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Abstract. We introduce a Markov random field (MRF)-driven region-based active contour model (MaRACel) for
histological image segmentation. This Bayesian segmentation method combines a region-based active contour
(RAC) with an MRF. State-of-the-art RAC models assume that every spatial location in the image is statistically
independent, thereby ignoring valuable contextual information among spatial locations. To address this short-
coming, we incorporate an MRF prior into energy term of the RAC. This requires a formulation of the Markov
prior consistent with the continuous variational framework characteristic of active contours; consequently, we
introduce a continuous analog to the discrete Potts model. Based on the automated segmentation boundary of
glands by MaRACel model, explicit shape descriptors are then employed to distinguish prostate glands belong-
ing to Gleason patterns 3 (G3) and 4 (G4). To demonstrate the effectiveness of MaRACel, we compare its
performance to the popular models proposed by Chan and Vese (CV) and Rousson and Deriche (RD) with
respect to the following tasks: (1) the segmentation of prostatic acini (glands) and (2) the differentiation of
G3 and G4 glands. On almost 600 prostate biopsy needle images, MaRACel was shown to have higher average
dice coefficients, overlap ratios, sensitivities, specificities, and positive predictive values both in terms of
segmentation accuracy and ability to discriminate between G3 and G4 glands compared to the CV and RD
models. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.2.021107]
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1 Introduction
Image segmentation remains an important task in computer
vision. In the 1980s, researchers introduced two important
segmentation methodologies: Markov random fields (MRFs)
in 19841 and active contours (ACs) in 1988.2 Both methods
have since been adapted to address a variety of segmentation
problems. MRFs have employed adaptive clustering,3 multire-
solution analysis,4 and complex boundary models5 to effectively
partition mammographic,6 multimodal,7 magnetic resonance,8–10

and color11 images. AC models have been used to track cell
locomotion,12 analyze cardiac images,13–18 segment retinal
vessels,19 and interrogate histopathological sections.20,21

Although the two methods are ostensibly very different—
MRFs utilize a discrete Bayesian approach while ACs employ
a continuous, variational paradigm—they share an important
unifying concept: both perform segmentation via the minimiza-
tion of energy functions that map each possible segmentation to
a real number indicating its quality. This naturally poses the
question of whether an energy function from one method can
be adapted for use with the other. Such an adaptation strategy
would be significant since MRFs and ACs do not share the same
strengths and weaknesses. MRFs effectively model statistical
dependencies among neighboring regions, whereas ACs readily
incorporate global image statistics and boundary information.

In this paper, we extend our preliminary work in Ref. 22 to
introduce a method for incorporating an MRF energy function
into an AC energy functional—an energy functional is the con-
tinuous equivalent of a discrete energy function. This provides
a significant advantage over traditional AC formulations as the
MRF energy function can account for local statistical depend-
encies within the data (e.g., between pixels). Since typical AC
energy functionals consist of a single integral over a closed
contour (e.g.,

H
fðsÞds), they cannot model dependencies

between different points on the contour, except to the limited
degree allowed by higher order derivatives (e.g., curvature).
Incorporating dependencies requires more complex energy
functionals such as modeling pairwise interactions via:H H

fðs; s 0Þds 0ds. Previous work has leveraged sophisticated
functions to define higher-order AC models,23 which employ
multiple integrals to establish shape priors for circles24 and
linear networks.25 Implementing the Mumford Shah func-
tional,26 the Chan and Vese (CV)27 model implicitly accounts
for dependencies by using the mean intensity for foreground
and background regions (defined as the level set) to evolve
the contour. Recently, in Refs. 28 and 29, an MRF term was
embedded into the level set energy functional to incorporate
contextual information in the level set energy functional.
However the MRF term in Ref. 28 was embedded as a distinct
term via a nonlinear function for calculating the differences
between background and foreground intensity information
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within pixel neighborhoods. Our method involves computing
the differences via a convolutional operator within pixel
neighborhoods. The work in Ref. 29 was inspired by our pre-
vious work in Ref. 22 where the MRF prior was incorporated
into the energy term of local region-based active contour
(RAC) model.

Despite some previous notable exceptions,26 the incorpora-
tion of spatial dependencies into ACs remains a largely unsolved
problem. This becomes clear when we examine statistical
AC models that derive their energy functionals from probability
distributions. The first statistical ACs, proposed by CV27 and
extended by Rousson and Deriche (RD),30 model each pixel
(more precisely its continuous analog) as an independent, iden-
tically distributed (i.i.d.) Gaussian random variable. Although
later works have enhanced these methods, the i.i.d. assumption
persists.

Unlike ACs, MRFs model depends among random variables
using a Bayesian paradigm. The goal of this paper is to convert
an MRF energy function into an AC energy functional, allowing
ACs to incorporate spatial context. Specifically, we consider
spatially invariant MRFs that use single and pairwise inter-
actions to classify objects into two classes (i.e., foreground
and background). We will demonstrate how an MRF energy
function that satisfies these conditions can be expressed as an
AC functional. Unlike previous approaches that have attempted
to embed the MRF term to a level set formulation, the advantage
of our work is that the MRF term can be easily implemented.
Moreover, the MRF operator [see Eq. (22)] has a general form
that allows for construction of different kernels for incorporating
spatial context.

