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Multiple imputation with delta adjustment provides a flexible and transparent means to impute univariate miss-
ing data under general missing-not-at-random mechanisms. This facilitates the conduct of analyses assessing
sensitivity to the missing-at-random (MAR) assumption. We review the delta-adjustment procedure and demon-
strate how it can be used to assess sensitivity to departures from MAR, both when estimating the prevalence of
a partially observed outcome and when performing parametric causal mediation analyses with a partially
observed mediator. We illustrate the approach using data from 34,446 respondents to a tuberculosis and human
immunodeficiency virus (HIV) prevalence survey that was conducted as part of the Zambia–South Africa TB
and AIDS Reduction Study (2006–2010). In this study, information on partially observed HIV serological values
was supplemented by additional information on self-reported HIV status. We present results from 2 types of sen-
sitivity analysis: The first assumed that the degree of departure from MAR was the same for all individuals with
missing HIV serological values; the second assumed that the degree of departure from MAR varied according
to an individual’s self-reported HIV status. Our analyses demonstrate that multiple imputation offers a principled
approach by which to incorporate auxiliary information on self-reported HIV status into analyses based on par-
tially observed HIV serological values.

causal mediation analysis; incomplete data; nonignorable nonresponse; sensitivity analysis

Abbreviations: AIDS, acquired immune deficiency syndrome; HIV, human immunodeficiency virus; MAR, missing at random;
MNAR, missing not at random; NDE, natural direct effect; NIE, natural indirect effect; TB, tuberculosis; ZAMSTAR, Zambia–
South Africa TB and AIDS Reduction.

Missing data are common in epidemiologic studies and
can lead to substantial bias and misleading inference when
inadequately handled. Incomplete data are frequently ana-
lyzed only under the missing-at-random (MAR) assumption
when they may more plausibly be missing not at random
(MNAR). Data are said to be MAR if, conditional on the
observed values, missingness of any variable does not
depend on the unobserved values (1). Because the MAR
assumption cannot be verified from the observed data, it is
important to perform sensitivity analyses that assess the
impact on the study results of departures from this assump-
tion. However, methods for implementing structured sensi-
tivity analyses are in need of further development and wider

dissemination (2). This article reviews the procedure of mul-
tiple imputation with delta adjustment and demonstrates
how it can be used to assess sensitivity to departures from
MAR, both when estimating the prevalence of a partially
observed outcome and when performing parametric causal
mediation analyses with a partially observed mediator using
the approach of Valeri and VanderWeele (3). Mediation
analysis allows researchers to explore alternative mechan-
isms for a given outcome-exposure relationship via third
variables and is becoming an increasingly popular tool in
epidemiologic research.

We applied the delta-adjustment approach to data from a
survey on the prevalence of tuberculosis (TB) and human
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immunodeficiency virus (HIV) that was conducted as part
of the Zambia–South Africa TB and AIDS Reduction
(ZAMSTAR) Study (4). We wished to obtain overall and
sex-specific estimates of HIV prevalence and investigate
the mediating influence of HIV status on the relationship
between educational attainment and active pulmonary TB.

Missingness of the HIV test result data is most plausibly
MNAR, because prior knowledge or strong beliefs about
one’s status influence test acceptance. Evidence from sev-
eral recent longitudinal studies suggests that individuals
who have previously tested HIV-positive may be more
likely to refuse testing subsequently compared with indivi-
duals who were HIV-negative when last tested (5–8). Such
individuals may refuse testing because they fear further dis-
closure of their status to others. Some authors have advo-
cated the collection of additional auxiliary information on
prior testing behavior (8) to adjust for this, but there is little
guidance on how to incorporate this information into the
final analysis; current ad hoc approaches include supple-
menting the partially observed HIV serological values with
self-reported values. By including self-reported HIV status
in the imputation model for incomplete HIV serological val-
ues we demonstrate a novel and principled approach to
incorporating this information that builds on current guide-
lines from the World Health Organization and the United
Nations Programme on HIV and AIDS for handling miss-
ingness of HIV status data (9).

Collecting information on past HIV testing behavior,
including the self-reported result of the most recent HIV
test, also provides an opportunity to conduct more nuanced
sensitivity analyses as it is likely that rates of HIV test
acceptance differ within groups defined on the basis of
self-reported HIV status. To this end, we present results
from 2 types of sensitivity analysis: the first assumed that
the degree of departure from MAR was the same for all in-
dividuals with missing HIV serological values, and the sec-
ond assumed that the degree of departure from MAR
varied according to an individual’s self-reported HIV sta-
tus. To our knowledge, these are the first sensitivity analy-
ses of this type to be reported in the literature.

METHODS

ZAMSTAR Study

We used data from a TB/HIV prevalence survey con-
ducted as part of the ZAMSTAR Study (4). This survey
aimed to include approximately 4,000 adults aged 18 years
or older in each of 16 trial communities in Zambia and
8 communities in the Western Cape province of South
Africa. We restricted our analyses to the 34,446 adult parti-
cipants with an evaluable TB sputum sample among the 16
trial communities in Zambia.

