simple cells in cat V1. Thus, this
generative model makes explicit an interpretation of complex and simple cells as elements in the segmentation of a visual
scene into basic independent features, along with a parametrisation of their moment-by-moment appearances. We
speculate that such a segmentation may form the initial stage of a hierarchical system that progressively separates the
identity and appearance of more articulated visual elements, culminating in view-invariant object recognition.
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Introduction

It is well established that the receptive fields (RFs) of neurons in

the early visual cortex depend on the statistics of sensory input and

can be modified by perturbations of those statistics during

development [1–6]. This relationship has been studied theoreti-

cally in many ways. Phenomenological models have focused on the

mechanisms of synaptic plasticity and axon-guidance, giving

mathematical or computational accounts of how Hebbian-like

learning rules may combine with sensory stimulation to drive the

formation of cortical response properties [7–12]. Constrained

optimality approaches look beyond the details of the synaptic

learning rule, and ask whether the observed pattern of cortical

responses has been selected to optimise a functional objective.

Many early studies of this type were founded on the information-

theoretic ideas of efficient coding and redundancy reduction

[13,14], and proposed that RFs had adapted to maximise the

transmission of information from the periphery [15–18]. More

recent work has generalised this approach to consider other

possible objective functions with different representational or

metabolic benefits. Two established alternatives are the sparseness

and temporal stability objective functions. In the sparse-coding view

neuronal properties are optimised so that neurons remain silent

most of the time, responding vigorously to only a limited subset of

all stimuli [19–21]. Thus every image is represented by relatively

few active neurons. Such a representation makes it easy to detect

‘‘suspicious coincidences’’ [22] and reduces energy consumption

[23]. It can also be related to the older objective of information

efficiency [19]. Under the temporal stability objective, neuronal

RFs are adapted so that their output firing rates vary slowly in time

[24–26]. To achieve stability, neurons must learn to be insensitive

to typical rapid transformations of their input, leading to invariant

representations that simplify recognition tasks [27].

The generative modelling approach takes a complementary

functional view. It is based on the Helmholtzian account of

perception as inverse inference (sometimes called analysis-by-

synthesis). That is, that the goal of the perceptual system is to infer

from sensation the environmental causes most likely to be

responsible for producing the sensory experience [28,29]. In this

view, sensory cortex implicitly embodies a model of how external

causes interact to form the sensory input (a causal generative model);

given a particular sensory experience, cortical processing inverts

the model to infer the most likely causes of the sensory activity.

Mathematically, this corresponds to an application of Bayes’ rule.

This general view that the brain carries out or approximates some

form of probabilistic inference is supported by a number of

psychophysical, anatomical, and physiological results (see [30,31]

for reviews).

Many models that have been formulated in terms of the

optimisation of an objective function could also be viewed as

implementing inference within an appropriate generative model:

the assumptions and structure of the model are implicit in the
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objective function. Thus, recoding based on the sparseness

objective corresponds to inference within a generative model in

which a number of independent, sparsely active causes combine

linearly to form the image [20]. Similarly, the goal of redundancy

reduction has led to models in which divisive normalisation

reduces second-order dependence between linear recodings of an

image [32]; in the generative view, this corresponds to joint

modulation of the variances of otherwise independent sparse

causes [33,34]. Finally, the temporal stability objective corre-

sponds to a model with causes that are independent of one

another, but stable or predictable in time [35].

A remarkable success of these functional models, whether

formulated generatively or in terms of a representational objective

function, is that, when used to learn an appropriate representation

from a set of natural images, they yield elements that mirror a

number of response properties of primary visual cortical neurons

(though some notable discrepancies do remain [16]). However,

despite this success, the generative models involved match only the

lowest-level statistics of natural images. Images generated from the

learnt models have naturalistic textural properties, but none of the

higher-level structure of the natural world. If this approach is to

provide insight into higher processing within the visual cortex then

appropriate structure must be introduced to the models.

In the present study we focused on one basic structural aspect of

the environment: The visual world is largely composed of discrete

objects, which each contributes a set of discrete visual features to

the image. Moreover, the objects, and therefore their associated

features, usually remain in view for some time, although their

precise appearances might change gradually due to changes in

viewpoint, lighting or in the object’s position. We thus formulated

a model in which the identity of the visual elements present was

signalled by a set of binary-valued variables, while their

appearances each evolved separately under the control of

continuous attribute variables. This independent control of

appearance stands in contrast to a related idea of ‘‘content’’ and

‘‘style’’ [36,37] where the transformation of appearance is usually

shared across the image or image patch. This comparison is taken

up in greater detail in the Discussion.

We fitted this model to natural video images, without using any

additional information about which elements were present or what

their transformations might be. We found that the model naturally

learned biologically plausible features, with low dimensional

manifolds of attributes. Many aspects of the learnt representation

corresponded closely to both anatomical and functional observa-

tions regarding simple and complex cells in the primary visual

cortex (V1). Thus, the model offers a functional interpretation for

the presence of two main classes of cells in V1. Complex cells

represent the probability of presence of an oriented feature, while

simple cells parametrise the precise appearance of the feature in

the visual input. We speculate that a similar representation in the

form of feature identities and attributes may continue up the visual

hierarchy, ultimately contributing to view-independent object

recognition.

Results

The identity/attribute model
Figure 1A illustrates the intuitions that underlie the general

structure of the model. The image at each point in time—

represented by a vector yt shown at the bottom of the figure—is

composed from a set of visual elements illustrated by the objects in

the top row. Only a small subset of all the possible elements

contributes to any one image. The identity of these active elements

is represented by a set of binary-valued variables bt,i, where bt,i~1
means that the ith element appears in the image at time t. If active,

the form of the element in the image may vary; for instance the

object may appear at any position or orientation. Each element is

thus associated with a set of possible contributions to the image,

which form a manifold embedded within the space of all possible

images. The configuration of element i at time t is then specified

by a vector at,i, with dimensionality equal to that of the manifold.

We call the elements of this vector, at,ij , the attributes of the visual

element. The shape of the manifold is described by a function Wi,

which maps this attribute vector to the partial image it describes.

For concreteness, consider the rightmost panel of Figure 1A,

which represents a model for a beverage can. The fact that the

variable bt,3 takes the value 1 indicates that the object is present in

the image at time t. The arrow indicates the point (encoded by

at,3) on the manifold where the can has a particular position and

viewpoint in the input visual space. If one of the attribute variables

were to correspond to the orientation of the can, changing its value

would trace a trajectory on the manifold, which would result in a

rotation of the object in the image space.

The set of partial images associated with all of the active

elements then combine through a function f , which could in

principle implement occlusion, illuminant reflection, or other

complex interactions, to yield the image:

yt~f Wi at,ið Þjbt,i~1f gð Þzet , ð1Þ

where we have included an additive, independent noise term et.

