Accurate Real-time Occlusion for Mixed Reality

David R. Walton
University College London
david.walton.13@ucl.ac.uk

Anthony Steed
University College London
a.steed@ucl.ac.uk

Figure 1: Real image augmented with a virtual laptop, with no occlusion handling (left), occlusion handling based directly on
depths from an RGBD camera (centre), and occlusion using the proposed approach (right). Note that the inaccurate occlusion
in the centre image is due to noise in the depth map, and the camera’s inability to recover depth values for the user’s watch.

ABSTRACT

Properly handling occlusion between real and virtual objects is an
important property for any mixed reality (MR) system. Existing
methods have typically required known geometry of the real ob-
jects in the scene, either specified manually, or reconstructed using
a dense mapping algorithm. This limits the situations in which
they can be applied. Modern RGBD cameras are cheap and widely
available, but the depth information they provide is typically too
noisy and incomplete to use directly to provide quality results.

In this paper, a method is proposed which makes use of both
the colour and depth information provided by an RGBD camera to
provide improved occlusion. This method, Cost Volume Filtering
Occlusion, is capable of running in real time, and can also handle
occlusion of virtual objects by dynamic, moving objects - such as
the user’s hands. The method operates on individual RGBD frames
as they arrive, meaning it can function immediately in unknown
environments, and respond appropriately to sudden changes. The
accuracy of the presented method is quantified using a novel ap-
proach capable of comparing the results of algorithms such as
this to dense SLAM-based approaches. The proposed approach is
shown to be capable of producing superior results to both previous
image-based approaches and dense RGBD reconstruction, at lower
computational cost.

CCS CONCEPTS

+ Computing methodologies Visibility; Image process-
ing; Mixed / augmented reality;

This _work is licensed _under a Creative _Common:
Attribution International 4.0 License.

VRST ’17, November 810, 2017, Gothenburg, Sweden
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5548-3/17/11.
https://doi.org/10.1145/3139131.3139153

KEYWORDS

Mixed and Augmented Reality, User Interfaces, Image Processing

ACM Reference Format:

David R. Walton and Anthony Steed. 2017. Accurate Real-time Occlusion
for Mixed Reality. In Proceedings of VRST ’17. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3139131.3139153

1 INTRODUCTION

Occlusion is a valuable depth cue, and an important tool to aid users
of Mixed Reality (MR) in understanding the spatial relationships
between real and virtual objects in the scene [Ellis and Menges
1998; Kalkofen et al. 2007]. In order for the virtual content in an
MR application to appear consistent with the real content, it can be
vital that occlusion between virtual and real objects is accurately
rendered. Where MR is used as an aid to executing real-world tasks,
such as navigating unknown environments [Livingston et al. 2003;
Tsuda et al. 2006] using appliances [Feiner et al. 1993] or carrying
out surgery [Kalkofen et al. 2007; Lerotic et al. 2007], it can be
critical to ensure that content is visible to the user at the correct
time. In such settings it may be unacceptable, and even pose a safety
risk, for virtual content to inappropriately occlude real content in
the user’s view.

Occlusion between (opaque) real and virtual objects can be re-
produced using the per-pixel depth of the real objects, using a
technique similar to z-buffering. These depths could be obtained by
rendering a geometric model of the scene, in which case the quality
of the results will depend upon the accuracy and detail present
in this geometric model, as well as the accuracy of the camera
tracking.

Unfortunately, scene models are not usually readily available.
For example, an MR mobile application would not have access to
detailed geometric models of users’ homes. It would be possible
to use a real-time dense SLAM algorithm such as Kinect Fusion
[Izadi et al. 2011], but this would come at a high computational

https://doi.org/10.1145/3139131.3139153
https://doi.org/10.1145/3139131.3139153
rodkin
Typewritten Text
This work is licensed under a Creative Commons
Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

VRST ’17, November 8-10, 2017, Gothenburg, Sweden

Figure 2: User’s hand occluding a virtual teapot, in an MR
scene. Top: Results using naive approaches. Top Left: Un-
known pixels assumed in front of virtual object. Top Right:
Unknown pixels assumed behind virtual object. Right: im-
proved result using the presented method. Images produced
using the application detailed in sect. 5.3.

cost, require some time to produce an accurate reconstruction, and
assume a static, rigid scene. In changing environments or when
operating on resource-constrained devices, another solution for
determining occlusion would be required.

RGBD cameras, which provide per-pixel colour and depth in-
formation, have become increasingly widely available in recent
years. However, they suffer from temporal noise, and are frequently
unable to determine accurate depth values for certain pixels. This
can result in poor-quality results when these depth values are used
to render occlusion in MR, as can be seen at the top of figure 2.

This paper presents Cost Volume Filtering Occlusion (CVF Oc-
clusion), a method to use this noisy, incomplete data to accurately
simulate the occlusion of virtual content by real content in video
see-through augmented reality scenes. The method is capable of
running in real-time on a laptop computer. It is also capable of
detecting partial occlusion at a pixel, allowing it to avoid aliasing
along occlusion edges.