Information on HIV status was available from 2 sources.
All survey participants were offered point-of-care, rapid HIV
testing as part of the study, yielding a partially observed vari-
able for HIV status based on serological analysis. Participants
were also asked about prior HIV tests, yielding a fully
observed, self-reported, auxiliary variable with 4 categories:
HIV-positive, HIV-negative, refused to disclose the result of

the most recent HIV test, and never tested. Data were also
collected on a large number of sociodemographic and socio-
economic variables and on prior diagnosis, symptoms, and
treatment for TB and/or HIV. Data collected on highest
school grade completed were used to create an educational-
attainment exposure variable with the following 5 categories:
none, primary (less than grade 8), lower secondary (grade 8
or 9), upper secondary (grade 10, 11, or 12), and college/
university.

Among participants with an evaluable TB sputum sample,
31.8% had missing HIV serological values. In order to create
a data set with univariate missingness, we deleted 648 (1.2%)
observations that had missing values on any other variable
included in the final imputation model. Omitting these obser-
vations had no impact on inference under the MAR assump-
tion (data not shown). Communities were grouped into 4
noncontiguous regions characterized by their annual risk of
TB infection (defined by the percentage of schoolchildren
with a positive tuberculin test in a 2005 tuberculin skin test
survey in all 24 trial communities (10)) and whether they
were urban, rural, or located in Lusaka, the capital city.

Multiple imputation

Multiple imputation involves first specifying a distribu-
tion for the unobserved data given the observed data.
Multiple complete data sets are produced by taking random
draws from this distribution. Each imputed data set is ana-
lyzed using standard methods, and point estimates and
standard errors for the quantities of interest are aggregated
across the imputed data sets using Rubin’s rules. Standard
implementations assume that the missing data are MAR.
A comprehensive treatment of the underlying statistical
theory can be found in Rubin (11).

We first describe a standard implementation of multiple
imputation under the MAR assumption for a single incom-
plete variable. We then show how the delta-adjustment
procedure extends this approach to allow for multiple
imputation under alternative MNAR assumptions by modi-
fying the values imputed under a MAR assumption so that
they differ from the observed values in a specified way.

Multiple imputation under the MAR assumption

MAR assumption. Suppose that we have a vector of
fully observed variables X and a single partially observed
variable Y. Let R = 1 if Y is observed and R = 0 if Y is
missing. The MAR assumption states that, conditional on
the observed data, missingness of Y does not depend on the
unobserved data. This can be formulated as

( | ) = ( | )X XR Y RPr , Pr

or equivalently as

( | = ) = ( | = )X XY R Y RPr , 1 Pr , 0 .

Constructing the imputation model. The imputation
model should include all of the variables in the analysis
model(s) of interest as well as any variable that is a
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significant predictor of both the HIV test result and miss-
ingness of the HIV test result (12).

We constructed 4 imputation models of increasing com-
plexity for the HIV test result variable under the MAR as-
sumption. Model A was a logistic regression of HIV test
results on age and region only. Model B included the vari-
ables in model A plus active pulmonary TB. Model C
included the variables in model B plus current TB treatment,
past TB treatment, household wealth index, educational attain-
ment, marital status, diabetes status, smoking status, alcohol
consumption, hunger in past 3 months, household crowding,
circumcision status (males only), current cough, persistent
cough for more than 2 weeks, current chest pain, current
fever, current night sweats, current shortness of breath, and
unintentional weight loss in past month. Model D included
all of the variables in model C plus the auxiliary HIV self-
report variable. Because the risk factors for a positive HIV
test and for HIV test refusal varied by sex and also because
our analysis models contained an interaction term for age by
sex, we imputed missing HIV status values for men and
women separately in all 4 models. We created M = 25
imputed data sets under each imputation model using the
mice package in R (13). Our imputation procedure did not
account for clustering by census enumeration area or house-
hold because this had little impact on inference in complete-
case analyses (data not shown). We did not include any
additional interaction terms in the imputation model.

Multiple imputation under MNAR using delta adjustment

Multiple imputation with delta adjustment offers a trans-
parent and flexible means by which to impute univariate
data under general MNAR mechanisms, and thus to assess
sensitivity to departures from MAR. Inspired by original
proposals in Rubin (14), it has previously been used by van
Buuren et al. (15) and implemented for a variety of variable
types in the R package SensMice by Resseguier et al. (16).
Further examples can be found in Carpenter and Kenward
(17, 18).

After fitting an imputation model for the incomplete vari-
able Y under MAR, implementation of the delta-adjustment
procedure involves adding a fixed quantity δ to the linear
predictor before imputing missing data using the updated
model. As such, it is a simple type of pattern-mixture model.
When Y is binary and the missing data are imputed using a
logistic regression model, δ represents the difference in the
log-odds of Y = 1 for individuals with missing Y values
compared with individuals with observed Y values. A simple
imputation model under MAR is

′{ [ = | ]} = Φ + ΦX XYlogit Pr 1 ,X0

and a corresponding imputation model under MNAR is
given by

{ [ = | ]} = Φ + Φ + δ( − )X XY R Rlogit Pr 1 , 1 ,X0

where R = 1 if Y is observed and R = 0 if Y is missing.
Varying δ across a range of values, ideally elicited from a

subject-matter expert, produces an analysis of sensitivity to
departures from MAR.

