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Abstract—The Internet of Things (IoT) is fueling innovation
in nearly every part of our lives. From smart homes, cars, and
cities, the Internet of Things is creating a more convenient, secure,
intelligent, and personalized experience. While for any final user
this IoT vision is a substantial innovation step, for communication
providers is a compelling thread with massive number of dynamic
devices connected to the Internet. Multiple connected devices
sharing common wireless resources might create interference if
they access the channel simultaneously. Medium access control
protocols generally regulate the access of the devices to the shared
channel to limit signal interference. In particular, irregular
repetition slotted ALOHA (IRSA) techniques can achieve high-
throughput performance when interference cancellation methods
are adopted to recover from collisions. In this work, we study
the finite length performance for IRSA schemes by building
on the analogy between successive interference cancellation and
iterative belief-propagation on erasure channels. We use a novel
combinatorial derivation based on the matrix-occupancy theory
to compute the error probability and we validate our method
with simulation results.

I. INTRODUCTION

In the IoT vision, 50 billions of devices are expected
to be connected to the Internet by 2020, smartly generat-
ing, sharing and processing data [1]. With current networks
reaching congestions with only few hundreds of connected
devices [2], evidently there is the need to develop novel
communication paradigms to sustain this IoT avalanche.
Medium access control (MAC) strategies for example should
lead to efficient but also distributed (i.e., scalable) ways
of accessing the communication channel. When networked
devices share common wireless resources, signal interference
might be experience. MAC strategies need to properly control
users transmission to limit this interference [3]–[5]. However,
in future networks a massive number of devices will be
connected to the Internet (e.g., Internet of Things and machine-
to-machine communications) and MAC protocols need to be
more and more distributed. Random slotted ALOHA (SA)
with successive interference cancellation (SIC) strategies, for
example, have recently gained attention because they do
not require coordination, and they are able to recover from
interfering signals.

Bipartite graphs are a useful framework to study random
MAC strategies or, more generally, transmission of successive
signals from several sources in different time slots. When

edges in the bipartite graph are randomly generated, the anal-
ysis of belief propagation (BP) decoding is usually performed
asymptotically, i.e., for an infinite number of sources and time
slots. Finite length analysis has been investigated when edges
are randomly selected from the transmission time slots, as the
case of finite length analysis for LDPC codes [6]. However,
the reverse case in which the source nodes randomly create
the edges is still an open topic that we address in this work.

In this work, we consider random SA with SIC strategies
as the main target application, where each source sends
information to a central base station (BS) in time slots that
are uniformly selected at random independently from the other
sources. Packets sent in the same time slot from different
users interfere among each others and cannot be immediately
decoded. However, SIC strategies are able to mitigate the
effect of these collisions through iterative message-passing
techniques and recover corrupted data at the decoder. Within
this framework, we study the decoding performance of BP
schemes in finite length settings, namely for small MAC frame
size. Within a MAC frame, each source follows a transmission
probability distribution that drives the replication rate of the
sources, hence the performance of the system. Our objective is
to compute the decoding error probability, i.e., the probability
of not decoding correctly the source information. We first
introduce a combinatorial derivation of the packet collision
probability using the matrix occupancy framework. Then, we
evaluate iteratively the decoding error probability by studying
the number of collisions that can actually be resolved by
interference cancellation. The proposed analysis is exact but
it has a computational complexity that grows with the MAC
frame size. We therefore show how achieve an approximated
but still accurate analysis at a reduced computational cost.
Simulation results validate our study in different transmission
settings with small MAC frames.

In the seminal work of [7], a key connection has been
drawn between SIC strategies in irregular repetition slotted
ALOHA (IRSA) and the iterative BP decoder of erasure codes
on graphs. This has opened the possibility to apply theory of
rateless codes to IRSA schemes and analyze their performance
[8], [9], which is essential to optimize users’ transmission
strategy (e.g., transmission probability) [10]. These works are
mainly focused on deriving asymptotic system performance for
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Fig. 1. Transmission example of IRSA strategy with a MAC frame composed
of four slots. Source i sends the source packet pi. There are three users
attempting a transmission according to the degree vector d = [2, 2, 3].

large MAC size frames. They however cannot be easily applied
in optimizing resource allocation strategies in actual IRSA
schemes, as shown in [10]. To the best of our knowledge, only
the works in [11], [12] investigated finite-length performance
analysis for IRSA scheme. Both look at the average stopping
sets and derive an upper bound on the error probability in
IRSA. These bounds have low computational complexity but
they are not necessarily tight for very small MAC frames.
In our work, we rather derive a semi-analytic analysis for
finite length IRSA schemes, which permits to compute error
probabilities exactly, even for small frames.