The method makes use of an approach based upon cost volume
filtering [Hosni et al. 2013], making use of the efficient guided filter
[He et al. 2013]. A result produced using this method can be seen
at the bottom of figure 2. Our work builds upon earlier literature
applying cost volume filtering to mixed reality occlusion, adapting
it to this problem domain. An efficient GPU implementation of the
guided filter helps to enable this method to function in real time.
In contrast to previous approaches, the per-frame runtime of the
method is predictable and independent of the size of the occluded
region to process.

Finally, a method to quantitatively assess the quality of this
method is presented. This method is capable of assessing both the
accuracy and the temporal stability of the output. This is used to
demonstrate that the presented method offers competitive quality
to real-time Simultaneous Localisation and Mapping (SLAM) al-
gorithms at lower computational complexity, in addition to being
able to handle occlusion by moving or deformable objects, such as
a person’s hands.

To summarise, the contributions of this paper are as follows:

Walton and Steed

o An efficient method to perform real-time occlusion culling
in MR using cost volume filtering with a guided filter. CVF
Occlusion offers similar quality to full 3D reconstruction
approaches, at lower computational cost, and can handle
dynamic scenes.

e An approach for quantitatively measuring the accuracy of
MR occlusion algorithms which involve scene reconstruction
and refinement over time.

2 RELATED WORK

It can prove challenging to correctly reproduce occlusion in a MR
application. Whilst mutual occlusion between virtual content can
be efficiently rendered in modern graphics hardware, handling
occlusion between virtual and real content is non-trivial. This is
because it is a priori unclear where the real content should occlude
the virtual content, as the location of the real content is often not
known. A number of authors have attempted to tackle this problem
in the past, and some of the suggested approaches are summarised
here.

2.1 Model-based Approaches

A number of well-established approaches exist for accurately ren-
dering the occlusion of virtual objects by real objects, using a de-
tailed geometric model of the real scene [Breen et al. 1996]. Provided
accurate registration is possible, these approaches can render de-
tailed occlusion between virtual and real objects very efficiently, by
making use of GPUs.

Such techniques are only applicable to static or precisely tracked
real objects, for which detailed models are available. Consequently,
such methods are not capable of resolving occlusion in the common
case where the user of an MR application moves their hand in front
of a virtual object. Additionally, should tracking become inaccurate,
virtual content will exhibit incorrect occlusion.

2.2 Contour Tracking

Another class of approaches attempts to remove the requirement
to accurately model the real scene, by tracking the silhouette of the
occluding real object(s) [Berger 1997; Klein and Drummond 2004;
Lepetit and Berger 2000]. Such methods typically track these object
edges using a variant of the active contours (snakes) algorithm
[Kass et al. 1988]. Similar techniques can also be used to refine the
occlusion estimates produced by model-based methods [Klein and
Drummond 2004].

Although such approaches have the advantage of not requiring
models of the real scene, they typically require sufficient processing
power to track the silhouette contours. The tracked contours may
also not be entirely accurate, either due to problems in fitting (e.g.
local minima), or to insufficient resolution and/or flexibility of the
contour model. The active contours algorithm requires initialisation,
which may need to be performed by the user (as in [Lepetit and
Berger 2000]); this may not always be desirable or practical.

These methods also implicitly make the assumption that oc-
cluders are opaque objects with continuous, definite boundaries of
finite length. This assumption does not hold for a wide variety of
real-world occluders. Examples include translucent objects such as

Accurate Real-time Occlusion for Mixed Reality

smoke or stained glass, as well as objects exhibiting subpixel-scale
detail such as hair.

2.3 Masks and Mattes

The approaches discussed in sect. 2.1, 2.2 all attempt to solve the
problem of determining where real-virtual occlusions occur in an
MR application. Many [Berger 1997; Kanbara et al. 2000; Klein and
Drummond 2004; Lepetit and Berger 2000; Ventura and Hollerer
2009] produce a binary label for each pixel in the augmented image,
indicating whether a real-virtual occlusion occurs at that pixel,
effectively segmenting the image. The binary image containing
these labels, a “mask”, can be used to composite the real and virtual
images to produce the augmented image.

This is, however, not a complete solution to the problem, as
some pixels in an image may be partially occupied by real content,
and partly by occluded virtual content. Such pixels are common
at the boundaries of objects, where their edges bisect pixels, but
also occur due to translucent real objects, as well as objects on a
subpixel scale (such as hair). Assigning binary labels to such pixels
leads to a variety of errors, including aliasing along edges.

For this reason, in the related area of foreground-background
separation (e.g. for image compositing), some methods instead at-
tempt to develop a matte containing a scalar ‘alpha’ value in the
range [0, 1] for each pixel [Smith and Blinn 1996]. Here, 1 indicates
a pixel containing only foreground content, and 0 indicates a pixel
containing only background content. Values in the (0, 1) range con-
tain a combination of foreground and background. A high-quality
matte can produce better results than a binary mask, avoiding prob-
lems such as aliasing along edges (“jaggies”), as well as properly
handling small-scale and translucent content [Smith 1995].

