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Abstract 

 
The treatment of pancreatic cancer is challenging. Patients are often beyond curative 

surgical therapy and palliative treatment with chemotherapy provides limited benefit. 

New markers of cancer activity and therapeutic targets are required. 

This thesis has firstly reviewed the available literature on Tumour M2-PK, a dimeric 

form of M2 isoenzyme of pyruvate kinase, in GI cancer and carried out a meta-analysis 

of the clinical data on pancreatic cancer. Experimental work evaluated the measurement 

of M2-pyruvate kinase in human pancreatic cancer cell lines with altered 

microenvironment (hypoxia, acidic pH or glucose-deprived condition). Tumour M2-PK 

level was measured using ELISA, total M2-PK by immunoblotting and pyruvate kinase 

activity by spectrophotometric analysis. Apoptosis or necrosis was detected by measuring 

active Caspase 3/7 and 8, Bcl-2, Bax and Annexin V staining. Localisation of M2-PK in 

pancreatic cancer cell was studied by immunocytochemistry. 

The clinical review has shown that Tumour M2-PK is not an organ-specific marker of GI 

cancer but is elevated with positive predictive value of 86–88% in gastro-oesophageal 

and colorectal cancers. In pancreatic cancer the diagnostic odds ratio (DOR) of an 

elevated Tumour M2-PK was similar to those of CA19-9 with overall sensitivity of 94% 

and specificity of 55%. Higher levels of Tumour derived M2-pyruvate kinase were 

observed in Colo 357 cell lines compared to Panc-1 cells. Exposure of Colo 357 cells to 

altered culture conditions resulted in decreased cell proliferation accompanied by 

elevated Tumour M2-PK levels with unchanged total M2-PK levels suggesting tetramer- 
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dimer switch-over, which was confirmed by the corresponding change in the pyruvate 

kinase activity. No correlation of Tumour M2-PK level or PK activity with apoptotic or 

anti-apoptotic markers was observed. Immunocytochemistry suggested M2-PK 

localisation to intracellular membrane-bound structures with no translocation to nucleus 

or mitochondria under altered tumour microenvironment. 

Conclusion: Tumour M2-PK is a potential marker of pancreatic cancer. Altering the 

tumour microenvironment causes a switch to measured M2-PK levels. This may allow 

cells to overcome cell apoptosis and could be a pathway facilitating tumour survival. 

 

 

 

 

 



 6 

Acknowledgment 

 
The experimental work was done in the tissue culture laboratory in the University 

Department of Surgery at the Royal Free Hospital, University College London. I am 

grateful to my supervisors, Prof. Brian Davidson and Prof. Barry Fuller, for their 

supervision, help, guidance and constant encouragement during my study.           

I would also like to thank the Department of Surgery staff, Kevin Sales, Sas Dijk and Jeff 

Punshon, for their help during the course of my work in the Department and Shiyu Yang 

for his personal support and advice on Western blotting. I would also like to thank Dr 

Yan Williams Tannmann from Department of Neurosciences to allow me to carry out 

experiments in his laboratories and help with immunocytochemistry. I would also like to 

thank Dr N. Lemoine from Institute of Cancer, Barts and The London School of 

Medicine and Dentistry, London, for gifting Colo 357 cells to our laboratory. I also 

sincerely appreciate the support from Department of Clinical Biochemistry especially Dr 

Michael Thomas and Mr J.W. Persuad who allowed me to use their laboratory for ELISA 

test along with their essential guidance. One of the most important contributors to this 

thesis has been the intellectual and personal support offered by my collaborator, Dr 

Sybille Mazurek, who kindly donated me DF4 anti-tumour M2-PK monoclonal antibody. 

I am also thankful to Ivor Smith, managing director, ScheBo Biotech (UK branch) for 

supplying Tumour M2-PK ELISA kit and organising my training in ELISA at Giessen, 

Germany. I am grateful to my colleague for all their timely help and advice.  

 



 7 

 

 

Thesis Description 

 
Chapter 1 is an overview on glycolysis, tumour biology and tumour metabolism with 

reference to Tumour M2-PK. There is also a brief synopsis of the importance of tumour 

microenvironment in pancreatic cancer in this chapter. 

Chapter 2 Tumour M2-PK is discussed as a cancer marker in various GI cancers. A 

clinical review of all the available studies on Tumour M2-PK in GI cancer is carried out. 

Chapter 3 The studies on Tumour M2-PK in pancreatic cancer are reviewed and meta-

analysed. A diagnostic odds ratio (DOR) was calculated for each study from the available 

data and pooled together to give a summary estimate DOR for Tumour M2-PK and 

CA19-9. An overall sensitivity and specificity is calculated comparing Tumour M2-PK 

with CA19-9 in pancreatic cancer. 

Chapter 4 The Materials and Methods. 

Chapter 5 The measurement of Tumour M2-pyruvate kinase levels in human pancreatic 

cancer cell lines. 

Chapter 6 The influence of hypoxia (1% O2) or acidic pH (6.5) or glucose-free culture 

condition on Tumour M2-PK level and total M2-PK expression in pancreatic cancer cell 

lines.  

Chapter 7 The relationship between Tumour M2-PK and apoptosis/necrosis in 

pancreatic cancer. 
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Chapter 8 The localisation of M2-PK in tumour cells in normal culture conditions versus 

the altered tumour microenvironment. 

Chapter 9 General discussion of the thesis including methodological considerations, 

results and conclusions drawn from the experiments has been carried out and future 

directions have been suggested. 
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1 Chapter 1:  Glycolysis, Tumour metabolism 

and  Tumour Microenvironment 
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1.1 Glycolysis and Tumour Biology 

 
Glycolysis—literally lyses of glucose—first requires the conversion of glucose to 

pyruvate and then to lactic acid (Figure 1.1). In most mammalian cells, glycolysis leads to 

production of pyruvate which gets oxidised to CO2 and H2O in mitochondria in the 

presence of oxygen. Under anaerobic condition mitochondrial respiration is inhibited and 

pyruvate is converted to lactic acid. This inhibition is called ‘Pasteur effect’, after Louis 

Pasteur (1). In cancer cells, conversion of glucose to lactic acid occurs even in the 

presence of oxygen and is known as aerobic glycolysis or the ‘Warburg effect’. This 

phenomenon was first reported by Warburg in the 1920s (2), leading him to the 

hypothesis that cancer results from impaired mitochondrial metabolism. Although the 

‘Warburg hypothesis’ has been proven incorrect, the experimental observations of 

increased glycolysis in tumours even in the presence of oxygen have been repeatedly 

verified (3). Interest in metabolic property of cancers has varied over time and has been 

rekindled recently in the form of tumour metabolome. 

The term ‘tumour metabolome’ (in analogy to tumour genome and tumour proteome) was 

coined by Mazurek and Eigenbrodt in 2001 for the metabolic characteristics of tumour 

cells (4-6). 

Most early structural and functional investigations of glycolytic enzymes have focused on 

their glycolytic functions. Recent studies have provided evidence that some glycolytic 
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enzymes have complicated multifaceted roles in mammalian cell biology (7). These roles 

include: 

Transcriptional regulation 

The unexpected nuclear localisation of several glycolytic enzymes, including 

Hexokinase, LDH, GAPD and ENO1, has been reported in yeast and mammalian cells  

(7) providing convincing evidence that nuclear forms of these glycolytic enzymes 

participate in transcription and /or DNA replication (7). 

Apoptosis 

Early studies indicate that in mammalian cells hexokinase and GAPD localise to 

mitochondria to participate in anti-apoptotic and pro-apoptotic process respectively  

(8-10). While the mitochondrial hexokinase blocks the voltage-dependent anion channel 

(VDAC) to block apoptosis (9), the mechanism of pro-apoptotic function of GAPD 

remains unknown (7). 

Proliferation and Metastases 

Although no specific enzyme has been identified, it is the aerobic glycolysis that allows 

the tumour cells to proliferate and metastasise (11). Lactic acid as a by-product of  

upregulated glycolysis lowers the extracellular pH resulting in apoptosis or necrosis of 

normal cells (12) while the tumour cells remain resistant by upregulation of certain 

membrane ionic transporters (13). Acidosis also contributes to breakdown of extracellular 

matrix by involving the metalloproteinases and/or cathepsins, which promote the 
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degradation of the ECM and basement membranes, thus facilitating tumour cell mobility 

and metastases (14;15). 

 

 

 

Figure 1.1: Glycolytic pathway in mammalian cells (TCA- Tricarboxylic acid or 

citric acid or Krebs cycle) 
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1.2 Pyruvate kinase (PK) and tumour metabolism 

 

Pyruvate kinase mediates the transfer of high-energy phosphate of phosphoenolpyruvate 

to generate ATP and pyruvate in differentiated cells. Pyruvate kinase (PK) has different 

isoenzymes; L-PK is present in tissues such as the liver and kidney, R-PK is present in 

erythrocytes  and M1-PK is found in tissues requiring large amounts of energy such as 

the brain and muscle (16-20) also see Figure 1.2). M2-PK is present in all proliferating 

cells such as embryonic and adult stem cells but especially in tumour cells. M2-PK can 

occur in a highly active tetrameric form with high affinity for its substrate 

phosphoenolpyruvate (PEP) and in an inactive dimeric form with a low affinity to PEP 

(4-6;16;19-23). The tetrameric form is associated with other glycolytic enzymes within 

the so-called glycolytic enzyme complex which leads to a very effective conversion of 

glucose to lactate (6;17-20). In tumour cells the dimeric form is always predominant and 

has therefore been labelled as Tumour M2-PK (6;19;21;22) . 

The dimeric form switches to the tetrameric form with high levels of fructose 1,6 bi-

phosphates in tumour cells (6). During tumourogenesis tissues with totally different basic 

metabolism, e.g. liver and brain, shift to the same metabolic phenotype (6). The common 

result is increased glycolysis, reduction of PK activity, glutaminolysis, expansion of 

phosphometabolites and a shift of  metabolism to the synthesis of nucleic acids, amino 

acids and phospholipids (4-6;16;19;20;22-26). Energy production is facilitated by an 

alternative pathway called glutaminolysis (degradation of the amino acid glutamine to  
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lactate) – (27) which depends on an adequate oxygen supply and high NAD(P) levels 

(6;16;20;28).  

In the absence of oxygen, M2-PK is reactivated to the tetrameric form by high fructose 1, 

6 biphosphate levels and glutaminolysis is inhibited, thereby switching glucose 

metabolism to energy production. Thus M2-PK may act as a sensor of tumour 

metabolome allowing the tumour cells to adapt to varying oxygen and nutrient supply. 

Although tumour cells are able to compensate for nutrient starvation for a while, if 

NAD(P) levels are low then both glycolysis and glutaminolysis are inhibited and tumour 

apoptosis occurs (6). A similar mechanism for tumour cell apoptosis is induced by 

chemotherapeutic drugs in which decreased NAD(P) level results in the inability of 

tumour cells to recycle NAD.  

M2-PK is a target of different oncoproteins with totally different physiological 

mechanisms such as the pp60v-src kinase (29) and HPV-16 E7 (26). The pp60v-src 

kinase phosphorylates M2-PK in tyrosine. The E7 oncoprotein of the human papilloma 

virus type 16 directly binds to M2-PK. Thus the tetrameric form of M2-PK is dissociated 

to dimeric form during  transformation of normal cells to oncoprotein-expressing cells 

(4;6;20;24;26;29). 

1.3  Pancreatic cancer and tumour microenvironment  

 

Clinical investigations carried out over the last 20 years have clearly shown that the 

prevalence of hypoxic tissue areas (i.e. areas with O2 tensions [pO2 values] ≤2.5 mm Hg) 

is a characteristic pathophysiological property of locally advanced solid tumours such as 
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pancreatic cancer (30). Up to 50 – 60% of locally advanced solid tumours may exhibit 

hypoxic and/or anoxic tissue areas that are heterogeneously distributed within the tumour 

mass (30).  

1.3.1 Hypoxia 

 
Cells exposed to hypoxic conditions respond by reducing their overall protein synthesis, 

which leads to restrained proliferation and eventually to cell death. There is abundant 

evidence suggesting that hypoxia can slow down or even completely inhibit tumour cell 

proliferation in vitro (31). Furthermore, sustained hypoxia can change the cell cycle 

distribution and the relative number of quiescent cells, which in turn can lead to 

alterations in the response to radiation and many chemotherapeutic agents. The degree of 

inhibition depends on the severity and duration of hypoxia, as well as on the coexistence 

of other microenvironmental inadequacies (e.g. acidosis, glucose depletion). The 

response of cells exposed to hypoxia in terms of cell cycle is in most cases a G1/S-phase 

arrest. Hypoxia levels necessary to induce a disproportionate lengthening of G1 or an 

accumulation of cells in this cycle phase are in the range of 0.2 – 1 mm Hg. Above this 

“hypoxic threshold” the environmental O2 status appears to have only negligible effects 

on proliferation rate. Under anoxia, most cells undergo immediate arrest in whichever 

phase of the cell cycle they are (32). In addition to hypoxia-mediated changes in tumour 

cell proliferation, hypoxia can induce programmed cell death (apoptosis) both in normal 

and in neoplastic cells. P53 accumulates in cells under hypoxic conditions (through a 

hypoxia-inducible factor 1α [HIF-1α]-dependent mechanism) and induces apoptosis. 
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However, hypoxia also initiates p53-independent apoptosis pathways including those 

involving genes of the BCL-2 family and others (32). Below a critical energy state, 

hypoxia/anoxia may result in necrotic cell death, a phenomenon seen in many human 

tumours and experimental tumour models. Hypoxia-induced proteome changes leading to 

cell cycle arrest, differentiation, apoptosis, and necrosis may explain delayed recurrences, 

dormant micrometastases, and growth retardation in large tumour masses (32). In 

contrast, hypoxia-induced proteome and/or genome changes in the tumour and/or stromal 

cells may promote tumour progression via mechanisms enabling cells to overcome 

nutritive deprivation to escape from the “hostile” environment and to favour unrestricted 

growth. Sustained hypoxia and microenvironmental impoverishment in a growing tumour 

may also lead to cellular changes that can result in a more clinically aggressive phenotype 

(33;34). During the process of hypoxia-driven malignant progression, tumours may 

develop an increased potential for local invasive growth (35) perifocal tumour cell 

spreading (33;35;36) and regional and distant tumour cell metastasis (35;37;38).  

 

1.3.2 Acidic environment 

 
Acidification of tumour cells is a consequence of upregulated aerobic glycolysis with 

increased lactate, H+ and CO2 production. The intracellular pH value in tumour cells is 

usually in the range of 7.0 – 7.2 (39). The intracellular H+ ions and lactic acid are pushed 

out of the cell by membrane-bound Na+/H+ exchangers and H+/lactic acid co-transporters 

while the CO2 diffuses rapidly across the plasma membrane and gets converted to 
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carbonic acid by membrane-bound ectoenzyme carbonic anhydrases (40). Uptake of the 

weak base HCO3 – via a member of the Na+-dependent and Na+-independent Cl–/HCO3 

– exchangers contributes to intracellular alkalinisation (40;41). The resulting extracellular 

pH in most solid tumours is usually acidic (5.8–7.2 ) – (42). The pH value used for acidic 

condition in our study was within this range. Studies indicate that extracellular acidic 

environment helps in tumour invasion by the killing of normal cells and clonal selection 

of tumour cells by caspase-mediated activation of p53 dependent apoptosis (43). 

1.3.3 Glucose deprivation 

 

Glucose deprivation in solid tumours occurs when they outgrow their nutrient supply. It  

does not occur in isolation and is accompanied by hypoxia (44). The effect of hypoxia on 

malignant progression is mediated by a series of hypoxia-induced proteomic and genomic 

changes activating angiogenesis (45), anaerobic metabolism (30), and other processes 

that enable tumour cells to survive or escape their oxygen and nutrient-deficient 

environment (46). These changes are mediated by a cytoplasmic protein called hypoxia-

induced factor (HIF-1α) (3). The metabolic shift mediated by HIF-1α is characterised by 

activation of genes for glucose transporters (GLUT-1) and various glycolytic enzymes 

including pyruvate kinase type M2 (45). Another effect of glucose deprivation which is 

independent of HIF-1α is the conversion of the tetrameric form of pyruvate kinase M2 to 

the monomeric form the biologic significance of which has not been elucidated (47).  

It has been suggested that most pancreatic cancer cells with constitutive expression of 

HIF-1α protein adapt themselves to hypoxia and glucose deprivation by increased 
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glucose uptake and anaerobic metabolism (48). Although this adaptation to adverse 

conditions is seen in other solid tumours it is predominant in pancreatic cancers (48) 

which are relatively avascular and hypoxic (49). 
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2 Chapter 2:  Overview of Tumour M2-PK in 

GI Cancers



2.1 Introduction 

 
Gastrointestinal cancer is one of the commonest causes of cancer death in Europe 

(50;51). In the UK, colorectal cancer accounts for 12% of all cancers. It is the second 

most common cancer among women after breast cancer and the third most common in 

men after lung and prostate cancer (52). Stomach and pancreatic cancer account for 3% 

of all reported cases of cancer (52). The high mortality of GI cancers may relate to their 

advanced stage at diagnosis and early detection is an important way of reducing cancer 

mortality. Current tumour markers have a low sensitivity for detecting cancer and their 

role is limited to detecting recurrence after surgery or monitoring response to treatment. 

Even the most commonly used GI tumour marker, CEA, has been repeatedly questioned 

regarding its clinical usefulness (53;54). 

Tumour M2-PK, the inactive dimeric form of  the M2 isoenzyme of  pyruvate kinase (a 

glycolytic pathway enzyme), was first described in 1985 by Eigenbrodt as a characteristic 

metabolic tumour marker (16;19;23). Initial studies in patients with cancers of the lung, 

pancreas, liver, kidney and breast showed increased activity of pyruvate kinase type M2 

in blood as well as cancer tissues and its role is emerging in the management of  GI 

cancers (17;55-59). It can be measured in both blood and faeces. The review aims to 

provide a critical review of the current literature on Tumour M2-PK as a marker of 

gastrointestinal cancer.  
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2.2 Methods 

 
A literature search was conducted for the period from 1980–2005 using PubMed and 

NeLH databases using the following keywords: Tumour M2-pyruvate kinase, faecal 

Tumour M2-PK, tumour metabolism, tumour markers and carcinoembryonic antigen. A 

total of 56 references relevant to Tumour M2-PK were retrieved. 38 references were 

reviews, book chapters, and bibliographic links from the reviews on Tumour M2-PK 

biochemistry, assay and measurement (4-6;16-23;25-29;55;57-73). 18 references were 

the clinical trials involving circulating/faecal Tumour M2-PK and GI cancer (56;74-90). 

7 of these 18 clinical studies were related to faecal Tumour M2-PK  in GI cancer (76-

78;80;82;87;90). Of the remaining 11 studies for plasma/serum Tumour M2-PK, 3 studies 

were in non-English language and have been excluded (75;79;81). Full papers on 8 

studies with serum/plasma Tumour M2-PK and GI cancer were reviewed (56;74;83-

86;88;89). The sensitivity, specificity, positive predictive value (PPV) and negative 

predictive value (NPV) was calculated for Tumour M2-PK for individual GI cancer types 

and in comparison to other cancer markers. Three (84;88;89) of the eight studies which 

all used the same diagnostic cut-off value of 15 U/ml for EDTA plasma Tumour M2-PK 

were used for a small meta-analysis. Only one full published English language paper (78) 

on faecal Tumour M2-PK was available. The rest of the data on faecal Tumour M2-PK 

was obtained from 2 clinical trials (77;90) 2 published abstracts (80;82) and 2 German 

studies with English abstract (76;87). 
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2.3 Current GI tumour markers – Roles and Limitations 

2.3.1 Carcinoembryonic antigen (CEA) 

 
This glycoprotein has a structural similarity to the adhesion proteins: ICAM-1 and 

ICAM-2 (91;92) suggesting a role in cancer invasion and dissemination (93;94). It can be 

measured in the serum and its clinical use has been investigated in GI cancers. It is less 

frequently elevated in early stage (Duke’s A and B) colon cancers, the stages at which 

early detection is most likely to result in curative surgery. In a study by Wang et al., the 

proportion of  patients with increased serum CEA concentration (>5ng/ml) in Duke’s A 

and Duke’s B stage disease were 25% and 39% respectively compared to 71% in Duke’s 

C stage (95). However, as pointed out by Fletcher (96) sensitivity in symptomatic 

subjects is likely to be higher as compared to asymptomatic subjects because the former 

group is likely to have advanced disease. Serum CEA can also be increased in other 

forms of cancer and in multiple benign disorders (97). A high preoperative serum CEA 

level is associated with a  poor outcome in colorectal cancer (95;98-103). Unfortunately, 

no clinical benefit has been demonstrated by the use of adjuvant chemotherapy based 

solely on increased preoperative CEA concentration (53). Elevated CEA levels following 

bowel cancer resection is also correlated with an adverse outcome (53). In a landmark 

study  Moertel et al. demonstrated that CEA monitoring following bowel cancer resection 

had a 59% sensitivity rate for recurrence but with a 16% false-positive rate (104). In a 

randomised prospective study Ohlsson et al. (105) showed no difference in 5-year 

survival rate or cancer-specific survival rates between an intensive CEA-based follow-up 
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and a group with no follow-up. However, recent meta-analyses of  randomised trials 

suggest that intensive CEA, CT scan and colonoscopy-based postoperative surveillance 

improves 5-year survival rates by approximately 10% compared with less intensive 

follow-up (106-108). Current guidelines by the National Institute for Health and Clinical 

Excellence (NICE) therefore recommend the measurement of CEA along with serial 

imaging following colorectal cancer resection (109).  

2.3.2 Carbohydrate antigen 19-9 (CA19-9) 

 
This is an oligosaccharide related to the Lewis A blood-group substance (54). It has been 

proposed as a sensitive marker for pancreatic, gastric and hepatobiliary malignancies 

(110). CA19-9 is elevated in nearly 80% of advanced pancreatic cancer patients. 

However, the false-positive rates are also high at 20–30% in benign hepatobiliary and 

pancreatic diseases (111). Other benign conditions associated with elevated CA19-9 

levels include pneumonia, pleural effusion, renal failure and SLE (110). Recent reviews 

and multicentre studies (82;112) have questioned the clinical significance of elevated 

levels of CA19-9. Confident discrimination between benign and malignant disease can 

not be made on the basis of a solitary elevated CA19-9 (> 33 U/ml) measurement (112). 

Elevated levels are associated with advanced disease at presentation and with disease 

progression during follow-up (113). The clinical role of the tumour markers CEA and 

CA19-9 in gastrointestinal cancer diagnosis and management are limited and new 

serological markers are required. 
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2.4 Quantification of Tumour M2-PK 

2.4.1 Blood 

 
Tumour M2-PK can be detected by a highly sensitive enzyme-linked immunosorbent 

 assay (ELISA) which allows the quantitative measurement of Tumour M2-PK in EDTA-

plasma samples. The test is based on two monoclonal antibodies which specifically react 

with Tumour M2-PK and do not cross-react with the other isoforms of pyruvate kinase 

(types L, R, and M1) (67;70;114). Tumour M2-PK is adsorbed onto microtitre wells 

coated with a specific monoclonal antibody. It is quantified after incubation with a 

biotinylated second monoclonal antibody and with streptavidine-peroxidase conjugate 

(114). The mean intra-assay coefficient of variance is 3.5% and the mean inter-assay CV 

is 5.3% (63;68). A reference concentration of ≤ 15.0 U/ml in EDTA-plasma corresponds 

to specificity of 90% for a control group of patients without cancer (n=393) – (68); also 

see Figure 2). A study involving 695 healthy controls showed specificity of 95% at a 

diagnostic cut-off value of 17.5 U/ml in EDTA plasma sample (115). The Tumour M2-

PK concentration in these healthy individuals ranged from 2–30 U/ml with a median 

value of 6 U/ml. Tumour M2-PK concentrations have been shown to be affected by 

haemolysis of blood sample (median value: 50.5U/ml), icterus (median value: 39.1 U/ml) 

and lipaemia (median value: 30.8 U/ml). However, a correlation with the severity of these 

conditions has not been reported (115). 
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2.4.2 Stool  

 
Tumour M2-PK can be measured in stool by a similar ELISA technique using the same 

monoclonal antibody as used in serum/plasma assay. A reference concentration of 4 U/ml 

corresponds to a specificity of 83% for a control group of subjects aged 50 to 89 yrs 

Figure 2: Distribution of Tumour M2-PK levels in individuals without cancer 

(n=393)  
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(116). The intra-assay mean coefficient of variance (CV) was 7.9% and the inter-assay 

mean CV was 7.3% (116).   