Extending the procedure. The delta-adjustment proce-
dure can be refined to allow the degree of departure from
MAR to vary among individuals with missing Y values
according to their values on another fully observed vari-
able Z . Examples can be found in Moreno-Betancur and
Chavance (19) and Liublinska and Rubin (20). If Z is a
4-level categorical variable, we impute under the follow-
ing model:

+
{ [ = | ]}

= Φ + Φ′ Φ + δ ( − )
+ δ ( − )+ δ ( − ) + δ ( − )

{ = }

{ = } { = } { = }

XY Z R
X Z I R

I R I R I R

logit Pr 1 , ,
1

1 1 1 .
X Z z

z z z

0 1 1

2 2 3 3 4 4

Choice of adjustment values. Our final choice of adjust-
ment values was informed by findings from a study that
used data from 3 consecutive, annual rounds of HIV
counseling and testing in the Karonga District of Malawi
between 2007 and 2010 to investigate patterns in refusal of
HIV testing over time (6). Given the result of their last HIV
test, this study provided estimates of the proportion of indi-
viduals self-reporting as HIV-positive and HIV-negative as
well as the proportion that accepted or refused HIV testing
at the next testing round. We adjusted these figures to take
account of differences in testing behavior between the pop-
ulations in the Malawi and ZAMSTAR studies. We used
these estimates in conjunction with expert opinion and
the observed ZAMSTAR data to obtain an appropriate set
of sensitivity parameter values. Further details of our
approach are provided in Web Appendix 1 (available at
http://aje.oxfordjournals.org/), including illustrative proba-
bility trees (Web Figures 1 and 2). Example R code for im-
plementing the imputation procedure is provided in Web
Appendix 2.

Parametric causal mediation analysis

Analyses assessing sensitivity to departures from MAR can
be difficult to perform when the primary analysis is of a com-
plex form that requires multiple subcomponent models to be
fitted to the data. Multiple imputation is particularly well-
suited to such situations. Here we demonstrate how the delta-
adjustment procedure can be used to assess the impact of de-
partures from MAR on estimates arising from a parametric
causal mediation analysis. This analysis investigated whether
part of the observed relationship between educational attain-
ment and active pulmonary TB can be explained via HIV sta-
tus. While we use the term “effect” throughout, as with any
observational study, we cannot rule out the possibility of
uncontrolled confounding, issues surrounding the expo-
sure definition, and model misspecification.

Valeri and VanderWeele (3) presented an integrated frame-
work for parametric mediation analysis that is valid in the
presence of exposure-mediator interaction and allows for the
outcome and mediator variables to be any combination
of binary, categorical, continuous, or count. This extended
previous work that considered only a binary outcome and
a continuous mediator (21). The approach involves fitting
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2 parametric regression models to the data: a regression of the
outcome on the exposure, mediator, and other confounders
and a regression of the mediator on exposure and other con-
founders. The exposure variable can take 2 or more levels. In
our example, TB status was the outcome, HIV test result was
the mediator, educational attainment was the exposure, and
we fitted 2 logistic regression models. Our confounder set for
this analysis contained age, sex, region, and an age by sex
interaction, resulting in 48 observed covariate patterns. Pri-
mary education was used as the reference category for the
educational-attainment exposure variable.

The Valeri and VanderWeele approach (3) decomposes
the total effect of setting the exposure to level a rather than
to level ⁎a as the product of a natural direct effect (NDE)
and a natural indirect effect (NIE) on the odds-ratio scale.
Such a decomposition is often not possible using the stan-
dard approach of Baron and Kenny (22). The causal ef-
fects are identified assuming that there is no unobserved
confounding of any of the outcome-exposure, outcome-
mediator, or mediator-exposure relationships and that no
confounder of the outcome-mediator relationship is associ-
ated with the exposure. While the latter assumption may
not be satisfied in our setting, this does not affect our abil-
ity to illustrate the delta-adjustment method. Although the
NDE does not vary when there is no exposure-mediator
interaction, in general the NDE, NIE, and total effect
depend on the values of the confounding variables. Standard
errors for these quantities can be obtained via bootstrapping
or the multivariate delta method (3). Further details are
provided in Web Appendix 3.

We implemented the parametric causal mediation analysis
within the multiple imputation framework as follows: We
first fitted the regression models for the outcome and the
mediator in each imputed data set and then pooled the re-
sulting imputation-specific coefficient estimates and their
variance-covariance matrices using Rubin’s rules. Finally,
we calculated the causal-effect estimates and their stan-
dard errors.

RESULTS

Risk factors for HIV infection and HIV test refusal

Odds ratios for a number of potential risk factors for
HIV infection and HIV test refusal, stratified by sex and
adjusted for age and region, are presented in Tables 1
and 2, respectively. Self-reported HIV status was strongly
related to both a positive HIV test and HIV test refusal in
this sample, and its distribution varied considerably by
sex, age, and region (Web Table 1).

Sensitivity analyses

We first assumed that the degree of departure from
MAR was identical for all individuals with missing HIV
serological values. In this case, δ represented the difference
in the log-odds of a positive HIV test result for individuals
with missing HIV test results compared with individuals
with observed HIV test results. We considered a range of
values from exp(δ) = 1.0 to exp(δ) = 5.0.