CVF Occlusion also generates alpha mattes. In these mattes, 1
indicates a pixel where the virtual content is fully visible, and 0
indicates a pixel where it is fully occluded. Values in the (0, 1) range
indicate partial occlusion.

2.4 Occlusion and Depth

Where per-pixel depth values are available, these may be used to
determine occlusion between virtual and real objects. This may be
achieved by simply comparing the depths - where a virtual object
has a greater depth than a real object, it can be assumed that the
real object occludes the virtual object at this pixel.

[Wloka and Anderson 1995] describe an MR system which makes
use of this principle to correctly composite real and virtual images.
In this application, the real depth measurements are acquired using
a stereo camera pair and a stereo matching algorithm. These are
then added to the z-buffering process used in rendering the virtual
content, preventing virtual objects from being rendered at those
pixels where real objects exist at lower depths. This allows for the
real and virtual content to be efficiently composited, but may cause
aliasing along occlusion edges, due to the lack of sub-pixel occlusion.
[Kanbara et al. 2000] later developed an approach with improved
depth estimation, and demonstrated its use on a head-mounted
display (HMD).

A number of other papers have focussed on the similar problem
of producing an alpha matte, separating a foreground object from
its background. Performing this operation on a colour image alone

VRST ’17, November 8-10, 2017, Gothenburg, Sweden

is a challenging problem, and existing solutions typically require
user input to specify the approximate object location, and have a
high computational complexity, rendering them unsuitable for use
in real-time applications [Rhemann et al. 2009; Wang and Cohen
2008].

The additional information provided by a depth map can be ex-
ploited to produce mattes efficiently, without requiring user input.
Wang et al. [Wang et al. 2007] made use of depth information to au-
tomate the application of two established alpha matting techniques
to video sequences. More recently, a number of approaches have
been developed to perform video alpha matting in real-time [Wang
et al. 2012, 2010; Zhu et al. 2009]. Applications of such algorithms
include inserting participants in a videoconferencing system into a
single virtual room, for more natural remote group chat [Lu et al.
2011]. [Crabb et al. 2008] proposed a method for real-time matting,
based on a cross bilateral filter. Similarly to CVF Occlusion, this
approach involves processing the depth and colour images using an
edge-preserving filter. However, CVF Occlusion is designed for MR
occlusion specifically, and uses a two-step filtering and thresholding
approach to provide improved results.

2.5 Depth Map Enhancement

As mentioned in section 2.4, an accurate real depth map may be
used to solve the real-virtual occlusion problem. However, the depth
map can only be used to provide binary results at each pixel, which
leads to some degree of aliasing along the occlusion edges.

A number of techniques exist to improve the quality of the
depth map produced by an RGBD camera, using its colour out-
put. One class of these approaches uses some variety of structure-
transferring filter, such as a cross bilateral filter [Eisemann and Du-
rand 2004], to move detail from the colour image to the depth map,
and fill holes. L. Chen et al. [Chen et al. 2012] presented an approach
which used morphological operators and suitably adapted cross
bilateral filters to remove incorrect values, fill holes and remove
noise from depth maps. A later approach by C. Chen et al. [Chen
et al. 2013] instead finds the improved depth map as the minimum
of an energy function using the input depths, estimated confidence
values and the location of edges in the colour image.

Many works focus on the situation where a depth map and colour
image are available, but the depth map is of lower resolution. Here,
the task is to upsample and refine the depth map, to obtain per-
pixel depth values for the larger colour image. Approaches have
tackled this problem in a variety of ways, including cost volume
filtering [Cho et al. 2013; Yang et al. 2007] and adapted bilateral
filters [Chan et al. 2008]. [Du et al. 2016] used an edge-snapping
approach, and also demonstrated how the output could be used to
render improved MR occlusion.

2.6 Reconstruction and Occlusion

[Ventura and Hoéllerer 2009] demonstrated an MR system which
compared a planar reconstruction of the environment to the ob-
served colours to identify dynamic real-virtual occlusions. This
approach works well under the assumption that the reconstruction
is accurate and the scene is static. However, it implicitly assumes
that dynamic objects are always located between the viewer and the
virtual object, resulting in incorrect behaviour when (for example)

VRST ’17, November 8-10, 2017, Gothenburg, Sweden

Table 1: Pixel category names and associated conditions.

‘infront’ | On virtual object, real depth < virtual depth

‘behind’ | On virtual object, real depth > virtual depth.

‘process’ On virtual object, real depth unknown or
equal to virtual depth

‘ignore’ Off virtual object.

a user places their hand behind a virtual object, or the appearance
of the scene changes. The method is also only capable of generating
binary segmentations, rather than full alpha mattes.

