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SUMMARY

New myelin-forming oligodendrocytes (OLs) are
generated in the mouse central nervous system dur-
ing adulthood. These adult-born OLs might augment
the existing population, contributing to neural plas-
ticity, or else replace OLs that die in use (turnover).
To distinguish between these alternatives, we
induced genetic labeling of mature myelinating OLs
in young adult mice and tracked their subsequent
survival. OL survival rates were region dependent,
being higher in corpus callosum (�90% survival
over 20 months) and motor cortex (�70% survival)
than in corticospinal tract or optic nerve (50%–60%
survival). Survival rates over the first 8 months were
90%–100% in all regions except the optic nerve. In
the corpus callosum, new OLs accumulate during
young adulthood and are therefore likely to partici-
pate in adaptive myelination. We also found that
the number of myelin internodes maintained by indi-
vidual cortical OLs is stable for at least 8 months but
declines �12% in the following year.

INTRODUCTION

Oligodendrocytes (OLs) myelinate axons in the CNS. In mice,

most OLs are formed in the first �6 postnatal weeks, but they

continue to be generated from OL precursors (OPs) for an

extended period into adulthood. Several labs used transgenic

mice that express tamoxifen-inducible Cre recombinase

together with a Cre-dependent reporter to label OPs in young

adult mice and follow their fates over time (Dimou et al., 2008;

Rivers et al., 2008; Zhu et al., 2008; Guo et al., 2010; Kang

et al., 2010). This revealed that OPs continue to generate

myelin-forming OLs in several CNS regions for at least the first

8 months of life, though at a steadily decreasing rate (Psachoulia

et al., 2009; Young et al., 2013). There is evidence that new OLs

are still made in very small numbers even 1 year after birth (Xiao

et al., 2016). This raises the question of why newOLs are needed

in the adult mouse CNS.

Genetic blockade of new OL production in young adult mice

prevented them from mastering a new motor skill (running at

speed on a ‘‘complex wheel’’ with unevenly spaced rungs),

implying that adult-born OLs are required for motor skill learning
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(McKenzie et al., 2014; Xiao et al., 2016). Consistent with this,

wild-type mice that encountered the complex wheel for the first

time transiently increased their production of new OLs and

myelin in the motor cortex and subcortical white matter

(McKenzie et al., 2014; Xiao et al., 2016). These findings are

consistent with two conceptually different models for how

new OLs and myelin participate in learning and memory pro-

cesses: (1) preexisting myelinated circuits might need to be

kept in a constant state of repair in order to be competent for

learning, and new OLs are required for this maintenance func-

tion; or (2) learning might require that new circuits are brought

into play, or existing circuitsmodified, through de novomyelina-

tion of previously unmyelinated or incompletely myelinated

axons. To distinguish between these models, we need to

know whether myelinating OLs have a limited survival lifetime

and are continuously regenerated during adulthood, which

would tend to favor the first model, or whether they are long-

lived and accumulate throughout life, which would favor the

second model.

To address this question, we estimated the survival rates of

myelinating OLs in mice using a genetic fate-mapping

approach. We generated a new line of Opalin–iCreERT2: Tau–

mGFP transgenic mice, which express a membrane-bound

form of GFP (mGFP) in mature myelinating OLs after tamox-

ifen-activated Cre recombination. This allowed us to induce la-

beling of myelinating OLs in adult mice and track their survival

subsequently. We found that the great majority (�90%) of

myelinating OLs that were present in the corpus callosum at

postnatal day 60 (P60) survived until at least 20 months of

age. In the motor cortex, essentially all myelinating OLs sur-

vived during the first 8 months of life, and �70% survived for

20 months. There was no reduction in the number of myelin

sheaths (internodes) synthesized by individual mGFP-labeled

OLs in the motor cortex during at least the first 8 postnatal

months. Therefore, new OLs that differentiate from OPs in the

motor cortex and underlying white matter during early adult-

hood are not needed to replace OLs that die but rather add to

the OL population, potentially modifying the existing circuitry

(adaptive myelination). Consistent with this, we determined

that the total number of mature OLs in the corpus callosum

continued to increase up to �8 months of age.

In the spinal cord and optic nerve, 30%–50% of OLs that

were present at P60 were lost over the following 18 months.

Therefore, newly forming OLs in some regions of the adult

CNS, especially after middle age, might be required for myelin

homeostasis.
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Figure 1. Extreme Longevity of OLs in the

Corpus Callosum

(A) Experimental protocol. Tamoxifen was

administered to Opalin–iCreERT2: Tau–mGFP or

Opalin–iCreERT2: Rosa–YFP mice starting on P60

(Experimental Procedures). Mice were killed and

examined at various times post-tamoxifen as

indicated.

