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Abstract 

As an animal navigates an environment, grid cells emit action potentials at the vertices of a 

tessellating triangular pattern. The distance between adjacent vertices varies between 

subsets of grid cells, with each subset forming a functional ‘module’. Combined, this periodic 

firing and modular organisation is theoretically an extremely efficient means of encoding an 

animal’s location within its environment, and may support goal-directed navigation in 

enabling the calculation of vectors connecting pairs of locations. The mechanisms by which 

grid cell firing patterns are generated and their functional contributions to cognition remain 

obscure however. In this thesis, I present the results of a number of experiments which shed 

light on these issues.  

In the first experiment, I recorded from grid cells in rats exploring an environment containing 

two perceptually identical compartments connected by a corridor. This environment was 

designed to place the putative self-location and sensory inputs to grid cells in conflict, 

allowing inference of the relative contribution of each to the generation of grid cell firing 

patterns. During early exposures to the environment, firing patterns were replicated between 

the two compartments, demonstrating the significance of the identical sensory cues. 

However, firing patterns came to distinguish the compartments following prolonged exposure 

to the environment. Indeed, a single continuous pattern spanning both compartments 

eventually formed, indicating that self-motion cues gradually come to dominate sensory 

cues. Current models of navigation employing grid cells require regular and coherent firing 

patterns, and these results thus provide the first evidence that grid cells are capable of 

subserving such functions in complex environments.  

Recent results suggest that the medial septum supports grid cell function through the 

encoding of one or more speed signals. Its exact contribution, and the roles of its constituent 

neuronal subtypes, remain undetermined however. In the second experiment, I therefore 

recorded from grid cells in mice while manipulating the activity of medial septal cholinergic 

neurones using Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). 

Increasing septal cholinergic tone reduced the frequency of theta oscillations by shifting the 

theta frequency vs running speed relationship to lower frequencies, without affecting its 

depth of modulation. However, no change was observed in grid firing patterns in either 

familiar or novel environments, consistent with a lack of change in the putative speed signals 

used by grid cells. An absence of novelty-induced expansion of grid scale prevented testing 

of the theory that, in rats, this phenomenon depends on increases in cholinergic tone. 

However, increasing the excitability of medial septal cholinergic neurones led to a pattern of 
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behaviour normally seen on exposure to novel environments. That is, the effects on 

behaviour of increasing cholinergic tone were consistent with a role for acetylcholine in the 

signalling of novelty.  

Finally, I present preliminary work in which recordings of grid cells from wild type mice 

demonstrate that the room in which a grid cell is recorded can affect the scale, temporal 

stability, and regularity of its firing pattern. As the local environment between the rooms was 

consistent, such differences likely indicate a role for distal sensory cues in anchoring and 

stabilising grid cell firing patterns.  
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1 Introduction 

1.1 Anatomy of the hippocampal formation 

1.1.1 Historical perspectives; its evolution; its constituent components 

The first known description of the hippocampus was published in 1587 by Giulio Cesare 

Aranzio, a student of Vesalius. From human dissections, he described a white growth 

extending anteriorly from the base of the lateral ventricle, remarking on its resemblance to 

both a seahorse (hippocampus) and a silkworm (vermis bombycinus) (Engelhardt 2016). 

While ‘The Vermis Bombycinus as a Cognitive Map’ sadly never came to pass, without a 

common name being settled upon it remained a possibility for centuries. For example, in 

reference to the Egyptian god Ammon-Ra, often depicted as having the head of a Ram, the 

hippocampus’ curved shape led Garengeot (1742) to propose the Latin term cornu Ammonis 

(Boccara et al. 2015). Now however, the term hippocampus is almost universally used, 

referring specifically to the allocortical region of the brain comprising sub regions CA3, CA2, 

and CA1; Garengeot’s proposal living on in the names of these subfields, as coined by 

Lorente de Nó (1934). Following Amaral & Lavenex (Andersen et al. 2006), the hippocampal 

formation in turn will here refer to a broader collection of structures which are densely 

interconnected with the hippocampus proper, including the dentate gyrus, subiculum, 

presubiculum, parasubiculum, and entorhinal cortex. 

 

 

 

 

 

 

 

 

Figure 1.1 Position and orientation of the hippocampus and entorhinal cortex in rats and humans.  
Schematic representation of the hippocampus (red) and entorhinal cortex (blue) in the rat (left) and human (right). 
Axes indicate the diagrams’ orientation. Figure adapted from Strange et al. 2014.  
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The hippocampus is held to be an evolutionarily ancient structure: The dorsomedial forebrain 

of birds and reptiles is thought homologous based on similarities in connectivity and function 

(Bingman 1992). If accurate, this homology implies that a precursor of the modern 

mammalian hippocampus existed at least 300 million years ago, in the last common 

ancestor of mammals and birds. Within mammals, the hippocampus is highly conserved, 

being both universally present and displaying little phylogenetic variation in basic 

architecture from monotremes to humans (Insausti 1993). The location of the hippocampal 

formation within the brain varies more obviously between species however. In the rodent, the 

hippocampus forms an extended ‘C-shape’, stretching from a rostro-dorsal ‘septal pole’ to a 

cordo-ventral ‘temporal pole’. In the human and primate brain the hippocampus is more 

spatially restricted, residing entirely within the temporal lobe, with a long posterior-anterior 

axis equivalent to the septo-temporal axis in rodents (Figure 1.1). In discussing the anatomy 

of the hippocampal formation, I will predominantly describe that of the rodent, as this is both 