A number of recent methods have been developed to produce
dense, detailed 3D reconstructions of real scenes in real-time [Izadi
et al. 2011]. This opens up the possibility of using such recon-
structions to calculate occlusion, using a method similar to those
described in sect. 2.1. This allows such techniques to be applied in
situations where scene geometry is not known a priori.

Such methods are capable of producing high-quality results, but
rely heavily on the quality of the reconstruction, as well as the accu-
racy of the camera tracking. The quality of the rendered occlusion
will be lessened in situations where the reconstruction is not capa-
ble of accurately capturing the fine detail or transparency of a real
object. Many techniques, including Kinect Fusion and InfiniTAM
[Kahler et al. 2015] assume a static scene, and the occlusion will be
very inaccurate if this assumption is violated (for example, if a user
obscures a virtual object with their hand).

3 PRESENTED METHOD
3.1 Setup

The hardware system used by this method consists of a single
RGBD camera observing a scene containing an MR marker. For the
purposes of this paper, the authors made use of the ArUco library
[Garrido-Jurado et al. 2014] to determine camera location, which
tracks by using fiducial markers.

Although a marker-based tracking system was used here, alterna-
tive markerless tracking systems such as PTAM [Klein and Murray
2007] could also be used for this purpose. The camera location is
only used to correctly position the virtual content in the rendering
step. A marker-based system was chosen because stable, external
tracking was needed to compare a range of occlusion techniques.

3.2 Rendering

The virtual content is rendered, using the transforms obtained from
the tracking. In addition to rendering RGB pixels, the depth (i.e. z co-
ordinate) of each pixel in camera space is also rendered, producing
a virtual depth map. The minimum and maximum depths of each
virtual object are recorded.

3.3 Pixel Categorisation

The virtual depth map and real depth map are compared, to cat-
egorise each pixel in the image. These pixel categories are used
as input to the subsequent stages of the approach. The categories
employed are listed in table 1.

The pixel categories are named according to whether the real
scene is in front of or behind the virtual object at a given pixel.

Walton and Steed

Figure 3: Stages involved in generating an augmented im-
age using the proposed method. Top left: Categorisation ap-
plied to pixels. Classes are coloured as follows: ‘infront’,

, ‘process’, ‘ignore’. Top right: Initial costs. Middle left:
Filtered costs. Middle right: thresholded costs. Lower left: Fi-
nal matte. Lower right: Composited MR image.

As noted by [Nguyen et al. 2012], the style of depth camera used
here suffers from lateral noise. This noise causes inaccurate depths
at pixels near edges in the depth map. If the pixels were classi-
fied exactly as described in table 1, this would lead to some pixels
erroneously being included in the ‘infront’ and ‘behind’ categories.

In order to mitigate this problem, a morphological (erosion)
operator was used to remove pixels within a 3-pixel range of the
border of the ‘infront’ and ‘behind’ categories. These pixels were
included in the the ‘process’ category if occupied by the virtual
object, or the ‘ignore’ category otherwise. As noted in [Nguyen
et al. 2012], the lateral noise does not vary significantly with depth,
so this 3-pixel range could be generally applied.

Note that the pixel categories generated here are similar in con-
cept to the trimaps used in alpha matting techniques such as that of
[Chuang et al. 2001]. The difference is that here, in addition to the
three typical categories of foreground, background and unknown,
we add a fourth ‘ignore’ category.

The top left image in figure 3 shows an example classification of
pixels in an to which a virtual dragon is being added.

3.4 Initial Cost Calculation

Using these categories, per-pixel costs are generated, using a similar
approach to that used by Hosni et al. for interactive image segmen-
tation [Hosni et al. 2013]. In order to calculate these costs, colour
models are first fitted to the ‘infront’ and ‘behind’ pixel categories,
in a small area around the ‘process’ region. In this implementation,

Accurate Real-time Occlusion for Mixed Reality

we used histograms, however other colour models such as Mixture
of Gaussians could also be used.

Once the models are fitted, the initial costs can then be generated.
Each cost is a 32-bit floating-point value, and captures the likelihood
of the real object being in front of or behind the virtual object at
that pixel.

For pixels in the ‘infront’, ‘behind’ or ‘ignore’ categories, the cost
is simply set to 1, 0 or 0.5 respectively. In the ‘process’ region, it is
set to a value in the range [0, 1] calculated as follows:

Pinfront(P)
Pinfront(P) + Pbehind(p)

Here, p is the pixel in question, and Pinfront, Ppeninag are the
probabilities of the pixel’s colour under the respective histograms.

In many cases, these costs already resemble a reasonable image
matte. Often, however, it contains inappropriate colour detail. This
is removed in the subsequent cost filtering step.

An example of these initial costs can be seen in the top right of
figure 3.

Clp) =

3.5 Cost Volume Filtering

Following this, a guided filter [He et al. 2013] is applied to the costs.
The guided filter is an edge-preserving smoothing filter, which takes
two images as input; a guidance image and an input image. The
filter has the effect of smoothing the input image, whilst preserving
hard edges present in the guidance image.

