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Abstract

The re-alignment of series of medical images in which there are multiple contrast variations is difficult.

The reason for this is that the popular measures of image similarity used to drive the alignment procedure

do not separate the influence of intensity variation due to image feature motion and intensity variation

due to feature enhancement. In particular, the appearance of new structure poses problems when it

has no representation in the original image. The acquisition of many images over time, such as in

dynamic contrast enhanced MRI, requires that many images with different contrast be registered to the

same coordinate system, compounding the problem. This thesis addresses these issues, beginning by

presenting conditions under which conventional registration fails and proposing a solution in the form of

a ’progressive principal component registration’. The algorithm uses a statistical analysis of a series of

contrast varying images in order to reduce the influence of contrast-enhancement that would otherwise

distort the calculation of the image similarity measures used in image registration. The algorithm is

shown to be versatile in that it may be applied to series of images in which contrast variation is due to

either temporal contrast enhancement changes, as in dynamic contrast-enhanced MRI or intrinsically in

the image selection procedure as in diffusion weighted MRI.
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Chapter 1

Introduction

1.1 Introduction

This thesis addresses the problem of the registration of images containing local contrast changes. In par-

ticular it outlines the problems of using conventional registration techniques in the presence of contrast

enhancement. The thesis develops a solution to the problem of the correction of motion artefacts when

local contrast-change is occurring.

The desire for accurate quantification of diagnosis and therapy related to widespread diseases such

as cancer has led to the formation of many new imaging techniques allowing opportunities to explore

advances in treatment monitoring. The increased sophistication of these new imaging modalities has

brought additional challenges to the area of image registration. The use of contrast agents to alter image

contrast in areas of interest and the use of diffusion weighted MRI to assess dominant diffusion directions

are two examples of imaging techniques that have seen increased use in recent years. The length of the

imaging procedure in both these cases leads to the formationof images that may contain both intra and

inter image artefacts due to motion of the subject. This thesis will focus on the second kind of artefact,

those due to motion between images.

The use of image registration is important when seeking to extract information from multiple im-

ages. The images must be in good feature alignment so that equivalent imaging pixels represent the

same structures and may be compared or combined. Non-rigid image registration procedures seek to

maximise the image similarity as defined by a particular measure. The deformation of one image so that

it more closely matches another (as defined by the image similarity measure) becomes an optimisation

procedure; the deformation field of the image is iterativelyrefined toward a maximum of image similar-

ity. The re-alignment of a series of medical images that encode multiple contrast variations as a result of

either exogenous contrast agents or intrinsic temporal or directional contrast change is difficult. Popular

measures of image similarity used to drive the alignment minimisation procedure do not separate the

influence of intensity variation due to image feature motionand intensity variation due to feature en-

hancement. This is true of many cost-functions including information based image similarity measures

such as mutual information. The appearance of new structuremay pose problems for image registration

when it has no representation in the original image. Changesto the intensity of some parts of an image

relative to others are also problematic since this violatesthe one-to-one intensity matching assumed by
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many cost-functions.

The acquisition of many images over time, such as in dynamic contrast enhanced MRI, requires that

many images with different contrast be registered to the same coordinate system. Since these images are

acquired over a time scale of many minutes, patient motion islikely to be a problem, requiring image

registration before further analysis can be carried out. Inthe case of dynamic contrast enhanced MRI,

regions of interest are likely to be areas that are enhancing. The correct registration of these regions is

crucial when extracting pharmacokinetic information.

This thesis addresses these issues, beginning by presenting some conditions under which conven-

tional registration fails and proposing a solution in the form of a progressive principal component regis-

tration (Melbourne et al., 2007b). The thesis proposes the modification of conventional registration algo-

rithms when considering the registration of large groups ofcontrast enhanced images. This is distinctly

different from some of the previous methods of registrationin this area. The algorithm uses a statistical

analysis of a series of contrast varying images in order to reduce the influence of contrast-enhancement

that would otherwise distort the calculation of the image similarity measures used in image registration.

The algorithm is shown to be versatile in that it may be applied to a series of images in which contrast

variation is due to either temporal contrast enhancement changes, as in dynamic contrast-enhanced MRI

(Melbourne et al., 2007a) or intrinsically in the image selection procedure as in diffusion weighted MRI

(Melbourne et al., 2008b).

1.2 Chapter Summary

Chapter Two: Literature Review

This chapter introduces the development of image registration algorithms. The focus is particularly on

non-rigid, intensity-based methods such as b-spline and fluid registration algorithms incorporating infor-

mation theoretic image similarity measures. A history of their application to medical images and their

eventual application to dynamic contrast enhanced images is discussed. The failure of current registra-

tion methods to properly accommodate contrast-variationsis outlined, alongside some recent efforts to

address this problem. The chapter also discusses the development of MRI and the importance of dynamic

contrast enhanced MRI in oncology, presenting some of the challenges associated with the technique.

The development of diffusion weighted MRI is also discussedalongside the analogous problems impact-

ing image registration due to local gradient-influenced contrast variation.

Chapter Three: Creation of Simulated Dynamic Contrast Enhanced MRI Data

This chapter discusses the development of fully simulated DCE-MRI. The chapter includes three main

areas: the development of a global elastic force model of breathing deformation, incorporating a modi-

fication to allow certain regions to deform rigidly; the development of a model of contrast-enhancement

processes of both major organs and of pathology using recentwork on hepatic contrast enhancement;

the importance of the influence of contrast-agent dose and MRsignal generation parameters. Part of this

work was presented at MICCAI 2008 in (Melbourne et al., 2008a).
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Chapter Four: Cost-Functions and Contrast Enhancement

This chapter presents a discussion of current cost-functions and their limitations when contrast-

enhancement is present; motivating the need for either contrast-enhancement invariant cost-functions

or a method to allow conventional cost-functions to be used.The novel Cost-Function Matrix Mean

(CCFM) method for analysing registration performance for groups of images is introduced alongside a

method of visualising the potential minimisation space of acost-function under particular conditions of

contrast-enhancement.

Chapter Five: Progressive Principal Component Registration (PPCR)

The use of principal components analysis with medical images is discussed, alongside the difficulty

of extracting physiological information from principal components. The use of principal components

analysis during an iterative registration procedure is developed, resulting in the Progressive Principal

Component Registration algorithm published in (Melbourneet al., 2007b) (patented: see Image Regis-

tration Method PCT/GB2008/001520, Filed on 2 May 2008). Theconditions under which PPCR will

provide an advantage are also discussed in this chapter. Thesimulated abdominal dynamic contrast

enhanced MRI developed in Chapter 3 and the PPCR algorithm discussed are used to investigate the

performance of image registration under varying motion andenhancement characteristics. Inspection of

the changes to joint-entropy as a function of motion artefact and contrast enhancement are used to infer

registration performance. It is shown that for contrast enhanced data, PPCR provides an advantage by

allowing conventional cost-functions to be minimised (or maximised) in cases where minimisation is not

necessarily possible using conventional post-enhancement to pre-enhancement image registration. Part

of this work is the basis of a presentation at MICCAI 2008, (Melbourne et al., 2008a).

Chapter Six: Registration of Breath-hold Dynamic ContrastEnhanced MRI

The Progressive Principal Component Registration algorithm developed in Chapter Four is now applied

to real data. The algorithm is applied to both 2D and 3D dynamic contrast enhanced MRI datasets ac-

quired under repeated end-exhale breath-hold. The performance of the 2D registration is analysed by

expert visual assessment, by intensity-time curve fitting (published as part of (Melbourne et al., 2007b)

and at ISMRM 2007 (Melbourne et al., 2007a)) and by the Cost-Function Matrix Mean. The 3D data are

analysed using software developed by the Institute of Cancer Research (MRI Workbench (d’Arcy et al.,

2006)) for the extraction of pharmacokinetic parameters. An assessment of pharmacokinetic model-fit

residuals both before and after registration reveals an improvement using PPCR compared to conven-

tional image registration (submitted to ISMRM 2009).

Chapter Seven: Registration of Diffusion Weighted MRI

The Progressive Principal Component Registration algorithm developed in Chapter 4 is now applied

to a different application. Analogous to dynamic contrast enhanced MRI, diffusion weighted MRI ac-

quires many images analysing diffusion along different directions. The registration of contrast variations

between diffusion directions presents the same problems toconventional registration as found in DCE-

MRI. Local contrast changes due to diffusion gradient direction invalidate the assumptions of registration
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cost-functions. The PPCR algorithm provides a way of incorporating the direction dependent contrast-

variations and allowing improved registration performance. The method is applied to 3D datasets and the

improvement in registration is analysed using visual imageinspection, inspection of fractional anisotropy

variability under a leave-one-out analysis and inspectionof tensor fit residuals. Part of this work was

presented at ISMRM 2008 (Melbourne et al., 2008b). Preliminary work on the registration of diffusion-

weighted MRI under varyingb-value of the liver is also presented (submitted to ISMRM 2009).

Chapter Eight: Kullbach Leibler Assisted Image Matching and Patching (KLAMP)

This chapter discusses the development of a novel method of directly influencing the formation of cost-

function gradients during image registration in order to reduce artefacts due to contrast-enhancement.

Analysis of the Kullback-Leibler divergence between jointimage histograms in which both contain

motion, but only one contains contrast-enhancement, allows the removal of contrast-enhancement by

image matching and patching. The method is embedded into a fluid registration algorithm. The resulting

deformations can be analysed using simulated data, analysis of pre and post registration segmentation

and cost-function gradient analysis (Part of this work has been submitted to ISMRM 2009).
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1.3 Magnetic Resonance Data used in this Thesis

This section briefly describes the data used in this thesis, consisting of both 2D and 3D liver DCE-MRI

studies and diffusion weighted studies of both the brain andliver.

Institute of Cancer ResearchLivdt Study

This study consists of multiple abdominal (liver) dynamic contrast enhanced MRI scans for use in a

clinical study. Seven patients are considered and repeat scans are made after a given period of time as

shown in Table 1.1. The majority of datasets are a coronal orientation. Each dataset consists of three

spatially separated slices anterior-posterior and hence we only consider these data to be 2D in further

analysis. Data are acquired with aTR of 11ms, TE of 4.7ms with a flip angle ofα = 3o. Images are

acquired in3×2swith a7s breathing interval. Approximately 40 frames were acquiredfor each dataset.

The Gadolinium based contrast agent, Magnevist, is injected after the 5th image acquisition at3.5mls−1.

Scans take approximately 9 minutes to perform; misalignment between scans represents a measure of

the consistency of the depth of the breath-holds with any additional motion due to the abdominal walls

and nearby organs. The length of time between image acquisitions means that it is unlikely that there

will be any periodic motion in the sequence.

Table 1.1: DCE-MRI Patient 2D Scan Data

Patient Number Follow Up Follow Up Follow Up Follow Up View

of Scans (Days) (Days) (Days) (Days)

1 4 +2 +7 +36 coronal

2 4 +2 +9 +44 sagittal-oblique

3 4 +54 +89 +112 coronal

4 3 +7 +33 coronal

5 2 +2 coronal

6 4 +2 +16 +44 +72 coronal

7 4 +2 +9 +37 coronal

Institute of Cancer ResearchNeuro-endocrineStudy

This study consists of six patients with full 3D abdominal (liver) datasets with either 20 or 40 timepoints.

This data was acquired by the Institute of Cancer Research ona Siemen’s Avanto 1.5T MRI scanner.

These datasets are at a temporal resolution of 12s consisting of a 6s held-breath volume acquisition and

a further 6s breathing interval. The acquisitionTR is 4ms with a flip angle ofα = 24o, a further low

flip angle image (α = 2o) is also acquired for use inT 1 estimation. Again these data are taken under

repeated breath-hold and particularly evident in these datasets is timing of the acquisition to show the

bolus arrival in the heart (Table 1.2). For Patients 5 and 6, also included are the results of the MRI

scanner manufacturer’s in-built proprietary registration algorithm.
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Table 1.2: DCE-MRI Patient 3D Scan Data

Patient Number Volume Timepoints View

of Scans

1 1 256x256x20 20 coronal

2 1 256x256x20 20 coronal

3 1 256x256x20 20 coronal

4 1 256x256x12 40 coronal

5 1 256x256x12 40 coronal

6 1 256x256x12 40 coronal

IXI Brain Data

This series of data consists of 12 volunteer studies over a range of ages. Each volunteer dataset contains

15 diffusion directions acquired with diffusionb-value of1000s.mm−2 and a b0 volume, with volumes

of 128× 128× 64 pixels from an axial perspective. The datasets are part of the larger IXI dataset which

as of writing, is still available here: fantail.doc.ic.ac.uk. The fifteen normalised gradient directions are

shown in Table 1.3.

Table 1.3: Body Diffusion Patient Data (3D Axial)

x y z

1 0 0

0 1 0

0 0 -1

-0.18 -0.11 0.98

-0.06 0.38 0.92

0.71 0.05 0.70

0.62 -0.44 0.65

0.24 0.78 0.57

-0.26 -0.62 0.74

-0.82 0.17 0.55

-0.84 0.53 0.11

-0.26 0.96 0.14

0 0.97 -0.25

0.75 0.67 -0.02

0.97 0.23 -0.02

Institute of Cancer Research Body DWI Data

These data consist of two datasets of three orthogonal diffusion directions for use in abdominal (liver)

oncology taken at multiple b-values including[0, 50, 100, 150, 250, 500, 750]s.mm−2 (three each for
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each orthogonal direction), see Table 1.4.

Table 1.4: Body Diffusion Patient Data (3D Axial)

Patient Size Number b-Values

of Images (x3) (x3) (x3) (x3) (x3)

1 128x128x18 16 0 50 100 250 500 750

2 256x256x12 7 0 150 500



Chapter 2

Literature Review

2.1 Images

Within this thesis we consider purely medical images, and inparticular those produced using Magnetic

Resonance Imaging. Particular features in an MRI image can be enhanced by intrinsically altering

scanner parameters or by adding exogenous contrast enhancement or highlighting the freedom of the

water to diffuse along a particular direction (as used in Diffusion Weighted MRI).

If we take two images, we often expect there to be changes between them. For example, if two

images are taken of a subject breathing in and then breathingout, organs such as the heart and the liver

are in different places. If images are taken at different times, we might also expect things to change:

tumours growing or shrinking; the heart in systole or diastole; the brain changing in Alzheimer’s. The

process of finding the spatial alignment between two images is known asimage registrationand describes

how well we can write one image in the co-ordinate system of a second (in this case the images are said

to be registered). More simply, it describes the changes you have to make to one image to produce

a second. Image registration can be defined between two images of the same type (mono-modal) or

between images of different types (multi-modal) such as theregistration of an MR image to an X-ray

CT image. Image registration is, in general, a mathematically ill-defined problem. The algorithms

we shall see in the subsequent sections are, despite their mathematical complexity, quite simple in the

behaviour they can describe: they are remarkably good when two images contain the same features, but

if objects between images appear, disappear or change intensity, they often struggle to find an alignment;

if registration is defined as describing the features in one image in terms of another, if features have

moved out of the image, the registration will not be well-defined. Throughout this thesis we consider

the registration of multiple images (inter-image registration), assuming there has been little or no motion

during the acquisition of the individual image. Intra-image motion can also be corrected using image

registration methods but these processes are beyond the direct scope of this thesis.

2.2 Image Registration

This section will introduce a development of image registration, particularly the cost-functions and the

deformation techniques used to maximise those cost functions, presented in a pedagogical fashion. The

use of the wordregistrationin this thesis should briefly be discussed as it will be interchangeably pre-
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sented as a verb (to register) to describe the process of aligning two images and as an attributive adjective

describing the state of two images irrespective of any imageprocessing (to be in registration). For in-

stance, we improve the registration of two images by using a registration tool and the word for this

process is also (image) registration. This phrasing is not ideal since it is purely context dependent.

Throughout, we will consider the registration of two images(which may be considered volumes if re-

quired). We seek to deform one image, which we will call thefloat image (sometimes written as a source

image in the literature) so that it resembles as closely as possible (depending on our requirements of sim-

ilarity) ananchor image (sometimes written as a target image in the literature). Conceptually, the anchor

image isfixedand the float image deforms until it matches the anchor. For shorthand and in equations we

represent thefloat image byF and its individual pixel values byFij (for two dimensions) and theanchor

image byA and its individual pixel values byAij . The fundamental registration equation is provided

in Equation 2.1 where we maximise (or more generally extremise) an image similarity measure (cost)

betweenanchorandfloat image subject to deforming the float image in spacer by a deformationT (r).

max[cost(A(r),F(T (r)))] (2.1)

2.2.1 Cost Functions

The choice of cost function is of importance to the final registration result, selection of a suitable cost-

function is crucial to the success of the registration algorithm. It is important to choose a similarity

measure that is best-suited to the images that are being registered. For this reason a pedagogical devel-

opment of cost functions is presented here. An example movieof different cost-function values with

(translational) displacement is included on the supplementary CD (see Appendix E).

Mono-Modal Images

Often the most basic cost function presented is the Sum of Squared Differences between anchor and

float image intensities. This is appropriate when considering images whose intensity profiles differ by

Gaussian noise only; the intensities in the anchor image areexpected to be identical in the float image,

with the exception of Gaussian noise. Its use in MRI is often limited by fluctuating contrast variations

between different MRI images as a result of the large number of tunable parameters. The cost function,

C, can clearly be seen to arise from the standard Gaussian distribution for meanµ and standard deviation

σ (Equation 2.2 for each ofN datapointsxi) where the product of the different intensity distributions

can be written as the minimisation of a sum of the exponent (Equation 2.3 and 2.4). The method is often

used in the testing of new algorithms ((Christensen et al., 1996), (Cahill et al., 2007b)).

C =

N∏

i=1

1√
2πσ2

exp[
(xi − µ)2

2σ2
] (2.2)

C =
1

(2πσ2)N/2
exp[

1

2σ2

N∑

i=1

(xi − µ)2] (2.3)

SSD =

N∑

i=1

(xi − µ)2 (2.4)
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Multi-Modal Images

The assumption of images differing only by Gaussian noise often cannot be made. It may then be

appropriate to consider that the intensities differ in a linear way; that the intensities in the float image

can be described by a global scalar multiplication of intensities in the anchor image. If we consider our

float F and anchorA images as vectors of lengthn ×m, our image similarity measure is simply (with

the proviso that our images have the mean intensity subtracted) the angle between these two vectors

(Equation 2.5).

CrossCorrelation =
A · F

‖A‖‖F‖ (2.5)

For perfectly aligned images, all pixels will have the same values in both images and therefore the

value of the Cross Correlation (CC) will be1. If the float image was the photo-negative of the anchor

image, the value of the Cross Correlation would be−1. Work by Hermosillo provides details on the

implementation of cross-correlation and information theoretic cost functions (Hermosillo, 2002).

Information Theory Based Cost Functions

More generally we might suppose that there is a relationshipbetween pixel intensities that is not reliant

on any presumed intensity function. Since it is particularly illustrative, first we will derive the Joint

Entropy cost function (JE),as first proposed by Hill (Hill etal., 1994). If we take a given intensity in

the float image, we then look at how many times it corresponds to all other available intensities in the

anchor image (for this reason we consider intensity discretised images, for example with 256 possible

intensities). It is possible to imagine that some of the results will represent a true alignment of pixels and

some the result of unregistered, misaligned pixels. By doing this for every intensity value in the float

image, we build up a joint image histogram. We now propose that the histogram counts represent the

probability of a particular pixel combination occurring. We can now see that for a good alignment there

will be very high numbers of pixels corresponding to a one-to-one relationship in the joint histogram,

meaning that a given pixel intensity in the float image ishighly likelyto correspond to one pixel intensity

in the anchor image. Poor alignment would see a one-to-many spread of a particular intensity value in

the float image to values in the anchor image (an important aside, and limitation of this method, is that

local intensity changes other than those due to motion are likely to lead to a valid spread in the joint

histogram counts). The extent of this dispersion can be summarised by theentropyof the joint image

histogram (Equation 2.6) for the distributions of probabilities pij in the histogram. The entropy of the

joint image histogram for anchor and float images will be denotedHAF . As discussed, a smaller value

of joint entropy should correspond to better image alignment.

JointEntropy = −
∑

i

∑

j

pij log pij (2.6)

The probability distribution used above for the joint histogram may also be applied to a single image

histogram, where the histogram counts represent the numberof occurrences of a particular intensity

within a given image (either the anchor or the float). As above, we can convert these histogram counts to

probabilities and find the entropy of a particular image (Equation 2.7). These entropies are often referred

to asmarginal entropiesand will be denoted asHA, for the marginal anchor entropy andHF , for the
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marginal float entropy. Images having equal numbers of pixels at each intensity will contain the most

information.

MarginalEntropy = −
∑

i

pi log pi (2.7)

A further potential cost function is the Kullbach Leibler Distance (KLD). This is a measure of the

’distance’ between one probability distribution, which can be written aspi, and another, written asqi

(the KLD value will be zero forpi = qi∀i). For images these distributions are calculated as discussed

previously. The distance between the probability distributions of an anchor and a float can be written as

Equation 2.8.

KLDivergence =
∑

i

pi log
pi

qi
(2.8)

JSDivergence =
1

2
KLD(P‖M) +

1

2
KLD(Q‖M) (2.9)

M =
1

2
(P +Q) (2.10)

What is important with regards to image registration is, if this was used as an image similarity

measure, that it is not symmetric. The Kullbach-Leibner Distance between the anchor and the float is

not the sameas the distance between the float and the anchor. For this reason it is not a distance and

should be referred to as adivergence. Also we have no reason to suppose that the forward distance is

more appropriate for aligning images than the backwards distance. Some authors seek to symmetrise the

measure by considering both the forward and backward distances as in the case of the Jensen-Shannon

Divergence (Equations 2.9 and 2.10). Chiang (Chiang et al.,2008) uses the symmetrised KL-Divergence

in the registration of Diffusion Tensor MRI to re-orientatetensors according to the Gaussian Probability

Density Functions (PDF) of the diffusion tensors. In this case the measure is applied between two images

with the same expected PDFs, hence the measure may be considered appropriate.

The Mutual Information Cost Function (MI) combines information from both the entropy of the

joint image histogram,HAF , and the individual entropies (marginal entropiesHA andHF ) of the sep-

arate images (Equation 2.11) ((Viola & Wells, 1997), (Pluimet al., 2000), (Pluim et al., 2003)). The

advantage over joint entropy is the inclusion of the marginal entropies. Not only do we seek to minimise

the joint entropy, we seek to maintain the amount of entropy (information) in the individual anchor and

float images. This has the effect of counteracting a situation where the joint entropy falls by tending

toward a situation which reduces the spread in the individual intensity distributions. This would reduce

the joint entropy and could be caused if the image overlap begins to decrease, causing a large number of

pixels to align to a background intensity value.

MI = HA +HF −HAF (2.11)

A related formulation of mutual information is to divide thesum of marginal entropies by the joint

entropy (Equation 2.11) to give the Symmetric Uncertainty Coefficient, otherwise known as Normalised

Mutual Information (NMI) (Studholme et al., 1999). Mutual Information does not completely solve the

overlap problem. This modification further removes the problem of images being driven away from one
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another by normalising to the amount of information in the joint image histogram and the amount of

overlap (Hill et al., 2001). The value of NMI is normalised inthe sense that the maximum and minimum

MI values are dependent on the number of intensity bins and the distribution of the image intensities.

Although NMI was not developed in this way by Studholmeet al, the expression for NMI is equivalent

to the Symmetric Uncertainty Coefficient (the average of howwell A can be used to predictF and vice

versa). The expression must be made symmetric because the uncertainty coefficients themselves are not:

U(A|F ) 6= U(F |A), so one possible symmetry is to weight by the marginal entropies (Equation 2.13)

giving Equation 2.14.

U(A|F ) =
HA +HF −HAF

HA
(2.12)

SUC =
HA

HA +HF
U(A|F ) +

HF

HA +HF
U(F |A) (2.13)

SUC = 2(1 − HAF

HA +HF
) (2.14)

NMI =
HA +HF

HAF
(2.15)

2.2.2 Transformation Models

In addition to an appropriate measure of image similarity selected from the previous section, in order to

maximise the cost-function we need to deform our image in a well-defined way so that the information in

the image is not degraded. Methods for maintaining constancy of the deformed image are now outlined

in this section.

Before an in-depth discussion of non-rigid deformation models, it is appropriate to mention trans-

formation models with much lower degrees of freedom. A rigidtransformation is described by only three

translations and three rotations, one along each axis, and the entire coordinate system of the image is

transformed accordingly. Extending the rigid transformation to include scaling and shearing we include

6 further degrees of freedom and the transformation is now affine. Image transformations using an affine

model keep parallel lines parallel. Further degrees of freedom may be added by including projective

transformations or by allowing the transformation to be described as a polynomial function.

Optical Flow Registration

An early image matching algorithm was proposed by Horn and Schunck (Horn & Schunck, 1981). Due

to the ease of coding and the simple conceptual nature of the result, the method is still to be found in

many publications ((Hayton et al., 1997), (Alvarez, 2000),(Martel et al., 2007)) and is the basis for a

further registration method known as the Daemons Algorithm((Thirion, 1998)) and subsequent work.

The algorithm is based on the assumption of moving points in the image having constant image intensity,

hence the cost function in this case is implicit to the transformation model, and therefore, for points in

an image,F , we have Equation 2.16 and Equation 2.17. Equation 2.17 comes about because we are

following the trajectory of aparticular pieceof intensity, not considering the intensity change at a fixed

point, as per the assumption.

dF
dt

= 0 (2.16)
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δF
δx

δx

δt
+
δF
δy

δy

δt
+
δF
δz

δz

δt
+
δF
δt

= 0 (2.17)

It can be seen from Equation 2.17 that we have a linear system in the component velocities (δy
δt etc.).

It is not possible to determine a velocity along a brightnesscontour so we must include a smoothness

constraint of the form,∇2v, wherev is representative of the velocities present in Equation 2.17. Includ-

ing this constraint allows us to produce a smooth deformation that will restore intensity discrepancies

due to motion. The complexity of the required algorithm is relatively low, particularly if the smooth-

ness constraint is approximated using the difference of a point in the velocity field from its adjacent

neighbours and included directly in finding the solution to Equation 2.17, also making the algorithm

fast. For this reason, optical flow algorithms are often usedwhen testing modifications to the registration

paradigm, such as in Hayton (Hayton et al., 1997) who appliedan optical flow algorithm to registration

of DCE-MRI (using a model-fitting cost function), and Martel(Martel et al., 2007) who applied the

optical flow algorithm to Dynamic Contrast Enhanced MRI Data, including a piecewise linear intensity

change constraint due to Gennert (Gennert & Negahdaripour,1987). Vercauteren (Vercauteren et al.,

2007) used Efficient Second-Order Minimisation to analyse an optical flow algorithm in the forms of a

daemons algorithm as preliminary work towards including modifications to the algorithm to ensure dif-

feomorphic transformations. A diffeomorphic transformation is one that is invertible - or more strictly

that the inverted deformation is also differentiable. Thismay be preferable since the registration solution

is ill-posed, we at least have a solution that has workable mathematical properties.

An extension of the optical flow method was proposed by Thirion in 1998 (Thirion, 1998) and has

been used several times since ((Pennec et al., 1999), (Stefanescu et al., 2004), (Vercauteren et al., 2007)).

The claim is that the image matching is done with a rather tenuous analogy to Maxwell’s demon [sic].

This is perhaps an unexpected consequence of thermodynamicand statistical physics.1

Two uses of Thirion’s daemonic effectors are presented in (Thirion, 1998): the author first applies

effectors to an object boundary in the anchor image (for fullnon-rigid registration: effectors would be

placed on a regular grid throughout the anchor image) and theability of a corresponding float object to

diffusively pass through this effector boundary accordingto some measure of increasing image similar-

ity; the second considers the effectors as asnake-likecontour on an object in the float image that can

then be deformed to match a structure in the anchor image. Theresulting method is extremely versatile

but both these applications may require some object segmentation in both the anchor and float images.

1Maxwell’s demon was a concept devised to break the Second Lawof Thermodynamics, stating that entropy always increases.

For two adjacent boxes: one with some particles in and the other empty, the entropy (which can be imagined as disorder) of the

system is quite low. If the partition between the boxes is removed, the particles will spread between the two boxes, therefore

increasing the entropy. However, if a demon (and we will shortly see it is ademon) was to try to separate the particles by using

the partition to only let particles into one side of the box, and never out, we would have a violation of the Second Law of Ther-

modynamics. The solution to this problem is along the lines that the demon is part of the system and he must receive information

and do work on this information in order to separate the particles, hence for thetotal system the entropy must increase. In this

sense, Maxwell’s demon is certainly of the malevolent Medieval variety, seeking to disturb the laws of nature (and fortunately not

succeeding). The demons of Thirion are not in the same sense as those of Maxwell, they are moreeffectorsin the Classical sense,

and act for neither good nor evil. In modern terminology thisseparation between Classical and Medieval has led to the terms for a

malevolentdemonand an effectingdaemon, hence Thirion employs daemons, unrelated to Maxwell’s experiment.



2.2. Image Registration 34

The method relies on a suitable definition of the daemons and their application. In this sense, simple

brightness change could be used and the result is essentially an optical flow algorithm (Pennec et al.,

1999).

B-Spline Registration

A different approach was proposed by Rueckert (Rueckert et al., 1999). Using a grid of regularly spaced

control pointsacross the float image, it is possible to move the control points and calculate the inter-

mediate deformations according to a fitted spline. Basic splines (b-splines) are chosen which allow any

deformation to be locally contained (mathematically they have limited support), this makes them very

efficient to calculate as we need to consider only the few nearest neighbours to a control point. This

method is also amenable to a hierarchical multi-resolutionregistration from coarse-to-fine scales.

The application of splines applied to biomechanical systems was first suggested by Bookstein

(Bookstein, 1989), but Bookstein used them to produce smooth deformation fields under an applied

force. The local deformation in the fieldT at a pointx,y,z is given by Equation 2.18, relative to the near-

est associated control point atΦ(i, j, k) and with respect to the distance of that point from that control

pointu,v,w. The appropriate spline is built up from a combination of cubic basis functions as shown in

Equation 2.19. Additional regularisation is required to smooth the b-spline deformation and a bending

energy regularisation in the spirit of the spline deformation is often applied.

T (x, y, z) =

3∑

l=0

3∑

m=0

3∑

n=0

Bl(u)Bm(v)Bn(w)Φ(i+ l, j +m, k + n) (2.18)

B0 =
1

6
(1 − u)3, B1 =

1

6
(3u3 − 6u2 + 4), B2 =

1

6
(−3u3 + 3u2 + 3u+ 1), B3 =

1

6
u3 (2.19)

The method has been widely used and the algorithm is often applied in the analysis of organ motion

and deformation. McLeish applied the method to correct for motion of the heart during respiration, de-

termining the extent of motion along each biological axis (McLeish et al., 2002). Tanner (Tanner et al.,

2000), (Tanner et al., 2002) used the method in the registration of contrast-enhanced breast MRI. Po-

tential mis-registration of enhancing features motivatedthe inclusion of a volume preserving constraint.

Work on the validation of the B-spline method has also been carried out by analysing the B-spline

registration results against a gold standard deformation generated from a biomechanical breast model

(Schnabel et al., 2003). Similar work was carried out by Rohlfing (Rohlfing et al., 2003), analysing the

Jacobian determinant of the deformation field and preventing any unrealistic volume change. Rohlfing

also applied the B-spline method to analyse liver motion during the respiratory cycle (Rohlfing et al.,

2004).