the experimental model in which hippocampal anatomy is best understood, and the model in 

which the experiments reported in this thesis were carried out. As such, I will refer to the 

long axis of the hippocampus as the septo-temporal axis, with a second axis, the transverse 

axis, normal to it. Within the hippocampus, a transverse section stained with the Golgi 

preparation reveals two C-shaped layers of cell bodies: the smaller one the dentate gyrus, 

interlocking with that of the hippocampus proper (Figure 1.2B). Each location in the 

transverse section is also described by a position on a proximo (close to the dentate gyrus) – 

distal (far from the dentate gyrus) axis. The subiculum, presubiculum, parasubiculum, and 

entorhinal cortex (together forming the parahippocampal cortex), sit posterior and in parts 

ventral to the hippocampus and dentate gyrus in broadly that order (Figure 1.2A). As such, 

at the septal pole of the hippocampus, a transverse section will contain only the dentate 

gyrus and hippocampus proper. In transverse sections moving towards the temporal pole, 

the subiculum appears first, followed by the pre-and parasubiculum, and eventually the 

entorhinal cortex. 

Seminal early anatomical investigations into the hippocampal formation were carried out by 

Santiago Ramón y Cajal (1893, 1902) and his student Lorente de Nó (1933, 1934), using the 

Golgi stain. They argued that the hippocampal formation was defined by a unique ‘loop’ of 

largely unidirectional connections: the entorhinal cortex sending projections to the dentate 

gyrus, which in turn connects onto CA3; CA3 then projecting onto CA1, which sends the 

hippocampus’ output via the subiculum and entorhinal cortex. While modern histological 

analysis has demonstrated that this view is somewhat simplistic, for example in not 

accounting for multiple parallel pathways or return projections (van Strien, Cappaert, and 

Witter 2009), the idea of the hippocampus as a loop in which sensory information is serially 
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processed remains a common analogy. In the following account of contemporary 

understanding of the circuitry of the hippocampal formation, I will proceed along the loop, 

discussing the anatomy and connectivity of each region in turn.  

 

 

 

 

 

 

 

Figure 1.2 Relative positions of the sub regions of the hippocampal formation in rats.  A, Two schematic 
representations of the constituent areas of the hippocampal formation. The left-hand image represents a 
predominantly sagittal view of the rat brain, while the right-hand image is predominantly coronal. Distinct sub 
regions are colour-coordinated according to the labels in B. The dark green region not labelled in B is the lateral 
entorhinal area. B, A horizontal slice through the rat brain is labelled to indicate the distinct substructures of the 
hippocampal formation. DG = dentate gyrus, Sub = subiculum, PrS = presubiculum, PaS = parasubiculum, MEA 
= medial entorhinal area, POR = postrhinal cortex. Figure adapted from Strien et al. 2009.  

It should be noted, that while this description of the hippocampal formation’s circuitry 

focusses largely on the interconnections amongst glutamatergic principal neurones, with 

only relatively brief consideration given to inhibitory interneurones, it is not because of an 

assumption of their greater significance. While interneurones are likely fundamental in 

hippocampal function through the regulation of excitatory connections and in controlling the 

temporal dynamics of firing, the huge diversity and lack of understanding of interneurone 

populations places a full treatment beyond the scope of this thesis. For extensive 

discussions of the diversity and functional contributions of interneurones in the hippocampal 

formation, I refer the reader to the existing comprehensive reviews of Freund & Buzśaki 

(1996) and Klausberger & Somogyi (2008).  

1.1.2 The entorhinal cortex 

Originally called the spheno-occipital ganglion (Ramón y Cajal 1902), the entorhinal cortex is 

named for being partially enclosed by the rhinal sulcus (Canto, Wouterlood, and Witter 

2008). Ramón y Cajal identified and immediately understood the importance of the strong 

connectivity between the entorhinal cortex and hippocampus, stating that their 

interconnection meant the latter must follow the function of the former: if the entorhinal 

cortex processed visual information, so would the hippocampus (Ramón y Cajal 1902).  
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The entorhinal cortex was defined by Ramón y Cajal as comprising six layers (LI-LVI), 

though LV is here divided into LVa and LVb. The layers close to the pial surface (LI-III) are 

termed ‘superficial’, and the layers further away (LIV-VI) ‘deep’. Brodmann further divided 

the entorhinal cortex into two distinct areas, which we now call the medial and lateral 

entorhinal cortex (Brodmann 1909). Each is roughly triangular in shape, with the lateral 

portion more rostro-lateral, and the medial portion defined by a ventral base that extends 

along the medial edge of the lateral entorhinal cortex to a dorsal border with the postrhinal 

cortex (Figure 1.2 and Figure 1.3) While there are some histological differences between the 

two entorhinal areas (LIV is clearer in the medial entorhinal cortex, and the LII/LIII boundary 

more pronounced in the lateral entorhinal cortex for example (Canto, Wouterlood, and Witter 

2008)), the two are predominantly distinguished by their connectivity: the presubiculum only 

innervates the medial portion (Canto, Wouterlood, and Witter 2008), while only the lateral 

portion projects to distal CA1 and proximal subiculum, the medial entorhinal cortex projecting 

to proximal CA1 and distal subiculum (Naber, Lopes da Silva, and Witter 2001).  