Here, the input image consists of the initial costs, and the guid-
ance image is the colour image from the RGBD camera. The guided
filter has the effect of smoothing the costs and removing some of
the unnecessary detail, whilst preserving hard edges in the colour
image. These hard edges typically correspond to occlusion bound-
aries.

This initial cost volume filter uses a fairly broad radius to provide
a strong smoothing effect. After the filtering stage, the pixels in the
‘process’ region typically more closely resemble the desired matte,
as can be seen in the middle left image of figure 3.

3.6 Matte Generation

Following the filtering stage, the filtered costs are thresholded to
produce an initial matte for compositing the virtual object. Costs
above 0.5 are set to 1.0, and those below 0.5 are set to zero. Only
pixels from the ‘process’ region are used This produces an initial,
binary matte.

A second guided filter is then applied to the matte. This filter
uses a smaller radius, and has the effect of ‘feathering’ the occlusion
edges. This removes the aliasing artefacts that would result from us-
ing the initial binary matte as-is. Results are particularly improved
in cases where occluders have ‘fuzzy’ edges where many pixels
should exhibit partial occlusion (for example the hair on a person’s
head, or a fluffy toy). Examples of thresholded costs and the final
generated matte can be seen in the middle right and bottom left of
figure 3, respectively. Here, one can see that the filter has removed
the aliasing artefacts from the edges of the hand.

This process is adapted from the matting approach proposed by
[Hosni et al. 2013]. However, Hosni et al. use an iterative approach,

VRST ’17, November 8-10, 2017, Gothenburg, Sweden

where the model fitting, filtering and thresholding stages are re-
peated multiple times. In our approach these stages are performed
only once, improving the efficiency and allowing the process to
run in real time. Since the depth map is already close to the true
occlusion edges, a single iteration is typically sufficient. Future
implementations could use multiple iterations if this is necessary.
This would be useful if, for example, the RGBD sensor used has a
lower-resolution depth sensor, or higher-resolution colour sensor
than the one used here.

If multiple iterations are required, it is possible to take advantage
of another property of the guided filter. When multiple images are
to be filtered using the same guidance image and filter parameters,
much of the computation can be reused to improve efficiency. This
reduces the computational cost of subsequent iterations.

3.7 Compositing

Once an alpha matte has been produced, a compositing process is
applied to produce the final augmented image.

This process is an approximation on the boundary of the occlud-
ing real object (i.e. at pixels where the matte value lies in the range
(0, 1)). Here, the input colours at each pixel ¢, initially contain a
linear combination of the real background and foreground colours
cp and cf:

co = acp - (1—a)ey

In principle, the augmented image should have the colour cg,
where:

Ca = acy - (1= a)ep

Here, ¢y, is the colour of the virtual object at this pixel. The ap-
proaches described here determine @, but not cs. Consequently, the
output image uses ¢, in place of c¢. This could produce erroneous
composites in certain situations, particularly when the foreground
and background colours differ greatly at a pixel exhibiting partial
occlusion. We found that this approximation produced reasonable
results in our tests, however.

4 IMPLEMENTATION & EVALUATION
METHOD

4.1 Implementation

This implementation of CVF Occlusion used a combination of CPU
and GPU processing. The initial pixel categorisation, histogram
fitting and cost calculation took place on the CPU, and were imple-
mented in C++. The costs were then transferred to the GPU, and
all subsequent processing took place there. This meant that the
most expensive component of the approach, the two guided filter
applications, could take advantage of efficient GPU implementation.
It also minimised the information which needed to be transferred
between CPU and GPU at each frame. The GPU code was written
in OpenGL, which was also used to render virtual content and com-
pose the output image. Components such as the guided filter were
implemented in compute shaders.

The guided filter implementation used the efficient formulation
described in [He et al. 2013]. This consists of a series of box filters,
in addition to a number of simple pixel-wise image operations,

VRST ’17, November 8-10, 2017, Gothenburg, Sweden

such as adding, subtracting or multiplying two images. The box
filters are implemented using summed area tables [Crow 1984]
(later works often refer to these as integral images). Consequently,
our implementation is O(N), where N is the number of pixels in the
input image. It is independent of the radius of the filter employed.
The summed area tables were calculated using parallel GPU prefix
sums along rows and columns of the image.

4.2 Quality Evaluation Method

In order to quantify the relative quality of the results, it was neces-
sary to develop a procedure for obtaining ground truth occlusions,
and metrics to compare this ground truth to the output of CVF
occlusion.

A small environment in which to carry out the experiment was
constructed, containing an occluding object and some background
objects. The RGBD camera was mounted on the quick-release plate
of a sturdy tripod and pointed towards the scene. An MR marker,
attached to a stiff foamcore board was placed off to the side of the
scene, visible to the camera. The MR scene consisted of a single
virtual object, between the real foreground and background objects,
arranged to be partly obscured by the foreground.