(B) Schematic of the brain showing the part of the

corpus callosum (in red) within the medial limits of

the lateral ventricles that was investigated in this

study.

(C and D) mGFP+, CC1+ OLs in Opalin-CreERT2:

Tau-mGFP mice that received 55 mg/kg tamox-

ifen, imaged at P60+30 (C) and P60+365 (D).

(E) The normalized density of mGFP+ OLs did not

change detectably over this time frame.

(F–H) mGFP+, CC1+ OLs in a mouse that received

120 mg/kg tamoxifen, imaged at P60+365. The

mGFP (G) and CC1 (H) channels are merged with

DAPI labelling in (F).

(I) The normalized density of mGFP+ OLs did

not change appreciably between P60+10 and

P60+545.

(J) Similar data were obtained using Opalin-

CreERT2: Rosa-YFP mice. The normalization pro-

cedure is described in Experimental Procedures.

Arrows indicate cell bodies of mGFP+, CC1+

double-positive OLs.

Error bars represent SEM. Scale bar, 20 mm. See

also Figures S1 and S2.
RESULTS

Generation and Characterization of Opalin-iCreERT2

Mice
Opalin (also known as Tmem10) is a transmembrane glycopro-

tein that is expressed in the cell bodies and processes of

differentiated OLs (Golan et al., 2008; Kippert et al., 2008;

Yoshikawa et al., 2008). It starts to be expressed in OLs

after myelin sheath proteins such as myelin basic protein

(MBP) and is not expressed in the peripheral nervous system

or non-neural tissues. We generated a line of Opalin–iCreERT2

bacterial artificial chromosome (BAC) transgenic mice and

crossed this with the Rosa26–eYFP reporter (Rosa–YFP;

Srinivas et al., 2001). We injected tamoxifen (55 mg/kg body

weight) into double-transgenic offspring starting on P60,

and 10 days later (P60+10), we observed yellow fluorescent

protein (YFP) immunolabeling of mature CC1+ OLs but not

PDGFRA+ OPs, GFAP+ astrocytes or NEUN+ neurons (Fig-

ure S1). Recombination was absolutely dependent on tamox-

ifen induction because no YFP+ cells were observed anywhere

in the brains of 14-month-old (P425) Opalin–iCreERT2: Rosa–

YFP animals that had not received tamoxifen (not shown).

This is an important control, because tamoxifen-independent
Cell R
recombination has been observed in

Plp1–CreERT mice (Traka et al., 2016)

and Mbp–CreERT2 mice (R.B.T. and

W.D.R., unpublished data), both of

which express CreER at very high levels
under the control of small promoter/enhancer sequences in

plasmid-based transgenes.

OLs in the Corpus Callosum Survive throughout Life
We usedOpalin–CreERT2 to induce labeling of myelinating OLs in

young adult (P60) mice in order to follow OL survival in the corpus

callosum post-tamoxifen (Figures 1A and 1B). We used the Tau–

mGFP reporter in preference to Rosa–YFP, because mGFP

labeled the plasma membrane and revealed full cell morphology,

confirming that the mGFP-labeled OLs were myelinating (Figures

1C, 1D, and1F–1H).Weconfirmed that therewerenomGFP+cells

anywhere in the forebrain, spinal cord, or optic nerves of Opalin–

CreERT2: Tau–mGFP mice (P65 or P240) that did not receive

tamoxifen. Following tamoxifen injection at 55 or 120 mg/kg

body weight, all mGFP+ cells were also CC1+ OLs. We detected

no decline in OL numbers between P60+10 and P60+365 in

mice that received 55 mg/kg tamoxifen (82 ± 14 versus 68 ± 11

OLs per mm2; n = 6 at both time points; 1-way ANOVA, p = 0.81)

(Figure1E), orbetweenP60+10andP60+545 inmice that received

120 mg/kg tamoxifen (302 ± 14 versus 317 ± 47 OLs per mm2,

n = 9, 6; 1-way ANOVA, p = 0.51) (Figure 1I). This implies that the

great majority of myelinating OLs that are present in the corpus

callosum at P60 are still alive and myelinating 1.5 years later.
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Figure 2. OL Survival in the Motor Cortex,

Spinal Cord, and Optic Nerve

Opalin-iCreERT2: Tau-mGFP mice received

120mg/kg tamoxifen at P60 andwere analyzed up

to 18 months (545 days) later.