In this abstract form the model is very powerful, and provides

an intuitively satisfying generative structure for images. Unfortu-

nately, for manifolds and combination functions modelling the

appearance of entire complex objects and the interactions between

them as illustrated in Figure 1A, the task of inferring the elements

and their appearances from natural data is intractable. To explore

the potential of the framework we adopted a simplified form of the

Author Summary

When we look at a visual scene, neurons in our eyes ‘‘fire’’
short, electrical pulses in a pattern that encodes informa-
tion about the visual world. This pattern passes through a
series of processing stages within the brain, eventually
leading to cells whose firing encodes high-level aspects of
the scene, such as the identity of a visible object regardless
of its position, apparent size or angle. Remarkably, features
of these firing patterns, at least at the earlier stages of the
pathway, can be predicted by building ‘‘efficient’’ codes for
natural images: that is, codes based on models of the
statistical properties of the environment. In this study, we
have taken a first step towards extending this theoretical
success to describe later stages of processing, building a
model that extracts a structured representation in much
the same way as does the visual system. The model
describes discrete, persistent visual elements, whose
appearance varies over time—a simplified version of a
world built of objects that move and rotate. We show that
when fit to natural image sequences, features of the
‘‘code’’ implied by this model match many aspects of
processing in the first cortical stage of the visual system,
including: the individual firing patterns of types of cells
known as ‘‘simple’’ and ‘‘complex’’; the distribution of
coding properties over these cells; and even how these
properties depend on the cells’ physical proximity. The
model thus brings us closer to understanding the
functional principles behind the organisation of the visual
system.

Structured Model Reproduces V1 Organisation
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model, taking the mappings Wi at,ið Þ to be linear (equivalently, we

defined the attribute manifolds to be hyperplanes) and f to sum its

arguments. This allowed us to implement the selection of the

active elements by multiplication:

yt~
Xdb

i~1

Xda

j~1

wij at,ijbt,izet , ð2Þ

where the basis vectors wij parametrise the linear manifold Wi, and

db and da are the number of identity variables and the (maximum)

dimensionality of each attribute manifold respectively. In this

simpler form, we expect the visual elements to correspond to more

elementary visual features, rather than to entire objects (Fig. 1B).

The complete probabilistic generative model for image

sequences includes probability distributions over the identity and

attribute variables. We chose distributions in which objects or

features appeared independently of one another, and where the

probability of appearance at time t depended on whether the same

feature appeared at time t{1. The attributes of the feature

evolved smoothly, again with a Markovian dependence on the

preceding state. The formal definition of the probabilistic model is

given in Methods.

The parameters of the model specify the partial images

generated by each feature (represented by the basis vectors wij ),

the probability of each feature being active, and the degree of

smoothness with which the appearance of the feature evolves. All

of these parameters were learnt by fitting the model to natural

image sequences. In previous work on sparse coding the number of

basis vectors or components needed has been explored outside of

the model fitting procedure (for example [38]; but see [39]).

Crucially, here we were able to learn the dimensionalities of the

model—the numbers of visual elements and associated attribute

variables—from the data directly, using Bayesian techniques

described below and in Methods.

Probabilistic models are often fit by adjusting the parameters to

maximise the probability given to the observed data—called the

likelihood of the model. In practice, image models have often been

fit by maximising the data probability under settings of both the

parameters and the unobserved variables (in our case these would

be the identity and attribute variables), a procedure which may be

severely suboptimal [40]. Here, we adopted an iterative procedure

called Variational Bayes Expectation Maximisation (VBEM)

[41,42] to learn an approximation to the full probability distri-

bution over the parameters and unobserved variables implied by

the data—known as the VB posterior distribution. This posterior

provides a more robust estimate of the parameters, with con-

comitant estimates of uncertainty, and can be used to determine

the appropriate dimensionality of the model directly.

More complex models can always be adjusted to give higher

probability to any data set, and so the maximum likelihood

approach would always favour a model with greater dimension-

ality. This effect can lead to overfitting, where an overly complex

model is selected. However, because there are very many more

possible parameter settings in a complex model, any one such

parameter setting may actually be very improbable even though it

might fit the data well. Thus, when considering the probabilities of

parameter settings and models as in the Bayesian approach, a form

of ‘‘Occam’s Razor’’ comes into effect favouring descriptions

complicated enough to capture the data well but no more so [43].

For models similar to the one developed here, one consequence of

this ‘‘Occam’s Razor’’ is that the posterior probability distributions

on the values of any superfluous basis vectors concentrate tightly

about 0, effectively pruning the basis dimension away, and leaving

a simpler model. In this context, the effect has been called

Automatic Relevance Determination or ARD [42,44].

Bayesian estimation is well-defined only if a prior distribution—

that is, an initial probability distribution determined before seeing

the data—is specified. The prior on the basis vectors was of a form

often used with ARD, with a so-called hyperparameter determin-

ing the concentration about a mean value of 0. The prior

distributions on the parameters that determine the temporal

dependence of identity and attribute variables were broad enough

not to influence the posterior distribution strongly. The exact

definitions of the distributions over parameters, along with details

of the fitting algorithm, are given in Methods.

The model fit to natural images
We used this model to investigate the visual elements that

compose natural images, comparing features of the representation

learnt by the model when fit to natural image sequences to the

representation found in V1. The input data were a subset of the

Figure 1. Illustration of the identity/attribute model. A) Each visual element is represented by a binary-valued identity variable bt,i that
indicates its presence or absence, and by a manifold formed by the set of its possible configurations. A vector of attribute variables at,i identifies a
point on the manifold, and thus a partial image Wi at,ið Þ. Partial images corresponding to the active elements are combined through a function f and
corrupted by noise et to generate observations yt . B) The simplified model with linear mappings.
doi:10.1371/journal.pcbi.1000495.g001

Structured Model Reproduces V1 Organisation
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CatCam recordings [45], which consist of several-minute-long

video sequences recorded by a camera mounted on the head of a

cat freely exploring a novel natural environment. Temporal

changes in the CatCam videos are caused partly by moving

objects, but mostly by the animal’s own movement through the

environment. Cats make few saccades and use only small eye

movements to stabilise the image during locomotion [45], so that

the amplitude and frequency of spatial transformations in the

videos (translation, rotation, and scaling) is similar to that

experienced by the animals.

Computational constraints prevented us from modelling the

entire video sequence. Instead, we fit the model to the time-series

defined by the pixel intensities within fixed windows of size 20|20
pixels over 50 frames. We initialised the model with 30 identity

variables each associated with attribute manifolds of 6 dimensions

and let the algorithm learn an appropriate model size by reducing

the number of active attribute dimensions and identity variables by

ARD. We performed a total of 500 VBEM iterations, at each

iteration taking a new batch of 60 sequences of 50 frames,

randomly selected from the entire dataset. Further computational

details are given in Methods.