2.5 Factor affecting Tumour M2-PK in plasma 

2.5.1 Benign diseases 

 
Tumour M2-PK levels in EDTA plasma have been found to be elevated in bacterial 

infection as opposed to severe sepsis and polytrauma (66). Other benign conditions 

reported to have Tumour M2-PK elevations include: Rheumatic diseases (69), Diabetic 

nephropathy (117), Chronic cardiac failure (65), Inflammatory bowel disease (89) and 

acute and chronic pancreatitis (86). Plasma Tumour M2-PK, at cut-off value of  25 U/ml 

is elevated in 39% of patients with diabetic nephropathy (117). In chronic cardiac failure 

(CCF), the median Tumour M2-PK level in plasma of patients with NYHA (New York 

Heart Association) grade-2 disease was 24 U/ml, with grade-3 disease was 30 U/ml and 

with grade-4 disease was 46 U/ml. The diagnostic cut-off value for CCF was 5 U/ml. 

How often it was elevated in both controls and patients with CCF was not mentioned in 

this study (65). The mechanism suggested for the rise in plasma Tumour M2-PK value in 

patients with heart disease was the increased glycolyis to meet the metabolic demand 

related to the increased ventilation and neurohormonal activation, for example, seen in 

chronic cardiac failure. An alternative explanation was that the increased bilirubin and 

triglycerides levels commonly observed in CCF patients had caused analytical 

interference with the Tumour M2-PK assay. These postulations were not investigated 

although the author had ruled out the impaired renal function seen in CCF as a cause of 
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elevated plasma Tumour M2-PK levels (65). Oehler et al. (66) studied the expression of 

pyruvate kinase type M2 in neutrophils of polytrauma patients. Using western blotting for 

identifying M2-PK expression, they noticed strong expression of M2-PK in 62% of 

polytrauma patients as compared to none of the healthy volunteers. Oremek et al. (69) 

showed elevated levels of plasma Tumour M2-PK (diagnostic cut-off 17.5 U/ml) in 

different types of rheumatic diseases. It was elevated in 82% of rheumatoid arthritis 

patients, 82% of seronegative spondyloarthritis patients and 63% of patients with 

collagen disorders. The overall median value of plasma Tumour M2-PK in rheumatic 

diseases was 26 U/ml. Plasma Tumour M2-PK (diagnostic cut-off 15 U/ml) was elevated 

in 68% of patients with inflammatory bowel disease with a median value of 12 U/ml (89), 

68% of patients with acute pancreatitis with a median value of 22 U/ml and 67% of 

patients with chronic pancreatitis with a median value of 11 U/ml (cut-off 8.9 U/ml) (86). 

These levels were significantly higher as compared to the median levels in respective 

controls. The cause of this rise in Tumour M2-PK value with benign disease has not been 

elucidated in any of these studies. The mechanism suggested is an increased glycolysis to 

meet the  metabolic demand related to the stress of trauma and inflammatory reaction 

(86). No correlation between plasma Tumour M2-PK levels and the severity activity 

index (SAI) or CRP levels was found in these inflammatory conditions (89). Cross-

reactivity of monoclonal antibodies with the tetrameric form of M2-pyruvate kinase 

cannot explain these results as the two monoclonal antibodies used in these studies are 

highly specific to the dimeric form. The level of Tumour M2-PK in EDTA plasma should 
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therefore be interpreted with caution in GI tumours associated with these benign 

conditions. 

2.5.2 Tumour stage 

 
As with most tumour markers, the concentration of Tumour M2-PK tends to increase  

with disease stage. Zhang et al. (88) showed an increase in plasma Tumour M2-PK levels 

with increasing tumour stage in gastric (compared with TNM stage), colorectal cancers 

(compared with Duke’s stage) and pancreatic cancers (compared with TNM stage) (86). 

The level of Tumour M2-PK in patients with pancreatic cancer (n=60) differed 

significantly between those with stage I-II disease and those with distant metastasis (stage 

IV). Among non-GI cancers the association between Tumour M2-PK levels and disease 

stage has also been found (73;118). In lung tumours the sensitivity of Tumour M2-PK 

was observed to be 28% in stage I, increasing progressively to 73% in stage IV. A similar 

correlation is seen in renal cancer staging (Robson staging) with serum/EDTA plasma 

Tumour M2-PK increasing in sensitivity from 60% in stages I and II to 100% in stage IV. 

Faecal levels of Tumour M2-PK showed a strong correlation with TNM and Duke’s 

staging in colorectal cancer (78). Faecal Tumour M2-PK has a higher sensitivity than 

plasma Tumour M2-PK in determining cancer stage in colorectal cancer (78;84).  

2.5.3 Sample stability for the tumour assay 

 
The level of Tumour M2-PK in blood can be influenced by the mechanical stress of  
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shaking the sample, the type of anticoagulant (EDTA, heparin, citrate), duration before 

the blood sample is centrifuged and the temperature at which the centrifuged sample is 

stored. Hugo et al. (63) observed a high reproducibility of Tumour M2-PK levels in 

EDTA plasma but not with serum or citrated/heparinised plasma blood samples from 10 

healthy volunteers. Shaking or leaving the samples at room temperature for several hours 

prior to centrifugation led to a two- to threefold increase of Tumour M2-PK in serum and 

heparin-plasma samples. In contrast, the quantification in EDTA-plasma and citrate-

plasma were absolutely stable after 24 hours (63). Lymphocytes were found to be a 

potential source for the increased concentration in serum and citrate-plasma (63). After 

centrifugation the EDTA-plasma sample is stable for three days at 4ºC or for up to one 

year at -20ºC (76;87). There are no known factors that can interfere with the faecal 

Tumour M2-PK levels. Excessive dilution of stool can lower the faecal M2-PK level. 

Therefore, a formed stool sample should always be analysed. Undiluted stool extracts can 

be stored at 4–8˚ C for one day or up to 4 weeks at -20˚ C without losing their stability 

(116).  

2.5.4 Tumour pathology 

 
There have been no GI cancer studies so far correlating M2-PK levels with the tumour  

size, grade and histological type. In renal cell carcinoma (RCC) patients (n=40), a  

significant correlation was found between serum Tumour M2-PK and RCC grade  

(50% in G1-RCC, 70% in G2-RCC and 86% in G3-RCC) (73). No correlation was found 

between serum Tumour M2-PK levels and histological type or tumour diameter. 
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Similarly in lung cancer neither plasma Tumour M2-PK nor immunohistochemical 

staining showed significant correlation with the histological type or differentiation of 

cancer but the concentration of Tumour M2-PK in EDTA plasma correlated well with 

tumour staging (71). 

2.6 Tumour M2-PK: Role as a GI cancer marker 

2.6.1 Faecal M2-PK in screening for GI cancer 

 
Following the completion of a pilot project based on centres in Scotland (Fife, Tayside 

and Grampian) and England (Coventry and Warwickshire) in which around 120,000 

patients aged 50 – 69 years old were enrolled (119), the UK Department of Health 

announced the introduction of  national colorectal cancer screening which began to “roll 

out” from 2006 in England for men and women aged 60 – 69 and from March 2007 in 

Scotland for those aged 50 – 74 (120). Under these programmes patients were offered a 

guaiac faecal occult blood (FOB) test every two years, with positive FOB test results 

further investigated by diagnostic colonoscopy. A similar approach is also currently being 

assessed in Australia (121). Randomised trials of screening by FOBT have been shown to 

reduce the disease specific mortality by 15 – 18% although screening for cancer remains 

controversial due to the large number of false-positive results (122-124). The data from 

the Nottingham study showed a positive predictive value of only 12% (false- positive rate 

88%) for colorectal cancer in individuals who underwent subsequent colonoscopy after 

FOBT (123). Sigmoidoscopy, colonoscopy or combinations are the other current 

practices of searching for and removing adenomatous polyps to prevent colorectal cancer 



 40 

(125) but they are limited by poor patient compliance, complications and cost 

effectiveness (126;127). Therefore newer screening tools for colorectal cancer are under 

evaluation and may take their place in future guidelines. Hardt et al. showed that Tumour 

M2-PK can be detected in the faeces of GI cancer patients (77;90). Symptomatic patients 

undergoing colonoscopy for various reasons had faecal Tumour M2-PK measured. The 

faecal level of Tumour M2-PK was higher in patients with histology-proven colorectal 

cancers as compared to controls (non-colorectal cancer patients). The sensitivity of faecal 

Tumour M2-PK at a cut-off value of 4 U/ml was 73% with a specificity of 78%. The 

false-positive rate was 15%. However, this low false-positive rate should be viewed with 

caution when comparing it to the high false-positive rate for Haemoccult faecal blood test 

used in the Nottingham study and the Danish trial which were based on a large 

asymptomatic population (123;124). Faecal Tumour M2-PK levels were higher with 

more advanced disease. The sensitivity increased from 57% in case of T1 cancer, 78% in 

T4 and 90% in patients with distant metastasis (78). Two recent studies also showed a 

high sensitivity (92%) of faecal Tumour M2-PK for detecting colorectal cancer (80;82). 

Using a cut-off of 3.33 U/ml, Koss et al. found a specificity of 92% (80). At a cut-off of 4 

U/ml McLoughlin et al. found a similarly high sensitivity of 95% (82). These studies also 

looked at the sensitivity for the detection of polyps, finding a sensitivity of 63% for 

adenoma (82), 63% for polyps >1cm (80) and 25% for polyps <1cm (80). One study has 

compared faecal Tumour M2-PK with a guaiac and an immunological FOB test (87). 

Sensitivity of the guaiac FOB test was only 27% for colorectal cancer and 10% for 
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polyps, whereas it was 77% and 48% respectively for faecal M2-PK and 91% and 19% 

respectively for the immunological FOB test. Specificity was 89%, 72% and 94% 

respectively. Small meta-analyses of studies with faecal Tumour M2-PK reported an 

overall sensitivity of 77.9% for the detection of colorectal cancer and specificity ranging 

from 74.3 – 83.3%. Overall sensitivity for adenomatous polyps was 45.9%, increasing to 

61.1% for those >1cm (76). There has been no randomised trial comparing faecal M2-PK 

with FOBT or colonoscopy as a screening tool in terms of efficacy, cost effectiveness, 

feasibility and reducing the cancer-related mortality. 

2.6.2 Plasma M2-PK in detection of different GI cancers 

 
In this review the data of eight clinical studies was analysed related to Tumour M2-PK 

and GI cancer (56;74;83-86;88;89). The diagnostic cut-off values for Tumour M2-PK 

used in these studies ranged from 8.9 U/ml to 28 U/ml. Three studies (84;88;89) used the 

same cut-off value of 15 U/ml for Tumour M2-PK in EDTA plasma and were chosen for 

meta-analysis of histologically proven GI cancers.  

Oesophageal cancer (Table 2.1) 
 
Three studies (one prospective and two retrospective) were found related to histologically 

proven oesophageal cancer (83;84;89). One study combined data for gastric and 

oesophageal cancer (89). The plasma Tumour M2-PK concentration in oesophageal 

cancer ranged from 3.2 to 397 U/ml with a mean value of 42 U/ml. The controls used in 

these studies were non-malignant disease subjects. The mean control value was 9.3 U/ml. 

The diagnostic cut-off value of 15 U/ml (published cut-off) was used in two of the studies 
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(84;89) with a specificity of 89% while the other study (83) used 19.8 U/ml cut-off value 

with a specificity of 95%. When data from the 2 oesophageal cancer studies with the 

same diagnostic cut-off level for plasma Tumour M2-PK was analysed, 107 patients with 

201 controls were evaluated with an overall sensitivity of 59%, specificity of 89%, PPV 

of 74% and NPV of 80%. The overall sensitivity, PPV and NPV of plasma Tumour M2-

PK was higher as compared to those of CEA (14 – 25%, 45 – 75% and 49 – 78% 

respectively), CA72-4 (12 – 53%, 38 – 92% and 62 – 64% respectively) and  

CA19-9 (28 – 43%, 54 – 86% and 54 – 80% respectively). The ranges represent the 

lowest and the highest value for these tumour markers in the 3 studies. Because of 

different cut-off values the data from the individual studies could not be combined. The 

specificity of CEA, CA72-4 and CA19-9 was not clearly stated in these studies.  
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Table 2.1: Studies comparing the tumour markers: Tumour M2-PK, CEA, CA19-9 

and CA72-4 in oesophageal cancers 

 
 

Reference                          Study detail                       Tumour marker                                   Sensitivity %     PPV %            NPV % 

                                                                                       (Cut-off value)                                                                               

 

[Schulze et al. 2000]           Retrospective study           Plasma Tumour M2-PK (15 U/ml)           59                      76                          77 

 n= 87                                                                               CA72-4 (4 U/l)                                          12                      38.4                       62                       

Controls=141                                                                   CEA (5µg/l)                                               15                      45                         63  

Specificity=89%*                                                            CA19-9 (25 U/L)                                       43                      70                          71 

[Schneider et al. 2003]     Prospective study               Plasma Tumour M2-PK(19.8U/ml)           55.8                   92                          65 

n= 86                                                                                CA72-4(3.2U/l)                                         53.5                   92                          64                           

Controls=76                                                                     CA19-9 (23U/L)                                       27.9                   85.7                       54                           

Specificity=95%*                                                            CEA (8.3µg/l)                                           14.5                   75                           49                                                               

[Hardt et al. 2000]             Retrospective study           Plasma Tumour M2-PK(15 U/ml)             60                    66.6                        87 

n=20 †                                                                             CEA (3µg/l)                                               25                     50                           78                          

Controls=60                                                                    CA19-9 (37 U/L)                                       33                    53.8                         80                         

Specificity=90%*                             

† Esoph/Gastric cancers, *The specificity of CEA, CA72-4 and CA19-9 was not stipulated in these studies.     
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Gastric cancer (Table 2.2) 
 
Five studies (two prospective and three retrospective) were reviewed with data relevant to 

histology-proven gastric cancer and Tumour M2-PK (56;83;84;88;89). One study 

combined data for gastric and oesophageal cancers (89). Serum Tumour M2-PK 

measurement rather than EDTA plasma concentration was measured in one study (56). 

Tumour M2-PK levels in gastric cancer ranged from 2 – 965 U/ml with mean value of  

43 U/ml. The controls used in these studies were mainly healthy donors. The mean 

control value of Tumour M2-PK was 9.3 U/ml. The diagnostic cut-off value for Tumour 

M2-PK in plasma was 15 U/ml in three of the studies, 19.8 U/ml in one study (83) and 22 

U/ml  in another (56) with specificity ranging from 89 – 95%. When data from the 3 

gastric cancer studies with the same diagnostic cut-off level for plasma Tumour M2-PK 

were analysed (84;88;89) 211 patients with 221 controls were evaluated giving an overall 

sensitivity of 64%, specificity of 89%, PPV of 85% and NPV of 72%. The sensitivity, 

PPV and NPV of CA72-4 (35 – 91%, 14 – 95% and 34 – 100% respectively) is superior 

to CEA (24 – 38%, 6 – 80%, and 44 – 99% respectively) and CA19-9 (33 – 49%, 8-93%, 

and 52-99% respectively), the efficacy of Tumour M2-PK (57 – 67%, 10 – 94% and 44 – 

99% respectively) was comparable. The range of values is the least and the best value for 

sensitivity, PPV and NPV for these tumour markers in the 5 studies. Because of different 

cut-off values, the data from the individual studies could not be combined. The specificity 

of CEA, CA72-4 and CA19-9 in these studies was again not stipulated. Low sensitivity 

and PPV was found in one study (56) which used serum Tumour M2-PK rather than 
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EDTA plasma and a high diagnostic cut-off. The cut-off values of CEA, CA19-9 and 

CA72-4 in this study were historical. 

 

 

Table 2.2: Studies comparing the tumour markers: TuM2-PK, CEA, CA19-9, 

CA72-4 and CA50 in gastric cancers  
 

 

Reference                             Study detail                     Tumour marker                     Sensitivity%                   PPV%                 NPV% 

                                                                                        (Cut-off value)                                                                               

 

[Oremek et al. 1997]              Retrospective study      Serum Tumour M2-PK (22U/ml)       58                             9.6                        99 

n=12                                                                               CA-72-4(4U/L)                                    91                             14.3                     100   

Controls=666                                                                 CA19-9 (65U/L)                                   49.5                           8.3                      99   

Specificity=90%*                                                          CEA (10µg/l)                                        38                              6.4                      99 

                                                                                       CA50 (50U/L)                                      47.2                           8.2                       99                                                          

[Schulze al. 2000]                  Retrospective                Plasma Tumour M2-PK (15U/l)          67                              84                        74 

n=137                                                                            CA72-4(4U/l)                                        41                             76.8                      62 

Controls=141                                                                CEA (5µg/l)                                           26                             70                        55  

Specificity=89%*                                                         CA19-9 (25U/L)                                    45                             79                        62                                     

[Schneider et al. 2003]         Prospective study         Plasma Tumour M2-PK (19.8U/ml)     57                              94                        58 

n=122                                                                            CEA (8.3µg/l)                                       23.8                           80                        44    

Controls=76                                                                  CA72-4(3.2U/l)                                     60.7                           95                        60     

Specificity=95%*                                                         CA19-9 (23U/L)                                    45.5                           93                       52                                                

[Hardt et al. 2000]                Prospective study          Plasma Tumour M2-PK(15U/ml)          60                            66.6                    87 

n=20 †                                                                           CEA (3µg/l)                                           25                             50                       78                                        

Controls=60                                                                  CA19-9 (37 U/L)                                    33                             3.8                      80 

Specificity=90%*  

[Zhang et al. 2004]                Retrospective study    Plasma Tumour M2-PK(15U/ml)           57                             94                       44 

n=54                                                                              CA72-4(4U/l)                                         35.3                          90                       34     

Controls=20           

 Specificity=90%*                                            

 

†  Esoph/gastric cancer   

*The specificity of  CEA , CA72-4 and CA19-9 was not stipulated in these studies.    
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Colorectal cancer (Table 2.3) 
 
Four studies (two prospective and two retrospective) evaluated Tumour M2-PK and 

colorectal cancer patients (83;84;88;89). The level of plasma Tumour M2-PK in 

colorectal cancer patients was in the range of 2 – 986 U/ml with a mean value of 44 U/ml. 

The controls used in these studies were either healthy blood donors or patients with non-

malignant disease. The mean value of Tumour M2-PK in controls was 9.6 U/ml. The 

diagnostic cut-off used in these studies was either 15 U/ml or 19.8 U/ml in EDTA 

plasma. Three studies used 15 U/ml cut-off level (84;88;89) and included 251 patients 

with colorectal cancer and 221 controls with a sensitivity of 57%, specificity of 89%, 

PPV of 86% and NPV of 65%. The overall specificity of Tumour M2-PK ranged from 

89% – 95% with sensitivity, PPV and NPV (50 – 76%, 81 – 95% and 35 – 87% 

respectively). Tumour M2-PK was better compared to CEA (sensitivity 34 – 71%, PPV 

80 – 95% and NPV 30 – 84%) and CA19-9 (sensitivity 27 – 55%, PPV 50 – 95% and 

NPV 29 – 77%). The range of values is the least and the best value for sensitivity, PPV 

and NPV for these tumour markers in the 4 studies. The specificity of CEA and CA19-9 

were not clarified in all 4 studies. 
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Table 2.3: Studies comparing the tumour markers: Tumour M2-PK, CEA and 

CA19-9 in colorectal cancer 

 
 

Reference                        Study detail                      Tumour marker                                   Sensitivity%            PPV%            NPV% 

                                                                                    (Cut-off value)                                                                               

 

[Schulze al. 2000]              Retrospective                   Plasma Tumour M2-PK (15U/ml)           50                               83.5               60 

n= 163                                                                           CEA (5µg/l)                                              42                               81                  57 

Controls=141                                                                CA19-9 (25U/L)                                       27                               50                  46 

Specificity=89%†                                                         TuM2-PK+CEA                                       67                               87.3               70 

[Schneider et al. 2003]    Prospective study              Plasma Tumour M2-PK (19.8U/ml)        47.8                            96.7                35 

n=250                                                                            CEA (8.3µg/l)                                          33.6                            95                   30 

Controls=76                                                                  CA19-9 (23U/L)                                      30.4                            95                    29 

Specificity=95%†    

[Hardt et al. 2000]          Prospective study              Plasma Tumour M2-PK (15U/ml)          76.5                              81                   87 

n=34                                                                             CEA (3µg/l)                                             71                                 80                   84 

Controls=60                                                                 CA19-9 (37 U/L)                                     55.2                              75                   77 

Specificity=90%†     

[Zhang et al. 2004]        Retrospective study           Plasma Tumour M2-PK (15U/ml)           68.5                              95                   51 

n=54                                                                            CEA (3µg/l)                                              43.12                           92                    37 

Controls=20           

Specificity=90%†    

 

† The specificity of  CEA , CA72-4 and CA19-9 was not stipulated in these studies.     

 

2.6.3 Combining Tumour M2-PK with other GI markers (Table 2.4) 

 
Combining Tumour M2-PK with the conventional tumour markers increases its diagnostic 

efficacy, as shown in a study by Schulze (84). In oesophageal cancer combining Tumour M2-PK 



 48 

with CEA increases the sensitivity, PPV and NPV from 59%, 76% and 77% respectively to 65%, 

78% and 80% respectively. In gastric cancer, it increased from 67%, 84% and 74% respectively 

to 82%, 87% and 97% respectively when Tumour M2-PK was combined with CA72-4. In 

colorectal cancer, combining Tumour M2-PK with CEA increases the sensitivity, PPV and NPV 

from 50%, 83% and 60% respectively to 67%, 87% and 70% respectively.   

 

 

Table 2.4: Combining Tumour M2-PK with other GI cancer markers 
 

 

Cancer Type                         Tumour Marker                     Specificity %           Sensitivity %          PPV%       NPV% 

[Reference]  

 

Oesophageal cancer                 Tumour M2-PK+CA19-9                     89                      65                          78               80 

[Schulze et al. 2000]                 Tumour M2-PK (15U/ml)                    89                      59                          76               77  

                                                   CA19-9(25U/l)                                     89                      43                           70              71  

Gastric  Cancer                        Tumour M2-PK+CA72-4                    89                      82                           87              97 

[Schulze  et al. 2000]                Tumour M2-PK (15U/ml)                    89                      67                           84              74 

                                                   CA72-4 (4U/l)                                      89                      41                           77              62 

Colorectal cancer                     Tumour M2-PK+CEA                         89                      67                            87             70 

[Schulze  et al. 2000]                Tumour M2-PK (15U/ml)                   89                      50                            83             60 

                                                   CEA (5µg/l)                                         89                      42                            81             57                        

 

2.6.4 Plasma Tumour M2-PK levels in post treatment surveillance. 

 
There has been only one study assessing Tumour M2-PK levels and the response to 

therapy as far as GI cancers are concerned. Ventrucci et al. (86) showed a rise in plasma 

Tumour M2-PK levels shortly (within 2 weeks) after pancreaticoduodenectomy for 

pancreatic cancers. This immediate post-operative rise was attributed to accelerated 
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glycolysis due to healing (66). There has been only one study so far monitoring the serum 

Tumour M2-PK levels after the resection of cancer. In this study, with only 6 patients 

followed after renal cell carcinoma resection, Tumour M2-PK normalised 11 weeks after 

surgery and showed rising levels 2 months before computed tomography detected 

recurrence (73). In studies with advanced breast and lung cancer patients Tumour M2-PK 

levels in plasma decreased within 4 weeks after the start of palliative chemotherapy and 

rose again with disease progression (58;72). In another study with lung cancer patients, 

plasma Tumour M2-PK concentration reflected the course of the disease and correlated 

well with tumour progression or remission following treatment (71). 