(A, C, and E) mGFP+, CC1+ OLs in Opalin-

CreERT2: Tau-mGFP motor cortex (A), cortico-

spinal tract (C) or optic nerve (E), imaged at the

indicated times post-tamoxifen.

(B) In motor cortex, the normalized density of

mGFP+ OLs did not change between P60+10 and

P60+180 but decreased �30% in the following

6 months to one year (P60+545; 1-way ANOVA,

p = 0.036).

(D) In the corticospinal tract, the density of mGFP+

OLs did not change between P60+10 and

P60+180, but declined during the following year

(1-way ANOVA, p < 0.01).

(F) In optic nerve, the density of mGFP+ OLs

declined �40% between P60+10 and P60+180

(t-test, p < 0.01), after which OL density appeared

to stabilize (1-way ANOVA over the whole time

course, p = 0.014). Asterisks indicate values

significantly different from P60+10 (*p < 0.05, **p <

0.01, and ***p < 0.001).

Error bars represent SEM. Scale bar, 40 mm. See

also Figures S1, S2.
In case the Tau–mGFP reporter had introduced some unex-

pected bias (e.g., by preferentially labeling a subset of especially

long-lived OLs), we repeated these experiments using Rosa–

YFP. As before, we could detect no loss of YFP-labeled OLs in

the corpus callosum between P60+30 and P60+365 (195 ± 45

versus 225 ± 99 OLs per mm2, n = 4, 3 respectively; 1-way

ANOVA, p = 0.56) (Figure 1J).

OL Survival Is Region Dependent
We examined the motor cortex, spinal cord, and optic nerves of

Opalin–CreERT2: Tau–mGFP mice that received 120 mg/kg

tamoxifen starting on P60. In the motor cortex, we detected no

loss of mGFP+ OLs between P60+10 and P60+180 (63 ± 5 versus

65 ± 4 OLs per mm2, n = 9, 7 respectively) (Figures 2A and 2B).

However, there was a �33% loss of OLs between P60+10 and

P60+545 (to 42 ± 4 OLs per mm2, n = 6, p < 0.05; 1-way

ANOVA, p = 0.012). OLs were also lost over time in the corticospi-
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nal tract (CST) (Figures 2C and 2D) and

optic nerve (Figures 2E and 2F). In the

CST, �44% of OLs were lost between

P60+10 and P60+545 (71 ± 3 versus

40 ± 5 OLs per mm2, n = 8, 6 respectively,

p < 0.05; 1-way ANOVA, p = 0.002). In the

optic nerve �45% of OLs were lost be-

tweenP60+10andP60+180 (58±7versus

32 ± 2 OLs per mm2, n = 8, 7 respectively,

p < 0.01; 1-way ANOVA, p = 0.014).

OL Survival after 14 Months of Age
Lasiene et al. (2009) reported that OL line-

age cells (Olig2+) in themouse spinal cord
white matter start to increase their rate of division, estimated by

bromodeoxyuridine incorporation, after 14 months of age. We

imagined that the rate of OP division might increase as part of

a homeostatic response to increasing death of myelinating OLs

after 14 months (P425). To test this, we administered tamoxifen

to Opalin–iCreERT2: Tau–mGFP mice at P425 and examined

them 30 days or 180 days later. We could not detect any

decrease in numbers of mGFP+ OLs between P425+30 and

P425+180 in the corpus callosum, motor cortex, or spinal cord

(Figure S2). These data are consistent with our earlier experi-

ments in which OLs were labeled at P60 (see previous para-

graph) and confirm that a large fraction of myelinating OLs pre-

sent at 2 months of age survive until at least 20 months of age

(P60+545 or P425+180). The actual fraction varies across the

CNS; 50%–60% of OLs survive for 20 months in the corticospi-

nal tracts and optic nerve,�70% in the motor cortex, and�90%

in the corpus callosum. Over the first 6–8 months after their



Figure 3. Total Number of Myelinating OLs as a Function of Age

CC1+ mature OL cell bodies were counted in Opalin–iCreERT2: Tau–mGFP mice or wild-type mice of the same ages.

(A–D) Micrographs of CC1+ OLs, counterstained with DAPI, in corpus callosum (A and B), corticospinal tract (C) and optic nerve (D), at the indicated times

post-tamoxifen.