Fluid Registration

The modelling of image deformation as a fluid was first proposed by Christensen (Christensen et al.,

1996). This method allows a more sophisticated regularisation than that used by a simple optical flow

algorithm by coupling the component directions of the deformation field. For completeness, the full

fluid equation is described in Equation 2.20 for a given pressure,P, density,ρ, in a potential,ψ, with

viscosity parametersµ andλ. The velocity of the flow,v, is used to update the image transformation
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over a given time-step. A well explained derivation can be found in the Feynman Lectures (Feynman

et al., 1998) and is also included for the interested reader in Appendix A. Here we must add a force term

associated with the similarity between our float and anchor images,FB(A.F). The range of phenomena

described by the fluid equation is vast, hence a fluid is chosenthat is isotropic, slow moving and viscous;

physically this corresponds to a low Reynolds number (the number which represents the ratio of inertial

to viscous forces). Since our viscous forces dominate and our inertial terms (those containingρ) are

correspondingly small (and we do not expect there to be pressure variations across the image), our

equation reduces to Equation 2.21 for an isotropic medium. For a driving force calculated from our float

image,F, and anchor image,A, our fluid will flow with velocity,v, dragging the image it represents with

it, which in turn alters the driving force. If we iterate forward in time, recalculating the new driving force

after each time step, we hope to reach a situation in which thefluid stops flowing, corresponding to an

image match: hence the force is zero and therefore the velocity field is zero.2 3

ρ [(v · ∇)v] = −∇P− ρ∇ψ + µ∇2v + (µ+ λ)∇(∇ · v) − FB(A,F) (2.20)

µ∇2v + (µ+ λ)∇(∇ · v) = FB(A,F) (2.21)

The solution of Equation 2.21 is a time consuming step. Christensen (Christensen et al., 1996) finds

the solution using Successive Over Relaxation. By implementing the Successive Over Relaxation in a

multi-grid solution, Crum (Crum et al., 2005) was successfully able to solve the fluid equation rapidly

by propagating the solution at different resolutions between scales. This technique is well described in

Numerical Recipes (Press et al., 2007). The solution may also be found using Fourier methods and this

has been demonstrated by Cahill ((Cahill et al., 2007b), (Cahill et al., 2007a)) by carefully re-writing the

fluid equation as a product of itself and its adjoint and recognising that the resulting solution of∇4v can

be expressed as a Sine, Cosine or Fourier Transform (depending on required boundary conditions) of the

required velocity field. This solution is particularly desirable, since it is not only fast (requiring only a

few Fast Fourier Transforms) but can be coded succinctly. Unfortunately Cahillet al do not provide a

comparison of the the speed benefits of this solution with previous work on different size images, perhaps

because of the difficulty of obtaining equivalent code.

Fluid registration has found greatest application in the brain. Crum (Crum et al., 2001) applied fluid

registration to monitor hippocampal volume change in Alzheimers patients, suggesting the automated

(and therefore labour saving) method was more accurate thanmanual-segmentation by2%. d’Agostino

(D’Agostino et al., 2003) applied the method for the analysis of multi-modal brain image registration

using the Mutual Information cost function. Hecke (Hecke etal., 2007) used fluid registration to align

Diffusion Tensor images of the brain, finding the alignment superior to affine image registration.

2When the velocity fieldv in Equation 2.21 is substituted for the displacement fieldu it becomes the solution of the linear

elastic equation (it is also the most general solution of a function with only second-order derivatives). Registrationusing a linear

elastic regularisation has been attempted ((Bajcsy & Kovacic, 1989), (Alexander et al., 1999) ), but is limited since the overall

displacement penalty term will grow with increasing displacement, putting a limit on registration success, which is not necessarily

the case with a fluid deformation.
3When the viscosity coefficients have the conditionµ = −λ the coupling term is removed and the equation becomes a (purely)

diffusion equation, a generalisation of the daemon-based registration algorithm.
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2.2.3 Recent Developments in Image Registration

A large number of articles have recently been published concerning developments in image registration.

In particular there is a desire for diffeomorphic registration; deformation fields that can be inverted and

therefore must provide a one-to-one mapping of one image to another (or from one space to another). In

some circumstances, diffeomorphic registration is required from a biomechanical perspective, but it can

only be true if the entirety of one object in one coordinate space is present in the second space. For mon-

itoring the appearance of new features and possible changesin field-of-view the requirement provides

little advantage. However, the desirability of an invertible solution from a mathematical perspective may

be useful and this should be the predominant reason for use ofa diffeomorphic transformation.

Recent developments have also investigated the inclusion of biomechanical models as transforma-

tion models in image registration. These might require a correspondence between the driving force and

the deformation that is not really achievable using information theoretic cost-functions. Driving forces

are likely to require optimisation over known motion modelsthat describe biomechanically plausible

deformations. Currently this type of image alignment is computationally expensive, but a growing inter-

est in the use of graphical processing units for image processing is beginning to make implementation

possible.

2.3 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) was developed through the1970s and 80s from existing Nuclear

Magnetic Resonance (NMR) chemical analysis into a full medical imaging technology (McRobbie et al.,

2006).

The explanation of MRI is intriguing since it can only be explained theoretically using quantum

mechanics, but for all practical purposes the description can be done in the classical sense. The reason

for this is that we are dealing with large numbers of quantum objects which can then be considered

classically. In MRI it is common to only look for a particulartype of nucleus and the signals are very

small. A large percentage of the body is made up of hydrogen, either bound as water or bound into

compounds such as fat. Therefore the hydrogen atoms in waterare a good choice for magnetic resonance.

Hydrogen atoms consist of a proton orbited by a single electron: the proton nucleon has a directional

intrinsic spin of+ 1
2 and therefore can be aligned (parallel or anti-parallel) with a magnetic field (as can

any nucleus with odd numbers of protons or neutrons). At absolute zero, a sample of hydrogen would

align all its spins parallel with that field. Unfortunately at body temperature310K the difference in

number of spins parallel to those anti-parallel is about1 : 105, however it is still possible to record a

signal4.

Putting a hydrogen sample into a magnetic field splits the nuclei between two states by an energy

h̄γB, whereγ is thegyromagneticratio of a particle’s charge to it’s massemp
which can be classically

4This number can be calculated from the (classical) Boltzmann Distribution having found the difference in energy between spin

up and spin down states relative to body temperatureT .
Naligned

Nnotaligned
= exp [ geh̄B

2mpkBT
] wheree is the electron charge,mp the

proton mass,̄h Plancks constant divided by2π, kB the Boltzmann constant,B the field strength andg is the ’g-factor’ calculated

from quantum chromodynamics and having a value close to 2.
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imagined as the relative strength of an orbiting particle’selectromagnetic attraction to its desire to move

in a straight line due to having mass. This should be modified slightly to account for small quantum

effects using the g-factor mentioned in the footnote,γ = ge
2mp

.

Despite the small net number of atoms split by the magnetic field, there are sufficiently many that

we can use a classical description of the net magnetisation of small regions. The most obvious feature of

a MRI scanner is a large static magnetic field, in many systemsthis will be 1.5T or 3T, and in some cases

more depending on application (for comparison, the Earth’smagnetic field is between 30-60µT). This

field runs parallel to a bore in the centre, in which the patient lies, hence the net magnetisation vector

of the body is aligned along the bore. It is possible to alter the direction of the magnetisation vector by

introducing electromagnetic radiation (in this case radiowaves) at a particular frequency. This frequency

is chosen so that it matches the natural frequency of the rotating spin of a particular substance in the body

(here hydrogen) and is given byf = γ
2πBHz which for hydrogen is approximatelyf = 42.58×106BHz

(a radio-wave) depending on how the hydrogen is bound to its surroundings this is known as chemical-

shift. Adding radio-waves at this frequency allows us to alter the direction of the spin, this is a resonance

effect, where we match our external force to the intrinsic frequency of a body proportional toemp
.

For a resonant frequency off = 42.58× 106B with a single value of magnetic field,B throughout

the scanner, we can alter the direction of the net body magnetisation by using a radio-wave frequency

that matches the resonant frequency of hydrogen nuclei. If we were to turn off the radio-waves, the net

magnetisation vector would relax back to the direction of the large static B-field. The resonance matching

frequency is dependent on the strength of the magnetic field,hence if we were to vary the B-field across

the image, perturbing it with additional magnetic fields, wecould apply a spectrum of radio-waves to

match the resonance across the image. If we were to switch offthis spectrum, the resulting signal would

tell us the strength of the magnetisation at different points in the body, this would be an image. In

practice, a large gradient is applied to the B-field so that only a slice of the body can be made to resonate

using radio-waves close to a certain frequency (slice selection). A further gradient is applied along a

second direction (often the largest body dimension in the plane of the image), so that a spectrum of

radio-waves can be detected (frequency encoding). In the third direction we record each signal using

another magnetic field to de-phase equivalent frequencies by a small amount (phase encoding). The

signal acquisition relies on the intrinsic properties of the magnetised substance whose signal decays

with rate constantsT1, T2, T ∗
2 . In turn these describe:T1 (longitudinal relaxation time); the decay of

magnetisation of the spins with the ’lattice’, or the surrounding environment, representing the loss of

spin precession at the Larmor frequency due to spin-latticerelaxation;T2 (transverse relaxation time);

the decay of net magnetisation (by dephasing) of the spins with each other due to local spin-related

magnetic field changes andT ∗
2 ; the observedT2 decay of magnetisation of the spins including the effects

of local field inhomogeneities.

The formation of the MR signal and the subsequent detection requires that the data be acquired in

spatial frequency space (denoted k-space). The encoding ofspatial position in the frequency and phase

of the MRI signal requires that the complete signal map be built up in k-space before conversion to image
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space. Collection of the signal in k-space may be done in any trajectory subject to hardware limitations;

the ease at which the phase and frequency encoding gradientscan be altered. Different acquisition

schemes can be chosen to traverse k-space in a simple line-wise fashion from maximum to minimum

phase and frequency encoding, with a radial line-wise profile or in a more complex fashion if there are

advantages to the order of line acquisition. The conversionfrom spatial frequency to image space may be

done by Fourier transform on completion of the acquisition.As a result the collection of the signal and

the method of traversing k-space is an important factor in image speed and resolution. Motion artefacts

may corrupt the acquisition of separate parts (or shots) of k-space leading to artefacts such as ghosting. A

large body of work has been developed focusing on the correction of these intra-image motion artefacts.

If motion occurs during acquisition of a single magnetic resonance image artefacts such as ghosting will

occur. A method to autofocus individual images by correcting for phase-shifts due to simple motions

was developed by Atkinsonet al (Atkinson et al., 1997) and generalised by Batcheloret al (Batchelor

et al., 2005) so that motion between imaging shots can be corrected arbitrarily. This method was adapted

in order to correct for intra-image breathing motion by White et al (White et al., 2008) subject to the

formation of a patient-specific breathing motion model. Thecorrection of intra-image motion artefacts

is not addressed in this thesis, we assume that intra-image motion artefacts are negligible.

From McRobbie (McRobbie et al., 2006), Equation 2.22 describes the signal strength for a partic-

ular tissue with intrinsicT1 andT2 in a spoiled gradient echo sequence with short echo time,TE and

flip angle,α and can be calculated from the Bloch equations (which describe magnetisation changes

with time). Gradient echo sequences are typically used in T1-weighted Gd-DTPA imaging as will be

discussed in Section 2.3.1. The timing diagram for a spoiledgradient echo sequence is shown in Figure

2.1(top) the gradient strengths ofGpe andGfe are stepped to allow both phase and frequency encoding;

the sequence length can be shortened if we include spoiler gradients which increase spin dephasing,

reducing the transverse magnetisation, as in Figure 2.1(bottom). Equation 2.23 represents the expected

signal from a spin echo sequence and Equation 2.24 the expected signal from an inversion recovery

sequence which could be used for determining intrinsicT1 relaxation times (these equations typically

assume that the echo time (TE) is much shorter than the repetition time (TR)); Figure 2.2 shows a typical

spin echo timing diagram. In all cases the value ofS0 is used to absorb the effects of the signal detection

apparatus and any additional tissue pathology effects additional to the intrinsicT1, T2 andT ∗
2 values.

SSGE =
S0e

− T E
T2∗ (1 − e−

T R
T1 ) sin(α)

1 − cos(α)e−
T R
T1

(2.22)

SSE = S0e
−TE

T2 (1 − e−
T R
T1 ) (2.23)

S180−90
IR = S0(1 − 2e−

T I
T1 + e−

T R
T1 ) (2.24)

2.3.1 Dynamic Contrast Enhanced MRI

Exogenous contrast agents such as gadolinium-DTPA (Gd-DTPA, gadolinium bound in a non-toxic

chelate) increase the MRI signal by interacting with water to shorten itsT1 (andT2 at large doses

> 1mmolkg−1). Water molecules passing close to the Gd-DTPA molecule aresubject to a local field
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Figure 2.1: Illustrative example timing diagram for a Gradient Echo sequence.Top, Standard gradient

echo protocol.Bottom Spoiled Gradient Echo including a spoiler gradient for morerapid acquisition, as

used in Gd-DTPA contrast-enhancement imaging.

inhomogeneity and are more likely to move away from the Larmor frequency, contributing to the ob-

servedT1 shortening (McRobbie et al., 2006).T2 shortening is also due to increased dephasing due

to water molecule interaction with Gd-DTPA. The modification of T1 assumes a linear modification to

the relaxationrate and is shown in Equation 2.25 for a given concentration,C, scaled by a substance

specific relaxivityr (the method for the observed alteration toT2 follows equivalent steps). The effect of

shorteningT1 is seen to boost the signal for a givenTR and flip angleα. This is shown in Equation 2.26

where theT ∗
2 term from Equation 2.22 is incorporated intoS0 since the effect of the contrast agent onT2

may be ignored. The reason for this inclusion is that in humantissueT2 is always far less thanT1 (Table

3.1), hence the effect of the linear correction to1
T2

is normally very small (compare with Equation 2.25)

subject to a relatively longTE.

T
′

1(t) = (
1

T1
+ rC(t))−1 (2.25)
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Figure 2.2: Illustrative example timing diagram for a Spin Echo acquisition sequence.

S(t) = S0
sin(α)(1 − e

− T R
T1(t) )

(1 − cos(α)e
− T R

T1(t) )
(2.26)

Early work on the effects of Gadolinium as a contrast agent isfound in (Weinmann et al., 1984)

discussing the biological stability of the Gd-DTPA chelateand its effects onT1, T2 at a range of doses.

Donahue (Donahue et al., 1994) provide analysis of the relaxivity of Gd-DTPA, applying Equation 2.25

to find theT1 relaxivities of blood plasma and cardiac tissue in a carpineand anural models. Work by

Rinck (Rinck & Muller, 1999) analyses the magnetic field strength dependence of bothT1 andT2.

In the case of MRI contrast agents it is the effects of the contrast agent that we observe, rather than

the contrast agent itself. This is important when considering that although, with a molecular mass of

500 nucleons, Gd-DTPA is able to leave capillaries and penetrate the extracellular-extravascular space,

it cannot find its way inside cells. However, the water molecules it interacts with may cross the cell wall

which might influence the observedT1 values. Iron-oxides (coated in a carbohydrate shell, e.g. Feridex)

are also used but since the magnetic field inhomogeneity is much larger than with Gd-DTPA, strongly

reduceT1, T2 andT ∗
2 over a large area even for small doses.

Endogenous contrast enhancement in tumours is also possible, for instance by the BOLD effect

(Jiang et al., 2004), measuring blood oxygenation levels asused in functional MRI. This has been demon-

strated usingT ∗
2 measurements by both (Baudelet & Gallez, 2002) and (Taylor et al., 2001). The work

by Taylor monitored tumour response on breathing carbogen (95%O,5%CO2), concluding that it may

be used to identify patients suitable for carbogen radiosensitisation pre-treatment. Contrast enhancement

data may consist of only pre and post enhancement images which are then subtracted to show enhancing

areas or it may be dynamic. Dynamic Contrast Enhancement monitors the progress and distribution of

contrast agent through a particular organ by acquiring manyimages as a function of time. Dynamic

information allows much more information to be obtained from the enhancement process as we will see

below.
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The Physiological Basis of Contrast Enhancement

Contrast agents provide a way of assessing treatments such as anti-angiogenic or anti-vascular therapies

in oncology. Growing tumours require a blood-supply, and toachieve this, stimulate the growth of neo-

vasculature in their surroundings. This is thought to occurby production of growth factors regulating

Vascular Growth (Vascular Endothelial Growth Factor - VEGF) and Vascular Permeability (Vascular

Permeability Factor - VPF) (Passe et al., 1997). A tumour’s surrounding area will then consist of many

tortuous, new and permeable blood vessels. Contrast agent reaching this area will transfer rapidly from

blood plasma to extacellular-extravascular space, enhancing the MRI signal in the tumour boundary with

a ’ring-shaped’ enhancement. The relationship of DCE-MRI to histology has been made by many au-

thors ((Buckley et al., 1999), (Knopp et al., 1999), (Harreret al., 2004), (Patankar et al., 2005), (Cuenod

et al., 2006)). Knoppet alanalyse differences in enhancement due to tissue type by comparing enhance-

ment with histology. They find there are significantly (with astatistical p-value< 0.001) faster exchange

rates of contrast agent between vascular space and extra-cellular, extra-vascular space in malignant tis-

sue compared to benign tissue. The authors suggest that contrast enhancement variations are mainly due

to differences in vascular permeability manifest as a high expression of VEGF in histology. The suc-

cessful application of DCE-MRI is discussed by Choyke (Choyke et al., 2003), providing an overview

of practical DCE-MRI and its application in renal, cardiac and osteosarcoma applications. A report by

Leachet al (Leach et al., 2005) provides recommendations on the required outcomes of DCE-MRI for

the analysis of antiangiogenic and antivascular therapies.

Enhancement Curve Modelling

Early work on modelling the enhancement process of DCE-MRI was applied in the brain by Tofts and

Kermode (Tofts & Kermode, 1991). They consider a two compartment model of contrast agent transfer-

ring between a vascular compartment and an Extracellular-Extravascular compartment (EES).

Distribution of contrast agent between the two compartments is governed by Equation 2.27 where

the rate of change of contrast agent concentration in the extra-cellular extra-vascular space (EES),Ce

given the fractional volume of the leakage space,ve, is given by the difference between influx governed

by the rate constant,Ktrans as a function of the local permeability and surface area between compart-

ments and the arterial input bolus,Cp (further discussed in the next section); and subsequent efflux from

the EES leakage space. The integral solution of Equation 2.27 is given by Equation 2.28 which may be

re-written as the convolution in Equation 2.29. Up to this point we have considered our tissue to consist

purely of EES, a better representation is to consider that the total contrast agent contribution comes from

a mixture of compartments with relative volumes representing the EESve, the blood poolvp and the

intra-cellular spacevi, henceCt = veCe + vpCp + viCi (Tofts, 1997). We assume that contrast agent

(or the effects of the contrast agent) to not enter the intra-cellular space, henceCi = 0. If we include

the contribution of the intra-vascular space the result is the extended Kety model in Equation 2.30 which

may be more appropriate for highly vascular regions of interest.

ve
dCe

dt
= Ktrans(Cp − Ce) (2.27)
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Ct = Ktrans

∫ t

0

Cp(t
′) exp [−K

trans

ve
(t− t′)]dt′ (2.28)

Ct = Ktrans(Cp(t) ⊗ e−
Ktrans

ve
t) (2.29)

Cextended
t = vpCp(t) +Ktrans(Cp(t) ⊗ e−

Ktrans

ve
t) (2.30)

Tofts (Tofts, 1997) assesses the inter-compatibility of other models ((Brix et al., 1990), (Larsson

et al., 1990), (Buckley et al., 1994) and in the extensive collaboration of Toftset al (Tofts et al., 1999) an

effort is made to standardise the use of model parameters andtheir meaning under different conditions.

The authors derive cases for both high permeability, in which contrast agent moves rapidly into the EES

from the blood plasma, and low permeability models in which contrast agent transfer to the EES is slow

and the model is dominated by vascular processes (the high-permeability model is known as the Kety

model). Work on standardisation of parameters was also proposed by Armitage (Armitage et al., 2005),

including a model by Hayton (Hayton et al., 1997) that is discussed further in Section 2.3.2. An important

contribution by Armitage is the description of the non-linear relationship between contrast-enhancement

and MR signal. Work by Buckley (Buckley, 2002) considers theuncertainty in parameter estimation,

finding in particular thatKtrans is systematically over estimated on model data. The suggested reasons

are: ignoring the vascular contribution to the signal (overestimations of up to 54%), or non-uniqueness

of the model fit. A good estimate ofKtrans requires a good arterial input function and if this is to be

obtained from the data, temporal resolution will need to be high enough to capture the signal.

Arterial Input Functions

Central to the pharmacokinetic model fitting process is the Arterial Input Function (AIF),Cp(t) which is

important in determiningKtrans. In its most basic form the AIF can be calculated as a dual exponential

decay from considerations of Equation 2.27 (Tofts & Kermode, 1991) where the parameter values are

determined empirically but often taken from analysis by Weinmann (Weinmann et al., 1984) (A =

3.99kgl−1, B = 4.78kgl−1, a = 0.144min−1, b = 0.111min−1 and D is the injected dose), shown in

Equation 2.31. The exponential decay is associated with initial mixing of contrast agent with tissue (and

hence its loss from the blood pool) and alterations to the bolus shape through interaction with a ’body

transfer function’ (Orton et al., 2008). A further exponential could be used to relate the contrast agent

removal by the kidneys with a biological half-life of Gd-DTPA. This is found to be about20min under

normal kidney function (Weinmann et al., 1984) and hence thecontribution of this exponential decay is

often ignored.

Cp(t) = D[Ae−at +Be−bt ] (2.31)

Although regularly discussed, the AIF used in Equation 2.31is seldom used and the AIF is cal-

culated directly from the acquired data. One early method (Andersen et al., 1996) injected a dose of

99mTc − DTPA in order to find the AIF by scintillation counting, assuming the equivalence of Gd-

DTPA and Tc-DTPA pathways. Later, work by Port (Port et al., 2001) and Buckley (Buckley, 2002)

discussed the importance of AIF estimation. The work by Portinvestigates differences in AIF between

patients, finding not only that peak enhancement and time under the 10min curve vary by factors of 2.5

and 3.7 but that washout was more rapid with increased body mass. Using an AIF sampled directly from
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the data has been used in work by Duhamel (Duhamel et al., 2006), Roberts (Roberts et al., 2006b) and

Parker (Parker et al., 2006).

Work by Orton (Orton et al., 2007) presents examples of analytical arterial input functions built from

exponential (CB(t) = aBe
−µBt), gamma (CB(t) = aBte

−µBt) and cosine initial bolus shape functions

(CB(t) = aB(1 − cos(µBt))) with a view to computationally efficient calculation of theconvolution

in Equation 2.29. The resulting blood plasma contrast-agent concentrationCp(t) for the cosine bolus

modelCB(t) as it passes through the body, arriving at timetB, is given by Equations 2.32 to 2.34 where

it is convolved with a ’body transfer function’ of the formaGe
µGt. The terms forµB andµG correspond

to the rate constants associated with contrast agent mixingwith the blood pool and whole body tissue

respectively, with amplitude termsaB (in kgl−1) andaG (in min−1) describing the size of the bolus

and the strength of its interaction with the body. The use of the cosine bolus function is empirical and

presented in (Woolrich et al., 2004).

Cp(t) = aB(1 − cos(µBt)) ⊗ age
−µgt (2.32)

Cp(t) =





aB(1 − cos(µBt)) + aBaGf(t, µG) for 0 ≤ t ≤ tB

aBaGf(tB, µG)e−µG(t−tB) for t > tB
(2.33)

f(t, µ) =
1

µ
(1 − e−µt) − 1

µ2 + µ2
B

(µ cos(µBt) + µB sin(µBt) − µe−µt) (2.34)

2.3.2 Registration of DCE-MRI

The increasing use of Dynamic Contrast-Enhanced MRI (DCE-MRI) in the assessment of therapy is

discussed by Leach (Leach et al., 2005). However, the acquisition and further analysis of DCE-MRI is

confounded by subject motion, due to the length of time needed to acquire a scan. Early results in func-

tional SPECT showed that mis-registration by only 1/8 of a pixel can lead to count errors of 5%-10%,

making the following pharmacokinetic analysis (Sychra et al., 1994) difficult. Similarly, pharmacoki-

netic analysis is subject to motion artefact errors in DCE-MRI. Early work by Zuo (Zuo et al., 1996)

rigidly registered DCE-MRI volume pairs using a ratio-variance minimisation scheme, but the work was

proposed as a method to automate manual registration of manyDCE-MRI volumes and made no al-

teration for contrast-enhancement intensity profiles. Subsequent work can be divided loosely into two

categories:enhancement-cautiousapproaches in which contrast-enhancement induced mis-registration

artefacts are discarded as unrealistic motion behaviour inorder to use a conventional registration; and

enhancement-drivenapproaches in which enhancement profiles are used as additional information to

guide the registration.

Early work on finding a cost-function for the registration ofDCE datasets was produced by Acton

(Acton et al., 1997). The work of Actonet al focuses on using principal components analysis to devise a

cost-function that is robust to contrast-enhancement intensity changes. The work is applied to phantom

cranial SPECT images of Dopamine receptors, in which imagesare corrupted from a gold-standard initial

image by rigid body transformations. Contrast enhancementis modeled using patient data and corrupted

by Poisson noise. Three cost-functions are compared: a (count) difference algorithm, a correlation

algorithm, and the novel cost function which minimises the third order moment of the PCA eigenvalue
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distribution. With the new cost function, the authors seek to maximise the variance that is contained

in the early principal components, since it is assumed that motion-corruption leads to variance being

shifted to the later, ’noisier’ components. Effects of registration differences were measured using the

χ2 fit of the data with a bi-compartment kinetic analysis. The PCA cost-function was significantly

better (with a p-value of< 0.001) at translational registration, but with no difference forrotational

registration (it is suggested that the PCA method is sensitive to the interpolation method). The authors

state that it is conceivable that the PCA-based cost function will fail in datasets in which the eigenvalue

distribution represents the dynamic enhancement rather than the registration error, and this is likely to

be the case for datasets with multiple enhancement patterns. The cost-function minimises the number of

compartmental model fits by maximising the variance in the early components, therefore minimising the

possible distribution of pixels.

An early attempt at enhancement-driven registration of DCE-MRI was made by Hayton (Hayton

et al., 1997). The authors proposed a new model of contrast-enhancement uptake to allow the flexible

monitoring of the effect of bolus injection. However, changes to the the bolus injection function led

to only slight changes in contrast enhancement, a result that is no longer considered accurate (Roberts

et al., 2006a). The registration operates on the assumptionthat if the images were perfectly registered, the

residual of the model fits would be minimised: therefore a registration scheme (in this case optical flow

adapted for brightness changes (Horn & Schunck, 1981)) can be driven by a cost-function that reduces

the model-fit error. The work was tested on imposed translations in segmented 2D breast images. The

method is unlikely to provide useful information for areas of insignificant enhancement where intensity

noise dominates and the choice of model-fitting is inappropriate.

An enhancement-cautious approach was developed by Tanner (Tanner et al., 2000). Since the regis-

tration of contrast-enhancing features often results in unrealistic volume change (for instance, enhancing

regions may be seen to shrink over the time-scale of the acquisition), the authors combined local rigid

body constraints with a standard deformation to preserve shape and volume. A non-rigid registration

algorithm (Rueckert et al., 1999) was used to parametrise the deformation, driven by an unaltered nor-

malised mutual information cost-function (Studholme et al., 1999). It was suggested that this would

be more appropriate since it does not require a linear relationship between intensities (although it does

require that there is a consistent relationship). However,if the cost-function, and therefore the defor-

mation, were truly appropriate, we might not expect any unphysical volume changes. Tanneret al also

investigated volume changes by inspecting the volume change of a mask region and also investigated

the use of multiple grid-point spacings. Coupling of grid-points within a free-form deformation were

used to move local regions rigidly. Finer grids were demonstrated to result in larger volume change and

the authors concluded that significant volume changes occurwithout correction (between -17% and 33%

volume change). With correction by coupled control points,the volume change can be prevented. An

attempt at validation was made by the same authors (Tanner etal., 2002), again in contrast-enhanced

breast MRI. Biomechanical breast models were used to deformpatient data selected with very little mo-

tion (introducing a whole breast volume change of 0.6%). More accurate registration was found over
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the whole breast in the case of volume-preserving method (absolute volume change of 5.1%) than the

comparison case of the standard unconstrained method (absolute volume change of 17.6%). This was an

important validation step for the non-rigid registration of contrast-enhanced MRI, although the applica-

tion of a biomechanical model is not an ideal gold-standard,particularly since the model deformations

are not dissimilar to the returning registration deformations.

Further work on enhancement-cautious registration was proposed by Rohlfing (Rohlfing et al.,

2003). The authors analysed the log of the Jacobian determinant during the progress of the registration

and penalised any deformations from unity. Since the Jacobian describes the volume change associated

with the change of co-ordinate system, a deviation greater than unity is an expansion and less than unity

a contraction. As in Tanner (Tanner et al., 2000), a B-splineregistration was used with a normalised

mutual information cost-function. The authors compared a Jacobian-based volume change penalty term

and a bending energy smoothness term in combination with thestandard normalised mutual information

cost function term. The results demonstrated significant volume decreases of between -1.3% to -78%

for the standard registration method. The volume-change weighting factor proved robust and monotonic

against volume change over a range of weightings, whereas the smoothness term did not. However, for

both constraints there was a trade-off between volume preservation and motion correction, although less

so in the case of the volume-preserving constraint. The authors suggested adaptively weighting the three

cost-function factors as the registration proceeds. The use of constraining terms in non-rigid registration

has shown success, however the methods do not suggest using contrast-enhancement information in the

registration, which may provide much more information about the success of the registration.

Work by Hayton (Hayton et al., 1997) was extended by Xiaohua (Xiaohua et al., 2005) to allow

combined image registration and segmentation of DCE-MRI. Overlap of the parameters from differ-

ent tissue types in the model used by Hayton leads the authorsto use a simple tissue attribute vector,

consisting of the initial change in intensity after the addition of contrast agent and the slope of the late

post-enhancement curve. Non-fat tissue is segmented into three classes and a Markov random field

model is used to regularise and reduce noise. Optimum segmentation is given by the maximisation of the

probability of pixels belonging to one tissue type. The assumption is made that optimum segmentation

corresponds to optimum registration, since aligned pixelshave less noisy model-fits and therefore can be

better segmented. This is put into an iterative scheme and applied to DCE breast images. Segmentation

results are improved after registration, but given that theprocess must be computationally intensive, and

that there is no comparison with other registration methods, the true success of this process is question-

able. It would be good to see the results of fitting different pharmacokinetic models.

Work on registration of myocardial perfusion images using active appearance models was proposed

by Stegmann (Stegmann et al., 2005). The method uses a training set, that can be computed off-line, from

analysis of the variance of data from previous perfusion study patients. Image registration of new data

can then proceed using perfusion specific shape models. The method works well under enhancement

and despite the computationally intense model-building, can register rapidly.

Another enhancement-driven registration method was proposed by Buonaccorsi (Buonaccorsi et al.,
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2006). The authors realise that conventional cost-functions require that source and target image intensi-

ties maintain the same relationship and it is this relationship which is violated with contrast enhancement

in DCE-MRI. In order to use conventional cost-functions, you should provide target images that resem-

ble the intensity profile of the source. This is done by generating target images from model-fits of the

unregistered data. The standard and extended Kety models are compared, using an arterial input function

from the literature (Tofts & Kermode, 1991). This process can then be iterated, registering the original

sources to the model target images and then re-fitting the model to the registered data and repeating the

process. Unfortunately this process is limited by the appropriateness of model choice, so may only be

done over a small region of interest. The size of the region ofinterest is also limited by the compu-

tational time of the pixel-wise model fitting procedure. Themethod is applied to abdominal tumours,

which are considered rigid, and only translations are considered. The model parameter estimates vary

as the registration proceeds, generally increasingKtrans andve, which may be expected as pixels come

into better alignment relative to their pre-registration positions. The results of the model-fitting regis-

tration algorithm are compared to results produced by registration to the time-series mean: registration

to the mean image reveals significant distortion to the subsequent model-fitting parameters. Residual

model-fit errors are reduced after registration by the iterative model-fitting method, suggesting improved

final model-fitting and therefore a more successful registration. Although results for the extended Kety

model are considered more appropriate for the data used in this study, the success of the method relies

on the choice of a good model which is difficult to determine. The process is currently only applied

on small regions of interest, but if extended, would requirethe consideration of a non-rigid registration

algorithm. An increased region of interest would require accurate controls on the model-fitting to ensure

fitting of the correct model to different enhancing features. The increased computational time might also

be prohibitive.

A combination of the work by Buonaccorsi (Buonaccorsi et al., 2006) and Hayton (Hayton et al.,

1997) was proposed by Adluru (Adluru et al., 2006) for use in cardiac perfusion imaging. The authors

use the extended Kety model applied in a form that is computationally efficient to fit. The data is

registered by generating synthetic target images from model-fit data, and the registration is driven using

the residual model-fit error as a cost-function (although again, all motion is assumed to be described

by translations only). The results show an improvement in the estimation of kinetic parameters of 83%

using the iterative registration scheme when compared to 68% with registration to a single image in the

dataset. However, these results are calculated using the before and after model-fitting from the model

used in the registration. Again, this work relies on the application of an appropriate model and it would

be interesting to see it validated with a gold-standard simulation.

Work on the registration of DCE-MRI has also been proposed byMilles et al (Milles et al., 2008).

The method can be compared to the work described in Chapter 5 (Melbourne et al., 2007b) but here

an Independent Component Analysis (ICA) is substituted fora Principal Components Analysis (PCA).