 

 

 

 

 

 

 

 

 

Figure 1.3 Organisation of the entorhinal cortex’s projections to the hippocampus.  The entorhinal cortex is 
labelled in shades of blue according to the position along the septo-temporal axis of the hippocampus with which 
each region predominantly sends and receives projections. Darker-shaded regions of the entorhinal cortex 
project primarily to septal portions of the hippocampus, lighter-shaded regions predominantly to temporal portions 
of the hippocampus. Black lines indicate borders between the perirhinal cortex (PR), postrhinal cortex (POR), 
lateral entorhinal cortex (LEC) and medial entorhinal cortex (MEC). Figure adapted from Burwell and Amaral 
(1998). 

A striking topology exists in projections from the entorhinal cortex to the hippocampus: 

ventro-lateral entorhinal areas project to more temporal portions of the hippocampus, 

whereas dorso-medial areas tend to project to more septal areas of the hippocampus 

(Dolorfo and Amaral 1998). Return projections from CA1 and the subiculum are similarly 

organised: septal CA1 projects mainly to the dorso-medial entorhinal cortex, whereas 
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temporal CA1 mainly targets ventro-lateral areas. That is, while both medial and lateral 

entorhinal cortex project to each position in the septo-temporal axis of the hippocampus, 

there exists a clear banding joining specific portions of the dorso-medial to ventro-lateral 

entorhinal axis to specific portions of the septo-temporal hippocampal axis (Figure 1.3).  

While differing in the specificity and strength of connections, tracing studies indicate that 

both medial and lateral entorhinal cortex receives input from extremely diverse cortical and 

subcortical areas (Canto, Wouterlood, and Witter 2008). Inputs to the entorhinal cortex have 

been extensively studied by Burwell and colleagues, whose investigations emphasise the 

importance of ‘high-level’ and multimodal sensory areas as inputs (Burwell and Amaral 

1998). The lateral entorhinal area receives abundant projections from perirhinal, postrhinal, 

insular, and piriform cortex. Medial entorhinal cortex also receives dense input from the 

piriform and postrhinal cortex, but differs from lateral entorhinal areas in also receiving 

projections from retrosplenial, posterior parietal, and visual association areas (Burwell and 

Amaral 1998). Both regions also receive inputs from subcortical structures including the 

amygdala and medial septum, as well as neuromodulatory inputs from brainstem regions 

such as the locus coeruleus and raphe nucleus (Canto, Wouterlood, and Witter 2008).  

The connectivity of the entorhinal cortex varies in a layer-specific manner. LI is 

predominantly acellular, mostly comprised of dendrites from neurones in deeper layers, and 

transverse-travelling axons both from within and without the entorhinal cortex (de Nó 1933). 

LI does however contain GABAergic interneurones, including the so-called horizontal and 

multipolar neurones (Canto, Wouterlood, and Witter 2008). LII is a densely-packed layer 

predominantly containing clusters of ‘island’ cells with pyramidal somata, which can be 

identified by staining either for calbindin or Wolfram syndrome 1 protein, as well as 

intermixed ‘ocean’ cells of a stellate shape, identified by staining for reelin (Varga, Lee, and 

Soltesz 2010; Kitamura et al. 2014; Ray et al. 2014). Island-pyramidal cells project to 

lacunosum-moleculare interneurones in CA1, which in turn inhibit CA1 principal neurones 

(Kitamura et al. 2014). In contrast, ocean-stellate cells project to the dentate gyrus and CA3, 

their axons forming the perforant path, so called due to its ‘perforation’ of the subiculum 

(Witter 2007; Varga, Lee, and Soltesz 2010; Kitamura et al. 2015). The two types of cell also 

differ in their intra-entorhinal connectivity: ocean-stellate cells project to pyramidal neurones 

in LVb of the entorhinal cortex, unlike LII island-pyramidal cells (Sürmeli et al. 2015). It 

should be noted however, that the island-pyramidal/ocean-stellate dichotomy has been 

challenged by Fuchs and colleagues, who have suggested that at least four types of 

principal neurone in LII exist (including island-pyramidal cells, ocean-stellate cells, and two 

intermediate types) (Fuchs et al. 2016). LII also contains a number of interneurones, 

including multipolar, bipolar, basket, and chandelier cells, which variably stain for 
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parvalbumin, cholecystokinin, and somatostatin (Canto, Wouterlood, and Witter 2008). Both 

excitatory and inhibitory neurones of LII send and receive reciprocal connections with the 

medial septum (Fuchs et al. 2016). Principal neurones of LIII are almost exclusively 

pyramidal in shape, sending axon collaterals to LI and LII as well as onto CA1 and the 

subiculum. LIV, also known as the lamina dessicans, is predominantly acellular, but 

occasional bipolar cells with horizontally arbourising dendrites, and axons diverging to both 

LIII and the deeper layers, are seen (Canto, Wouterlood, and Witter 2008). LV can be 

separated into LVa and LVb on the basis of the specific molecular staining and connectivity 

patterns of the pyramidal neurones found in each layer. LVa is specifically labelled by 

expression of Etv1, L5B by expression of Ctip2 (Sürmeli et al. 2015). Further, while L5a 

sends major extra-hippocampal projections (including to the nucleus accumbens, 

retrosplenial cortex, amygdala, perirhinal cortex, and medial septum), LVb in contrast sends 

projections to no other telencephalic areas, apart from a possible minor projection to the 

thalamus. LVb is, however, preferentially targeted by hippocampal and LII ocean-stellate cell 

inputs (Sürmeli et al. 2015). LVI contains a largely heterogenous group of principal neurones 

of varying cell sizes and shapes. LVI is notable, together with LV, for receiving input from 

CA1 however (Canto, Wouterlood, and Witter 2008).  