(E) In the corpus callosum, the normalized density of CC1+ OLs increased between P60+10 and P60+180 and then remained approximately constant until at least

P60+545 (1-way ANOVA, p < 0.0001).

(F) In the spinal cord, there was a gradual decrease in the density of CC1+ OLs after P60+180 (1-way ANOVA, p < 0.0001) in parallel with the loss of GFP+ OLs

(Figure 2D).

(G) In the optic nerve, the density of CC1+OLs decreased between P60+10 and P60+90 (1-way ANOVA, p < 0.0001) but stabilized after that, apart from a transient

increase around P60+365.

Asterisks indicate values significantly different from P60+10 (*p < 0.05, **p < 0.01, and ***p < 0.001). Error bars represent mean ± SEM. CC, corpus callosum; ON,

optic nerve; SC, spinal cord. Scale bar, 10 mm.
formation (up to P60+180), OL survival rates are 90%–100% in all

regions except for the optic nerve.

The Number of CC1+ OLs in the Corpus Callosum
Continues to Increase after P60
Assuming that mGFP-labeled OLs in Opalin–iCre: Tau–mGFP

mice are representative of the OL population as a whole, the

absence of significant loss of mGFP+ OLs from the corpus cal-

losum after P60, coupled with the fact that new OLs continue to

be generated from PDGFRA+ OPs during young adulthood

(Dimou et al., 2008; Rivers et al., 2008; Young et al., 2013), pre-

dicts that the total number of OLs in the corpus callosum should

continue to increase after P60. To test this, we counted CC1+

differentiatedOLs in thecorpuscallosumofour tamoxifen-treated

mice at agesP60+10andabove (up toP60+545 [20months]) (Fig-

ures 3A, 3B, and 3E). The densities of CC1+ OLs increased

between P60+10 and P60+180 (from 2,495 ± 75 to 3,275 ± 150;

p < 0.01) but remained approximately constant after that (1-way

ANOVA over the full time course, p < 0.0001) (Figure 3E). These

data are consistent with our previous conclusion (Young et al.,

2013) that new OLs are produced in the corpus callosum for at

least the first 8 months of postnatal life in mice but that their rate

of production slows down with age (see Discussion).

In the corticospinal tracts (Figures 3C and 3F), unlike the

corpus callosum, the density of CC1+ OLs followed a very similar
time course to the density of mGFP+ OLs after P60+10 (compare

with Figure 2D), confirming that mGFP-labeled OLs are repre-

sentative of the general OL population; that is, the Tau–mGFP re-

porter does not introduce bias toward some subset of unusually

long- or short-lived OLs.

In the optic nerve (Figures 3D and 3G), the densities of CC1+

and mGFP+ OLs also followed a similar pattern, in that both

dropped in the first 180 days after P60, although the number of

CC1+ OLs appeared to recover somewhat by 14 months of

age before falling again at 20 months (compare Figures 2F and

3G). The divergence between the relative numbers of CC1+

and mGFP+ OLs at later ages might reflect the continuing pro-

duction of newOLs that is known to occur in the optic nerve after

P60 (Young et al., 2013), although the situation is complex,

because the number of retinal ganglion cell axons in the nerve

might also change with age (see Discussion).

The Number of Internodes per OL in the Motor Cortex Is
Surprisingly Stable
The Tau-mGFP reporter labels the external membranes of OLs,

including the outer cytoplasmic loops that run along the compact

myelin sheaths (Young et al., 2013). The internodes of cortical

OLs formed a roughly spheroidal array centered on the cell body

(Figures 4A and 4A0); they projected randomly in all directions, un-

like the parallel ‘‘bundle of sticks’’ arrangement observed in white
Cell Reports 21, 316–323, October 10, 2017 319



Figure 4. Stability of Internode Number with Age

(A and A0) Individual OLs were imaged in the motor cortex of Opalin–iCreERT2:

Tau–mGFP animals, and the primary cell processes/myelin internodes were

marked and counted (white lines in A0 ). Scale bar, 20 mm.

(B) There was a small but significant decrease in the number of internodes over

the course of the study (1-way ANOVA, p < 0.0001). Each data point in (B) is the

average from all OLs analyzed in a given mouse. Asterisks indicate values

significantly different from P60+10 (**p < 0.01), and number signs indicate

values significantly different from P60+180 (#p < 0.05 and ##p < 0.01).