Milles et al find three independent components from dynamic contrast-enhanced cardiac MRI and opti-

mise the 2D translation parameters between the original images and images generated by a combination
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of the independent components. This work is currently limited to translation; non-rigid registration using

this method would be an interesting extension. Using ICA as adirect substitution for the PCA in the

work of Chapter 5 is limited by the independent components having no preferred order, PCA contains an

implicit ordering of the principal components so that images can be generated consistently with principal

components with higher variance being used earlier.

Work by Martel (Martel et al., 2007) applied work by Barber (Barber & Hose, 2005) who adapted

the optical flow image transformation method of Horn (Horn & Schunck, 1981) to allow for contrast

enhancement. DCE-MRI was simulated from patient data usingthe first two components of a principal

component analysis to simulate enhancement profiles and a biomechanical finite element model to gen-

erate deformations, giving a gold standard. The optical flowmethod was compared with the results of an

affine registration and a registration using a B-spline algorithm (Rueckert et al., 1999). The optical flow

method, applied over a control-point distribution to reduce the degrees of freedom, was found to perform

poorly at full resolution, but implementing a multi-resolution approach led to reduction in registration

error. Control point spacing was required to be less than 16mm in order for successful registration. The

optical flow method outperforms the affine registration and the results are comparable to the B-spline

registration; however, the algorithm is only compared to the B-spline algorithm at 16mm control point

spacing, so comparing results to the optical flow algorithm at a finer control-point spacing may be in-

appropriate. The optical flow algorithm is extremely fast when compared to the B-spline registration,

but implicitly struggles in areas in which contrast enhancement is more significant than motion changes

because by implication it assumes that intensity changes are due to motion.

There is a growing body of work concerning the registration of DCE-MRI. Many methods have

been applied to the problem of registration although none are in widespread use. It is clear that conven-

tional, general registration methods cannot be used without modification, either to the cost function or

to the transformation method. Many recent methods require an iterative registration scheme in which a

standard registration is used multiple times to allow for the updating of an external measure of success.

The extraction of reliable and reproducible pharmacokinetic parameters may be improved using these

image registration methods, this thesis presents work thatmight enable further improvements to phar-

macokinetic parameter extraction, allowing improved and accurate diagnosis and assessment of therapy.

2.3.3 Diffusion Weighted MRI

The recent development and use of Diffusion Weighted MRI to infer structure by analysing restrictions

to isotropic diffusion has yielded a large body of research work. The concept was devised with the

addition, by Stejskal and Tanner, of extra diffusion sensitising gradients to the spin echo acquisition

sequence (Stejskal & Tanner, 1965) as illustrated in Figure2.3.

Diffusion Weighted MRI can be used to analyse the strength ofrestricted diffusion in a particular di-

rection, under the diffusion imaging equation shown in Equation 2.35 representing the signal for a given

b-value (in units ofs.mm−2). The b-value is the imaging parameter used to weight the diffusion signal

and encompasses the effects of the gradient amplitudeg, gradient durationδ and temporal separation
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Figure 2.3: Example schematic timing diagram for a Diffusion Weighted Spin Echo acquisition se-

quence. Diffusion gradients (along any desired direction,but shown here alongGss) are added either

side of the180o RF pulse, causing spin phase shifts that are refocussed dependent on the position and

motion of the spins. For acquisition time reasons, the read-out block is likely to consist of an EPI

sequence.

between the twin gradient echoes∆ used for diffusion imaging (Equation 2.36).

S(g) = S0e
−bgT Dg (2.35)

b = γ2δ2g2(∆ − 1

3
δ) (2.36)

By observing the diffusion in multiple directions by varying the gradient directiong, it is possible to

calculate a second-order diffusion tensorD as demonstrated by Basseret al ((Basser et al., 1994) (Basser

& Pierpaoli, 1996)) and also discussed by Batchelor (Batchelor et al., 2003). In three dimensions we

have a 3x3 Tensor but it is symmetric (i.e.Dxy ≡ Dyx), hence we need a minimum of 6 gradient direc-

tions to determine the tensor, plus a b0 map (the image with zero b-value); however it is common to use

many more gradient directions. Finding the eigenvectors ofthe diffusion tensor allows the inference of

the dominant diffusion directions, which, in the brain, canbe used to represent nerve-fibre orientation.

Following dominant nerve-fibre bundle orientation betweenpixels has resulted in many groups publish-

ing work on DT-MRI tractography using different methods (Melhem et al., 2002), (Bammer et al., 2003),

(Behrens et al., 2003), (Parker & Alexander, 2003).
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2.3.4 Registration of Diffusion Weighted MRI

The length of the acquisition of a diffusion weighted MRI dataset exposes it to motion artefacts. Strong,

long-duration diffusion gradients induce eddy currents towhich the EPI read-out is sensitive, leading to

image distortions. Patient movement may produce diffusionweighted images along different gradient

directions that are misaligned. For further analysis or good tensor estimation, these images may need to

be realigned. Attempts have been made to register scalar direction images ((Leemans et al., 2005), (Tao

& Miller, 2006) and more similar to the method presented in Chapter 7 that of Bai and Alexander (Bai

& Alexander, 2008)) or to remove the influence of outliers in the tensor estimation procedure (Chang

et al., 2005). More commonly, registration is done on the post-analysis diffusion tensor images and a

large amount of work has been produced ((Alexander et al., 2001), (Guimond et al., 2002), (Hecke et al.,

2007) and (Chiang et al., 2008)). Registration of the component direction images is made difficult by

the varying local contrast as a function of fibre direction. This local contrast variation may invalidate the

assumptions of the registration similarity measures discussed in Section 2.2.1. This is analogous to the

problems of registration of DCE-MRI and again, the problem is addressed in this thesis by developing a

full field-of-view non-rigid registration method.



Chapter 3

Creation of Simulated Dynamic Contrast

Enhanced MRI Data

3.1 Introduction
In this chapter we develop a model to simulate abdominal dynamic contrast enhanced MRI (DCE-MRI)

data. The chapter will discuss the development of simulatedabdominal data incorporating both a de-

formation and an enhancement model for use later in the thesis. The model is developed primarily to

provide an extensive basis for the testing of novel registration algorithms. With regards to the deforma-

tion model, an elastic deformation is used that will allow a coherent non-rigid deformation combined

with a volume preservation modification to model stiff tissue regions. The simulated data includes an

enhancement model to allow estimation of the recovery of parameter values after motion corruption.

A simulated deformation model of a breathing liver in an individual who is free breathing is de-

veloped in order to evaluate registration success when varying motion and enhancement parameters in

DCE-MRI. We use this method to better understand the conditions of success for different registration

methods and to better understand where they fail and to gain insight on the reasons for this failure. This

will enable us to design better algorithms for these applications. A DCE-MRI scan often takes minutes

in order that the contrast-agent washout can be observed, therefore the patient must breath and organs of

interest such as the liver will move over time. Image registration can be used to re-align organs within

the images, allowing further analysis for use in diagnosis and therapy evaluation. However, conventional

registration methods require that images being registeredhave the same information and structure, but

this requirement is not met in DCE-MRI, since the enhancement introduces new information into the

images.

The liver is subject to motion due to subject breathing motion, the adjacency of the superior liver

to the lungs and diaphragm exposes the organ to large superior-inferior deformations with the breathing

cycle. To an extent the superior liver is protected by the ribcage and therefore may be expected to

move predictably with the breathing cycle. This is unlikelyto be the case for the inferior liver which

is physically closer, and influenced, by the orientation andcontractions of both gastro-intestinal and

automotive abdominal muscles. The connection of the liver by five ligaments to the moving diaphragm

and abdominal walls (Gray, 1918) exposes the organ to non-rigid deformations and complicated forms



3.1. Introduction 51

of motion not dealt with by current image registration methods. Motion such as a relative movement

of the liver sliding over fixed abdominal walls is particularly problematic and not dealt with by current

registration algorithms. Deformation of the superior liver will be dominated by breathing type and

depth. Breathing type is controlled by both the autonomic and conscious nervous system and may be

affected by positioning of the subject, so to some extent thedeformation may be trained or restricted.

Breathing motion is likely to impart a cyclic deformation onthe liver, causing a repetitive superior-

inferior displacement according to lung filling. Dependingon position, this motion may have important

anterior-posterior and, to a lesser extent, medial-lateral components (Rohlfing et al., 2004). The motion

itself is unlikely to be regular due to the competing influence of a large-tolerance feedback system trying

to achieve blood-gas homeostasis (or at least clearance of fluctuating carbon dioxide levels) and irregular

additional commands from the central nervous system. Additional intra-cycle variability arises due to

the physics of breathing; it is more difficult to breath in than out because of the pressure gradients: i.e.

the relaxed state of the respiratory system is gentle exhaleand breathing air into the lungs requires the

subject to do work. As a result, modelling of the breathing cycle is difficult and is compounded by

unpredictable variations in phase and depth over both shortand long-term periods.

The use of a comprehensivein silica simulation of DCE-MRI data allows complete control of the

deformation and enhancement parameters. The creation of a gold-standard allows an assessment of the

comparative success of image processing algorithms subject to how well the model represents the real

situation it is approximating.

3.1.1 Finding an intrinsic T1 map

The intrinsic imaging parameter in DCE-MRI is the T1 value oftissue. As previously discussed, the

effect of the popular Gadolinium based contrast agents is toreduce the observed T1 of a particular

region. The influence of Gadolinium contrast agents on the T2value is assumed to be negligible in the

following analysis. Using a spoiled gradient echo sequence, the observed signal for a given T1 value is

given by Equation 3.1 for flip angleα and repetition timeTR. The influence ofTE and other scanner

parameters are included inS0. The change in T1 under the presence of contrast agent will dediscussed

shortly. Hence we can find a T1 map of intrinsic relaxation times by comparing the signal under varying

flip angles. Equation 3.2 shows how to find the observed T1 fromtwo images of different flip angle.

Using multiple flip angle values allows a better estimation of the T1 value, for instance, by least-squares

fitting.

S = S0
sin(α)(1 − e

−T R
T1 )

(1 − cos(α)e
− T R

T1 )
(3.1)

For two different flip anglesα1 andα2, the T1 map can be found using Equation 3.2. For a spoiled

gradient echo sequence, typical parameters might beα1 = 2o, α2 = 24o with a TR of4ms.

T 1 = TR[ln

S1 sin(α2)
S2 sin(α1) cos(α1) − cos(α2)

S1 sin(α2)
S2 sin(α1) − 1

]−1 (3.2)

Some typical T1 values for different organs are presented inTable 3.1 recorded from (de Bazelaire

et al., 2004) for 1.5T and 3T.
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Table 3.1: Typical T1 values for organs at 1.5T and 3T from (deBazelaire et al., 2004). All values inms.

Organ 1.5T 3T

T1 ± T2 ± T1 ± T 2 ±
Liver 586 39 46 6 809 71 34 4

Kidney Cortex 966 58 87 4 1142 154 76 7

Kidney Medulla 1412 58 85 11 1545 142 81 8

Spleen 1057 42 79 15 1328 31 61 9

Pancreas 584 14 46 6 725 71 43 7

Paravertebral Muscle 856 61 27 8 898 33 29 4

Subcutaneous Fat 343 37 58 4 382 13 68 4

Prostate 1317 85 88 - 1597 42 74 9

For the neuro-endocrine DCE-MRI data used in this thesis, the underlying T1 maps can be calcu-

lated from two different flip angle images. Flip angles of2o and24o were acquired with a repetition time

TR of 4ms. Via Equation 3.2 it is possible to calculate T1 values. It isalso possible to produce a truly

synthetic T1 map from Table 3.1, but this makes the generation of realistic images considerably more

difficult and is left as future work. For the synthetic data generated in this chapter, we estimate T1 values

from individual input images using Equation 3.1.

3.2 Developing A Liver Model

3.2.1 Liver Deformation

We aim to generate a deformation model of the liver that will allow it to appear to deform realistically

and reversibly. Breathing motion is cyclic and undergoes a hysteretic motion, although the cycle may

not be closed and its end point may drift over time (Blackall et al., 2006). Approximately 70% of motion

is in the superior-inferior direction, with motion of a smaller extent in both the anterior-posterior (24%)

and medial-lateral (7%) directions (Rohlfing et al., 2004).We model our image as an isotropic elastic

medium, this is a reasonable approximation for non-rigid objects which resist an applied force and return

to their intial configuration on removal of the force (an anistropic modification is discussed below). The

method will not be appropriate near objects such as bone. Initial results are shown for 2D motion,

neglecting small medial-lateral deformations. To ensure amodel that is both general and that has good

deformation properties, we model a global image deformation, in which organ specific motion is induced

by careful placement of forces. Deforming forces are placedin order to mimic breathing motion; they

are strongest, resulting in largest displacement, in the region of the diaphragm and weighted toward a

deformation in the superior-inferior direction. Forces may also be placed in the lower abdomen to mimic

peristalsis. We require our forces to be time-varying, allowing the generation of a cyclic model meeting

the properties discussed above. Random variation of the force magnitude allows us to simulate repeated

breath-hold imaging conditions.

The forces in each direction are described here as Gaussian point forces. A location is chosen at a
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point[x0, y0] and a force applied symmetrically around this point for all[x, y], the force has time-varying

magnitudeA(t), and spatial extentb (Equation 3.3).

F(x, y, t) =
A(t)

b
√

2π
exp

−((x0 − x)2 + (y0 − y)2)

2b2
(3.3)

The breathing model applies many forces of the above style; for instance, superior-inferior forces

located in the lung region will drive the dominant breathingmotion, greatest in magnitude in the di-

aphragm region. Additional anterior-posterior or medial lateral forces will impart perturbations to the

breathing cycle. Modulating the forces in magnitude and direction with a sine-wave (Ay(t) = sin(t),

Axz(t) = 0) or a spline-based model will generate images across the breathing cycle. The solution of

this force-field on the image is found by the solution of the isotropic linear elastic equation (Equation

3.4), allowing a displacement field to be calculated across the image.

An example is shown in Figure 3.1 for three superior-inferior force centres selected using a graph-

ical user interface. This model allows more advanced force models to that described above. Each force

point can have its magnitude modulated by a raised sinusoid or linear ramp over a period of time in order

to model breathing or other types of force (see (George et al., 2005)). A raised sinusoid is often used,

but it does not address the fundamental issue that a single breathing cycle is not symmetric - breathing

in is more difficult than breathing out due to the pressure differences. More advanced work has been

produced by McClelland (McClelland et al., 2006), modelling a single breathing cycle with a spline.

The incorporation of a spline model is a desirable step, particularly when incorporating a more natural

model of variations in breathing phase and depth. An exampleof using the spline model to describe

breathing variation is shown in Figure 3.2 for six consecutive breath-holds. We define an initial spline

(red), shown here as slightly saw-tooth (breathing in takeslonger) and with a magnitude that will cor-

relate with breath-depth. The spline nodes (green/yellow)are allowed to vary from these locations in

subsequent breaths with a Gaussian distribution.

The solution for the displacement induced by the map of forces as described above is given by

Equation 3.4. The solution of the displacementu from the forceF (the parameters forµ andλ are set

to 1 and 0 respectively as the elastic medium is both isotropic and we have no information to guide the

choice for these parameters) is found here using a method developed by Cahill (Cahill et al., 2007b) for

fixed boundary conditions. By writing Equation 3.4 as the product of itself with its adjoint (Equations

3.5-3.7), we can then consider the eigenvalues of∇4 to find an analytical solution using a few fast

Fourier transforms (if the boundary conditions are not periodic (i.e. Neumann or Direchlet) we may use

an equivalent fast sine or fast cosine transform).

µ∇2u + (µ+ λ)∇(∇ · u) = F (3.4)

L(u) = F (3.5)

L†L(u) = L†F (3.6)

µ(λ+ 2µ)∇4u = L†F (3.7)

Here we choose a zero boundary condition, requiring the fastsine transform to be used. This is
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Figure 3.1: Example force seeds added to an underlying base image (left) and resulting deformation

field (right). The green points represent centres of superior-inferior driving force from which the image

displacement is calculated using an elastic equation to give a corresponding deformation field (right hand

image). Breathing is modelled by varying the magnitude of the force centres by a raised sinusoid.

done to prevent objects moving from the field of view, if we want large displacements, the field of

view can be made larger). Writing the discrete sine transform asΨ (in 3 dimensions with sizes in each

dimension denoted byM,N,P ), it can be shown that the solution ofu for a given force is found by

Equation 3.8 where the division byβ is an element-wise divide - corrected for the undefined pointat

β000. Formulations for the sine-transform and forβ are shown in Equations 3.9-3.10. In this case the

inverse of the sine transform is the same as the forward sine transformΨΨ(u) = u. The fast sine

transform is coded using the method described in Numerical Recipes (Press et al., 2007) based on a

single fast fourier transform in each dimension.

u = Ψ(
Ψ(L†F)

β
) (3.8)

where,Ψ(uijk) =
8

MNP

M−1∑

i=0

N−1∑

j=0

P−1∑

k=0

uijk sin(
πmi

M − 1
) sin(

πnj

N − 1
) sin(

πpk

P − 1
) (3.9)

βijk = 8µ(λ+ 2µ)(cos(
πi

M − 1
) + cos(

πj

N − 1
) + cos(

πk

P − 1
) − 3)2 (3.10)
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Figure 3.2: Using a spline model to describe breathing variation for six consecutive breath-holds. An

initial spline (red) (shown slightly saw-tooth so that breathing in takes longer) is defined. The initial

spline nodes (green/yellow) are allowed to vary from their defined locations in subsequent breaths with

a Gaussian distribution in both time and magnitude.
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3.2.2 A Contrast Enhancement Model

We now add a contrast enhancement model; for this we require asegmentation, different organs have

different overall enhancement characteristics dependingon blood requirements and vascular distance

from the heart. Figure 3.3 demonstrates a hand segmentationof gross abdominal features overlaid on

anatomical reference images. Each image is one of twenty slices of a contiguous abdominal volume of

pixel size1.37 × 1.37 × 5mm3, segmented by hand into liver, kidney, aorta & vascular features, heart

(left & right side). Pathology may also be marked but additional pathology will be included as discussed

below. The enhancement process in each of these can be modelled according to observed physical

properties. Vascular features including blood vessels andtumour boundary angiogenesis enhance rapidly.

Enhancement also fades rapidly from these regions. The highly vascular bulk liver enhances brightly,

whilst the bulk tumour will have delayed enhancement, depending on the tissue status of its interior. A

physiological description of this process and the total contrast agent,Ct(t), at a given time is described

by the widely-used Kety model (see Section 2.3.1). The parametersKtrans, vp, ve correspond to the

volume transfer coefficient of contrast agent between bloodplasma and extracellular-extravascular space

(EES), and the fractional volumes of blood plasma and EES, respectively.Cp(t) is the ’Arterial Input

Function’ describing the injection of contrast agent into the organ of interest. Equation 3.11 describes the

total tissue concentration of contrast agent using the extended Kety model (see Equation 2.30). Since the

liver has a dual blood supply we include a model of the contribution of both the contrast agent arriving via

the hepatic arteryCarterial
t (t) (Equation 3.11) and portal veinCportal

t (t) (Equation 3.12). The weighting

of each contribution is given byγ representing the hepatic perfusion index (HPI) describingthe observed

ratio of arterial to total liver perfusion, for instance thecontribution of the hepatic blood supply is about

25% from the aorta and 75% from the gastro-intestinal (portal) system, hence for Equation 3.13,γ ≈
0.25. However, this number will vary between individuals and dueto pathology.

Carterial
t (t) = vpC

arterial
p (t) +Ktrans

∫ t

0

Carterial
p (t) exp [

−Ktrans

ve
(t− t′)]dt′ (3.11)

C
portal
t (t) = vpC

portal
p (t) +Ktrans

∫ t

0

Cportal
p (t) exp [

−Ktrans

ve
(t− t′)]dt′ (3.12)

Ctotal
t (t) = γCarterial

t (t) + (1 − γ)Cportal
t (t) (3.13)

A correct Arterial Input Function (AIF) is often difficult todetermine, so an empirical model may

be used or may be determined from the data (Buonaccorsi et al., 2006) (e.g. by tracking contrast en-

hancement in a segmented region of the aorta). Here we use a dual input model based on a cosine input

function as developed by Woolrich (Woolrich et al., 2004) and discussed by Orton (Orton et al., 2008)

given by Equations 2.33 and 2.34. Separate cosine arterial input models are applied withinCarterial
p (t)

andCportal
p (t) with values given in Table 3.2. The function coefficient values forµB andµG correspond

to the rate constants associated with the cosinusoidal contrast agent bolus arrival and its temporal shape

modulation under recirculation by a ’body transfer function’ given byaGe
−µGt (amplitudes are often

expressed askgl−1 and rate constants inmin−1), hence this ’body transfer function’ is given different

coefficients for the arterial and portal input functions. A single input system such as the aorta can be

modelled with a value ofγ = 1.



3.2. Developing A Liver Model 57

Table 3.2: Modelled Arterial Input Function Parameters forDual Cosine Input Model (see (Orton et al.,

2008) and (Parker et al., 2006) for source.)

aB µB aG µG t0

mM min−1 mM min−1 min

Carterial
p (t) 4.90 22.8 1.36 0.171 0

Cportal
p (t) 1.69 11.8 2.33 0.145 0.1

Table 3.3: Modelled Pharmacokinetic Parameters for given organs from consideration of vascular prop-

erties (see text for description) (Parker et al., 2006)

Organ Ktrans vp ve HPI Onset

(min−1) (min−1)

Right Heart - 1 0 1 0

Aorta - 0.8 0 1 0.12

Kidney 0.33 0.2 0.2 1 0.2

Liver (A) 0.27 0 0.25 0.3 0.23

Liver (P) 0.27 0 0.25 0.3 0.33

A further important factor when considering contrast enhancement of multiple organs with multi-

ple blood supplies is the bolus onset time. In the case of the liver, we alter the relative onset times of

Carterial
t (t) andCportal

t (t) by adjusting the bolus arrival time. We alter the parametersKtrans, ve, vp

andHPI to give enhancement profiles with the behaviour we wish each region to display. Model pa-

rameters are shown in Table 3.3 for comparison with literature values (Parker et al., 2006). We currently

use hepatic values ofvp = 0 for simplicity, hence the enhancement curve modelling doesnot necessarily

correspond to thein vivo biological situation. For the purposes of registration testing in this thesis it is

the contrast variation that is important, however, the model may be refined in future. As illustrated by

Parkeret al (Parker et al., 2006), the range of pharmacokinetic parameter values is quite variable, so the

relative values chosen are important. In the liver, the delay between the arterial and portal enhancements

is shown and theHPI is given a value of 0.3 (Totman et al., 2005). The kidney is given a largevp

to represent a large blood supply and corresponding large plasma fraction. Large blood volumes are

modelled withvp for the heart and aorta. It would be possible to mimic some dispersion to the bolus in

the left ventricle and aorta by using a largeKtrans to model the disruption to the bolus passing between

cardiac chambers, although this result would be difficult tointerpret biologically.
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Figure 3.3: Example of 3D Gross Abdominal Segmentation overlaid on anatomical reference images.

Segmented by hand into liver (white), kidney (green), aorta& vascular features (yellow), heart (left &

right side (red & blue respectively)). Pathology may also bemarked (magenta).
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3.2.3 A Tumour Model

In addition to the gross organ segmentation described above, it is useful to add particular pathology.

This will be particularly important for future work investigating the success of registration in areas of

complex enhancement. The model in this region is a crucial inclusion in the development of simulated

DCE-MRI since it is the pathology that motivates the acquisition of DCE-MRI data. Here we introduce

models of tumours with different enhancement artefacts in different locations. After selecting a tumour

location, a roughly circular (in 3D, spherical) boundary isdrawn around this point. This is done by

setting two parameters, one governing the radius and one allowing the radius to deviate away from a

circle. The radius is defined at a set of spoke locations in turn and may be allowed to vary with a

Gaussian distribution. The gaps between the spokes are interpolated with a cubic-spline to ensure a

smooth boundary. The circle is filled to a given radius to givedifferent pharmacokinetic properties

between the boundary and tumour core (see Figure 3.4).

Pharmacokinetic parameters are chosen to mimic particulartypes of tumour: 1) isotropic tumour

enhancement; 2) filling tumours where the rim enhances quickly and later the tumour core enhances; 3)

necrotic core tumour where the rim enhances quickly and the core does not enhance; 4) poorly defined

tumours with amosaicappearance of different enhancement characteristics. An illustration of the ap-

plication of this tumour model is shown in Figure 3.5. More vascular areas such as angiogenic regions

are given larger values for the transfer constantKtrans and blood volumevp. TheHPI may also be

increased to reflect increased arterial vascularity (Totman et al., 2005).

Figure 3.4: 2D pathology construction.a Circular boundary.b distorted boundary, smoothed with

splines. c boundary thickness definition.d labelling pharmacokinetic features (colour coding interior

and exterior).

Parameters for varying pathology are shown in Table 3.4. Tumour interiors are given lower values
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Figure 3.5: Example tumours added to underlying (pre-enhancement) image. Segmentation colours cor-

respond to different pharmacokinetic parameters for tumour rim and tumour core. For tumour generation

process see text.

Table 3.4: Modelled Pharmacokinetic Parameters for Simulated Pathology (see text for description and

compare with Table 3.3). We increase theKtrans of the tumour boundary to mimic the expected rate-

constant increase due to angiogenesis and add some delay in the onset of enhancement in a filling region.

Organ Ktrans vp ve HPI Onset

(min−1) (min−1)

Tumour Boundary 0.33 0.25 0.2 1 0.23

Filling Region 0.17 0 0.18 0 1.3

Necrotic Region - 0 0 0 0

Normal Liver 0.27 0 0.25 0.3 0.23

for Ktrans, a necrotic region would not enhance. Values forvp are increased to represent increased

vascularity in angiogenic regions and are kept at zero in other regions, for comparison with Table 3.3.

Figure 3.6 shows the corresponding parameters for three types of tumour corresponding to the first

three types discussed above. The colour segmentation is converted into contrast-enhancement uptake

curves via table 3.4, which are then converted to signal via the spoiled gradient echo equation as in

Equation 2.26. Figure 3.6 presents an example showing contrast-enhancement as a function of time for

ten time-points. Figure 3.7 demonstrates the intensity time-curves generated for a specific flip angle, T1

and TR for different organs, two sub-figures are shown demonstrating signal intensity curves for both

gross organ segmentation and for pathology with values illustrated in Table 3.4. Intrinsic T1 values are

drawn from Table 3.1.
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Figure 3.6: 2D pathology examples over an approximately 3 minute time period for top) peripheral

tumour enhancement; middle) filling tumours where the rim enhances quickly and later the tumour core

enhances; bottom) necrotic core tumour where the rim enhances quickly and the core does not enhance.

Figure 3.7: Example intensity-time curves used to simulatethe uptake profile of major organs (left) and

curves used in Section 3.2.3 to model pathology. Signal is generated forα = 24o, TR = 4ms and for

intrinsic tissueT 1 found from Table 3.1. Note that these curves have an unrealistically rapid wash-out

due to an implementation error that should be resolved priorto additional work regarding biological

pharmacokinetic parameter extraction. See text for parameter choice and further clarification.
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3.2.4 Proposed Volume Preservation Modification

Our deformation model is intrinsically isotropic, a situation which is implausible where tissues have

different stiffness. As an example, in the breast, tumour tissue is found to be up to 15 times stiffer

than normal breast tissue (Sarvazyan et al., 1994). A full discussion of the character of the liver, one

that would be useful for further development of a biomechanical model, is given by (Liu & Bilston,

2000). To accommodate stiffness variation, we modify our deformation fields retrospectively to ensure

that tumours move rigidly. The elastic equation in Equation3.4 is isotropic, the parameters relating

resistance to shear forces (µ) and resistance to internal expansion and compression forces (λ) are fixed

throughout the medium. If we wish to vary them locally, we must expand Equation 3.4 to Equation

3.16 (see (Lester et al., 1998) and (Little et al., 1997)). The motivation for Equation 3.16 is given by

Equations 3.14 and 3.15 describing the force as a function ofthe stress (see also Appendix A).

σij = µ[
δui

δxj
+
δuj

δxi
] + λδij(∇ · u) (3.14)

Fvisc =
3∑

j=1

δσij

δxj
(3.15)

Fvisc = µ∇2u + (µ+ λ)∇(∇ · u) + (∇uT + (∇uT )T )∇µ+ (∇ · u)∇λ (3.16)

The use of Equation 3.16 may be appropriate for non-rigid image registration if we wish to prevent

the deformation of objects we know to be well-registered. Tosome extent this is incorporated into the

paper by Lester (Lester et al., 1998). An explicit alteration in the case of DCE-MRI would be to monitor

the success of the model-fitting. If pixels are well-fitted (E.g. if they have relatively low residuals) then

the viscosity may be locally increased. The success of the registration can then be governed by the

fraction of pixels considered to be well-fitted. This concept is left as future work.

It is also possible to ensure rigidity if we segment the tumours and give every pixel in the tumour

values corresponding to an approximation of the best-fitting 4×4 affine matrix. This can be calculated in

a least-squares fashion to obtain parameters for rotations, scales and shears. Depending on the properties

of the desired resultant deformation, we can remove the influence of particular parameters (for instance

the scaling). This process does not remove the problem of smoothing the deformations together. This can

be done as by using a smoothing filter at the region boundary orby using a spline to interpolate from the

affine block into the fluid deformation field. Alternative formulations of locally rigid (or locally affine)

registrations have been developed by Narayanan (Narayananet al., 2005) and Commowick (Commowick

et al., 2008).

Figure 3.8 demonstrates the requirement for the generationof a good intermediate deformation

field. For more complex objects, the definition of the deformation across the boundary is crucial to avoid

discontinuities in the image. Figure 3.9 demonstrates the incorporation of a spline-based interpolation

of the deformation fields between the affine and elastic deformation blocks. The correction algorithm is

described in Table 3.5. In practice and in the results generated in Chapter 5 we implement a Gaussian

filter at the boundary to smooth the non-rigid and affine deformations together.
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Figure 3.8: Maintaining rigid object shape in an elastic deformation:a Original Square.b Square moved

downwards using elastic deformation.c Unmodified elastic deformation.d affine deformation patched

into elastic deformation, note the unacceptable deformation discontinuity at the boundary.

Table 3.5: Algorithm for patching affine transformation into a global elastic deformation (see text for

discussion)

For each affine object:

1) Segment non-rigid part of elastic deformation field that will be made rigid.

2) Approximate segmentation as affine using least-squares fitting.

3) Re-insert affine deformation into elastic deformation.

4) For each point on the boundary of the affine deformation:

i) find the B-spline that extends a depth±2xD into both the elastic and affine deformations.

ii) replace pixels within±D by the interpolated value.
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Figure 3.9: Maintaining rigid object shape in an elastic deformation:a Original Square.b Square moved

downwards using elastic deformation.c Unmodified elastic deformation.d affine deformation patched

into elastic deformation, now interpolated between affine and elastic deformations for comparison with

Figure 3.8 using the method described in Table 3.5

.
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3.3 Motion Model Examples
Figure 3.10 demonstrates images subject to the motion modeldescribed in Section 3.2.1. A force model

is used to deform the liver in a superior-inferior directionwith sinusoidal (breathing-like) amplitude with

a period of 10 images. The green overlay outlines the liver position in the first image. An example movie

is included on the supplementary CD (See Appendix E).

Figure 3.10: Example deformation for superior-inferiorbreathing motionwith 10 image cycle length

with additional random medial-lateral deformations.

Figure 3.11 shows the (normalised) difference images of each frame in Figure 3.10 with the first

image.
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Figure 3.11: Example difference images (with original un-deformed image) for superior-inferiorbreath-

ing motionwith 10 image cycle length for comparison with 3.10.
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3.4 Enhancement Model Examples
Figure 3.12 demonstrate the contrast enhancement model given the segmentation illustrated in Figure

3.3. Early enhancement of the heart and aorta is followed by enhancement of the liver and an embedded

tumour. In this example, enhancement occurs over a short period of time and wash-out is unrealistically

rapid. Figure 3.3 shows a further example of the enhancementmodel from a sagittal perspective. In this

case the enhancing kidney is shown and two large hepatic masses are modelled. Example movies are

included on the supplementary CD (See Appendix E).

Figure 3.12: Example contrast enhancement time course for coronal images.
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Figure 3.13: Example contrast enhancement time course for sagittal images.
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3.5 Conclusion
The model presented above has been developed to provide an extensive basis for the testing of novel reg-

istration algorithms. With regards to the deformation model, the elastic deformation allows a coherent

non-rigid deformation to be used. The deformation is one that should be correctable by a registration

algorithm, provided the choice of cost-function is appropriate. The deformation is appropriate for algo-

rithm testing. However, the global elastic deformation lacks the realism required for inferring registration

success in real-world applications.