2.7 Summary and conclusion 

 
Tumour M2-PK can be quantified in blood with a specificity of 90 – 95% at a diagnostic 

cut-off value of 15 – 17.5 U/ml and in stool with a specificity of 83 – 95% at a cut-off 

value of 3.33 – 4 U/ml. The stability of Tumour M2-PK is best in EDTA plasma for  

24 hrs at room temperature and is not influenced by any mechanical stress. The 

quantification in blood/stool is by highly sensitive enzyme-linked immunosorbent assay 

(ELISA) using two monoclonal antibodies specific to Tumour M2-PK. It can be elevated 

in benign conditions including chronic cardiac failure, diabetic nephropathy, rheumatic 

diseases, inflammatory bowel disease and pancreatitis. The inclusion of these benign 

conditions as non-cancer controls can result in false-positive rates ranging from 38 – 

82%. Studies on gastric and colorectal cancer show a good correlation between 

plasma/faecal Tumour M2-PK and disease stage (78;84;88). Although no prospective 
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data is available on plasma Tumour M2-PK, faecal Tumour M2-PK has sensitivity of 

64% to detect early stage (T1, T2) colorectal cancers. As a screening tool for bowel 

cancer, the overall sensitivity of faecal Tumour M2-PK is 73% with false-positive rate of 

15% in symptomatic subjects. It has not yet been validated in a large-scale screening of 

an asymptomatic population. In our meta-analysis Tumour M2-PK showed good 

diagnostic accuracy for oesophageal/gastric and colorectal cancers with PPV of 86 – 

88%. Recently Tumour M2-PK has been established as an important marker of 

transformed and highly proliferating cells during progression of the metaplasia-dysplasia-

adenocarcinoma sequence in Barrett’s oesophagus (64). The diagnostic accuracy of 

Tumour M2-PK was better than CEA and CA19-9 in oesophageal and colorectal cancer 

and was comparable to CA72-4 in gastric cancer and CA19-9 in pancreatic cancer. 

Combination of these tumour markers increases their diagnostic strength especially in 

pancreatic cancers. The current literature on Tumour M2-PK and GI cancer is limited but 

would justify further investigation of this novel cancer marker. Faecal Tumour M2-PK 

has a potential role in bowel cancer screening. A proper screening trial is required on an 

asymptomatic population comparing faecal Tumour M2-PK with Haemoccult test and 

validating its efficacy, cost effectiveness, feasibility and influence cancer specific 

mortality. There is limited information yet on the utility of Tumour M2-PK as a 

prognostic marker, as a marker of malignant transformation or in assessing tumour 

recurrence or response to treatment. Large multi-centre trials are, therefore, needed to 

define its clinical role.    
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Hypothesis and Aims 
 
The hypothesis behind the work done in this thesis was: 

‘Tetramer-dimer switch-over of Tumour M2-PK and its localisation to 

mitochondria or nucleus in pancreatic cancer cells is a metabolic adaptation 

response to the altered tumour microenvironment’  

Aims: 
 
The following aims were pursued in this thesis: 

 
(i) To investigate the available studies on Tumour M2-PK in pancreatic cancer in 

the form of a meta-analysis. 

(ii) To measure the levels of Tumour M2-PK in pancreatic cancer cell lines and to 

study the influence of altered tumour microenvironment on these levels.  

(iii) To evaluate the tetramer-dimer switch-over of Tumour M2-PK in pancreatic 

cancer cells under altered culture conditions and to study its correlation with 

apoptosis. 

(iv) To study the localisation of Tumour M2-PK at the subcellular level under the  

            altered tumour microenvironment.   
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3 Chapter 3  Tumour M2-PK in Pancreatic 

Cancer



 
 

3.1 Background 

 
Pancreatic cancer accounts for 3% of all reported cases of cancer. It is the fifth leading 

cause of cancer death in Western countries (52;128). It is the 11th most common cancer in 

the UK, with an average of 20 cases diagnosed every day (52). The prognosis is extremely 

poor with five-year survival rate of less than 5% (129). Surgical resection represents the 

best chance for cure, but only 10 – 20% of patients are eligible for resection (130) and 

approximately 25% of patients who undergo laparotomy will have unresectable tumour 

(131;132). Early diagnosis to improve the dismal prognosis remains challenging. Most of 

the symptoms related to this malignancy occur only after disease advancement to an 

unresectable stage (133).  

CA 19-9 has been proposed as a useful marker for pancreatic cancer (134;135). Elevated 

levels are associated with advanced disease at presentation and disease progression during 

follow-up (113). Confident discrimination between benign and malignant disease cannot be 

made on the basis of a solitary elevated CA19-9 (> 33 U/ml) measurement (112).  

As the current pancreatic cancer markers have a limited role in diagnosis and disease 

monitoring, a review of Tumour M2-PK was carried out with the intention of performing a 

meta-analysis to maximise the clinical data derived from the current trials. 
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3.2 A Meta-analysis 

3.2.1 Methods 

Inclusion criteria 

All studies in English language comparing the sensitivity and specificity of Tumour  

M2-PK with CA19-9 were considered for inclusion. 

Data source 

The following databases were searched: 

Pubmed (1951 – September 2006) 

Embase (1974 – September 2006) 

CENTRAL (Issue 3, 2006) 

Science Citation Index (SCI) Expanded (1980 – September 2006) 

References of identified studies were searched for identification of further references. 

Search strategy 

The following search was used for Pubmed: 

("Pyruvate Kinase"[MeSH] OR pyruvate kinase) AND (m2 or "m-2" or "m 2") AND 

("Neoplasms"[MeSH] or neoplasm or neoplasms or cancer* or tumor or tumors or tumour 

or tumours) AND English [lang] AND "humans"[MeSH Terms] 

Equivalent search strategy was used for other databases. 

Evaluation of quality of included studies 

Since the quality of the included studies can overestimate or underestimate the diagnostic 

odds ratios (136;137), the following information was extracted from each study: 
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1. Design: Case-control design overestimates diagnostic odds ratio (136). 

2. Differential verification: Different reference test performed based upon diagnostic test in 

question overestimates diagnostic odds ratio (136). 

3. Blinding of assessors: If assessors are not blinded, diagnostic odds ratio is overestimated 

(136). 

4. Description of population: If population is not described, diagnostic odds ratio is 

overestimated (136). 

5. Description of diagnostic test: If the diagnostic test is not described, diagnostic odds ratio 

is overestimated (136). 

6. Description of reference test: If the diagnostic test is not described, diagnostic odds ratio 

is underestimated (136). However, we do not expect the description of histopathology or 

imaging methods in any study.  

7. Prospective or retrospective data collection: Collection of data retrospectively 

overestimates diagnostic odds ratio (136). 

Statistical methods 

 

Since different studies use different cut-off values (56;74) it was intended that a meta-

analysis of diagnostic odds ratio (138) was performed. For this purpose, we calculated 

using the reported sensitivity, specificity, number with disease and the number without 

disease. Since the sensitivity (a/(a+c)), people with pancreatic cancer (a+c), specificity 

(d/(b+d)) and people without pancreatic cancer (b+d) are reported in the studies, it is 

possible to calculate the true-positivity (TP), false-positivity (FP), false-negativity (FN) and 

true-negativity (TN) – (a,b,c,d respectively in Figure 3.1).  
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Figure 3.1: Two-by-two contingency table for TuM2-PK sensitivity and specificity 

 

The diagnostic odds ratio (DOR) for each study was then calculated by using the formula 

(139):  

DOR = (TP/FP)/(FN/TN).  

The 95% confidence interval of the DOR was calculated by finding out the anti-log of the 

expression log DOR±1.96SE(log DOR), where SE(log DOR) was calculated using the 

formula (139): 

SE (log DOR) = [(1/TP) + (1/TN) + (1/FP) + (1/FN)] 
½

.  

The DOR and 95% confidence interval thus calculated was pooled using the statistical 

software Stats Direct 2.5.6 (140) . The fixed-effect model (141) was used if the statistical 

heterogeneity measured by I2 as calculated by Higgins (142) was less than 25; otherwise, 

the random-effects model (143) was used. Bias was explored using funnel plot (144). 
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Visual asymmetry was used to explore bias. Egger’s linear regression method was used for 

statistical evaluation of bias (144).  

The summary estimate DOR and 95% CI was calculated for each of the two tests Tumour 

M2-pyruvate kinase and CA19-9 and compared to see whether one test was statistically 

superior to the other (p< 0.05) by evaluating the overlap of 95% confidence intervals. If 

there was no significant variation in the diagnostic performance with threshold (i.e. 

diagnostic odds ratio is asymmetrical or the DOR varies with the threshold used) as 

estimated by the Littenberg and Moses method (138), the equation for the receiver operator 

characteristics (ROC curves) was calculated using the relation (138):  

Sensitivity = 1/ [1+ [1/ ((1-specificity)/specificity)*DOR)]].  

If there was a significant variation in the diagnostic performance with threshold, the 

equation for the ROC curve was calculated using the relation (138):  

Sensitivity = 1/ [1+ [1/ (exp (a/(1-b)) * ((1-specificity)/specificity) ^ ((1+b)/ (1-b)))]] 

where a and b are the estimates in the linear regression equation of the Littenberg and 

Moses method (138). 

A subgroup analysis for pancreatic cancer versus healthy volunteers and pancreatic cancer 

versus benign pancreatic disorders was also performed. 

3.2.2 Results 

 
A total of 258 references were retrieved from Pubmed (78), Embase (75), Central (17) and 

SCI Expanded (88). 118 duplicates were removed and 132 references were excluded by 

reading the titles and abstracts. Full text was obtained for eight references (56;74;83-

86;89;145) of seven studies. No further references were identified by searching the 

references of identified studies. All the seven studies could provide data for meta-analysis.  
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The characteristics of the included studies are tabulated in Table 3.1. The quality of the 

included studies is stated in Table 3.2. As expected, no study described the reference test in 

detail.  

The sensitivity, specificity, true-positive, false-positive, false-negative, true-negative, 

diagnostic odds ratio and 95% confidence intervals are tabulated in Table 3.3.  

All the seven studies reported the sensitivity and specificity of Tumour M2-pyruvate 

kinase, while only three studies (83;86;145) included the specificity of CA19-9. Only one 

study (89) reported the sensitivity and specificity of  Tumour M2-pyruvate kinase at 

different cut-off levels (15 Units/ml) and (18 Units/ml). Since the diagnostic odds ratio 

(DOR) was better for the cut-off level of 15 Units/ml, the sensitivity and specificity 

corresponding to this cut-off level was used for the meta-analysis. One study (86) reported 

the sensitivity and specificity of Tumour M2-PK in distinguishing pancreatic cancer from 

other GI cancers, benign pancreatic disorders and other benign gastrointestinal diseases. 

However, this study reported the number of people positive for TuM2-PK for different 

conditions individually and so it was possible to calculate the sensitivity and specificity of 

TuM2-PK in distinguishing pancreatic cancer from other benign disorders. The meta-

analysis of DOR for Tumour M2-PK is shown in Figure 3.2.  



Table 3.1: Characteristics of included studies 

 

Sample size 

Study Reference test Controls 

Cut-off level 

of M2PK in 

units/ml 

Pancreatic 

cancer 

Control 

Method of 

calculating cut-off 

level of M2PK 

Cut-off level 

of  CA19-9 

in units/ml 

Method of calculating cut-off 

level of CA19-9 

Oremek et al. 

1997 

Histopathology Healthy volunteers 22.5 64 666 

Corresponding to 

a specificity of 

90% in ROC 

65 Literature 

Cerwenka et al. 

1999 

Histopathology 

Healthy volunteers, benign pancreatic 

disease 

28 38 128 

Corresponding to 

a specificity of 

90% in ROC 

37 Literature 

Hardt et al. 2000 Not stated Healthy volunteers 15 14 60  23  

Schulze et al. 

2000 

Not stated Healthy volunteers 15 26 141 Literature 25 Not stated 

Schneider et al. 

2003 

Histopathology  19.8 24 76 

Corresponding to 

a specificity of 

95% in ROC 

23 

Corresponding to a specificity 

of 95% in ROC 

Ventrucci et al. 

2004 

Histopathology, 

imaging 

Healthy volunteers, other benign GI 

disorders including benign pancreatic 

diseases* 

8.9 60 95* 

Best cut-off value 

in ROC 

60 Best cut-off value in ROC 

Siriwardana et 

al. 2005 

Histopathology 

Patients with suspected pancreatic 

cancer but histologically proven to have 

no cancer 

27 77 69 Not stated 38.5 Not stated 

*Patients with other cancers were excluded from analysis 



Table 3.2: Quality of included studies 

 

Study Design 

Differential 

verification 

Blinding 

of 

assessors 

Population 

described 

Description 

of diagnostic 

test 

Description of 

reference test 

Data collection 

Oremek et al. 

1997 

Case-control No 

Not 

stated 

Yes Yes No Prospective 

Cerwenka et 

al. 1999 

Case-control No 

Not 

stated 

No Yes No Prospective 

Hardt et al. 

2000 

Case-control No 

Not 

stated 

 Yes No Prospective 

Schulze et al. 

2000 

Case-control No 

Not 

stated 

No Yes No Retrospective 

Schneider et 

al. 2003 

Case-control No 

Not 

stated 

Yes Yes No Prospective 

Ventrucci et 

al. 2004 

Case-control No 

Not 

stated 

Yes Yes No Prospective 

Siriwardana 

et al. 2005 

Cohort No 

Not 

stated 

Yes Yes No Prospective 



Table 3.3: Sensitivity and specificity of TuM2-PK and CA19-9 

     

Study 
Tumour 

marker 

Sensitivity 

(%) 

Specificity 

(%) 

True 

positivity 

(n) 

False 

Positivity 

(n) 

False 

negativity 

(n) 

True 

negativity 

(n) 

 

Diagnostic odds ratio 

(95% CIs) 

TuM2PK 71 90 45 67 19 599 22.03 (12.14, 40.00) 

Oremek et al. 1997 

CA19-9 68.5 NA - - - - - 

TuM2PK 79 90 30 13 8 115 33.86 (12.82, 89.40) 
Cerwenka et al. 1999 

CA19-9 65 NA - - - - - 

TuM2PK 71.4 90 10 6 4 54 22.47 (5.36, 94.23) 

Hardt et al. 2000 

CA19-9 83 NA - - - - - 

TuM2PK 73 89 19 16 7 125 26.47 (9.60, 72.96) 

Schulze et al. 2000 

CA19-9 85 NA - - - - - 

TuM2PK 72.9 95 17 4 7 72 12.78 (3.25, 50.24) 

Schneider et al. 2003 

CA19-9 87.5 95 21 4 3 72 33.25 (6.78, 163.03) 

TuM2PK 85 41 51 50 9 45 141.16 (63.47, 318.95) 

Ventrucci et al. 2004 

CA19-9 75 81 45 16 15 79 42.33 (19.16, 93.50) 

TuM2PK 66 60 51 28 26 41 46.59 (23.74, 91.41) 
Siriwardana et al. 

2005 
CA19-9 71 73 55 19 22 50 48.26 (23.38, 99.58) 

 

TuM2PK: Tumour M2-Pyruvate Kinase, CA19.9: Carbohydrate Antigen 19.9, NA: Not available 



 

Summary meta-analysis plot [random effects]

2 5 10 100 1000

combined 35.00 (19.66, 62.30)

Siriwardhana 2005 46.59 (23.74, 91.41)

Ventrucci 2004 141.16 (62.47, 318.95)

Schneider 2003 12.78 (3.25, 50.24)

Schulze 2000 26.47 (9.60, 72.96)

Hardt 2000 22.47 (5.36, 94.23)

Cerwenka 1999 33.86 (12.82, 89.40)

Oremek 1997 22.03 (12.14, 40.00)

odds ratio (95% confidence interval)

 

Figure 3.2: Meta-analysis Forest Plot (M2-PK) 

 

Since I2 was 64.6%, the random-effects model was used for the meta-analysis. The 

summary estimate of the diagnostic odds ratio for Tumour M2-PK was 35.00 (95% CI = 

19.66 – 62.30) and that of CA19-9 was 44.04 (95% CI = 26.53 – 73.10). There was 

significant overlap of the 95% confidence intervals in the two tumour markers. 

The funnel plot is shown in Figure 3.3. Although visual inspection showed some 

asymmetry, there was no statistically significant bias (P = 0.6944).  
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Bias assessment plot
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Figure 3.3: Funnel plot for the studies bias assessment 

 

There was significant variation in the diagnostic performance with threshold as estimated 

by the Littenberg and Moses method (138). The appropriate equation for the ROC was 

used to calculate the ROC. The ROC for Tumour M2-PK is shown in Figure 3.4. This 

corresponds to a sensitivity of 81% for a specificity of 65%. 
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Figure 3.4: Receiver Operating Characteristics curve of summary estimate 

 

A subgroup analysis to determine the role of Tumour M2-pyruvate kinase in identifying 

people with pancreatic cancer from healthy volunteers was performed. Five studies 

(56;74;83;84;89) reported the sensitivity and specificity of Tumour M2-pyruvate kinase 

in pancreatic cancers compared with healthy volunteers. The DOR was 23.40 (95% CI = 

15.48 – 35.36). There was no statistical heterogeneity as the I2 was 0%. Since there was 

significant variation in the diagnostic performance with threshold, the sensitivity and 

specificity was calculated by the Littenberg and Moses method. This corresponded to a 

sensitivity of 94% for a specificity of 55%. 
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Another subgroup analysis was performed to determine the role of Tumour M2-pyruvate 

kinase in identifying pancreatic cancer from benign pancreatic disorders. Only two 

studies (86;145) reported this. Therefore, a meta-analysis was not performed. The 

sensitivity and specificity was 85% and 35% in the study (86) which reported the number 

of people positive for Tumour M2-pyruvate kinase for different conditions individually. 

In the other study (145) the specificity and sensitivity were 66% and 60%. 

Two studies (84;86) reported the sensitivity and specificity of Tumour M2-pyruvate 

kinase alone and in combination with CA19-9. Of these two, one study (84) reported only 

the sensitivity without reporting the specificity. The combination of Tumour M2-pyruvate 

kinase and CA19-9 identified 96% of the cancers. In the other study (86) the combination 

identified pancreatic cancer with a sensitivity of 97% which was higher than Tumour M2-

pyruvate kinase (sensitivity 85%) or CA19-9 (sensitivity 75%) when used alone. The 

specificity was 38%. However, the later study included other malignancies also.  



 66 

 

3.2.3 Discussion 

 

Tumour M2-pyruvate kinase is not an organ-specific cancer marker and is elevated in 

different type of cancers. The different specificities reported in the published studies used 

in our meta-analysis are due to the type of control populations or the diagnostic threshold 

used. Because of the different thresholds used in the different studies (Table 3.1) 

diagnostic odds ratio (DOR) was calculated. Summary ROC is a useful method of meta-

analysis when different studies use different thresholds for calculating the sensitivity and 

specificity of a diagnostic test (138). Since the ROC curve was asymmetrical–identified 

by the Littenberg and Moses method–(138), the appropriate formula was used to calculate 

the summary ROC curve. Most of the studies were of satisfactory quality with no 

significant bias in the evaluation of diagnostic test. Although there was some asymmetry 

in the funnel plot it was not statistically significant. Histological confirmation was the 

reference test used in most of the studies based on which the sensitivity of Tumour M2-

pyruvate kinase or CA19-9 was determined. 

Different authors used different cut-off points to calculate the specificity and sensitivity. 

Hence, the Littenberg and Moses method (138) was used to perform the meta-analysis. 

The main limitation of this meta-analysis is that the information about sensitivity and 

specificity is lost because of calculation of the diagnostic odds ratio. Furthermore, the 

overall cut-off value for the test cannot be recommended. However, the main strength of 
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this meta-analysis is that it has summarised the evidence in literature regarding the 

diagnostic utility of Tumour M2-pyruvate kinase. The Forest plot results are reproducible 

in different centres with the DOR varying between 13 and 35 in 6 of the 7 studies.   

Tumour M2-pyruvate kinase may not be useful for screening of general population. 

However, it may be of more value in patients at high risk of pancreatic cancer. There are 

a few high risk groups that would be considered for screening e.g. Peutz-Jeghers 

syndrome, relatives of  Familial pancreatic cancer (FPC), Hereditary pancreatitis, 

Intraductal Papillary Mucinous Neoplasms (IPMN) and chronic pancreatitis (146). FPC 

groups are as rare (147) as familial chronic pancreatitis which has a high incidence of 

malignant transformation (148). Chronic pancreatitis has a small but significant high risk 

(148) but the role of Tumour M2-pyruvate kinase in distinguishing pancreatic exocrine 

cancers from benign pancreatic diseases is limited with only two studies (86;145) 

comparing Tumour M2-pyruvate kinase levels in pancreatic exocrine cancers and benign 

pancreatic diseases.  

The diagnostic odds ratio was higher for CA19-9 than Tumour M2-pyruvate kinase 

although the difference was not statistically significant. This meta-analysis therefore 

suggests that Tumour M2-pyruvate kinase has equivalent diagnostic utility to CA19-9 in 

distinguishing patients with pancreatic cancer from healthy individuals. A potential role 

for Tumour M2-pyruvate kinase would be in combination with CA19-9 in patients with 

jaundice where elevated CA19-9 levels are elevated in the presence of biliary obstruction 

independent of the aetiology. In such cases measurement of Tumour M2-pyruvate kinase 
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would be of utility since its level in plasma is not influenced by elevated bilirubin levels 

(85;86). Due to the limited number of studies involving combination of markers, it was 

difficult to calculate the DOR for Tumour M2-pyruvate kinase and CA19-9 combination. 

However, these studies indicate that combining these two markers identify more patients 

with pancreatic cancer than when used alone. 

Recently several protein markers have been identified which are the product of over or 

altered gene expression in pancreatic cancer (149). These include macrophage inhibitory 

cytokine-1 (MIC-1), synuclein-gamma, mesothelin, osteopontin and S100A4 which have 

been investigated as potential markers for pancreatic cancer, but their efficacy as serum 

markers remains undetermined (150-154). Tumour M2-pyruvate kinase, on the contrary, 

has a better reproducibility of diagnostic efficacy in pancreatic cancer either alone or in 

combination at different centres. This meta-analysis would suggest further trials 

comparing levels of Tumour M2 pyruvate kinase, either alone or in combination with 

CA19-9, in patients with exocrine pancreatic cancer and patients with high risk for 

pancreatic cancer.  
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3.2.4 Conclusion 

 
 
Tumour M2-PK has a potential role as a marker of pancreatic cancer. It can reliably 

distinguish healthy individuals from patients with pancreatic cancer. Further experimental 

studies are required to clarify the significance of elevated levels of Tumour M2-PK in 

pancreatic cancer with reference to tumour biology, tumour metabolism and tumour 

microenvironment.



 

 

4 Chapter 4   Materials and Methods



 
 

List of experimental techniques used in this thesis: 

1. Isolation and culture of cell lines. 

2. Immunoblotting for total M2-PK protein–this method was used to     

demonstrate the total M2-PK protein in cells before dimeric M2-PK can  

      be measured. 

3. ELISA for Tumor M2-PK assay–this method demonstrates the dimeric  

      form of M2-pyruvate kinase. It is an accurate, highly specific and easily    

      reproducible method (63). 

4. Pyruvate kinase activity assay by spectrophotometry–this method  

      measures pyruvate kinase activity and is a validated method  

      as described before (155;156). 

5. Bradford assay–a validated reproducible method for measuring total  

      protein content in the cell sample (157). 

6. Active Caspase 3, 7 and 8 assay–this method allows measurement of   

      activity of initiator (Caspase 8) as well as effector (Caspase 3 and 7)  

      caspases in the adherent and floating cells in culture. It is a fast and  

      reliable method and has been validated before (158).  

7. Annexin V-FITC and Propium iodide staining and FACS analysis–  

      Annexin V staining was used for early apoptosis while Propium iodide  

      was used as a marker of necrosis. FACS analysis was used to quantify  
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            early or late apoptosis and necrosis. 

8. Immunofluorescence–this method is used for localising M2-PK in  

            relation to cell organelles especially nucleus and mitochondria to predict  

            its role other than tumour metabolism. 
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4.1 Cell lines description 

 
Panc-1 is a Human Caucasian pancreatic adenocarcinoma cell line of ductal origin 

purchased from European Collection of Cell Culture (ECACC) catalogue number 

87092802 while Colo 357 is a continuous human cell line derived from a lymph node 

metastasis of a pancreatic adenocarcinoma (Table 4.1). Dr N. R. Lemoine, Centre for 

Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of 

Medicine and Dentistry, University of London, London, UK, gifted these. These cell lines 

were chosen for the experiments because of difference in their origin, proliferation rate 

and metastatic potential (Table 4.1). Moreover, these were readily available in our 

laboratory as continuous monolayer culture because of ongoing research work on 

pancreatic cancer.  
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Table 4.1: Characteristics of Panc-1 and Colo 357 pancreatic cancer cell lines. 