In sum, the circuitry discussed above reflects a system in which superficial layers of the 

entorhinal cortex (LII and LIII) send input projections to various levels of the hippocampus 

including CA1, CA3, and the dentate gyrus. In contrast, CA1 and subiculum, as the output 

structures of the hippocampus proper, target deeper layers of the entorhinal cortex (LV and 

LVI). This organisation implies the entorhinal cortex acts as an ‘input/output node’ to the 

hippocampus, with information passing serially through the hippocampal formation loop, and 

remaining segregated in a laminar fashion in the entorhinal cortex. However, a range of 

anatomical data suggests that such an interpretation is at best simplistic (van Strien, 

Cappaert, and Witter 2009). For example, while LII is traditionally thought of as the exclusive 

origin of the perforant path, LIII, LV and LVI also contribute axons to a lesser extent (Deller 

et al. 1996). Similarly, the deep layers of the entorhinal cortex send projections to more 

superficial layers and vice versa, with principal neurones in each entorhinal layer also 

sending collaterals to its own layer (Köhler 1986; Sürmeli et al. 2015). The extent to which 

superficial or deep layers of the entorhinal cortex can be seen exclusively as ‘input’ and 

‘output’ structures to the hippocampus respectively is unclear.  

Finally, as well as variation between layers and media/lateral portions, more recent data 

have indicated the presence of histological variation along the dorso-ventral axis of the 

entorhinal cortex. For example, the density of parvalbumin expressing interneurones in LII 

(which strongly inhibit local ocean-stellate cells) varies in a continuum along the dorso-
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ventral axis, with more parvalbumin expressing axon terminals in the dorsal portion of LII 

(Beed et al. 2013).  

1.1.3 The dentate gyrus 

The dentate gyrus is fundamental to hippocampal function in providing the primary input to 

the hippocampus proper, through its mossy fibre projections to CA3 (Amaral and Witter 

1989). The dentate gyrus is trilaminar, comprising a predominantly cell-free molecular layer, 

the granule cell layer, which contains the majority of principal neurones, and the polymorphic 

cell layer (also known as the hilus). the granule cell layer appears as a ‘U’ or ‘V’ when a 

transverse section of the hippocampus is taken (depending on septo-temporal position), 

which ‘interlocks’ with the pyramidal cell layer of the hippocampus proper.  

The principal neurone of the dentate gyrus is the granule cell, whose somata are restricted 

to the granule cell layer. Granule cells are unique within the hippocampal formation in that 

they continue to mature throughout adulthood, from a population of undifferentiated 

precursor cells in the subgranular zone (Kaplan and Hinds 1977). Easily identified by 

particularly strong staining for calbindin, granule cells are the only cells in the dentate gyrus 

that send projections to area CA3, doing so via the unmyelinated mossy fibre pathway 

(Boccara et al. 2015). These glutamatergic projections terminate in the stratum lucidium, just 

superficial to the pyramidal cell layer of CA3. Mossy fibres culminate in large (up to 8µm) 

presynaptic terminals known as mossy fibre expansions (Amaral and Dent 1981). Each 

granule cell contacts relatively few CA3 pyramidal neurones. However, due to the large 

presynaptic terminals, the large number of terminals on each pyramidal neurone (up to ~37) 

(Chicurel and Harris 1992), and the proximity of terminals to the soma, the mossy fibre 

projection has long been thought to be a ‘detonator synapse’ which exerts strong control 

over CA3 firing (McNaughton and Morris 1987).  

Granule cells receive their primary input from the perforant path, which predominantly 

originates in LII of the entorhinal cortex (Ramón y Cajal 1893). The perforant path terminates 

in the molecular layer, primarily onto the dendrites of granule cells, though interneurones 

may also be targeted (Freund and Buzsáki 1996). Tracing studies demonstrate that the 

dentate gyrus also receives inputs from the pre- and parasubiculum, which also project to 

the molecular layer (Köhler 1985).  

The dentate gyrus also contains so-called mossy cells, glutamatergic neurones, whose 

somata are located in the polymorphic layer. Mossy cells receive strong input from ipsilateral 

granule cells, and exclusively send projections to contralateral granule cells (Hjorth-

Simonsen and Laurberg 1977). Strikingly, mossy cell projections are not to the same 
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position along the septo-temporal axis as that containing the somata from which they 

originate. Mossy cells thus appear to link granule cells in distinct septo-temporal portions of 

the hippocampus through a disynaptic excitatory loop (Amaral and Witter 1989).  

Both mossy cells and a number of interneurone types receive projections from medial septal 

cholinergic neurones (Lübke, Deller, and Frotscher 1997), which only sparsely innervate 

dendrites of granule cells in the molecular layer. GABAergic septal projections exclusively 

target inhibitory interneurones of the dentate gyrus (Amaral and Witter 1989). The dentate 

gyrus also receives broad neuromodulatory inputs including noradrenergic, serotonergic, 

and dopaminergic projections, from the locus coeruleus, raphe nucleus, and ventral 

tagmental area respectively (Amaral and Witter 1989).  