The inclusion of an organ specific contrast-enhancement model is an important step. If registration

accuracy was to be tested by software designed for pharmacokinetic model-fitting, the simulated data

has included a well-developed enhancement model that couldallow an estimation of real-world param-

eter extraction accuracy. The importance of testing registration algorithms on known pharmacokinetic

parameters is required for validation purposes: registration may be visually accurate but the acid test

remains the ability to extract accurate pharmacokinetic properties from the entire DCE-MRI dataset.

The parameter curves shown in Figure 3.7 do not appear realistic, having a rapid wash-out phase in all

cases. This is due to an error in the implementation of Equations 3.11 and 3.12. Although this makes

the generated enhancement curves unrepresentative of thein vivo situation, they may still be used for

registration validation within the scope of this thesis.

The inclusion of organ specific deformations, perhaps usingfinite-element methods, would be a

necessary development if the model was to be used outside of its purpose of testing the success of

registration algorithms. If realistic biological deformations were used, the method may be used to gen-

erate synthetic data to match an existing dataset, predicting both accurate biological deformations and

enhancement parameters.

As the model stands, it may be used for analysing registration success and in particular the failure

of registration under contrast enhancement due to inappropriate cost-function selection. The choice of

registration cost-function is discussed in the next chapter.



Chapter 4

Cost Functions and Contrast Enhancement

4.1 Introduction

Registration of Dynamic Contrast-Enhanced Magnetic Resonance Images (DCE-MRI) of soft tissue is

difficult. Conventional registration cost-functions thatdepend on information content are compromised

by the changing intensity profile, leading to mis-registration. This chapter will outline the requirement

for a registration method that accommodates contrast enhancement by discussing the failures of common

cost-functions. A method is also introduced to enable the assessment of the registration status of a group

of images to one another. This method is then used to provide some assessment of registration accuracy

when attempting to determine the best choice of anchor imagewithin a group of images.

4.2 Conventional Cost-Functions

Image registration cost functions do not distinguish between differences due to motion artefacts and

differences due to contrast enhancement, therefore when calculating forces that minimise a cost func-

tion, contrast enhancement can induce mis-registration. This often leads to distortion at enhancement

boundaries, compromising registration success. Figure 4.1 demonstrates enhancement of features seen

in a dynamic contrast enhancement sequence. Figure 4.1a is apre-enhancement image. Figures 4.1b

and 4.1c are images acquired during the passage of the bolus through the heart from right side to left

side and into the aorta. This is an extreme case of the changesin images under enhancement. The rapid

enhancement of the heart and the transitional appearance ofvascular features (such as those seen in the

liver) combine to confound registration cost-functions. The reason for this failure is now discussed. The

derivation of the force gradients for each cost-function are included in Appendix B.

4.2.1 Method

For the cost-functions discussed in Chapter 2 we will discuss the formation of image registration force

gradients when registering a float imageF to an anchor imageA. The images that will be analysed

are the real images in Figure 4.1 where we register the two post-enhancement images,b andc, to the

pre-enhancement image,a. These are images from the central slice of patient three in Table 1.2 and

contain both small amounts of motion and contrast enhancement. The dense force gradient images are

suitable for implementation directly into a fluid or diffusion based registration algorithm. Analysis of
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Figure 4.1: Example real contrast-enhanced imagesb andc and pre-enhancement imagea demonstrating

passage of bolus through right and left sides of the heart andaorta. Difference images forb-a andc-a

are also shown to illustrate differences in position of abdominal wall and superior liver.

the gradient images for bothx andy force directions will be presented as evidence for failure of the

cost-function under contrast-enhancing features. Arrow plots of the resulting deformations after five

iterations of a fluid based registration algorithm are shownas additional evidence on the fourth row of

Figure 4.2 to 4.6 (see Appendix C).

4.2.2 Results

Statistical Alignment

A simple least squares alignment is given by Equation 4.1 as found in (Christensen et al., 1996). Its

derivation is found in Appendix B. Differences in intensitybetween images are penalised and the force

reduces to zero forA = F . Figure 4.2 demonstrates the dominance of contrast enhancement on the

cost-function gradient images that would then be used in a fluid or b-spline registration algorithm. This

dominance reduces the chances of correct registration in areas outside the dominant areas. Since gradi-

ents are largely the result of contrast-enhancement, we do not expect (and do not achieve, when used) a

correct registration. The gradients in Figure 4.2 will result in shrinking of the enhanced heart and aorta

as implied by the deformation field arrow plots.

dLS
dx

= (A− F )∇F (4.1)

An alternative is the cross-correlation force (or its variants using different normalisations), found

by considering the change to the overall cross-correlationvalue for individual pixel displacements. The
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gradient of this (unnormalised) cost-function is represented by Equation 4.2. If we were to properly

normalise this measure we would have to include additional terms that are derived in Appendix B. This

mediates against displacement fields dominated by a few regions of large force values such as those found

using least-squares. However, the fact that there is often not a linear relationship between pixels (due

to one-to-many intensity relationships between anchor andfloat) theoretically limits the cost-function’s

applicability. The gradient images in Figure 4.3 show detail not visible in Figure 4.2 and there are

correcting gradients in the medial-lateral direction on the abdominal walls. Gradients in the enhancing

heart and aorta are less well-defined, but the increased noise might result in unpredictable registration

results that introduce distortions in the resulting deformation field.

dCC
dx

= A∇F (4.2)

Information-Based Alignment

Starting with joint entropy, the calculation of forces proceeds by analysing the change to the total entropy

by moving one pixel between two intensity bins. The derivation is found in Appendix B, but for large

numbers of pixels in each intensity bin, the change in joint entropy is given by Equation 4.3 (Crum

et al., 2005) whereP (Fij , Ai−1j) is the joint histogram entry for the intensity values at location ij in

the anchorA and floatF images (N is the total number of pixels). Figure 4.4 uses 64 bins to givea good

bin population. Superficially the gradients do not seem to act to disrupt the enhancing features, however,

as discussed in Chapter 2, joint entropy on its own is not a good cost-function to minimise theoretically.

Chapter 5 (see Figure 5.8) will also show some evidence of difficulties in finding a smooth minimisation

of joint entropy.
dJE
dx

= − 1

N
log

P (Fij , Ai−1j)

P (Fij , Ai+1j)
(4.3)

Similarly for Mutual Information, we make adjustment to include the effect of pixel movement on the

marginal entropy (Appendix B) to achieve Equation 4.4 wherewe include the entry from the respective

single (marginal) image histogram for the intensity value at locationij in the floatF image (N is the

total number of pixels). The resulting gradient images are shown in Figure 4.5. The correction of

the abdominal wall displacement is visible, but there remains some evidence of mis-correction in the

enhancing heart and hepatic artery. This structure again, by inspection of the gradient images, will result

in shrinking of enhancing regions.

dMI
dx

= − 1

N
log

P (Fij , Ai−1j)P (Fi+1j)

P (Fij , Ai+1j)P (Fi−1j)
(4.4)

Gradients for Normalised Mutual Information can be developed by considering the two previous

results for joint entropy (HAF ) and mutual information (HA + HF − HAF )(Crum et al., 2005). The

resulting gradient images are shown in Figure 4.6. Althoughtheoretically the result is a general image

similarity measure (as discussed in Chapter 2), gradients are seen that will shrink enhancing features.

NMI =
HA +HF

HAF
=

MI + JE
JE

(4.5)
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dNMI
dx

= − 1

JE2
[JE

dMI
dx

−MI
dJE
dx

] (4.6)

4.2.3 Conclusion

In this section we have demonstrated that both statistical and information based cost-function gradients

are affected by contrast-enhancement. The extent of enhancement shown here is likely to be unrepresen-

tative of an entire dataset since the examples show the first passage of contrast agent through the heart.

However, over the course of a dynamic series, the effects shown above will be manifest at different

levels. One solution is to separate the motion artefacts from contrast-enhancement artefacts. In the ab-

sence of a cost-function that implicitly does this, it is necessary to focus on the formation of images that

are contrast-matched; where some effort is made to match enhancing features between float and anchor

images. Therefore the effect of contrast-enhancement can be removed from the resulting cost func-

tion gradients. The discussion in the next chapter of the Progressive Principal Component Registration

method discusses one such way in which contrast-enhancement matched images can be generated.
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Figure 4.2: Derived image-similarity local gradient images for Least Squares Cost Function.Top row

pre-enhancement image and two post-enhancement images.Second rowcorresponding (normalised)

force gradients inx-direction. Third row corresponding (normalised) force gradients iny-direction.

Bottom row corresponding displacement vector fields.
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Figure 4.3: As Figure 4.2 but for Cross-Correlation Cost Function.
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Figure 4.4: As Figure 4.2 but for Joint Entropy Cost Function.
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Figure 4.5: As Figure 4.2 but for Mutual Information Cost Function.
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Figure 4.6: As Figure 4.2 but for Normalised Mutual Information Cost Function.
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4.3 Cost Function Minimisation

We can test the suitability of different cost-functions on different types of image by progressively apply-

ing a known force with the simulation discussed in Chapter 3 and comparing the original and deformed

images. In this way we can assess the ability of a given cost-function to retrieve the true deformation

parameters which in this case will be a force with a magnitudeand (2D) direction. If the cost-function is

appropriate and therefore produces a monotonically decreasing path towards the true solution, we would

expect to be able to take any (gradient-descent) trajectorythrough the cost-function space to find the pa-

rameters that were used to produce the second image from the original image. The method is discussed

in this section as a prelude to further use in Chapter 5.

4.3.1 Method

The experiment proceeds as follows. Two images (which should be in good feature alignment) are

considered, for instance two identical images. One image isreserved as the anchor whilst the other

image, the float image, is deformed by a known force. In the case shown here a known force is applied

to the centre of the image (Figure 4.7). The force is varied inmagnitude and direction to deform the

float image. The deformation of the float image is found by solving the linear elastic equation for the

displacement from the force as discussed in Chapter 3. The cost-function value between anchor image

and deformed float image is recorded and plotted in a space corresponding to force magnitude in each

direction. The intensity in the images of Figure 4.8 and 4.10represent the cost function value for a

given value of force magnitude and direction correspondingto the x and y axes. The centre of each

cost-function space corresponds to zero force, which for identical images corresponds to a perfect image

alignment. If we were to use the cost-function space information in a registration algorithm, we would

follow the gradient of the cost-function to its minimum and therefore register the images.

The cost-function spaces provide evidence for how well registration would proceed. If the cost-

function space has a well defined minimum (or maximum) we would expect an appropriate registration

algorithm (in this case perhaps an elastic registration algorithm) to deform the image to achieve this

minimum. On the other hand, if the cost-function space has noclear minimum, the registration might be

expected to proceed poorly.

In the cases shown here, the images are deformed with a singleforce causing an elastic deformation

in the centre of the image. An elastic registration algorithm with this prior knowledge could apply a

single force to the centre of the image and optimise the valueaccordingly. However, in realistic image

registration examples we do not know the type of deformationthat brought about the changes to the

image, nor do we expect the deformation to have a simple form;we can only assume that using a fluid

or b-spline registration (or a good regularisation) will result in finding a good approximation to the true

deformation parameters.
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4.3.2 Results

Two identical images

Figure 4.8 demonstrates the minimisation space of the respective cost-functions for varying the mag-

nitude and direction of a force applied to an image. For two identical images (Figure 4.7), the search

space is particularly well-defined for all cost-functions.For ease of visualisation the negative log values

for mutual information, normalised mutual information andcross-correlation are shown, hence the best

value for the cost function is bright in all images. It appears that all cost-functions may be used in this

case, with the exception of differences in the speed at whichthey are optimised under gradient-descent.

Contrast-enhanced images

If we inspect the cost-function space of a pre and a post contrast enhanced image (e.g. one in which there

are valid one-to-many pixel relationships between anchor and float images (Figure 4.9)), we get a much

less well-defined minimisation (Figure 4.10). Again, for ease of visualisation the negative log values for

mutual information, normalised mutual information and cross-correlation are shown.

4.3.3 Conclusion

The results in this section provide the groundwork for Section 5.4. The results presented here use a

particularly simple form of deformation, applying a singleforce to the centre of the image. Figure 4.10

provides evidence that registration using sum-of-squareddifferences or cross-correlation will lead to

erroneous registration when enhancement is present - in this case a compression of the enhancing region

(this is due to the compression optimising the cost-function by removing enhancing pixels). For the very

simple deformation model described in this section, the information based cost-function minimisation

spaces appear to suggest that they are able to correct the deforming displacement. However, with regards

to full non-rigid registration, the cost-function force-field is calculated locally across the entire image and

we may not expect registration to minimise so well. The global form of the deformation is perhaps over-

simplistic when compared to the inverse registration problem. Non-rigid image registration algorithms

are local in application, so local changes are likely to impinge on registration success using information-

theoretic cost-functions, resulting in the effects seen inFigures 4.4 to 4.6.
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Figure 4.7: Two identical imagesa andb, float image is deformed by a known force and then the cost-

function value is found between deformed float and anchor.c: difference image betweena andb. d:

difference image betweena andb at maximum deformation.

Figure 4.8: Cost-function minimisation space for labelledsimilarity measure for images corresponding

to Figure 4.7, identical images where the float is deformed bya known force of varying magnitude and

direction. Distance from centre on X and Y axes represents force strength in that direction (zero force at

centre).
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Figure 4.9: Pre and Post Contrast Enhancement imagesa andb, float image is deformed by a known

force and then the cost-function value is found between deformed float and anchor.c: difference im-

age betweena andb with no deformation (there is small existing misalignment). d: difference image

betweena andb at maximum deformation.

Figure 4.10: Cost-function minimisation space for labeledsimilarity measure for images corresponding

to Figure 4.9, pre and post enhancement images where the floatis deformed by a known force of varying

magnitude and direction. Distance from centre on X and Y axesrepresents force strength in that direction

(zero force at centre).
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4.4 The Cost Function Matrix Mean (CFMM)
Assessment of the performance of the registration can be done comparatively between two images before

and after registration. This is also true when registering groups of images. When registering a group of

images we desire that they are all registered to the same coordinate system, but we not only need to assess

how well they are registered to one image, but how well they are registered to every other image in the

group. Therefore, we need to assess the relative improvement of a cost-function matrixof cost-function

values of each image in a group to every other. The formulation of the mean value of this matrix is

shown in Equation 4.7 for a symmetric similarity measure forT images (this fills half the matrix; a non-

symmetric cost-function would fill every entry in the matrix). An explicit example is shown in Equation

4.8, again forT images for the Normalised Mutual Information cost-function.

Ŝ =
2

T (T + 1)

T∑

i=1

i∑

j=1

cost(A(i), F (j)) (4.7)

N̂MI =
2

T (T + 1)

T∑

i=1

i∑

j=1

HA(i) +HF (j)

HA(i)F (j)
(4.8)

(4.9)

If our group of images is well-registered relative to an unregistered set of images, we would expect an

improvement throughout the cost-function matrix since every image should be better aligned to every

other. Therefore we might expect the total gain in image similarity from the image registration can be

analysed by assessing the mean of the cost-function matrix (The cost-function matrix mean (CFMM)).

This method also allows a comparison of the relative merits of different registration algorithms. Other

measures of the change to the cost-function matrix after image registration might also be proposed but

for this work, we consider the mean value of the matrix elements only.

4.4.1 Using Simulated DCE-MRI to investigate the CFMM

The behaviour of the Cost-Function Matrix Mean (CFMM) undervarying influence of motion and con-

trast enhancement may be investigated with simulated DCE-MRI data produced from the method in

Chapter 3. By setting a standard deformation and segmentation, we may then vary the force magnitude

and contrast-agent ’dose’ parameters used in this standarddeformation and investigate the stability of

the CFMM. We take one image and generate a dataset of 20 imageswith varying motion strength and

contrast agent dose parameters. Motion strength is varied in 9 steps from zero motion to an average pixel

displacement of 1.13 pixels and a corresponding maximum displacement of 33.6 pixels. Enhancement

strength is also varied in 9 steps from zero enhancement to anincrease of 150% in the region of greatest

enhancement. Simulated deformation and enhancement are applied to a coronal liver image; a dominant

force direction moves the liver in a superior-inferior direction with a sinusoidal motion. Datasets are gen-

erated, each of twenty images, varying the motion and enhancement parameters in nine steps between

zero displacement (and enhancement) and twice the standarddisplacement (or contrast agent dose). The

NMI-CFMM is then calculated for each of the 81 (9 motion× 9 enhancement steps) datasets.

Figure 4.11 shows the results of the NMI-CFMM for each of the nine motion and nine enhancement

levels described above. The influence of motion level dominates the curve position and the influence of
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contrast-enhancement introduces a small dose-dependent perturbation to each motion-level curve, seen

as a decrease in the similarity measure with increasing dose. The top curve representing zero-motion

contains the effects of contrast-agent only and hence decreases slowly from the maximum value of 2

with increasing enhancement level.

Figure 4.11: Plot of NMI-CFMM values for varying sinusoidal-motion magnitude in linear steps be-

tween minimum and maximum force strength and and contrast agent ’dose’ varied in linear steps before

conversion to signal by the spoiled gradient echo equation (Equation 2.26).

The results above suggest that the CFMM measure is a suitablemeasure for determining the per-

formance of registration on groups of images, dependent on the appropriateness of the measure used

on each pair of images. The value of the NMI-CFMM is determined predominantly by the motion pa-

rameter, causing the large jumps between curves of NMI-CFMMvalue for varying enhancement, with

additional perturbations due to contrast-enhancement. The method may provide some robustness to

contrast-enhancement, particularly when large numbers ofimages are in the wash-out phase. When

comparing the alignment of separate groups of images, care must be taken when using NMI, since the

measure is non-linear between NMI value and probabilistic image similarity as seen in Figure 4.11. The

cost-function matrix may also be analysed by the standard deviation of its values. In this sense, a re-

duction in variability of the matrix values corresponds to good overall registration. In future work, this

statistic could be used to reveal cases where the cost-function matrix mean is biased by a few very good

or bad registrations.



4.5. Choice of Anchor Image in Conventional Registration 85

4.5 Choice of Anchor Image in Conventional Registration
An important consideration in conventional registration of DCE-MRI is the choice of anchor image.

This provides the co-ordinate system for all images. The cost function matrix mean (CFMM) assess-

ment discussed in Section 4.4 allows a comparison of the results of selecting different anchor images in

conventional registration. It represents a measure of internal registration consistency - perfect registration

of identical images would result in a maximum (or minimum) value of the cost-function matrix mean.

Figure 4.12 shows the final NMI-CFMM for real datasets from Table 1.1 registered using each image in

turn as the anchor: a higher value of the NMI-CFMM representsa better registration of all images within

the dataset to one another. Results are shown for individualregistrations using both cross-correlation

and NMI as the registration cost-function. An interesting point for each entry in this graph, is that for

individual registrations using NMI as the image similaritymeasure, the final NMI-CFMM is lower than

(not as good as) that found using cross-correlation for the individual registrations. Visual inspection

of the individual registered images reveals that cross-correlation is more likely to give a better result,

improving the overlap of image features such as the diaphragm. This result is used as a justification for

using cross-correlation in later work.

As a further note, it is also possible to register all images to the mean image. However, the reduc-

tion in image resolution by the summation of the original image intensities may result in either under-

registration, due to features being aligned to the same position in the mean-image, or mis-registration of

features. Under-registration is likely due to the formation of the cost function image forces: the loss of

definition in the pixel intensity mappings may cause the driving forces to be weaker; hence it should be

preferable to register to real features in a carefully selected anchor image.

The results of Figure 4.12 demonstrate the difficulty of selecting the best anchor image from the

dataset. In three cases, the anchor image resulting in the highest (best) NMI matrix mean is one of the

pre-enhancement images. However, selection of this optimum pre-enhancement anchor image requires

proceeding with the registrations for all other anchor images. For this reason, subsequent conventional

registrations presented here use the first image in the time-series as the anchor image. Outlier values of

the NMI-CFMM plots are likely due to registrations carried out toward an anchor image that is itself an

outlier (i.e. contains large motion deformation relative to the other images in the dataset).
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Figure 4.12: Assessment of registration result of variations in target image selection using Cost Function

Matrix Mean (see Section 4.4). For four separate datasets from Table 1.1, fluid registration proceeds

using thenth image as the anchor image. The NMI Matrix Mean is shown for theresult of registration

using Cross-Correlation (blue) and Normalised Mutual Information (red). Also shown is the original

NMI Matrix Mean before registration (magenta).
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4.6 Conclusion
This chapter has provided examples and discussed the reasons for poor image registration of contrast-

enhanced images. The reason for poor image registration is the cost-function; each of the cost-functions

demonstrated here prefer a one-to-one relationship between image intensities in order to operate suc-

cessfully. The effect of contrast-enhancement, particularly the large intensity changes induced by bolus

arrival, on image registration force-gradients is likely to cause mis-registration as demonstrated by the

compression of the enhancing features in Figures 4.2 to 4.6.

Section 4.3 investigated the disruption to the cost-function minimisation space for a range of cost-

functions brought about by contrast-enhancement. Despitea relatively simple elastic deformation being

used, the effect on the cost-function space is shown to affect the potential for good minimisation.

The formation of the cost-function matrix mean (CFMM) is presented as a method of inspecting

the overall registration status of a group of images. Despite the problems of image registration in the

presence of contrast enhancement, the use of this measure asa post-registration measure of registration

success is still possible. Providing the images have been registered by an algorithm robust to contrast-

enhancement intensity changes, it is possible to cautiously (given the relationship of the cost-function

to the actual image deformation) compare results of the CFMMbetween registration methods and this

analysis will be used in future chapters. The method is first used in Section 4.5 to investigate the choice

of an optimal anchor image for the registration of a group of images. The results show no preference

for anchor choice, although registration to any anchor image is likely to provide some benefit over the

unregistered data. In future chapters, when testing against algorithms robust to contrast-enhancement,

unmodified direct fluid registration will always proceed using cross-correlation to align each image to

the first image in the dataset.



Chapter 5

Progressive Principal Component Registration

(PPCR)

In this chapter we present the development of a progressive,temporal principal-component based reg-

istration algorithm (PPCR). The model developed in Chapter3 is used to explore the interplay between

motion type, the extent of organ motion and contrast-enhancement on PPCR performance. Further test-

ing is carried out to evaluate the performance of the PPCR algorithm on real Dynamic Contrast Enhanced

MRI data (DCE-MRI). The model of DCE MRI of the liver from Chapter 3, incorporates an isotropic

elastic non-rigid deformation to simulate both breathing and breath-hold data, a volume-preserving mod-

ification for tumour regions is also included. Contrast enhancement is simulated by applying a pharma-

cokinetic model. In this chapter, for each simulated dataset, a direct fluid registration of each image to

the first in the dataset is compared to the contrast-enhancement guided Progressive Principal Compo-

nent Registration (PPCR). Analysis of the correction to thedeformation fields, tumour volume change

and dispersion of joint image histograms are used to show theimportance of motion type on PPCR per-

formance and of enhancement level on direct fluid registration performance. For breathing motion, we

will see that PPCR registers groups of images in different phases of the breathing cycle to separate final

positions, but maintains enhancing tumour volume. This is not the case for direct registration where

volume changes of up to 7% are observed. For cases in which thepatient holds their breath at different

levels of expiration, PPCR out-performs direct registration, particularly for large enhancement levels.

Analysis of the joint image histograms suggests that the generation of target images using PPCR reduces

histogram dispersion due to contrast enhancement. Since this distinction is not made using direct regis-

tration, it is unable to register images when large enhancements are present. On the other hand, under

cyclic breathing motion, PPCR target images are ill-defined, increasing dispersion in the joint image

histograms, leading to failure or separation of the images into clusters driven by breathing phase. Also

analysed are the effect of more careful choice of anchor image in conventional image registration and an

investigation of the progress of PPCR with each iteration. Analysis of the formation of images in the first

PPCR iteration is also carried out on real DCE-MRI data from Section 1.3 using the method developed

in Section 4.3.
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5.1 Principal Components Analysis

Principal Component Analysis (PCA) is a method of representing data in a coordinate system so that

the maximum data variance occurs along the first axis and the second variance component along the

second axis and so on. The ordering of variance allows components that represent a large fraction of

the variance of the data to be considered separately from those that contain little variance. This makes

it useful both for eliciting trends from data and in compressing data. Both approaches may be useful for

the registration of DCE-MRI but it is the data compression, applied in the time domain, that is used here.

To calculate principal components we must reinterpret our data so that every pixel in an image is

described by a function detailing its change in intensity through the dynamic sequence. We define the

dataset asA, each individual time-frame must have the mean pixel value of that time-frame subtracted

from it, as required by the PCA. An individual pixel-function located at spatial indexi, j is denotedAij

and since it consists ofT time points, is a vector of dimensionT × 1. We now compare all pixels in the

dataset, obtaining a covariance matrix of sizeT × T encapsulating information from every pixel in the

dataset. Finding the eigenvectors of this matrix and ordering them by eigenvalue magnitude, we obtain

the PCA result.

Calculating the Principal Components Analysis of a DCE-MRIdataset in the manner described

above can be used to generate registration anchor images that are contrast-matched to their respective

float images. Crudely, the first principal component will resemble the general intensity profile of the

images with respect to one another. Hence, all pixels can be weighted with how much of this principal

component they contain. Differences due to organ motion (inparticular organ motion due to inconsistent

breath-hold depth) are not strongly represented in the firstprincipal component because this motion is

represented by local intensity fluctuations in relatively few pixels; the variance that this motion represents

is likely to be small and hence is likely to appear in later principal components. Hence the large scale

intensity changes are dominant in the generated anchor images; the anchor images are contrast-matched

to their float images and so registration by conventional cost-functions becomes feasible. In subsequent

iterations, previous registrations have hopefully removed some of the organ motion, and so principal

components increasingly contain information about changing intensity profile in preference to residual

motion artefacts.

5.1.1 PCA for Functional Analysis

It is often claimed that combinations of Principal Components can be used to represent physical or

biological information within a dataset. Principal Components Analysis is often used in statistical shape

analysis to describe the principal axis along which shapes vary - for instance in our laboratory, the

femur’s principal direction of variation is along its length with subsequent important variations in femoral

head size and axial twist (Chan et al., 2004). Extensive workon statistical shape models incorporating

principal components analysis has also been produced by Cootes (Cootes et al., 2008).

Figure 5.1 shows the first four principal component eigenvectors calculated from a Dynamic Con-

trast Enhanced MRI dataset of the abdomen. As described above, each pixel is treated as a data entry for

the principal components calculation. In this case we have 40 timepoints and so we have 40 principal
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component eigenvectors each of 40 timepoints in length, thefirst four of which are shown here. The first

principal component corresponds to the most representative pixel intensity fluctuations (most variance

will be contained in a principal component that represents the overall increase in intensity with bolus

arrival and dispersion) around which further fluctuations are modulated by later principal components.

To try to extract physiological parameters relating to contrast uptake and to try to inferKtrans, ve or

vp would be extremely difficult due to the averaging of pixel intensity information through the covari-

ance matrix; the principal components are also orthogonal whereas any physical parameters may not be.

The PCA provides an efficient re-parameterisation of the data, but there is no immediate reason for this

parameterisation to be better at yielding pharmacokineticparameters.

Figure 5.1: First four normalised principal components forDCE-MRI dataset. PC1 is a general enhance-

ment profile incorporating the mean intensity change over a time-scale of a few minutes. PC2 appears

to act to correct those pixels that are not enhancing. PC3 andPC4 appear to enhance PC1 in areas of

rapid initial enhancement, further describing differences between pixels in the wash out phase. Extract-

ing pharmacokinetic parameters from these components is likely to be difficult despite the fact that these

four components contain 97% of the dataset variance.

5.1.2 PCA Used for Data Compression

Principal Components Analysis can be used for lossy data compression, instead of transmitting an entire

DCE-MRI dataset we could in principle transmit only a few early principal components and their weight-

ings. Figure 5.2 illustrates the resulting data-compressed images. Slices are shown for pre-enhancement,

bolus arrival in the left heart, bolus arrival in the liver and late post-enhancement. The top row contains

the original images and subsequent rows contain the images rebuilt from 1,2,3,4 principal components

respectively (see Figure 5.1) . It is clear that in this case,for a relatively small number of time-points

(20), that the early principal components are dominated by explaining the early enhancement of the heart

and aorta. As a result the pre-enhancement heart is not well represented until four principal components
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are used.

Figure 5.2:Top row: Images from a DCE-MRI dataset for pre-enhancement, bolus arrival in the left

heart, bolus arrival in the liver and late post-enhancement. Subsequent Rows: Images rebuilt using, on

each row, 1,2,3,4 components respectively.

5.1.3 Formation of the Covariance Matrix

The covariance matrix from which principal components are calculated is governed by the strength of

temporal relationships between pixels. The mean intensityacross the image will vary, but this will not

contribute to the covariance values since it is subtracted.Regions that enhance will contribute, due to

changes in pixel variance. Random noise is not influenced by time-point and will appear uniformly over

the covariance matrix, but time-dependent pixel trends bias the covariance matrix. This bias influences
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the resulting eigenvectors and eigenvalues of the covariance matrix. As a result, strong pixel time-point

trends result in large eigenvalues combined with an eigenvector reflecting this trend. Ordering the eigen-

vectors by eigenvalue magnitude sifts long-temporal pixeltrends from short-temporal random noise. If

motion appears random and of similar magnitude through all time-points, it is conceivable that image

motion artefacts will appear in principal components with small magnitude eigenvalues. Conversely, pix-

els undergoing different enhancement profiles will have those profiles encapsulated in combinations of

the first few principal components although we do not expect to be able to differentiate between different

underlying physiological profiles.
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5.2 The PPCR Algorithm

This section develops the Progressive Principal ComponentRegistration (PPCR) process. The method

applies registration repeatedly to an artificial time-series of target images generated using the principal

components of the current best-registered time-series data. The aim is to produce a dataset that has had

random motion artefacts removed but long-term contrast-enhancement implicitly preserved. The method

requires neither segmentation nor a pharmacokinetic uptake model and can allow successful registration

in the presence of contrast-enhancement.

The PCA producesT eigenvectorsUm, eachT × 1 in size wherem = [1, 2, ..., T ]. We can write

our data in terms of these eigenvectors. Each pixel has an amountCij,m of eigenvectorUm. Cij,m is the

dot product ofUm and the original pixelAij . Hence the original pixel,Aij , located at indexi, j can be

re-built as in equations (5.1) and (5.2).

Aij =

T∑

m=1

Cij,mUm (5.1)

Aij =

T∑

m=1

(Um · Aij)Um (5.2)

Our assumption is that most signal associated with enhancement is contained in the earlier eigenvectors

of the PCA. Hence we can approximate a pixel’s intensity valuesAij by leaving out the less significant

eigenvectors.

Aij ≈
η<T∑

m=1

(Um · Aij)Um (5.3)

PCA extracts trends from the time-series data in order of significance. As a result long-term contrast-

agent uptake trends should appear in the earlier principal component eigenvectors, whereas any short-

term random motion would be represented in later principal components. If data are rebuilt from only

the first few eigenvectors, we should be able to register to essentially motion-free data. Having done this

we are free to repeat the process. The initial synthetic dataset is given by (5.4), where the star-superscript

represents PCA generated data and we include a numerical superscript to denote iteration number: we

write A1
ij ≡ Aij , since this will be our first iteration. Eigenvectors are also given a superscript denoting

the iteration in which they were calculated (e.g.Un
m for iterationn).

A1∗
ij = (U1

1 · A1
ij)U

1
1 (5.4)

A2 = A1 7→ A1∗ (5.5)

We register each image in the original data,A1, to its corresponding image in the PCA generated, data,

A1∗ (see (5.5) where7→ represents image registration), using a suitable registration algorithm. This will

result in a dataset for the second iteration,A2, that is coarsely registered. Repeating these steps we

can re-calculate the PCA on this coarse-registered data,A2, giving us a new set of principal component

eigenvectorsU2
k (where the superscript denotes that this is the second iteration). Data are rebuilt from

both the first and second eigenvectors from the new PCA (5.6).We are free to do this because the coarse

registered data has less motion than the original data, so motion artefacts should appear even later in
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the principal component eigenvectors. We now register our coarsely registered data,A2, to the dataset

produced by (5.6),A2∗, to findA3 (5.7).

A2∗
ij = (U2

1 · A2
ij)U

2
1 + (U2

2 · A2
ij)U

2
2 (5.6)

A3 = A2 7→ A2∗ (5.7)

By repeating this process fromn = [1, 2, ..., T − 1] we aim to achieve well-registered data (5.8). The

registration forn = T would be a registration of the registered dataset to itself,as in (5.2), and so is

omitted. This whole process we term Progressive Principal Component Registration (PPCR).