Given an observed image sequence, the model could be used to

infer a posterior probability distribution over the values of the

identity and attribute variables at each point in time. We

compared the means of these distributions to the firing rates of

neurons in the visual cortex. The use of the mean was necessarily

arbitrary, since there is no generally agreed theory linking

probabilistic models to neural activity. The brain may well

represent more than a single point from this distribution. For

example, information about the uncertainty in that value would be

necessary to weight alternative interpretations of the data. Once

the model had been fit to the data, however, we found that the

attribute variable distributions estimated from high-contrast

stimuli were strongly concentrated around their means. Thus,

many different choices of neural correlates would have given

essentially identical results. It is also worth mentioning here that

although the identity variables describe the presence or absence of

a feature in the generative model and are thus binary-valued, the

posterior probability of the feature being present (which is the

same as the posterior mean of the binary identity variable) is

continuous. Thus, neurons presumed to encode these posterior

means would respond to stimuli with graded responses, which

would take uncertainty about feature identity (e.g., under

conditions of low contrast) into account.

Figure 2A shows the VB posterior mean basis vectors learnt

from the CatCam data. Each row displays the basis vectors of the

attribute manifold corresponding to a single identity variable.

Since the manifold was a hyperplane, the set of possible feature

appearances was given by all linear combinations of the basis

vectors (Fig. 3D). For every manifold, the mean basis vectors

resembled Gabor wavelets with similar positions, orientations, and

frequencies, but different phases (Fig. 4A–C). Thus every point on

the manifold associated with a single feature corresponded to a

Gabor-like image element with similar shape, orientation, and

frequency, but variable phase and contrast. When presented with

a drifting sine grating of orientation and frequency similar to that

of the basis vectors, the probability of the feature being present

P bt,i~1jytð Þ was found to approach 1 rapidly, and then to remain

constant, while the means of attribute variable distributions

oscillated to track the position of the sine grating on the manifold,

as illustrated in Figure 3. Attribute variables thus behaved much

like simple cells in V1, in that they responded optimally to a

grating-like stimulus and oscillated as its phase changed, while

identity variables responded like complex cells, being insensitive to

the phase of their optimal stimulus. In electrophysiological studies,

the classification of neurons into simple and complex cells is done

using a relative modulation index [46,47], which is defined as the ratio

of the response modulations (F1) to the mean firing rate (F0) in

response to a grating with optimal orientation and frequency, but

varying phase. Cells that respond to phase changes with large

oscillations have relative modulation larger than 1 and are

classified as simple cells, while cells that are invariant to a phase

change are classified as complex cells. We computed the relative

modulation for the posterior mean values of the variables in our

model. All identity units were classified as complex (maximum F1/

F0 ratio 0.28) and all attribute units that had not been pruned

during learning were classified as simple (minimum F1/F0 ratio

1.45). The magnitude of relative modulations for attribute and

identity units is comparable to that found in simple and complex

cells in the primary visual cortex of macaque and cat, although the

population distribution is narrower [47] (Fig. S2). By contrast to

the standard energy model of complex cells [48], here complex

and simple cells did not form a hierarchy, but rather two parallel

populations of cells with two different functional roles: the former

coding for the presence of oriented features in its receptive fields,

the latter parametrising local attributes of the features (primarily

their phase).

To explore this connection further we compared the properties

of simple cell RFs in V1 as reported in the physiological literature

with the ‘RFs’ of the attribute variables. The RF of an attribute

variable was defined by analogy to the conventional physiological

definition. We fixed the posterior distribution over the parameters

of the model to that estimated by VBEM from the natural data,

and then examined the values of the attribute variables that were

inferred given coloured Gaussian noise input. The RF was defined

to be the best linear approximation to the mapping from this input

to the inferred mean attribute value, a procedure equivalent to

finding the ‘‘corrected spike-triggered average’’ or Wiener filter

[49] (see Methods). Although nonlinearities in the model and

inference meant that these RFs differed slightly from the basis

vectors associated with the attribute variables, we found them to

be visually indistinguishable (Fig. S1). We then computed the

orientation, spatial frequency and phase for the resulting RFs by

fitting a Gabor function to each of the filters (Methods; Fig. S1).

Figure 4 (A–C) shows the orientation, frequency, and phase for

each pair of RFs associated with the same identity variable (thus, a

feature with a 4-dimensional attribute manifold contributed 6

points to each graph). In the visual cortex, neurons performing

related computations appear to be co-located [50,51]. Since the

responses of related neurons are highly dependent given a visual

stimulus, this may reflect a computationally efficient solution that

minimises wiring length [11,52]. We compared our data to the

results reported in [53] for pairs of simple cells recorded from the

same electrode in area 17 of the cat visual cortex (Fig. 4D–F). In

both the model and physiological reports, the two orientations in

each pair of RFs agreed very closely; the frequencies slightly less

so; while no relation was apparent in phase.

The distribution of preferred frequencies and orientations in the

RFs of attribute variables are shown in Figure 2 B,D. The

distribution of frequencies is quite broad compared to that found

in models based on sparse coding or independent component

analysis (ICA) [16,54], where RF frequencies tend to cluster

around the highest representable value, and compares well with

the width of the distribution in simple cells (Fig. 2C) [55]. The

joint distribution of orientation and frequency (Fig. 2E) covers the

parameter space relatively homogeneously. Note that the CatCam

image sequences have less high-frequency power at horizontal

orientations, and this bias is reflected in the results. Figure 5 shows

Structured Model Reproduces V1 Organisation
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Figure 2. Basis vectors learnt from natural image sequences, and associated receptive field statistics. A) The posterior mean basis
vectors SwijT spanning the attribute manifold of identity i are shown in the i th row. Each basis vector has been normalised to improve visibility.
Empty grey boxes indicate basis vectors that were pruned by the algorithm. Identity variables are sorted by decreasing spatial frequency and the
basis vectors are sorted by increasing precision cij (see Methods). The linear RFs corresponding to these basis vectors were visually indistinguishable
from the vectors (Fig. S1). B,D) Distribution of preferred frequency and orientation of the RFs of attribute variables in the model. C) Distribution of
preferred frequency of simple cells in area 17 of the cat visual cortex [55]. E) Joint distribution of preferred orientation and frequency in the model.
doi:10.1371/journal.pcbi.1000495.g002

Structured Model Reproduces V1 Organisation
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the joint distribution of RF width and length in normalised units

(number of cycles) in our model and for simple cell RFs as reported

by Ringach [56,57] for area V1 in the macaque. The aspect ratios

are similar in both cases (again, contrasting with typical sparse

coding results [58]), although the model results tend to have larger

RFs, possibly again due to the particular content of the video.

The model was initialised using a representation that contained

6-dimensional attribute manifolds for each feature. However, in

the posterior distribution identified by VBEM, the probability of

the basis vectors corresponding to many of these dimensions being

non-zero vanished—that is, a model in which the image data were

described using fewer dimensions was found to be more probable.