We then explored the impact of allowing the degree of
departure from MAR to vary according to self-reported HIV
status Z. We let δ1, δ2, δ3, and δ4 capture the degree of depar-
ture from MAR for individuals who self-reported as HIV-
negative, who self-reported as HIV-positive, who refused to
disclose their most recent test result, and who reported that
they had never been tested for HIV, respectively. The values
chosen for δ1, δ2, δ3, and δ4 (summarized in Table 3) captured
our beliefs about the missing-data mechanism, assuming that
no individual failed to report having had a prior HIV test.
Missingness for individuals who self-reported as HIV-
negative was believed to be MNAR (exp(δ1) > 1), because in
addition to those who tested negative at their last test, this
group includes individuals who know or suspect that they
are HIV-positive but prefer to report as HIV-negative.
Conversely, missingness for individuals who self-reported
as HIV-positive was believed to be MAR (exp(δ1) = 1).
Missingness for individuals who refused to disclose their
status was believed to be strongly MNAR (exp(δ3) > 1),
while missingness for individuals who reported that they
had never previously been tested for HIV was believed to
be MAR or weakly MNAR (exp(δ4) of close to 1).

Estimation of HIV prevalence

Table 4 presents estimates of HIV prevalence from a
complete-case analysis, best- and worst-case analyses (in
which all missing HIV test values were imputed as 0 or 1,
respectively), and the 4 alternative multiple-imputation
analyses under MAR. Table 5 presents estimates of HIV
prevalence from a selected subset of multiple-imputation
analyses under MNAR based on imputation model D. The
estimates from complete-case analysis were systematically
lower than those produced by multiple imputation under
MAR, while imputation models A, B, and C produced very
similar estimates of the overall HIV prevalence. Including
self-reported HIV status in the imputation model resulted
in an increased estimate of the overall HIV prevalence.

In MNAR analyses, estimates of the overall HIV preva-
lence varied from 18.1% under MAR (exp(δ) = l.0) to
24.9% when exp(δ) = 5.0. Allowing the degree of departure
from MAR to vary according to self-reported HIV status, as
captured by the group-specific δj values, was associated
with more subtle differences in the estimates of HIV preva-
lence than applying a common δ value to all participants
with missing HIV test result data (Table 5). This is further
illustrated by the filled contour plot in Web Figure 3, which
presents overall and sex-stratified estimates of HIV preva-
lence by group-specific δj values.

Parametric causal mediation analysis

Complete-case and MAR analyses. We first fitted the
2 subcomponent logistic regression models to the data.
Because there was no evidence of exposure-mediator inter-
action, we refitted the outcome regression model, omitting
this term. Estimated odds ratios from each subcomponent
model arising from complete-case, best-case, worst-case,
and multiple-imputation-under-MAR analyses are reported
in Web Tables 2 and 3. While HIV status partly mediated
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the effects of having upper-secondary or college/university
education (compared with primary education) on active pul-
monary TB across a majority of covariate patterns, there
was no evidence that HIV status mediated the effects of
having lower-secondary education. The NIE on active pul-
monary TB of having no education compared with having
primary education was in the opposite direction of the NDE
for all covariate patterns, indicating a lack of mediation.
Accounting for missing data via multiple imputation under
MAR did not produce a qualitative change in inference
regarding mediation. A representative set of causal-effect

estimates and 95% confidence intervals for one covariate
pattern is presented in Table 6.

Analyses assessing sensitivity to departure from the MAR
assumption. Estimates of the average NDE for each level of
the educational-attainment exposure variable were insensitive
to departures from the MAR assumption across a majority of
covariate patterns. While estimates of the NIE of having a
college/university education exhibited moderate sensitivity to
departures from MAR across all covariate patterns, estimates
of the NIE for the remaining exposure levels exhibited little
sensitivity. Sensitivity of the average NIE and total effect to

Table 1. Odds Ratios for Refusal of Human Immunodeficiency Virus Testing Among Zambian Adultsa According to Individual and Household
Characteristics, Zambia–South Africa TB and AIDS Reduction Study, 2010

Characteristic

Men (n = 11,484) Women (n = 22,314)

No. Who
Refused Test

No. at
Risk % ORb 95% CI No. Who

Refused Test
No. at
Risk % ORb 95% CI

Age, years

18–24 1,362 4,294 31.7 1.00 Referent 2,250 7,804 28.8 1.00 Referent

25–29 532 1,651 32.2 1.05 0.93, 1.19 1,307 4,150 31.5 1.13 1.04, 1.23

30–34 448 1,355 33.1 1.06 0.93, 1.21 977 2,916 33.5 1.24 1.13, 1.36

35–39 373 1,053 35.4 1.18 1.02, 1.36 650 1,934 33.6 1.23 1.11, 1.37

40–49 467 1,291 36.2 1.19 1.04, 1.35 786 2,533 31.0 1.10 0.99, 1.21

>50 618 1,840 33.6 1.08 0.96, 1.21 935 2,977 31.4 1.09 1.00, 1.20

Region and TB risk

Rural, low ARTI 1,223 3,564 34.3 1.00 Referent 2,138 6,232 34.3 1.00 Referent

Urban, low ARTI 1,053 2,616 40.3 1.29 1.17, 1.44 1,749 4,723 37.0 1.13 1.04, 1.22

Urban (not Lusaka),
high ARTI

831 2,303 36.1 1.08 0.97, 1.21 1,408 4,262 33.0 0.95 0.87, 1.03

Lusaka, high ARTI 693 3,001 23.1 0.58 0.52, 0.65 1,610 7,097 22.7 0.56 0.52, 0.61