1.1.4 The hippocampus proper 

The hippocampus is divided into three subfields, CA3, CA2, and CA1, according to the 

distinct morphology and connectivity of principal neurones in each region, as determined by 

Lorente de Nó (1934). The area he termed CA4 is now thought to be an extension of the 

polymorphic layer of the dentate gyrus however (Amaral and Witter 1989). Each subfield 

shares a similar laminar structure. The deepest layer (furthest from the pial surface) is 

stratum oriens, comprising a number of inhibitory interneurone types and the basal dendrites 

of pyramidal cells. Stratum pyramidalae, or the pyramidal cell layer, is the seat of the 

pyramidal-shaped somata of the hippocampus’ principal neurones, as well as that of a range 

of interneurone classes. Superficial to the pyramidal cell somata is stratum radiatum, 

containing their proximal apical dendrites, as well as the majority of excitatory axons from 

other principal neurones of the hippocampal formation (such as the schaffer collaterals and 

mossy fibres). Finally, the most superficial layer is stratum lacunosum moleculare, containing 

the distal apical dendrites of pyramidal cells, a number of interneurone classes, and axon 

terminals from LIII of the entorhinal cortex.  

1.1.4.1 CA3 

The large pyramidal neurones of CA3 receive projections from the perforant path onto their 

distal apical dendrites in stratum lacunosum moleculare. Apical dendrites closer to the 

somata, in a CA3-specific layer known as stratum lucidium, (and to a lesser extent basal 

dendrites in stratum oriens), are the site of inputs from mossy fibres originating in the 

dentate gyrus (Amaral and Witter 1989). Pyramidal neurones in CA3 project both ipsi- and 

contralaterally across a broad septo-temporal portion of the hippocampus, targeting other 

CA3 pyramidal neurones directly through the longitudinal associational bundle, and targeting 
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CA2 and CA1 pyramidal neurones through schaffer collaterals (de Nó 1934; Swanson, 

Wyss, and Cowan 1978). Indeed, a single pyramidal neurone may send both recurrent 

associational and CA2/1 projections (Swanson, Sawchenko, and Cowan 1980). Both 

associational and schaffer collateral projections predominantly target apical dendrites in 

stratum radiatum, but axon terminals can also be found in stratum oriens (Hjorth-Simonsen 

1973). Strikingly, CA3 can also be observed sending ‘return’ projections to the polymorphic 

layer of the dentate gyrus, against the generally unidirectional pathways of the hippocampus 

(Laurberg 1979).  

1.1.4.2 CA2 

CA2 pyramidal neurones have similarly large somata to those in CA3, however CA2 has 

traditionally been distinguished from CA3 by an absence of stratum lucidium and mossy fibre 

afferents from the dentate gyrus (de Nó 1934). CA2 is also unique in receiving particularly 

strong input projections from the supramammillary nucleus (Haglund, Swanson, and Köhler 

1984). More recently, results indicate that CA2 is also defined by its anatomical and 

electrophysiological connectivity within the hippocampal formation: CA2 receives particularly 

strong excitatory input from entorhinal cortex LII/III onto the distal apical dendrites of its 

pyramidal neurones, a connection which is highly plastic. In contrast, CA3 inputs onto CA2 

proximal dendrites are dominated by feedforward inhibition, and show little sensitivity to 

plasticity protocols (Chevaleyre and Siegelbaum 2010). Research into CA2 is nascent 

however, and disagreements exist: other investigators report projections to CA2 from the 

dentate gyrus and an absence of projections from entorhinal LIII (Kohara et al. 2014). It may 

thus be that recently reported CA2-specific neurochemical expression patterns are more 

useful in segregating CA2 from other hippocampal subfields: reports suggest the markers 

RGS14, PCP4 and STEP uniquely define CA2 (Kohara et al. 2014). CA2 displays few of the 

recurrent associational projections which characterise CA3, with the majority of its pyramidal 

cells instead projecting to CA1 (Chevaleyre and Siegelbaum 2010), predominantly targeting 

basal dendrites in stratum oriens (Kohara et al. 2014). 

1.1.4.3 CA1 

As well as receiving inputs from CA3 and CA2 in stratum radiatum and stratum oriens, CA1 

also receives direct projections from entorhinal cortex LIII onto the distal apical dendrites of 

pyramidal neurones in stratum lacunosum moleculare (Amaral and Witter 1989). More 

recently, LII island-pyramidal cells of the entorhinal cortex have been shown to target CA1 

lacunosum-moleculare interneurones, which in turn inhibit CA1 pyramidal cells, creating a 



23 
 

feedforward inhibitory circuit (Kitamura et al. 2014). CA1 does exhibit recurrent associational 

connections (Amaral, Dolorfo, and Alvarez-Royo 1991), though these are sparser than those 

of CA3 (Amaral and Witter 1989). The majority of CA1 pyramidal cell axons instead travel 

through stratum oriens towards the subiculum and deep layers of the entorhinal cortex, 

particularly targeting L5b once there (Finch and Babb 1981; Sürmeli et al. 2015).  

1.1.5 The subiculum 

The subiculum (Latin for ‘support’), was named by Santiago Ramón y Cajal (1909), who 

viewed it as a key auxiliary structure for the hippocampus proper. Ramón y Cajal’s student, 