To demonstrate the utility of incorporating spatial informa-
tion into an AC model, we use an MRF-driven region-based AC
model (MaRACel) to reliably segment gland lumen (cavity
through which hormonal secretions are transported) in digitized
hematoxylin and eosin (H&E)-stained prostate tissues. Gland
lumen morphology has been shown to be associated with
Gleason patterns of prostate cancer.31 The Gleason grading sys-
tem is based on the architectural and morphological patterns of
the prostate glands in cancer. A gland comprises lumen area,
epithelial cytoplasm, and epithelial nuclei.32 However, gland
lumen is a difficult segmentation problem due to: (1) the
number, size, and shape of glands can vary considerably and
(2) small holes or tears in the tissue resemble glands and present
formidable confounders. In Ref. 33, graph theory techniques
were employed to segment glands. In Ref. 34, structural features
extracted from gland shape were used to classify a tissue pattern
into three major categories: benign, grade 3 carcinoma, and
grade 4 carcinoma. In Ref. 35, a reversible jump Markov
chain Monte Carlo method was used to model glandular struc-
tures in both healthy and cancerous tissues. An object-graph-
based approach was presented in Ref. 36 to segment glands
while a level set-based model was presented in Ref. 32 for
gland detection and segmentation.

In this paper, we demonstrate how the incorporation of
contextual information into the AC framework can be used to
improve segmentation performance by predisposing the seg-
mentations to certain shapes without restricting their specific
size and number. Our solution represents a contrasting approach
to most current AC models, which either neglect shape infor-
mation entirely or—if they do consider shape—require that
the objects have nearly identical shapes and sizes.24 To further
validate the utility of our model, we consider the task of

differentiating Gleason pattern 3 (G3) from pattern 4 (G4). In
this paper, we employ MaRACel to provide automatic segmen-
tation with the explicit shape descriptors (ESD) framework,
presented in Refs. 37 and 38 to automatically grade roughly
350 prostate biopsy images using gland morphology.

The rest of this paper is organized as follows. A review of
MRFs and notations is presented in Sec. 2. A detailed descrip-
tion on integration of MRFs and ACs is presented in Secs. 3 and
4. The description of ESD for gland classification is presented in
Sec. 5. The experimental setup and comparative strategies are
discussed in Sec. 6. The experiment results and discussions
are reported in Sec. 7. Concluding remarks are presented
in Sec. 8. The detailed derivative of the curve evolution func-
tional for the MaRACel model is presented in the Appendix.

2 Review of Markov Random Fields

2.1 Preliminaries

Let the set S ¼ ffi; jgj1 ≤ i ≤ H; 1 ≤ j ≤ Wg reference a
rectangular lattice of N ¼ W ×H pixel locations. Each pixel
s ∈ S has two associated random variables: Xs ∈ Λ ≡
fω1;ω2; : : : ;ωLg indicating its state (class) and Ys ∈ RD repre-
senting its D-dimensional feature vector. Particular instances of
Xs and Ys are denoted by the lowercase variables xs ∈ Λ and
ys ∈ RD. Let X ¼ ðX1; X2; : : : ; XNÞ and Y ¼ ðY1; Y2; : : : ; YNÞ
refer to all random variables Xs and Ys in aggregate. The
state spaces of X and Y are the Cartesian products Ω ¼ ΛN

and RD×N . Instances of X and Y are denoted by the lowercase
variables x ¼ ðx1; x2; : : : ; xNÞ ∈ Ω and y ¼ ðy1; y2; : : : ; yNÞ ∈
RD×N , respectively. yðsÞ is the function that assigns intensity
values to pixel s, ϕðt; sÞ is the level set function, S1 is the fore-
ground region S1 ¼ fs ∈ S∶ϕðsÞ > 0g, S−1 is the background
region S−1 ¼ fs ∈ S∶ϕðsÞ < 0g, C is the contours or zero
level set C ¼ fs ∈ S∶ϕðsÞ ¼ 0g, S ¼ S1 ∪ S−1 ∪ C is a
bounded open set in R2, HðϕÞ is a Heaviside function

HðϕÞ ¼
�
1; ϕðcÞ ≥ 0;

0; ϕðcÞ < 0:
, δðϕÞ is the delta function

δðϕÞ ¼
�þ∞; ϕðcÞ ¼ 0;

0; ϕðcÞ ≠ 0:
, Að·Þ is the set of pixels contained

within the boundary of the object, and k · k is the L2 norm.
Let G ¼ fS; Eg establish an undirected graph structure,

where S and E are the vertices (sites) and edges, respectively.
A clique c is any subset of S, which constitutes a fully connected
subgraph of G. The set C contains all possible cliques. A neigh-
borhood ηs is the set containing all sites that share an edge
with s. If P is a probability measure defined over Ω, then the
random variable X governed by the triplet ðG;Ω; PÞ is called
a random field. Furthermore,X is an MRF if its local conditional
probability density functions satisfy the Markov property:
PðXs ¼ xsjX−s ¼ x−sÞ ¼ PðXs ¼ xsjX−s ¼ xηsÞ, where x−s ¼
ðx1; : : : ; xs−1; xsþ1; : : : ; xNÞ, xηs ¼ ðxηsð1Þ; : : : ; xηsðjηs jÞÞ, and
ηsðiÞ ∈ S is the i’th element of the set ηs. Note that in places
where it does not create ambiguity, we will henceforth simplify
the probabilistic notations by omitting the random variables,
e.g., PðxÞ ≡ PðX ¼ xÞ.