We also intended to compare the results of CVF occlusion to
those of a dense, Kinect Fusion-style algorithm. Such algorithms
are intended to construct a scene model of gradually increasing
quality over time, and need to view objects from multiple angles
to produce accurate models. In order to compare a dense SLAM
method to the proposed approach during the reconstruction, the
following steps were repeated:

(1) Detach the camera from the tripod.

(2) Move the camera around the scene for a period of time,
allowing Kinect Fusion to reconstruct the scene.

(3) Reattach the camera to the tripod.

(4) Mark a series of frames for comparison, record the appear-
ance, depth, mask of the virtual object.

(5) Move the green screen behind the object, and capture the
ground truth frame.

(6) Remove the green screen.

The dense SLAM algorithm used for the comparison here was
InfiniTAM [Kahler et al. 2015]. This builds upon the original Kinect
Fusion approach, adding a volume hashing mechanism enabling it
to store the scene model compactly and reconstruct larger areas.

RGBD cameras, such as the one used in this example, an Xtion
Pro, typically suffer from some temporal noise, particularly in the
depth output. Because of this, it was decided to compare a series of
consecutive frames during each cycle, to determine if this temporal
noise caused the error of any of the approaches to vary significantly
(here, 4 frames were used).

In practice, it was found to be easier to losslessly record the
footage from the RGBD camera, and then apply the algorithms
afterwards. This approach was chosen as it would not have been
possible to run all of the compared approaches simultaneously in
real-time.

4.2.1 Per-frame Accuracy. The mattes obtained using the occlu-
sion methods were compared to ground truth mattes, in order to
assess their accuracy. Figure 4 shows the process of developing a
ground truth object matte from a green screen image. First, a photo

Walton and Steed
a) [
[
Figure 4: Developing a ground truth matte, using a green
screen. a): Green screen placed behind foreground object. b):

Matte extracted from greenscreen image. c): Pixels occupied
by virtual object. d): Ground truth occlusion matte.

editing tool is used to produce a matte b) from the input green
screen image a). The authors found that attempting to produce this
matte without user intervention sometimes led to inaccurate results
for more challenging objects. The pixels of this matte not occupied
by the virtual object c) are then set to zero, resulting in an accurate
ground truth matte d).

Once ground truth mattes Mg had been obtained, the accuracy
of the automatically generated mattes M was then measured by
calculating the mean squared error (MSE), as defined in equation 1.

MSE(M) = Z(M(p) Ma(p))? (1)

peQ

4.2.2 Temporal Noise. In addition to improving the quality of
mattes for individual frames, as measured by the MSE metric, it
is also desirable for an occlusion method to remove the temporal
noise present in the depth maps. This noise manifests as disturbing
flickering artefacts along occlusion boundaries when the depth map
is used directly.

In order to assess the ability of the occlusion methods to remove
temporal noise, an additional metric was calculated. During step
4 of the capture procedure outlined in sect. 4.2, several frames are
captured in sequence whilst the camera is fixed to a sturdy tripod.
These frames contain static real and virtual scenes and so ideally
the matte output would be constant over each of these sequences.

To measure the temporal noise in a sequence of output mattes,
the variance at each pixel location in the matte is computed across
the sequence. The mean of these variances is then taken, to provide
a scalar measure of the temporal noise. As noted above, the ideal
occlusion method would produce a sequence of identical mattes,
resulting in a value of zero. A method that produced some degree of
temporal noise would produce mattes with more variation, resulting
in a higher (worse) value.

4.3 Compared Techniques

This evaluation method was applied to a number of different occlu-
sion methods, to compare their performance.

Accurate Real-time Occlusion for Mixed Reality

Two naive occlusion methods were implemented, which use the
depth map from the RGBD camera directly. We refer to these as
‘Direct1’ and ‘Direct2’. ‘Directl’ assigns matte values m using just
the real, unprocessed depth d, and the virtual depth d,, at each
pixel as follows:

)1 ifdr>dy
o if dr < dy or d unknown

‘Direct2’ is otherwise identical, but sets m to 1 where d, is
unknown. Thus, both methods compare real and virtual depths
per-pixel to determine occlusion. In cases where the real depth
is unknown, ‘Direct1’ assumes the virtual object is occluded, and
‘Direct2’ assumes it is not occluded. Missing values occur on both
unoccluded and occluded parts of the virtual object, so neither
of these approaches is inherently superior (although one might
provide better results in a particular situation).

CVF occlusion was also compared to the earlier method of Crabb
etal. [Crabb etal. 2008]. This approach was developed for foreground-
background segmentation, rather than MR occlusion. Here it has
been adapted by setting the threshold depth to the mean depth of
the virtual object, and setting regions of the matte not located on
the virtual object to zero. This adapted method is referred to as
‘Crabb’ in the results.