(B0) The number of processes/internodes plotted separately for each individual

OL (47 OLs at P60+10, 56 OLs at P60+180, and 66 OLs both at P60+365 and

P60+545; n R 4 mice at each age). Error bars represent mean ± SEM.
matter tracts. The diameter of these internode clusters was

�150 mm (range, 120–190 mm), so they were not completely con-

tainedwithin a single 25-mmsection (�25%of the sphere is within

the section; the fractional volume of a slice of thickness t through

the center of a sphere of diameter d is {p(d/2)2 3 t}/{4p(d/2)3/3} =

3t/2d, for t<<d). Nevertheless, since all cell processes originate at

the cell body, we could be confident that, by selecting OLs whose

cell bodieswere positioned roughly at themidpoint of the section,

a substantial fraction of their processes/internodes were visible

over at least part of their lengths. In support of this, we counted

42 ± 3 internodes per OL at P60+10 (47 OLs examined in 4 mice;

Figure 4B), which is close to a previous estimate (in 150-mm-thick

sections) of�47 processes per OL in the frontal cortex of 8-week-

old mice (Murtie et al., 2007). There was considerable individual

variation among cells, ranging from �20 to �80 processes/inter-

nodes per OL at P60+10, for example (Figure 4B0). Six months

later, at P60+180, the average number of processes per OL was

unchanged (45 ± 2 per OL, 56OLs examined in 5mice). However,

at 12 months and 18 months post-tamoxifen (P60+365 and

P60+545), there was a significant reduction in the number of pro-

cesses (35 ± 0.5 [p < 0.01] processes per cell at P60+365, 67 OLs

in 6miceand39± 1.5 [p< 0.001] processesperOLatP60+545, 66

OLs in 4 mice; 1-way ANOVA, p < 0.0001) (Figure 4B). Thus,

between 7% and 17% of the OL processes/internodes present

at P60 were lost between 6 months and 1 year of age.
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DISCUSSION

Longevity of Myelinating OLs in the Forebrain
Themost striking finding of our study is that >90% of myelinating

OLs that are present in the corpus callosum at P60 are still alive

and myelinating at 20 months of age. This corresponds to a half-

life (t1/2) >10 years, which is substantially longer than the lifespan

of the mouse (2–3 years under laboratory conditions). Thus, the

great majority of myelinating OLs in mouse corpus callosum

are not replaced during the animal’s lifetime.

We showed previously that new myelinating OLs continue to

be generated from OPs in the mouse corpus callosum after

P60 (Young et al., 2013). In that study, we labeled OPs specif-

ically by administering tamoxifen to Pdgfra–CreERT2: Rosa–

YFPmice at P60 and subsequently estimated the rate of appear-

ance of YFP+, CC1+ OLs. At P60+42, we found that 41% ± 3%of

all YFP+ cells were CC1+. That is,N/(N + P) = 0.41, whereN is the

number of YFP+, CC1+ OLs and P is the number of YFP+, CC1-

negative OPs. From this, we deduce that N = 0.41/(1 � 0.41) 3

p = 0.69P. Given that P is roughly constant after P60 (�180

OPs per mm2 in a 25-mm-thick section of corpus callosum)

(Rivers et al., 2008; McKenzie et al., 2014), we calculate that

N = 125, i.e., �125 new OLs per mm2 are formed in the

42 days after P60, or �3 new OLs per mm2 per day on average,

in a 25-mm section. Young et al. (2013) also found that 69% ± 4%

of YFP+ cells were CC1+ at P60+320. Psachoulia et al. (2009)

found that 18% of YFP+ cells were PDGFRA-negative OLs at

P240+100. From these data, we can calculate, as above, that

the daily production rates of newmyelinating OLs are on average

�3.0 permm2 per day between P60 and P102,�1.5 permm2 per

day between P60 and P380, and �0.40 per mm2 per day be-

tween P240 and P340. This illustrates that the rate of OL gener-

ation slows markedly with age, in line with the decreasing rate of

OP cell division (Psachoulia et al., 2009; Young et al., 2013).

From the above, we calculate that�400 newOLs permm2 (in a

25-mm-thick section) are generated in the corpus callosum be-

tween P60 and P380. The total number of CC1+ OLs increased

by�500OLs permm2 after P60 (Figure 3), approximatelymatch-

ing the number of new OLs created (�400). This simple observa-

tion indicates that most or all myelinating OLs that are generated

in the corpus callosum after P60 probably survive long-term,

adding to the preexisting population rather than replacing OLs

that die in use. Thus, we can be confident that new callosal

OLs added during the first 6–8 months of a mouse’s life, at least,

are not required to replace dying OLs but rather add to the exist-

ing OL population, most likely generating newmyelin sheaths on

previously unmyelinated or partially myelinated axons. Up to

70% of axons in the mouse corpus callosum are still unmyelin-

ated at 8 months of age, so there is plenty of scope for de

novo myelination (Sturrock, 1980). The new myelin would be ex-

pected to modify circuit properties, contributing to experience-

dependent neural plasticity.