The Hammersley–Clifford theorem states that a random field
X is an MRF if, and only if, its joint probability density function
can be expressed as a Gibbs distribution39

EQ-TARGET;temp:intralink-;e001;326;102PðxÞ ¼ 1

Z
expf−UðxÞg; (1)

Journal of Medical Imaging 021107-2 Apr–Jun 2017 • Vol. 4(2)

Xu et al.: Connecting Markov random fields and active contour models: application to gland segmentation and classification

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 9/29/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx



where UðxÞ ¼ P
c∈CVcðxÞ is the energy function, Z is the nor-

malizing constant, and Vc are functions, called clique potentials,
that depend only on those xs such that s ∈ c. The local
conditional probability density functions (LCPDFs) are defined
as follows:

EQ-TARGET;temp:intralink-;e002;63;697PðxsjxηsÞ ¼
1

ZsðxÞ
expf−UsðxÞg; (2)

where xηs ¼ fxr; r ∈ ηsg, UsðxÞ ¼
P

c∈CsVcðxÞ is the local
energy, Cs represents fc ∈ C∶s ∈ cg, and ZsðxÞ is the normal-
izing coefficient. Note that the MRF X is completely defined
by its LCPDFs, which also happen to be Gibbs distributions.
For proofs of Markov formulations and theorems, see Geman.40

2.2 Assumed Conditions and Implications

In this work, we stipulate the following (rather typical)
conditions:

1. The range of Xs is Λ ¼ f−1;1g, i.e., background (−1)
or foreground (1).

2. All cliques c contain either one or two elements.

3. The image boundaries are toroidal, i.e., they wrap
around at the edges of the images.

4. The LCPDFs are spatially invariant, implying that:

• the neighborhoods ηs are spatially invariant

• the clique potentials are spatially invariant.

5. The pairwise clique potentials are not biased toward
either state, i.e., Vfs;rgðxÞ ¼ Vfs;rgð−xÞ.

Under these assumptions, the energy UðxÞ in Eq. (1) can be
simplified as follows:
EQ-TARGET;temp:intralink-;e003;63;358

UðxÞ ¼
X
s∈S

VfsgðxÞ þ
X

fs;rg∈C
Vfs;rgðxÞ

¼
X
s∈S

αxs þ
1

2

X
s∈S

X
r∈ηs

βjs−rjxsxr

¼ 1

2

X
s∈S

fxs½2αþ ðβ � xÞs�g; (3)

where α ∈ R, js − rj is the Euclidean distance between pixels s
and r, * denotes convolution, and β is a finite impulse response
filter with coefficients βjs−rj ∈ R. Note that β0 ¼ 0 and that
if ηs is the typical four-connected neighborhood, then Eq. (3)
devolves to the Ising model.41

2.3 Maximum a Posteriori Estimation

Given an observation of the feature vectors Y, we would like
to estimate the states X. The preferred method is maximum
a posteriori (MAP) estimation,42 which entails maximizing
the following quantity over all x ∈ Ω:

EQ-TARGET;temp:intralink-;e004;63;123PðxjyÞ ¼ PðyjxÞPðxÞ
PðyÞ ∝ PðyjxÞPðxÞ; (4)

where ∝ indicates proportionality. The first term in Eq. (4)
reflects the influence of the feature vectors. It can be simplified

by assuming that all Ys are conditionally independent given their
associated Xs. This assumption implies that if the class Xs of
site s is known then the classes and features of the remaining
sites provide no additional information when estimating Ys.
As a result we have the following:

EQ-TARGET;temp:intralink-;e005;326;697PðyjxÞ ¼
Y
s∈S

PðysjxsÞ: (5)

Instead of directly maximizing Eq. (4), it is easier (and
equivalent) to maximize its natural logarithm:
EQ-TARGET;temp:intralink-;e006;326;633

lnPðxjyÞ ∝ lnPðxÞ þ lnPðyjxÞ
¼ −UðxÞ − lnZ þ

X
s∈S

lnPðysjxsÞ

∝
X
s;xs¼1

�
αþ 1

2
ðβ � xÞs þ lnPðysj1Þ

�

−
X

s;xs¼−1

�
αþ 1

2
ðβ � xÞs − lnPðysj − 1Þ

�
: (6)

Since lnZ is a constant, and thus is irrelevant to maximiza-
tion, we drop it from the final equation.

3 From Markov Random Fields to Active
Contours

3.1 Energy Functional

The goal is to now demonstrate how Eq. (6) can be expressed as
a continuous AC functional. First, we establish the necessary
notation. To the greatest extent possible, we will reuse the sym-
bols from Sec. 2 since their meanings remain analogous in the
AC framework. Let S ⊂ R2 establish the image region. Let the
function y: S → RD reflect observations over S. Let the function
x: S → Λ ≡ f−1;1g map each point s to either the background
or foreground; specifically, x partitions S into the regions
S1 (foreground) and S−1 (background) by contour C, where
S1 ∪ S−1 ∪ C ¼ S. Finally, let XðsÞ and YðsÞ represent the
stochastic processes associated with the functions xðsÞ and yðsÞ.
Note that for the AC notation we replace the subscript s used
for MRFs with the parenthesized ðsÞ; this serves to differentiate
the discrete process Xs from the continuous process XðsÞ.