II. SYSTEM MODEL

We consider a system of k sources that communicate with
a common BS. The IRSA strategy is the adopted MAC pro-
tocol [7]. We assume the time axis to be discretized in MAC
frames, each of those composed of t time slots. Within a MAC
frame, each source transmits d replicas of the source packet p,
as depicted in Fig. 1. The d distinct time slots used for trans-
mission are selected uniformly at random among the t total
available slots. The replication rate d is randomly selected by
each user following the transmission probability distribution
ΛΛΛ = [Λ1, . . . ,ΛDmax

], where Λd is the probability that a user
transmits d replicas, and Dmax is the maximum number of
allowed packet replicas per MAC frame. Within a MAC frame,
each source selects its replication rate independently from the
others, leading to replication vector (named in the following as
source degree vector) d = [d1, . . . , dk], di ∈ {1, . . . , Dmax}
that is experienced with probability

PΛΛΛ(d) =

k∏
i=1

PΛΛΛ(di) =

k∏
i=1

Λdi .

Each realization of k sources accessing the time slots of
a MAC frame can be described by a k × t binary matrix
M = (mij), called collision matrix, with rows and columns
corresponding to users and slots, respectively. We have
mij = 1 if the ith user transmits in the jth slot, and mij = 0
otherwise. The collision matrix M associated with the
example in Fig. 1 is given by

M =

1 0 1 0
0 1 0 1
0 1 1 1

 .

The weight of a column mj in M is given by
∑k

i=1 mij and it
represents the number of packets sent in the time slot j. Thus,
columns with unity weight, e.g., [100]T , represent singleton
slots that allow an immediate decoding of the message. On the
contrary, columns with a weight greater than one, e.g., [110]T ,
represent slots in which messages collide and cannot be
directly decoded. Collided messages can however be recovered
by SIC strategies. If packets are sent by two users in the same
time slot but one of them can be recovered from a singleton
slot, then the second packet can be decoded by interference
cancelation. For example, message p1 in M is recovered from
the first slot, which is a singleton one. Then, canceling the
message p1 from the other interfering messages we obtain

M′ =

0 0 0 0
0 1 1 0
0 0 1 1


. and message p3 can also be decoded. As long as one singleton
slot is experienced, the iterative decoding process proceeds. If
the SIC process resolves all collisions, then no source packets
are lost within the MAC frame of interest. If the SIC process
stops before completion, it leaves packets undecoded and the
SIC process fails.

In this work, we are interested in evaluating the probability
of failure in the SIC process, i.e., the probability that a packet
is lost when transmitted through the IRSA protocol. We denote
this packet loss rate (PLR) by PL, and it can be written as1

PL =

k∑
u=2

u

k
PΛΛΛ(u) (1)

where PΛΛΛ(u) is the probability of having u unrecovered pack-
ets when k users transmit over a frame of t slots with degree
distribution ΛΛΛ. We condition to a given degree distribution
vector as follows

PL =
∑
d∈D

k∑
u=2

u

k
P (u | d) P (d)

=
∑
d∈D

k∑
u=2

u

k
P (u | d)

k∏
i=1

Λdi
(2)

with D denoting the set of all the possible packet repetition
vectors allowed by the distribution ΛΛΛ. Denoting by D the
number of possible replication rates, i.e., replication rates with
Λd > 0, |D| = Dk. In the next section, we compute the PLR
PL for small MAC frame size t.

1For the sake of notation, we omit the dependency of the packet loss
probabilities on (k, t).



P (n̂|d) =


[∏k

j=1

(
t
di

)]−1
t!∏

cq∈Ĉ
ncq !

k+1∏
i=1

fi(n̂,d)!

if I(n̂) = 1

0, otherwise

(5)

III. FINITE LENGTH PERFORMANCE

A. Matrix-Based Formulation

Because of the source independence, collision matrices are
equivalent in terms of PLR upon permutations (both across
rows or columns). We can therefore study the IRSA perfor-
mance by only looking at the column vectors which are present
within a given matrix M. This is possible exploiting the
combinatorial matrix-occupancy theory [13], dealing with sets
of balls randomly assigned into groups of bins. Random access
channel problems can be viewed as occupancy problems by
considering packets and slots as balls and bins, respectively.
The number of bins with only one ball, for example, represents
the number of singleton slots.