 

  Cell line characteristics                   Panc-1                                 Colo 357 

 

-Source of tumour cells
a                           Primary tumour                Lymph node metastasis 

-Histology and grade
a                           

 

 of primary tumour                          PDAC, G3                       PDAC, G1-G2 

-Ultrastructural grading*
a                    3                                       2 

-Cytokeratin marker
a
 

  CK-7                                               -                                        +++                      

  Vimentin                                        +++                                   + 

-Cell doubling time of                     52 c
                                    21 d

 

  monolayer cultures (hrs)
                            

 

- Gemcitabine sensitivity
b                  Resistant                             Sensitive                           

  

* Based on cellular and nuclear polymorphism, cell membrane structure, cell organelles,    
   mucin granules. - Negative, + <10%, +++ >50% of the stained cells, PDAC pancreatic  
  ductal adenocarcinoma. a Sipos et al.(159) , b Schniewind et al.(160), c Lieber et al.(161)  
and d Morgan et al. (162) 
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MCF7: It is a Human Breast epithelial cell line purchased from ECACC (Catalogue 

number 86012803). This cell line expresses Tumour M2-PK as described previously 

(163) and is used as a positive control for Tumour M2-PK quantification. 

HMEC-1 (Human microvascular endothelial cells) cell line was used as a non-cancer cell 

control and was kindly donated by Dr Shiyu Yang, Department of Anatomy, Royal Free 

and University College Medical School, UCL, London. 

4.2 Cell culture techniques 

 
Panc-1 and Colo 357 cell line were maintained in culture in DMEM (Dulbeco’s Modified 

Eagle’s Medium – Gibco Catl. No. 21969-035) while MCF 7 was maintained in EMEM 

(Earl’s Minimum Essential Medium – Gibco Catl. No. 10370047) supplemented with 

Penicillin/Streptomycin solution (1%), 2mM glutamine and 10% foetal bovine serum 

(FBS). Cell culture was maintained at 21% O2, 5% CO2 and at 37 ˚C until 70 – 80% 

confluent and then subcultured for experiments. For each experiment, 2 million cells 

were plated on 75 cm2 flask and cultured for 24 hrs, 48 hrs, 72 hrs and 96 hrs without 

changing the medium. Adherent cells were removed from the flask using 0.25% Trypsin 

EDTA (Gibco) and counted under an inverted phase contrast microscope (Nikon TMS-F, 

Japan) in a hemacytometer (Bright Line™ Hemacytometer Z359629, Sigma, UK). Cells 

were then washed thrice in cold PBS, centrifuged at 800 rpm and pelleted. Cell pellets 

were stored at -80 ˚C for Tumour M2-PK extraction. 
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4.3 Culture conditions 

4.3.1 Acidic pH condition 

 
 Preparation of acidic (pH 6.5) medium: 

Acidic medium was prepared by adding 1 mM of MES and 25 mM of HEPES (Sigma-

aldrich, UK) to DMEM without sodium bicarbonate (GIBCO, UK). Final pH of the 

medium was adjusted to 6.5 using 25 mM NaOH or HCl. Addition of MES and HEPES 

maintained the required acidic pH for 96 hrs in culture as described before (35). 

Panc-1 and Colo 357 cell lines were allowed to adhere to plate for 48 hrs in normal pH 

medium before exposure to acidic medium further for 24, 48, 72 and 96 hrs. Cells grown 

in normal culture conditions were used as controls and were cultured for the same 

duration with the replacement of medium after 48 hrs. The pH of the culture medium was 

monitored at 24, 48, 72 and 96 hrs using pH meter (Hanna pH meter 210, Bedfordshire, 

UK). 

4.3.2 Glucose deprived condition  

 
Panc-1 and Colo 357 cell lines were incubated for 48 hrs in normal medium in 75 cm2 

flask. A glucose-deprived condition (10 mg/dl) was created by adding 10% FBS to 

glucose-free DMEM.  Because normal glucose concentrations in human peripheral blood 

range between 70 and 200 mg/dl, we used DMEM containing 100 mg/dl glucose. Thus, a 

concentration of 100 mg/dl is defined as ‘‘normal glucose’’ in our study. Oxygen 

concentration in tumour tissues is 1.25% (about one tenth of that in peripheral blood); 

thus, glucose concentration in tumour tissues could also be estimated to be around one 
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tenth of that in peripheral blood. Therefore, the cultures carried out under glucose-

deprived conditions were done in glucose-free DMEM, supplemented with 10% FBS (the 

final concentration of glucose in this medium is 10 mg/dl as described before (164). After 

48 hrs medium was changed to glucose-free DMEM (GIBCO, U.K) and cells were 

further incubated for 24, 48, 72 and 96 hrs. Further check on glucose concentrations 

during this period were not done as glucose levels were not expected to rise. Control cells 

were grown in normal medium for the same duration.  

4.3.3 Hypoxic condition  

 
Initial experiments were done using the AnaeroGen™ System (Oxoid Limited, 

Basingstoke, UK) until hypoxia chamber (Innova CO-48, New-Brunswick Scientific, 

New Jersey, USA, Picture 1) which maintains hypoxic condition with 1% O2, 5% CO2 

and 94% Nitrogen, was available for later experiments. AnaeroGen™ System involves 

placing a paper sachet containing ascorbic acid into a 2.5 litre jar that rapidly reacts with 

air to reduce the oxygen level to 1% within 30 minutes and increases the carbon dioxide 

level to 10% (manufacturer’s information sheet). An indicator resorufin (pink at 

atmospheric oxygen) is reduced to hydroresorufin (white colour) on exposure to 1% O2.  

After incubating Panc-1 and Colo 357 cells in normal culture medium for 24 hrs in 100 x 

20 mm Petri dishes, medium was replaced and the Petri dishes were placed in the 

anaerobic jar for 24, 48, 72 and 96 hrs at 37˚ C. Control cells were grown in normal 

medium for the same duration with the replacement of medium after 24 hrs.  
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                              Picture 1: Hypoxia chamber 

 

The hypoxic condition in the jar was monitored throughout the culture duration by the 

anaerobic indicator while the inbuilt oxygen and CO2 sensors were available to monitor 

hypoxic environment in the hypoxia chamber. The oxygen level in culture medium was 

monitored using commercially available kit from BD Biosciences.    
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4.4 Biochemical Assays 

4.4.1 ELISA (Quantitative) 

Principle 
 
Tumour M2-PK in cell homogenate supernatant was measured using ELISA kit for 

plasma Tumour M2-PK (ScheBo® Tumour M2-PK™). The assay is a sandwich-type 

ELISA based on two monoclonal antibodies specific for Tumour M2-PK with no cross-

reactivity to other isoforms of M2-PK. The primary monoclonal antibody is pre-coated to 

the ELISA plate. Tumour M2-PK in the standards and the cell homogenate supernatant 

(diluted only if the absorbance is beyond the standard curve) binds to the antibody and is 

thus immobilised on the plate. A second monoclonal antibody which is biotinylated, 

binds to Tumour M2-PK. The conjugates of peroxidase (POD) and streptavidin bind to 

the biotin moiety. The peroxidase then oxidises TMB (3, 3’5, 5’-tetra-methyl benzidine) 

substrate to give the final colour reaction for the absorbance which was determined 

spectrophotometrically.  

Materials and Reagents 
 
Reagents (Picture 2) 

 

1. 12 ELISA-strips with 8 wells each, coated with a monoclonal antibody to human 

Tumour M2-PK 96 wells. 

2. Sample-washing buffer concentrate (5x) 100 ml phosphate buffered saline, pH 

7.2, with detergent. 
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Picture 2: Tumour M2-PK ELISA kit 

 

 

3. Tumour M2-PK standards 1 to 4, ready-to-use, 700 µl each Tumour M2-PK in 

serum matrix with sodium azide. 

4. Control, ready-to-use, 700 µl tumour M2-PK  in serum matrix with sodium azide. 

5. Second monoclonal antibody to tumour M2-PK conjugated to biotin, i.e. anti-

tumour M2-PK bio, 150 µl in aqueous solution with sodium azide. 

6. POD-Streptavidin, ready-to-use, light sensitive, 8 ml in aqueous solution. 

7. Substrate solution, ready-to-use, light sensitive, 12 ml TMB in aqueous solution. 

8. Stop solution, ready-to-use, 12 ml aqueous acidic solution. 



 81 

 

 

 
Picture 3: ELISA plate-reader 

 

 

9. ELISA-reader capable of reading absorbance at 450 nm. Reference wavelength:    

620 nm (Picture 3). 

10. Polystyrene test tubes (3 ml, 10 ml).  

11. Graduated cylinder (500 ml). 

12. Vortex mixer. 

13. Adjustable precision pipettes: 0-50 µl, 50-200 µl, and 200-1000 µl. 

14. Pipettes 2 ml, 5 ml and 10 ml and adjustable 8-channel pipette 50-250 µl. 



Sample protocol 
 
The frozen cell pellets stored at -80 ºC, then thawed at 37 ˚C and washed thrice with cold 

PBS (Phosphated Buffered Saline). Cells were resuspended in 1ml of cold extraction 

buffer (10 mM Tris, 1 mM NaF and 1 mM Mercaptoethanol, pH 7.4, Sigma-Aldrich) and 

homogenised using a glass-pestle homogeniser (Wheaton Science products, USA) using 

20 strokes of pestle. The homogenised cells were then centrifuged at 40,000 g (Optima ™ 

TLX ultracentrifuge, Beckman Coutler™, USA) for 20 minutes at 4º C and the cell 

homogenate supernatant was used for ELISA. 

Assay protocol 
 
Preparations 

-Preparation of sample-washing buffer  

100 ml sample-washing buffer 5x (black cap) + 400 ml bidistilled water. 

The diluted sample-washing buffer is stable for 6 months at 4 - 8 °C.  

-Preparation of ELISA plate 

ELISA plate was brought to room temperature before opening. Desired numbers of 

ELISA strips were left in the microplate frame. Unused ELISA strips were stored in the 

well-sealed plastic bag containing the desiccant. The study samples were brought to room 

temperature before plating. 

-Preparation of the secondary antibody anti-tumour M2-PK bio (1:100) 

Preparation of 1:100 dilutions of the biotin-conjugated second monoclonal anti-tumour 

M2-PK antibody was made depending on the number of strips to be used: 

For 2 strips (1/6 plate): 

15 µl anti-tumour M2-PK bio + 1.5 ml sample-washing buffer. 



 83 

For 4 strips (1/3 plate): 

25 µl anti-tumour M2-PK bio + 2.5 ml sample-washing buffer. 

For 6 strips (1/2 plate): 

30 µl anti-tumour M2-PK bio + 3.0 ml sample-washing buffer. 

For 12 strips (1 plate): 

60 µl anti-tumour M2-PK bio + 6.0 ml sample-washing buffer. 

Dilutions of anti-tumour M2-PK-bio was stored at 4 – 8 °C and brought to room 

temperature shortly before use. 

Assay procedure 

 

Incubation of samples and standards 

-Pipetted 50 µl of sample-washing buffer into wells A1 and A2 as blanks. 

-Pipetted 50 µl of each standard into strips 1 and 2 as duplicate. 

Standard 1 = 5.0 U/ml 

Standard 2 = 15.0 U/ml 

Standard 3 = 40.0 U/ml 

Standard 4 = 100.0 U/ml 

-Pipetted 50 µl of control solution (20.0 U/ml ± 15 %) into wells F1 and F2. 

-Pipetted 50 µl of undiluted samples into each of two adjacent wells and incubated for 60 

minutes at room temperature. 

-The wells were emptied and washed 3 times with sample-washing buffer (8 channel   

pipette, 250 µl/well). The plate was inverted and tapped firmly on a clean paper towel to 

remove any remaining liquid. 
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 1 2 3 4 5 6 7 8 9 10 11 12 

A Blank Blank S3 S3 S11 S11 S19 S19 S27 S27 S35 S35 

B STD1 STD1 S4 S4 S12 S12 S20 S20 S28 S28 S36 S36 

C STD2 STD2 S5 S5 S13 S13 S21 S21 S29 S29 S37 S37 

D STD3 STD3 S6 S6 S14 S14 S22 S22 S30 S30 S38 S38 

E STD4 STD4 S7 S7 S15 S15 S23 S23 S31 S31 S39 S39 

F CON CON S8 S8 S16 S16 S24 S24 S32 S32 S40 S40 

G S1 S1 S9 S9 S17 S17 S25 S25 S33 S33 S41 S41 

H S2 S2 S10 S10 S18 S18 S26 S26 S34 S34 S42 S42 

<-2 strips--> 

<----- 4 test strips ------> 

<------------------------ whole ELISA plate, 12 test strips ------------------------> 

STD:  standards 
CON: control 
S1-S42: Undiluted cell lysate supernatant samples 
 

Figure 4: Possible plate layout 

 

 

-Incubation with second antibody (anti-tumour M2-PK bio)  

50 µl of the 1:100 biotin-conjugated second monoclonal antibody was added into each 

well using 8 channel pipette and incubate for 30 minutes at room temperature. 

Wells were emptied by inverting and tapping the plate and washed 3 times with sample-

washing buffer (8-channel pipette, 250 µl/well). Plate was inverted and tapped on a clean 

paper towel to remove any remaining liquid in the wells at the end of each washing step. 

-Incubation with POD-Streptavidin 
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50 µl/well of ready-to-use POD-Streptavidin was added and incubated for 30 minutes in 

the dark at room temperature. Wells were emptied by inverting and tapping the plate and 

washed 3 times with sample-washing buffer (8-channel pipette,  

250 µl/well). Plate was inverted and tapped on a clean paper towel to remove any 

remaining liquid in the wells at the end of each washing step.  

-Colour Reaction 

Added 100 µl of ready-to-use substrate solution to each well. The mixture was incubated 

for 15 minutes in the dark at room temperature. This time was shortened when using an 

ELISA-reader which reads extinctions only up to OD 1.5 or 2. 

-Stopping the colour reaction 

The substrate reaction was stopped by adding 100 µl of stop solution per well and the 

contents were mixed by agitating the plate for 10 seconds. 

Analysis of results 
 
The optical density was measured at 450 nm with a microtitre plate-reader (Anthos 2020 

microplate-reader, Austria) between 5 and 30 minutes after addition of the stop solution. 

Contents were mixed well before measuring. The reference wavelength of 600 nm was 

used to correct any error arising from the microplate. 

The mean optical densities of all duplicates were calculated after subtracting the mean 

blank value. The concentration of standards versus their corresponding optical densities 

was plotted on a log-log XY graph to obtain a standard curve (Appendix 2). The 

absorbance was extrapolated to Tumour M2-PK concentration using ELISA software 

(Stingray, Dazdaq Ltd, East Sussex, UK). Tumour M2-PK in cell lysate supernatant was 

expressed as milli U/106 cells. 
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4.4.2 Pyruvate Kinase Activity assay 

 
Principle 
 
This assay measured the activity of the enzyme pyruvate kinase on its substrate 

Phosphoenolepyruvate as described before (155;156). In the presence of NADH and ADP 

this results in production of lactate in the presence of LDH. 

Reagents (All reagents from Sigma-Aldrich, Dorset, UK) 

1. KH2PO4/K2HPO4 (20 mM),  pH 7.2 

2. KCl (80 mM) 

3. MgCl2 (7.6 mM) 

4. NADH (0.63 mg) 

5. ADP (1 mM) 

6. LDH (3 U/ml) 

7. Phosphoenolpyruvate (44 mM) 

Protocol 
 
-Negative control: Normal saline 

-Positive control: Solution with known concentration of PK  

-Solution 1 was prepared by mixing KH2PO4/K2HPO4 (20 mM), KCl (80 mM), MgCl2 

(7.6 mM), NADH (0.63 mg), ADP (1 mM) and LDH (3 U/ml) at pH 7.2 

-Solution 2: Phosphoenolpyruvate (44 mM) 

200 µl of solution 1 was added to 4 µl sample and reaction was started by adding  

10 µl of solution 2.  

Analysis of results 



 87 

Activity was calculated by monitoring the absorbance fall at 340 nm at 37º C by a 

photometric analyser (EPOS 5060, Eppendorf GmbH, Hamburg, Germany). Activity was 

expressed in Enzyme units/x106. The total activity was adjusted by multiplying with the 

dilution factor and cell density using the equation: 

                                                    Measured activity x dilution factor   

PKactivity (U/million cells) =  ___________________________________ 

                                                               Total cell density 
 
 

4.4.3 Western Blot (Semi-quantitative) measuring total M2-PK  

 
Principle  (Illustration 1) 
 
The isoform of M2-PK will not affect the total M2-PK protein expression. This process 

involves: 

– The separation of sample proteins by polyacrylamide gel electrophoresis (PAGE). 

– The transfer of the separated proteins from the gel onto a thin support membrane. The 

membrane binds and immobilises the proteins in the same pattern as in the original gel. 

– The membrane (or “blot”) is then exposed to a solution containing antibodies that 

recognise and bind to the specific protein of interest. 

– The antibodies bound to the membrane are detected by any of a variety of techniques, 

usually involving treatment with a secondary antibody. 

Materials and Reagents 
 

1. Laemlli Sample Buffer (Sigma-Aldrich, UK, Catl. No.  S3401-1VL). 

2. NuPAGE 4-12% Bis-Tris Gel 1.0mm x10 wells (Invitrogen, UK, Catl. No. 

NP032). 
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3. Western Blot Tank (XcellSure Lock, Novel Experimental Technology, UK). 

4. NuPAGE MOPS SDS Running Buffer 20x (Invitrogen, UK, Catl. No. 

NP0001). 

5. Ladder protein (SeeBlue® Plus2 Prestained, Invitrogen, UK, Catl. No. 

LC5925). 

6. Power pack (Savant PS4000A plus). 

7. PVDF membrane (0.2 µm) (Bio-Rad, UK, Catl. No. 162-0176). 

8. Blotting cards. 

9. Transfer Buffer. 

10. Blotter (Trans-blot SD Semi dry transfer cell). 

11. 100% Methanol. 

12. Dried skimmed milk (Marvel). 

13. Primary anti-tumour M2-PK anti-Human Mouse Monoclonal Antibody (DF-4, 

ScheBo®Biotech, Giessen, Germany) and Anti-Actin Rabbit polyclonal antibody 

(A2066, Sigma-Aldrich, Dorset, UK). 

14. Secondary Anti-Mouse Goat Peroxidase conjugated and Anti-Rabbit Goat 

Polyclonal Antibody (Pierce Biotechnology, UK, Catl. Nos. 34075 and 31210 

respectively). 

15. SuperSignal West Dura Extended Duration Substrate (Pierce Biotechnology, 

UK, Catl. No. 34075). 

16. Fuji Super Rx, Fuji Photo Film (UK) Ltd. 
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Illustration 1: Principle of Western blotting 

 

 

 

Sample preparation 
 
Protein extraction 

 

To prepare whole-cell extracts, cells were trypsinised from culture flasks, washed with 

cold PBS and homogenised in ice-cold buffer containing 10 mM Tris/HCl, pH 7.4, 1 mM 

NaF, 1 mM Mercaptoethanol and a Complete Mini EDTA-free Protease Inhibitor 

Cocktail Tablet (Roche diagnostics, UK) using a Dounce tissue grinder (Wheaton Science 

products, USA) with 20 strokes of pestle. The homogenised cells were then centrifuged at 
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40,000 g (Optima ™ TLX ultracentrifuge, Beckman Coutler™, USA) for 20 minutes at 4º 

C. The sediment was discarded and supernatant was preserved. 

Protein measurement (Bradford assay)  

Principle:  The Bradford assay is a protein determination method that involves the 

binding of Coomassie Brilliant Blue G-250 dye to proteins (157). The dye exists in three 

forms: cationic (red), neutral (green), and anionic (blue) (165;166). Under acidic 

conditions, the dye is predominantly in the doubly protonated red cationic form (Amax = 

470 nm ) – (166). However, when the dye binds to protein, it is converted to a stable 

unprotonated blue form (Amax = 595 nm). It is this blue protein-dye form that is detected 

at 595 nm in the assay using a spectrophotometer or microplate reader. 

H+                              H+ 

Cation      ↔        Neutral form   ↔       Anion 

470 nm (red)       650 nm (green)          595 nm (blue) 

Reagents (Quick Start™ Bradford Protein Assay Kit, Bio-Rad, Hemel Hempstead, UK, 

Catl. No. 500-0202) 

� Seven concentrations of bovine serum albumin (BSA) – (2, 1.5, 1, 0.75, 0.5, 0.25, 

0.125 mg/ml) used as standards. 

� Coomassie Brilliant Blue G-250 dye solution containing methanol and phosphoric 

acid. 

� 96 wells micotitre plate. 

� 8 channel pipette (250 µl). 

� Plate-reader (595 nm). 
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Protocol for Bradford assay: 
 
Standards and dye solution were brought to room temperature. 

5 µl of standards and samples were pipetted into each well. 

250 µl of dye solution added into the wells using 8 channel pipette and mixed gently by 

moving the plunger up and down a few times. 

The plate is incubated at room temperature for at least 5 minutes and then absorbance is 

read on the microplate-reader using 595 nm filter. 

A standard curve was created by plotting the 595 nm values (y-axis) versus their 

concentration in µg/ml (x-axis). The unknown sample concentration was determined 

using the standard curve. If the samples were diluted, the final concentration of the 

unknown samples was adjusted by multiplying the dilution factor used. 

Western blot protocol 
 
-15µl of 2x Laemlli Sample buffer was added to 15 µl of sample containing 20 µg of 

protein.  

-This was heated for 5 minutes at 95º C, vortexed and then heated for a further 5 minutes. 

The mixture was centrifuged for few seconds at low speed. 

-Samples were loaded along with the ladder protein and run on NuPAGE Gel @  

25 mA and 150 V for approximately 1 hour in MOPS Running Buffer. 

-For each gel, 7.5x8.5 cm PVDF membrane and thick cards (x2) of the same size as 

membrane were cut. The membrane was rolled into Sterilin tube containing 100% 

methanol to avoid it getting dry. 

-Wet membrane was placed in a large weigh boat containing transfer buffer enough to 

soak the membrane. The boat was placed on a tilting platform. 
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-The gel was removed from plastic covering and placed in weigh boat. The stacking gel 

teeth and the lower portion of the gel which was stuck to the plastic covering were 

removed. The gel was covered with transfer buffer and placed on a tilting platform. 

-Thick blotting cards were soaked in transfer buffer and placed on the blotter. 

-Membrane was then layered onto card, followed by gel and second piece of card making 

sure no air bubble was trapped between the gel and membrane and cards by rolling falcon 

tube across surface. 

-Blotter was gently sealed and set to run at 25 V and 75 mA for 45 minutes. Success of 

transfer was ensured by observing transfer of ladder from gel onto membrane.  

-Membrane was washed briefly with bi-distilled water and blocked with 5% Marvel in 

PBS for 30 minutes. 

-Membrane was washed briefly with PBS and incubated overnight with Primary 

Antibody (1:2000) to M2-PK and Actin in 5% Marvel PBS at 4º C on a tilting platform. 

-Membrane was washed thrice for 5 minutes and incubated in Secondary Antibodies 

(1:1000) in 5% Marvel PBS for 1 hour at room temperature. 

-Membrane was washed for further 5 minutes thrice and incubated in SuperSignal West 

Dura Extended Substrate (1:1 mixture of Luminol and peroxidase substrate) for 5 minutes 

at room temperature. Excess of mixture was drained and membrane was covered in 

plastic film making sure no air bubbles were trapped. 

-The membrane was then exposed to X-ray film for different periods to get the best signal 

band. 
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Analysis of results 

The size of the protein band was identified by comparing the band position with reference 

to SeeBlue® Plus2 pre-stained standards (Invitrogen, Paisley, UK) run along with 

samples during electrophoresis. The M2-PK band corresponds to 58 Kda as described 

before (167). Actin was used as a loading control protein. 

Density of each band was measured by densitometry in Gel Doc 2000 (BioRad, Milan, 

Italy) using a computer software Quantity one® (BioRad, California, USA). 

Density of the M2-PK was standardised against the Actin band in the form of M2-PK: 

Actin ratio. 
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4.5 Apoptosis measurement 

 

4.5.1 Caspase 3/7 and 8 activity assay 

 
Principle  

The Caspase-Glo® Assay (Promega, Southampton, UK) is a homogeneous luminescent 

assay that measures caspase activity. The assay provides a proluminogenic caspase 

substrate in a buffer system optimised for caspase activity, luciferase activity and cell 

lysis. The addition of a single Caspase-Glo® Reagent in an "add-mix-read" format results 

in cell lysis, followed by caspase cleavage of the substrate and generation of a "glow-

type" luminescent signal. The signal generated is proportional to the amount of caspase 

activity present. The Caspase-Glo® Reagent relies on the properties of a proprietary 

thermostable luciferase (Ultra-Glo™ Recombinant Luciferase), which generates the 

stable "glow-type" luminescent signal and improves performance across a wide range of 

assay conditions. 