Given the previous definitions, we now examine MAP esti-
mation for ACs.30 The goal of MAP estimation is to identity
the segmentation x by maximizing the following:

EQ-TARGET;temp:intralink-;e007;326;239 lnPðxjyÞ ∝ lnPðyjxÞ þ lnPðxÞ: (7)

Assuming conditional independence as before results in the
following simplification:

EQ-TARGET;temp:intralink-;e008;326;186PðyjxÞ ¼
Y
s∈S

PðysjxsÞds; (8)

where the volume ds (i.e., a pixel or volume of infinitesimal
size) assures the proper continuum limit.30

Like x, the level set43 function ϕ: S → R also partitions S into
S1 (foreground) and S−1 (background): if ϕðsÞ > 0 then s ∈ S1
belongs to the foreground and if ϕðsÞ < 0 then s ∈ S−1 belongs
to the background. Consequently, the functions ϕ and x are
related as follows: xðsÞ ¼ 2H½ϕðsÞ� − 1, where Hð·Þ is the
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Heaviside function. Using the discussed notation—while drop-
ping the explicit dependence on s for succinctness—it is
straight-forward to formulate Eqs. (6) or (7) as a continuous
energy functional
EQ-TARGET;temp:intralink-;e009;63;708

EMAPðϕÞ ¼
Z
S1

�
αþ 1

2
ðβ � xÞ þ lnPðyj1Þ

�
ds

−
Z
S−1

�
αþ 1

2
ðβ � xÞ− lnPðyj− 1Þ

�
ds

¼
Z
S
HðϕÞ

�
αþ 1

2
ðβ � xÞ þ lnPðyj1Þ

�

− ½1−HðϕÞ�
�
αþ 1

2
ðβ � xÞ− lnPðyj− 1Þ

�
ds

¼
Z
S
HðϕÞ½2αþ ðβ � xÞ þ lnPðyj1Þ− lnPðyj− 1Þ�

−
1

2
ðβ � xÞ− αþ lnPðyj− 1Þds; (9)

where * is the convolutional operation and defined as

EQ-TARGET;temp:intralink-;e010;63;512ðβ � xÞðsÞ ¼
Z
S
xðrÞβðs − rÞdr (10)

and βðsÞ is a continuous filter with βð0Þ ¼ 0. Note that if
α ≡ β ≡ 0 and all P½yðsÞjxðsÞ� are identical Gaussian densities,
then Eq. (9) reduces to the region term introduced by Zhu
and Yuille44 and later extended by RD.30 In summary, Eq. (9)
is the AC formulation of the MRF energy function given in
Eq. (6).

3.2 Evolution Equation

The curve evolution function can be derived with a variational
scheme by minimizing the energy functional Eq. (9). The
detailed derivative is shown in the Supporting Document of
this paper. The evolution equation is

EQ-TARGET;temp:intralink-;e011;63;334

∂ϕ
∂t

¼ δ½ϕðsÞ�f−2½αþ ðβ � xÞ� þ lnPðyj − 1Þ − lnPðyj1Þg:
(11)

4 Integrating the MRF Model with Other AC
Models

In this section, we incorporate the MRF functional in Eq. (9)
with more standard AC functionals. We propose a specific
implementation of the combined model.

4.1 Combining Energy Functionals

Equation (9) demonstrates how an MRF can be represented
as an AC functional. However, since AC functionals are linear,
the MRF functional can easily be combined with other advanta-
geous functionals. In this direction, we incorporate regulariza-
tion and edge terms with the MRF energy functional.

To promote a smooth contour during the evolution, we regu-
larize the zero level set ϕ by penalizing its weighted Euclidean
length of the curve C as20

EQ-TARGET;temp:intralink-;e012;63;111ER ¼ exp

�Z
C
g½yðsÞ�ds

�
; (12)

where g½yðsÞ� is defined as color gradient-based edge-detection
function

EQ-TARGET;temp:intralink-;e013;326;730g½yðsÞ� ¼ 1

1þm½yðsÞ� : (13)

Here m½yðsÞ� is the local structure tensor-based color
gradient.20 If g½yðsÞ� is a constant, then Eq. (12) devolves
into the boundary length. With the fact that k∇HðϕÞk ¼
δfϕ½yðcÞ�gk∇ϕk,27 by applying Green’s theorem to transform
a line integral into an area integral in Eq. (12) and employing
the Heaviside function HðϕÞ, ER reduces to

EQ-TARGET;temp:intralink-;e014;326;621ERðϕÞ ¼ exp

�Z
S
g½yðsÞ�½ϕðsÞ�k∇ϕkds

�
: (14)

4.2 Specific Implementation

Assume P½yðsÞjxðsÞ� be multivariate Gaussian distribution

EQ-TARGET;temp:intralink-;e015;326;541P½yðsÞjxðsÞ�¼ 1

ð2πÞ0.5kjΣj0.5 expf−0.5½yðsÞ−μ�TΣ½yðsÞ−μ�g:
(15)

This leads to the following evolution equation:
EQ-TARGET;temp:intralink-;e016;326;474