In more details, let C = {c1, c2, . . . , c|C|} be the set of
all possible column vectors that can be present in M, with
column cq = [c

(1)
q , c

(2)
q , . . . , c

(k)
q ]T taking values in {0, 1}k.

Let us then define the occupancy vector

n = [nc1
, nc2

, . . . , nc|C| ]

associated with a matrix M as a vector that shows how many
times each column in C is present in M. Note that for the sake
of notation, we omit the dependency of n from C. Specifically,
ncq

is the number of times the column cq is present in the
matrix of interest. For example, defining c1 = [1 0 0]T , c2 =
[0 1 1]T , and c3 = [1 0 1]T , the occupancy vector associated
with M is

n =
[
nc1

= 1, nc2
= 2, nc3

= 1, ncq,q>3
= 0

]
.

Finally, we define Cl ⊆ C as the subset of column vectors with
weight w(cq) =

∑k
j=1 c

(j)
q = l, and Cl,i ⊆ Cl as the subset of

column vectors with weight l and ci = 0. It is worth noting
that each occupancy vector corresponds to multiple collision
matrices that are equivalent in terms of PLR.

We are now interested in finding conditions under which an
occupancy vector represents a collision matrix in the case of
k sources, t time slots, and degree vector d. First, we impose
that exactly t columns are present in the matrix:∑

q:cq∈C
ncq

= t (3)

Then, we impose that the degree vector is respected. This
means that an occupancy vector is feasible if it leads to a
matrix in which exactly di entries are non-zero in the ith row
of the collision matrix. This translates in the following set of
constraints

Dmax∑
l=1

∑
q:cq∈Cl,i

ncq
= t− di, i = 1, . . . , k. (4)

Since Ck has only one column vector (i.e., the vector with
all 1 entries) and Ck−1 has k possible column vectors (i.e.,
each vector with only one out of k null entry), we can impose
the above k + 1 constraints — (3) and (4) — by properly
evaluating the occupancy of the k + 1 column vectors in Ck
and Ck−1. Let us denote by n̂ the reduced occupancy vector,
defined as the column vectors with weight at most k − 2.
Formally, n̂ = [ncq ]cq∈Ĉ , with Ĉ = C \ Ck−1 ∪ Ck. We can
then decompose any occupancy vector as n = [n̂ f(n̂,d)],
with f(n̂,d) representing the occupancy of the k+1 column
vectors in Ck and Ck−1. These k + 1 unknown f(n̂,d) =
[f1(n̂,d), . . . , fk+1(n̂,d)] are derived by imposing the con-
straints (3) and (4). If fi(n̂,d) ≥ 0,∀i, then the occupancy
vector [n̂ f(n̂,d)] is a feasible one for the transmission settings
(k, t,d). We define I(n̂) an indicator function such that
I(n̂) = 1 if [n̂ f(n̂,d)] is a feasible one for the transmission
settings (k, t,d), and I(n̂) = 0, otherwise.

B. Packet Loss Probability

Equipped with the matrix-occupancy representation, we can
express the error probability P (u | d) in (2) as

P (u | d) =
∑
n̂

Qu(k, [n̂ f(n̂,d)]) P (n̂ | d)

where P (n̂|d) is the probability of experiencing an occupancy
vector [n̂ f(n̂,d)], when k users transmit over t slots given the
repetition vector d. The indicator function Qu(k,n) returns 1
if the the SIC process with a collision matrix associated with
n stops at u undecoded packets and returns 0 otherwise. We
compute both terms below.

The probability P (n̂|d) is zero if I(n̂) = 0, otherwise
it is evaluated as the ratio between the number of collision
matrices with occupancy vector [n̂ f(n̂,d)] and the total
number of collision matrices in the same transmission settings.
The former is given by the following multinomial coefficients

t!∏
cq∈Ĉ

ncq
!
k+1∏
i=1

fi(n̂,d)!

while the total number of collision matrices that can be
experienced under the settings (k, t,d) is

∏k
j=1

(
t
di

)
from the

independency of the sources. This leads to (5), at the top of
the page.