Self-reported HIV status

HIV-negative 1,255 4,296 29.2 0.76 0.70, 0.83 3,249 11,650 27.9 0.80 0.75, 0.85

HIV-positive 235 562 41.8 1.25 1.05, 1.50 721 1,921 37.5 1.21 1.09, 1.35

Refused to disclose
result

131 293 44.7 1.45 1.14, 1.84 325 718 45.3 1.58 1.35, 1.85

Never tested 2,179 6,333 34.4 1.00 Referent 2,610 8,025 32.5 1.00 Referent

Active pulmonary TB

Yes 35 92 38.0 1.27 0.83, 1.95 28 99 28.3 0.90 0.58, 1.40

No 3,765 11,392 33.0 1.00 Referent 6,877 22,215 31.0 1.00 Referent

Educational attainmentc

None 85 276 30.8 1.14 0.87, 1.50 411 1,411 29.1 1.08 0.95, 1.23

Primary 727 2,589 28.1 1.00 Referent 2,258 8,264 27.3 1.00 Referent

Lower secondary 833 2,824 29.5 1.10 0.98, 1.24 1,802 5,871 30.7 1.18 1.10, 1.28

Upper secondary 1,544 4,366 35.4 1.45 1.29, 1.62 1,804 5,282 34.2 1.42 1.31, 1.53

College/university 611 1,429 42.8 1.83 1.59, 2.10 630 1,486 42.4 1.83 1.63, 2.05

Abbreviations: ARTI, annual risk of tuberculosis infection; CI, confidence interval; HIV, human immunodeficiency virus; OR, odds ratio; TB,
tuberculosis.

a Participants responded to a 2010 survey on the prevalence of TB and HIV and had an evaluable TB sputum sample.
b Adjusted for age and region.
c Educational attainment according to grade level was defined as follows: primary, less than grade 8; lower secondary, grade 8 or 9; and

upper secondary, grade 10, 11, or 12.

Am J Epidemiol. 2017;185(4):304–315

308 Leacy et al.



Table 2. Odds Ratios for Having a Positive Human Immunodeficiency Virus Test Result Among Zambian Adultsa According to Individual and
Household Characteristics, Zambia–South Africa TB and AIDS Reduction Study, 2010

Characteristic

Men (n = 7,684) Women (n = 15,409)

No. With
Positive Test

No. at
Risk % ORb 95% CI No. With

Positive Test
No. at
Risk % ORb 95% CI

Age, years

18–24 77 2,932 2.6 1.00 Referent 611 5,554 11.0 1.00 Referent

25–29 143 1,119 12.8 5.46 4.09, 7.27 672 2,843 23.6 2.50 2.21, 2.82

30–34 195 907 21.5 10.23 7.76, 13.50 589 1,939 30.4 3.55 3.12, 4.04

35–39 192 680 28.2 15.03 11.33, 19.93 435 1,284 33.9 4.21 3.65, 4.87

40–49 230 824 27.9 14.77 11.23, 19.42 482 1,747 27.6 3.14 2.74, 3.59

>50 125 1,222 10.2 4.39 3.27, 5.88 229 2,042 11.2 1.06 0.90, 1.24

Region and TB risk

Rural, low ARTI 236 2,341 10.1 1.00 Referent 588 4,094 14.4 1.00 Referent

Urban, low ARTI 261 1,563 16.7 1.96 1.61, 2.39 750 2,974 25.2 2.01 1.78, 2.28

Urban (not Lusaka),
high ARTI

182 1,472 12.4 1.35 1.09, 1.67 603 2,854 21.1 1.61 1.42, 1.83

Lusaka, high ARTI 283 2,308 12.3 1.34 1.11, 1.63 1,077 5,487 19.6 1.47 1.32, 1.65

Self-reported HIV status

HIV-negative 173 3,041 5.7 0.44 0.37, 0.54 831 8,401 9.9 0.47 0.43, 0.53

HIV-positive 317 327 96.9 181.84 95.2, 347.3 1,166 1,200 97.2 147.95 104.1, 210.3

Refused to disclose
result

34 162 21.0 1.89 1.25, 2.88 166 393 42.2 3.10 2.48, 3.87

Never tested 438 4,154 10.5 1.00 Referent 855 5,415 15.8 1.00 Referent

Active pulmonary TB

Yes 26 57 45.6 4.93 2.79, 8.73 35 71 49.3 3.74 2.29, 6.10

No 936 7,627 12.3 1.00 Referent 2,983 15,338 19.4 1.00 Referent

Educational attainmentc

None 31 191 16.2 1.06 0.69, 1.61 153 1,000 15.3 0.77 0.64, 0.94

Primary 301 1,862 16.2 1.00 Referent 1,333 6,006 22.2 1.00 Referent

Lower secondary 266 1,991 13.4 0.99 0.82, 1.20 897 4,069 22.0 1.03 0.93, 1.14

Upper secondary 262 2,822 9.3 0.79 0.66, 0.96 503 3,478 14.5 0.74 0.65, 0.83

College/university 102 818 12.5 0.71 0.55, 0.92 132 856 15.4 0.60 0.49, 0.73

Abbreviations: ARTI, annual risk of tuberculosis infection; CI, confidence interval; HIV, human immunodeficiency virus; OR, odds ratio; TB,
tuberculosis.

a Participants responded to a 2010 survey on the prevalence of TB and HIV, had an evaluable TB sputum sample, and agreed to be tested
for HIV.

b Adjusted for age and region.
c Educational attainment according to grade level was defined as follows: primary, less than grade 8; lower secondary, grade 8 or 9; and

upper secondary, grade 10, 11, or 12.