Lorente de Nó, gave the first strict definition of the subiculum, defining it as the trilaminar 

area adjacent to CA1, starting where CA1’s pyramidal cell layer broadens and becomes 

less-dense, and stratum oriens disappears (de Nó 1934). Superficial to the principal cell 

layer are the deep and superficial molecular layers in turn. The superficial molecular layer is 

continuous with (but distinct from) CA1’s lacunosum moleculare, with the deep molecular 

layer a continuation of CA1’s stratum radiatum. The deep molecular layer predominantly 

receives its inputs from CA1, whereas the superficial portion is mainly targeted by axons 

from the entorhinal cortex (Amaral and Witter 1989). The principal cell layer contains at least 

two cell types: regular-spiking and intrinsically-bursting cells, differentiated from each other 

by their spontaneous firing properties (Greene and Totterdell 1997). While both neurone 

types are pyramidal in shape, and have dendritic trees that ramify throughout both molecular 

layers, only the intrinsically bursting-cells stain for somatostatin and project to the entorhinal 

cortex (Andersen et al. 2006). Most inputs to the subiculum arise from CA1 and entorhinal 

cortex LIII, though it also receives subcortical inputs from the medial septum and mammillary 

nuclei. The subiculum shows a large degree of associational connectivity, with principal 

neurones projecting onto other principal neurones in more temporal regions of the 

subiculum; giving rise to a system of unilateral associational connections along its septo-

temporal axis (Swanson, Sawchenko, and Cowan 1981). The subiculum has long been seen 

as the output structure of the hippocampus proper, with its principal neurones projecting to 

the pre- and parasubiculum, and deep layers of the entorhinal cortex. (van Strien, Cappaert, 

and Witter 2009). The subiculum also sends axons to both cortical and non-cortical areas 

outside the hippocampal formation. Cortical regions targeted include the orbitofrontal, 

prelimbic, infralimbic, retrosplenial, and perirhinal cortex; while non-cortical projections are 

predominantly to the lateral septum, mammillary nuclei, and nucleus accumbens (van Strien, 

Cappaert, and Witter 2009).  
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1.1.6 The pre- and parasubiculum 

Histologically, the presubiculum is easily distinguished from the subiculum by a densely 

packed ‘external’ cell layer of small pyramidal cells (Andersen et al. 2006). Although 

technically comprising six layers, LI is very thin, and LV and VI are difficult to distinguish 

from one another, and indeed from the deeper layers of the entorhinal cortex with which they 

share a border. LI and LIV are both acellular. The excitatory pyramidal neurone somata 

reside in LII/III (Boccara et al. 2015).  

As in the presubiculum, the pyramidal neurone somata of the parasubiculum also reside in 

Layers II and III, however the two regions can be histologically distinguished by a broader, 

less dense sheet of LII/III neurones in the parasubiculum (Boccara et al. 2015). Further, the 

two regions differ in their expression of calbindin, which can be used to exclusively label the 

pyramidal neurones of the presubiculum (Boccara et al. 2015). Like the presubiculum, the 

parasubiculum is multilaminate, with cell-sparse layers I and IV, and with a poorly defined 

LV/VI boundary (Boccara et al. 2015). 

Perhaps even more so than for the entorhinal cortex, it is hard to place the pre- and 

parasubiculum at a particular point in the hippocampal formation loop, or define these 

regions as either input or output structures to the hippocampus proper. Traditionally, the 

projections of both regions to the entorhinal cortex’s superficial layers have been 

emphasised (presubiculum predominantly to LIII, almost exclusively of the medial entorhinal 

cortex; parasubiculum to LII (Köhler 1985; Caballero-Bleda and Witter 1993)), giving the 

impression more of input structures. Indeed, all layers of the pre- and parasubiculum also 

project to the molecular layer of the dentate gyrus (van Strien, Cappaert, and Witter 2009; 

Köhler 1985). However, both regions also send axons to areas classically considered to be 

‘output’ structures, including the subiculum and deep layers of the entorhinal cortex (Canto, 

Wouterlood, and Witter 2008; Canto et al. 2012). The afferent connections to these regions 

fails to decide the issue: both are reciprocally connected with the peri- and postrhinal 

cortices (Furtak et al. 2007), and receive inputs from retrosplenial and visual cortical areas. 

Uniquely for the hippocampal formation, both also receive input from the anterior thalamic 

nuclei (van Strien, Cappaert, and Witter 2009). The majority of pre- and parasubicular inputs 

are from within the hippocampal formation however, with axons from the subiculum and 

entorhinal cortex terminating in LI of both areas (Andersen et al. 2006).  

1.1.7 Summary 

Presented here is a contemporary, though in parts simplified, description of the major 

excitatory connectivity of the hippocampal formation. The perception of the hippocampal 



25 
 

formation as comprising a predominantly unidirectional ‘loop' continues to shape thinking 

regarding the potential functions of the hippocampus and the neural mechanisms by which 

they are achieved. In this scheme, highly processed sensory information from multimodal 

areas such as the peri- and postrhinal cortex is sent to the superficial entorhinal cortex. In 

turn, the entorhinal cortex routes this information to the hippocampus proper, through the 

dentate gyrus or direct projections to CA3. These regions then project to CA1, which sends 

the hippocampus’ output via the subiculum and deep entorhinal cortex. However, such a 

simplistic model overlooks numerous complexities in the circuitry of the hippocampal 

formation, as discussed. For example, CA3 sends return projections to the polymorphic layer 

of the dentate gyrus, against the perceived direction of ‘flow’ of information (Laurberg 1979), 

while multiple parallel pathways are seen throughout the loop, such as in projections from 

entorhinal LII neurones to the dentate gyrus, CA3, CA1, and subiculum (van Strien, 

Cappaert, and Witter 2009). Similarly, while the recurrent excitatory connectivity of CA3 has 

led to hypotheses regarding its particular significance in the mnemonic functions of the 

hippocampus (Marr 1971), single and disynaptic recurrent excitatory connections are in fact 

seen at multiple levels of the hippocampal formation, including the dentate gyrus, CA1, 

subiculum, and entorhinal cortex (van Strien, Cappaert, and Witter 2009). Currently, it is 

unknown whether reductionist simplifications of neuroanatomy help or hinder our 

understanding of the brain. Through focusing on parsimonious neuroanatomical accounts, it 

is easier to ‘see the wood from the trees’, and so develop testable hypotheses regarding 

neural function. In contrast, it is clearly also conceivable that simplified descriptions of neural 

circuitry can hinder the advancement of understanding through obscuring salient 

connections. Certainly, however, the function and modus operandi of each brain region is 

intrinsically linked to its connectome. Discerning its circuitry, in full or in part, is thus an 

important first step in developing a full understanding of the hippocampal formation.  