We then derive Qu(k,n) iteratively. We consider the jth
iteration of the decoding process, where k − j packets are
undecoded, and n(j) = [n

(j)
c1 , n

(j)
c2 , . . .] is the occupancy

vector of the collision matrix at the jth decoding step. Note
that n = n(0) is the occupancy vector before the decoding
process starts. At the jth iteration of the decoding process, one



PL =
∑
d∈D

k∑
u=2

u

k

∑
n̂∈N

Qu(k, [n̂ f(n̂,d)](0))
t!∏

cq∈Ĉ
ncq

!
k+1∏
i=1

fi(n̂,d)!

k∏
i=1

Λdi(
t
di

) (9)

message is decoded only if there exists at least one weight-1
column vector, i.e., if ∃ c ∈ C1 s.t. n(j)

c > 0.
If the condition is satisfied, then the decoder can proceed

to the next step. At the decoding iteration j + 1, there are
k− j − 1 undecoded packets and the occupancy vector of the
collision matrix is denoted by n(j+1). The latter is derived
recursively from n(j). Let us consider the column vector with
the m-th entry being non-zero, i.e., c ∈ C \ ∪lCl,m, and let
us denote by c(m) its complementary in m a column vector
equal to c but with the m-th entry set to zero. For example, if
c = [11001], then c(2) = [10001]. Then, in the case in which
the m-th element of C1 has n

(j)
cm > 0, n(j+1) can be written

from n(j) as follows

n
(j+1)

c(m) = n(j)
c + n

(j)

c(m) ∀c ∈ C \ ∪lCl,m
n
(j+1)

c(m) = 0

n(j+1)
c = n(j)

c ∀c ∈ {∪lCl,m \ c(m)} (6)

We thus recursively evaluate the indicator function Qu as

Qu(k − j,n(j)) = Qu(k − j − 1, u,n(j+1)). (7)

If there are no weight-one columns in the collision matrix, the
decoder terminates at iteration j with k−j undecoded packets
and Qu becomes

Qu(k − j,n(j)) =

1, k − j = u

0, otherwise
(8)

Finally, denoting by N the set of reduced occupancy vectors
n̂ such that I(n̂) = 1, the decoding error probability of (2)
results in (9), provided at the top of the page.

We now comment on the complexity of the proposed semi-
analytical study. Both the combinatorial and iterative steps in
(9) are performed over all possible degree vectors d ∈ D and
all possible reduced occupancy vectors n̂ ∈ N . The cardinality
of D and N is given respectively by

|D| = Dk and |N | ≤
(
Ĉ + t− 1

t

)
with Ĉ =

∑k−2
n=0

(
t
n

)
. The upper bond on |N | is derived as

follows. We first recall that Ĉ is the dimension of the reduced
occupancy vector n̂ and that the entries of n̂ need to satisfy
(3). Looking at the problem as t balls into R bins, the number
of possible combinations of the reduced vector is

(Ĉ+t−1
t

)
.

Among these, only the reduced occupancy vectors that satisfy
(4) belong to N .

It is worth noting that the cardinality of D and N both
scales with k and t. However, the probability of experiencing
a given reduced vector and a given degree vector can be easily
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Fig. 2. Comparison of the theoretical and simulation results for different
(k, t) pairs in the case of t = 6 and Λ(x) = 0.2x+ 0.5x2 + 0.3x4.

derived from (2). Therefore, an approximated PLR can be
evaluated by performing the iterative procedure Qu(k,n) only
for the most likely reduced vectors. This substantially reduces
the computational complexity while preserving accuracy.

C. Ripple-Based Analysis

We propose a ripple-based analysis similar to the one in the
finite-length analysis of Luby-Transform (LT) codes. Let us
first introduce some essential notation. In particular, the MAC
frame status can be conveniently represented by a bipartite
graph G = (B,S,E), consisting of a set B of k burst nodes
(one for each user), a set S of N slot nodes (one for each
slot), and a set E of edges. An edge connects a burst node
bi ∈ B to a sum node sj ∈ S if and only if a burst replica of
the i-th user is transmitted in the j-th slot.

Bipartite graph G IC iteration 1 IC iteration 2

Fig. 3. Graph representation of the IC process for k = 4 and N = 4.