Materials and Reagents 
 
-Caspase-Glo® 3/7 or 8 Buffer (Promega, Southampton, UK) 

-Caspase-Glo® 3/7 or 8 Substrate (lyophilised – Promega, Southampton, UK) 

-White-walled multiwell plates adequate for cell culture and compatible with the 

luminometer being used (Labsystems Cliniplate, Fisher Scientifc, Loughborough, UK) 

-Multichannel pipet  

-Plate shaker, for mixing multiwell plates 

-Luminometer (Fluoroskan Ascent FL, ThermoLabsystem, Finland) capable of reading 

multiwell plates  
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Protocol 
 
-13,000 Colo 357 and Panc-1 cells from culture platted in duplicate in each well of 96-

well white-walled plates.  

-Cells were allowed to incubate under normal, acidic pH, glucose deprived or hypoxic 

medium (100 µl/well) for 24 hrs, 48 hrs, 72 hrs and 96 hrs. 

-Caspase-Glo® 3/7 or 8 buffer and lyophilised Caspase-Glo® 3/7 or 8 substrate was 

allowed to equilibrate to room temperature before use. 

-The contents of the Caspase-Glo® 3/7 or 8 buffer bottle were transferred into the amber 

bottle containing Caspase-Glo® 3/7 or 8 substrate. The contents were mixed by swirling 

or inverting until the substrate was thoroughly dissolved to form the Caspase-Glo® 3/7 or 

8 reagent. 

-The 96-well plate containing cells was removed from the incubator and allowed to 

equilibrate to room temperature. 

-100 µl of Caspase-Glo® 3/7 or 8 reagent was added to each well of a white-walled 96-

well plate containing 100 µl of blank, negative control cells or treated cells in culture 

medium.  

-After incubating the mixture for 2 hrs at room temperature, the luminescence of each 

sample was measured in a plate-reading luminometer. 

Precautions:  

-Because of the sensitivity of this assay, care was taken not to touch pipette tips to the 

wells containing samples to avoid cross-contamination. 

-Plate was covered with a plate sealer or lid. 
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-Contents of wells were mixed gently using a plate-shaker at 300 – 500 rpm for 30 

seconds.  

-Room temperature fluctuation was taken into account to avoid its interference in the   

luminescence reading.  

4.5.2 Bax and Bcl-2 measurement 

Bax and Bcl-2 protein expression was measured by immunoblotting (as described in 

section 5.4.3) using mouse monoclonal antibody (1:200 dilution) and rabbit polyclonal 

antibody (1:200 dilution) respectively (Santa Cruz laboratories, CA, USA). This method 

was used to measure apoptosis because at the beginning of the experiment it was not 

known whether the apoptosis to altered microenvironment would be caspase or Bcl-2 

protein dependent as different types of apoptotic pathways in pancreatic cancer have been 

described in the literature (168). Bax is an apoptotic protein while Bcl-2 is an  anti-

apoptotic protein regulating mitochondrial permeabilisation (168) . Their effect on 

mitochondrial permeability pores is caspase independent(168) .   

4.5.3 Annexin V-FITC and Propium Iodide staining 

 
Principle 
 
In normal viable cells phosphatidyl serine (PS) is located on the cytoplasmic surface of 

the cell membrane. Upon induction of apoptosis, rapid alterations in the organisation of 

phospholipids in most cell types occurs leading to exposure of PS on the cell surface. 

Recognition of PS by phagocytes in vivo results in the removal of cells programmed to 

die, thus apoptosis is not commonly associated with the local inflammatory response 

which accompanies necrosis. In vitro detection of externalised PS can be achieved 
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through interaction with the anticoagulant Annexin V. In the presence of calcium, rapid 

high affinity binding of Annexin V to PS occurs. PS translocation to the cell surface 

precedes nuclear breakdown, DNA fragmentation, and the appearance of most apoptosis-

associated molecules making Annexin V binding a marker of early-stage apoptosis. In 

this assay a fluorescein isothiocyanate (FITC) conjugate of Annexin V is used allowing 

detection of apoptosis by flow cytometry or by fluorescence microscopy. Since 

membrane permeabilisation is observed in necrosis, necrotic cells will also bind Annexin 

V-FITC. Propidium iodide is used to distinguish between viable, early apoptotic, and 

necrotic or late apoptotic cells. Necrotic cells will bind Annexin V-FITC and stain with 

propidium iodide while propidium iodide will be excluded from viable (FITC negative) 

and early apoptotic (FITC positive) cells. In the absence of phagocytosis final stages of 

apoptosis involve necrotic-like disintegration of the total cell; thus cells in late apoptosis 

will be labelled with both FITC and propidium iodide. 

A RAPID protocol kit (AnnexinV-FITC kit, PF032, Calbiochem, UK) has been used  for 

Annexin V-FITC binding directly in tissue culture media. 

This obviates the need for tedious centrifugation and wash steps which increase the 

occurrence of mechanical membrane disruption. In addition, since apoptosis is a dynamic 

process that is ongoing once cells are removed from culture conditions and continues 

throughout experimental processing, the RAPID protocol was used for the detection of 

cells in early apoptosis. 
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Material and reagents 
 
-Annexin V-FITC: 200 µg/ml recombinant Annexin V conjugated to fluorescein 

isothiocyanate (FITC) 

-5X Binding Buffer: 

-Media Binding Reagent: a reagent designed to enhance binding of Annexin V to PS in 

tissue culture media 

-Propium Iodide: 30µg/ml 

-PBS (137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4-7H2O, 1.4 mM KH2PO4, adjust 

pH to 7.4) 

-2 – 20 µl, 20 – 200 µl and 200 – 1000 µl precision pipetters with disposable tips 

-Microcentrifuge tubes 

-Adjustable speed microcentrifuge (Eppendorf, Cambridge, UK) 

-Flow cytometer (Beckman Coulter EPICS® XL-MCL, High Wycombe, 

Buckinghamshire, UK). 

Protocol 
 
Media from flask of adherent cells was transferred to a 25 ml universal container and 

placed on ice and later on mixed to the trypsin detached cells. 

Note: This media contained cells that have become detached from the flask during the cell 

death process. 

Cells in flask were gently washed with 10 ml PBS. PBS removed after 3 washes. Added 1 

– 2 ml 0.5X trypsin in flask and incubated just until cells appear detached by microscopic 

evaluation. Cells were released from flask with firm tapping and gently resuspended in 

media to approximately 1 x 106 cells/ml. Transferred 0.5 ml of cell suspension to a 
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microfuge tube. To this added 10 µl of Media Binding Reagent. Subsequently added 1.25 

µl Annexin V-FITC and incubated for 15 mins at room temperature (18–24º C) in the 

dark. This was centrifuged at 1000 x g for 5 mins at room temperature.  Media in the 

supernatant discarded. Cells gently resuspended in 0.5 ml cold 1X Binding Buffer. Added 

10 µl Propidium Iodide. Samples placed on ice and away from light till analysed by flow 

cytometry immediately (within 1 hour).  

 Flowcytometry: 
 
A flow cytometer equipped with 488 Argon laser was used which detects FITC signal at 

wavelength 518 nm and PI signal at wavelength 620 nm. Annexin V analysis was 

visualised using forward- and side-scatter detectors set to analyse whole-cell population. 

The whole cells were gated and then plotted as log annexin-V-FITC intensity versus log 

PI intensity. Untreated cells, with binding buffer only, PI only, and Annexin V only, used 

as negative controls  while 1 mM Stausporine treated (1:200 dilution with media) cells, 

with binding buffer only, PI only, and Annexin V only, used as positive controls were run 

to set appropriate detector gains, compensation, and quadrant gates. Five thousand cells 

were analysed for each sample. Quadrant analysis of the sorted cells was performed on 

computer software (Coulter System II software™ Version 3.0). The test samples were 

evaluated by the following categories: cells negative for both PI and Annexin V staining 

were live cells; PI-negative, Annexin V–positive staining cells were early apoptotic cells; 

PI-positive Annexin V–positive staining cells were primarily cells in late stages of 

apoptosis where membrane integrity was lost while PI-positive, Annexin V–negative 

were considered necrotic cells.  
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4.6 Immunofluoroscence for localisation of Tumour M2-PK 

 
Materials and Reagents 
 
-Superfrost glass slides (manufacturer) 

-Glass cover slip 22 mm (VWR, UK, Catl. no. 631-0159) 

-Poly-L-lysine 5 mg (Sigma-Aldrich, UK, Catl. no. P6282) 

-0.1 M Sodium borate 

-Paraformaldehyde 

-100% Methanol 

-Normal goat serum (Sigma-Aldrich, UK, Catl. no. G9023) 

-Primary antibody – anti-tumour M2-PK anti-human mouse monoclonal antibody (DF-4, 

ScheBo®Biotech, Giessen, Germany). 

-Primary antibody – Complex IV subunit I mouse monoclonal antibody (COX-1) 

(Mitosciences, Oregon, USA) 

-Secondary goat anti-mouse IgG Alexa Flour 488 (green) (Molecular probes, Invitrogen, 

Paisley, UK, Catl. no.  A21131) for anti-COX-1 primary antibody and Alexa Flour 594 

(red) for anti-tumour M2-PK primary antibody (Molecular probes, Invitrogen, Paisley, 

UK, Catl. no.  A21125). 

-Citiflour/PBS/Glycerol (Agar Scientific, Essex, UK, Catl. no. R1320) 

-DAPI (4',6-Diamidino-2-phenyindole, dilactate) – (Sigma-Aldrich, Dorset, UK,  

Catl. no. D9564) 
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Protocol:  

Poly-lysine coating of coverslips 

5 mg poly-L-lysine resuspended to a 1mg/ml solution using 5ml of 0.1 M sodium borate 

buffer, pH 8.11. The solution was vortexed and left for few minutes to fully resuspend 

and filter sterilised (0.2 µm). This was dispensed into 12 x 400 µl aliquots (autoclaved 

1.5ml eppendorfs) and frozen at -20º C until use. For coating a 22 mm cover slip, 200 µl 

poly-lysine was used. (N.B. Poly-lysine gets precipitated upon thawing. It should, 

therefore, be warmed and vortexed well before use). Heat-sterilised glass coverslips were 

placed in the centre of the wells of 6-well plate using heat-sterilised forceps and 200 µl of 

poly-lysine was dispensed onto each coverslip (lots of small drops of poly-lysine were 

placed around the edge of coverslip to make it easier to cover the whole surface). 

Coverslips covered with poly-lysine were left for 1 hour and then thrice washed with 2 ml 

sterile ddH2O. The coverslips were allowed to dry onto 24-well plate for approximately 

20 minutes and then replaced into wells of a 6-well plate.  

Seeding of cells 

500 µl of cell (Panc-1 and Colo 357) suspension with appropriate cell density (pilot 

experiments were carried out to determine the optimum cell density that would give 

around 50% cell confluence on the coverslip) was placed on each coverslip. Thus for 

experiment involving 72 hrs exposure of cells to different condition, seeding density of 

7,500 cells per coverslip was used. Cells were allowed to adhere to the sterile coverslips 

coated with poly-lysine for 2 hrs. Once the adherence of cells to coverslip was confirmed 

under light microscopy, 500 µl of cell suspension on each coverslip was topped up with 2 
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ml of desired culture medium for the normal, acidic pH, glucose deprived or hypoxic 

culture conditions for 72 hrs. 

Preparation of 4% paraformaldehyde 

2 g paraformaldehyde was carefully added to 40 ml of ddH2O in a 100 ml beaker and 

stirred for 15 mins whilst heating it to approximately 60º C. To this added 8–12 drops of 

0.1 M NaOH until the paraformaldehyde was dissolved. The final volume was made up to 

50 ml by adding 5 ml of x10 PBS. This was mixed thoroughly and the pH was adjusted to 

be <8.0. The mixture was filtered through a filter paper into a screwtop with the aid of a 

funnel. The filtered solution was stored for up to 1–2 weeks at 4º C and brought to 37º C 

just before use. 

Immunostaining for fluorescence microscopy 

Washing of coverslips: At the end of the experiment cultured medium from each well of 

6-well plate was aspirated and the coverslips were washed thrice in beakers containing 25 

ml PBS (not supplemented with MgCl2 and Ca Cl2). Coverslips were drained between 

washes on tissue paper.  

Fixation: Coverslips were fixed in fresh pre-warmed 4% paraformaldehyde in PBS for 20 

mins and subsequently washed thrice with 25 ml PBS and drained between washes on 

tissue paper. Before permeabilisation transfer the coverslips in a rack to a container with 

PBS so as to avoid drying. 

Permeabilisation: The coverslip rack was transferred to container with 100% methanol at 

-20º C for 15 mins. Subsequently the rack with coverslips was replaced quickly in 

container with PBS to make sure that the cells do not dry out (methanol evaporates 

quickly). 
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Blocking with 10% normal goat serum: Coverslips were washed thrice in 25 ml PBS, 

drained between washes on tissue paper and blocked with 300 µl of 10% normal goat 

serum in PBS for 30 mins at 37º C in a humidified atmosphere.  

Incubation with primary antibody: At the end of blocking, each coverslip was drained and 

incubated with 80 µl of diluted primary antibody in PBS and 2% normal goat serum for 

45 mins at 37º C in a humidified atmosphere. The appropriate dilution for each primary 

antibody was determined by initial piloting experiments (1:200 for tumour M2-PK and 

1:75 for COX-1) 

Incubation with secondary antibody: The coverslips were washed thrice in a beaker with 

25 ml of PBS, drained between washes on tissue paper and incubated with 80 µl of 

diluted (1:100) secondary antibodies (goat anti-mouse IgG Alexa Flour 488 (green) for 

anti-COX-1 primary antibody and Alexa Flour 594 (red) for anti-tumour M2-PK primary 

antibody) in PBS and 2% normal goat serum for 45 mins at 37º C in a humidified 

atmosphere. Coverslips were finally washed in 25 ml PBS thrice, drained between washes 

on tissue paper and placed in rack in a container with PBS. 

Mounting coverslips: coverslips were drained thoroughly on tissue paper and mounted on 

superfrost glass slide in Citiflour/glycerol/PBS mounting media supplemented with 

DAPI. Any extra mounting media was blotted off the coverslip on tissue paper before 

sealing the edge with varnish. The mounted slides were stored at 4º C in the dark until 

examination under fluorescence microscope. Confocal microscope (Zeiss LSM 510 Meta 

system, Welwyn Garden City, UK) was used to see co-localisation of M2-PK with 

mitochondria or nucleus. 
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4.7 Statistical analysis 

 
The mean inter-assay and mean intra-assay coefficients of variation (CV) were calculated 

from nine separate measurements of 6 samples on 9 different days to measure the 

reproducibility of the test results. All values were expressed in Mean ±S.D unless stated 

separately.  Tumour M2-PK and total M2-PK values from independently performed 

experiments at 24, 48, 72 and 96 hrs were combined to calculate the adjusted mean in 

accordance with Analysis of Serial measurement (169).   Mean values of Tumour M2-PK 

between different culture conditions were compared by one-way analysis of variance 

(ANOVA) with Dunnett’s multiple comparison test. 

For comparison of the different cultivation conditions one-way analysis of covariance 

with cell density as covariable was performed using the statistical program package 

BMDPV1 (W. J. Dixon, 1992, UCLA, Los Angles, California). Since the distribution of 

the data was skewed to the right, a logarithmic transformation of the data was performed 

and the results are presented as geometric mean and dispersion factor (xg •DF±1). This is 

the delogarithmic form of the arithmetic mean and deviation of the previously 

logarithmically transformed data.  

Pearson correlation coefficient was used for correlation between cell density and Tumour 

M2-PK in different tumour microenvironment.  
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5.1 Introduction 

 
All proliferating cells and especially tumour cells are characterised by the expression of 

the pyruvate kinase isoenzyme type M2 which may occur in a highly active tetrameric 

form and a nearly inactive dimeric form (20;170). In contrast to normal proliferating 

cells, tumour cells have mainly the inactive dimeric form Tumour M2-PK. The 

dimerisation of M2-PK is caused by direct interaction of M2-PK with different 

oncoproteins (26;29;171). The dimeric form of M2-PK is released from tumours into the 

blood and stool of most GI cancer patients  (20;77;78;89;172) and the quantification of 

Tumour M2-PK in EDTA plasma and stool is used for the early detection of tumours and 

in evaluating the response to cancer therapies (77;78;89).  

Clinical studies have shown marked variability in the Tumour M2-PK levels between 

individuals with the same cancer type (172) and a greater understanding of its expression 

and control is required. Recently, it has been shown that low levels of Tumour M2-PK is 

associated with cisplatin resistance in gastric cancer (173) while higher levels are 

associated with P53 induced apoptosis (174). A tissue culture model allows the study of 

Tumour M2-PK control mechanisms in a controlled environment. Two dimensional gel 

electrophoresis (2-DE) – (173) and Matrix-associated laser desorption ionisation-mass 

spectroscopy (MALDI-MS) were the methods used (174) in previous studies to identify 

M2-PK protein in cancer cell lines. Gel permeation allows the quantification of the 

tetramer : dimer ratio (4). ELISA is a reliable assay for measuring Tumour M2-PK in 

blood and stool (63;90) but its use in tissue culture homogenate has not been reported. 

Measuring M2-PK in cancer cells could help define a role in cancer monitoring and could 
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lead to therapeutic modalities. By the time pancreatic cancer is diagnosed it is often 

unresectable (133). Many genomic and proteomic based markers have been identified in 

pancreatic cancer (149) but targeting these proteins or genes for treatment has always 

been challenging. Tumour M2-PK is elevated in plasma of patients with pancreatic cancer 

(56;86;175). There are no previous reports of measuring Tumour M2-PK in pancreatic 

cancer cell lines. The aim of this study is to measure variability of Tumour M2-PK levels 

between two different pancreatic cancer cell lines and to correlate Tumour M2-PK levels 

with cell proliferation.  

5.2 Materials and Methods 

 

5.2.1 Cell culture: 

 
Cell line Panc-1 was obtained from the European collection of cell culture (ECCAC) 

while Colo 357 was gifted by Dr N. R. Lemoine, Centre for Molecular Oncology and 

Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, 

University of London, London, UK. These cell lines were chosen because of difference in 

their biologic phenotype as mentioned in the cell lines description in Chapter 5 (section 

5.1). The HMEC-1 (human microvascular endothelial cells) cell line was used as a non-

cancer cell control while the MCF-7 (human breast cancer) cell line was used as positive 

control since M2-PK was previously identified in this cell line by Gel permeation. HMEC 

1, Panc-1 and Colo 357 cell lines were cultured in DMEM (Dulbeco’s Modified Eagle’s 

Medium, Gibco, UK) while MCF 7 was maintained in EMEM (Earl’s Minimum Essential 

Medium, Gibco, UK) supplemented with Penicillin/Streptomycin solution (1%), 2 mM 

glutamine and 10% foetal bovine serum (FBS). Cell culture was maintained at 21% O2, 
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5% CO2 and at 37 ˚C till 70-80% confluent. Two million cells were plated on 75 cm2 

flask and cultured for 24 hrs, 48 hrs, 72 hrs and 96 hrs without changing the medium. 

Adherent cells were removed from the flask using 0.25% Trypsin EDTA (Gibco, UK). 

5.2.2 Measurement of cell proliferation 

Suspended cells in culture medium were counted under an inverted phase contrast 

microscope (Nikon TMS-F, Japan) in a haemocytometer (Bright Line™ Haemocytometer 

Z359629, Sigma, UK). The cells were counted in four different fields of the chamber and 

the count was averaged to give overall cell count per cubic mm. After counting cells were 

washed with cold PBS three times, pelleted by centrifuging at 800 rpm. Cell pellets were 

stored at -80 ˚C for Tumour M2-PK assays. The number of cell doubling after 96 hrs 

culture was calculated by the equation as described previously (176;177). 

Number of cell doublings = (Log (F)-Log (I))/Log2, where F is final density at a  
 
particular time in cell culture and ‘I’ indicates initial seeding density. 
 

5.2.3  Cell homogenisation for M2-PK measurement 

 
The frozen cell pellet was thawed, resuspended in 1 ml of cold homogenisation buffer 

(10mM Tris, 1 mM NaF and 1Mm Mercaptoethanol, pH 7.4, Sigma-Aldrich) and 

homogenised using a glass pestle homogeniser (Wheaton Science products, New Jersey, 

USA). The homogenised cells were then centrifuged at 40,000 g for  

20 minutes and the cell homogenate was used for the total M2-PK protein expression by 

Western blot and the Tumour M2-PK by ELISA. 
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5.2.4 Total M2-PK protein by immunoblotting 

 
This method was used in the beginning to see whether M2-PK protein is expressed in the 

cell lines. 20 µg of sample protein was separated on 10% SDS polyacramide gel. For 

details see Chapter 4, section 4.4.3. 

5.2.5 Measurement of Tumour M2-PK 

 
Tumour M2-PK was measured using an ELISA kit commercially available for Tumour 

M2-PK measurement in plasma (ScheBo® Biotech AG, Giessen, Germany). For details 

see Chapter 4, section 4.4.1. 

5.2.6 Statistical analysis 

 
The mean inter- and intra-assay coefficients of variation (CV) were calculated from 9 

separate measurements of 6 samples on 9 different days. All values were expressed as 

Mean ±S.E unless stated separately. The results were analysed as described in Chapter 4 

section 4.7. Correlation between cell density and Tumour M2-PK concentration was 

evaluated using the Pearson correlation coefficient. 

5.3 Results: 

5.3.1   Cell Proliferation of different cell lines 

The proliferation rate with time as measured by direct cell count for the different cell 

lines is shown in Figure 5.1. The non-tumour cell line HMEC-1 remained viable but did 

not expand in culture over the 96 hr period. The Colo 357 pancreatic cancer cell line grew 

more rapidly than Panc-1 (p<0.001) which was similar in growth rate to the MCF-7 breast 

cancer cell line.  
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Figure 5.1: Cell proliferation of different cell lines. With the seeding density of 2 
million cell, culture was maintained for 96 hrs without change of culture media in a 75 
mm2 flask. Viability check on adherent and suspended cells in culture was done by trypan 
blue exclusion and the total viable cells were counted under phase contrast microscope 
using haemocytometer. At 96 hrs, the number of cell doublings for HMEC-1, MCF-7, 
Panc-1 and Colo 357 cell lines were 0.8, 2.1, 2.2 and 2.9 respectively. A significant 
difference was seen between the proliferation rate for different cell lines at 72 and 96 hrs 
of culture duration. 
 
 

5.3.2 Tumour M2-PK in cell culture medium.  

Figure 5.2 shows the pilot data from Tumour M2-PK measurement in cell culture 

supernatant. As the data was non-standardisable and levels were low, no further attempt 

was made to study Tumour M2-PK levels in cell culture medium. 
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Figure 5.2: Tumour M2-PK Levels in cell culture supernatant (DMEM with 

Pyruvate) in Colo 357 and Panc-1 cell lines. Legends indicate the cell seeding density 
in 75cm2 flask. Results from single experiment only. 
 
 

Effect of pyruvate in culture medium on Tumour M2-PK  

 
Since the study involved measuring M2-pyruvate kinase in tissue culture, it was 

important to rule out the influence of pyruvate, used in most of the culture medium, on 

M2-pyruvate kinase levels. Therefore, initial experiments used pyruvate-free or pyruvate-

containing culture medium. No difference in cell proliferation and Tumour M2-PK level 

was observed (Figure 5.3). Since pyruvate is an essential component of culture medium, 

all subsequent experiments were done in DMEM with pyruvate.  
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Figure-5.3: (a) Tumour M2-PK levels in cell homogenate as measured by ELISA and (b) 
Cell proliferation in Panc-1 cells in DMEM with pyruvate and without pyruvate. Seeding 
density 2x106 cells /flask. No difference in Tumour M2-PK levels and cell proliferation 
was seen in pyruvate or pyruvate free medium [Results from single experiment only]. 
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Effect of centrifugation speed on Tumour M2-PK levels  

Pilot experiments were carried out to determine the optimum centrifugation speed to 

obtain maximum yield of Tumour M2-PK. Figure 5.4 shows that ultracentrifugation at 

40,000 g for 20 minutes with homogenisation buffer gave better yield of Tumour M2-PK 

as compared to 16,000 g for 10 minutes with PBS. 
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Figure 5.4 Tumour M2-PK levels in Panc-1 cell line. 
* Cell homogenate centrifuged at 

4º C at 16000 g x 10 min with PBS and *** Cell homogenate centrifuged at 4º C at 16,000 
g or 40,000 g x 20 min with homogenisation buffer. These are the results from a single 
experiment. 
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5.3.3 Total M2-PK in different cell lines 

Immunoblotting was used to semiquantitatively measure total M2-PK protein in the cell 

homogenate. DF4, a mouse anti-human monoclonal antibody specific against  

M2-PK was used. This antibody is not isoform specific and hence detects only total M2-

PK protein. This method was used to see whether all the cell lines express M2-PK before 

Tumour M2-PK is measured.  