∂ϕ
∂t

¼ δðϕÞ
�
−2½αþ ðβ � xÞ� þ ½½yðsÞ − μ2�TΣ−1

2 ½yðsÞ − μ2�

− ½yðsÞ − μ1�TΣ−1
1 ½yðsÞ − μ1�� þ log

jΣ2j
jΣ1j

þ γg½yðsÞ�δðϕÞdiv
�

∇ϕ
j∇ϕj

��
; (16)

where
EQ-TARGET;temp:intralink-;e017;326;366

μi¼
1

jSij
Z
Si

yðsÞds and

Σi¼
1

jSij
Z
Si

½yðsÞ−μi�½yðsÞ−μi�Tds; ði∈f1;2gÞ: (17)

4.3 Model Parameters

The convolution function β in Eq. (16) is determined as a kernel
function

EQ-TARGET;temp:intralink-;e018;326;255β ¼ 2β0
π

arctan½0.2ðt − 1Þ� × Kð·Þ; (18)

where t is the time in iterations and Kð·Þ can be defined as
Square kernel

EQ-TARGET;temp:intralink-;e019;326;198β ¼ SKðx; σÞ; (19)

where SKðx; σÞ is an ð2σ þ 1Þ × ð2σ þ 1Þ square window
centered at x, or the Gaussian kernel (GK)

EQ-TARGET;temp:intralink-;e020;326;147GKðx; σÞ ¼ 1ffiffiffiffiffi
2π

p exp

�
−

x2

2σ2

�
: (20)

The other parameters in Eq. (16) are defined as α ¼ η2c − 1,
β0 ¼ 0.001, σ ¼ ½ðηc − 1Þ∕2�, and γ ¼ 0.8, where the ηc is
a experientially defined 21 × 21 window centered at (excluding)
pixel x.

Journal of Medical Imaging 021107-4 Apr–Jun 2017 • Vol. 4(2)

Xu et al.: Connecting Markov random fields and active contour models: application to gland segmentation and classification

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 9/29/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx



Integrating the MRF functional into this result yields
EQ-TARGET;temp:intralink-;e021;63;741

EðϕÞ ¼ EMAPðϕÞ þ γERðϕÞ;

¼
Z
S

�
HðϕÞ½2αþ ðβ � xÞ þ lnPðyj1Þ − lnPðyj − 1Þ�

−
1

2
ðβ � xÞ − αþ lnPðyj − 1Þ

�
ds

þ γ

Z
S
g½yðsÞ�δ½ϕðsÞ�k∇ϕkds: (21)

4.4 Evolution Equation

The curve evolution can be derived with variational scheme by
minimizing the energy functional Eq. (21). The detailed deriva-
tive is shown in the Appendix. The evolution equation is
EQ-TARGET;temp:intralink-;e022;63;569

∂ϕ
∂t

¼ δ½ϕðsÞ�
�
−2½αþ ðβ � xÞ� þ lnPðyj − 1Þ

− lnPðyj1Þ þ γg½yðsÞ�δðϕÞdiv
�

∇ϕ
j∇ϕj

��
: (22)

5 Explicit Shape Descriptors for Gland
Classification

Figure 1 shows the flowchart for automated gland segmentation
using the MaRACel model and then ESDs to distinguish pros-
tate glands of G3 and G4. The original image segmented by
MaRACel as described in previous section. Using the segmen-
tation results, ESDs37 are employed to extract morphologic
features. Finally, a trained SVM is used for classifying glands
into G3 and G4.

6 Experimental Design

6.1 Datasets

6.1.1 Dataset 1 (D1)

• Data: 216 images were obtained from H&E-stained pros-
tate core needle biopsy images digitized at 20× optical

magnification using an Aperio whole-slide digital scan-
ner. Each image includes one or more prostate gland.

• Ground truth generation: For all 216 images, the objective
was to segment the gland boundaries. As it was impos-
sible to have an expert pathologist manually segment
every gland in each image (to provide ground truth for
quantitative evaluation), the expert randomly picked
regions (ROIs) of interest on the digitized images
where clusters of glands were visible. The expert then
meticulously segmented gland boundaries from within
the randomly chosen ROIs. Consequently, quantitative
evaluation of the different AC models was limited to
these ROIs across the 216 images.

6.1.2 Dataset 2 (D2)

• Data: 352 regions which include at least one gland in each
region were manually selected from 55 whole-slide pros-
tate core needle biopsy images obtained from 11 patient
studies from the Institute of Pathology at Case Western
Reserve University. The tissue biopsy cores are stained
with H&E and digitized using a high-resolution whole
slide scanner Aperio ScanScope digitizer at 40× optical
magnification.

• Ground truth generation: An expert pathologist was asked
to manually outline the tumor regions into two subgroups:
G3 and G4 on the digitized slides. One hundred and sixty
one gland regions with G3 and 191 gland regions with G4
were selected from annotated tumor regions. Every gland
contained within each region was segmented by an expert
to obtain gland boundaries.

• Training and testing samples: We randomly chose 250
samples (112 G3 and 138 G4) as training samples and
the remaining 102 samples (59 G3 and 57 G4) as testing
samples. The classification on G3 and G4 glands only
conducts on this data set.