We will call step u the time point where there are u
unknown (not decoded yet) BNs in the graph. Also, we will



call the ripple the set of BNs that are connected to at least
one SN of degree one and will denote its size at step u by
Xu. Now, we can express the failure probability P (u) by
means of the ripple size. More particularly, the IC process
will fail with u undecoded users if the ripple size at step u is
zero. Therefore, we can write

P (u− 1) = Pr(u− 1, Xu−1 = 0) (9)

We model the IC process by the discrete-time stochastic
process {u,Xu, Nu,du}0≤u≤k , with Nu denoting the number
of SNs that are present in the bipartite graph at step u.
Looking in detail the decoding algorithm, we can see that
there is a dependency between successive states, i.e., the states
(u− 1, Xu−1, Nu−1,du−1) and (u,Xu, Nu,du). Let us recall
that during the iteration u → u− 1, one BN leaves the ripple
and the associated edges are removed from the graph. This
might lead some other BNs, i.e., those that have common SNs
of degree two with the selected ripple element, to join the
ripple. Let Yu denote the number of BNs that join the ripple
during the iteration u → u− 1. Then, Xu−1 is

Xu−1 = Xu + Yu − 1 (10)

with 0 ≤ Yu ≤ u−1. Similarly, there is a change in the number
of SNs that are available in the bipartite graph. By definition
the selected ripple BN is connected to at least one SN of degree
one. After the deletion of its edges, those degree-1 SNs will
be degree-0 nodes and hence they will not participate in the
reduced graph. Let Zu denote the number of the SNs that
become of reduced degree zero after the iteration u → u− 1.
Then, Nu−1 is

Nu−1 = Nu − Zu (11)

with 1 ≤ Zu ≤ lmax, where lmax is the maximum degree
allowed by the distribution{Λl}.

B1 B3B2 B4

S1 S2 S3 S4S3 S5

B1 B3B2 B4

S1 S2 S3 S4S3 S5

Y = 1, Z = 2

Fig. 4. One-step evolution of the bipartite graph. Red circles denote BNs that
are in the ripple.

Based on equations (10) and (11), we may assume that the
sequence

(u−1, Xu−1, Nu−1,du−1), (u,Xu, Nu,du), . . . , (k,Xk, Nk,dk)

forms a Markov chain. By exploiting the Markov property, we
can derive a recursion for the evaluation of the distribution
Q(u − 1, r, n,d) = Pr(u − 1, Xu−1 = r,Nu−1 = n,d). The

recursion of the state distribution at step u− 1 is given by

Q(u− 1, r, n, du−1) =
∑

du∈Du

∑
s

∑
m

Pr(u− 1, Xu−1 = r,Nu−1 = n,du−1 | u,Xu = s,Nu = m,du)Q(u, s,m, du)

=
∑

du∈Du

∑
s

∑
m

Pr(Yu = r − s+ 1, Zu = m− n,du−1 | u,Xu = s,Nu = m,du)Q(u, s,m, du)

(12)

where we neglected the limits of the sums for the sake of
notation simplicity. Finally, the failure probability P (u−1) is
given by

P (u− 1) = Pr(u− 1, Xu−1 = 0)

=
∑
n

∑
du−1∈Du−1

Q(u− 1, 0, n, du−1) (13)

Let us notice that the decoder fails to complete the IC
operation at step u, u = k, . . . , 2, independently on the
order in which decodes the BNs of the ripple. This enable
us to evaluate equation (13) assuming that always the first
element of the ripple is selected for being decoded during an
iteration. Furthermore, we can make similar assumptions about
the configuration of the BNs that compose the ripple and the
BNs that join the ripple at each step of the iterative decoding
process. The probability of having a specific combination of
BNs in the rippe, or in the set of nodes that join the ripple, is
the same whatever combination is considered, since each BN
chooses randomly its degree following {Λl} and the edges
are distributed uniformly among the SNs. With out loss of
generality, we may assume the followings:

1) Let {B1, . . . , Bk} be the set of the BNs of the bipartite
graph. The IC process starts with B1, . . . , Br being in
the ripple and Br+1, . . . , Bk being in the cloud.

2) At each subsequent step u ≤ k of the process, the Yu

BNs that join the ripple during the iteration u → u− 1
are the first ones from the cloud.