The cell lysis buffer that is conventionally used in western blot is RIPA buffer 

(RadioImmuno Precipitation Assay Buffer). A comparison of band density of M2-PK 

from lysate obtained by using either RIPA buffer or homogenisation buffer (Tris, NaF, 

mercaptoethanol based buffer) is shown in Figure 5.5. M2-PK protein band was much 

thicker in homogenisation buffer than in RIPA buffer. Therefore, the former was used in 

all the experiments for M2-PK measurements by immunoblotting. M2-PK band was also 

best seen when the transferred protein on PVDF membrane was incubated overnight with 

primary antibody (DF4) at 4º C on a tilted platform. 

 Total M2-PK protein expression using western blot at 48 hrs of culture duration was 

significantly higher in the Colo 357 than the Panc-1 or the control cell lines (Figure 5.6). 



 115 

 

 

Figure 5.5  Immunoblotting of M2-PK protein in different buffers  
M2-PK band was 58 KDa in size. (B) band denotes cell lysed in RIPA buffer and (C) 
band denotes cell homogenate in Tris, NaF and mercaptoethanol based buffer. Same 
amount of protein (25 µg) from 48 hrs cell culture homogenate sample was loaded into 
each well. 
 

5.3.4 Levels of Tumour M2-PK in different cell lines 

The mean inter- and intra-assay coefficient of variance (CV) for Tumour M2-PK as 

measured by ELISA in 6 different samples on 9 different days was 20.8% (11.9–30.15%). 

and 4.3% (0.18–16.6%) respectively. Tumour M2-PK levels in HMEC-1, MCF 7, Colo 

357 and Panc-1 cell culture homogenate are shown in Figure 5.7.  

Colo 357 cells showed significantly higher level of Tumour M2-PK compared to HMEC-

1 (P<0.001), Panc-1 cells (p<0.001) and MCF-7 cells (p<0.01). Levels in Panc-1 cell 
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lines were higher than the non-cancer cell line HMEC-1 while lower than MCF-7 cells 

but not statistically significant. 

0

1

2

3

4

5
**

HMEC-1 MCF-7 Panc-1

M2-PK 58 Kda

Actin 42 Kda

Colo357

HMEC-1

MCF-7

Panc-1

Colo357

Different cell lines

M
2

-P
K

:A
c

ti
n

 (
O

D
u

/m
m

2
)

 

Figure-5.6: M2-pyruvate kinase (M2-PK) protein expression in different cell lines at 

48 hrs of culture by western blot. M2-PK level was significantly elevated in Colo 357 
cells (** p<0.01) compared to HMEC-1, MCF-7 and Panc-1 cells. Actin was used as 
loading control protein. 
 

5.3.5 Tumour M2-PK and cell density 

The correlation between Tumour M2-PK level and cell density was assessed using 

Pearson’s correlation coefficient. This demonstrated that Tumour M2-PK decreased with 

increase in cell density for the both the pancreatic cancer cell lines:  

(Panc-1: r=-0.382, p=0.06 and Colo 357: r= -0.528, p<0.05) – (Figure 5.8). 
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Figure 5.7: Comparison of Tumour M2-PK levels in two different pancreatic cancer 

cell lines Colo 357 and Panc-1. MCF 7 (Human epithelial breast cancer cell) was used as 
the positive control) and HMEC-1(Human microvascular endothelial cells) as the non-
cancer control. Initial cell seeding density was 2 million cells per flask. The results shown 
above are from five independently performed experiments. 
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Figure 5.8: Correlation between Tumour M2-PK and cell density in pancreatic 

cancer cell lines. Tumour M2-PK levels were plotted against their corresponding viable 
cell count when the Panc-1 and Colo 357 cells with the seeding densities of 2x106 were 
cultured for 24, 48, 72 and 96 hrs without substrate replenishment [Results of 5 
independent experiments]. 
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5.3.6 Discussion 

This is the first study on Tumour M2-PK in pancreatic cancer cell lines. In the absence of 

any previous data, it was important to study the variability of Tumour  

M2-PK levels with in-vitro factors including presence or absence of pyruvate in culture 

medium, type of buffer and centrifugation speed during cell homogenisation.  

Tumour M2-PK measurement in cell culture medium was attempted in pilot experiments 

but abandoned due to very low levels and technical difficulty in standardisation of results. 

Therefore, Tumour M2-PK was measured in cell homogenate and not in cell culture 

supernatant. It is known that Tumour M2-PK is released into the circulation in vivo in 

large amounts because it can be measured clinically in the serum of cancer patients by 

ELISA (63;114;172). However, we have found low levels of Tumour M2-PK in the 

culture medium of the cancer cell lines. Possible explanations could be the dilution effect 

of using large amount of culture medium as the cell culture was maintained in 75 cm2 

flask,  Tumour M2-PK is released into the culture medium only when the cells lyse or die, 

Tumour M2-PK is produced in large quantity or certain co-factors maximize its 

expression in vivo rather than in vitro.   

Pyruvate is an important component of culture medium. It is a key product of 

phosphoenolepyruvate (PEP) breakdown by the enzyme pyruvate kinase (20). We 

assessed the influence of pyruvate on Tumour M2-PK levels by using pyruvate-free 

culture medium. Our results showed no influence of the presence of pyruvate in culture 

medium on Tumour M2-PK levels. Previous studies have shown that it is the metabolites 

above PEP mainly 1,6 fructose biphosphate which regulates Tumour M2-PK  (163;178). 
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Higher levels of 1,6 fructose biphosphate decrease Tumour M2-PK activity while lower 

levels increase the activity (20;24) . 

Metabolic parameters such as intracellular metabolites, flux rates and enzyme activities 

vary with cell density (163). Therefore this study investigated the effect of cell density on 

Tumour M2-PK concentration. This study has observed an inverse relationship between 

cell density and Tumour M2-PK levels. This type of inverse correlation of Tumour M2-

PK levels related to cell density has been reported for several other cell lines (163). The 

possible clinical implication of this finding would suggest that there will not be a linear 

correlation between tumour size and Tumour M2-PK in clinical practice. This is also 

supported in one of our clinical studies (179) and previous such studies on Tumour M2-

PK (73). 

However, results of in vitro conditions should be interpreted with caution in view of 

inherent limitation factors in this study. Firstly, monolayer cultures are optimally supplied 

with nutrients and oxygen with reduced cell-cell contacts and grow on an artificial 

surface. These conditions are highly artificial and may affect both the cell differentiation 

and the proliferation rate. Secondly, examining only two cell lines does not allow 

generalisation about pancreatic cancer cells as these cell lines may not necessarily be 

representative. Thirdly, there may be certain in vivo factors affecting tumour cell 

proliferation and metabolic activity which is independently controlled by different signal 

transduction pathways (180). Lastly, cancer cells in vitro are subjected to varying 

microenvironment which may influence the proliferation rate and tumour metabolism 

(32;181).  
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The amount of M2-PK protein in Panc-1 cells was similar to that in MCF-7 cells, a cell 

line that is derived from a Human Caucasian breast cancer. However, in Panc-1 cells 

Tumour M2-PK levels were about two times lower than in MCF-7 cells which indicates 

that the tetramer:dimer ratio in MCF-7 cells is more shifted towards the dimeric form than 

in Panc-1 cells. The non-tumour cell line HMEC-1 contained the same amount of M2-PK 

protein like the tumour cell lines Panc-1 and MCF-7 cells but less dimeric M2-PK. This 

corresponds to the finding that in tumour cells the tetramer: dimer ratio is shifted towards 

the dimeric form when compared to normal proliferating cells (170). This study revealed 

a significant difference in proliferation rate between Colo 357 and Panc-1 cell line as 

reported previously (161;162).  

This difference in proliferation rate was reflected in different levels of M2-pyruvate 

kinase as measured by both ELISA and Western Blotting. Higher levels of Tumour M2-

PK in a rapidly proliferating pancreatic cancer cell of metastatic origin may reflect an 

important role of Tumour M2-PK in cancer growth and spread. Elevated levels and 

activity of M2-PK  have also been seen in other cancer cell lines with high metastatic 

potential such as MHCC97 (Human hepatocellular carcinoma) and H.Ep.2 (Human 

laryngeal carcinoma) – (25;182) clinical studies on pancreatic (56;74) and renal cancer 

(73). The significant difference in Tumour M2-PK level between the two pancreatic 

cancer cell lines, namely Panc-1 and Colo 357, observed in this study therefore needs 

further study of cell lines with known molecular genetics to correlate growth and 

apoptosis rates with M2-PK expression.    
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5.4 Conclusion 

 
Tumour M2-PK can be measured in cell homogenates using ELISA and the levels are 

inversely proportional to cell density. The higher levels of Tumour M2-PK were found in 

the cancer cell line with higher metastatic potential suggesting a correlation with growth 

and spread of cancer that should be further investigated. The variability of levels of 

Tumour M2-PK with cell density in cell culture may be a response to the tumour 

microenvironment that requires further investigation. 
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6  CHAPTER 6   The Effect of Tumour 

Microenvironment on M2-Pyruvate Kinase 

Level in Human Pancreatic Cancer Cell 

Lines 
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6.1 Introduction 

Increased proliferative activity in solid tumours leads to increased glucose and oxygen 

consumption resulting in local tumour hypoxia and reduced glucose (44). Glycolysis is 

upregulated in response to hypoxia leading to increased lactate production which reduces  

intracellular pH (181). Tumour cells adapt to an adverse environment by various 

mechanisms. One such mechanism is by exporting protons into the extracellular space by 

Na+/H+ exchangers (183). Another mechanism described is the upregulation of glycolytic 

enzymes mediated by hypoxia inducible factor (HIF)-1α, a transcription factor regulating 

gene responses to hypoxic stimuli (45). HIF-1α  mediated alteration to glycolysis is most 

marked in pancreatic cancers (48) which are relatively avascular and hypoxic (49). The 

understanding of such altered metabolic phenotype on the biologic characteristics of 

pancreatic cancer is unclear. 

Pyruvate kinase type M2 is known to switch over between the dimeric and the tetrameric 

form of M2-pyruvate kinase and has been proposed to be a metabolic adaptation 

mechanism in tumour cells to varying  nutrient and oxygen supply conditions (20).  

The dimeric form of M2-pyruvate kinase is known to be elevated in patients with 

pancreatic cancer (56;86;175). However, clinical studies have shown marked variability 

in the Tumour M2-PK levels in patients with the same cancer type (172). The reason for 

its variability in levels is not known. It can be attributed to the in vivo heterogeneity 

within solid tumours in terms of their metabolic activity which is evident from in vitro 

studies which suggest difference in M2-pyruvate kinase activity in non-metastatic and 

metastatic cancer cell lines (25;182). The aim of this study is to investigate whether 
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altered microenvironment, especially hypoxia, acidic pH and glucose-deprived condition, 

has any role in variable expression and tetramer:dimer switch-over of M2-pyruvate kinase 

in pancreatic cancer cells.  

6.2 Methods 

 

6.2.1 Cell lines 

Cell lines Panc-1 and Colo 357 were used as described in Chapter 4, section 4.1 and 

maintained in monoculture as described before (Chapter 4, section 4.2).  

6.2.2 Acidic pH condition 

Described in Chapter 4, section 4.3.1. 

6.2.3 Glucose-deprived condition  

Described in Chapter 4, section 4.3.2. 

6.2.4 Hypoxic condition  

Described in Chapter 4, section 4.3.3. 

6.2.5 Cell viability and proliferation rate assessment 

Described in Chapter 5, section 5.2.2. 

6.2.6 Extraction of Tumour M2-PK 

Described in Chapter 4, section 4.4.1.3. 

6.2.7 Total M2-PK measurement    

Described in Chapter 4, section 4.4.3. 
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6.2.8 Measurement of Tumour M2-PK 

Described in Chapter 4, section 4.4.1. 

6.2.9 Pyruvate Kinase activity assay 

See Chapter 4, section 4.4.2. 
 

6.2.10 Tetramer-dimer switch-over of M2-PK 

Separate experiments were conducted in order to study the relation of Tumour M2-PK 

levels and total M2-PK expression with pyruvate kinase activity in terms of tetramer-

dimer switch-over of M2-PK. Tumour M2-PK, total M2-PK and pyruvate kinase activity 

were measured in the same way as described in section 4.4.1, 4.4.3 and 4.4.2 respectively 

and in the cell population of the same passage in culture. Cells were maintained in 

monoculture until 70% confluent with subsequent replenishment of culture media and 

then exposed to altered culture conditions for 72 hrs. For the western blot, cell 

homogenate equivalent of 1 million cells for each culture condition was loaded into the 

gel rather than equal amount of protein so that the total M2-PK expression is comparable 

to the Tumour M2-PK level and M2-PK activity which were expressed in units/million 

cells.    

6.2.11 Statistical analysis 

See Chapter 5, section 5.9. 
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6.3 Results 

6.3.1 Normal culture condition 

In Colo 357, the number of cell doublings at 96 hrs in culture was higher than that in 

Panc-1 cells (Table 6.1). Level of Tumour M2-PK and the total M2-PK expression was 

also significantly higher (p<0.05) in Colo 357 cells in comparison to Panc-1 cells (Table 

6.2 and Figure 6.1). This was consistent with the findings observed in  

Chapter 5. 

6.3.2 Acidic pH condition  

The mean pH in the culture medium at the end of 96 hrs incubation in acidic conditions was 

6.7 ± 0.2 (n = 40) in comparison to 7.4 ± 0.5 (n = 32) in normal conditions. Cell doublings at 

96 hrs were nearly totally suppressed in Panc-1 cells (p<0.05) whereas in Colo 357 cells 

acidification had no effect (Table 6.1).   

On exposure to acidic pH (6.5) neither of the pancreatic cancer cell lines showed alteration in 

total M2-PK expression (Figure 6.1). However, Colo 357 cells showed an increased 

dimerisation of M2-PK while in Panc-1 cells a slight but non-significant decrease of the 

dimeric form of M2-PK was found (Table 6.2).  

6.3.3 Hypoxic condition 

Hypoxia had significant impact on the cell proliferation of Colo 357 with sevenfold 

decrease in the cell doubling at 96 hrs (p<0.01) while Panc-1 cells remained unaffected 

(Table 6.1). On exposure to hypoxia neither in Panc-1 nor in Colo 357 cells M2-PK 

expression was affected (Figure 6.1). However, while Colo 357 cells showed Tumour 
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M2-PK levels significantly increased about two- and half-fold (p<0.05) Panc-1 did not 

show a significant rise in levels (Table 6.2).  

 

Table 6.1: Effect of different cultivation conditions on cell doublings of Colo 357 and 

Panc-1 cells  

Cultivation 

conditions 

Colo 357                    Panc-1 

   

Control   4.9 ± 1.6                         3.6 ± 1.6 

Hypoxia   0.7 ± 0.1**                     2.0 ± 2.0 

Glucose deprivation   2.8 ± 1.5*                       2.3 ± 1.3   

Low pH   3.8 ± 1.5                                                   0.8 ± 3.2* 

 

The values represent mean ± S.D cell doublings at 96 hrs of 6 different experiments. 
Significant values ** p<0.01, * p<0.05 in comparison to control. 

 

6.3.4 Glucose-deprived condition 

In Colo 357 cells, the number of cell doublings significantly decreased from 5 to 3 at 96 

hours in culture (p<0.05) while in Panc-1 cell doublings were not significantly affected 

(Table 6.1). In both cell lines glucose deprivation did not affect M2-PK expression 

(Figure 6.1). However, a significant twofold increase in Tumour M2-PK levels was 

measured in Colo 357 cells (p<0.05). The increase of Tumour M2-PK values in glucose-

deprived Panc-1 cells was not significant (Table 6.2).  
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Table 6.2: Effect of different cultivation conditions on Tumour M2-PK levels in Colo 

357 and Panc-1 cells 

 

 

Cultivation conditions 

Colo 357 

xg ••••DF
±±±±1

 

[mU/10
6
 cells] 

Panc-1 

xg ••••DF
±±±±1 

[mU/10
6
 cells] 

 

      N 

    

Control 79 • 1.3 33 • 1.3  20 

Hypoxia 191 • 1.3* 62 • 1.2 20 

Glucose deprivation 174 • 1.2* 54 • 1.2 20 

Low pH   246 • 1.2** 23 • 1.2 20 

Result of a one-way analysis of covariance with cell density as covariable. The values 
represent geometric mean values multiplied and divided by the dispersion factor. 
* represents Control vs Condition: * p < 0.05 and **p< .001.  
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Figure 6.1: Total M2-PK expression in Colo 357 and Panc-1cells in different culture 

microenvironment (Seeding cell density was 2 million cells per dish for each condition) .The 
graphs represent mean± S.E value of 3 different experiments while the image shows the best 
representative immunobloting image). In each slot same amount of protein (20 µg) have been 
applied. 
 

 

6.3.5 Comparison of total M2-PK, Tumour M2-PK level and pyruvate kinase in 

different culture conditions 

These results are from separate experiments repeated to measure Tumour M2-PK, total 

M2-PK and pyruvate kinase activity at a given point of time in culture (72 hrs) in one 

million cells from the same passage in culture. The adjusted mean Tumour M2-PK level 
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as measured by ELISA was significantly higher (p<0.01) on exposure of Colo 357 cells to 

acidic pH condition. A non-significant increase in levels was observed under glucose-

deprived condition. Levels did not vary significantly between normal and hypoxic 

conditions. In Panc-1 cell line Tumour M2-PK levels were not significantly different 

between normal, acidic pH or glucose deprived condition. A non-significant decrease in 

Tumour M2-PK was observed under hypoxic condition (Figure 6.2a, b). Levels were 

significantly higher in Colo 357 cell lines in comparison to Panc-1 in all the conditions 

(control p<0.05, acidic pH<0.001, glucose-deprived p<0.001 and hypoxia p<0.01). In 

contrast to dimeric M2-PK, total M2-PK protein expression did not differ between 

different culture conditions in both the cell lines. Total protein expression was higher in 

Colo 357 cells in comparison to Panc-1 (control p<0.05, glucose deprived p<0.01 and 

hypoxia p<0.01) – (Figure 6.2a, b). 

Pyruvate kinase activity in Colo 357 cells was significantly increased with hypoxia when 

compared to normal conditions. Elevation in activity was also seen under acidic and 

glucose deprived conditions but this was not statistically significant. A similar trend was 

seen in Panc-1 cells comparing normal with altered culture conditions. When Pyruvate 

kinase activity was compared between Panc-1 and Colo 357 cells, no significant 

difference was observed under normal as well as altered culture conditions, although PK 

activity was higher in Colo 357 cells under acidic and hypoxic conditions (Figure 6.3). 
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Figure 6.2a: Tumour M2-PK, total M2-PK protein expression and M2-PK activity 

in Colo 357 cells on exposure to different culture conditions                                     
Cells were allowed to grow in normal culture condition until 70% confluence and then the 
culture medium was changed to expose the cells for different conditions for 72 hrs. For 
the western blotting cell homogenate of equal cell density (1 million) was loaded into 
SDS gel for each condition. 
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Figure 6.2b: Tumour M2-PK, total M2-PK protein expression and M2-PK 

activity in Panc-1 cells on exposure to different culture conditions  
Cells were allowed to grow in normal culture condition till 70% confluence and 
then the culture medium was changed to expose the cells for different conditions 
for 72 hrs. For the western blotting cell homogenate of equal cell density (1 
million) was loaded into SDS gel for each condition.  



 134 

Control Acidic pH Glucose Free      Hypoxia
0

100

200

300

400

500
Colo 357

Panc-1
P

y
ru

v
a
te

 k
in

a
s

e
 a

c
ti

v
it

y
 U

n
it

s
/x

1
0

6

 
Figure 6.3: Comparison of pyruvate kinase activity in Panc-1 and Colo 357 

cells under different microenvironment 
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6.4 Discussion 

 

6.4.1 M2-PK with cell growth in normal condition  

Under normal tumour condition, Colo 357 showed a significantly higher proliferation rate 

and Tumour M2-PK levels than Panc-1 cell lines. The difference in proliferation rate 

between the two cell lines observed in this experiment was consistent with the results of 

experiments in Chapter 6 and previous studies (161;162). Similarly, the difference in 

Tumour M2-PK levels observed between the two cell lines was also consistent with the 

results of experiments in Chapter 5 reflecting a fundamental difference in their biologic 

behaviour i.e. pancreatic cell line with high metastatic potential should have high inactive 

dimeric form of M2-PK in order to keep up high proliferation rate in tumour cells. 

However, it is difficult to justify this observation unless some more pancreatic cancer cell 

lines with different proliferation rate are also tested for Tumour M2-PK. Another 

limitation of this study was the method used for cell viability and proliferation rate 

assessment. This was done by direct viable cell count under microscope. There are more 

commercially available assays like MTT or Picogreen that could have been used in the 

current study. However, these assays are based on cells grown on microplate culture and 

cannot be used to calculate the proliferation rate for large cell population on culture flask. 

Given that the large numbers of cells were required for Tumour M2-PK level 

measurement and to standardise the measurement with corresponding cell numbers, 

assessment of cell proliferation by direct cell count at each timepoint in culture was found 

to be the most practical approach. 
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6.4.2 Cell growth with altered microenvironment cancer 

Pancreatic cancer has an inherent property of an aggressive behaviour, metastatic 

potential and resistance to treatment. Hypoxic, acidic and nutritionally deprived areas are 

commonly seen in pancreatic cancer which renders the tissues resistant to apoptosis and 

hence treatment (48) (31). The altered microenvironment in cancer cells may lead to the 

arrest or impairment of cancer growth through molecular mechanisms, resulting in 

cellular quiescence, differentiation, apoptosis, and necrosis (184). Cells exposed to 

hypoxia are generally arrested at the G1/S-phase (20). On the other hand, the cells survive 

cell death by microenvironment-induced metabolic responses leading to low energy 

utilisation, high glycolytic rates and increased energy production (185). This study 

showed a reduced proliferation rate of both metastatic and non-metastatic pancreatic 

cancer cell lines with alteration to the tumour microenvironment associated with 

increased expression of a glycolytic enzyme, Tumour M2-pyruvate kinase indicating one 

such metabolic response to altered tumour microenvironment.  

In the present study, I have simulated different nutrient supply conditions in solid tumours 

by culturing two different pancreatic cancer cells lines (Colo 357 and Panc-1) under 

hypoxia, glucose deprivation or low pH value. In Colo 357 cells, a twofold to threefold 

increase in tumour M2-PK levels was observed when the cells were cultured under low 

pH value, glucose deprivation or hypoxia. Since total M2-PK values were not changed 

under the different cultivation conditions the increase of Tumour M2-PK values points to 

a dimerisation of M2-PK.  In comparison to this Panc-1 cells showed 1.6 – 1.9-fold 

increase in Tumour M2-PK levels under hypoxia and glucose deprivation although the 

increase was not significant. 
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6.4.3 Acidic pH condition 

Acidification of tumour cells is a consequence of upregulated aerobic glycolysis with 

increased lactate, H+ and CO2 production. The intracellular pH value in tumour cells is 

usually in the range of 7.0 – 7.2 (39;42). The intracellular H+ ions and lactic acid are 

pushed out of the cell by membrane-bound Na+/H+ exchangers and H+/lactic acid co-

transporters while the CO2 diffuses rapidly across the plasma membrane and gets 

converted to carbonic acid by membrane-bound ectoenzyme carbonic anhydrases (40). 