1.2 Representations of space in the hippocampal formation 

1.2.1 Historical perspective and overview 

Compelling early investigations into the functions of the hippocampal formation studied the 

effects on behaviour of damage to the region in monkeys and humans. In 1888, Brown and 

Schäfer described how bilateral lesions of the temporal lobe of a rhesus macaque gave rise 

to an apparent global amnesia:  

“Every object with which he comes in contact, even those with which he was previously most 
familiar, appears strange and is investigated with curiosity. … Even after having examined 
an object in this way with the utmost care and deliberation, he will, on again coming across 
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the same object accidentally even a few minutes afterwards, go through exactly the same 
process, as if he had entirely forgotten his previous experiments” (Brown and Schafer 1888).  

Around a decade later, at a medical meeting in St Petersburg, von Bekhterev described a 

patient whose most striking clinical abnormality was a severe memory impairment. An 

autopsy subsequently revealed a bilateral ‘softening’ of the hippocampus and 

parahippocampal cortex (Bechterew 1900). Most famously, Brenda Milner reported the 

severe anterograde amnesia in patient H.M. that followed bilateral resection of the medial 

temporal lobes, a final attempt to treat his severe epilepsy (Scoville and Milner 1957). 

Subsequent investigations supporting these results have led to a broad consensus that the 

human hippocampus is central to episodic memory (Squire and Zola-Morgan 1991).  

Later, John O’Keefe adapted microelectrode techniques developed to record from spinal and 

medullar neurones in freely moving animals, allowing him to record from CA1 as rats 

explored an enclosure. He observed that a subset of neurones, ‘place cells’, fired exclusively 

when the animal was in a specific area of the environment, remaining almost silent when the 

rat was elsewhere (O’Keefe and Dostrovsky 1971). In the decades since, research 

employing diverse experimental techniques, in a wide range of species, has added weight to 

the argument that the hippocampal formation is paramount to the mammalian brain’s 

representation of space, and animals’ ability to navigate. For example, rats with lesions to 

the hippocampus are impaired in learning to swim to a hidden platform, though perform 

normally if the platform is visible (Morris et al. 1982). Positron emission tomography 

scanning of cerebral blood flow in humans shows increased activity in the hippocampus 

when navigating to a goal location in a virtual reality environment, with hippocampal activity 

correlating with navigational accuracy across subjects (Maguire et al. 1998).  

A wealth of evidence has thus made clear that the hippocampal formation is both central to 

episodic memory and the brain’s representation of space (Burgess, Maguire, and O’Keefe 

2002). What follows is a review of the current understanding of the hippocampal formation’s 

spatial processing, and its role in the navigational abilities observed in animals. That is, to 

the extent to which it is possible to separate the spatial and mnemonic functions of the 

hippocampal formation, the focus here is on the former. While understanding how the brain 

represents space is interesting in and of itself, space also provides a uniquely tangible and 

interpretable domain in which to investigate the representations of a high-level and 

associational brain area. Understanding the neural mechanisms underlying the function of 

many such areas has been hampered by the abstract nature of the information they encode. 

For example, in the orbitofrontal cortex, single neurones non-linearly encode complex 

combinations of sensory, motor, motivational, and reward signals (Rigotti et al. 2013). That 

is, studying the neural processes underpinning high-level representations in the tangible 
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spatial domain may shed light on common principles which can help advance understanding 

in other, less approachable areas. Indeed, it may also be that the hippocampal formation 

itself uses common mechanisms to represent non-spatial variables, with the apparent spatial 

focus of the hippocampal formation an artefact of the domain in which experiments are 

performed. Neuroimaging suggests the human hippocampus may also encode social 

networks (Tavares et al. 2015), while place cells form ‘maps’ of non-spatial, task-relevant 

continuous variables (Aronov, Nevers, and Tank 2017); the modular, periodic system used 

by the entorhinal cortex to encode spatial variables may also be applied to abstract 

continuous variables (Constantinescu, O’Reilly, and Behrens 2016). Alternatively, rather 

than encode non-spatial variables through the same mechanisms by which it represents 

space, the hippocampal formation may aide non-spatial encoding through providing a spatial 

framework upon which other variables can be associated; as has been proposed to be the 

mechanism by which episodic memory arises (O’Keefe and Nadel 1978; Byrne, Becker, and 

Burgess 2007).  