Using assumptions 1 and 2 we can evaluate the Markov chain
on a fixed chain path regarding the BNs in the ripple and the
BNs that join the ripple during an iteration and after multiply
the result by a product of binomial coefficients in order to take
into account all the equally probable chain paths. In sequel, we
show how the idea of the fixed chain path is mathematically
expressed.
Let ru and nu denote the values of the ripple size and the
length of the MAC frame at step u respectively. Then,

=
∑

du∈Du

∑
ru

∑
nu

Pr(u− 1, Xu−1 = 0, Nu−1 = nu−1,du−1 | u,Xu = ru, Nu = nu,du)Q(u, ru, nu,du)

=
∑

du∈Du

∑
ru

∑
nu

Pr(Yu = 0, Zu = nu − nu−1,du−1 | u,Xu = ru, Nu = nu,du)Q(u, ru, nu,du)

=

(
u− ru

0

) ∑
l: Λl 6=0

∑
ru

∑
nu

Pr(Yu = 0, Zu = nu − nu−1 | u,Xu = ru, Nu = nu, [l du−1])Q(u, ru, nu, [l du−1])

(14)



TABLE I
k = 4, t = 6, Λ(x) = 0.25x2 + 0.75x3 .

u Pr[U = u] theory Pr[U = u] sim
2 0.140730 0.141390
3 0.130158 0.130110
4 0.094203 0.093460
PL 0.262186 0.261738

TABLE II
k = 5, t = 5, Λ(x) = 0.45x2 + 0.55x3 .

u Pr[U = u] theory Pr[U = u] sim
2 0.078781 0.078510
3 0.177389 0.176970
4 0.346640 0.346430
5 0.397189 0.398090
PL 0.812448 0.812820

IV. NUMERICAL RESULTS

We now provide the simulation results to validate the
proposed solution in finite-length systems, i.e., with small size
MAC frames t ∈ [4, 7]. We consider different settings with
k sources and t time slots. For each (k, t) pair we consider
different transmission probabilities, i.e., different degree dis-
tributions Λ(x), following [7]. For each of these scenarios,
we evaluate the decoding error probability from (9). Then, for
each Λ(x), we generate 1000 realizations of collision matrices
and simulate the IRSA protocol and the SIC decoding with
belief propagation and we evaluate u/k. We then average this
ratio over the 1000 realization to evaluate the average loss
probability.

We now provide simulation results in terms of normalized
throughput, defined as (1 − PL)k/t. This metric is usually
adopted to evaluate the performance of MAC strategies and it
directly reflects the error probability PL. In Fig. 2, we provide
the normalized throughput as a function of the traffic G = k/t
for a scenario with t = 6 and Λ(x) = 0.2x+ 0.5x2 + 0.3x4.
Results are provided for both simulation results and theoretical
ones, namely the finite length analysis proposed in this work
and the asymptotic analysis derived in [7]. We also provide an
approximated solution (labeled MLV — most likely vectors),
where the iterative evaluation of Qu in (9) is performed only
over the occupancy vector with a probability P (d) ≥ 10−3.
The results show a weak match between asymptotic theory and
the simulations results, from here the need for finite length
analysis. From the results, we also observe a good match
between finite length theory (both exact and approximated)
and simulations, showing the accuracy of our study. The model
is validated also in the results provided from Table I, where
we provide the final packet loss rate PL but also a partial
performance of the decoding process (i.e., the probability
of stopping the decoding step at u unknown denoted by
Pr[U = u]). The good match between theory and simulation
is confirmed in these experiments as well as in the ones of
Table II, where a different Λ(x) has been simulated.

Finally, in Table VI we compare our analysis with the

TABLE III
k = 4, t = 6, Λ(x) = 0.6x2 + 0.4x3 .

u Pr[U = u] theory Pr[U = u] Markovian Pr[U = u] sim
2 0.1992 0.1972 0.1993
3 0.12063 0.2063 0.2062
4 0.1627 0.1627 0.1628

TABLE IV
k = 5, t = 6, Λ(x) = 0.35x2 + 0.65x3 .

u Pr[U = u] theory Pr[U = u] Markovian Pr[U = u] sim
2 0.1209 0.1265 0.1210
3 0.1778 0.1901 0.1777
4 0.2359 0.2359 0.2363
5 0.1820 0.1280 0.1815

asymptotic analysis of [7] and the finite-length analysis of
[11]. We see that, especially for small value of the traffic
network G, the asymptotic analysis is far away from the
actual performance, and that our study is more precise than
[11] especially for large values of the traffic network G.
This accuracy comes at a price of a large computational
complexity. Because of the complexity factor, (9) might be
too expensive to evaluate for realistic MAC frames (hundreds
of time slots). However, in Table VI we observe that the
approximated solution MLV nicely scales with the MAC frame
without significantly affecting the accuracy.