An+1
ij = An

ij 7→
n<T∑

m=1

(Un
m · An

ij)U
n
m (5.8)

At each iteration, image registrations may be implemented by any method that permits quantitative

analysis of the intensity values on the images. Here, it is the transformation embedded in the registration

algorithm which determines the preservation of intensity rather than the PPCR algorithm and implicit

PCA. Due to the approach used here where the covariance includes whole image data, we are free to use

a large region of interest. A non-rigid registration methodallows the accommodation of differences in

type and extent of motion.

With each PPCR iteration it is also in principle possible to vary the number and choice of principal

components. The PPCR algorithm throughout this thesis proceeds by starting with the inclusion of a

single principal component and adding that with the next highest variance at each iteration. If methods

were developed for the inspection of principal components at each iteration, it may be possible to adap-

tively select groups of principal components in order to better guide the image registration procedure.

An adaptive technique might also allow computational benefits. Registration to the time-series mean as

compared in the work of Buonaccorsi (Buonaccorsi et al., 2005) may be imagined as a nullth PPCR prior

to the addition of principal components. The PPCR algorithmwill always skip this step, beginning with

the inclusion of the first principal component. This step is crucial as it allows the first level of contrast

enhancement matching between the current set of float and anchor images, preventing mis-registration

that might otherwise occur due to contrast enhancement.

Figure 5.3 is an illustration of the PPCR algorithm applied to five images (for conciseness). The

PCA is applied as described above to produce five eigenvectors and five principal component weighting

maps representing the amount of each principal component needed to recreate each pixel. In the first

iteration only the first principal component and weighting map are used to generate the first set of anchor

images (denoted with an asterisk). After the first set of registrations, the PCA is recalculated and a new

set of anchor images produced this time including both the first and second principal components and

their respective weighting maps.
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Figure 5.3: Illustration of the PPCR Algorithm for a datasetwith five images. Principal Components

Analysis of 5 images produces 5 Principal Components and 5 Weighting Maps. The algorithm incre-

ments the number of Principal Components used to generate target images at each iteration, recalculating

the PCA after each iteration. The last (fifth) Principal Component is not used as this will result in five

anchor images that are identical to their float images.
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5.3 Registration of Simulated Data using PPCR

This section investigates the performance of PPCR when applied to simulated data over a range of motion

types and contrast-enhancement levels. The correction of the deformation fields applied using the model

in Chapter 3 are assessed alongside discussion and investigation of the formation of the joint image

histograms used in registration using information theoretic similarity measures.

5.3.1 Method

Data Generation

DCE-MRI datasets are simulated for a range of motions and enhancements. Two types of motion are

considered, cyclic motion due to breathing-like motion andbreath-hold depth inconsistency in which

liver position is determined by a Gaussian distribution around zero displacement (this simulation is

consistent with the data presented in (Melbourne et al., 2007b)). A dataset is chosen with a sagittal-

oblique perspective. Motion is added as a large superior-inferior force positioned in the superior liver

combined with a smaller anterior-posterior force in the superior-posterior liver. This combination of

deformation produces a force that changes with an elliptical pattern. Different motion levels 1-4 (level

4 corresponds to a maximum of 20 pixels (35mm) displacement)are considered. Different levels of

enhancement are included, with scaling levels 0-3 (with level 3 corresponding to a maximum increase of

50% pixel intensity). Two registration types are compared,the first is a direct (fluid) registration of each

image in the simulated dataset to the first image in the dataset, the second is the PPCR algorithm.

Registration Methods

Direct Image RegistrationImage registration proceeds by registering every image in the DCE-MRI

dataset to the first (pre-enhancement) image in the dataset as summarised by Equation 5.9. A Normalised

Mutual Information based cost-function may be supposed to be most able to cope with changing intensity

patterns and so is used here.

A(t) = A(t) 7→ A(t0) (5.9)

We choose three different analysis criteria: the residual motion in the deformation fields, this is

found by taking the gold-standard deforming transformation and adding to it the correcting registration

displacement field. Also the tumour volume, both to assess the volume preserving constraint imple-

mented in Chapter 3 and to observe any additional tumour volume changes due to the registration pro-

cess. Finally, the joint image histograms of the unregistered and the first PPCR target images to analyse

dispersion due to contrast enhancement and motion.

PPCRThe registration method is shown in Equation 5.10 where the result at the next iteration,n+ 1, is

given by the registration of the best registered data,A, from the previous stepn, registered to artificial

images generated from a temporal principal components analysis of the registered data from the previous

stepn, rebuilt usingn principal components. Registration of source images to artificial target images

uses a fluid registration algorithm (Crum et al., 2005) with across-correlation cost function, appropriate
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for the images being registered.

An+1 = An 7→
n<T∑

m=1

(Un
m · An)Un

m (5.10)

5.3.2 Results

Figure 5.4: Graphs of absolute image residual displacementwith time for varying motion (levels 1-4

corresponding to9mm, 18mm, 26mm, 35mm maximum displacements.a-d Cyclic breathing motion

for contrast-enhancement level 3 (step-like curve for PPCR) shows separation of final registration posi-

tion between two locationssee text. e-h Breath-hold depth inconsistency for contrast-enhancement level

3 showing artefacts for direct fluid registration under increasing enhancement.

Figures 5.4a-d show the residual deformation after registration, demonstrating PPCR registration

errors increasing with the amplitude of periodic motion. The profile of the unregistered deformation

is a consequence of elliptical motion, taking different paths during inhale and exhale. Registration by

PPCR for large periodic motion separates the final images into clusters at two locations. This is due

to the periodic motion influencing early principal components, reducing the variance in early principal

components and generating target images that are ill-defined (Figure 5.5b), containing a spread of image

positions. Images in different phases of breathing are successively driven towards separate locations

during subsequent iterations, since these are reinforced in the second calculation of the PCA, producing

clusters of well-registered images.

If the final PPCR clusters are distinct, it may be possible to manually correct this effect by finding

the transform between clusters, thus bringing the PPCR result to an equivalent correction to direct reg-
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Figure 5.5:a) Source image from dataset with motion level 4 (up to 35mm displacement) and enhance-

ment level 3.b) PPCR generated target image from first iteration for model with cyclic breathing motion

for comparison withc) PPCR generated target image from first iteration for model with breath-hold

depth inconsistency. The ill-defined nature ofb results in separation of final registration positionsee

text.

istration. This is left as future work but it is possible thatsince images within the separate locations are

well registered to one another, we require only a single deformation between clusters. The transforma-

tion might be determined by the registration between imageseither side of the first jump between clusters

and applied to all images within the cluster. This correction should be implemented in the first iteration

of the PPCR method; inspecting the inter-image residual deformation allows clusters to be determined

and then removed as above.

Figures 5.4e-h demonstrate the difference in registrationsuccess for varying breath-hold consis-

tency level and fixed contrast enhancement. With no enhancement, both fluid and PPCR demonstrate

successful registration, illustrated by a reduction in theresidual motion. With increasing enhancement,

fluid registration begins to mis-register enhancing regions, particularly visible in the images as distor-

tions to the rigid tumours. This effect is shown as a failure to reduce the residual deformation level. For

level 3 enhancement, the fluid registration is actively mis-registering a large proportion of the images.

The eventual success of the PPCR method is implied in the firsttarget image shown in Figure 5.5c in

which features are given a well-defined average position.

Figure 5.6a plots fluctuations in tumour size. It is clear that the tumour volume-preserving modifi-

cation in Chapter 3 is not entirely successful, compressingthe tumour up to 1% with increasing motion

levels (see the NoReg data in Figure 5.6a). The failure of themodification is less important when con-

sidering volume change due to the direct fluid registration.Volume change is visually correlated with

the strength of contrast enhancement and volume changes of up to 7% are observed, visible in the actual

images. Tumour volume change is never more than 1% using the PPCR method. Since tumours are the

very objects we are likely to be interested in, the success ofregistration in this region is crucial. This is

particularly true when monitoring the response to therapy with longitudinal scans.

The joint image histograms between pre and post enhancementimages contain dispersion from

both motion and contrast enhancement processes. PPCR separates these processes but is more effective

between inconsistent breath-hold depth than in cyclic breathing motion. Histogram dispersion is a result

of one-to-one pixel intensity relationships becoming one-to-many due to spatially dependent intensity



5.3. Registration of Simulated Data using PPCR 99

Figure 5.6: Graphs plotting statistics for variations ina) tumour volume change for breathing-motion

extent and enhancement level, note the trend for decreasingtumour size in the gold standard.b) av-

erage joint entropy of target and source images per simulation for direct registration (to pre-contrast

image) and to first set of target images generated by PPCR for breathing motion.c for breath-hold depth

inconsistency. Note increasing joint entropy with motionandenhancement.

variations. Crudely, this is seen as lobe-like arms in Figure 5.7 for a real DCE-MRI dataset. Information

based cost-functions aim to minimise this dispersion but donot distinguish between the two sources of

dispersion. For PPCR generated target images, the contrastenhancement level is more closely matched

since gross intensity changes are encoded in the early principal components, therefore dispersion due to

contrast enhancement is reduced and the remaining dispersion is more strongly associated with motion.

This can be seen in Figure 5.6c as an enhancement dependent reduction in the joint entropy between

source images and PPCR generated target images at each motion level. If the PPCR generated target

images contain ambiguous boundaries or poor contrast-enhancement matching relative to the source im-

ages, then there may be an increase in joint image histogram dispersion. Poor target representation in

the breathing motion case can be compared to the breath-holdcase in Figures 5.6b and 5.6c; improved

target representation in the breath-hold case allows a reduction in joint entropy with reduced dependence

on enhancement level than in the breathing motion case. Additional dispersion in the joint histograms is

always likely to occur under PPCR (this is best shown in Figure 5.7 Row 1). This is because PPCR gen-

erates target images in early iterations that contain averaged representations of enhancement, but if the

reduction in dispersion due to contrast enhancement is greater than this additional blurring, registration

by PPCR may proceed.
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Figure 5.7: Effect of PCA on joint image histogram formationfrom a real dataset of 20 2D images.Col-

umn 1 original (real) dataset (images 1-10),Column 2 first image in dataset,Columns 3-5images 1-10

rebuilt using 1-3 principal components.Column 6 joint image histograms (x-axis float, y-axis anchor

image intensities) of images in column 1 with those in column2, Columns 7-9joint image histograms

of Column 1 with Columns 3-5. Dispersion in Column 6 is the result of both motion and contrast en-

hancement, using PCA allows some removal of enhancement (lobe-like) dispersion, although the effect

is reversed for the pre-enhancement images in Column 7. Inclusion of further principal components in

Columns 8-9 removes.
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5.3.3 Conclusion

We have shown the applicability of two image registration methods under different levels of motion

and enhancement. Under cyclic breathing motion, PPCR finds it difficult to generate a representative

set of target images (Figure 5.4a-d), but this type of motionproduces a predictable result, requiring a

modification or diagnosis that could be included in the algorithm. Such a method could inspect early

principal components or resulting anchor images in order tosuggest or predict the performance of the

PPCR algorithm. The clustering shown in Figure 5.5 is not observed in any real data, and subsequent

anchor image formation, later in the thesis. The PPCR methodis able to preserve the volume of en-

hancing regions unlike direct registration which begins tofail under increasing contrast enhancement.

This is a failure of the cost-function to account for the appearance of new structure. Using information

based cost-functions, there will be an increase in joint histogram dispersion which is not distinguished

from mis-alignment dispersion, making the cost function inappropriate. By encapsulating intensity vari-

ations in early principal components, PPCR generates enhancement matched target images, reducing

dispersion in the joint histogram due to contrast enhancement. This allows registration to proceed, but

only in cases where target images are well-matched to their source images, which is not the case under

cyclic breathing motion. In this case, reductions in contrast enhancement dispersion are offset by an

increase in dispersion due to poor target matching and PPCR will break down. Future work will develop

the breathing-model to allow for more realistic unpredictability in breathing-depth and phase, improve

the enhancement model to make it organ specific, extend the work to full 3D and include medial-lateral

deformations.
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5.4 The Effect of PPCR on Cost-Function Minimisation Space

We inspect the effect of PPCR on the formation of cost-function space as presented in Section 4.3. By

applying an elastic deformation to the centre of our image with varying magnitude and direction, we can

compute the cost-function space associated with minimisation of a particular cost-function (see Section

4.3). The centre of the following cost-function spaces represents the value of the cost-function between

these image pairs.

5.4.1 Results

Figure 5.8 demonstrates the effect of contrast enhancementon cost-function optimisation. The first

column represents the anchor image(s), which in this case isjust the first pre-enhancement image from

the first 10 images of a DCE-MRI dataset. The second column contains all ten images and we inspect

the result of calculating different cost-functions between the image-pairs.

The cost-function spaces of Figure 5.8 reveal a large amountof information about the image align-

ment process. Inspection of the pre-enhancement images reveals that we should expect to be able to align

the float image if it is deformed as described above for all cost-functions. Discrepancies in the shape of

the cost-function value are largely the result of the correction of minor mis-alignment due to breath-hold

depth consistency in these real images: for instance a minorsuperior7→inferior displacement of the liver

is partially corrected by an inferior7→superior force of the type described above. The appearance of con-

trast enhancement in the heart and aorta disturbs the cost-function space, particularly for the statistical

cost-functions: cross-correlation, sum of squared differences and sum of absolute differences. In the

case of the fifth image pair, the cost-function spaces show that it is preferable to distort the images using

an inferior7→superior force. This would have the effect of compressing the enhancing heart, removing

the intensity discrepancy and therefore maximising the image similarity. Similarly for the sixth image

pair with enhancement of the aorta, both cross-correlationand sum of squared difference cost-functions

suggest that a positive medial7→lateral force will improve the image similarity. This can beseen to be

the case, since the aorta will begin to overlap the brighter regions adjacent to the dark pre-enhancement

aorta. After the first passage of the bolus the cost function extremum, in all cases, becomes disperse

suggesting that finding the correct image alignment by registration will become difficult. In particular,

when enhancement is present Figure 5.8 suggests that cross-correlation and sum of squared differences

should not be used. Minimisation of the joint entropy cost-function also suggests that there might be

some problems finding a smooth gradient descent through the cost-function space. The effect of the

first anchor images generated by the PPCR algorithm on the cost function minimisation space is shown

in Figure 5.9. The first column represents the anchor images,generated from a PCA of the ten float

images using the PPCR method. The second column contains allten images and we inspect the result of

different cost-functions between the image-pairs. This value corresponds to the centre of the following

cost-function spaces in which the float image is not deformed. We now apply a deforming force to the

centre of the image and solve the linear elastic equation to find the resulting deformation over the im-

age. By varying this force (in two-dimensions: medial-lateral and superior-inferior) and looking at the

resulting cost-function value between the anchor image andthe deformed float image, we can investigate
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how easily we would expect to be able to recover the deformation by registration using that particular

cost-function.

The cost-function spaces of Figure 5.9 reveal the effect of the first PPCR iteration on the cost-

function minimisation space. Inspection of the pre-enhancement images reveals that we should expect

to be able to align the float image if it is deformed as described above for all cost-functions. However,

the minimisation does not appear to be as well-defined as in the registration to the first image case. This

is due to information about other structures being present in the anchor images for each image pair.

As before, discrepancies in the shape of the cost-function value, asymmetry around the centre of the

cost-function minimisation space, are largely the result of the correction of minor mis-alignment due to

breath-hold depth consistency in these real images. The appearance of contrast enhancement in the heart

and aorta still disturbs the cost-function space despite using PPCR, particularly for the sum of squared

differences. In the case of the sixth image pair with enhancement of the aorta, the problems seen in the

corresponding image pair for Figure 5.8 are no longer present, we may expect the cost-function to be

suitable for minimisation. The advantage of the PPCR methodis most obvious in the use of statistical

cost-functions post-enhancement, all cost functions now appear reasonable and we would expect to be

able to align each image pair. Figure 5.9 suggests that we should be able to use any cost-function in

image registration using PPCR. A further advantage of the PPCR method is that it is iterative, we should

be able to find a reasonable alignment in the first iteration asshown here, but further iterations should

refine this alignment further.

5.4.2 Conclusion

The results of this section demonstrate the potential benefit on cost-function minimisation of PPCR

when registering contrast enhanced images. In the cases shown, for very simple displacements, the

PPCR algorithm may be used to allow registration of images using cost-functions that do not cope with

contrast-enhancement. For the type of deformation appliedhere, it appears that we might achieve a good

registration using information theoretic cost-functions, however for more complex displacements this

cannot be guaranteed. The PPCR algorithm is also iterative,so subsequent deformations are refined and

we do not stop by simply registering to the first set of target images generated by PCA, this is important

from the perspective that we wish to register a large number of images into a common coordinate system.
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Figure 5.8: Direct registration cost-function minimisation spaces for the first ten images from a DCE-

MRI dataset. For ease of presentation, the negative-log values for MI, NMI and CC are shown; here light

corresponds to good image alignment and dark to poor. The x-axis corresponds to a large medial-lateral

force applied negative through positive from left to right,the y-axis is the equivalent for the superior-

inferior force. The cost function comparison is taken between the corresponding image on the far left,

and the float in the neighbouring column subject to the given deformation (see text for clarification).
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Figure 5.9: PPCR cost-function minimisation spaces for thefirst ten images from a DCE-MRI dataset.

For ease of presentation, the negative-log values for MI, NMI and CC are shown; here light corresponds

to good image alignment and dark to poor. The x-axis corresponds to a large medial-lateral force applied

negative through positive from left to right, the y-axis is the equivalent for the superior-inferior force.

The cost function comparison is taken between the corresponding image on the far left and its neighbour,

subject to the given deformation (see text for clarification).
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5.5 Choice of Anchor Image in Conventional Registration - Revis-

ited
This section briefly revisits Section 4.5 to include the Cost-Function Matrix Mean (CFMM) PPCR result

concerning the choice of anchor image in the conventional registration of DCE-MRI. In comparison,

the choice of anchor image in direct image registration provides the co-ordinate system for all images.

When using PPCR for image registration it may be necessary toconvert between co-ordinate systems

when analysing the result of PPCR with reference to either the original images or those produced by a

different registration method. This is because registration by PPCR is to a coordinate frame formed in

the process of the registration algorithm, which is likely to be different from the coordinate frame of any

of the individual images.

The results of Figure 5.10 now include NMI-CFMM values afterregistration by PPCR. It is seen

that PPCR allows a higher value of NMI-CFMM than any choice ofanchor image in conventional regis-

tration. This provides some evidence that registration by PPCR to an iterated coordinate system allows

improved registration of groups of DCE-MR images when compared to registration to the coordinate

system of a single image.
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Figure 5.10: Assessment of registration result of variations in target image selection using Cost Function

Matrix Mean (see Section 4.4). For four separate datasets from Table 1.1, fluid registration proceeds

using thenth image as the anchor image. The NMI Matrix Mean is shown for theresult of registration

using Cross-Correlation (blue) and Normalised Mutual Information (red). Also shown are the original

NMI Matrix Mean before registration (magenta) and after registration using PPCR (green).
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5.6 Analysis of the PPCR Algorithm Progress

5.6.1 Changing the number of Principal Components

The iterative nature of PPCR makes the process slow. For a dataset withn images, instead of running

(n − 1) registrations to a single anchor image chosen from the dataset as with direct registration, the

number of registrations becomesn(n−1). However, since the later principal components do not contain

much variance and therefore may not contribute noticeably to the final anchor image intensities, it may

be beneficial to terminate the PPCR process once the total variance of the original dataset contained in

the new anchor images reaches a threshold value. This section investigates the use of such a stopping

criteria and the potential CPU-time benefit.

In addition to the stopping criteria discussed above, thereis a more general way of monitoring the

progress of each PPCR iteration. Analogous to the continualupdating of the fluid registration deforma-

tion, we can track the deformation field as it changes. This isnot necessarily a good way of finding a

stopping criteria since the size of the displacements in thecurrent deformation field do not necessarily

predict the size of displacements in the following deformation field. The reason is that the inclusion of a

later principal component may produce larger changes in thetarget images than the previous component

whilst still containing a smaller amount of dataset variance - this is likely to be the case where one im-

age in the dataset has quite different intensity variationsfrom the other images (as seen in bolus arrival

images).

Results

Figure 5.11 shows the progress of the deformation towards the final deformation field with each PPCR

iteration for four datasets from Table 1.1. The total absolute residual over all images is calculated and

divided by the total number of pixels. The result for each of the four datasets demonstrates a steady

decrease in total absolute residual towards the final position. The curves are slightly convex, suggesting

that later iterations contribute slightly less towards thefinal deformation field. However, it is not obvious

that the PPCR process should be terminated before the final iteration.

Conclusion

The results of Figure 5.11 do not suggest that there is a benefit to be gained from terminating the PPCR

algorithm at an early iteration. Early termination may prevent the registration reaching the true final de-

formation field that is only achieved once all principal components are included. The final deformation

field should be considered preferable because of the inclusion of later principal components which allow

the continued refinement of the registration deformation field. The following section (Section 5.6.2) dis-

cusses an alternative stopping criteria more suited to the nature of the PPCR algorithm and deformation

field progression.
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Figure 5.11: Example curves showing the approach of the PPCRdeformation field towards the final

deformation. Graphs show the per-pixel residual and the approach of the residual towards the final

deformation position for four separate 2D DCE-MRI datasetsfrom Table 1.1.
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5.6.2 Changing the number of Registration Iterations

As discussed in the previous section, for a dataset ofn images there are a maximum ofn(n−1) registra-

tions when using the PPCR algorithm. However, the progressive nature of PPCR suggests that since the

early registrations are crude, we need not run them for many internal iterations. For instance if a single

registration takes 400 fluid-equation iterations, then we can limit linearly the number of internal itera-

tions in the registration so that they only do, for instance,20 internal iterations before the next PPCR

iteration. This section investigates the effect on accuracy of altering the internal registration iteration

number.

We vary the maximum number of intrinsic registrations between 0-400. The final deformations

are analysed and the sum of squared differences found between the standard 400 iteration maximum

displacement field and the reduced-iteration displacementfield.

Results

Table 5.1 shows the total residual deformation when using a low number of internal registration itera-

tions. The default maximum number of iterations used in the internal fluid registration algorithm is 400,

hence the residual difference of the final deformation field from this result is shown. Equivalent graphs

for the two DCE-MRI datasets (see Section 1.3) are shown for the approach of the deformation to the

maximum iteration case with increasing iteration number.

Table 5.1: PPCR Registration for varying maximum number of internal registration iterations

Internal Registrations Time SSD between 400i result SSD between 400i result

(Livdt-04b) (Livdt-07b)

0 0 2.374 2.049

10 10n(n-1) 0.223 0.121

20 20n(n-1) 0.118 0.091

40 40n(n-1) 0.054 0.059

60 60n(n-1) 0.034 0.025

80 80n(n-1) 0.024 0.024

100 100n(n-1) 0.024 0.028

120 120n(n-1) 0.026 0.025

140 140n(n-1) 0.021 0

160 160n(n-1) 0.018 0

180 180n(n-1) 0.027 0

200 200n(n-1) 0.023 0

300 300n(n-1) 0 0

400 400n(n-1) 0 0
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Figure 5.12: Example curves showing the approach of the PPCRdeformation field towards the maximum

deformation found when varying the number of internal registration iterations up to a maximum of 400

iterations in the component fluid registration algorithm. Graphs show the absolute residual (divided by

total number of pixels) and the approach of the residual towards the maximum deformation position for

two DCE-MRI datasets from Table 1.1.

Conclusion

The results shown in Figure 5.12 present a strong result (at least for the two cases tested) for shortening

the total CPU runtime by reducing the maximum number of internal registration iterations. This should

be contrasted with the result of the previous section (Section 5.6.1). The results suggest that it may be

feasible to reduce the number of registration iterations bya substantial amount, whilst retaining a good

approximation of the final result. Although the number of iterations is fixed throughout the algorithm, it

may be preferable to adjust the number of iterations dynamically or to increase the number of iterations

as image detail is added with increasing numbers of principal components.
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5.7 Future Adjustment for large variations in Contrast Enhance-

ment
As seen in Figure 5.2, extreme enhancement features are not well-represented in the first principal com-

ponents. Therefore in this case the PPCR method is unable to fully match the contrast variation and the

cost-function gradients may include forces that may resultin mis-registration of enhancing features. This

will only occur in the situation that a few images that contain very different features or contrast from the

other images of the dataset. This section discusses one possible fix for this disturbance by adding the

effect of extra components to particular images within the dataset.

The target images are checked for suitability using the following algorithm: 1. find the Sum of

Squared Differences cost-function between each float and anchor pair; 2. Find the mean and standard

deviation of this spread of cost-function values; 3. If the cost-function of individual float-anchor pairs

is more than one standard deviation from the mean, then add anadditional principal component in the

formation ofonly this image; 4. Iterate this process until all float-anchor Sum of Squared Differences

are within one original standard deviation. Although the effect may be to cause under-registration of the

affected images, the modification should help prevent the mis-registration that may otherwise occur.

Figure 5.13: Illustration of the PPCR adjustment process. After the formulation of principal components

and weighting maps in the first iteration, we form target images from the first principal component.Step

1 we find the mean (and standard deviation) sum-of-squared differences (SSD) between all float-anchor

pairs.Step 2if any of the float-anchor pairs have an SSD value outside of one standard deviation from

the mean SSD, we add further principal components until the SSD of that float-anchor pair is below one

standard deviation from the mean float-anchor SSD.
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5.8 Conclusion
This chapter has discussed some of the expected benefits of the PPCR algorithm and modifications that

might be made to improve performance. The use of the model in Chapter 3 has been used to show that

certain types of motion are not well suited to the PPCR algorithm. One of the assumptions of the PPCR

algorithm is that early principal components are dominatedby enhancement characteristics and later ones

by motion. In the case of smoothly periodic motion, early principal components contain representations

of the pixel intensity fluctuations associated with objectsmoving into and out of that pixel. However,

the requirements for this type of corruption to occur under PPCR require motion to be periodic. The

results of the DCE-MRI simulations suggest that PPCR is effective for repeated breath-hold data. When

comparing the PPCR algorithm to direct registration of images to a single anchor image, revisiting the

choice of anchor image data from Chapter 4 suggests that evenif it were possible to choose the best

target imagea priori, the resulting registration performance is exceeded by using the PPCR algorithm

(Figure 5.10).

With regard to the long PPCR run-time, some performance benefits can be produced. Although

terminating the number of principal component iterations early does not seem to confer a benefit, setting

the number of iterations in each fluid registration can be used to achieve a time-saving with less of

an effect on the final outcome. This may make the algorithm a desirable addition to a conventional

registration algorithm when registering groups of images with little time penalty.

Section 5.4 shows the effect of PPCR on the cost-function minimisation space. For the simple

deformations shown, PPCR produces a cost-function space that is better-defined for minimisation by all

cost-functions (Figure 5.9). The use of a fluid or b-spline method should not influence the performance

of the PPCR algorithm; as discussed in Chapter 4 it is the formation of the cost-function space that is

important when registering contrast-enhanced images, thetransformation model is used to regularise the

cost-function minimisation to generate a desirable (e.g. diffeomorphic or smoothed) deformation. A low

degree-of-freedom model such as an affine parametrisation may also be implemented but restrictions on

the allowed deformations prevent the effect of the benefit ofPPCR in local regions of contrast variation.



Chapter 6

Registration of Breath-hold Dynamic Contrast

Enhanced MRI

The following chapter will analyse the results of applying the PPCR algorithm to real DCE-MRI data.

The algorithm is first applied to a study of twenty-seven 2D datasets from seven patients each with at least

one follow up scan (Table 1.1). Section 6.1 will compare the results of registration by direct registration

to the first image in the dataset and registration by PPCR. Section 6.2 will analyse six full 3D DCE-MRI

datasets using pharmacokinetic analysis to determine the success of different image registration methods.
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6.1 Registration of 2D DCE-MRI Using PPCR

6.1.1 Introduction

The PPCR algorithm is now further discussed by comparing it to those cases where conventional regis-

tration causes artefactual misalignment of contrast-enhanced images. By inspection of images by blinded

observers and through basic pharmacokinetic model fitting,we can evaluate some of the benefits of the

PPCR method. The PPCR method outlined in Chapter 5 is compared to a simple, single registration to

the first image in each dataset, also registered with the sameEulerian fluid registration process.

The liver is analysed by implementing non-rigid registration methods based on a fluid equation.

The use of a fluid-equation based registration over other transformation models is of little importance

at this stage. As discussed in previous chapters, failure ofimage registration in the case of DCE-MRI

is due to the cost-function not the transformation model. The same fluid registration algorithm is used

for direct fluid registration and within the PPCR algorithm.The fluid-equation is balanced using image

derived forces calculated from an image similarity measure, in this case cross correlation, a measure

normally considered suitable for same-modality images. The use of cross-correlation is due to empirical

observation rather than theoretical considerations sinceit appears to perform a better registration in those

cases in which the registration is correct. This was discussed briefly in Chapter 5. An implementation of

this approach as developed by Crum (Crum et al., 2005) is usedbased on original work from Christensen

(Christensen et al., 1997). The images are analysed using two registration schemes, the direct fluid

registration and the PPCR scheme (Melbourne et al., 2007b).Registration in the case of 2D data might be

affected by through plane motion: in the case of objects moving from the field of view, this information

is likely to be encapsulated in the principal components leading to the algorithm generating anchor

images maintaining an absence or presence of these features. Application of the subsequent 2D image

registration will be less likely to result in mis-registration.
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Other Registration Methods

Some other possible registration methods may confer an advantage in the case of DCE-MRI data and

they are discussed here.

Registration to Mean ImageIf the mean image is used as the anchor, we may proceed by regis-

tering all images to this mean-image as used for comparison in Buonaccorsiet al (Buonaccorsi et al.,

2006). It is possible to imagine an iterative scheme by whichthe mean-image is updated after a few

registration steps. However, the reduction in image resolution by the summation of the original image

intensities may result in either under-registration, due to features being aligned to their position in the

mean-image, or mis-registration of features. Mis-registration could result from the formation of the

joint-image histogram using the mean-image. Dispersion inthe joint image histogram will be increased,

the loss of definition in the pixel intensity mappings will smooth the bin contents so we might expect

weaker force-gradients in the resulting registration. As briefly discussed in Section 5.2, registration to

the mean image may be considered a nullth PPCR prior to the inclusion of any principal components and

therefore generating anchor images without contrast matching.

Grouped Fluid Registration A further method can be devised that attempts to mediate spurious

registrations by assuming that an average of the equivalentregistration paths betweenfloat to anchor

andfloat to neighbouring time-point to anchorwill provide a more robust registration. For images in a

datasetA at timepointt, we might expect the registrationA(t) 7→ A(0) ≡ A(t) 7→ A(t− 1) 7→ A(0) ≡
A(t) 7→ A(t + 1) 7→ A(0). The reasoning is that mis-registration artefacts are unique to each float

image, so taking an average, via the registration of its nearest temporal neighbours will reduce spurious

misalignment since these will not be present in the remaining registration paths. Using this method,

contrast-enhancement induced misalignment will be reduced by suppression of registration artefacts as-

sociated with the individual registration paths, this is incontrast to the PPCR algorithm, where ideally,

misalignment due to contrast enhancement should not occur since we are contrast-enhancement match-

ing.

Registration to Mean PositionAn alternative algorithm to registration to the mean image is regis-

tration to the mean position. As discussed, registration tothe mean image may result in a redefining of

image intensities and mis-registration to averaged boundaries and features. By careful formulation of the

force gradients (see Chapter 4) it is possible to add information from multiple images. For information

based cost-functions, histograms may be formed from all images in the dataset; histogram bin incremen-

tation would preserve information from image intensity values since no intensity averaging is required.

The result can be imagined as an averaging of the image force gradients as opposed to the averaging

of the images followed by the calculation of force gradientsas in registration to the mean. The process

may be iterated, updating the force gradients from each image periodically. This concept is not explored

further in this thesis.
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6.1.2 Method

An analysis of the success of registration is developed by visual inspection of the similarity of image

features using image intensity difference images and additional blind evaluation. Pixel time-intensity

curves are inspected for residual motion artefacts and intensity consistency. The Cost Function Matrix

Mean evaluation criteria developed in Section 4.4 is also used to analyse the results of image registration.

An indirect validation of the registration method can be determined using a model-fitting algorithm.

Significant work has been done using the extended Kety Model used by Buonaccorsi (Buonaccorsi et al.,

2006). The standardisation and interpretation of the parameters is covered by Tofts (Tofts et al., 1999)

and problems with uncertainty in the model fitting are discussed by Buckley (Buckley, 2002). In order

to assess the registration, without needing to determine anarterial input function, the slow variation in

the wash-out phase can be fitted to a function such as (6.1), which is a de-parametrised interpretation of

the post-enhancement Kety model. This model does not attempt to fit to the bolus arrival, the shape of

which is useful in determiningKtrans, and therefore does no assess the impact of reduction in model-fit

error on determination of this parameter.