Table 3. Summary of Analyses Assessing Sensitivity to Departures From the Missing-at-Random Assumption

Self-Reported
HIV Status

Assumed Refusal
Type

Sensitivity
Parameter Range of Values

HIV-negative Strongly MNAR δ1 ln(1.00,1.25,1.33,1.50,1.67,2.00,2.50,3.00,
4.00,5.00)

HIV-positive MAR δ2 ln(1.00)

Refused to disclose
result

Strongly MNAR δ3 ln(1.00,1.25,1.33,1.50,1.67,2.00,2.50,3.00,
4.00,5.00)

Never tested Weakly MNAR δ4 ln(0.75,0.80,1.00,1.25,1.33)

Abbreviations: HIV, human immunodeficiency virus; MAR, missing at random; MNAR, missing not at random.

Am J Epidemiol. 2017;185(4):304–315

Sensitivity Analyses for Incomplete HIV-Status Data 309



Table 4. Estimates of the Prevalence of Human Immunodeficiency Virus Among Zambian Adultsa, Zambia–South Africa TB and AIDS Reduction Study, 2010

Analysis Method

Overall
(n = 33,798)

Men
(n = 11,484)

Women
(n = 22,314)

Reported HIV-
Negative Result
(n = 15,946)

Reported HIV-
Positive Result

(n = 2,483)

Refused to
Disclose HIV Test
Result (n = 1,011)

Never Tested
(n = 14,358)

% SE % SE % SE % SE % SE % SE % SE

Complete-case analysisb 17.1 0.2 12.5 0.4 19.4 0.3 8.8 0.3 97.0 0.4 36.0 2.0 13.3 0.3

Worst-case imputationc 43.5 0.3 41.5 0.5 44.5 0.3 34.6 0.4 98.2 0.3 65.1 1.5 42.4 0.4

Best-case imputationd 11.7 0.2 8.3 0.3 13.4 0.2 6.3 0.2 59.7 1.0 19.6 1.2 8.8 0.2

Multiple imputation under MAR

Model Ae 17.4 0.3 12.8 0.4 19.8 0.3 11.4 0.3 69.1 1.1 29.1 1.8 14.3 0.3

Model Bf 17.4 0.3 12.8 0.4 19.8 0.3 11.4 0.3 69.3 1.1 29.1 1.7 14.3 0.4

Model Cg 17.5 0.2 12.8 0.4 19.9 0.3 11.1 0.3 74.4 1.1 30.1 1.6 13.9 0.3

Model Dh 18.1 0.2 13.4 0.4 20.6 0.3 8.8 0.3 96.9 0.4 36.0 2.0 13.6 0.3

Abbreviations: HIV, human immunodeficiency virus; MAR, missing at random; SE, standard error; TB, tuberculosis.
a Participants responded to a 2010 survey on the prevalence of TB and HIV and had an evaluable TB sputum sample.
b n = 23,093.
c All missing HIV test result values were imputed as positive.
d All missing HIV test result values were imputed as negative.
e Imputation model included age and region only.
f Imputation model included age, region, and active pulmonary TB only.
g Imputation model included age, region, active pulmonary TB, household wealth index, educational attainment, current TB treatment, past TB treatment, marital status, diabetes status,

smoking status, alcohol consumption, hunger in past 3 months, household crowding, circumcision status (males only), current cough, persistent cough for more than 2 weeks, current chest
pain, current fever, current night sweats, current shortness of breath, and unintentional weight loss in past month.

h Imputation model included all variables in model C with the addition of self-reported HIV status.
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Table 5. Estimates of the Prevalence of Human Immunodeficiency Virus Among Zambian Adultsa Arising From an Analysis of Sensitivity to Departures From the Missing-at-Random
Assumption, Zambia–South Africa TB and AIDS Reduction Study, 2010

Multiple Imputation Under MNARb Overall
(n = 33,798)

Men
(n = 11,484)

Women
(n = 22,314)

Reported HIV-
Negative Result
(n = 15,946)

Reported HIV-
Positive Result

(n = 2,483)

Refused to
Disclose HIV Test
Result (n = 1,011)

Never Tested
(n = 14,358)

exp(δ1)c exp(δ2)d exp(δ3)e exp(δ4)f % SE % SE % SE % SE % SE % SE % SE

1.0 1.0 1.0 1.0 18.1 0.2 13.4 0.4 20.6 0.3 8.8 0.3 96.9 0.4 36.0 2.0 13.6 0.3

2.5 1.0 2.5 1.0 19.7 0.3 14.3 0.4 22.4 0.3 11.5 0.3 96.9 0.4 44.1 2.1 13.6 0.3

2.5 2.5 2.5 2.5 21.4 0.3 16.3 0.4 24.1 0.4 11.5 0.3 97.6 0.3 44.1 2.1 17.7 0.4

5.0 1.0 2.5 1.0 21.1 0.3 15.2 0.4 24.2 0.4 14.6 0.4 96.9 0.4 44.1 2.1 13.6 0.3

5.0 1.0 5.0 1.0 21.3 0.3 15.3 0.4 24.4 0.4 14.6 0.4 96.9 0.4 50.1 2.0 13.6 0.3

5.0 5.0 5.0 5.0 24.9 0.3 19.4 0.5 27.7 0.4 14.6 0.4 97.9 0.3 50.1 2.0 21.8 0.5

Abbreviations: HIV, human immunodeficiency virus; MAR, missing at random; MNAR, missing not at random; SE, standard error; TB, tuberculosis.
a Participants responded to a 2010 survey on the prevalence of TB and HIV and had an evaluable TB sputum sample.
b Imputation model included age, region, active pulmonary TB, household wealth index, educational attainment, current TB treatment, past TB treatment, marital status, diabetes status,