To provide context, the presented method was also compared
to simpler approaches using other structure-transferring filters. In
these approaches, an initial matte was generated using the pixel
categorisation described in sect. 3.3, and the filter was then applied
to refine it. The initial mattes were generated by setting pixel values
from the behind category to 1, those from the unknown category
to 0.5, and those from the infront or ignore categories to 0.

The filters tested were the guided filter used here, and an adapted
joint bilateral filter. This joint bilateral filter was modified to only
use information from pixels whose position relative to the virtual
object is known (i.e. those from the ‘infront’ and ‘behind’ cate-
gories). In both cases, the filter was only applied to pixels in the
‘process’ category. These two methods are referred to as ‘Guided’
and ‘Bilateral’ in the results (according to the filter used).

CVF occlusion is referred to as ‘CVF’ in the results.

5 RESULTS

The experiment was repeated for a number of small MR scenes.
These were constructed to be on a scale which allowed the camera
to produce accurate depth values, and Kinect Fusion to reconstruct
the scene accurately. Images of the scenes constructed are shown
in figure 5.

The first scene, ‘Normal” was designed to represent a typical use
case, and the other two to represent more challenging situations.
In ‘Same Colour’, the foreground and background are of a simi-
lar colour near the virtual object. In ‘Specular’, highly reflective
foreground objects mean that the RGBD camera is often unable to
obtain accurate foreground depths.

5.1 Per-frame Accuracy

Figure 6 shows the measured errors of the resulting mattes relative
to the ground truth frames, using the MSE error metric. Each bar
shows an average MSE for the frames captured consecutively in

VRST ’17, November 8-10, 2017, Gothenburg, Sweden

Normal Specular

Same Colour

Figure 5: Colour frames from the three scenes constructed
to test the output of the algorithm.

each cycle. In the first group, InfiniTAM has been exposed to the
scene for a short length of time, with a stationary camera. In subse-
quent groups, the algorithm has been exposed to the scene from
a wider range of viewing angles, for a longer length of time. The
InfiniTAM error measurements (shown in orange) are the only ones
which should show variation over time, as the other approaches
do not make use of temporal information. Figure 7 shows some
example results produced using CVF occlusion, with ground truth
for comparison.

In the typical case ‘Normal’ scene, the proposed method provides
better results than both direct approaches. The errors are also below
those obtained using the other per-frame approaches.

Looking at the results of the two direct approaches, one can see
that which is superior depends upon the situation. In the ‘Normal’
and ‘Same Colour’ sequences, where there are typically more un-
known values behind the virtual object, Directl has lower errors.
However, in the ‘Specular’ scene where there are many unknown
values in front of the virtual object, Direct2 produces better results.

The accuracy of the CVF occlusion is lower in the two more
challenging cases. In these cases the MSE is not always lower than
both Direct1 and Direct2. However, in the ‘Same Colour’ example it
is better than Directl, and in the ‘Specular’ example it is better than
Direct2, suggesting that the presented approach is more generally
applicable.

The ‘Specular’ example is an interesting case where the approach
of Crabb et al. often outperforms the presented approach in MSE. It
should be noted, however, that Crabb suffered from much greater
temporal noise in this sequence (see figure 8). Whether low tempo-
ral noise or MSE accuracy is a more important metric is likely to
vary depending upon application domain.

VRST 17, November 8-10, 2017, Gothenburg, Sweden

m InfiniTAM mDirectl mDirect2 Crabb mBiateral mGuided mCVF

Normal
0.0035
0.003
0.0025
0.002
0.0015
0.001
0.0005
o
30-33 272-275 563-566 858-861 1165-1168 1471-1474
Specular
0.014
0.012
0.01
0.008
0.006
0.004
]
25-28 326-329 B53-656 983-986 1505-1308 1673-1676
Same Colour
0.008
0.007
0.006
0.005
0.004
0.003
0.002
I|||I||I|I||||
o

24-27 2932-295 627-630 571-874 1233-1236 1580-1583

Figure 6: Matte quality for each of the compared frames of
the three RGBD sequences, as measured using Mean Square
Error.

Figure 7: Example results obtained using CVF occlusion on
each of the three test sequences (top row), and results using
the corresponding ground truth mattes (bottom row).

Walton and Steed

Normal

0.14

0.12

0.08
0.06
0.04
0.02

o

InfiniTAM Directl Direct2 Crabb Bilateral Guided

=)

=)

Specular

0.2
0.15
0.1
0.05
0

InfiniTAM Directl Direct2 Crabb Bilateral Guided

=)

Same Colour
025

02

0.15

1
o

InfiniTAM Direct1 Direct2 Crabb Bilateral Guided

=

0.

=

Figure 8: Temporal noise for each of the compared frames
of the three RGBD sequences, measured as described in sect.
4.2.2.

The results from InfiniTAM gradually improve as the scene is
exposed to the RGBD camera. For the first few frames in the ‘Nor-
mal’ and ‘Same Colour’ sequences, its error is much higher than
the proposed approach. This highlights an advantage of using a
per-frame approach; good results can be obtained, even on the first
frame of a sequence.