OL Generation and Survival in the Mouse versus Human
Corpus Callosum
The average annual production rates extrapolated from the

daily rates given above are �43% of the total OL population

at �P81 (P60 to P60+42), �15% at �P220 (P60 to P60+320),



and �5.5% at �P290 (P240 to P240+100). A recent study of OL

lifetime in humans, using an environmental radiocarbon dating

approach (Yeung et al., 2014), found that most OLs in the corpus

callosum are formed in the first 5–10 childhood years, after which

the rate of OL genesis declines to�0.3% of the total OL popula-

tion annually. Yeung et al. (2014) assumed that the final low rate

of OL genesis reflects OL ‘‘turnover’’ (i.e., replacement of OLs

that die during adult life). However, their data do not exclude

the possibility that adult-born OLs in humans might add to the

preexisting OL population (as we have shown for mice) rather

than replace lost cells. It is evident from our counts of total

CC1+ OLs that the number of these cells in the mouse corpus

callosum reaches a plateau before �8 months of age (�20%

of lifespan) compared to the first 5–10 years in human (�10%

of lifespan). Therefore, the pattern of OL generation in mouse

corpus callosum is probably not fundamentally different to that

of the human corpus callosum, except that the time taken for

the rate of OL genesis to decline to baseline (the ‘‘develop-

mental’’ period) occupies a larger fraction of a mouse’s lifespan

compared to a human’s.

Why Do OLs Survive Longer in Some Regions than in
Others?
The lifetime of myelinating OLs in the optic nerve (t1/2 �2 years)

contrasts with the corpus callosum (t1/2 >10 years) and raises the

question of what controls OL survival differentially in these white

matter tracts. One possibility is that there is competition among

OLs for survival factors associated with or released from axons

or other cells and that these factors are more limiting in the optic

nerve than in the corpus callosum. A clear difference between

the corpus callosum and the optic nerve is the earlier onset

and greater final extent of myelination in the latter. In the rat optic

nerve,�85% of axons are myelinated by P28 (Skoff et al., 1976),

andmyelination in the C57BL6/CBAmouse optic nerve follows a

similar course, with practically all axons becomingmyelinated by

P112 (Dangata et al., 1996; Dangata and Kaufman, 1997). In

contrast, �70% of axons in the corpus callosum remain unmy-

elinated, even in 8-month-old mice (Sturrock, 1980). Therefore,

it is possible that there is more intense competition among OLs

for factors released from unmyelinated axons in optic nerve

than in corpus callosum.

Alternatively, or in addition, a subset of retinal ganglion cell

(RGC) axons in the optic nerve might be lost (along with their

associated OLs) during the postnatal period. Danias et al.

(2003) reported a 46% loss of RGCs between 3 and 18 months

of age in healthy C57BL6 mice, and Neufeld and Gachie (2003)

reported a 41% loss of RGCs between 4 and 18 months in

BALB/c mice. In contrast, Samuel et al. (2011) could detect no

loss of RGCs in C57BL6 mice between �4 and �26 months.

Nevertheless, axonal loss might account for some or all of the

loss of myelinating OLs detected in our present study.

�45% of mGFP+ OLs in the CST were lost between P60+10

and P60+545 (20 months). Over the same period, the number

of CC1+ OLs declined by �36%. In the rat CST, �50% of axons

and their collaterals are lost between birth and P90, without cor-

responding loss of neuronal cell bodies in the cortex (Gorgels

et al., 1989; Stanfield, 1992). In the mouse CST, �68% of axons

are lost between P14 and P56 (Uematsu et al., 1996). This is prior
to the start of our experiments on P60, so it is unclear whether the

decline in OL number that we observed in the CSTmight be sec-

ondary to axonal loss.