In fact, the VB posterior representation was only slightly

overcomplete, with 96 basis vectors representing an 81-dimen-

sional input space, and with the dimensionality of most feature

manifolds lying between 2 and 4 (Fig. 6A). Given the proposed

identification of identity variables with complex cells, this gives a

prediction for the dimensionality of the image-subspace to which a

Figure 3. Interpretation as complex and simple cells. A) Basis vectors corresponding to one of the identity variables in the learnt model (row
14 in Fig. 2). B–D) Response to a drifting sine grating at the preferred orientation and frequency. The stimulus is presented starting at phase 0 deg,
and removed after it reaches phase 180 deg. B) Response of the identity variable, Sbt,14T. C) Response of the attribute variables, Sat,14 jT. D) Response
of the attribute variables as in C, displayed as a trajectory over the 3D attribute manifold.
doi:10.1371/journal.pcbi.1000495.g003

Figure 4. Pairwise statistics of the RF properties of attribute variables and simple cells. A–C) Distribution of orientation, frequency, and
phase for RFs computed for pairs of attribute variables associated with the same identity variable. D–F) Similar plots for pairs of simple cell RFs
recorded from the same electrode in area 17 of the cat visual cortex. Reproduced with permission from DeAngelis et al., 1999 [53]. Filled circles
represent data from adult cats (N = 45), open circles from kittens (N = 21).
doi:10.1371/journal.pcbi.1000495.g004

Structured Model Reproduces V1 Organisation
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V1 complex cell should be sensitive. The subspace-dimensionality

of a complex cell may be estimated by finding the number of

eigenvalues of the spike-triggered covariance (STC) matrix [59]

that differ from the overall stimulus distribution. One study [60]

has reported, for complex cells in the anaesthetised cat, a

distribution of dimensionalities that peaked sharply at 2, with

only a few complex cells being influenced by 1, 3, or 4 dimensions.

A more recent paper published by the same group has found a

broader distribution in the awake macaque [61]. An analysis of the

RFs of the identity variables made using an equivalent procedure

revealed a comparable distribution for our results (Fig. 6B). (The

number of significant eigenvectors returned by the STC analysis

can be slightly different from the dimensionality of the attribute

manifold because of the non-linear interactions with other

variables in the model.) The model distribution is skewed slightly

towards a larger number of stimulus dimensions; although this

may be because the sample in [61] included both simple and

complex cells. A second study [62] performed a similar analysis

using spatio-temporal stimuli and found 2 to 8 significant

dimensions for complex cells. This broad range of dimensionalities

agrees qualitatively with our results. Unfortunately, quantitative

comparison with this study is unreliable as the physiological RFs

were identified in effectively one dimension of space, and one of

time, while the basis vectors of the attribute manifolds span two

spatial dimensions, without a temporal aspect.

Temporal stability
A key aspect of our model is the temporal dependence of the

identity and attribute variables. To ask what role this temporal

structure had on the feature basis vectors found, we shuffled the

order of frames in the CatCam database, and then refit the model

using exactly the same procedure as before. When using

unshuffled data, the learning process adapted the feature

manifolds so that the inferred values of identity variables persisted

in time, while the inferred attribute variables changed smoothly. In

the shuffled data such a persistent and smooth representation

cannot be found. Instead, learning adjusts the attribute manifolds

so as to maximise the independence of the associated identity

variables, grouping together attribute dimensions that tend to co-

occur in single frames. This is similar in spirit to Independent

Subspace Analysis [63], or to a Gaussian Scale Mixture model

[33] with shared binary-valued scale parameters [64].

Figure 7 shows the basis vectors and pairwise distributions of

their properties found for the shuffled data. The VB posterior

distribution concentrated on a more overcomplete representation

(122 basis vectors representing 81 input dimensions) than for the

unshuffled data. Some manifolds were pruned away entirely, while

the majority of those that remained preserved the maximum

dimensionality of 6. The basis vectors still resembled oriented

features, although the fit of the linear RFs with Gabor wavelets

was worse on average than that obtained for the unshuffled video,

or seen in physiological data. The fractional error of fit (sum of

squares of the residuals divided by the sum of squares of the RFs)

was 0:13+0:09 for simple cells [53], 0:13+0:10 for the model

learnt from unshuffled data, and 0:21+0:12 in this case (Fig. 8)

(see Fig. S1 and S3, for the reverse-correlation filters and Gabor

fits). As shown in Figure 7 (b–d), attribute variables associated with

a single identity still agreed in orientation, but not in phase.

However, in contrast to the model learnt from unshuffled

sequences and to the physiological results, there was much poorer

correspondence in spatial frequency (compare Fig. 7C to Fig.

4B,E). According to their relative modulation index, identity

Figure 5. Receptive field aspect ratio. Comparison between the
joint distribution of normalised RF width and length in our model (blue
circles) and as reported by Ringach [56,57] for cells in area V1 in the
macaque (red crosses).
doi:10.1371/journal.pcbi.1000495.g005

Figure 6. Dimensionality of the attribute manifold. A) Distribution of the dimensionality of the attribute manifold. Attribute filters with norm
w10{8 were taken to be active. B) Number of significant eigenvalue in an STC analysis as reported in [61] (black) and for our model (blue). The
analysis in [61] did not distinguish between simple and complex cells.
doi:10.1371/journal.pcbi.1000495.g006
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Figure 7. Basis vectors and statistics learnt from time-shuffled data. A) Basis vectors wij as in Fig. 2. B–D) Distribution of orientation,
frequency, and phase for pairs of attribute variables associated with the same feature. Cf. Fig. 4. (Data appear clumped in B because of the high-
dimensionality of manifolds. Each 6-dimensional feature manifold contributes 15 points to the plot.)
doi:10.1371/journal.pcbi.1000495.g007
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variables would still be classified as complex cells (maximum F1/

F0 ratio 0.63), and attribute variables as simple cells (minimum

F1/F0 ratio 1.34).

Despite finding a larger number of basis vectors, the model

described a larger proportion of the shuffled data as noise, thereby

fitting them more poorly. We evaluated the probability given to 50

new batches of 3000 frames each by the parameter distributions

learnt from the shuffled and unshuffled data. As estimated by the

VB approach, the probability assigned by the unshuffled model

was more than e10000 times greater (more precisely, the free-

energy—a lower bound on the log probability that is maximised

by the VBEM algorithm—was larger by 1:07:104+0:2:104

NATS, i.e. between 1.7% and 4.5% greater; Methods). Overall,

when deprived of temporal structure in the observations, the

algorithm converged to a worse model of the video, and one which

was less similar to the physiological data.