V. CONCLUSIONS

We carried out an evaluation of the IRSA performance in
finite-length settings, using combinatorial theory and matrix-
occupancy theory. Simulation results validate the derived anal-
ysis for small MAC frames and show the improved match
between theory and simulation results with respect to the state
of the art performance studies. This work is a first step in the
unbeaten research path of IRSA performance in finite-length
settings. The current study leads to a mix of combinatorial and
analytical performance. Future works will focus on providing
a pure theoretical evaluation based as well as low-complexity
solution that can be extended to larger number of MAC
frames.

VI. ACKNOWLEDGMENTS

This work was partially funded by the Swiss National
Science Foundation (SNSF) under the CHIST- ERA project
CONCERT (A Context-Adaptive Content Ecosystem Under
Uncertainty), project nr. FNS 20CH21 151569.

REFERENCES

[1] D. Evans, “The internet of things: How the next evolution of the internet
is changing everything,” Cisco, 2011.

[2] M. Polese, M. Centenaro, A. Zanella, and M. Zorzi, “M2M massive
access in LTE: RACH performance evaluation in a smart city scenario,”
in Proc. IEEE Int. Conf. on Commun., 2016.

[3] A. S. Gupta and A. Singer, “Successive interference cancellation using
constellation structure,” IEEE Trans. on Signal Processing, vol. 55,
no. 12, pp. 5716–5730, Dec 2007.



TABLE V
COMPARISON OF THE DECODING FAILURE PROBABILITY PL BOTH FROM

THEORY OR BY SIMULATION.

G Simulation [7] [11] (9) MLV
0.5 0.13 0 0.17 0.14 0.14
0.67 0.34 0 0.58 0.35 0.35
0.8 0.75 0.44 0.98 0.74 0.77

TABLE VI
COMPARISON OF THE DECODING FAILURE PROBABILITY P (u) BOTH

FROM OPTIMAL AND SUBOPTIMA THEORY OR BY SIMULATION.

G Simulation [7] [11] (9) MLV
0.5 0.13 0 0.17 0.14 0.14
0.67 0.34 0 0.58 0.35 0.35
0.8 0.75 0.44 0.98 0.74 0.77

[4] C. H. Yih, “Iterative interference cancellation for OFDM signals with
blanking nonlinearity in impulsive noise channels,” IEEE Signal Pro-
cessing Letters, vol. 19, no. 3, pp. 147–150, March 2012.

[5] P. Moulin, “Signal transmission with known-interference cancellation,”
IEEE Signal Processing Magazine, vol. 24, no. 1, pp. 134–136, Jan
2007.

[6] T. Richardson and R. Urbanke, Modern coding theory. Cambridge
University Press, 2008.

[7] G. Liva, “Graph-based analysis and optimization of contention resolution
diversity slotted ALOHA,” IEEE Trans. Commun., vol. 59, no. 2, pp.
477–487, 2011.

[8] E. Paolini, G. Liva, and M. Chiani, “Coded slotted ALOHA: A graph-
based method for uncoordinated multiple access,” IEEE Trans. Inform.
Theory, vol. 61, no. 12, pp. 6815–6832, 2015.

[9] C. Stefanovic and P. Popovski, “ALOHA random access that operates as
a rateless code,” IEEE Trans. Commun., vol. 61, no. 11, pp. 4653–4662,
November 2013.

[10] L. Toni and P. Frossard, “Prioritized random MAC optimization via
graph-based analysis,” IEEE Trans. Commun., vol. 63, no. 12, pp.
5002–5013, Dec 2015.

[11] E. Paolini, “Finite length analysis of irregular repetition slotted aloha
(IRSA) access protocols,” in Proc. IEEE Int. Conf. Communication
Workshop, 2015, pp. 2115–2120.

[12] M. Ivanov, F. Brannstrom, A. G. i Amat, and P. Popovski, “Broadcast
coded slotted ALOHA for vehicular communications: A finite frame
length analysis,” ArXiv, vol. /1511.00418, 2015.

[13] P. J. Eicker, M. M. Siddiqui, and J. Mielke, Paul W., “A matrix
occupancy problem,” The Annals of Mathematical Statistics, vol. 43,
no. 3, pp. pp. 988–996, 1972.