Aij(t) = Bije
−bijt (6.1)

For each pixelAij , the parametersBij andbij can be estimated using a non-linear, least-squares fit-

ting routine. The result will only be used to gauge registration success. We expect pixels that are

well-registered, post-enhancement, to exhibit a monotonic variation in intensity with no rapid intensity

fluctuations. This is due to redistribution of contrast-agent around the body after a finite bolus injection.

In the case of poor registration, artificial artefacts causepixel-wise intensity fluctuations that do not fit

this model and the sum-of-squared-differences (SSD) between original pixel and fitted curve provides

an indication of registration error (6.2) (Hayton et al., 1997). If the registration is successful, the curve-

fitting will be improved, the intensity profile will be smoother and the SSD will be reduced (Hayton

et al., 1997), (Buonaccorsi et al., 2005).

SSDij = (Aij(t) −Bije
−bijt) · (Aij(t) −Bije

−bijt) (6.2)
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6.1.3 Results

Figure 6.1 presents registration results from two situations. In the top row, registration by simple fluid and

PPCR both correct for motion. In the bottom row, an example ofthe failure of simple fluid registration

is presented. Evidence for mis-registration in the case of asimple fluid registration is found in Figure

6.1g, a subtraction of two images registered to the first image in this dataset. In the liver, Figure 6.1g

shows evidence of artefactual fluctuations in tumour position in the upper lateral portion of the liver. The

figure presents only the difference of two time points, but the effect repeats throughout the dataset and

this would pose a serious problem for successful analysis.

Registration by Progressive Principal Component Registration (PPCR) in Figure 6.1h shows re-

moval of the liver registration artefacts in Figure 6.1g (represented by less difference signal in the high-

lighted region). Comparison with the no-registration cases in Figure 6.1b shows that motion artefacts

throughout the image are also reduced or removed. This is evidence that PPCR allows successful regis-

tration of DCE-MRI datasets. A comparison in the presence ofmotion is represented in Figures 6.1a to

6.1d. The registration to the first image in the sequence shows removal of much of the superior-inferior

displacement artefact in the liver.

Figure 6.1: Absolute-difference images demonstrating registration failure for fluid registration to first

image in dataset and correct PPCR, of two post-contrast images. Imagesa ande, anatomical images

for reference. The drawn region is the same across a row and provides a visual guide. Imagesb andf,

no registration for comparison. Imagesc andg, registration to first image in dataset,c, correct gross-

registration of the liver andg artefactual tumour motion. Imagesd andh, registration by PPCR with

improved motion correction and reduced artefacts.

The effect of registration on motion and artefact production is demonstrated in Figure 6.2 for four

different patient datasets. In the first example, registration of the large tumour in the superior-lateral

portion of the liver proved difficult for the basic fluid registration to first image in the dataset (Figures
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6.2a and 6.2b), resulting in increased intensity fluctuations. PPCR registers the tumour correctly as

shown. For Figures 6.2c and 6.2d the PPCR correctly registers the motion to the same extent as the

simple registration, removing the real motion artefacts and therefore resembles the case of registration

to the first image in the dataset. Figure 6.2c shows both registration methods working correctly for a

moving bright region (associated with vasculature). Figure 6.2d demonstrates the correct registration of

the diaphragm position by both methods at timepoint 26. Figures 6.2e and 6.2f show correct registration

of motion by both methods with the exception of one intensitypoint that is mis-registered by the simple

fluid registration scheme (timepoint 25). Figures 6.2g and 6.2h are sagittal images from a further patient.

Figure 6.2g shows correct registration by both methods. Differences between methods in Figure 6.2h

are due to mis-registration by the simple fluid registrationscheme near an enhancing tumour boundary.

In the majority of pixels, the smoothness of the intensity profile appears smoother, reflecting reduced

motion-induced discontinuities.

Results from 22 datasets were compared using a blind-evaluation process (Table 6.1). Each of

four operators were presented two movies side-by-side, from a selection of three movies of a particular

dataset (the unregistered images, registration-to-first-image-in-dataset and registration by PPCR). The

operator chose which movie they preferred or recorded no preference. A preference is characterised

by reduced motion and reduced evidence of artefacts, particularly in the liver region. A group of four

operators familiar with the process of image registration,although unfamiliar with DCE-MRI of the liver,

evaluated 89 movie-pairs. The results of Table 6.1 show a preference for the PPCR method over both the

unregistered datasets and the registration to the first image in the dataset. It should be noted that these are

the preferences of image registration specialists and may differ from those of radiologists or clinicians.

Three example datasets are included on the supplementary CD(see Appendix E). All movie files have

the same format from left to right. The left-most movie is theoriginal, unregistered DCE-MRI dataset.

The second is registration using direct fluid registration using cross-correlation to the first (unenhanced)

image in the dataset. The third is the result of registrationusing the PPCR algorithm. The filemovie-3-

01.avidemonstrates the correction of liver position between breath-holding using direct fluid registration

and PPCR;movie-3-02.avidemonstrates the correction of the position and shape of a mass in the inferior

liver by PPCR (third movie from left) and the second movie from the left inmovie-3-03.avishows failure

of direct fluid registration in a contrast-enhancing mass inthe superior liver.

The sum of squared differences (SSD) between time-dependent data pixels and model time-series of

equation 6.1 are expressed as a percentage of the SSD value relative to the unregistered case (Figure 6.3).

The PPCR almost always outperforms the simple registrationto first image in the dataset. The apparent

success of the registration methods appears to be patient dependent, patient 2 appears well-registered by

both methods. For patient 6, PPCR provides a significant advantage. This is due to problems with the

fluid registration, which can visibly distort tumour boundaries. The reason for the anomalous results of

patient 1d and patient 4 is not immediately clear. Patient 1d is visually well-registered by both methods.

Patient 4 appears registered to the same level of success by PPCR as with registration to the first image

in the dataset. Visual inspection of movies of all the registration results reveals that PPCR has failed to
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Figure 6.2: Plots of pixel intensity with time for pixels selected from anatomical images (left-hand

column). The unregistered cases (NoReg) are shown for comparison. Artefactual oscillations in fluid

timecourse for a) tumour artefacts due to nearby boundary motion & b) tumour artefacts due to tumour

mis-registration (see Figure 6.1g). c) corrected motion ofbright region within liver & d) corrected di-

aphragm position with large inferior displacement at timepoint 26. In this case both registration methods

(Fluid & PPCR) identified the large displacement. Again for different patients, e) a correctly registered

bright region and f) correct registration by both methods ofinferior liver motion. Sagittal images, g)

correct registration by both methods and h) correct registration by PPCR and mis-registration close to a

tumour boundary by the simple fluid registration scheme.
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Table 6.1: Blind-evaluation of different registration methods. Each row contains scores comparing two

registration types, representing the number of cases each registration was preferred over the other, and

the number of cases in which there was no preference. Permutations are between either the unregistered

case (NoReg), registration to first image in the dataset (Fluid) and to PPCR (PPCR).

Registration Instances Preferred Registration InstancesPreferred No Preference

NoReg 0 Fluid 28 5

Fluid 0 PPCR 25 5

PPCR 25 NoReg 0 1

correctly register a small number of images in this dataset.This was not detected by the blind-evaluation

process because the randomly picked pairs did not include this example. This may be because the

principal component analysis has not completely separatedmotion artefacts from contrast-enhancement

intensity changes and so the generated target images are notentirely motion-free. Again for patient 3b the

SSD values are very similar. Visual inspection reveals the registrations are also very similar, although

a comparison of PPCR with fluid registration did not occur in the blind-evaluation. In the majority

of cases, PPCR effectively de-couples motion induced intensity changes from contrast-enhancement

induced changes, allowing a registration unencumbered by contrast-enhancement intensity variations.

Registration by PPCR allows improved curve-fitting, which in principle allows superior model-fitting

and physiological parameter extraction.
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Figure 6.3: Results of fluid registration to the first image inthe data set or PPCR. The comparison uses

the sum of squared differences (SSD) between the image pixeldata and the decaying exponential model

of the post-enhancement phase. Results are shown as percentages of the respective SSD in the case of

no registration.
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Analysis of Registration Success using Cost-Function Matrix Mean

The cost-function matrix mean (CFMM) analysis measure discussed in Section 4.4 may be used to eval-

uate registration success. Here we will continue to use normalised mutual information (NMI) as the

evaluation method by which we will compare the different registration methods. Although the formu-

lation of NMI is extremely general, care must be taken when comparing values due to the non-linearity

between NMI value and probabilistic image similarity. Since the normalised mutual information by itself

may only be used to provide a relative measure of image similarity, the CFMM must also be used in this

way. Figure 6.4 shows the percentage change in CFMM value foreach patient dataset shown in Table

1.1 after registration to the first image in the dataset and after PPCR for all iterations (PPCR-end). Also

shown is the maximum CFMM value if the PPCR algorithm was terminated at the iteration with the

highest CFMM value (PPCR-best). In all cases the CFMM value is higher for PPCR than for a simple,

single fluid registration. This is a result of the formulation of the measure, which rewards circumstances

in which all images are similar to one another, rather than all being similar to a single image. The PPCR

algorithm may be expected to give higher values since component registrations proceed to anchor images

that contain information from the entire time-series.

Figure 6.4: Corresponding percentage change to the Cost-Function Matrix Mean (CFMM) values for

Unregistered Data, Registration by direct-fluid registration and by PPCR. Also shown for PPCR is the

highest CFMM found during the iterations.

6.1.4 Conclusion

The advantage of the PPCR method over conventional registration is that it allows the use of informa-

tion from the entire dataset to guide the image-wide deformations. In the case of DCE-MRI data, the
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early registrations are guided by the simplest uptake profiles (the early eigenvectors explain the biggest

changes in intensity) that explain the data. This allows a registration process to take place which is

refined with each iteration. The early, simple uptake profiles are expected to be relatively noise free

because early principal components describe the major, long-term trends in the data. These components

provide little information about the true pharmacokineticuptake profiles of individual pixels. Although

it is difficult to extract useful pharmacokinetic information from the principal components in this form,

they represent a suitable way to generate intermediate dataduring a refining, iterative registration. Prin-

cipal component sets calculated from the partially registered data are successively less likely to have

random motion noise in later components and this is the justification for the use of higher components

in later registrations.

The method relies on being able to separate motion and contrast-enhancement artefacts in order to

proceed successfully. If the registration cannot successfully do so, it may fail. Conventional registration

of DCE-MRI is complicated by the changing intensity structure of the images and simple image-to-image

registration methods may fail, producing artefacts, due tothe difficulty of selecting appropriate target

images. Progressive Principal Component Registration allows image-by-image registration to a partially

compressed dataset in which motion artefacts are suppressed in a series of target images generated to

resemble the original dynamic data. The use of principal components analysis circumvents the use of a

pharmacokinetic model not only avoiding the problems of accurate model-fitting but permitting the use

of much larger target areas of the dataset. Therefore, PPCR is a successful method for the model-free

registration of large region-of-interest DCE-MRI datasets.
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6.2 Registration of 3D DCE-MRI Using PPCR

6.2.1 Introduction

This section continues analysis of the PPCR algorithm usingthe six 3D DCE-MRI datasets from Table

1.2. These datasets are at a temporal resolution of 12s consisting of a 6s held-breath volume acquisition

and a further 6s breathing interval. The slice profile in the outside slices is particularly poor, and although

included in subsequent registrations we will not analyse these regions further. The passage of the contrast

agent bolus is particularly well defined in these datasets (see Figure 6.5), demonstrating the bolus passage

through the heart with two defined periods of hepatic enhancement. Since these images are acquired at

breath-hold, motion between subsequent timepoints due to breath-hold depth inconsistency remains a

problem, and will impact on pharmacokinetic analysis.

Figure 6.5: Example Contrast Enhanced Images of the Abdomen. Pre-enhancement imagea for com-

parison with image showing passage of bolus through heartb and subsequent portal enhancement of the

liver c.

6.2.2 Method

Because the PPCR algorithm uses no information about pixel spatial location, only the number of pixels,

the extension of the PPCR method to 3D is trivial, no modification is needed other than those considering

memory management which are not fundamental to the algorithm. As such, the intermediate fluid reg-

istrations are extended to full 3D and run-times are kept lowby implementing the algorithm in parallel

form for use on a computer cluster; the datasets may be registered within a few hours (i.e. overnight).

The datasets used here are of both higher spatial and temporal resolution than those used previously,

and we can apply a full pharmacokinetic analysis to the liverin order to extract pharmacokinetic param-

eters. Analysis of these parameters, and the error on these parameters, before and after registration will

indicate the performance of registration by PPCR. The DCE-MRI image analysis package is the MRIW

software provided by the Institute of Cancer Research ((d’Arcy et al., 2006), (Parker et al., 1998))

The MRIW software will be applied over a manually segmented region of the liver from the central

slice of both the pre and post-registration images, an additional registration of a low-flip angle image to

the first pre-enhancement image is also included forT 1 estimation. A pharmacokinetic model is applied

to each pixel to find parameter maps for values ofKtrans, ve and the hepatic perfusion index (HPI),

for each registration method. The pharmacokinetic model will incorporate a hepatic dual cosine arterial
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input function composed of an hepatic arterial term and a portal term (Equation 3.11 to 3.13 discussed

in Chapter 3 (Woolrich et al., 2004), (Orton et al., 2008)). The dual blood supply to the liver is fitted by

finding the HPI and the constants of the dual-cosine arterialinput function are shown in Table 3.2.

6.2.3 Analysis by MRIW

For direct fluid registration and PPCR (and where available aproprietary registration algorithm), the

MRIW software is used to calculate parameter maps forKtrans, ve, and the hepatic perfusion index,

HPI and the pixel residual. These are displayed in the followingfigures.

Figure 6.6 shows the results for Patient 2. Registration by PPCR demonstrates improved model-

fitting by way of a reduction in the pixel-residual maps.

Figure 6.7 for Patient 5 contains parameter maps calculatedfrom a dataset with a relatively large

amount of motion. Motion artefacts present themselves in the images as discrepancies at the boundaries

of features such as the large hepatic masses and the diaphragm. Some residual motion remains at the

superior boundary of the liver. Due to the residual differences in liver position between some frames, the

model-fitting routine is unable to successfully fit to these areas when they occur inside the blue boundary.

Also included in this Figure is the result of a proprietary software non-rigid registration provided with the

MRI scanner used to acquire the results. Unfortunately without details of the algorithm it is difficult to

tell why the registration is performing poorly, as seen in the pixel-residual maps which introduce model-

fitting errors for the inferior liver and the diaphragm. Direct image registration confers no obvious

improvement to the parameter maps. There are also additional acquisition related artefacts due to the

inclusion of an obsolete scanner software patch designed toadjust zero-filled data in k-space. These

artefacts are also present in Figure 6.8.

Figure 6.8 is a further dataset in which the in-built scannerregistration method is used. For the

pixel-residual maps of this patient we see a minor improvement using the PPCR algorithm but for the

in-built registration method we see a large increase in model-fitting errors. The reason for the poor pixel-

fitting of the in-built algorithm is clear when the images areinspected: the centre of the liver is actively

mis-registered between images and so in this case the results should not be used.

The total reduction in model fit residual for each dataset is summarised by Table 6.2. The results for

each dataset summarise the visible changes to the model-fit residuals in the segmented hepatic regions

of Figures 6.6 to 6.8. Direct fluid registration often achieves little improvement in residual model-fit.

This is in contrast to the PPCR method which is often able to reduce the model-fit residuals by over 10%

across the liver.

Three example datasets are included on the supplementary CD(see Appendix E). All movie files

have the same format from left to right. The left-most movie is the original, unregistered DCE-MRI

dataset. The second is registration using direct fluid registration using cross-correlation to the first (un-

enhanced) image in the dataset. The third is the result of registration using the PPCR algorithm. If a

fourth movie exists, this is the result of a scanner-based image registration algorithm. Since the data

from Table 1.2 is 3D, only the central slice is shown. The filemovie-3-04.avidemonstrates minor im-

provements to the correction of liver position between breath-holding (compare with Figure 6.6). The
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Table 6.2: Change in total model fitting residual error for each dataset in Table 1.2 after each registration

method for the segmented regions in Figures 6.6 to 6.8.

Dataset Unregistered Direct Fluid PPCR Proprietary

Registration Registration

1 100% -2% -19%

2 100% -6% -16%

3 100% -3% -8%

4 100% 0% -13%

5 100% +1% -19% -4%

6 100% +2% -17% +10%

files movie-3-05.aviandmovie-3-06.aviinclude the results of erroneous registration by the in-built al-

gorithm (fourth movie from the left) and minor improvementsin registration are seen for PPCR (third

movie from the left). Mis-registration of the central region of the liver in both these examples leads to

an increase in model-fit residual seen in Figure 6.7 and 6.8 respectively.

It is also possible to inspect for some indication of what difference registration makes to the esti-

mates of DCE parameters such asKtrans. By selecting small regions of interest it is possible to analyse

changes to parameter statistics before and after registration. The heterogeneity of regions of interest,

particularly pathology, makes the interpretation of changes to cursory statistics difficult. Because of this,

we inspect histograms of theKtrans parameter to reveal changes over the region of interest. Figure 6.9

shows the selection of three hepatic regions of interest within dataset 6 to be analysed further (see Figure

6.8 for comparison). Each region displays a weakly enhancing core and a rapidly enhancing boundary,

characteristic of tumour tissue. Figure 6.10 plots histogram statistics forKtrans for each of the three

regions. For each region prior to registration there is a binomial distribution of theKtrans parameter

reflecting low values in the centre of the region of interest surrounded by higher values. Registration by

direct fluid registration and PPCR maintain this distribution. MedianKtrans values are observed to de-

crease slightly by 3-4% after registration by PPCR, this maybe due to a reduction of intermediateKtrans

values between tumour core and tumour rim brought about by improved alignment. Model fit residuals

in these regions are reduced by approximately1
3 in each case using PPCR. The scanner based algorithm

performs poorly and resolution of the binomialKtrans distribution is lost in the three cases; the median

Ktrans value is increased by 20% for region 3 suggesting mis-registration has lead to over-estimation

of this parameter. This is visible as a loss of contrast between region centre and region periphery in the

associatedKtrans image in Figure 6.8.
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Figure 6.6: Patient 2: Model fitting results using dual-cosine arterial input function showing parameter

maps for (rows): Ktrans(min−1) (range 0-3),ve (range 0-1),HPI (range 0-1) and Pixel Residual

(range 0-8). Each column represents registration byColumn 1: Unregistered Data,2: Direct Fluid

Registration and3: PPCR.
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Figure 6.7: Patient 5: Model fitting results using dual-cosine arterial input function showing parameter

maps for (rows): Ktrans(min−1) (range 0-1),ve (range 0-1),HPI (range 0-1) and Pixel Residual

(range 0-0.5). Each column represents registration byColumn 1: Unregistered Data,2: Direct Fluid

Registration,3: PPCR and4: Automatic registration on scanner using unknown algorithm.
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Figure 6.8: Patient 6: Model fitting results using dual-cosine arterial input function showing parameter

maps for (rows): Ktrans(min−1) (range 0-1),ve (range 0-1),HPI (range 0-1) and Pixel Residual

(range 0-0.8). Each column represents registration byColumn 1: Unregistered Data,2: Direct Fluid

Registration,3: PPCR and4: Automatic registration on scanner using unknown algorithm.

Figure 6.9: Selection of local regions of interest for analysis of changes to pharmacokinetic parameters

before and after registration. See Figure 6.8 for statistics over the whole liver.
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Figure 6.10:Ktrans (min−1) parameter distribution histograms for each of the three regions (rows) in

Figure 6.9. Columns: results after each registration method as labelled.
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6.2.4 Analysis by Cost-Function Matrix Mean

The normalised mutual information cost-function matrix mean (NMI-CFMM) can also be used to assess

the performance of 3D registration by PPCR. Each of the registration methods analysed above has a

CFMM value calculated. The differences between registration methods are shown in Table 6.3 as ab-

solute NMI-CFMM values and with the percentage change compared to the unregistered case shown in

brackets. These results are broadly in line with the conclusions from the parameter maps of the previous

section. Direct registration often produces a small improvement to the CFMM value. Registration by

PPCR will allow double the improvement. The registration ofthe two datasets using the in-built scanner

registration algorithm does not provide an improvement. Care must be taken with these results, since as

discussed before, maximisation of NMI does not necessarilycorrespond to correct image registration.

Table 6.3: DCE-MRI Patient 3D Scan Data. NMI Cost function matrix mean values after registration by

each method (the percentage improvement relative to the unregistered case is shown in brackets).

Patient Un-registered Fluid PPCR Siemens

1 1.211 1.229(+1.5%) 1.255(+3.6%)

2 1.194 1.218(+2%) 1.242(+4%)

3 1.187 1.205(+1.5%) 1.228(+3.5%)

4 1.183 1.206(+2%) 1.227(+3.7%)

5 1.20 1.20(+0%) 1.22(+1.7%) 1.21(+0.1%)

6 1.18 1.18(+0%) 1.20(+1.7%) 1.18(+0%)

6.2.5 Conclusion

Results of this section suggest that PPCR may be applied to 3Ddata. The datasets used in this section

are at higher temporal resolution and images are acquired atbreath-hold. The time penalty of the PPCR

algorithm has been offset by using a computing cluster to submit registrations in parallel at each principal

component iteration. Full PPCR registrations take approximately 4hours (for datasets of 20 images) and

as a result the time penalty is not prohibitive. Use of the model-fitting algorithm in the MRIW software

has allowed an estimation of the improvement made by registration (and its effect on the model-fitting).

The PPCR algorithm has been shown to allow improved model-fitting by reduction in the model-fit

residuals. The PPCR algorithm gives a quantifiable benefit over other registration methods.



Chapter 7

Registration of Diffusion Weighted MRI

The acquisition of Diffusion Weighted MR images may be confounded by both patient motion and

machine eddy currents. In the brain, the resulting images are often corrected using an affine registration,

which is often thought appropriate in the brain due to the nature of the artefacts. Here, two non-rigid

registration schemes are compared to the result of affine registrations: a single fluid registration of the

individual diffusion directions; and a Progressive Principal Component Registration. All registrations

are full 3D. Twelve DW-MRI datasets consisting of 128x128x64 volumes from 15 diffusion directions

are registered by each method (see Section 1.3) and the different results combined to produce fractional

anisotropy maps. These maps are then inspected for improvedfeature appearance and artefact reduction.

The affine registration demonstrates a modest improvement in the twelve cases. Image alignment by

single fluid registration causes lateral brain features to appear sharper at the expense of poor deformations

of the medial brain. Registration by PPCR demonstrates bothimproved demarcation of lateral brain

features and preservation of medial features such as the corpus callosum. Figure 7.1 shows the b0 image

and 15 diffusion directions (labelled) for a slice from one of the pre-registration datasets.

7.1 Introduction

Diffusion Weighted MRI is an important tool for brain connectivity imaging and is increasingly being

applied to other organs of interest. However, due to the length of a scan and eddy currents, diffusion

weighted images often become spatially misaligned. Subsequent analysis of the images, such as their

combination into a fractional anisotropy map or principal diffusion direction image is then compro-

mised. Within the brain, eddy current distortion is regarded as being geometrical and can be countered

by an affine registration of each diffusion direction image into a common coordinate system. Since

scanner eddy current induced distortion artefacts should only cause relative scaling, shifts and shearing

between images (and only in two dimensions) and the patient can only move their head with approx-

imately rigid translations and rotations, we would expect affine registration to be appropriate. If we

were to use non-rigid registration we are likely to find that since features such as fibre tracts appear in

multiple diffusion images with different contrast (dependent on the gradient of the diffusion direction),

that local registration of these regions would be difficult.This is analogous to the contrast changes due

to contrast-agent concentration in DCE-MRI disturbing theassumptions of dispersion in the joint image
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Figure 7.1: Example DWI Slice, comprised of a B0 Image and fifteen diffusion direction images (with

gradient direction labelled)
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histogram. Whether the registration scheme is affine or non-rigid, registration will often be applied to

images containing the same features with different contrast which may be a confounding factor. Resis-

tance of the registration to artefacts will be improved using an affine registration, this may be one of the

reasons it is used in preference to non-rigid registration,since an affine transformation permits no local

changes. However, minimisation of the cost-function in an affine registration still leaves a susceptibility

to contrast-change induced mis-registration. Since it is problematic to register different diffusion direc-

tion images to each other (and therefore assign prominence to a particular direction), we must register

them to a common target image, often the b0 image which often has a better signal-to-noise ratio but

itself contains different contrast and information to the diffusion direction images. Attempts have been

made to register individual gradient direction images ((Leemans et al., 2005), (Tao & Miller, 2006)) and

there is also a large amount of work on the reorientation of tensors after their calculation ((Alexander

et al., 2001), (Guimond et al., 2002), (Hecke et al., 2007)).

The fundamental diffusion imaging equation is given by Equation 7.1 where the signal for a given

b-value (in units ofs.mm−2) is given by this relationship given the non-weighted signal S0 and gradient

directiong. The diffusion tensor for a given region,D, can be found by varying the gradient orientations.

In three dimensions we have a 3x3 Tensor but since reflected gradient directions are redundant (i.e.

Dxy ≡ Dyx), we need a minimum of 6 gradient values to determine the tensor, plus a b0 map. In

practice, many more gradient directions are often included. Performing an eigenvector analysis on the

diffusion tensor produces a principal vector representingthe dominant diffusion direction, which can be

used to infer nerve-fibre orientation.

S(g) = S0e
−bgT Dg (7.1)

The work in this Chapter applies the Progressive Principal Component Registration (PPCR) scheme

(Melbourne et al., 2007b), a method that uses a principal components analysis to generate target images

from a set of images containing the same information with changing contrast. In the case of DW-MRI, the

method makes use of the overlapping image information from different gradient orientations to perform

registration. The method applies a non-rigid fluid registration at each step as used in previous chapters

(see (Crum et al., 2005)), which allows the potential for theregistration of inter-subject cranial Diffusion

Weighted MRI, registration to an atlas or extra-cranial Diffusion Weighted MRI. It is possible that the

registration of the images may require the re-orientation of the gradient direction associated with each

image; this can be done in a straightforward manner when using affine registration. For the non-rigid

case, a change in direction can be found from the local deformation field. For a given pixel, we find

the rotational component of the Jacobian of the deformation. For the results in this chapter we find the

rotational components to be extremely small (sub one-degree) and so do not reorientate the gradient

direction.

7.2 Method

We apply the PPCR method (Melbourne et al., 2007b) to 12 datasets. Each dataset consists of a

128x128x64 volume acquired from 15 diffusion directions with a b-value of1000s.mm−2 and a corre-
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sponding b0 volume. The PPCR method is implemented in a full-3D implementation and is compared to

both a 3D affine registration of each diffusion gradient direction volume to the corresponding b0 volume

and a 3D single fluid registration of each diffusion direction to the first diffusion direction - the registra-

tion cost function used in the case of affine registration andsingle fluid registration is Normalised Mutual

Information (Studholme et al., 1999), the similarity measure that should be most appropriate here since

the pixel intensity relationship is unknown. The affine registration provides a comparison of the PPCR

method to an existing registration method and the single fluid registration allows a comparison of the

PPCR and affine methods to a direct non-rigid registration scheme.

Application of PPCR to DW-MRI is analogous to its application to DCE-MRI. As with DCE-

MRI, conventional cost-functions will seek to minimise artefacts due to both motion and contrast change

with equal weight leading to poor registration. PPCR allowsthe generation of target images that are

contrast matched to the original images. This is because there is shared information between images

with different diffusion gradient directions - the gradients directions overlap with at least one of three

orthogonal coordinate directions. Motion artefacts in particular do not overlap with gradient direction

(although eddy currents will), they are unique to a particular image and are therefore unlikely to appear

in early principal components. Figure 7.2 shows the resultsof rebuilding the dataset for three images

(top row), using (on each successive row) 1-4 principal components. In the case of diffusion images,

principal components represent functions of signal intensity with direction. For a region of restricted

diffusion a smoothly varying function of diffusion strength with angle might be disrupted by motion in

individual images. In this case early principal componentsrepresent pixels with well-defined directional

information and later components may be used to remove the image noise that is largely unique to a

particular diffusion direction. Information from pixels with multiple dominant diffusion directions is

likely to be encoded in a handful of early principal components; provided that noise does not dominate

the numbers of pixels with well-defined signal-angle profiles, registration by PPCR may proceed.

A reminder of the fundamental PPCR equation is shown in Equation 7.2, in which the result (the

new best registered data) at a given iteration,n, is given by the registration of the best registered data from

the previous step, registered to artificial images generated from a temporal principal components analysis

of the best registered data from the previous step, rebuilt usingn principal components. Registration of

source images to artificial target images uses a fluid registration algorithm (Crum et al., 2005).

An+1
ij = An

ij 7→
n<T∑

m=1

(Un
m · An

ij)U
n
m (7.2)

The results of the three registration methods are combined into both fractional anisotropy maps and

principal diffusion direction RGB images so that differences in the resulting features can be observed.

Due to the combination of the 15 separate, registered diffusion direction images into a single fractional

anisotropy map, it is difficult to analyse the direct contribution of the individual deformation fields to the

final result.

A comparison of the consistency of the fractional anisotropy before and after registration can be

used to provide evidence of registration success. Work by Bai (Bai & Alexander, 2008) compared frac-

tional anisotropy values calculated from two sets of 30 images from a 60 diffusion direction dataset
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before and after registration. We choose to use a leave-one-out analysis since we are also constrained

by having only 15 direction images; this also removes the influence of bias when choosing which com-

bination of directions to leave out. Calculation of the fractional anisotropy uses combined information

from the remaining 14 different diffusion directions. For each diffusion direction in turn, we calculate

the fractional anisotropy without that direction. This produces 15 values of the fractional anisotropy for

each pixel. If the registration is successful we would expect the fractional anisotropy to be consistent

despite the removal of a particular direction; hence we inspect the standard deviation of the fractional

anisotropy values for each pixel over a central region of thebrain (as defined by an ellipsoidal binary

mask of radius14 × 1
4 × 1

2 of the image dimensions in[x, y, z] on the centre of the image) on the assump-

tion that smaller variations in FA value correspond to good alignment of those diffusion directions used

in its calculation. The central region of the brain refers the result of a mask formed by a sphere located

in the centre of the image. Larger image mis-alignment errors occur in the lateral brain, some of which

may not be included as a result of masking so the following results might not show the increased benefit

of image registration in these errors. The sphere size is defined so that spurious tensor calculations in the

skull and air are ignored.

Also provided are the results of the tensor fitting calculation using the least-squares fitting method

(see (Kingsley, 2006)) in which the system matrix is comprised from the gradient vectors. The total

tensor-fit residuals over the central region of the brain areshown for each dataset. The central region is

calculated as described above.

7.3 Results

Qualitative registration results are presented in Figures7.3, 7.4 and 7.5. These figures are best viewed

electronically. The images presented here demonstrate image registration success, or otherwise, by

allowing inspection of the brain features calculated afterconversion of the diffusion direction images into

fractional anisotropy and principal diffusion direction images (Melbourne et al., 2008b). Quantitative

registration results are provided in the following sections.

7.3.1 Visual Inspection of Fractional Anisotropy Maps

Figure 7.3 demonstrates the benefit of image registration ina subject in which there is substantial motion

between diffusion directions. The resulting fractional anisotropy calculations in this region, particularly

in the anterior brain, provide little fibre tract information. The implementation of affine or fluid registra-

tion improve the demarcation of fibre tracts slightly, but the application of the PPCR method appears to

have well-recovered fibre-tracts in this area.

Figure 7.4 is a slice from the same subject but superior to that in Figure 7.3. Improved feature

resolution and apparent visual noise reduction are seen throughout the slice using the affine and fluid-

based registrations, but PPCR appears to show further improvements, particularly in the lateral brain.