Morphological Stability of Cortical OLs
The number of myelin internodes per OL did not change be-

tween P60+10 and P60+180 (Figure 4), although there was a

small reduction (�12%) over the following year. We cannot

tell whether the very same internodes are preserved over this

time or whether cortical OLs shed and reform internodes while

maintaining their number approximately constant. Live imaging

of developing OLs in zebrafish spinal cord showed that some

OLs shed a fraction of their internodes in the first few days after

their formation, but the surviving internodes were stable for at

least 2–3 weeks, and no new internodes were added after the

first 5 hr (Czopka et al., 2013). Therefore, it seems possible

that once an OL’s arbor of internodes has been established dur-

ing development, that arbor is preserved essentially unchanged

for many months in the mouse, even upwards of a year. How-

ever, our analysis cannot detect dynamic changes in internode

number (e.g., in response to altered neuronal activity) (Gibson

et al., 2014; Hines et al., 2015; Mensch et al., 2015; Etxeberria

et al., 2016), nor can we detect potential changes in internode

length and/or thickness (number of wraps). It would be inter-

esting to extend our analysis to later ages (e.g., >2 years) to

determine whether loss of OLs or myelin might be a feature of

extreme old age in mice, potentially contributing to age-related

cognitive decline, as suspected from brain imaging studies in

humans (e.g., Lu et al., 2013).

EXPERIMENTAL PROCEDURES

Transgenic Animals

Mouse husbandry and experimentation were in accordance with UK Home

Office regulations and UCL Ethics Committee guidelines, complying with the

Animals (Scientific Procedures) Act 1986 of the United Kingdom and its

Amendment Regulations (2012).

The Opalin–iCreERT2 mouse line was generated by inserting an iCreERT2–

lox.STOP.lox–frt.Kmr.frt cassette immediately downstream of the mouse

Opalin (Tmem10) initiation codon in a BAC (RPCI24-510M10) from Source

Bioscience, Nottingham, UK). STOP is a sequence of four simian virus 40

poly(A) addition sites. The frt.Kmr.frt element was removed by expressing

Flp-recombinase in the bacterial host, and the BAC was linearized using

NotI prior to gel purification and pronuclear egg injection (C57BL6/CBA

F1 hybrid donor females). Four founder mice were obtained, three

of which expressed the transgene. The one with highest expression

was retained for experiments and crossed into two reporter backgrounds:

Tau–lox.STOP.lox–mGFP–IRES–NLS.LacZ (Tau–mGFP) (Hippenmeyer et al.,

2007) and Rosa26–lox.STOP.lox–eYFP (Rosa–YFP) (Srinivas et al., 2001).

They were maintained as homozygotes (Rosa–YFP) or heterozygotes

(Opalin–iCreERT2 and Tau–mGFP) on a mixed C57BL6/CBA background.

Genotyping

Mice carrying the Opalin–iCreERT2 transgene were identified by PCR

using primers for iCre: 50-GAGGGACTACCTCCTGTACC-30 (forward) and

50-TGCCCAGAGTCATCCTTGGC-30 (reverse). Reporter mice were genotyped

using primers for GFP/YFP: 50-CCCTGAAGTTCATCTGCACCAC-30 (forward)

and 50-TTCTCGTTGGGGTCTTTGCTC-30 (reverse).

Tamoxifen Administration

Tamoxifen was dissolved (10 mg/mL or 20 mg/mL) in an ethanol/ sunflower

oil mixture (1:9 v/v) by sonication for �45 min prior to injection. It was
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administered by intraperitoneal injection at 55 or 120 mg per kg body weight

(mg/kg) on four consecutive days, P60–P63 inclusive. They were analyzed at

different times (days) after the last injection (referred to as P60+10, P60+30,

etc.). Alternatively, they were injected on P425–P428 and examined on

P425+30 or P425+180. To minimize variation due to potential differences in

recombination rates from one series of injections to another, mice from

different injection series were grouped together for examination at the same

time post-injection.

Tissue Processing and Histochemistry

Approximately equal numbers of male and female mice were analyzed. Mice

were fixed by trans-cardiac perfusion with PBS at 20�C–25�C (10 mL at

10–14 mL/min) followed by 50 mL of 4% (w/v) paraformaldehyde in PBS

(4% PFA) at 4�C. The brain, spinal cord, and optic nerves were dissected

and post-fixed overnight by immersion in 4% PFA at 4�C. The tissues were

cryo-protected with 20% (w/v) sucrose for 24–48 hr at 4�C and then

embedded in optimum cutting temperature compound (Tissue-Tek) and

stored at�80�C until required. Coronal cryo-sections of brain (25 mm) and spi-

nal cord (30 mm) were transferred into PBS and immunolabeled as ‘‘floating

sections.’’ Longitudinal sections of optic nerves (20 mm)were collected and im-

munolabeled directly on glass slides. Sections were blocked with 10% (v/v)