smoking status, alcohol consumption, hunger in past 3 months, household crowding, circumcision status (males only), current cough, persistent cough for more than 2 weeks, current chest
pain, current fever, current night sweats, current shortness of breath, unintentional weight loss in past month, and self-reported HIV status.

c δ1 is the degree of departure from MAR for individuals who self-reported as HIV-negative.
d δ2 is the degree of departure from MAR for individuals who self-reported as HIV-positive.
e δ3 is the degree of departure from MAR for individuals who refused to disclose the result of their most recent HIV test.
f δ4 is the degree of departure from MAR for individuals who reported having no prior HIV tests.
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departures from MAR was primarily attributable to sensitiv-
ity of the coefficient estimate for the educational-attainment
exposure in the model for the mediator (Web Figure 4). In
general, accounting for possible violation of the MAR
assumption was not associated with a qualitative change in
inference regarding mediation. A sensitivity analysis for
the covariate pattern shown in Table 6 is presented in
Figure 1.

DISCUSSION

In this study, we reviewed multiple imputation with
the delta-adjustment procedure and demonstrated how
it can be used to impute data under general MNAR me-
chanisms, thus facilitating analysis of sensitivity to de-
partures from the MAR assumption. We applied the
approach to data from a survey on TB/HIV prevalence,
conducted as part of the ZAMSTAR Study, assessing the
impact of departures from MAR on HIV prevalence and
causal-effect estimates in 2 types of sensitivity analysis.

The first sensitivity analysis assumed that the degree of
departure from MAR was the same for all individuals with
missing HIV serological values, while the second assumed
that the degree of departure from MAR varied according to
an individual’s self-reported HIV status. Although we assumed
that the degree of departure from MAR for individuals with
missing HIV test result values did not vary according to TB
status or educational attainment, sensitivity analyses exploring
the impact of such dependencies could be performed in an
identical fashion.

Our approach to sensitivity analysis produces a range of
inferences by varying the sensitivity parameters across a
range of plausible values. This allows the investigator to
explore how the inference changes according to the assu-
mption placed on the missing-data mechanism. A possible
alternative, attractive to policy-makers, provides a single
inference by placing informative prior distributions on the
sensitivity parameters in a fully Bayesian analysis (23).
Recently developed multiple-model multiple-imputation
approaches (24, 25) can be used to approximate such
analyses within the multiple-imputation framework.

Table 6. Estimates of the Natural Direct Effect, Natural Indirect Effect, and Total Effect of Educational Attainment on the Odds of Active
Pulmonary Tuberculosis as Mediated by Human Immunodeficiency Virus Status Among Selected Zambian Womena, Zambia–South Africa TB
and AIDS Reduction Study, 2010

Education and Type of Effect

Complete-Case
Analysisb

Best-Case
Analysisc

Worst-Case
Analysisd

Multiple Imputation
Under MARe

OR 95% CI OR 95% CI OR 95% CI OR 95% CI

None vs. primary education

Natural direct effect 1.88 0.97, 3.64 1.43 0.77, 2.66 1.40 0.75, 2.59 1.45 0.78, 2.70

Natural indirect effect 0.94 0.86, 1.03 0.94 0.88, 1.01 1.00 0.94, 1.05 0.95 0.92, 0.99

Total effect 1.76 0.90, 3.44 1.35 0.72, 2.51 1.39 0.75, 2.59 1.38 0.74, 2.58

Lower-secondary vs. primary education

Natural direct effect 0.71 0.45, 1.11 0.78 0.54, 1.12 0.76 0.52, 1.09 0.77 0.54, 1.12

Natural indirect effect 1.00 0.96, 1.05 0.99 0.95, 1.02 1.02 0.99, 1.05 1.01 0.99, 1.03

Total effect 0.71 0.45, 1.12 0.77 0.53, 1.11 0.77 0.53, 1.11 0.78 0.54, 1.12

Upper-secondary vs. primary education

Natural direct effect 0.67 0.41, 1.08 0.71 0.48, 1.04 0.65 0.44, 0.95 0.73 0.50, 1.07

Natural indirect effect 0.92 0.87, 0.97 0.90 0.86, 0.94 1.03 1.00, 1.07 0.95 0.92, 0.97

Total effect 0.61 0.38, 1.00 0.64 0.43, 0.94 0.67 0.45, 0.98 0.69 0.47, 1.01

College/university vs. primary education

Natural direct effect 0.33 0.12, 0.93 0.29 0.13, 0.64 0.24 0.11, 0.53 0.30 0.14, 0.66

Natural indirect effect 0.87 0.80, 0.95 0.84 0.77, 0.90 1.06 1.01, 1.11 0.92 0.88, 0.95