Figure 7.5 from a different subject to those presented above, but with less severe artefacts as seen

in the unregistered fractional anisotropy images. Registration of the diffusion direction images allows
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improved artefact reduction, for instance as seen here in the ventricles. Analysis of the fluid registration

result seems to show mis-registration of the corpus callosum. This feature appears to be the result

of mis-registration as a result of registering component direction images that contain strong signal in

one image and weak in the other relative to the global intensity level. As a result the strong image

features are contracted in the resulting registration. Theabsence of this feature in the other registration

methods suggests that problems may be encountered in naive direct registration. Despite this error, fluid

registration shows improved feature resolution in the medial brain, but this is matched by the PPCR

result, and exceeded, particularly with reference to the direct-registration failure in the corpus callosum.
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Figure 7.2:Top row: Images from a DW-MRI dataset for gradient directions 1 to 3.Subsequent Rows:

Images rebuilt using, on each row, 1,2,3,4 components respectively.
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Figure 7.3: (Subject 175) Demonstration of apparent improved pixel resolution and feature demarcation

with registration method in Fractional Anisotropy (FA) andPrincipal Diffusion Direction Images. Note

increased demarcation of features in the anterior brain, with increasing improvement using affine, fluid

and PPCR registration protocols respectively. Also note a decrease in spurious features in the ventricles

with registration method.
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Figure 7.4: (Subject 175) Demonstration of apparent improved pixel resolution and feature demarca-

tion with registration method in Fractional Anisotropy (FA) and Principal Diffusion Direction Images.

Note improved resolution of features throughout this brainslice with increasing registration algorithm

complexity. Serious motion artefacts associated with thisparticular patient have been removed most

successfully using PPCR, making the dataset suitable for further analysis.
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Figure 7.5: (Subject 52) Demonstration of apparent improved pixel resolution and feature demarcation

with registration method in Fractional Anisotropy (FA) andPrincipal Diffusion Direction Images. Frac-

tional Anisotropy Imagesa to d: note disruption of corpus collosum using simple fluid registration, but

preservation under PPCR. This disruption is likely to be dueto erroneous through plane registration of

the corpus collosum edges in the diffusion direction images, e to h. Note also reduction in noise in

ventricles under PPCR in comparison to other methods. Definition of lateral brain features is enhanced

in both non-rigid registration algorithms.
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Figure 7.6: Analysis of variation in Fractional Anisotropyvalue for a leave-one-out analysis of the fifteen

diffusion directions. Values are expressed as a percentageof the original FA standard deviation for each

registration methodsee text.

7.3.2 Analysis of Fractional Anisotropy Variation

Figure 7.6 contains the results for the leave-one-out fractional anisotropy consistency analysis described

in the methods section. In all cases, the PPCR algorithm is seen to improve the fractional anisotropy

calculation by reducing the variability in its result by up to 35%. Registration by the affine method

produces only a modest improvement suggesting that the registration algorithm is unable to cope with

the type of deformations required. Fluid registration produces an improvement over the affine case. The

calculation of the fractional anisotropy variability in this way suggests that the non-rigid registration

methods are producing both visually and quantitatively superior results.

The results in Figure 7.6 may contain the effects of an overall reduction in fractional anisotropy

across the region of interest. Motion artefacts in regions of low signal are likely to cause the resulting FA

value to appear high. Reduction of these motion artefacts reduces the observed anisotropy, reducing the

observed FA in these regions. Conversely, a reduction of motion artefacts due to the image registration

procedure in regions of high anisotropy might have less impact on the calculated FA which will remain

high. The combined impact should result in improved contrast, partly explaining the improved feature

demarcation in Figures 7.3 to 7.5.
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Figure 7.7: Analysis of tensor fitting residual after fittingto 15 diffusion directions. Values are expressed

as a percentage of the original residual of the unregisteredimages for each registration method.

7.3.3 Analysis of Tensor Fitting Residuals

Figure 7.7 contains the results of the residual in the tensorfitting procedure in signal space. Values rep-

resent the average residual over a central sphere of the dataset as described above. Affine registration

in this case produces results that make tensor fitting more difficult. This may be the case at the extreme

edges of the sphere due to the constrained nature of the deformation and the resulting increase in dis-

placements away from the image centre. Non-rigid registration can be seen to allow improved tensor

fitting for both direct fluid registration and PPCR.

Affine or Non-Rigid Image Registration?

An important question is the use of non-rigid image registration in an application in which affine reg-

istration is considered adequate. The PPCR algorithm does not explicitly require a non-rigid image

registration method and therefore we may in future substitute an affine registration method. The oper-

ation of the PPCR algorithm allows conventional image similarity measures to be used on images with

varying contrast in non-rigid applications where local volume change would otherwise be a problem.

The imposition of a global affine deformation model is likelyto be reasonably robust to the local con-

trast changes seen when inspecting DCE-MRI or DW-MRI imagesalthough the cost-function may still

be inappropriate. In an affine registration there can be no local contraction of enhancing features that

might result from non-rigid registration and so there should be little justification for a PPCR-affine algo-

rithm. The results of the previous sections suggest that PPCR is able to successfully non-rigidly register
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images in which there is reason to believe the number of degrees of freedom is restricted. In the case of

atlas-based image registration and inter-subject registration, non-rigid registration will be necessary.

7.4 Conclusion
The PPCR method demonstrates improved registration of Diffusion Weighted MR images when com-

pared to simple affine registration or when using a naive fluidregistration scheme. The use of affine

registration in the alignment of cranial DW images is regarded as adequate, but this is particularly un-

likely to be the case for extra-cranial organs such as the liver. The computational time penalty of the

PPCR method, when compared to affine registration, is large and a handicap when considering that im-

provements with affine registration are marked and detectable. However, the PPCR method has a higher

success rate when compared to the single fluid registration method and is preferable in this instance. The

PPCR method works as a result of combining overlapping information from the non-orthogonal gradient

directions. Without this overlap, the images would not be suitably similar in order to generate principal

components indistinguishable from noise and the PPCR registration would likely fail. The method al-

lows enhanced feature detection and reduced noise by reducing motion and eddy current artefacts, which

is a benefit to subsequent analysis such as calculating the fractional anisotropy (as shown) and also when

considering tractography. The use of PPCR on much higher angular resolution data might be limited by

the increasing violation of the linearity assumption of theprincipal components, an isotropic distribution

of orientated pixels will no longer be present. However, determination of the exact threshold is left as

future work.
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7.5 Diffusion MRI of the Liver

7.5.1 Introduction

Diffusion Imaging is increasingly finding application in oncology to measure diffusion coefficients in

regions of tumour. Here the emphasis is not on taking many diffusion gradient directions to form a di-

rectional diffusion tensor, but on quantifying the isotropic diffusion coefficient (in this case the Apparent

Diffusion Coefficient, ADC). Equation 7.3 shows the diffusion signal with a b-value,b and ADC value,

D given the un-weighted signalS0. In order to find the ADC, data from differentb-values are taken.

Hence an ADC map can be found for example as in Equation 7.4 fortwo differentb values. For manyb

values, the ADC can be found by least-squares fitting, which will be presented further in the methods.

S(b) = S0e
−bD (7.3)

ADC =
1

b2 − b1
log(

S(b1)

S(b2)
) (7.4)

ADC measurements have been investigated for both tumour determination and for the assessment of

changes to ADC brought about by anti-angiogenic therapies.Disruption to high density neo-vasculature

cannot easily be said to either increase or decrease the ADC although necrosis is considered to increase

the local ADC (Provenzale et al., 2006). The disorganised growth of a tumour is believed to result in

isotropic diffusion without a preferred orientation over the size of an imaging pixel. The relatively highly

cellular environment of tumour tissue, when compared to healthy tissue, is expected to be restrictive to

diffusion. However, the expected changes to the ADC values are somewhat complicated and have not

been fully characterised as reported separately by Koh and Vandecaveye ((Koh & Collins, 2007), (Van-

decaveye et al., 2007)). Regions of tumour growth are likelyto be disorganised and increased cellular

density might be expected to result in a decrease in the observed isotropic diffusion coefficient (Van-

decaveye et al., 2007). Since we are assessing areas of isotropy, values between the three orthogonal

directions should be the same up to the noise value. Between different b-values, the isotropy measure

should simply be related by scaling. Therefore, conventional cost-functions (at least those that accommo-

date overall intensity change (e.g. cross-correlation butnot sum-of-squared differences) should remain

appropriate. Assessing diffusion coefficients in the liveris made difficult by patient breathing motion,

requiring either gated acquisition or post-processing techniques such as image registration (Kwee et al.,

2008). This section applies image registration methods on order to observe changes to the calculation of

pixel-wise ADC values. Figure 7.8 shows example liver images when varying theb-value: liver tumours

appear as focal increases in the signal throughout the liver.

7.5.2 Method

Data assessed here consists of information from seven differentb-values between 0-750s.mm−2, each

non-zero value is assessed in three orthogonal directions generating a total of 16 images (volumes)

(see Table 1.4). As reported by Koh (Koh & Collins, 2007), thespread ofb-values is susceptible to

flow artefacts at lowerb-values (b < 150s.mm−2) (particularly relevant for the highly vascular hepatic

environment) so vascular regions (an extreme example is theaorta) might be assigned inappropriate

ADC values when using a mono-exponential function such as inEquation 7.3.
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Figure 7.8: Example Abdominal DWI Slice, comprised of a B0 Image and fifteen diffusion images cor-

responding to differentb values and orthogonal directionsprs (labelled). The imaging signal decreases

with increasingb-value (Equation 7.3), liver tumours appear as focal increases in the signal.
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In contrast to the previously assessed DCE-MRI data and multiple diffusion direction cranial imag-

ing, we are now assessing data where there should be nolocal contrast change. As discussed by Koh

(Koh & Collins, 2007) we do not expect directional anisotropy in the ADC within areas of interest,

although this might not always be the case, for instance nearto blood vessels.

Calculation of the ADC, is found by non-linear least-squares fitting; finding the optimal value ofD

in the solution of 7.5. The estimation ofD is dependent on the spread ofb-values, noise and the stability

of the signal to flow artefacts at lowb-values. In this section we do a linear fit to thelog of the signal

intensities. Although this might introduceb-value dependent errors in the fitting, the bias towards higher

values might be thought to counteract the lower confidence inlow b-value data as a result of possible

perfusion artefacts.

min[

Nb∑

n

(S(bn) − S(b0)e
−bnD)2] (7.5)
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Table 7.1: Total ADC Residual Before and After Image Registration

Dataset Number of Unregistered Fluid PPCR

images Registration

1 7 100% 94% 63%

2 16 100% 80% 71%

7.5.3 Results

Figure 7.9 shows calculated ADC maps before and after registration with corresponding fitting residual

images in Figure 7.10 for the dataset with 7 b-values. Visible improvements are not immediately clear

when assessing the the accuracy of the ADC values throughoutthe slices shown, however slices are

shown for completeness. Inspection of the ADC fit residual reveals some improvement after registration.

Figures in Table 7.1 are calculated over the central region of the dataset only (as in the previous section,

defined by an ellipsoidal binary mask of radius1
4 × 1

4 × 1
2 of the image dimensions in[x, y, z] on the

centre of the image). A reduction in residual is seen using the PPCR method in the residual maps in the

right hand column of Figure 7.10. Corresponding figures for the total residual are presented in Table 7.1

showing a fall in ADC residual over the entire volume of29% for this case. Direct registration sees a

reduction in residual of20% in this case, as may be expected following the discussion above in which

we would expect image registration using unmodified cost-functions to be successful. A reduction in

ADC residual is also seen for dataset 1 in Figure 7.1 althoughwe are fitting to fewerb-values.

7.5.4 Conclusion

This section presents preliminary work on the registrationof diffusion MRI outside of the brain. The

increased use of diffusion weighted imaging in oncology will require sophisticated image processing

techniques to reduce the influence of patient motion. In particular for the abdomen, the use of non-rigid

registration algorithms is likely to be necessary. This section provides evidence that standard non-rigid

registration techniques should be suitable, however one explanation for improved results using PPCR

is that the iterative nature of PPCR and registration to a common coordinate frame rather than that of

a single particular image can be used to provide a better result (Bai & Alexander, 2008). Perhaps the

implementation of PPCR in the registration of any large group of images (given the conditions imposed

in Chapter 5) should be considered when using images in otherapplications.
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Figure 7.9: ADC maps for slices from Patient 1 from Table 1.4:Column 1 before registration,Column

2 after fluid registration using NMI cost function,Column 3 after registration by PPCR.
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Figure 7.10: ADC residual maps for slices from Patient 1 fromTable 1.4:Column 1 before registra-

tion, Column 2 after fluid registration using NMI cost function,Column 3 after registration by PPCR.

Showing some evidence of reduction to model-fit residuals after registration.



Chapter 8

Kullbach Leibler Assisted Image Matching

and Patching (KLAMP)

8.1 Introduction

A Dynamic Contrast Enhanced MRI dataset consists of many imaging frames, often both before and

after contrast injection. Registration may be driven by minimising joint image histogram dispersion.

Force gradients used to drive registration algorithms are derived from changes that reduce the dispersion

in the joint image histogram. Differences between joint image histograms between images before and

after contrast arrival can be compared. We investigate if pixels contributing to joint image histogram

dispersion by contrast change alone might be separated fromthose due to motion changes. As discussed

in Chapter 5 the joint histogram between pre and post enhancement images contains dispersion due to

both motion and enhancement, both of which are minimised during registration. If we assume that there

are gross changes to the joint image histogram between pre and post enhancement due to enhancement

processes, then we can seek to minimise those changes by comparison of the histogram distributions.

Work related to intensity alteration has been produced by Weisenfeld (Weisenfeld & Warfield, 2004):

the authors sought a functional multiplicative relationship between intensities in two images in order to

correct for intensity biases in the MRI acquisition and therefore improve segmentation techniques. The

concept is similar to that proposed in this chapter, but herewe seek to reduce the influence of large local

contrast variations on image registration.

Figure 8.1 shows the generation of joint image histograms: one between two pre-enhancement

images and the second between a pre-enhancement and post-enhancement image. Image registration

force gradients are calculated to reduce dispersion in the joint image histograms, however in the case of

the pre and post-enhancement images, dispersion in the joint image histogram is generated from both

motion and contrast-enhancement and it is possible that image registration will attempt to shrink or

distort enhancing regions as discussed in Chapter 4.

8.2 Method

We describe the joint image histogram (normalised so that itmay be considered a probability distribution

of intensity values) of two pre-enhancement images,Apre1 andApre2 asJIH (Apre1,Apre2). Similarly,
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Figure 8.1: Formation of joint image histograms between a pre enhancement images and either a pre or

post enhancement image. Force-gradients that reduce the dispersion in the histogram formed using the

post enhancement image may result in shrinkage of enhancingfeatures.

we consider the normalised joint image histogram between a pre-enhancement image,Apre1, and a post

enhancement image,Apost1, multiplied by a binary pixel mask, M giving JIH (Apre1,M · Apost1). We

optimise this mask so that the divergence between the pre andpost joint image histograms, as measured

by the Kullbach Leibler divergence (KLD - Equation 8.3), is minimised (Equation 8.2). For an enhancing

image, masking pixels that are enhancing reduces their impact on the formation of image force gradients

as discussed in Chapter Four. In this sense our pre-enhancement histogram is atraining histogramused

to modify theenhancement histogramso that it can be used for motion correction. Our pre-enhancement

histogram should contain dispersion typical of the motion between two images and should therefore be

calculated between pre-enhancement images only. Any dispersion in this joint image histogram can be

considered to be motion related. By comparing the pre-pre and pre-post joint image histograms we can

estimate which contributions to the pre-post joint image histogram are due to enhancement and suppress

their influence in subsequent image registration procedures.

KLD(JIH (Apre1,Apre2)‖JIH (Apre1,M · Apost1)) (8.1)

min[KLD(JIH (Apre1,Apre2)‖JIH (Apre1,M · Apost1)))] (8.2)

The mask can be found using an automatic method inspecting the small change in Kullbach Leibler

divergence (KLD) brought about by removing individual pixels; the approach used here is similar to that

used by Crumet al (Crum et al., 2005). If the removal of a particular pixel reduces the KLD, then the
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corresponding mask position is set to zero. The small changein KLD can be found by considering the

removal of a particular pixel from the histogram, hence the associated bin contents are reduced by 1. This

procedure is non-iterative and fast and the derivation is given in Equations 8.3 to 8.8 for corresponding

intensity bin contents in the training histogramni and enhancement histogrammi.

KLD =
1

N

bins∑

i=1

ni log(
ni

mi
) (8.3)

KLD = KLDi6=j +
1

N
[nj log(nj) − nj log(mj)] (8.4)

KLD = KLDi6=j +
1

N
[(nj − 1) log(nj − 1) − (nj − 1) log(mj − 1)] (8.5)

KLD = KLDi6=j +KLDj + dKLD (8.6)

dKLD =
1

N
[nj log(

mj(nj − 1)

nj(mj − 1)
) − log(

nj

mj
)] (8.7)

dKLD ≈ 1

N
log(

mj

nj
) (8.8)

From the steps outlined above, we expand Equation 8.5 to Equation 8.7 and find the change in KLD

(dKLD). For a large number of pixelsN and large bin contentsni andmi (thereforeni ≈ ni − 1) , the

expression fordKLD can be represented as Equation 8.8.

It may not be appropriate to simply remove those pixels that result in a reduction in the KLD. By

inspection of test data, this process also removes pixels that are not enhancing. Theoretically this is due

to discrepancies between the training histogram and enhancement histogram that encompass motion not

captured by the training histogram. It is therefore necessary to define a thresholddKLD so that if re-

moving a particular pixel reduces the total KLD by more than the threshold amount, we mask that pixel.

The assumption is that contrast enhancement intensity changes contribute more to the KLD value than

motion artefact intensity changes; it follows that contrast enhancement intensity changes that contribute

to a large KLD are generating dispersion in the enhancing joint image histogram that is greater than that

that due to motion artefacts. The reduction of contrast-enhancement induced joint image histogram dis-

persion is likely to result in mis-registration, so its removal may be advantageous. Using this method, the

pixel mask should remove the influence of contrast-enhancement on the force gradient by removing from

the analysis those pixels that are changing intensity valuebetween pre and post enhancement images in

a fashion unlike those between the pre-enhancement images.

If registration was carried out between the pre enhancementimage and the masked post enhance-

ment image, we would still have spurious force gradients at the mask boundaries. To reduce or remove

this effect it is necessary to calculate a patch image to fill the gap produced by the mask. One method of

doing so is as follows: for each masked pixel, we look at the image intensity it should have, given the

joint image histogram formed by the masked post-enhancement image and the pre-enhancement image

(see Figure 8.2). The most likely value (that with the highest probability) is then given to each masked

pixel to create a patch. Selecting the most likely value is preferable to drawing from the associated inten-

sity probability distribution since this would introduce histogram dispersion that may produce spurious

force-gradients; taking the most likely value prevents this. The effect of the patch is to reduce or remove

the effect of erroneous force gradients at the mask edges. This arises because the masked pixel has been
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given the most likely intensity value and so generating a force across it is unlikely to further minimise

(or maximise) the cost-function.

Figure 8.2: Selection of most-likely pixel intensity values for the masked image patch. Masked pixels

have a new value calculated by considering their most likelyvalue from the new joint image histogram

between pre and masked post-enhancement images (as demonstrated by the green line markings, arrows

show the original intensity values, the green dot the replaced intensity value).a Original joint image

histogram andb Joint image histogram after masking.

The process described above is termedKullbachLeibler Assisted imageMatching andPatching

(KLAMP).

Results are shown for two different variations of the KLAMP method. First we inspect the effect

on final image registration result using the non-rigid fluid registration method described in Appendix C

where we submit an anchor image and a masked and patched float image. Second we modify the fluid

registration algorithm so that the KLAMP method is directlyincorporated (see Appendix D). To anal-

yse registration performance, we use a real pre-enhancement anchor image and a real post-enhancement

image subject to an additional deforming force (as per Chapter 3). The additional perturbing force gener-

ates motion artefacts larger than the existing motion between the real pre and post enhancement images.

Therefore we have a reasonable approximation to the gold standard deformation that the registration

algorithms should recover. Analysing manually segmented images of the liver, heart and aorta, we can

investigate how well we recover the gold-standard images and quantify mis-registration.
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8.3 Results
Results are presented for direct analysis of the force gradients, selection of the pixel rejection threshold

and analysis of the deformation fields using a pre-enhancement anchor image and masked and patched

post-enhancement float image. We also investigate the effect of the registration after incorporation of the

KLAMP algorithm into a fluid registration implementation asin Appendix D.

8.3.1 Inspection of Driving Force Gradients using KLAMP

Figure 8.3 demonstrates the formation of an image mask and its effect on reducing contrast-enhancement

induced dispersion on the joint image histogram between preand post-enhancement images.

Figure 8.3: Formation of joint image histograms between twopre enhancement images and a masked

post enhancement image. Formation of the image mask as discussed in the text reduces force-gradients

that are likely to contribute to shrinkage of enhancing features.

Figure 8.4 demonstrates the described masking and patchingmethod and the effect on the image reg-

istration force gradients. Force gradients are calculatedby consideration of maximising the Normalised

Mutual Information as shown in Appendix B. Force gradients for the registration of the unmodified post-

enhancement image to the pre-enhancement image are wrong (Figure 8.4): in addition to medial-lateral
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correction of abdominal wall movement and superior-inferior liver/diaphragm displacement there are

pinching force gradients on both the aorta and the left-ventricle/ascending aorta. The formation of NMI

force gradients when using the masked post-enhancement image and the pre-enhancement image are dif-

ferent (Figure 8.5), but as discussed in the methods section, there are difficulties in calculating force gra-

dients over the boundaries between masked and unmasked pixels. These effects are reduced or removed

using masking and patching (Figure 8.6). In the masked and patched method we maintain the force

gradients correcting medial-lateral abdominal wall movement and superior-inferior liver/diaphragm dis-

placement but have removed force gradients associated withthe pinching of enhancing features. There

remains some residual difficulty in the left-ventricle which may need to be considered on the eventual

image registration. The application of regularisation (e.g. finding the displacement from these force

gradients using the fluid-equation) will smooth ’noisy’ force gradient regions but is likely to preserve the

consistent forces that correct the major abdominal wall movement and superior liver displacement.

Figure 8.4: Formation of Normalised Mutual Information force gradients between unaltered post-

enhancement and pre-enhancement images. Note the pinchinggradients around the heart and aorta

in addition to abdominal wall and diaphragm position corrections.
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Figure 8.5: Formation of Normalised Mutual Information force gradients between masked post enhance-

ment image and pre-enhancement image. Note the absence of pinching force gradients in the heart and

aorta but appearance of flat regions with visible gradients at the boundaries. The mask used is identical

to that shown in Figure 8.3.

Figure 8.6: Formation of Normalised Mutual Information force gradients between masked and patched

post-enhancement image and pre-enhancement image. Note the absence of pinching force gradients and

its replacement with local noise in masked regions. Abdominal wall and liver position corrections are

maintained. The mask used is identical to that shown in Figure 8.3.
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8.3.2 Setting the KLD Threshold in KLAMP

The selection of the threshold in the previous section was anempirical choice having a value oflog ni

mi
=

−1 for the bin contentsn andm at intensityi in the training and enhancement histograms respectively.

This threshold value is now tested, and varied between 0 and -2 in steps of 0.25. Figure 8.7 shows

the resulting image masks (morphologically dilated by one pixel). Selection of a threshold value of -1

appears to provide a trade off between masking enhancing features such as the aorta and masking features

due to unmodelled histogram differences. This should be tested further before stronger conclusions can

be formed.

Figure 8.7: KLAMP mask formation for threshold values between 0 and -2 using step size 0.25 (Pixels

are masked iflog mi

ni
< threshold).
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8.3.3 Float Image Pre-Processing using KLAMP

Hand-segmented contrast enhanced images are selected fromthe data in Table 1.2 as demonstrated in

Figure 8.8. Three segmentation types are selected representing the heart, the enhancing aorta and the

liver. Since the images are in reasonable alignment prior toregistration, we impart an additional defor-

mation using the motion model in Chapter 3. The deformation is applied to both the enhancing images

and the training image (image 2) so that a good training histogram is found. We now have a gold-standard

against which to compare the results of image registration.Mis-registration of enhancing features may

result in a reduction in the area of segmented enhancing features (volume in 3D) between gold-standard

and registered images. Correct registration should resultin an increased intersection of the segmented

liver between gold-standard and post-registration contrast-enhanced images. Image registration is car-

ried out between post-enhancement and pre-enhancement images with and without KLAMP to produce

deformation fields which may then be applied to the segmentations in order for a comparison with the

’undeformed’ gold-standard.

Figure 8.8: Segmentation of enhancing features and the liver for analysis of registration performance.

Image 1 represents the anchor image to which we register enhancing float images 5 to 7. Image 2 is the

additional training image used in the KLAMP method. Motion artefacts between images 1 and 2 are

used to generate the training joint image histogram.

The following section will provide an analysis of the KLAMP method as applied within the fluid

registration framework of Appendix C. Table 8.1 shows results for the total area of heart and aorta

and the intersection of liver pixels before deformation andafter deformation and subsequent registration
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with and without the KLAMP method. There is evidence that theunmodified registration method causes

shrinking of the enhancing heart and aorta by up to 18%. This incorrect shrinking of the heart and aorta

is visible in both the registered and segmentation images and may be counteracted using the KLAMP

method. The final row in the Table 8.1 suggesting that the shrinking is the same both with and without

KLAMP is the result of poor threshold choice in the KLAMP image mask (the threshold is too high

and no pixels are masked in this case). Registration success, as measured by an increased overlap of

segmented liver pixels is represented in Table 8.1 columns 5and 6, as a percentage of the maximum

possible number of overlapping green pixels. The number of overlapping pixels between the original

undeformed image and the registered image is improved in allcases both with and most cases without

KLAMP. However, the KLAMP method appears to cause under-registration of the images, as marked by

a much smaller increase in overlapping pixels. The reasons for this are investigated further by inspection

of the modification to the potential cost-function minimisation space caused by the KLAMP algorithm.

Further results are shown in Table 8.1 Columns 7 and 8 for the total absolute difference between the

applied deformation and correcting registration deformation field. Results are expressed as a percentage

of the applied deformation; perfect deformation recovery would result in a zero absolute difference. The

under registration using the KLAMP method is summarised by residual deformations that represent a

large fraction of the original applied deformation. Recovery of the deformation without the KLAMP

method is variable.

Some example images are shown in Figure 8.9 for the marked result in Table 8.1. Given the pre-

enhancement anchor image, we register a post-enhancement float image to the anchor using normalised

mutual information. The results for each registration method are shown in imagesb,c,d in Figure 8.9.

There is visible pinching of the enhancing left ventricle inthe registration without KLAMP. Correspond-

ing segmentation images are shown in the second row and the recovery of the gold-standard deformation

is shown in the third row in the colour difference image. Clearly visible in imagei is the contraction of

the ventricle (and also the descending aorta). Results for the corresponding segmentation image (image

j ) after registration using KLAMP show the under-registration suggested by the results of Table 8.2. The

KLAMP method implemented as a float image pre-processing step appears to make registration difficult.
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Table 8.1: Segmentation statistics for the change in area ofheart and aorta and the intersection of the liver after imageregistration with and without KLAMP. Columns 7 and

8: Absolute Residual Deformation (as percentage of original deformation) after image registration with and without KLAMP. *see Figure 8.9.

Dataset Area of Segmented Area of Segmented Intersection Intersection Intersection Residual Residual

: Heart and Aorta Heart and Aorta of Liver of Liver of Liver Deformation Deformation

Timepoint (Without KLAMP) (With KLAMP) (Deformed) (Without KLAMP) (With KLAMP) (Without KLAMP) (With KLAMP)

1 : 5 7→ 1 -13% -1% 90% 99% 93% 33% 56%

1 : 6 7→ 1 -16% -1% 91% 99% 92% 32% 82%

1 : 7 7→ 1 -7% -4% 86% 97% 89% 33% 83%

2 : 5 7→ 1 -17% -2% 87% 99% 88% 27% 67%

2 : 6 7→ 1 -10% -2% 83% 98% 92% 31% 51%

2 : 7 7→ 1 -7% -8% 88% 96% 90% 78% 98%

3 : 5 7→ 1 -11% -0% 87% 95% 85% 50% 100%

3 : 6 7→ 1* -14% -1% 88% 98% 87% 48% 90%

3 : 7 7→ 1 -10% -13% 88% 95% 88% 70% 98%
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Figure 8.9: Example images from Table 8.2 Row 8.a) anchor image.b) original un-deformed image to

compare withc) registration without KLAMP andd) registration with KLAMP.Row 2: Corresponding

segmentation images after registration.Row 3: Segmentation difference images with gold-standard

segmentation for each registration method.
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Inspection of the effect of the KLAMP method on cost-function minimisation may reveal the reason

for the apparent under-registration. Using the cost-function minimisation space analysis of Section 4.3

it is possible to inspect how easily we might expect to minimise our cost-function after KLAMP. Figure

8.10 demonstrates the changes to the minimisation space andthe effect of the suppression of enhanc-

ing features. It appears that the inclusion of the KLAMP algorithm might make the minimisation of

information theoretic cost-functions difficult. The reason for this is the patching of the image with the

most likely intensity values. This is designed to reduce spurious force gradients in the masked image,

but has the effect of increasing the value of the normalised mutual information, reducing the scope for

cost-function improvement by registration and flattening the minimisation space.

Figure 8.10: Cost-function minimisation spaces of a pre andpost enhancement image. Top row: Un-

modified images deformed by a force varying inx andy. Bottom row: Corresponding minimisation

spaces for pre-enhancement image and KLAMPed post-enhancement image demonstrating a flattening

of the cost-function space.
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8.3.4 Joint Entropy Recalculation Using KLAMP

We now analyse the effect of incorporating the KLAMP algorithm into the image registration procedure.

The previous sections necessitate a modification to the original KLAMP algorithm in order to maintain

a cost-function that may be minimised. The use of the KLAMP method to produce a float image suit-

able for registration appears to make the cost-function difficult to minimise successfully. In order to

maintain the minimisation of the cost-function we make the KLAMP method internal to the registration

algorithm and update the mask and patch at each iteration. The resulting fluid-KLAMP algorithm and

the modification to the cost-function formation is described in Appendix D.

From Chapter 2, when inspecting the entropies calculated when using mutual information (or nor-

malised mutual information), we seek to maintain the marginal entropiesHA andHF whilst reducing

the joint entropyHAF . Of these three terms, it is the joint entropy that is difficult to minimise suc-

cessfully due to the formation of the joint image histogram that includes dispersion due to both motion

artefacts and contrast enhancement. The marginal entropyHF in the presence of contrast-enhancement

is likely to be increased when using contrast-enhancement.Therefore it may be considered important

not to influence the marginal probability distribution using the KLAMP algorithm. It is possible to use

the KLAMP algorithm to modify the joint image histogram formation only, leaving the marginal float

image histogram unchanged. This will alter the interpretation of the mutual information slightly since

we are now considering a measure of mutual information giventhree images. In an information theoretic

sense we are assessing the interaction information of the anchor, float and masked-float images, however

a formal definition is not be presented in this thesis and is left as future work. This re-definition of the

mutual information should allow improved image similaritymaximisation; we maintain an unmodified

marginal float entropy and also minimise the effects of the contrast-enhancement dispersion formed in

the joint-image histogram.

Table 8.2 columns 2 and 3 show the reduction in volume of the heart and aorta with and without

the internal KLAMP algorithm. The volume reduction associated with enhancing features is minimised

using the internal KLAMP algorithm. However there remains some residual volume reduction. The

segmented liver intersection results in Table 8.2 columns 4to 6 show improved results when using the

internal-KLAMP method as compared to Table 8.1. Registration performance in many cases is compa-

rable to results not including the internal-KLAMP algorithm. Results for the absolute deformation re-

covery residual are shown in Table 8.2 Columns 7 and 8 confirming an improvement to the re-alignment

of the deformed images both with and without internal-KLAMPalthough the registration fails to register

in two cases. This under-registration is the reason for the lowest results for the change in segmented area

of heart and aorta also seen in Table 8.1.

Some example images are shown in Figure 8.11 for the marked result in Table 8.2. Given the pre-

enhancement anchor image, we register a post-enhancement float image to the anchor using normalised

mutual information. The results for each registration method are shown in imagesb,c,d in Figure 8.11.