It is also worth noting that, under certain conditions, such as
rapid camera movement, reconstruction methods such as Infini-
TAM can lose tracking, and this often results in the scene model
becoming corrupted. Care was taken to avoid such rapid motions
when capturing these sequences. The method presented here does
not use any intra-frame state, and thus will continue to operate
even when the camera image changes very quickly.

5.2 Temporal Noise

Figure 8 shows the average temporal noise estimates for each oc-
clusion method, for each captured sequence. The noise estimates

Accurate Real-time Occlusion for Mixed Reality

Figure 9: Example results from the ‘Same Colour’ sequence,
using the presented approach (left) and the baseline guided
filter approach (right).

were calculated as described in sect. 4.2.2 and the average of these
values was taken over each sequence.

As can be seen in figure 8, for the typical use case example
‘Normal’, the proposed approach offers a reduction in temporal
noise. It is lower than both of the direct approaches, but also lower
than Crabb et al., and the simplified guided filter and bilateral
approaches. This shows the benefit of the two-step approach and
thresholding stage, which reduce the direct dependence of the
output matte on the noisy input depths.

In the more challenging ‘Same Color’ scene, although the MSE
was not consistently below that of both direct approaches (as dis-
cussed above), the temporal noise of the proposed approach was still
lower. In this sequence, CVF occlusion also showed significantly
lower MSE than the baseline guided filter approach. The reason for
this can be seen in figure 9. The thresholding stage used in CVF
occlusion tends to produce results with well-defined boundaries,
avoiding the errors which can be seen in the guided filter example.

InfiniTAM consistently offered the lowest temporal noise across
all scenes, although this comes at the cost of its slow response to
changes in real scene geometry (for example, if an occluding real
object is moved).

5.3 Performance

In order to demonstrate the capability of CVF occlusion to work
in real-time, a simple MR application was developed. This overlaid
a single virtual object on the color image provided by the RGBD
camera, using a fiducial marker for tracking. The occlusion method
was applied at each frame, and the resulting matte used to compose
the final MR image, which was displayed on the screen.

This application was tested using a computer with an Intel Core
i7 processor and an Nvidia GTX 1080 GPU. An Asus Xtion Pro depth
camera was used for both colour and depth input, at depth and
colour resolutions of 640x480 pixels. Using this setup, the applica-
tion was able to run consistently at 30 frames per second using CVF
occlusion, the limiting factor being the framerate of the camera.

The occlusion method was also timed in isolation. In order to
obtain meaningful values, it was necessary to forcefully synchro-
nise the GPU (using glFinish). This means that the results may
not reflect use of the method in a larger application, where the
GPU could potentially run other tasks in parallel. They do provide
a useful upper bound, however. With this synchronisation, each
frame could be processed in between 5 and 7 milliseconds. Due to
the O(N) implementation of the guided filter, the processing time

VRST ’17, November 8-10, 2017, Gothenburg, Sweden

was largely independent of the kernel size used, and the proportion
of pixels in the ‘process’ category, offering a consistent framerate.

The implementations of the Bilateral, Guided Filter and Crabb et
al. approaches used here were implemented on the CPU, and able
to run at near real-time (40-50ms per frame). More optimised GPU
implementations of these approaches would likely have similar
performance to CVF occlusion. Thus we believe that the cost of
CVF occlusion is comparable with these other approaches, and it
may be faster in many use cases.

6 DISCUSSION

CVF occlusion implicitly assumes a single virtual object - that is,
that all real points lie either in front of or behind the virtual object.
The same techniques could be applied to more complex scenes
with alternating layers of virtual and real content, by processing
each virtual layer separately. It would also be possible to process
occlusion for each virtual layer in parallel.

The implementation of CVF occlusion used for the evaluation
was not carefully optimised. It would be possible to further improve
it to reduce the cost or allow implementation on lower-power mo-
bile platforms. The summed area table calculation used in the guided
filter in particular was implemented using two filter passes, and
efficiency could be improved using the formulation proposed by
[Nehab et al. 2011].

Occasionally, the depth camera will be unable to register any
valid depth values for an occluding foreground object, due for ex-
ample to small size, translucency or specularity. In these cases the
object is only visible in the depth image as a patch of unknown
values, surrounded by background pixels. In this case, the proposed
approach will then incorrectly render the virtual object in front of
the occluder. This problem is difficult to address using the informa-
tion available to the algorithm, but was found to occur relatively
rarely in practice.

7 CONCLUSION

CVF occlusion, an approach to producing occlusion mattes in real-
time from the output of an RGBD camera was presented. This
method operates independently on each frame, and is therefore
capable of working immediately, and handling dynamic and de-
formable objects. A novel comparison approach was used to demon-
strate that the method offered comparable results to a dense recon-
struction approach (InfiniTAM), at lower computational cost.

The authors feel that these results demonstrate the potential for
the use of image-based approaches coupled with off-the-shelf RGBD
cameras to solve the MR occlusion problem, and sho