Uptake of the weak base HCO3 
– via a member of the Na+-dependent and Na+-

independent Cl/HCO3 
– exchangers contributes to intracellular alkalinisation (40). The 

resulting extracellular pH in most solid tumours is usually acidic (5.8 – 7.6) – (41). The 

pH value used for acidic condition in our study was within this range. Studies indicate 

that extracellular acidic environment helps in tumour invasion by killing of normal cells 

and clonal selection of tumour cells by caspase-mediated activation of p53 dependent 

apoptosis (186;187). Low pH levels correlated with a slight but non-significant decrease 

of the dimeric form of M2-PK in Panc-1 cells.  

The dimerisation of M2-PK observed in Colo 357 cells at low pH value may reduce the 

amount of lactate produced and released from tumour cells into the environment thereby 

reducing further acidification. This may explain why in Colo 357 cells the cell doubling 

was not affected from low pH treatment whereas in Panc-1 cells which were unable to 

increase the dimeric form of M2-PK a nearly total suppression of cell proliferation took 

place. Thus upregulation of the dimeric form of M2-PK in acidic pH in Colo 357 cell 

lines may suggest a pattern in cancer survival.  
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6.4.4 Glucose-deprived condition 

In glucose-deprived Colo 357 cells proliferation was slightly reduced but not totally 

suppressed. Glycolysis is the main energy production pathway in tumour cells even in the 

presence of oxygen. The reduced tumour cell proliferation under glucose-deprived 

condition was also observed in previous studies (163). The possible explanation may be 

that cell proliferation is an energy-consuming process, twofold to fourfold energy 

consumption of non-proliferating cells. Inhibition of cell proliferation saves energy and 

the ATP produced by optimal metabolism under glucose starvation is used by cells for 

survival rather than proliferation. Another possible reason may be the utilisation of 

alternate energy-producing pathways by tumour cells in glucose-starved condition (25). 

These pathways remain underutilised by the normal cells. Tumour cells have been shown 

to produce energy using pentose phosphate pathway (PPP) and glutaminolytic pathway 

(25). The decrease in proliferative activity may also be due to non-availability of glucose-

derived carbon for the de novo synthesis of RNA and DNA. The significance of elevated 

levels of Tumour M2-PK under glucose-deprived condition observed in this study is not 

clear. Under glucose deprivation, a high amount of the dimeric form of M2-PK may 

represent the channelling of the glucose carbons available into synthetic processes. It may 

be one of the adaptation responses of tumour cells to glucose starvation in order to keep 

the cells at optimal proliferation rate for viability or it may be HIF-1 mediated 

upregulation of pyruvate kinase transcription. Although HIF-1, a transcription factor, is 

stabilised and activated in tumour cells exposed to hypoxia, a constitutive expression of 

HIF-1 was observed in most of the pancreatic cancer cells under normoxia by Akakura et 

al. (48). Once activated HIF-1 promotes the transcription of several genes such as glucose 
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transporters, glycolytic enzymes, and angiogenic factors (45). However, it is not known 

whether glucose deprivation alone stabilises and activates HIF-1. Thus, the limitation in 

explaining the observed increase in Tumour M2-PK level under glucose-deprived 

condition could have been overcome by measuring HIF-1 induced pyruvate kinase 

mRNA expression in the current study. This was not measured, as no significant increase 

in total M2-PK protein expression was observed under glucose-deprived condition as 

compared to normal condition. Another possible reason for elevated dimeric M2-PK in 

glucose-deprived condition could be the switch-over of tetrameric M2-PK to dimeric M2-

PK as extrapolated from the results of dimeric M2-PK measurement by ELISA and total 

M2-PK measurement by western blot in normal and glucose-deprived condition. Tumour 

cells are known to have oscillatory dimer:tetramer ratio depending on fructose 

biphosphate levels (20;28).  The dimerisation of M2-PK observed in glucose-deprived 

Colo 357 cells is presumably caused by a decrease of the key M2-PK regulator fructose 

1,6-P2 and corresponds to results from Ashizawa et al., who showed in A431 cells that 

glucose starvation leads to a decrease in fructose 1,6-P2 levels and dissociation of the 

tetrameric form of M2-PK (47). When other sources for energy regeneration, i.e. 

glutaminolysis are available the dimerisation of M2-PK may enable tumour cells to 

proliferate even under low glucose supply. 

6.4.5 Hypoxic condition 

Under hypoxia mitochondrial respiration and glutaminolysis fail as energy source since 

both pathways depend on oxygen supply. In both cell lines total M2-PK protein content 

of M2-PK was not increased during hypoxia which may indicate that although the M-

gene has hypoxia responsive site (188), hypoxia may not necessarily upregulate M2-PK 
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levels at post-translational level. In Colo 357 cells about twofold increase of the dimeric 

form of M2-PK under hypoxic conditions point out that the cells may be unable to shift to 

glycolytic energy regeneration at low oxygen supply. The dimerisation of M2-PK 

together with the inhibition of the oxygen-dependent energy regeneration by 

mitochondrial respiration and glutaminolysis may explain the stronger inhibition of cell 

proliferation in Colo 357 cells than in Panc-1 cells which did not show significant 

dimerisation under hypoxic conditions. 

In this study, hypoxia increased levels of dimeric M2-PK. HIF-1 mediated increase in 

dimeric M2-PK could be one possibility but this explanation was not supported by 

elevation of total M2-PK protein expression under hypoxia. The possibility of coexistent 

acidic pH in inducing elevated Tumour M2-PK levels under hypoxia cannot be ruled out. 

This may be one of the main limitations of this study which could have been overcome by 

buffering the culture medium by long-acting buffering agents like MES or HEPES. 

Another possible limitation could be the oxygen levels in culture medium which could be 

a key factor to judge extracellular hypoxia. The average O2 concentration measured in the 

culture medium was 7 – 10% (data not shown in results) when the O2 concentration in the 

chamber was 1%.  

6.4.6 Correlation between Tumour M2-PK, Total M2-PK protein expression and 

pyruvate kinase activity 

Total protein expression of M2-pyruvate kinase as measured by western blotting was 

unchanged in altered tumour microenvironment while dimeric M2-PK as measured by 

ELISA was elevated in both the cell lines in altered microenvironment. The monomeric 

isoform of M2-PK has been described previously by Ashizawa et al. in their study on 
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monomeric-tetrameric interconversion of M2-PK in response to various levels of glucose 

and fructose 1,6 biphosphate (47). Thus the total M2-PK, which remained unchanged 

with alteration in microenvironment in this study, will have a mixture of monomeric, 

dimeric and tetrameric isoform of M2-PK in different proportion. A question that 

remained unanswered in this experiment is: what proportion of dimeric M2-PK 

constitutes total M2-PK in each culture condition? If the proportion of dimeric M2-PK is 

small in all the conditions, any significant elevation of dimeric M2-PK seen in any of the 

above-mentioned altered culture conditions may not be of any biological significance. If 

the proportion is large, the elevated levels of dimeric M2-PK observed with altered 

microenvironment would suggest a tetramer-dimer switch-over, the biologic significance 

of which should be further investigated.  

Similarly, the difference in concentration of dimeric form may not represent the influence 

of microenvironment but rather the timeframe of dimeric M2-PK synthesis. However, this 

possibility was ruled out as the cell population from the same passage was exposed to 

normal or altered culture condition for dimeric M2-PK measurement by ELISA. 

Thirdly, this study has observed that altered tumour microenvironment influences the 

dimeric M2-PK rather than total M2-PK levels.  Does this represent a qualitative rather 

than quantitative change in the M2-PK protein by the tumour microenvironment? Hence 

pyruvate kinase activity was measured to answer this query. Tetrameric form has high PK 

activity (conversion of phosphoenolepyruvate to pyruvate) while dimeric M2-PK is 

inactive isoform of M2-PK (20). In this study, a comparative elevation of pyruvate kinase 

activity in Colo 357 cell line under hypoxic culture condition with no significant change 

in the dimeric (tumour) M2-PK and total M2-PK levels would indicate monomeric to 
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tetrameric conversion. Similarly under acidic or glucose-deprived environment, an 

increased level of dimeric M2-PK associated with increase in PK activity and unchanged 

total M2-PK protein (in comparison to normal condition), a shift from monomeric to the 

dimeric and tetrameric M2-PK can be extrapolated. A similar monomeric to tetrameric 

conversion under acidic pH or glucose-deprived condition and monmeric/dimeric to 

tetrameric conversion under hypoxia could be extrapolated in Panc-1 cell lines. The 

findings in this study, especially under glucose-deprived condition, are in contradiction to 

the study by Ashizawa et al. where they showed tetramer to monomer conversion of M2-

PK under low glucose concentration (47). While findings in this study are based on the 

extrapolation of the results from three different assays with only one assay using 

monoclonal antibody against dimeric M2-PK, Ashizawa et al. used monoclonal 

antibodies specific for monomeric or tetrameric form of M2-PK (47). These antibodies 

were indigenously produced by them and were not available for use commercially. 

Hence, our results need further verifications by a single assay measuring monomeric, 

dimeric and tetrameric M2-PK isoform by using their respective monoclonal antibodies. 
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6.5 Conclusion 

 
Suppression of growth of pancreatic cancer cell lines by the altered tumour 

microenvironment is associated with increased levels of Tumour M2-PK and with 

possible interconversion between different isoforms of M2-PK. Whether elevated levels 

of Tumour M2-PK have any role in pancreatic cancer cell survival or apoptosis to altered 

tumour microenvironment requires further experiments. 
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7 CHAPTER 7   Tumour M2-Pyruvate Kinase 

and Apoptosis in Pancreatic Cancer Cells  
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7.1 Introduction 

The inactive (dimeric) form of M2-PK is known to be elevated in pancreatic and other 

types of visceral cancer (172;175). M2-PK is elevated in cancer cells to channel the 

glycolytic metabolites towards nucleotide synthesis giving cancer cells a rapid 

proliferation rate compared to non-cancer cells (20). In Chapter 7 a predominance of 

dimeric M2-PK with suppression of cell growth and a possible tetramer-dimer 

interconversion on exposure of pancreatic cancer cells to altered culture conditions was 

observed. The biological significance of elevated dimeric M2-PK under these conditions 

is not known. It may represent a metabolic response to cellular quiescence or cell cycle 

arrest subsequently leading to apoptosis, necrosis or cell survival, or it could be a 

response to prevent cancers from outgrowing their blood supply. It has recently been 

observed that overexpression of M2-PK is associated with P53-mediated apoptosis (174) 

and tumour-specific M2-PK is involved in caspase and Bcl-2 independent apoptosis by 

translocating to nucleus, forming a nuclear death complex (189). Although these findings 

have not yet been verified by other investigators it clearly establishes a link between 

Tumour M2-PK and apoptosis.  

The aim of this experiment is to simultaneously measure Tumour M2-PK and apoptotic 

markers in Panc-1 and Colo 357 cell lines under altered culture conditions and to verify 

any link between them. The apoptotic markers measured are membrane-bound 

Phosphotidyl serine binding of Annexin stain and cytoplasmic apoptotic markers of 

caspase-dependent (Caspase 3, 7 and 8) and caspase-independent pathway (Bax and Bcl-

2) and are described in pancreatic cancer previously (168).   
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7.2 Methods 

 
Cell lines and culture conditions, extraction of Tumour M2-PK and measurement of 

Tumour M2-PK were similar to that described in Chapter 4, sections 4.2, 4.3 and 4.4.1 

except that the cells from the same culture dish and in same passage were used for 

Tumour M2-PK (ELISA), apoptosis markers (Annexin-PI, Caspase 3, 7, 8 and Bax) and 

anti-apoptotic marker (Bcl-2) measurement. 

7.2.1 Annexin V-FITC and Propidium Iodide (PI) Staining for Viability 

Assessment 

The protocol for Annexin V and PI staining is as described in the ‘Materials and 

Methods’ in Chapter 4, sections 4.6 and 4.7. The staining of cells with Annexin and PI 

was initially visualised using immunofluorescence to make a subjective assessment of the 

proportion of apoptotic or necrotic cells. Objective assessment was made subsequently by 

flocytometry. This method was used to quantify viable cells as well as cells in early or 

late apoptotic or necrotic phase on exposure to altered microenvironment.  

7.2.2 Active Caspase 3/7 and 8 assay 

The protocol for Caspase 3/7 and 8 assay is as described in Chapter 4 ‘Materials and 

Methods’ section 4.5. This assay was used to determine if the apoptosis to altered tumour 

microenvironment is caspase-mediated. 

7.2.3 Bax and Bcl-2 measurement 

Bax and Bcl-2 protein expression was measured by immunoblotting using mouse monoclonal 

antibody (1:200 dilution) and rabbit polyclonal antibody (1:200 dilution) respectively (Santa Cruz 

laboratories, CA, USA). This method was used to measure apoptosis because at the beginning of the 
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experiment it was not known whether the apoptosis to altered microenvironment would be caspase or 

Bcl-2 protein-dependent as different types of apoptotic pathways in pancreatic cancer have been 

described in the literature (168). Bax is an apoptotic protein while Bcl-2 is an anti-apoptotic protein 

regulating mitochondrial permeabilisation (168). Their effect on mitochondrial permeability pores is 

caspase-independent (168) .   

7.2.4 Statistical Analysis 

All values were expressed in Mean ±S.D unless stated separately. Mean values were 

compared by one-way ANOVA. Any correlation between Tumour M2-PK, Caspase 3, 7 

and 8 or Bax or Bcl-2 was verified by Pearson coefficient correlation. 

7.3 Results 

7.3.1 Tumour M2-PK levels in Colo 357 and Panc-1 cells 

The results depicted in Figure 7.1 are a repetition of the results described in Chapter 6, 

section 6.4.6. 
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Figure 7.1: Tumour M2-PK levels in Colo 357 and Panc-1 cells on exposure to 

different culture conditions  
Cells were allowed to grow in normal culture condition till 70% confluence and then the 
culture medium was changed to expose the cells for different conditions for 72 hrs 
(repetition of results from section 6.3.5). 
 
 

7.3.2 Caspase 3 and 8 (Figure 7.2) 

Active Caspase 3/7 levels were not significantly different in different conditions in Colo 

357 cells while significantly lower in acidic or glucose-deprived culture conditions 

compared to controls with Panc-1 cells. Active Caspase 8 levels did not differ 

significantly from different conditions in both the cell lines. However, Caspase 8 levels 

were significantly higher in Panc-1 than in Colo 357 on exposure to acidic pH (p<0.001) 

and hypoxic (p<0.01) condition while significantly lower in glucose-deprived conditions. 
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Figure 7.2: Active Caspase 3/7 and 8 levels in different culture conditions in two 

different cell lines 

 

7.3.3 Bcl-2 and Bax (Figure 7.3) 

Bcl-2 protein expression was similar between control, acidic pH and glucose-deprived 

conditions in Colo 357 cell lines while lower in hypoxia. Panc-1 cell lines expressed 

higher  Bcl-2 on exposure to acidic pH condition compared to all other conditions. Colo 

357 expressed higher Bcl-2 under glucose-deprived condition than Panc-1, while under 

hypoxia Panc-1 expresed higher Bcl-2 than Colo 357. Bax expression did not vary 

considerably between control and altered culture conditions.  
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Figure 7.3: Bcl-2 and Bax protein expression in Colo 357 and Panc-1 cell lines on exposure 

of cells for 72 hrs to the altered culture conditions  

Actin was used as a loading control. Total protein loading amount was 40 mg in each well. The 
exposure time of the film for obtaining Bax and Actin band was 5 seconds and for Bcl-2 was 8 
minutes. Bcl-2 was visualised using mouse monoclonal antibody (1:200 dilution) while for Bax 
(1:200 dilution) and Actin (1:1000) rabbit polyclonal antibody was used.   
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7.3.4 Annexin V-FITC and Propium Iodide staining 

 

The amount of apoptosis and necrosis is shown in Table 7.1. No significant difference in 

apoptosis, necrosis or viability was found with cells under normal culture conditions or 

exposed to an altered environment. Most of the cells were viable on exposure to altered 

culture condition except in hypoxia where Panc-1 cells showed significantly higher 

apoptosis and necrosis in comparison to Colo 357 cells (p<0.05) – (Figure 7.4).  
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Figure 7.4: Comparison of cell viabilty (Annexin staining) of two pancreatic cancer 

cell lines under different microenvironment (result of 3 independent experiments) 
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Table 7.1: Viability and cell death in pancreatic cancer cell lines in different tumour 

microenvironment (assessed by FACS with FITC Annexin/PI staining). Result of 3 

independent experiments. 

Colo 357 
(%) Control Acidic Ph 

Glucose-
deprived Hypoxia 

  (mean±S.E) (mean±S.E) (mean±S.E) (mean±S.E) 
Viable  82.9±3.0 74.9±4.4          80.5±3.9 79.3±2.7 
Early 
apoptotic 0.6±0.3 1.93±0.6 

          
0.46±0.37 0.5±0.2 

Late 
apoptotic 2.74±0.8 9.66±1.8           3.1±2.0 3.7±1.3 
Necrosis 13.7±3.69 13.5±3.46         15.9±3.0 16.4±3.1 

Panc-1 (%) Control Acidic Ph 
Glucose-
deprived Hypoxia 

  (mean±S.E) (mean±S.E) (mean±S.E) (mean±S.E) 
Viable  70.6±6.3 80.5±3.6          67.2±5.8 53.8±8.4 
Early 
apoptotic 1.76±0.4 1.4±0.5          1.6±0.4 1.9±0.53 
Late 
apoptotic 5.5±0.7 5.7±0.7          8.3±0.9 12.3±4.8 
Necrosis 22±7.1 12.4±3.7          22.9±5.7 32±5.5 
          

 

7.3.5 Correlation between M2-PK, cell viability and apoptosis 

The levels of Caspase 3/7, 8 and Bcl-2 or Bax expression did not correlate with Tumour      

M2-PK levels or the M2-PK expression in both the cell lines. The cell viability (% of 

viable cells on FACS analysis) on exposure to different culture conditions also did not 

correlate with either Tumour M2-PK level or total M2-PK protein expression (Table 7.2).  
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Table 7.2: Correlation between Tumour M2-PK and total M2-PK with cell viability 

and apoptosis – the figures in table represent the Pearson coefficient correlation (r)  

 

             Colo 357              Panc-1 

Tumour  

M2-PK 

M2-PK Tumour  

M2-PK 

M2-PK 

 

 

 

Caspase-3/7 

Caspase-8 

% Cell 
viability 

Bcl-2 

 

 

0.02 

-0.25 

0.056 

0.23 

 

0.10 

-0.25 

-0.04 

-0.9 

 

-0.38 

-0.69 

0.016 

-0.05 

 

-0.31 

-0.52 

-0.17 

0.14 

P value 

 

 

 

>0.05 
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7.4 Discussion  

 

Pancreatic cancer cells are usually resistant to hypoxia, acidic environment and glucose-

deprived conditions (48). In this study pancreatic cancer cells were not affected by the 

altered in vitro culture conditions. No difference in the expression of any apoptotic or 

anti-apoptotic marker between normal and altered conditions was seen, suggesting that 

the cells were either resistant to the altered culture conditions or the apoptosis was not 

measurable entirely either due to the loss of apoptotic markers during the processing or 

due to the difference in timeframe between the occurrence and the measurement. The 

later possibility was evident from the observation of necrosis rather than apoptosis as the 

predominant mode of cell death to different culture conditions in this study. Apoptosis 

could have been measured earlier (<24 hrs) during the culture. However, given that the 

aim of the experiment was to correlate Tumour M2-PK levels with apoptosis it was 

considered to measure apoptosis at the time when Tumour M2-PK is measurable in 

culture (>24 hrs). The other possible explanation could be ATP depletion in the culture 

medium as the culture media was not replenished or changed throughout the exposure of 

cells to different culture conditions. As apoptosis is an ATP-dependent process (190) 

whatever mode of cell death observed was necrosis.  

A similar timeframe difference between occurrence of apoptosis and elevation of dimeric  

M2-PK may explain the lack of correlation observed in this study. Thus a suitable culture 

model is required to correlate Tumour M2-PK and apoptosis. 
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7.5 Conclusion 

Elevated levels of Tumour M2-PK under altered tumour microenvironment did not 

correlate with apoptotic markers in pancreatic cancer in the current experimental model. 

Suitable culture model is required to establish relationship between Tumour M2-PK and 

apoptosis in pancreatic cancer. This would involve measuring apoptosis under normal or 

altered culture conditions using M2-PK knockout or antisense RNA vector model or by 

inhibiting the tetramer-dimer ratio. 
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8 CHAPTER 8  Cellular Distribution of 

Tumour M2-Pyruvate Kinase Expression in 

Pancreatic Cancer Cell 
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8.1 Introduction 

 
Several glycolytic enzymes have unexpected localisation to subcellular organelles in 

order to cater to roles other than glucose homeostasis (7). Enzymes commonly implicated 

are lactic dehydrogenase (LDH), glyceraldehyde-3-phosphate dehydrogenase (GAPD) 

and enolase-1 (ENO1) – (191;192). Nuclear translocation of these enzymes is associated 

with transcriptional regulation (8;189) and apoptosis (9) while mitochondrial localisation 

is incriminated in apoptotic regulation (7). Several studies have indicated that 

phosphorylation at tyrosine residue affects the subcellular localisation of glycolytic 

enzymes (171). M2-pyruvate kinase is phosphorylated at tyrosine residue in cancer cells 

(189). Nuclear localisation of M2-pyruvate kinase has been shown recently to be 

associated with various biological functions including apoptosis (193) and cell 

proliferation (194). This chapter has investigated the subcellular localisation of M2-

pyruvate kinase in pancreatic cancer cells in normal and altered tumour 

microenvironment to give an indication of possible undetected roles of M2-PK based on 

its cellular location. 

8.2 Materials and methods  

8.2.1 Cell culture 

See Chapter 4, Materials and Methods, section 4.8. 

8.2.2 Immunostaining for fluorescence microscopy 

See Chapter 4, Materials and Methods, section 4.8. 

DAPI: 4',6-diamidino-2-phenylindole was used to bind nuclear DNA to visualise nucleus. 
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COX-1: Cytochrome C oxidase or Complex IV subunit I which is mitochondrial 

membrane- bound was used as a marker to stain mitochondria. 

8.3 Results  

8.3.1 Normal condition (Figures 8.1 and 8.2) 

 
Under normal culture condition, Panc-1 and Colo 357 cells and nucleus appeared normal 

in size. Chromatin condensation as seen in Figure 8.1 may indicate early phase of nuclear 

division. Nuclear fragmentation was significantly low and may represent the stress 

processing during culture. 

8.3.2 Acidic condition (Figures 8.1 and 8.2) 

 
In acidic condition Colo 357 and Panc-1 cells appeared to be smaller and to grow in 

clumps when seen by confocal microscopy. Cells and nuclear morphology were well 

preserved. Some nuclei appeared to be fragmented. M2-pyruvate kinase showed reticular 

pattern (red colour) throughout the cytoplasm. No localisation of M2-PK was seen in 

either nucleus or mitochondria. 

8.3.3 Glucose-deprived condition (Figures 8.1 and 8.2) 

 
Colo 357 cells appeared to be a normal size with some cells having fragmented nuclei 

which may represent the processing injury or stress of glucose-deprived state within the 

cell. A conspicuously large cell (top right hand corner of Figure 8.1), with dense M2-PK 

staining, fragmented nuclei and low mitochondrial staining, suggests an apoptotic cell. 

The cellular and nuclear morphology in Panc-1 cells was not well defined. Mitochondria 

appeared condensed. M2-pyruvate kinase showed reticular pattern (red colour) 
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throughout the cytoplasm in both cells. No localisation of M2-PK was seen with nucleus 

or mitochondria in either of the cells. 

8.3.4 Hypoxia (Figures 8.1 and 8.2) 

Colo 357 cells were small in size with unremarkable cellular or nuclear morphology.  

Figure 8.2 shows Panc-1 cells with fragmented nuclei (bottom left) while two dividing 

cells were seen at the right side of the frame. M2-pyruvate kinase showed reticular pattern 

(red colour) throughout the cytoplasm in both cells. No localisation of M2-PK was seen 

with either nucleus or mitochondria. 
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8.4 Discussion 

 
Mitochondrial and nuclear staining in addition to M2-pyruvate kinase staining was done 

in this study in order to see subcellular localisation of M2-pyruvate kinase to these 

organelles under the normal and altered culture conditions. The overall morphology of the 

cells appeared to be intact in different culture conditions in both the cell lines. Occasional 

dividing as well as apoptotic cells along with fragmented nuclei were seen, suggesting 

that cell proliferation and cell death process is occurring simultaneously, maintaining the 

cell population static, confirming my earlier findings (Chapter 5) on cell proliferation in 

different culture conditions. 