It is interesting to note that despite these deficiencies in the

representation learnt from shuffled sequences, the basis vectors of

the attribute variables still resembled simple cell RFs. This

observation stands in contrast to results from previous models of

complex cells based on temporal stability, which had assumed a

hierarchical organisation similar to the classical energy model

[25,26]. In those models the only signal available to shape the

simple cell RFs derived from the temporal stability imposed on the

corresponding complex cells. If this signal were removed by

shuffling the input frames, the simple cells would be unable to

develop any sort of organised response. In our model, however,

the independence effect discussed above was still able to provide a

learning signal for the attribute manifold in the absence of

temporal stability. Thus, we predict that even if stimulus temporal

correlations were disrupted during learning, for example by

rearing animals in a strobe-lit environment, simple-cell responses

would still emerge; although the receptive fields (defined by reverse

correlation) would fit Gabor wavelets less accurately, and

anatomical subunits would be less well-grouped in spatial

frequency. In fact, experimental evidence from Area 17 in

strobe-reared cat seems to support our results. After strobe rearing

at an 8 Hz frequency, the spatial RF structure of simple cells in

area 17 remained intact except for their width, which was found to

increase; and for direction selectivity, which was mostly lost [65].

Studies performed with lower strobe frequencies (0.67–2 Hz)

found other changes in the RF properties, including an increase in

the number of cells classified as non-oriented, a slight decrease in

orientation selectivity, and a reduction of the frequency of

binocular cells [66]. In addition, given the increase in the

dimensionality of the attribute manifold, we predict that an STC

analysis of complex cells in strobe-reared animals would show a

larger number of relevant dimensions.

Discussion

We have investigated a new generative model for images which

makes explicit the separation between the identity of a visual

element and the attributes that determine its appearance. This

structure within the model makes it possible to extract and bind

together attributes that belong to the same visual element, and at

the same time to construct an invariant representation of the

element itself. We modelled identity with a set of binary-valued

variables, each coding for the presence or absence of a different

feature. Their appearances were described by manifolds, para-

metrised by a set of attribute variables. Both identity and attribute

variables were assumed to exhibit temporal dependence within

image sequences. We were also interested in determining the size

of the model, i.e., the number of attribute and identity variables

required to optimally describe the input data. This was achieved

by performing a Bayesian analysis of the model, which avoids

over-fitting and involves defining an appropriate prior distribution

over the generating basis vectors. As a result, after convergence of

an iterative algorithm, only the basis elements needed to effectively

match the data remained active and all redundant attribute

directions were pruned away, avoiding overfitting the image data.

The algorithm was applied to natural image sequences in order to

learn a low-level representation of visual scenes. The filters

associated with the individual attribute variables were shown to

have characteristics similar to those of simple cells in V1. The RFs

of attributes associated with the same identity variable had similar

positions, orientations, and frequencies, but different phases. As a

consequence, the corresponding identity variable became invari-

ant to phase change and behaved like a complex cell. In the

standard energy model of complex cells and in several previous

functional models, complex and simple cells form a hierarchy.

Simple cells have the role of subunits and are regarded as an

intermediate step on the way to the complex cell. Their phase-

dependent information is then discarded as a first step towards the

construction of an invariant representation. Here complex and

simple cells do not form a hierarchy, but rather two parallel

interacting populations of cells with two different functional roles:

the first coding for the presence or absence of oriented features in

its RFs, the latter describing local parameters of the features

(mainly their phase). A formal analysis of the model reveals that,

indeed, the interaction between identity and attribute variables in

our model is richer than in the energy model. In addition to a

quadratic term similar to the one in the energy model inside an

exponential, the interaction includes a divisive normalisation term,

and dependence on the statistics of natural input and the prior

probability of the feature encoded by the identity variable being

present (Text S1). Intriguingly, some physiological data [67] and

biophysical models [68,69] have also suggested a non-hierarchical

relationship between simple and complex cells. However, these

results have suggested a spectrum of ‘‘simple-’’ to ‘‘complex-like’’

behaviour within a single population. By contrast, our view

preserves the notion of two distinct classes of cell with different

response property and computational role, but which are

organised in parallel rather than hierarchical populations.

Figure 8. Distribution of the fractional error of fit. Histogram of
the fractional error of fit (sum of squares of the residuals divided by the
sum of squares of the RFs) in simple cells as reported by DeAngelis et al.
[53] (black), in the model trained with natural data (blue) and in the
model trained with time-shuffled data (red).
doi:10.1371/journal.pcbi.1000495.g008
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In Results, we showed that properties of RFs learnt within our

model agreed with a broad range of existing physiological data. A

further aspect of the model could be tested if it were

experimentally possible to identify and record simultaneously

from a complex cell and the simple cells that form the subspace

related to it. First, a direct consequence of the non-hierarchical

organisation of complex and simple cells is that increasing the

probability of a feature being present in the visual input by

stimulating the complex cell should result in the corresponding

simple cells becoming active (as they seek to describe the

attributes of the feature whose presence has been asserted by

activation of the complex cell). This is in contrast to the

behaviour implied by the feed-forward energy model, where

complex cells would not influence the activity of simple cells. A

similar test might exploit the temporal persistence in the identity

variable corresponding to the complex cell. Consider two

sequences of visual stimuli which both end in a frame well-

matched to the RF of one of the simple cells. If the preceding

frames had matched the RFs of the other simple cells associated

with the same complex cell, and therefore had activated the

complex cell, the temporal persistence within the corresponding

identity variable should maintain that activation and thereby

facilitate the response in the simple cell. Conversely, if the

preceding stimuli had fallen outside the feature manifold, the

simple cell might be less strongly activated.

The computational power of a class of models similar to the one

in this paper has been investigated by Tenenbaum and Freeman

[36], and Grimes and Rao [37]. These models were based on the

bilinear interaction between two sets of variables: content variables,

which described the appearance of the input data (e.g., a

prototypical handwritten digit, or the appearance of an image

patch in a model of visual input), and style variables, which

parametrised transformations of the content (e.g., the style of the

digit or global translations of the patch). Tenenbaum and Freeman

[36] showed that the rich nonlinear interactions between these two

factors facilitated classification and extrapolation in a series of

experiments using spoken vowels, letters in different fonts, and

faces in different poses. Grimes and Rao [37] assumed a sparse

prior distribution over content and style variables, and applied the

model to translated natural images. The learnt basis vectors were

shown to represent oriented features and to be largely invariant to

local translation. Although learning was based on natural images,

content and style play mathematically symmetric roles within these

models, and thus could not be identified from the images alone.

Instead, the content and style variables were partially fixed, so that

all that needed to be learnt were the corresponding basis vectors

and transformations. In this paper, the semantic difference

between the identity and attribute variables, and the temporal

persistence assumption, meant that the model could be learned in

a completely unsupervised fashion from natural movies. In our

model, the input images result from the combination of multiple

visual elements, identified by the identity variables. The

appearance and transformation of each of these elements is

separately encoded by the associated attribute variables. Thus, the

role of the attributes is a combination of the role of content and

style variables in the previous models.