fetal calf serum, 0.5% (v/v) Triton X-100 in Tris-buffered saline (pH 7.5) prior

to overnight incubation with primary antibodies at 4�C. This was followed by

fluorescent secondary antibody at 20�C–25�C for 1.5 hr. Cell nuclei were

labeledwith Hoechst 33258 (Sigma) beforemounting in Dakomedium (Agilent)

under coverslips. Primary antibodies were mouse anti-adenomatous polypo-

sis coli (APC) (monoclonal CC1, Millipore, 1:200 dilution), chicken anti-GFP

(Aves labs, 1:1,000), mouse anti-NEUN (Millipore, 1:500), rabbit anti-PDGFRA

(Cell Signaling Technologies, 1:500), and mouse anti-GFAP (Sigma, 1:500).

Secondary antibodies were species-specific Alexa 488, Alexa Fluor 568, or

Alexa Fluor 647 immunoglobulin G (IgG) (heavy and light chains) (Thermo

Fischer Scientific, 1:1,000). To detect CC1 antigen, we used goat anti-mouse

IgG2b AlexaFluor-568 (1:500).

Quantification

We counted GFP+ and CC1+ OL cell bodies in 25-mm-thick coronal sections of

the most anterior part of the corpus callosum (1.1 mm� 0.85mmbregma), be-

tween the medial limits of the lateral ventricles, in micrographs taken with a

203 objective on a Leica SP-E confocal microscope (approximately equal

numbers of males and females). We positioned the photographic field of

view (a rectangle of area 0.134mm2) within the region specified and expressed

the number of OLs within this rectangle as OLs per mm2. We then measured

the total area of the specified region of corpus callosum at each age using Im-

ageJ (the area increased from 0.40 ± 0.02 mm2 at P60+10 to 0.46 ± 0.02 mm2

at P60+545) and normalized our cell densities to the area at P60+10 (for

example, we multiplied the OL density at P60+545 by 46/40). This approach

counters the effects of variations of tissue volume caused by age-related

growth/contraction or variable shrinkage/expansion during tissue preparation.

A similar approachwas adopted to calculate normalized densities of GFP+OLs

in 25 mm sections of motor cortex, defined as the area of cortex directly dorsal

to the corpus callosum as defined above. The area of this region of cortex

decreased from 1.49 ± 0.07 mm2 to 1.21 ± 0.06 mm2 between P60+10 and

P60+365, before increasing again to 1.96 ± 0.03 mm2 at P60+545. Antibody

CC1 is not specific for OLs in gray matter (because it also labels many astro-

cytes weakly), so we did not attempt to quantify CC1+ OLs in the motor cortex.

In the spinal cord, we counted GFP+ or CC1+ OLs in 30-mm transverse sec-

tions of the dorsal funiculus (cervical levels C1–C2), positioning the field of view

at the base of the dorsal columns (including the entire corticospinal tracts). We

then measured the area of the entire dorsal funiculus (DF) (the area decreased

minimally from 3.2 ± 0.08 mm2 at P60+10 to 2.9 ± 0.08 mm2 at P60+545) and

normalized our cell densities to the area at P60+10 (e.g., we multiplied the

measured density at P60+545 by 29/32). For the optic nerve, we counted all

GFP+ or CC1+ OLs in 20-mm-thick longitudinal sections of isolated nerves

and calculated OL density (OLs per mm2) from the measured area of the tissue

section. We also measured the cross-sectional area of the intact nerve as a

function of age; this did not change between P60+10 (0.073 ± 0.003 mm2)

and P60+180 (0.071 ± 0.005 mm2), but it increased at P60+365 and
322 Cell Reports 21, 316–323, October 10, 2017
P60+545 (0.098 ± 0.007mm2 and 0.113 ± 0.003mm2, respectively). The length

of the nerve (5.106 ± 0.05 mm, retina to optic chiasm) did not change signifi-

cantly over this period. We normalized our cell densities to the area at

P60+10 (e.g., we multiplied the measured density at P60+365 by 98/73).

Data are presented as mean ± SEM (n = 4–9 mice at each age).

Statistics

Data were analyzed and plotted in GraphPad Prism 5 software using 1-way

ANOVA and Bonferroni’s post hoc test for multiple comparisons, unless stated

otherwise. For the older animals (tamoxifen injected on P425), a Student’s

t test was used to compare means at 2 time points in 4 regions of the CNS.

All data are expressed asmean ±SEM. ‘‘n’’ refers to the number ofmice unless

stated otherwise.
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