 M2-pyruvate kinase showed reticular pattern (red colour) throughout the cytoplasm in 

normal condition in both the cell lines. The pattern did not change on treatment of both 

the cell lines to acidic or glucose-deprived or hypoxic condition.  These findings confirm 

the previous such finding which suggested M2-pyruvate kinase to be an intracellular 

membrane-bound protein (195) . This should be further verified in relation to other 

intracellular membrane-bound organelles like endoplasmic reticulum (ER) or liposome. 

This could be achieved by separating and measuring M2-PK from the cellular ER 

fraction. As the endoplasmic reticulum is the packaging organelle for binding of protein 

subunit to produce complex proteins in the cell, M2-PK switch-over between monomeric, 

dimeric and tetrameric form as observed in experiments in Chapter 6 under altered culture 

conditions may be occurring at the endoplasmic reticulum which could be considered a 

potential target for cancer treatment.  
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8.5 Conclusion 

M2-pyruvate kinase is an intracellular membrane-bound protein with no localisation to 

either nucleus or mitochondria under acidic or glucose-deprived or hypoxic condition.  
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Normal Acidic pH

Glucose deprived Hypoxia
 

Figure 8.1: Immunocytochemical staining of M2-PK (red), mitochondria (green) and 

nucleus (blue) in Colo 357 cells (72 hrs exposure to altered culture condition). No 

localisation of M2-PK was seen with either nucleus or mitochondria. 
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Control Acidic pH

Glucose deprived Hypoxia
 

Figure 8.2: Immunocytochemical staining of M2-PK (red), mitochondria (green) and 

nucleus (blue) in Panc-1 cells (72 hrs exposure to altered culture condition). A 

mitotic nucleus seen at the bottom left of the top left slide. Arrows indicate dividing 

cells. No localisation of M2-PK was seen with either nucleus or mitochondria. 
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9 CHAPTER 9  Resume, Conclusions and 

Future Research Implications 
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9.1   Resume  

 
The results have been discussed in detail within each chapter (Chapters 5 – 8). This 

section addresses methodological considerations, overall conclusions and future 

experimental studies. 

9.2   Methodological consideration 

 

9.2.1 Clinical review 

The clinical review included all the published studies and abstracts related to Tumour 

M2-PK. These were related to Tumour M2-PK measurement in plasma or faeces, 

diagnostic utility in GI cancer, screening and post-treatment surveillance. The clinical 

studies on pancreatic cancer and non-pancreatic GI cancers were limited. Most of the 

studies were case-controls with some studies using historical controls. Different cut-off 

values of Tumour M2-PK were used in different studies. However, this limitation was 

overcome by the calculation of the diagnostic odds ratio during the meta-analysis. Most 

of the clinical studies were of satisfactory quality with no significant bias in the 

evaluation of diagnostic test. There were no randomised controlled trials comparing 

Tumour M2-PK with other conventional cancer markers which otherwise would have 

increased the strength of our meta-analysis.  

9.2.2 Experimental model 

The ideal experimental model for this study would have been the one which could be 

easily controlled and modulated especially when M2-PK activity and protein expression 

was to be evaluated under different culture conditions. For understanding intracellular 
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events cultured cells have great benefits as they are readily amenable to single cell study 

and to the kinds of manipulations often necessary to grasp the basic mechanisms. 

However, a tissue culture system may not relate to a clinical scenario of a patient with 

cancer.  

Cell culture model was ideally suited for these experiments and hence used in the current 

study. An animal model would have been an alternative for study of pancreatic cancer 

biology and has been used previously in our laboratory (48;49).  However, the 

monoclonal antibody available for the Tumour M2-PK detection was highly specific for 

the human tissues and hence human cancer cell lines were used in this study.  

Pancreatic cancer cells were ideally suited for evaluating the metabolic response to 

altered tumour microenvironment as this cancer is known to have hypoxic, nutritionally 

deprived and acidic areas (44). In order to study the influence of the cancer phenotype on 

M2-pyruvate kinase levels and activity two different pancreatic cancer cell lines were 

chosen, one with ductal origin while another was of metastatic origin. The use of other 

known human pancreatic cancer cell lines would have increased the strength of this study 

and would have particularly allowed more useful conclusions relating to cell behaviour 

and M2-PK levels. 

9.2.3 Culture conditions 

All efforts were taken to simulate the different physiological conditions present in vivo in 

solid tumours. However, these conditions were considered separately in order to have full 

control on the experiments. The different permutation and combinations with which 

hypoxia, acidic pH or glucose-deprived conditions coexist in vivo in solid tumours was 
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difficult to simulate which could be a limiting factor in this study. Moreover, tumour 

microenvironment is influenced  

in vivo by various factors like tumour neovascularisation, anaemia in patient or distance 

of tumour cells from main feeding vessel (196). Since many tumours which were initially 

sensitive to chemotherapy or radiotherapy eventually develop resistance to treatment, 

interest in tumour microenvironment has recently been rekindled (20). Therefore, acidic 

pH, glucose-deprived and hypoxic conditions, which are the hallmark of many solid 

tumours, were used to treat the pancreatic cancer cells in culture. 

9.2.4 Biochemical assays for dimeric and total M2-pyruvate kinase 

The main hallmark of the study was the use of ELISA as a quantitative method to 

measure Tumour M2-PK (dimeric form).  This has not previously been reported in the 

cell culture model. The commercially available ELISA kit for measurement of Tumour 

M2-PK in plasma of cancer patients was used for quantification and was modified to 

measure the cell culture homogenate. The cell homogenate was used undiluted unlike the 

plasma samples as the amount of intracellular Tumour M2-PK was unmeasurable when 

the recommended dilution (1:100) was used. Hence the reproducibility in the form of 

inter-assay coefficient of variation (CV) was affected in this study (see Chapter 5, section 

5.3.4). The main limitation of this study was the absence of an alternative method of 

quantifying Tumour M2-PK for comparison of the results of this study. Additionally there 

was no direct method available to measure the tetrameric form of M2-PK. Therefore easy 

and reproducible method to measure Tumour M2-PK and a direct method to quantify 

tetrameric M2-PK in tissue culture are needed.  
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9.2.5 Apoptosis detection methods 

The pancreatic cancer cells were exposed to acidic pH, glucose-deprived or hypoxic 

condition. Trypan blue exclusion test was used initially to assess cell viability. A majority 

of the cells were viable on exposure to these conditions for up to 96 hrs in culture. 

Therefore, it would have been useful to quantify how much and what is the mode of cell 

death in cultured cells exposed to different conditions. Active Caspase 3 measurement by 

immunoblotting in cell homogenates prepared in RIPA or M2-PK homogenisation buffer 

failed to reveal any band. Active Caspase 3, 7 and 8 bioluminescence was measured 

which did not show any difference between control and altered culture conditions. Bax 

and Bcl-2, the apoptotic and anti-apoptotic markers of mitochondrial apoptosis pathway 

were also measured. No difference between Bax or Bcl-2 expression was observed 

between treated and untreated cells. A possible reason for difficulty in detecting these 

apoptotic markers could have been the difference in time interval between their 

appearance and measurement in cell culture. Loss of stability of these markers during 

culture processing also could not be ruled out. Therefore, fluorescein isothiocyanate 

(FITC) conjugated Annexin V-Propium Iodide (PI) staining, which is a general apoptotis-

necrosis marker and was used for adherent cells to see early or delayed apoptosis and 

necrosis. Annexin PI staining of pancreatic cancer cells in this study showed that the 

mode of cell death was predominantly necrosis rather than apoptosis. Therefore, 

Flouroscein Activated Cell Sorting (FACS) analysis was used to quantitate necrosis as 

well as apoptosis which confirmed predominance of necrosis in normal as well as treated 

cells. 
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9.2.6 Tetramer-dimer conversion of M2-PK 

The tetrameric form has a high affinity to its substrate phosphoenolepyruvate (PEP), 

whereas the dimeric form is characterised by a low PEP affinity (20). This means that at 

physiological PEP concentrations, the tetrameric form has high PK activity whereas the 

dimeric form has low. The tetramer:dimer ratio is not a stationary value, but rather 

oscillates between the tetrameric and dimeric forms of M2-PK and this oscillation is 

regulated by the intracellular fructose 1,6-biphosphate concentrations (197). This study 

hypothesised the tumour microenvironment to be a regulatory factor in tetramer-dimer 

switch. Direct measurement of tetramer and dimer ratio was challenging as an antibody 

directly against the tetrameric M2-PK was not available. Separation of the tetrameric and 

dimeric forms of M2-PK is possible by gelpermeation or by free-flow isoelectric 

focusing. In the isoelectric focusing, the entire glycolytic enzyme complex focuses at a 

common isoelectric point. In the case of M2-PK only the tetrameric form is associated 

with other glycolytic enzymes within the glycolytic enzyme complex. The dimeric form 

focuses outside the complex at a more alkaline pH value. Similarly, after separation of the 

tetrameric and dimeric form of M2-PK by gelpermeation the amount of the M2-PK 

protein in the eluted fractions of the tetrameric form and the dimeric form can be 

identified by immunoblotting with the DF4 antibody. However, the measurement of 

tetrameric and dimeric fraction by these methods is semiquantitative. Determination of 

the tetramer:dimer ratio by immunoblotting alone is not possible because the protein gets 

denatured, breaking the tetrameric and dimeric subunits into monomers. Antibody to 

detect the tetrameric form of M2-PK was not available. In the absence of locally available 

technical expertise, gelpermeation chromatography was not used for tetramer:dimer M2-
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PK ratio measurement in this study. Instead, tetramer-dimer conversion was indirectly 

demonstrated by measuring total M2-PK by immunoblotting, dimeric M2-PK by ELISA 

and total pyruvate kinase activity by photometric analysis. The main strength of these 

methods is that these are validated, reproducible and local expertise was available. 

However with exception to ELISA, they do not directly quantify tetrameric or dimeric 

form of M2-PK. Therefore a direct method of measuring tetramer:dimer ratio in tissue 

culture is needed. 
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9.3 Overall Conclusion  

–  Tumour M2-PK can be reliably measured in cell lines using ELISA and the levels are 

inversely proportional to cell density. The higher levels of Tumour M2-PK in the cancer 

cell line with higher metastatic potential would suggest a correlation between growth and 

spread of cancer which should be further revalidated in other human pancreatic cancer 

cell lines.  

–  Suppression of growth of pancreatic cancer cell lines by the altered tumour 

microenvironment is associated with variations in levels of dimeric M2-PK without 

change in total M2-PK protein expression and a tetrameric-dimeric switch on glucose 

deprivation of tumour cells and a dimeric-tetrameric shift on exposure to hypoxia.  

–  The current experimental model does not support the tetrameric-dimeric switch-over of  

M2-pyruvate kinase as being a possible metabolic adaptation of pancreatic cancer cells to 

altered microenvironment.  

–  M2-pyruvate kinase activity in tumour cells is localised to intracellular membrane-

bound cytoplasmic structures with no translocation to mitochondria or nucleus on 

exposure to altered microenvironment. 
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9.4 Future Research Implications 

Although Tumour M2-PK is a cancer marker, this study has provided a platform for 

evaluating its biological role in understanding the commonest challenge faced by many 

cancer clinicians in treating pancreatic cancer i.e. resistance to therapy. This study has 

observed an altered metabolic response to adverse physiologic microenvironment in 

tumour cells. This association needs to be further consolidated by a robust experimental 

design involving blocking M2-PK or interfering with tetramer-dimer shift. The possible 

models that we propose are: 

• Direct inhibitor of M2-pyruvate kinase activity as described recently (170;189) 

• PK-M2 antisense oligonucleotide vector-transfected cell model as used recently 

(47) 

• M2-PK tetramer:dimer ratio modulator – Fructose 1,6 biphosphate as described 

before. 

 

 If the association of M2-PK with pancreatic cancer tolerance to apoptosis is established 

by using the above-stated experimental models, targeting M2-PK could be a potential 

armamentum in cancer therapy. 
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   APPENDICES 

APPENDIX I 

Presentations and Publications Out of Thesis 

Presentations 

 

 - Response of the dimeric form of M2-pyruvate kinase to altered microenvironment 

in pancreatic cancer cells.  

8th World Congress of IHPBA 27 February–2 March 2008, Mumbai, India (Data from  

Chapter 6). 

Background: Hypoxic and nutritionally deprived areas are thought to confer resistance to 

pancreatic cancer cells to apoptosis. Tumour M2-pyruvate kinase, a tumour associated 

isoenzyme of pyruvate kinase, is elevated in patients with pancreatic cancer.  

Aim: This study aimed to observe the effect of altered tumour microenvironment on 

levels of Tumour M2-pyruvate kinase in relation to resistance of pancreatic cancer cell 

lines to apoptosis. 

Materials and Methods: The dimeric form of M2-pyruvate kinase was measured in cell 

homogenate supernatant of Panc-1 (ductal cancer origin) and Colo 357 (metastatic lymph 

node origin) human pancreatic cancer cell lines, exposed to acidic pH (6.5), hypoxic (1% O2) 

and glucose-deprived culture conditions for 24, 48, 72 and 96 hrs, using sandwich type 

ELISA (ScheBo® Tumour M2-PK™) based on monoclonal antibodies specific for it. Total 

M2-pyruvate kinase protein expression was measured semiquantatively by western blotting. 
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Apoptosis in these conditions was measured by FITC Annexin V and Propium Iodide FACS 

analysis and Active Caspase 3 and 8 assays. 

Results: Tumour M2-PK level was significantly enhanced in Colo 357 cells (p<0.05) at 

acidic pH compared to normal, hypoxic or glucose-deprived culture condition without any 

change in total M2-PK protein expression. No significant difference was seen between 

normal and altered microenvironment conditions in terms of cell viability and apoptosis in 

both cell lines. 

Conclusion: High levels of Tumour M2-pyruvate kinase levels in metastatic cancer cell lines 

exposed to acidic environment may indicate a survival strategy of cancer cells in altered 

tumour microenvironment. 
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- Levels of M2-Pyruvate kinase in tumour cells are influenced by low pH, nutrient 

deprivation and hypoxia.  

Y. Kumar, S. Yang, B. Fuller, S. Mazurek, B.R. Davidson, 39th European Pancreatic Club 

meeting, 5 July 2007, Newcastle, UK (Data from chapter 6). 

1) University Department of Surgery, Royal Free and University College Medical   

 School, UCL. 

2) ScheBo Biotech AG, Netanyastrasse 3, 35394 Giessen, Germany 

Introduction: Hypoxic and nutritionally deprived areas are thought to contribute to 

resistance of tumour cells to apoptosis in pancreatic cancers. Tumour M2-pyruvate 

kinase, a tumour associated isoenzyme of pyruvate kinase, is elevated in patients with 

pancreatic cancer. This study aims to measure Tumour M2-pyruvate kinase (TuM2-PK) 

in different human pancreatic cancer cell lines following exposure to acidic pH, hypoxia 

and glucose-deprivation.  

Materials and Methods: 

TuM2-PK expression was measured in cell lysate supernatant of HMEF, MCF7, Panc-1 

and Colo 357 human cell lines using sandwich type ELISA kits (ScheBo® Tumour M2-

PK™) based on two monoclonal antibodies specific for it. Panc-1 and Colo 357 were 

grown in acidic pH (6.5), hypoxic (1% O2) and glucose-free medium (DMEM). TuM2-

PK was expressed as milli U/10 6 cells. 

Mean TuM2-PK values between different cell lines were compared using Two-way 

ANOVA and unpaired T test. Correlation between TuM2-PK levels and cell densities was 

made using Pearson’s coefficient.   
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Results: M2-PK expression was significantly higher in Colo 357 cells compared to MCF 

7 (p<0.05) and Panc-1 cells (p<0.001). Correlation between TuM2-PK levels and 

different [MCF7 (r=-0.382, p= 0.06), Panc-1 (r= - 0.096, p= 0.065) and Colo 357 (r= -

0.528, p< 0.01) cell densities was negative.  Tumour M2-PK expression was significantly 

enhanced in Colo 357 cells (p<0.05) at acidic pH or glucose-deprived condition compared 

to normal culture condition. Levels were also elevated in hypoxic condition. 

Conclusion: TuM2-PK can be measured in different cell lines using ELISA. In vitro 

expression of TuM2-PK correlates with cell density. Acidic, glucose-deprived and 

hypoxic conditions in tumour cells enhance M2-PK expression. 

 

Published in Pancreatology 2007/7: 245, p. 62 
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- Tumour M2-Pyruvate kinase expression in pancreatic cancer cell lines. 

Y. Kumar, N. Kirmani, S.Dijk, B. Fuller, S. Mazurek, B. Davidson. 

Oral and poster presentation at Society of Academic Research Surgery meeting, 10–12 January 

2007,  Cambridge (Data from chapter 5). 

 

Introduction: Hypoxic and nutritionally deprived areas are thought to contribute to 

resistance of tumour cells to apoptosis in pancreatic cancers. Tumour M2-pyruvate 

kinase, a tumour-associated isoenzyme of pyruvate kinase, is elevated in patients with 

pancreatic cancer. This study aims to measure Tumour M2-pyruvate kinase (TuM2-PK) 

in different human pancreatic cancer cell lines following exposure to acidic pH and 

glucose-deprivation.  

Materials and Methods: TuM2-PK expression was measured in cell lysate supernatant 

of HMEF, MCF7, Panc-1 and Colo 357 human cell lines using sandwich type ELISA kits 

(ScheBo® Tumour M2-PK™) based on two monoclonal antibodies specific for it. Panc-1 

and Colo 357 were grown in acidic pH (6.5) and glucose-free medium (DMEM). TuM2-

PK was expressed as milli I.U/10 6 cells. 

Mean TuM2-PK values between different cell lines were compared using two-way 

ANOVA and unpaired T test. Correlation between TuM2-PK levels and cell densities was 

made using Pearson’s coefficient.   

Results: M2-PK expression was significantly higher in Colo 357 cells compared to MCF 

7 (p<0.05) and Panc-1 cells (p<0.001). Correlation between TuM2-PK levels and 

different [MCF7 (r=-0.382, p= 0.06), Panc-1 (r=- 0.096, p= 0.065) and Colo 357 (r=-

0.528, p< 0.01) cell densities was negative. At acidic pH, Tumour M2-PK expression was 
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significantly enhanced in Colo 357 cells (p<0.05) at acidic pH or glucose-deprived or 

hypoxic condition in the culture medium compared to normal conditions. 

Conclusion: TuM2-PK can be measured in different cell lines using ELISA. In vitro 

expression of TuM2-PK correlates with cell density. Acidic, glucose-deprived and 

hypoxic conditions around tumour cells enhance M2-PK expression. 

 

British Journal of Surgery 2007/ 94 (S3): 4 (Published abstract). 
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Publications 

 
- Kumar, Y., Gurusamy, K.S., Davidson, B.R., Tumour M2-Puruvate Kinase: A marker of 

exocrine pancreatic cancer-A meta-analysis, Pancreas 2007 Aug/35 (2): 114-9. (Paper from 

chapter 2) 

- Kumar, Y., Tapuria, N., Kirmani, N., Davidson, B.R., Tumour M2-pyruvate kinase: A GI 

cancer marker, Eur J Gastroenterol Hepatol 2007 Mar/19(3):265-76. (Paper from chapter 1) 
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APPENDIX-II 

 

 Copy of a result printout from the plate-reader. 

 

 Raw Data  Average Corr. Av.  Conc. Actual 

 --------------------------------------------------------- 
 -------------
---  ----------------- 

 -------------
--  ----------------- 

        

Standards       

        

  Absorbance1 Absorbance2 Average corr. Av.    

STD1 0.456 0.423 0.440 0.011  4.38 5 

STD2 0.664 0.507 0.586 0.157  18.53 15 

STD3 1.216 1.291 1.254 0.825  44.96 40 

STD4 3.010 2.951 2.981 2.552  82.14 100 

        

Positive Control       

      Conc.  

  Absorbance1 Absorbance2 Average corr. Av.  [U/ml]  

PC 0.629 0.671 0.650 0.221  22.27 Control okay! 

        

Blanks        

        

  Absorbance1 Absorbance2 Average     

Blank 0.426 0.432 0.429     

        

Samples        

      Conc.  

  Absorbance1 Absorbance2 Average corr. Av.  [U/ml]  

S1 0.674 0.544 0.609 0.180  19.96  

S2 0.676 0.647 0.662 0.233  22.88  

S3 0.730 0.696 0.713 0.284  25.46  

S4 0.574 0.603 0.589 0.160  18.72  

S5 0.671 0.652 0.662 0.233  22.88  

S6 0.668 0.645 0.657 0.228  22.62  

S7 0.431 0.429 0.430 0.001  1.25  

S8 0.480 0.492 0.486 0.057  10.81  

S9 0.950 0.896 0.923 0.494  34.21  

S10 2.500 2.466 2.483 2.054  73.16  

S11 0.495 0.564 0.530 0.101  14.63  

S12 1.916 1.991 1.954 1.525  62.41  

S13 0.488 0.455 0.472 0.043  9.24  

S14 0.675 0.693 0.684 0.255  24.04  

S15 0.515 0.574 0.545 0.116  15.76  

S16 1.270 1.343 1.307 0.878  46.48  

S17 0.793 0.767 0.780 0.351  28.51  

S18 1.089 1.192 1.141 0.712  41.56  
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S19 2.617 2.744 2.681 2.252  76.84  

S20 1.580 1.568 1.574 1.145  53.57  

S21 2.756 2.803 2.780 2.351  78.62  

S22     #DIV/0! #DIV/0!  #DIV/0!  

S23 2.613 2.588 2.601 2.172  75.37  

S24     #DIV/0! #DIV/0!  #DIV/0!  

S25 2.039 2.083 2.061 1.632  64.72  

S26 2.695 2.688 2.692 2.263  77.04  

S27 1.704 1.808 1.756 1.327  57.95  

S28 1.868 1.927 1.898 1.469  61.17  

S29 2.421 2.528 2.475 2.046  73.00  

S30 1.826 1.858 1.842 1.413  59.93  

S31 0.886 0.903 0.895 0.466  33.14  

S32 2.327 2.335 2.331 1.902  70.22  

S33 1.414 1.392 1.403 0.974  49.14  

S34     #DIV/0! #DIV/0!  #DIV/0!  

S35 0.928 0.844 0.886 0.457  32.82  

S36 1.089 1.064 1.077 0.648  39.52  

S37 1.394 1.887 1.641 1.212  55.21  

S38 2.819 2.891 2.855 2.426  79.96  

S39 0.950 1.033 0.992 0.563  36.66  

S40 2.181 2.232 2.207 1.778  67.73  

S41 1.465 1.434 1.450 1.021  50.38  

S42 1.657 1.575 1.616 1.187  54.61  

        

underlying formulae       

Average = Average of Absorbance1 and Absorbance2     

corrected Average = Average - Average of Blanks     

Conc. : according to Regression Analysis and Standard Curve    
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Standard Curve     

      

using regression analysis     

      

  STD-Conc. corr. Av. log(Conc.) 
Log (corr. 
Av.)  

  [U/ml]        

STD1 5 0.011 0.699 -1.979  

STD2 15 0.157 1.176 -0.805  

STD3 40 0.825 1.602 -0.084  

STD4 100 2.552 2.000 0.407  

      

log(conc)=m*log(OD)+b     

      

Statistics      

m 0.533 1.698 B   

Std. F. 0.058 0.063    

r^2 0.977 0.104    

F 85.101 2.000 Df   

ss(reg) 0.917 0.022 ss(resid)   
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List of Abbreviations 

TuM2-PK: Tumour M2-pyruvate kinase 

DMEM: Dulbecco’s modified eagle’s medium 

EMEM: Earl’s Minimum Essential Medium 

FBS: Foetal bovine serum 

PBS: Phosphated buffered saline 

EDTA: Ethylenediaminetetraacetic acid 

MES: 2-(N-Morpholino)ethanesulfonic acid 

HEPES: 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid 

KH2PO4: Potassium phosphate monobasic 

KCl: Potassium chloride 

MgCl2: Magnesium chloride 

NADH: β-Nicotinamide adenine dinucleotide, reduced dipotassium salt 

ADP: Adenosine diphosphate 

LDH: Lactate dehydrogenase 

PEP: Phosphoenolpyruvate 

FITC: Fluorescein isothiocyanate 

ATP:  Adenosine triphosphate 

MOPS: 3-(N-morpholino) propane sulfonic acid 

PVDF: Polyvinylidene difluoride 

COX: Cytochro
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