In the model described here, the appearance manifolds

associated with each feature are linear, and they combine

additively to form the image. These choices are a matter of

computational tractability, and have two main limitations. First,

the additive combination function f is unable to model effects such

as occlusion, shadowing, or reflective illumination. Linear models

like sparse coding and ICA also assume the same kind of linear

superposition, and it is unclear at this stage how much a more

realistic f would influence the results at the level of small image

patches [70]. Second, the linear feature manifolds do not allow

global transformations of feature appearance, such as translation

or rotation, to be captured by a single attribute dimension. Each

attribute is, at best, able only to model a local, linearised version of

the transform. However, global properties may still be approxi-

mated using several attribute dimensions, or by a hierarchical

model in which a higher-order feature with a global translation

attribute generates local features where needed at a lower level (cf.

[71]). Another simplification concerns the temporal aspect of V1

RFs. As in most computational models of V1 neurons, we did not

attempt to match the temporal behaviour of early visual neurons,

again because of computational constraints. Currently, the model

defines a Markov temporal dependency for the variables in the

model, which is intended to capture a simple timescale of

persistence. This temporal model implicitly defines a spatio-

temporal receptive field (STRF) for attribute and identity

variables. However, the Markov assumption does not allow the

model to express the more complex temporal behaviours observed

in V1 neurons, such as direction selectivity. Instead, the resulting

STRF is formed by the spatial RF, as shown in Fig. S1 B, decaying

exponentially in time. In previous work, temporally extended RFs

have been modelled by augmenting the input data with the pixel

intensities of patches at neighbouring times, and then building a

model of the augmented data set [26,72]. However, from a

generative point of view this does not seem to be appropriate, as

the model would independently generate pixel intensities in

overlapping temporal windows, which would give multiple

inconsistent proposals for the pixels values at any particular time.

In our case, we would need to use a more complex model of

temporal dependencies, for example by allowing temporal

dependencies between attribute variables in the prior (i.e., by

defining matrix Li in Eq. 9 to be full instead of diagonal, or by

introducing a non-Markov structure).

It may be possible to extend the model developed here so as to

represent more complex visual elements. One approach is

illustrated in Figure 9: In the schematic, high-level identity

variables may represent entire objects. These generate lower-order

elements, like parts of an object or image features. For example,

the activation of an identity variable corresponding to a face would

activate, with high probability at the lower level, variables coding

for the presence of eyes, nose, and mouth. Similarly, high-level

attributes, like the size and viewpoint of the face, would influence

low-level attributes such as the position of its individual parts, and

may also determine which parts are visible. The hierarchy may

then be repeated down to individual image features. Such a

hierarchical organisation would be closely related to the

hierarchical nature of the environment. The connections between

higher-order and lower-order identity variables, for example,

would encode whole-part relationships, while the connections

between higher- and lower-order attributes would encode

structural constraints between the individual parts necessary to

form the whole. Such a structure would allow the visual system to

benefit from the advantages of a recognition-by-components

architecture, including the ability to reuse known parts to form

novel objects, and to express the wide range of possible

configurations of articulate objects [71,73]. The computer vision

community has long been interested in the analysis of images for

the categorisation and recognition of objects. A recent trend in the

field has been to build hierarchical generative models of objects

composed of sub-parts; this line of research has found that such a

hierarchical representation can indeed increase the performance

of the algorithm [74–77]. These computer vision models generally

start by describing the image using a standard, fixed set of features,
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and pre-specify the transformations that these can undergo; the

object model may also be pre-specified [74] or may be learnt from

data [75–77]. Moreover, categorisation is typically supervised.

Our approach is in many ways complementary, in that it starts

from the bottom up, and requires no supervision (see [70,78,79]

for comparable bottom-up computer vision approaches). Our

results show that it is possible to learn simple but meaningful

features from natural images, and at the same time learn the

transformations that they are subject to in natural vision. It

remains to be shown, however, whether our method can be

extended successfully to represent more complex objects.

Algorithms related to the temporal stability principle have also

been applied with some success to learning a high-level object

representation [27,80–82]. In [80,82], the representation is

invariant to frequent transformations, such as translation, and

the corresponding attribute information (e.g., position) is discard-

ed. In [27,81] it is shown that the representation learnt by the Slow

Feature Analysis algorithm preserves the attribute information.

However, the model does not make any semantic distinction

between variables carrying these two kind of information, so that a

readout system downstream of the sensory cortex would need an

additional criterion in order to access them. We believe that the

additional structure in our model will help in extracting a high-

level representation of objects from natural scenes. Moreover, a

readout system would have access to more structured information

about the environment, and could access differentially the identity

information – for example in recognition tasks, as identity is

invariant to all possible appearances parametrised by the attributes

– and the attributes – for example, to guide reaching behaviour.

In the introduction we discussed how it is possible to interpret

functional models based on constrained optimisation of an

objective function from a generative perspective. From this point

of view, concentrating on a single computational objective appears

rather simplistic, given the complexity underlying any natural

scene. We argued that by developing models in the generative

framework, one is able to develop models of vision that are closer

to the true visual generative process. A common critique of the

generative approach is that it seeks to model every aspect of its

input, while the visual system might be interested in extracting

only a behaviourally relevant subset of the sensory information.

This argument implicitly assumes that it would be easier and more

useful for the visual system to extract only relevant information

(e.g., object position) while ignoring ‘‘nuisance’’ information (e.g.,

light reflections). On the other hand, the representation formed by

the visual system has to be used for many different tasks, and as

such it is almost impossible to decide a priori which information

should be discarded. A complete generative account of the visual

data is more flexible as it identifies and separates all the different

causal influences that contribute to the scene, and makes them

available for context-specific processing. By contrast, a system that

selectively discards parts of the visual signal might find it difficult to

adapt when that discarded information became relevant (e.g., in

an hypothetical task where light reflection predicts reward).

Moreover, it is in principle possible to define partial generative

descriptions of the visual signal. The key is that generative models

explain their input probabilistically up to a certain level of ‘‘noise’’

(e.g., the term et in Eq. 1). The noise term includes genuine noise

in the input and more generally all aspects of the input that the

model can not capture, or is not interested in capturing. Thus, by

building a more complex model of noise, a generative model could

selectively describe only the subset of aspects of the stimuli that it

considers relevant: Suppose that in one task, all that was important

was the identity of a visual feature, not its specific appearance.

Then the attributes in our model would be regarded as ‘‘nuisance’’

variables. Ideal inference about the identities would proceed by

integrating over the uncertainty in the ‘‘nuisance’’ variables – in

essence, they would form part of a complex noise model. This

integration may be explicit (and possibly approximate) as in our

VB implementation. It may also be implicit in a model with a

more flexible definition for the noise (e.g., by learning different

noise parameters for different dimensions).