6.2 Comparative Strategies

The four AC models that we implemented are (1) CV’s model27

with random initialization, (2) RD’s model30 with random ini-
tialization, (3) MaRACel with GK, and (4) MaRACel with

Fig. 1 The flowchart of automated gland segmentation with MaRACel model and ESDs for Gleason
grading.
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square kernel, for the purpose of (1) showing the performance of
MaRACel with different kernels and (2) quantitatively compar-
ing MaRACel with two popular region-based models.

6.3 Experimental Evaluation

Four AC models (CV, RD, MaRACelþ GK, and MaRACelþ
SK) were evaluated in terms of their gland segmentation accu-
racy. The four models were randomly initialized with circles
evenly distributed across the image. The models were evaluated
based on region-based measurements as described in Sec. 6.4.1.

6.3.1 Experiment 1: Comparison of MaRACel + GK
against CV and RD models

The aim of this experiment was to show the efficiency and
accuracy ofMaRACelþ GK over the CVand RD models. Each
model is used for gland segmentation on D1. Models were
evaluated in terms of their gland segmentation accuracy.

6.3.2 Experiment 2: Comparison of MaRACel + GK
against MaRACel + SK

The aim of this experiment was to compare the accuracy of
MaRACel with two kernel types (Gaussian and square).

6.3.3 Experiment 3: Automated classification of
G3 and G4 glands on prostate histopathology

The aim of this experiment is to show the effectiveness of
automated segmentation results with the MaRACel model in
distinguishing G3 and G4 glands.

6.4 Performance Measures

6.4.1 Region-based overlapping measurements

The performance of each model is evaluated based on the
following region-based overlapping measurements. Gland

segmentation results of the MaRACel and compared models
were evaluated in terms of measures: Dice coefficient (DICE),
overlap ratio (OL), sensitivity (SN), specificity (SP), and posi-
tive predictive value (PPV). For each image, the set of pixels
lying within the manual delineations of the glands is denoted
as AðGÞ. The set of pixels lying within any boundary from
a segmentation model are denoted as AðSÞ. AðSÞ is comprised
of those pixels whose level set functions are positive after con-
vergence of AC models. j · j represents the number of pixels in a
region, such that jCj represents the total number of pixels in the
image C. DICE, OL, SN, SP, and PPV are then defined as

1. DICE ¼ 2×jAðSÞ∩AðGÞj
jAðSÞjþjAðGÞj ;

2. OL ¼ jAðSÞ∩AðGÞj
jAðSÞ∪AðGÞj;

3. SN ¼ jAðSÞ∩AðGÞj
jAðGÞj ;

4. SP ¼ jC−AðSÞ∩AðGÞj
jC−AðGÞj ;

5. PPV ¼ jAðSÞ∩AðGÞj
jAðSÞj .

The values shown in the table are the average values across
10 images. A Dice ¼ OL ¼ SN ¼ SP ¼ PPV ¼ 1 is reflective
of perfect segmentation.

6.4.2 Classification performance in discriminating
Gleason 3 and Gleason 4 glands

Precision–recall curves [see Fig. 2(a)] and receiver operating
characteristic (ROC) curves [see Fig. 2(b)] are used to assess
the performance of classification of G3 and G4 glands seg-
mented by different models. In Eq. (23), area under the ROC
curve (AUC) involves computing the value of pðrÞ over the
interval between r ¼ 0 and r ¼ 1 where true-positive rate pðrÞ
is a function of false-positive rate r. The AUC is defined as

EQ-TARGET;temp:intralink-;e023;326;391AUC ¼
Z

1

0

pðrÞdr: (23)

Fig. 2 (a) The precision–recall curves and (b) ROC curves for accuracy distinguishing G3 from G4 in D2
from four segmentation models.
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7 Results and Discussion

7.1 Qualitative Results

Example of automated segmentation results by MaRACel model
and visualization of medical axis shape model (MASM) for G3
and G4 glands are shown in Fig. 3, respectively. The segmen-
tation for the RD and CV models, shown in columns (b) and (c)
in Fig. 4, reveals the inability of these models to eliminate the
small, spurious regions that appear due to noise. That is,
the CV and RD models inappropriately segment background
regions within the glands. The segmentation results for
MaRACelþ SK and MaRACelþ GK are given in column
(d) and (e), respectively. MaRACelþ SK and MaRACelþ GK
remove these false regions, yielding a single segmented region
for each gland.

7.2 Quantitative Results

The quantitative evaluation of segmentation results CV, RD,
MaRACelþ SK, and MaRACelþ GK models on two datasets
is reported in Table 1. The results reflect improved performance
of MaRACelþ SK and MaRACelþ GK models over CV and
RD models. Figure 2 shows the precision–recall and ROC
curves corresponding to gland classification with respect to the
four models. MaRACelþ SK and MaRACelþ GK improved
AUC compared to CV and RD models. Our MaRACel model,
while superior to the state-of-the-art comparison models, has a
lower AUC compared to manual gland segmentation in Ref. 37.
This suggests that we have room for improvement in our auto-
mated segmentation approach.

This study represents a new model for gland segmentation
and classification. The potential contribution of this work is

that the work can be used for computational Gleason grading.
The clinical performance of the model may require additional
and extensive validation of the ability to predict patient out-
comes under a variety of management choices, e.g., surgical

Fig. 3 (a and c) Example of automated segmentation results by MaRACel model and (b and d) visuali-
zation of medical axis shape model (MASM) for (a, b) G3 and (c, d) G4.