There is visible pinching of the enhancing left ventricle inthe registration without KLAMP. Correspond-

ing segmentation images are shown in the second row and the recovery of the gold-standard deformation
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is shown in the third row in the colour difference image. Clearly visible in imagei is the contraction

of the ventricle (and also the descending aorta). These features of mis-registration are not present in

the corresponding segmentation after registration using KLAMP (imagej ), although there appears to be

slight under-registration of the liver position and small over correction of the position of the aorta. These

results correspond well to Table 8.2.
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Table 8.2: Segmentation statistics for the change in area ofheart and aorta and the intersection of the liver after imageregistration with and without internal-KLAMP. Columns

7 and 8: Absolute Residual Deformation (as percentage of original deformation) after image registration with and without internal-KLAMP.*see Figure 8.11

Dataset Area of Segmented Area of Segmented Intersection Intersection Intersection Residual Residual

: Heart and Aorta Heart and Aorta of Liver of Liver of Liver Deformation Deformation

Timepoint (Without KLAMP) (With KLAMP) (Deformed) (Without KLAMP) (With KLAMP) (Without KLAMP) (With KLAMP)

1 : 5 7→ 1 -13% -10% 90% 99% 99% 33% 33%

1 : 6 7→ 1 -16% -12% 91% 99% 98% 32% 32%

1 : 7 7→ 1 -7% -5% 86% 97% 96% 33% 36%

2 : 5 7→ 1 -17% -0% 87% 99% 87% 27% 97%

2 : 6 7→ 1 -10% -6% 83% 98% 96% 31% 35%

2 : 7 7→ 1 -7% -6% 88% 96% 96% 78% 71%

3 : 5 7→ 1 -11% -7% 87% 95% 94% 50% 53%

3 : 6 7→ 1* -14% -5% 88% 98% 95% 48% 53%

3 : 7 7→ 1 -10% -1% 88% 95% 88% 70% 93%
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Figure 8.11: Example images from Table 8.2 Row 8.a) anchor image.b) original un-deformed image to

compare withc) registration without KLAMP andd) registration with KLAMP.Row 2: Corresponding

segmentation images after registration.Row 3: Segmentation difference images with gold-standard

segmentation for each registration method.
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8.4 Conclusion
The development of the Kullbach Leibler Assisted image Matching and Patching (KLAMP) method

has suggested that correct registration of images containing enhancing features may be achieved by a

modification to the underlying cost-function intensity statistics. The method is suitable for low numbers

of images, perhaps those containing first pass bolus information as shown in the examples in this chapter.

The method requires at least two pre-enhancement images so that a training joint image histogram free

of contrast-enhancement related dispersion can be constructed. The formation of the training joint image

histogram is not necessarily limited to only two pre-enhancement images. It is conceivable that a wider

range of motion artefacts could be allowed when using largernumbers of training images. Setting the

threshold mask value is currently a largely empirical exercise chosen to eliminate contrast-enhancing

features whilst maintaining artefacts due to motion discrepancies between the training and enhancement

joint image histograms. Further investigation might be needed in order to define a theoretical cut off,

given a set of anchor, float and training images.

The KLAMP method was originally devised as a method to allow the registration of a pre-processed

post-enhancement masked and patched float image to a pre-enhancement anchor image without modifi-

cation to the following registration algorithm. However, the formulation of the patched image appears to

make the cost-function difficult to minimise. This is the result of masked pixels being given their most

likely intensity value. Unfortunately this is necessary since we do not want spurious force gradients to

remain in the image registration. Modifying the image registration algorithm so that the KLAMP method

is incorporated within it allows the direct modification of the fluid equation driving force gradients. The

following solution to the fluid equation (the regularisation) produces an acceptably smooth deformation

across the force gradient mask boundaries.

The results in this chapter, although fairly preliminary, suggest that the method might be able to

allow improvements to registration accuracy in the presence of contrast-enhancement. Unfortunately

the results are not conclusive enough to suggest that the KLAMP algorithm in its current form is either

robust or suitable for a wide range of enhancement characteristics. Further work is required to analyse the

best implementation of the algorithm but results have shownthat it is possible to achieve better results

if the KLAMP algorithm is incorporated as a modification within an existing registration algorithm.

Implementation of the KLAMP algorithm into the registration algorithm allows adaptive modifications

to be made to the method. For instance, it would be possible toallow adaptive setting of the KLAMP

threshold, adaptive setting of the bin number or an adaptivechoice of cost-function depending on the

properties of the component entropiesHA,HF andHAF .



Chapter 9

Conclusion

9.1 Summary

This thesis has presented work towards the successful registration of images in which conventional reg-

istration algorithms are ill-equipped to cope with local contrast changes. Chapter 2 presented an intro-

duction to commonly used registration algorithms and described the cost-functions that are minimised

(or maximised) during registration and the associated popular transformation models. Chapter 2 also

detailed the motivation and physiological basis of dynamiccontrast enhancement with exogenous Gd-

DTPA. Chapter 4 presented a discussion of the limitations ofconventional cost-functions ranging from

the restrictive image intensity assumptions of the sum of squared difference cost-function to the more

general description of image similarity given by normalised mutual information. Chapter 4 was used

to provide evidence that registration failure is likely to be caused by inappropriate cost-function choice.

Analysis was carried out using the novel inspection of cost-function minimisation spaces and the di-

rect visual examination of cost-function gradient formation. In particular, Chapter 4 showed that the

cost-functions discussed are likely to fail when local contrast changes occur since they are unable to

distinguish between poor image similarity due to motion artefacts and changes to image similarity due

to contrast enhancement. This discussion motivated the need for the Progressive Principal Component

Registration (PPCR) algorithm in Chapter 5, which developed a model-free, full field-of-view regis-

tration technique without the need for model-fitting or segmentation. The PPCR algorithm was been

published (Melbourne et al., 2007b). The method allows improved registration performance by produc-

ing registration anchor images that are contrast-matched to their respective float images. As a result, the

minimisation of a given cost-function between float image and PPCR anchor image is likely to be robust

to contrast-enhancement mis-registration.

Chapter 4 also introduced a generalisation of image similarity for groups of images in the form of

the Cost-Function Matrix Mean. This allowed a measure of theregistration of all images within a dataset

to one another. This was in contrast to the alternative formulation, comparing the registration of images

to only a single image. The CFMM was used throughout the thesis as a measure of registration perfor-

mance. Within the thesis, the formulation of the CFMM included values from the diagonal elements of

the cost-function matrix, a true generalisation should only consider off-diagonal elements so that for the

case of only two images, the CFMM is simply the cost-functionvalue between the two images.
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Chapter 3 developed a general simulator for producing dynamic contrast enhanced MRI datasets

incorporating both image deformations and image contrast-change. The 2D model was built up of three

main components: a motion model; a contrast-enhancementmodel with specific properties for simulating

pathology; and a signal model for converting contrast-agent concentrations into MR image intensities.

The model was designed with the evaluation of registration algorithms as its principal function in this

thesis: results are used in Chapters 4, 5 and 8. The motion model is suitable for this purpose but the

inclusion of a biomechanical model would be a desirable future step. The contrast enhancement model

makes use of recent work on the representation of contrast-enhancement properties in the liver using

suitable arterial input function modelling. Improvementsto the enhancement curve modelling could

be made using a more sophisticated image segmentation and a fuzzy tissue classification to vary the

pharmacokinetic parameters. Additions to the signal modelling could be made that would allow for

intra-image intensity variations and the analysis of the resulting k-space artefacts. A basic form of this

2D DCE-MRI simulator was presented in (Melbourne et al., 2008a), a full 3D extension of the work

might prove to be useful as future work.

Chapter 5 presented results toward the explanation for improved registration performance using

PPCR by discussing the generation of contrast-matched images to which registration can proceed using

conventional cost-functions. The reduced influence of contrast-enhancement on image similarity allows

registration using an unmodified registration algorithm internal to the PPCR algorithm. This was shown

by inspection of the joint-entropy values calculated from datasets generated with varying motion cor-

ruption and contrast enhancement. The iterative nature of the PPCR algorithm allows refinements to the

registration to be made with the inclusion of higher order principal components. The PPCR algorithm

was initially tested on a simulated dynamic contrast enhanced MRI dataset incorporating an elastic defor-

mation model and a model of contrast enhancement as discussed in Chapter 3. Variation of the strength

and periodic nature of the motion model and the dose of contrast-agent revealed circumstances in which

the PPCR algorithm was expected to allow improved registration to those methods that do not make

allowance for local contrast changes. Part of this Chapter was published in (Melbourne et al., 2008a).

Chapter 5 also investigated the inclusion of some computational performance benefits into the PPCR

algorithm. The time-limiting step is the individual registrations, run after the inclusion of each principal

component. In particular, it was found that the number of iterations in each registration can be reduced

whilst the set of registrations at each PPCR iteration can berun in parallel. The further parallelisation

of the algorithm by running each registration on a graphicalprocessing unit (GPU) will also make the

algorithm fast. GPU-parallelisation of the fluid registration algorithm is a particularly desirable step; if

the Cahill (Cahill et al., 2007b) method is used, the algorithm can make use of existing GPU algorithms

for the Fast Fourier Transform and for convolution making registration much more rapid than on a con-

ventional single CPU. This use of the fluid algorithm has yet to be implemented and would be beneficial

to wider registration applications.

Chapter 6 applies the PPCR algorithm to real DCE-MRI data making use of the datasets described

in Chapter 1. The benefits of the PPCR algorithm on visual appearance are discussed and the use of the
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algorithm in statistical testing of motion within a datasetwas presented. Visual inspection of difference

images and visual comparison of registration methods by trained observers were used as method eval-

uation. Further analysis using a generalised cost-function for multiple image datasets (Cost Function

Matrix Mean) and crude pharmacokinetic curve-fitting suggested that the PPCR algorithm gives more

acceptable results to the direct fluid registration algorithm. The application of PPCR to 3D DCE-MRI

datasets reveals an improvement in their registration overthe use of a direct registration algorithm. The

use of complex model-fitting using the independent MRIW software (d’Arcy et al., 2006) to the contrast-

agent concentration time-curves showed improvement afterregistration by PPCR when inspecting the

reduction in residual model-fit. Both the PPCR algorithm andthe direct registration method showed

superior registration (or resistance to mis-registration) than that seen using a proprietary scanner-based

registration package.

Application of the PPCR algorithm to a superficially quite different application was presented in

Chapter 7. On closer inspection, the reasons for failure of registration algorithms on both DCE-MRI and

DW-MRI are analogous - local contrast changes disrupt the assumptions of conventional cost-functions

which may lead to either under-registration or mis-registration. The improvement on image registration

of DW-MRI datasets produced by the PPCR algorithm were outlined in this chapter. Analysis is carried

out using visual inspection of registered slices and analysis of down-stream fractional anisotropy statis-

tics. Analysis of the fractional anisotropy used a leave-one-out calculation of each diffusion direction

and reveals reduced variation in fractional anisotropy variability. Part of this work was published in

(Melbourne et al., 2008b). The PPCR algorithm is also applied to the registration of diffusion weighted

images of the liver. Here the analysis concerned differences in diffusionb-value rather than gradient

direction. As a result PPCR is not theoretically necessarily needed, as discussed in Chapter 7. However,

inspection of the residual of model-fitting to the signal as afunction ofb-value, PPCR appeared at least

as good as direct registration to a the zero-weightedb0 image. Improved registration by PPCR may

be the result of the algorithm acting to register all images towards a common coordinate frame rather

than towards the coordinate frame of a single image, hence the CFMM will give a higher result when

compared to direct registration.

Chapter 8 presented a novel algorithm for direct influence ofcost-function gradients during image

registration. The formation of this algorithm is a paralleldevelopment to the PPCR algorithm. It is

developed in answer to problems found when there are large changes in image contrast profile (such as

bolus arrival in the heart) relative to the reminder of images in the dataset. The PPCR method should be

applied to groups of images under contrast enhancement but extreme changes in contrast in one or two

images lead to principal components that do not necessarilyenable contrast-matching of these images;

hence this might result in mis-registration. Therefore thealgorithm may be used complementary to

the PPCR method. Analysis of the Kullback-Leibler divergence between joint image histograms in

which both contain similar levels of motion, but only one contains contrast-enhancement allows the

removal of contrast-enhancement by image matching and patching using the Kullbach Leibler Assisted

image Matching and Patching technique (KLAMP). Registration with reduced contrast-enhancement
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influenced artefacts may proceed using either a standard registration algorithm of the pre-enhancement

image and the KLAMPed post-enhancement image or by incorporation of the KLAMP algorithm into

the registration algorithm to influence the driving force gradients.

Overall this thesis has demonstrated the limitation of image registration in difficult circumstances.

The thesis has shown the influence of contrast-enhancement on cost-function gradient formulation by

using simulated motion corrupted, and contrast-enhanced,MRI developed specifically for registration

testing. Two new algorithms have been proposed, designed specifically for the registration of contrast

enhanced data; performance benefits have been demonstratedfor both. The PPCR algorithm has been

demonstrated on subject data with both contrast variation due to extrinsic contrast-agent injection and

diffusion gradient direction selection. Further benefits of the PPCR algorithm may be envisaged when

considering the registration of any group of images into a common coordinate frame; some evidence was

provided that this may be the case for diffusion weighted MRIusing multiple b-values. The contribu-

tion of these algorithms has stretched the realm of application of image registration and the process of

algorithm development during this thesis has revealed the requirements for novel, flexible image regis-

tration algorithms. The development of the PPCR and KLAMP algorithms allows improved registration

in circumstances previously considered liable to mis-registration.

9.2 Future Work
A natural extension of the work outlined in this thesis is thecombination of the PPCR and KLAMP

algorithms. In cases in which contrast change is well represented by early principal components, the

PPCR algorithm should operate without KLAMP. However, in those circumstances where one or two

images contain contrast changes unlike those in the remainder of the dataset, the KLAMP algorithm

may need to be incorporated to mediate against large local contrast variation. Some of the work in

Chapter 4 and Chapter 8 may allow the adaptive selection of a cost-function and the parameters of the

cost-function. For instance, a suitable cost-function from those listed in Chapter 2 and Appendix B could

be determined by inspecting the component entropiesHA, HF andHAF or adapting the number and

breadth of the intensity bins.

An alternative to Principal Components Analysis for data analysis is Independent Components

Analysis. Independent Components are found by consideringtheir contribution to a signal by source

separation. Due to the fact the components are independent,they have no preferred ordering in terms of

importance nor relative scaling (see (Milles et al., 2008)). These factors make PCA a preferable option

for use in the PPCR algorithm. A generalisation of PCA is the Principal Geodesic Analysis concerning

shapes (Fletcher et al., 2004). Further investigation of this generalisation in the context of image regis-

tration, and the corresponding generalisation of the PPCR algorithm could provide interesting work but

this is left to the interested reader.

The work in this thesis addresses only motion artefacts between images (PPCR is an inter-image

registration method). During an MRI acquisition, there maybe intra-image motion corruption. Recent

work by Whiteet al (White et al., 2008) has addressed this, but only for images without contrast en-

hancement. If contrast-agent intensity changes within theimage acquisition are small, this method will
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be applicable in its current form. It may also be straightforward to approximate linear-contrast varia-

tions. In the spirit of the paper by Whiteet al it may be beneficial to use a set of contrast-change training

images, formed using a pre-bolus contrast agent injection.On injection of the full-bolus, the training im-

ages may be used to correct intra-image motion corruption inthe presence of local contrast changes. In

addition to the PPCR algorithm, this would allow full intra-and inter- image registration of a DCE-MRI

dataset. There may be some scope for a direct intra-image deformation recovery scheme using PPCR by

operating a PCA scheme (or more suitable data-reduction scheme) on the separate k-space fragments.

However, some basic preliminary work on this idea was inconclusive.

Image registration in general does not incorporate biological information into the modelling of

deformation. B-spline or fluid registration algorithms treat all pixels as equal when imposing a trans-

formation. This is primarily due to the difficulties and computational complexity of building individual

large region of interest physiological motion models. Sometypes of motion are particularly difficult to

implement; a major example is sliding motions which are present in the abdomen under the influence

of the breathing cycle. A registration algorithm that incorporated these features could benefit from tech-

niques used in the computer game industry to track objects and provide realistic physics under which

the objects are influenced. This may include environmental forces and prevention of undesirable mesh

intersections.

This thesis has purely addressed MRI imaging modalities. However, MRI techniques have a wide

diversity in the properties that they measure. The PPCR algorithm does not intrinsically require MR

images on which to operate; the method should be widely applicable to other modalities. One interesting

application may actually be the combination of images from different modalities of the same features.

This would be a good extension of the work presented here and there are no direct theoretical problems

other than those relating to good principal component formulation. Recent work on perfusion tensor

imaging (Frank et al., 2008) and also functional diffusion tensor imaging (analysing changes to diffusion

caused by repeated nerve fibre activation) may also provide afurther future application which would

combine the results of Chapter 6 and 7.

The model of DCE-MRI presented in Chapter 3 is purely macroscopic. Future work could investi-

gate the microscopic concentration changes in contrast agent. By modelling diffusion of contrast agent

along a concentration gradient between vascular and extra-cellular, extra-vascular compartments, it may

be possible to directly predict MR signal intensities giventhe vascular properties of the local region,

taking into account parameters such as vessel size, permeability and tortuosity.
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Formulation of Fluid Equation

For the interested reader, the following is a derivation of the fluid equation. The viscous fluid equation

used in image registration is found from this argument.

Starting by considering the force on a given unit piece of fluid, the total forceFT is given by the

pressure gradient across the piece of fluid (Equation A.1). We also add a general term for a potential

term, for instance if our fluid existed in a gravitational field we would add a term dependent on its relative

height in relation to neighbouring pieces of fluid and as a function of local mass densityρ.

FT = −∇P (A.1)

FT = −∇P − ρ∇ψ (A.2)

We also include a continuity condition that says the total amount of fluid is conserved, if fluid moves

away from a particular point, the amount of fluid remaining will go down!

∇ · (ρv) = −δρ
δt

(A.3)

We now consider the total forceFT on the left-hand side. This is the full derivative rather than the

partialρ δv
δt since we are considering a particular piece of fluidas it movesnot a particular spatial point

through which the fluid is passing. Hence we must use the full derivative forρdv
dt , Equation A.5.

FT = ρ
dv
dt

(A.4)

FT = ρ[(v · ∇)v +
δv
δt

] (A.5)

Next we add in a viscous component that describes the fluids resistance to being deformed. The

fluid has no resistance to shear but will slip past itself (Equation A.6). We form the viscous term from

the stress tensorSij which can be derived from considering two plates encompassing a piece of fluid.

If we move one plate by applying a force relative to the other,we consider a linear change in velocity

between the two plates (the relative velocity of the fluid at each plate is zero. The linear relationship is

governed by the viscosity parameterµ. The second viscosity parameterλ is required to make the stress

tensor complete and allows for a response to internal forces.

FT = −∇P − ρ∇ψ + Fvisc (A.6)
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Sij = µ[
δvi

δxj
+
δvj

δxi
] + λδij(∇ · v) (A.7)

Fvisc,i =
3∑

j=1

δSij

δxj
(A.8)

For an isotropic medium (Equations A.9 and A.10), the derivative of the stress tensor has only

second order components and so may be expressed as Equation A.11 which is the most general form of

a function consisting only of second-order derivatives - ifthe medium was anisotropic we would require

modifications as shown previously in Equation 3.16.

δµ

δx
= 0 (A.9)

δλ

δx
= 0 (A.10)

Fvisc = µ∇2v + (µ+ λ)∇(∇ · v) (A.11)

Putting together the terms, the entire fluid equation from Equation A.6 appears in Equation A.12

and particular assumptions can be made depending on the desired properties of the fluid. Equation A.12

includes an additional spatially dependent force termFsim(u) which for our purposes is generated by an

image similarity measure.

ρ[(v · ∇)v +
δv
δt

] = −∇P − ρ∇ψ + µ∇2v + (µ+ λ)∇(∇ · v) + Fsim(u) (A.12)

In medical image fluid registration, our fluid is considered viscous so we can ignore inertial and

pressure terms as small or slowly varying and Equation A.12 reduces to Equation A.13. However it is

important to recognise the above assumptions that went intothe derivation in order to arrive at the result

in Equation A.13.

µ∇2v + (µ+ λ)∇(∇ · v) + Fsim(u) = 0 (A.13)
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Formulation of Cost-Function Gradients

B.1 Change in Sum of Squared Difference with Pixel Displacement
The gradient of the local sum of squared difference can be found by the derivation shown in Equations

B.1 to B.3. The final result is equivalent to that used by Christensen (Christensen et al., 1996). The

parameters are defined as follows for each pixeln within all pixelsN : A is the anchor image,F(v) is

the float image deformed under the transformationv. We seek the derivative of the function over the

transformation.

SSD =

N∑

n=1

(An − Fn(v))2 (B.1)

dSSDn

dv
= 2(An − Fn(v))

d

dv
Fn(v) (B.2)

∇SSD = (A − F)∇(F) (B.3)

B.2 Change in Cross Correlation with Pixel Displacement
The un-normalised local gradient of the cross-correlationcost-function can be derived as in Equations

B.4 to B.5. Again, the parameters are defined as follows for each pixeln within all pixelsN : A is the

anchor image,F(v) is the float image deformed under the transformationv. We seek the derivative of the

function over this transformation.

CC =

N∑

n=1

(An · Fn(v)) (B.4)

dCCn

dv
= An · d

dv
Fn(v) (B.5)

∇CC = A∇F (B.6)

The result of Equation B.6 can be seen to be one of the terms from the SSD Equation B.3 and

therefore we may expect registration performance to be similar. Discrepancies occur for large biases in

theF∇F (self-similarity) term.

If normalisation is included, the gradient must be modified for the normalisation as in Equations

B.7 to B.9.

CC =
1

‖A‖‖F(v)‖

N∑

n=1

(An · Fn(v)) (B.7)
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dCCn

dv
=

1

‖A‖‖F(v)‖An · d
dv

Fn(v) − (B.8)

1

2

1

‖A‖ [
1

‖Fn(v)‖ ]3(An · Fn(v))

N∑

i=1

d

dv
Fi(v) (B.9)

since,
1

‖F(v)‖ =
1√∑N

n=1 Fn(v)
(B.10)

d

dv

1

‖F(v)‖ = −1

2
(

1√∑N
n=1 Fn(v)

)3
N∑

n=1

d

dv
Fn(v) (B.11)

B.3 Change in Joint Entropy with Pixel Displacement
The following is a derivation of the procedure used in findingthe gradient of an information theoretic

cost function. The result of this derivation is presented byCrum in (Crum et al., 2003) without discussion

of the assumptions made in its derivation. The final result allows cost-function gradients to be calculated

extremely rapidly when compared to methods that are more mathematically robust and continuous, for

instance using a Parzen window method, or generalising the derivation used here to a partial volume

derivation.

We start with the derivation for Joint Entropy. Pixels located in an image contribute to a particular

intensity bin in the image histogram and joint image histogram. For two intensity bins with histogram

countsn1 andn2 in a histogram withN total counts, their contribution to the entropyS is:

JointEntropy =
bins∑

i=1

ni

N
log

ni

N
(B.12)

JE =
n1

N
log

n1

N
+
n2

N
log

n2

N
+ ... (B.13)

JE =
n1

N
log

n1

N
+
n2

N
log

n2

N
+ S0 (B.14)

We now imagine spatial shifting a particular pixel by one pixel width (perhaps to the right). This moves

a unit value in the joint image histogram between two bins (with arbitrary locations in the joint image

histogram). We decrease the value of one intensity bin and increase the other. Equation B.15 demon-

strates this by moving a pixel count from binn2 to binn1, hence the total joint entropy is now given by

this equation. The remaining contribution of all other binsto the joint entropy is summarised byS0.

JE =
n1 + 1

N
log

n1 + 1

N
+
n2 − 1

N
log

n2 − 1

N
+ S0 (B.15)

Expanding...

n1

N
log

n1 + 1

N
+

1

N
log

n1 + 1

N
+
n2

N
log

n2 − 1

N
− 1

N
log

n2 − 1

N
(B.16)

And again...

n1

N
log

n1

N
+
n1

N
log(1 +

1

n1
) (B.17)

+
1

N
log

n1

N
+

1

N
log(1 +

1

n1
) (B.18)

+
n2

N
log

n2

N
+
n2

N
log(1 − 1

n2
) (B.19)

− 1

N
log

n2

N
− 1

N
log(1 − 1

n2
) (B.20)
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We see that two terms in B.20 are the original entropy value, hence,

∆JE =
n1

N
log(1 +

1

n1
) +

1

N
log

n1

N
(B.21)

+
1

N
log(1 +

1

n1
) +

n2

N
log(1 − 1

n2
) (B.22)

− 1

N
log

n2

N
− 1

N
log(1 − 1

n2
) (B.23)

Re-writing (to expand then1 terms)

∆JE =
1

N
[ n1 log(1 +

1

n1
) + logn1 − logN + n1 log(1 +

1

n1
) (B.24)

+n2 log(1 − 1

n2
) + logN − logn2 − log(1 − 1

n2
)] (B.25)

Doing some cancellation & rearrangement gives:

∆S =
1

N
[ n1 log(1 +

1

n1
) + log(n1(1 +

1

n1
)) (B.26)

+n2 log(1 − 1

n2
) − logn2 − log(1 − 1

n2
)] (B.27)

A final round of rearrangement gives:

∆JE =
1

N
[ n1 log(1 +

1

n1
) + log(n1 + 1) (B.28)

+n2 log(1 − 1

n2
) − log(n2 − 1)] (B.29)

We now see that for a stable value of the change in joint entropy we require that bothn1 andn2 are big.

This also means that we can approximate thelogsusinglog(1 + x) = x for smallx. this can be shown

to reduce to Equation B.30.

∆S =
1

N
[
1

n1
+

1

n2
+ log

n1

n2
] (B.30)

The log ratio term dominates for largen1 andn2 leaving us only to consider the fractional change for

moving the pixel a little waydx Equation B.34. We now implement the same process for−dx which

would involve a third intensity binn3. This is the result shown in (Crum et al., 2003).

∆JE+ =
1

N
log

n1

n2
(B.31)

∆JE− =
1

N
log

n1

n3
(B.32)

∆JE+ − ∆JE− =
1

N
log

n1

n2
− 1

N
log

n1

n3
(B.33)

dJE

dx
=

1

N
log

n3

n2
(B.34)

B.4 Change in Mutual Information with Pixel Displacement

For Mutual Information we proceed with an identical analysis for the effect of a pixel shift on the

marginal entropy of the float image. We include the result from above for the joint image histogram

bin countsn2 andn3 and also the corresponding change to the float image marginalentropy by moving
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a pixel and its effect on the associated bin countsm2 andm3. The normalisation is by the total number

of pixels,N , which is the same for both the marginal and joint image histograms.

MI = HA +HF −HAF (B.35)

MI = HA +

bins∑

i=1

mi

N
log

mi

N
−

bins∑

i=1

ni

N
log

ni

N
(B.36)

dMI

dx
=

1

N
log

m3

m2
− 1

N
log

n3

n2
(B.37)

dMI

dx
=

1

N
log

m3n2

m2n3
(B.38)

B.5 Change in Normalised Mutual Information with Pixel Dis-

placement
The expression for Normalised Mutual information is given by a combination of Equation B.34 and B.38

to give Equation B.42

NMI =
HA +HF

HAF
(B.39)

NMI =
HA +HF −HAF +HAF

HAF
(B.40)

dNMI

dx
=

d

dx
[
MI

JE
+ 1] (B.41)

dNMI

dx
=

1

H2
AF

[JE
dMI

dx
−MI

dJE

dx
] (B.42)

(B.43)

B.6 Alternative Information Based Cost-Functions
Registration using Normalised Mutual Information is equivalent to maximising the symmetric uncer-

tainty; how wellA predictsF and vice versa (as discussed in Chapter 2). Historically, registration pro-

ceeds by deforming the float imageF to match the anchor imageA so that a symmetric cost-function is

not necessary since we only deform in one direction. If we were to maximise the uncertainty coefficients

individually we are able to choose the direction which is deemed more meaningful. Here we consider

the uncertainty coefficients of the pixel intensity probability distributions. The results are shown for each

uncertainty coefficient in Equations B.44 to B.47. If we consider the uncertainty of the anchor imageA

given the float imageF we get the force gradient Equation B.45 which is equivalent to maximising the

mutual information as in Equation B.38 up to a scale factor. The alternative is to consider the uncertainty

of the float imageF given the anchor imageA (Equation B.46). Finding the force gradients results in

Equation B.47; this is equivalent to the Normalised Mutual Information gradient, apart from the substi-

tution of the marginal entropyHF for the joint entropyHAF . To summarise, if registration proceeds

such that the float image is deformed towards the anchor, we may use an asymmetric cost function, in the

case described here we are maximising howcertainwe are of the float image given the anchor image. If

we were to deform the float and anchor images towards each other, perhaps a symmetric coefficient is

more meaningful, particularly if we desire an invertible ordiffeomorphic deformation; in this case NMI

may be more suitable for maximisation.
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U(A|F ) =
HA +HF −HAF

HA
(B.44)

dU(A|F )

dx
=

1

HA

dMI

dx
(B.45)

U(F |A) =
HA +HF −HAF

HF
(B.46)

dU(F |A)

dx
=

1

H2
F

[HF
dMI

dx
−MI

dHF

dx
] (B.47)



Appendix C

Formation of a Fluid-based Image

Registration Algorithm

The results of the two previous appendices may now be combined. From Appendix B, for a given cost-

function we have expressions that give a force map that seeksto maximise (or minimise) the similarity

measure. From Appendix A we have an expression for the viscous fluid equation from which is solved

for the velocity of the registration correctionv from the similarity measure forceF (Equation C.1).

µ∇2v + (µ+ λ)∇(∇ · v) = F (C.1)

The solution for the velocity given the forceF at a given iteration is found using the method de-

veloped by Cahill (Cahill et al., 2007b) for a zero-boundarycondition. This is analogous to the solution

for the elastic deformation used in Chapter 2 and the method is identical making use of the Fast Sine

Transform coded in Numerical Recipes (Press et al., 2007). The algorithm is presented in Table C.1,

where we update using the full derivative for du since we are considering the velocity of elements of

fluid, rather than the velocities at fixed points in the lattice.

Table C.1: Algorithm for fluid registration (see text for discussion)

Given two images:

Initial Displacmentuold = 0.

Start Loop

1) Find force gradientsF using Appendix B.

2) If images are too similar or force gradients too small, break loop.

3) Solve Equation C.1 for velocity field given result of 1.

4) Update displacement field using full derivative:unew = uold + vdt− dt
∑3

i=1 vxi
du
dxi

5) Transform float image by current displacement.

End Loop

Output Result



Appendix D

Formation of a KLAMP capable Fluid-based

Image Registration Algorithm

Here we present the internal implementation of the KLAMP algorithm as discussed in Chapter 8. Instead

of the masking and patching of the float image as a preprocessing step, we calculate the image mask and

patch at each iteration but use the masked and patched image to calculate the joint entropy force gradient

component prior to the solution of the velocity field using the fluid equation in Equation D.1. The

gradient formulation outlined in Appendix B is adjusted so that the marginal probability distributions

used inHA andHF are calculated using the unmodified float and anchor, but the joint probability

distribution used to formHA,F uses the masked and patch float imageF ′ = M · F + P to giveMI =

HA +HF −HA,M·F+P . The resulting algorithm is presented in Table D.1.

µ∇2v + (µ+ λ)∇(∇ · v) = F (D.1)

Table D.1: Algorithm for KLAMPed fluid registration (see text for discussion)

Given three images,A1, A2 and a training image,A3:

Initial Displacementuold = 0.

Start Loop

1) Calculate the float image mask,M and patch,P using KLAMP.

2) Find force gradientsF combiningHA1,HA2 andHA1,M ·A2+P using Appendix B.

3) If images are too similar or force gradients too small, break loop.

4) Solve Equation D.1 for velocity field given result of 2.

5) Update displacement field using full derivative:unew = uold + vdt− dt
∑3

i=1 vxi
du
dxi

6) Transform float imageA2 by current displacement.

End Loop

Output Result



Appendix E

List of Movies included on supplementary CD

This appendix contains descriptions of the movie files included on the attached CD as supplementary

material.

Chapter 2

• Movie-2-01.aviIllustration of cost-function values with horizontal displacement of two (identical)

brain images. Note that all cost-function values are normalised to fall in the range 0-1.

Chapter 3

• Movie-3-01.aviIllustration of motion model (coronal).

• Movie-3-02.aviIllustration of enhancement model (coronal).

• Movie-3-03.aviIllustration of combined motion and enhancement model (sagittal).

Chapter 6

All movie files have the same format from left to right. The left-most movie is the original, unregistered

DCE-MRI dataset. The second is registration by direct fluid registration using cross-correlation to the

first (unenhanced) image in the dataset. The third is the result of registration using the PPCR algorithm.

If a fourth movie exists, this is the result of a scanner-based image registration algorithm. Since the data

from Table 1.2 is 3D, only the central slice is shown.

• Movie-6-01.aviDCE-MRI movie for Patient 2 from Table 1.1.

• Movie-6-02.aviDCE-MRI movie for Patient 3 from Table 1.1.

• Movie-6-03.aviDCE-MRI movie for Patient 5 from Table 1.1.

• Movie-6-04.aviDCE-MRI movie for Patient 1 from Table 1.2.

• Movie-6-05.aviDCE-MRI movie for Patient 5 from Table 1.2.

• Movie-6-06.aviDCE-MRI movie for Patient 6 from Table 1.2.
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