This paper has presented a first step toward including

constraints regarding the structure of the visual environment in

computational models of vision. By taking into account the

conceptual distinction between identity and attributes of visual

elements, we were able to match more closely the physiological

and anatomical organisation of V1. Further steps in this direction

will hopefully lead us toward the development of a more complete,

probabilistic account of visual inference.

Methods

Model specification
The generative model describes the probability of a sequence Y

of T image patches, each one described by a vector of pixel

intensities Y~ ytf gt~1...T , in terms of T|db binary-valued identity

variables B~ bt,if gt~1...T ,i~1...db
and T|db associated attribute

vectors, each of dimensionality da, A~ at,if gt~1...T ,i~1...db
.

The generative process maps these hidden identity and attribute

variables to observations according to Eq. 2. Assuming Gaussian

noise with variance s2
y,k along observed dimension k, correspond-

ing to a diagonal covariance matrix Sy, the probability of

observing an input sequence conditioned on a setting of the hidden

variables is:

P Y jB,Að Þ~ P
T

t~1
P ytj bt,i,at,if gi~1...db

� �

~ P
T

t~1
N yt

X
i,j

wij at,ij bt,i,Sy

 !
,

ð3Þ

where N x m,Sð Þ denotes a Gaussian distribution over x with mean

m and covariance S.

The prior distributions over the variables were defined

according to the intuitions described in the introduction, namely

that visual elements should appear independently of one another

and for extended periods of time, and their appearances should

vary smoothly. This was translated into a prior distribution over

identity and attribute variables as follows. Identity variables were

Figure 9. Schematic illustration of a two-layer identity/
attributes hierarchy. The dotted line represents cases where the
attributes influence the presence of objects parts. For example, in the
case a face seen from behind, nose, mouth, and eyes would not be
visible and thus would not need to be generated.
doi:10.1371/journal.pcbi.1000495.g009
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modelled as independent, binary Markov chains with initial-state

probabilities p0 and a transition matrix T comprising probabilities

Tb,a:

P Bð Þ~P
i

P b1,ið Þ P
tw1

P bt,ijbt{1,ið Þ
� �

ð4Þ

P b1,i~1ð Þ~p0 ð5Þ

P bt,i~ajbt{1,i~bð Þ~Tb,a , a,b[ 0,1f g : ð6Þ

Our intuition that objects are persistent in time is respected

when the probability of remaining in the current state is larger

than that of switching, i.e. when the transition probabilities T0,0

and T1,1 are larger than 1=2. While comparable results may have

been obtained by setting these parameters to a suitable value, we

chose to remain within the Bayesian approach and instead

expressed our belief as a prior distribution over values of Tb,a

(specified below). The attribute variables are continuous and their

evolution was modelled by Linear State Space Models with initial

variances s2
a, transition matrices Li and transition variances Si:

P Að Þ~P
i

P a1,ið Þ P
tw1

P at,ijat{1,ið Þ
� �

ð7Þ

P a1,ij

� �
~N a1,ij

0,s2
a

� �
, ð8Þ

where at,ij is the jth element of at,i, and

P at,ijat{1,ið Þ~N at,i
Liat{1,i,Sið Þ: ð9Þ

The matrices Li~diag lij

� �
and Si were defined to be diagonal,

so that attributes were uncorrelated; and were related by the

equation Si~1{L2
i , so that the variance of the attribute variables

was 1 in the prior [35]. This imposed an absolute scale, eliminating

rescaling degeneracy. Slowly-varying variables have a positive

autocorrelation, and would thus have parameters lij between 0 and

1, with larger values corresponding to slower variables. Again, we

expressed the belief in smoothness softly, by imposing a suitable

prior distribution over these parameters (see below).

The priors on the basis vectors W~ wij

� �
i~1...db ,j~1...da

were

Gaussian, with precision hyperparameters C~ cij

� �
:

P Wð Þ~P
kij

P wkij

� �
~P

kij
N wkij

0,c{1
ij

� �
: ð10Þ

These zero-centred Gaussian prior distributions discouraged

large components within the basis vectors. The widths of the

distributions are set by the cij which were learnt alongside the

other parameters. This choice of prior [35] leads to a pruning of

basis vectors during learning, through ARD [42,44]. Since the

basis vectors of redundant attribute dimensions are free to match

the prior, and as this is centred on the origin, they are driven to

zero. The precision hyperparameter can then diverge to infinity,

effectively eliminating the basis dimension from the model. As a

result, only the dimensions of the attribute manifold that were

required to describe the data without overfitting remained active

after learning.

For the remaining parameters we also chose conjugate priors.

Conjugacy means that the posterior distribution has the same

functional form as the prior, resulting in tractable integrals.

Conjugate priors are intuitively equivalent to having previously

observed a number of imaginary pseudo-observations under the model.

By choosing the number of pseudo-observations we can regulate

how informative the prior becomes. In summary, the prior over the

image noise precision 1
.

s2
y,k was taken to be a gamma distribution

with parameters dk,ek, the prior over the transition matrix T was

Dirichlet with parameters u Tð Þ, and the prior over Li was a

nonstandard distribution (due to the coupling between mean and

variance of at,i) in the exponential family that required 4

hyperparameters to be specified (gi,f i,gi, and hi). The complete

directed graphical model showing the dependencies between

variables is depicted in Figure 10.

Learning algorithm
In the Bayesian formulation the parameters of the model are

formally equivalent to hidden variables, differing only in that their

number does not increase with the number of data points. The

goal of learning is then to infer the posterior joint distribution over

variables and parameters given the data:

P B,A,HjY ,Jð Þ , ð11Þ

where H indicates the ensemble of all parameters and J all hyper-

parameters (in the following for simplicity we will omit the

dependence on J). Although this distribution is intractable (as in

most non-trivial models), it is possible to use a structured variational

approximation to obtain a tractable alternative. The idea is to

introduce a new factored distribution Q B,A,Hð Þ in which some

dependencies between the variables are neglected, while keeping

the rest of the distribution intact. Learning proceeds by functional

maximisation of the free energy, i.e., the lower bound on the

marginal likelihood

log P Yð Þ§
ð

Q B,A,Hð Þ log
P Y ,B,A,Hð Þ
Q B,A,Hð Þ dB dA dH : ð12Þ

The maximisation over Q B,A,Hð Þ can be understood as the

minimisation of the Kullback-Leibler divergence between the

factorised and the real posteriors KL Q(B,A,H)jjP B,A,HjYð Þð Þ
[42,83].