Fig. 4 Qualitative segmentation results with different methods.
Different images are displayed from top to down. From left to right
are (a) the ground truth (in green contours), (b) CV, (c) RD,
(d) MaRACelþ SK, and (e) MaRACelþGK (in blue contours).
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therapy, radiation therapy, and active surveillance. The
MaRACel model does though have at least two limitations.
One limitation is that it only focused on lumen region segmen-
tation. The model has not been leveraged to detect or segment
epithelium regions yet. Therefore, the epithelium/lumen ratios
cannot be computed with this model. Also, the model was
only tested on image tiles, instead of whole slide images. We
will address these two issues in our future work. Also, we intend
to integrate MaRACel with more efficient gland detection
approaches.20,45

8 Concluding Remarks
In this paper, an MaRACel is presented for histological image
segmentation. The formulation of the Markov prior is consistent
with the continuous variational framework characteristic of
ACs. The performance MaRACel is compared with the popular
RAC models proposed by CV and RD with respect to the seg-
mentation of prostatic acini (glands) and the differentiation of
G3 and G4. MaRACel yielded higher average DICE, OLs, sen-
sitivities, specificities, and PPVs both in terms of segmentation
accuracy and ability to discriminate between G3 and G4 than
CV and RD models.

Appendix

A.1 Derivation of Curve Evolution Function
with the Theory of Calculus of Variations

Let us rewrite the energy functional Eq. (21) in the main body as
EQ-TARGET;temp:intralink-;e024;63;166

EðϕÞ¼
Z
S

�
HðϕÞ½2αþðβ�xÞþ lnPðyj1Þ− lnPðyj−1Þ�

−
1

2
ðβ�xÞ−αþ lnPðyj−1Þþγg½yðsÞ�δ½ϕðsÞ�k∇ϕk

�
ds

¼
Z
S
Fðϕ;sÞds; (24)

where

EQ-TARGET;temp:intralink-;secA.1;326;487

Fðϕ;sÞ¼HðϕÞ½2αþðβ�xÞþ lnPðyj1Þ− lnPðyj−1Þ�

−
1

2
ðβ�xÞ−αþ lnPðyj−1Þþ γg½yðsÞ�δ½ϕðsÞ�k∇ϕk:

Based on the theory of calculus of variations, the energy
function EðϕÞ will be minimized when the following Euler–
Lagrange differential equation of the energy functional is
satisfied

EQ-TARGET;temp:intralink-;e025;326;390

∂ϕ
∂t

¼ −
�
∂F
∂ϕ

−
∂
∂ξ

∂F
∂ϕξ

−
∂
∂ζ

∂F
∂ϕζ

�
: (25)

First, we compute the first term ∂F∕∂ϕ on the right-hand side
of Eq. (25).

The introduction of the convolution equation β � x
into the AC energy function is new to this paper, and conse-
quently, the formation of its functional derivative may be
unfamiliar. Accordingly, we now provide a derivation.
Consider first the individual functional derivatives of the
two terms in Eq. (9) of the main body containing the convo-
lution equation

EQ-TARGET;temp:intralink-;e026;326;245

∂
∂ϕ

�
1

2
ðβ�xÞ

�
¼ ∂
∂ϕ

�
1

2

Z
S
f2H½ϕðrÞ�−1gβðs−rÞdr

�

¼ ∂
∂ϕ

Z
S
H½ϕðrÞ�βðs−rÞdr−1

2

∂
∂ϕ

Z
S
βðs−rÞdr

¼ δ½ϕðsÞ�
Z
S
βðs−rÞdr (26)

and

Table 1 Quantitative evaluation of segmentation and classification results on D1 and D2 with CV, RD, MaRACelþ SK, and MaRACelþGK
models.

Models Datasets

Measurement

Segmentation measurement Classification measurement

DICE (%) OL (%) SN (%) SP (%) PPV (%) AUC

D1 68.70� 12.88 61.62� 11.86 73.96� 11.34 80.66� 11.38 69.49� 14.72

CV D2 65.34� 10.39 55.69� 9.23 71.13� 11.42 75.69� 10.32 66.91� 12.33 0.28

D1 81.54� 5.00 73.13� 5.41 83.22� 3.95 92.58� 3.97 84.79� 6.42

RD D2 66.72� 6.01 54.63� 6.39 80.72� 5.60 79.16� 7.20 69.14� 9.44 0.41

D1 86.25� 4.25 79.49� 4.23 86.41� 3.20 94.26� 3.47 87.99� 4.97

MaRACelþ SK D2 75.81� 3.40 63.98� 4.07 77.75� 5.26 78.49� 4.96 82.18� 3.89 0.73

D1 86.25� 4.08 79.34� 4.11 86.80� 3.41 94.05� 3.70 87.60� 4.79

MaRACelþGK D2 76.59� 2.81 64.57� 3.35 80.91� 3.85 85.21� 3.01 78.15� 4.17 0.80
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EQ-TARGET;temp:intralink-;e027;63;752

∂
∂ϕ

fH½ϕðsÞ�ðβ � xÞg

¼ ∂
∂ϕ

�
H½ϕðsÞ�

�Z
S
f2H½ϕðrÞ� − 1gβðs − rÞdr�

�

¼ ∂
∂ϕ

Z
S
2H½ϕðsÞ�H½ϕðrÞ�βðs − rÞdr

−
∂
∂ϕ

Z
S
H½ϕðsÞ�βðs − rÞdr

¼ δ½ϕðsÞ�
Z
S
4H½ϕðrÞ�βðs − rÞdr − δ½ϕðsÞ�

Z
S
βðs − rÞdr:

(27)

The first term in Eq. (25) results from a derivation very sim-
ilar to that used for the Coulomb potential energy functional.46

Finally, the functional derivative of the first term on the right-
hand side of Eq. (25) is

EQ-TARGET;temp:intralink-;e028;63;546

∂F
∂ϕ

¼ ∂
∂ϕ

�
H½ϕðsÞ�½ðβ � xÞðsÞ þ 2αþ lnPðyj1Þ

− lnPðyj− 1Þ�− 1

2
ðβ � xÞðsÞ þ γg½yðsÞ�δ½ϕðsÞ�k∇ϕk

�

¼ δ½ϕðsÞ�
�Z

S
f4H½ϕðrÞ�− 2gβðs− rÞdrþ2αþ lnPðyj1Þ

− lnPðyj− 1Þ
�
þ γg½yðsÞ�k∇ϕk · dδ½ϕðsÞ�

dϕ

¼ 2δ½ϕðsÞ�ðβ � xÞðsÞ− 2δ½ϕðsÞ�
Z
S
βðs− rÞdrþ 2α

þ lnPðyj1Þ− lnPðyj− 1Þ þ γg½yðsÞ�k∇ϕk · dδðϕðsÞ
dϕ

:

(28)

The second and the third terms on the right-hand side of
Eq. (25) can be computed as

EQ-TARGET;temp:intralink-;e029;63;324

∂
∂ξ

∂F
∂ϕξ

þ ∂
∂ζ

∂F
∂ϕζ

¼ ∂
∂ξ

�
γg½yðsÞ�δðϕÞ ∂k∇ϕk

∂ϕξ

�

þ ∂
∂ζ

�
γg½yðsÞ�δðϕÞ ∂k∇ϕk

∂ϕζ

�
: (29)

As k∇ϕk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
ξ þ ϕ2

ζ

q
, taking derivative with respective to ϕξ

and ϕζ, respectively, on both side of the equation yields

EQ-TARGET;temp:intralink-;e030;63;227

∂k∇ϕk
∂ϕξ

¼ ϕξ

k∇ϕk ; (30)

EQ-TARGET;temp:intralink-;e031;63;180

∂k∇ϕk
∂ϕζ

¼ ϕζ

k∇ϕk : (31)

By substituting Eqs. (30) and (31) into Eq. (29), we can get

EQ-TARGET;temp:intralink-;e032;326;752

∂
∂ξ

∂F
∂ϕξ

þ ∂
∂ζ

∂F
∂ϕζ

¼ ∂
∂ξ

�
γg½yðsÞ�δðϕÞ ϕξ

k∇ϕk
�

þ ∂
∂ζ

�
γg½yðsÞ�δðϕÞ ϕζ

k∇ϕk
�

¼ γg½yðsÞ�div
�
δðϕÞ ∇ϕ

k∇ϕk
�
: (32)

Here, we have used the facts
EQ-TARGET;temp:intralink-;e033;326;647

div

��
γg½yðsÞ�γðϕÞ ϕξ

k∇ϕk
�
;

�
βg½yðsÞ�δðϕÞ ϕζ

k∇ϕk
��

¼ ∂
∂ξ

�
βg½yðsÞ�δðϕÞ ϕξ

k∇ϕk
�
þ ∂
∂ζ

�
βg½yðsÞ�δðϕÞ ϕζ

k∇ϕk
�
;

(33)

and

EQ-TARGET;temp:intralink-;e034;326;546∇ϕ ¼ ðϕξ;ϕζÞT: (34)

In Eq. (32), div½δðϕÞð∇ϕ∕j∇ϕjÞ� can be computed as

EQ-TARGET;temp:intralink-;e035;326;507div

�
δðϕÞ ∇ϕ

k∇ϕk
�
¼ δðϕÞdiv

�
∇ϕ

k∇ϕk
�
þ ∇δðϕÞ ∇ϕ

k∇ϕk :
(35)

From the second term on the right-hand side of Eq. (35), we
have

EQ-TARGET;temp:intralink-;e036;326;427∇δðϕÞ ∇ϕ
k∇ϕk ¼ dδðϕÞ

dϕ
· ðϕ2

ξ þ ϕ2
ζÞ ·

1

k∇ϕk ¼ dδðϕÞ
dϕ

· k∇ϕk
(36)

With Eqs. (32), (35), and (36),

EQ-TARGET;temp:intralink-;e037;326;358

∂
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∂ϕξ

þ ∂
∂ζ

∂F
∂ϕζ

¼ γg½yðsÞ�δðϕÞdiv
�

∇ϕ
k∇ϕk

�

þ γg½yðsÞ� dδðϕÞ
dϕ

k∇ϕk (37)

Substituting Eqs. (28) and (37) into Eq. (25), we finally get
the curve evolution function as
EQ-TARGET;temp:intralink-;e038;326;262

∂ϕ
∂t

¼ δ½ϕðsÞ�
�
−2½αþ ðβ � xÞ� þ lnPðyj − 1Þ
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�

∇ϕ
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��
: (38)
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