Total effect 0.29 0.10, 0.81 0.24 0.11, 0.53 0.26 0.12, 0.57 0.27 0.12, 0.60

Abbreviations: CI, confidence interval; HIV, human immunodeficiency virus; OR, odds ratio; TB, tuberculosis.
a Participants responded to a 2010 survey on the prevalence on TB and HIV and had an evaluable TB sputum sample. This table shows re-

sults for female participants in Zambia, aged 25–29 years, living in urban communities with low annual risk of tuberculosis infection.
b n = 23,093.
c All missing HIV test result values were imputed as positive.
d All missing HIV test result values were imputed as negative.
e Imputation model included age, region, active pulmonary TB, household wealth index, educational attainment, current TB treatment, past

TB treatment, marital status, diabetes status, smoking status, alcohol consumption, hunger in past 3 months, household crowding, circumcision
status (males only), current cough, persistent cough for more than 2 weeks, current chest pain, current fever, current night sweats, current
shortness of breath, unintentional weight loss in past month, and self-reported HIV status.
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We acknowledge that elicitation of the sensitivity para-
meter values can represent a significant challenge in many
applied research settings. In situations where there is a clear
hypothesis to be tested—for example, determining whether
HIV prevalence has fallen below a specified value—it can
be easier to conduct a tipping-point analysis (20, 26). In this
approach, the investigator varies the sensitivity parameters
across a large range of values in order to determine a set of
values for which there is a qualitative change in inference.
The investigator must then evaluate whether this set of val-
ues is plausible for the data at hand and thus whether the re-
sults of their analyses are sensitive to departures from MAR.
Improved tools for the elicitation of sensitivity parameters
are needed if MNAR methods are to enjoy routine use
among applied researchers.

Multiple imputation offers a rigorous approach by which to
incorporate auxiliary information on self-reported HIV status
into analyses based on partially observed HIV serological
analysis. Exploiting auxiliary information on self-reported
HIV status produced estimates of overall and subgroup-
specific HIV prevalence with greater face validity when it
was included as a variable in the imputation model and
also allowed us to perform more sophisticated analyses of
sensitivity to departures from the MAR assumption. Future
population-based studies should continue to collect informa-
tion on self-reported HIV status in addition to testing for HIV,
especially in settings with high rates of prior testing. Seeking
more information on past HIV-testing behavior (for example,
the date of the most recent HIV test) or beliefs about status if
never tested would also be valuable. For example, we encoun-
tered some difficulty in selecting an appropriate range of delta
values for the never-tested subgroup. This group is likely to
contain a mixture of individuals at quite different levels of risk
of HIV infection. Some individuals might not have access to
testing, some might refuse testing because they believe
themselves to be at very low risk, and others might refuse
testing because they believe themselves to be at high risk
and fear disclosure. In the absence of further information
about the composition of this subgroup, it may be reason-
able to consider a larger range of values for the degree of
departure from MAR than was presented here—for exam-
ple, from exp(δ4) = 0.5 to exp(δ4) = 2.0.

Our causal-effect estimates exhibited marked insensitivity
to departures from MAR. Nevertheless, the validity of these
estimates depends critically on the set of identifying restric-
tions detailed earlier and on the assumption that the 2 com-
ponent parametric models are correctly specified. While we
are confident that we have captured the most important con-
founders of the outcome-mediator, outcome-exposure, and
mediator-exposure relationships—and that the confounders of
the outcome-mediator relationship for which we adjusted are
not associated with the exposure—the impact of violations of
these assumptions could be explored in further sensitivity
analyses. For example, Tchetgen Tchetgen and Phiri (27) and
Naimi (28) have derived bounds for natural effects when the
exposure is associated with one or more confounders of the
outcome-mediator relationship. Furthermore, some readers
may not agree that educational attainment constitutes a well-
defined counterfactual cause (29); further discussion of this
perspective is provided in Web Appendix 3.
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Figure 1. Estimated causal effects of educational attainment on
active pulmonary tuberculosis (TB) as mediated by human immuno-
deficiency virus status, according to degree of departure (δ = δ1 =
δ2 = δ3 = δ4) from the missing-at-random assumption in the HIV test
result variable, Zambia–South Africa TB and AIDS Reduction Study,
2006–2010. A) Natural direct effect; B) natural indirect effect; C)
total effect. These analyses are of data from female Zambian adults
aged 25–29 years, living in urban communities with a low annual
risk of TB infection.

Am J Epidemiol. 2017;185(4):304–315

Sensitivity Analyses for Incomplete HIV-Status Data 313

http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kww107/-/DC1


While we have focused on an example with a single in-
complete variable, we note that delta-adjustment procedures
can also be used to adjust for missing data in longitudinal
clinical trials subject to dropout (19, 30). Furthermore, while
some authors (15, 16) have attempted to perform delta adjust-
ment in conjunction with the chained-equations algorithm, at
present this approach lacks a strong theoretical foundation
and thus should be used with caution.

In conclusion, multiple imputation with delta adjustment
offers a transparent and flexible means to perform analyses
of sensitivity to departures from the MAR assumption in
the presence of a single incomplete variable. While appro-
priate for use in conjunction with all types of univariable
and multivariable analysis, this method may represent a par-
ticularly important tool for sensitivity analysis in contexts
such as mediation analysis where multiple subcomponent
models must be fitted to the data.
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