The key factorisation underlying the VBEM algorithm

Beal2003 is the one between hidden variables and parameters

Q B,A,Hð Þ~Q B,Að ÞQ Hð Þ : ð13Þ

Given this basic factorisation, the algorithm proceeds in a way

similar to Expectation Maximisation (EM) by iteratively inferring

the hidden variable distribution Q B,Að Þ given the observations

and averaging over the parameters (E-Step); and the parameter

distribution Q Hð Þ given the observations and averaging over the

hidden variables (M-Step). We needed two further factorisations to

achieve a tractable algorithm: one between the distribution over

basis vectors and input noise, and one between different identity
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variables at different times (i.e., Q B,Að Þ~Pt Pa Q bt,a,at,að Þ).
Note that these approximations do not completely eliminate

dependencies between the factorised variables, which still

influence each other through their sufficient statistics (for example

their means). In particular, the method is much less constraining

than the commonly used approach of Maximum A Posteriori

(MAP) estimation, where the entire posterior distribution is

collapsed to a single point by taking the values of variables and

parameters at the mode. Although the derivation of the learning

equations requires long algebraic computations, they are derived

from the VBEM setting without any noteworthy deviation, and are

described in Text S2.

Computational details and hyperparameter values
The input data to our model were taken from the CatCam videos

[45]. Since some sections of the video contain recording defects (block

artifacts or pixel saturation), we selected a subset that showed minimal

distortion (labelled b0811lux in the dataset). Observations Y
comprised the time-series of pixel intensities in fixed windows of size

20|20 pixels. The windows were placed to cover (without overlap)

the central 200|200 region of the video. In this way we obtained a

total of about 300,000 frames. The input data were preprocessed by

removing the mean of each frame to eliminate global changes in

luminance and to compensate for the camera’s global gain control

mechanism. The data were then reduced in dimensionality from 400

to 81 dimensions with equalised variances, using principal compo-

nents analysis (PCA). Due to the self-similar structure of natural

images [22], this was spatially equivalent to applying the model to

9|9 patches. The resulting vectors, however, were smoother and

easier to analyse, since the square shape of the pixels became less

important. Moreover, starting with larger patches allowed us to

capture the temporal correlations that arose during faster movements

of the cat (e.g., fast head movements), which would have been

impossible with small patch sizes. The variance equalisation

(common in image modelling) helped with convergence. It is unlikely

to have affected the final result as it is a linear operation for which the

learning algorithm could easily compensate. This has been confirmed

in a run performed without dimensionality reduction (Text S3).

We initialised the model with 30 identity variables (db~30) and

attribute manifolds of 6 dimensions (da~6) and let the algorithm

learn the model size by reducing the number of active attribute

dimensions by ARD hyperparameter optimisation. The mean

of the basis vectors wij were initialised at random on the unit

sphere, and the priors over the parameters were chosen to be

Figure 10. Directed graphical model representing the distribution of a single video frame. Circles represent random variables, and
squares represent hyperparameters; the grey-shaded circle represents the observed image; light grey nodes and symbols represent variables
associated with neighbouring frames. The variables within the dashed rectangular box are those associated solely with the t th frame, and are
replicated T times (the length of an input sequence) in the complete model.
doi:10.1371/journal.pcbi.1000495.g010
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non-informative for the input noise (1 pseudo-observation,

s2
y,k~ 0:3ð Þ2) and more informative for the dynamic parameters

(2000 pseudo-observations), favouring persistent identity varia-

bles and slowly-varying attributes (ST0,0T~0:9,ST1,1T~0:8,

Sli,1:da
T~ 0:3, . . . ,0:1ð Þ). (Although we have no reason to think

that attribute variables should have different timescales, the small

differences in the value of l kept the model from being degenerate,

in the sense that every rotation of the identity subspace would

otherwise be equally optimal.) We performed 500 VBEM

iterations, at each iteration using a new batch of 60 sequences of

50 consecutive frames taken at random from the entire dataset.

After 300 iterations we started learning the precision parameters

cij , updating their values every 20 iterations.

Parameters were identical for the fit to shuffled data, the only

difference being that the selected frames were not consecutive in

time. At the end of the VBEM iterations we compared the free

energy of the original model to that of the time-shuffled model on

a novel set of 50 batches of 3000 frames each, taken from the

CatCam data as described above. The free energies were

computed for each batch separately.

We also ran one additional fit (not shown) to check that the

results obtained for shuffled data were not strongly influenced by

our choice of priors on lij and Tb,a, for which we took

Sli,jT~0:01 with 1 pseudo-observation, and Tb,a = 0.5 with 1

pseudo-observation. The results obtained were very close to those

shown for the shuffled data.

RF fitting
In order to compare the properties of the learnt units to those of

cortical neurons we proceeded in a way similar to that reported

in the experimental literature. In electrophysiological recordings

one does not have access to the complete input-output function

of a neuron, h yð Þ, or to the equivalent of our basis functions, wij .

Typically, one computes the best linear approximation h yð Þ&ŵwT y
to the input-output function by spike-triggered averaging [49,85].

We derived the linear RFs ŵwij of the attribute variables by

presenting coloured noise stimuli with the same spectrum as

natural images and computing the correlation between stimulus

and response. In practice, this was done by doing standard white-

noise reverse correlation in the PCA space. Since the dimension-

ality of the image patches has been equalised for variance, white-

noise stimuli in the PCA space have the same spectrum as natural

images when projected back to the image space.

Given coloured noise data ŷyn, we inferred the posterior

distribution of identity and attribute variable using the VBEM

algorithm, where the distribution over parameters was kept fixed

to the one inferred during the learning phase (i.e., we only

performed the E-step of the algorithm). The signal was reverse-

correlated with the mean of the distribution over each attribute

variable,

ŵwij~
1

N

XN

n~1

ŷynSan,ijTQ : ð14Þ

For visualisation and analysis, the filters were projected back in

image space using the pseudoinverse of the PCA matrix.

Optimal parameters for the RFs derived in this way were

computed by fitting a Gabor function to them. Gabor functions

are defined as

g x,y; A,x0,y0,a,f ,s1,s2,wð Þ

~A:exp {
1

2

x’2

s2
1

z
y’2

s2
2

� �� �
cos 2pfx’zwð Þ ,

ð15Þ

where

x’~ x{x0ð Þcosaz y{y0ð Þsina ð16Þ

y’~{ x{x0ð Þsinaz y{y0ð Þcosa : ð17Þ

The parameters A,x0,y0,a,f ,s1,s2,w are the amplitude, coordi-

nates of the centre, orientation, frequency, standard deviations of

the axes of the Gaussian envelope, and phase of the grating. To

avoid local minima we performed multiple fits starting at 10

different orientations between 0 and p and 10 different phases

between 0 and 2p, and kept the parameters with minimal mean

squared error for all 100 fits. Phase differences in the RFs of

attribute variables (Fig. 4C, 7D) were estimated by fixing the

global orientation and frequency of an entire attribute manifold to

the one of the best fitted RF (minimal mean squared error), and re-

fitting only the phase parameter to the RFs of the other attribute

variables. The normalised widths and lengths reported in Figure 5

were defined as the product of the frequency of the Gabor function

and the standard deviations of the axes of the Gaussian envelope,

i.e., s1f and s2f [56].
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