1.2.2 Navigation in mammals  

The ability to navigate between remembered locations, such as between a nest and a food 

source, is of clear adaptive benefit to wild animals. The navigational capacity of rats was 

thoroughly investigated throughout the first half of the 20th century, as a model system for 

understanding the neural basis of learning. In 1929, Karl Lashley reported an anecdote in 

which, having learned an alley maze, two of his rats pushed back the cover of the start-box 

and ran directly across the top of the maze to the goal box, whereby they climbed down and 

ate the reward (Lashley 1929). The ability of rats to navigate directly to a goal, even along a 

path not previously taken, was quantitatively investigated by Edward Tolman. He taught rats 

to run to a goal box through a maze in which an open circular table was followed by a 

corridor with three right-angled turns. Following 12 training trials, an alternative maze was 

presented, with a number of straight corridors leading away from the open table, and the 

original corridor blocked off. In the majority of cases, rats chose a corridor which took them 

to a location within 4 inches of where the entrance to the goal box had been (Tolman, 

Ritchie, and Kalish 1946). That is, the rats were able to estimate the vector separating them 

from their goal. Importantly, as the rats had only previously run along the now-closed 

corridor, they could not have navigated to the goal through appetitive conditioning based on 

learned stimulus-response pairs. Tolman instead suggested that rat’s performance of the 

task depended on a ‘cognitive map’: an internal representation of the environment (Tolman 

1948). Subsequent experiments showed that rats use both sensory cues and estimates of 

the distance and direction travelled (‘path integration’) to perform such navigation. 
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Maaswinkel and Whishaw investigated the relative contribution of visual, olfactory and self-

motion cues in navigation. In their experiment, rats left a start-box in search of a food pellet 

in a circular arena, before returning to the familiar starting location to consume the pellet. In 

a probe trial in which rats started from a different location, and the arena was rotated relative 

to the start box to displace olfactory cues, sighted rats still returned to their familiar starting 

location, indicating the dominance of visual cues. In the probe trial, blindfolded rats in 

contrast showed a mixture of behaviours, either returning to the start box, or to positions 

offset from it by an angle that tracked the rotation of the olfactory cues. These results 

demonstrate that, in the absence of visual information, rats navigate both via olfactory cues 

and path integration (Maaswinkel and Whishaw 1999). In attempting to explain the neural 

underpinnings of mammalian navigation, we are therefore looking for a system which 

integrates environmental cues from multiple sensory modalities together with self-motion 

information, to form an internal map of the environment, such that the vectors relating 

current and goal locations can be inferred. 

1.2.3 Place cells, place by direction cells, boundary vector cells 

As discussed, place cells are hippocampal neurones with a receptive field tuned to a specific 

location in the environment (Figure 1.4A). That is, while firing at very low rates the majority of 

the time, they emit a burst of action potentials as an animal runs through a particular 

location, known as their ‘place field’ (O’Keefe and Dostrovsky 1971). Different place cells 

have place fields in different locations of the environment, such that within a population of 

place cells, the subset which are active together form a sparse identity code for the animal’s 

location. As a result, place cells were suggested to encode a cognitive map of the 

environment, of the type envisioned by Tolman (O’Keefe and Nadel 1978). In the decades 

since their discovery, a large number of experiments have shed light on the determinants 

and properties of place cell activity. I will here review the major relevant findings, before 

subsequently turning to the question of the capacity of place cells to underpin the 

navigational behaviours described above.  

1.2.3.1 Properties and determinants of place cell firing; remapping.  

Place cells have been identified in a number of species, including bats (Ulanovsky and Moss 

2007), monkeys (Ludvig et al. 2004), and humans (Ekstrom et al. 2003). Recordings from 

tens of place cells shows that their activity accurately encodes the animal’s location within an 

environment, in that the vector of firing rates across the cells can be used to reconstruct the 

animal’s position (Wilson and McNaughton 1993). The preferred firing locations of place 
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cells can be remarkably stable across time, with consistent spatial tuning seen across 

recordings separated by as much as 153 days (Thompson and Best 1990), though greater 

variance in tuning across time has also been observed (Ziv et al. 2013). The spatial 

modulation of place cells varies along the septo-temporal axis of the hippocampus. Moving 

towards the temporal pole, fewer cells are spatially modulated, their firing fields are larger, 

and there is more activity outside of the place field (Jung, Wiener, and McNaughton 1994; 

Kjelstrup et al. 2008). Not all place cells fire in each environment, with the majority tending to 

remain silent (Thompson and Best 1989). The number of place cells expressing place fields 

increases roughly with the logarithm of the size of the environment (Rich, Liaw, and Lee 

2014). In larger environments, place cells may fire in multiple, irregularly spread locations, 

while the diameter of place fields tends to be larger (Fenton et al. 2008). 

 

Figure 1.4 Example firing of spatially modulated neurones of the hippocampal formation.  A-C, Left: black 
trace indicates the cumulative position of the animal as it navigates a 1m2 screening environment. Overlaid are 
the spikes from single example neurones: a place cell (A), a grid cell (B), and a boundary vector cell (C). Right: 
binned firing rate maps of the same data. Hotter colours indicate higher firing rates. The number at the bottom of 
each ratemap indicates the peak firing rate. D, Blue line indicates the binned firing rate of a single head direction 
cell. Radial value indicates the firing rate in each directional bin.  

Visual cues can be seen to exert a clear influence over place cell firing. For example, 

O’Keefe and Conway removed distal visual cues in various combinations within a curtained 

environment to infer the influence of each on place cell firing. The firing of some place cells 

depended on individual visual cues, while others were activated by more complex 

combinations of multiple cues (O’Keefe and Conway 1978). In addition, if the single visual 

cue outside of an environment is rotated to a different position, the location of place fields 

rotate so as to maintain a constant angle to the cue (Muller and Kubie 1987). Indeed, place 
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cell activity replicates between the compartments in an environment containing two visually 

identical compartments connected by a corridor (Skaggs and McNaughton 1998). While 

such results indicate that visual cues are used by the place cell system to self-locate, they 

are not necessary to maintain place cell activity: location specific firing continues even if 

recordings are made in total darkness (O’Keefe 1976). Indeed, congenitally blind rats have 

normal place fields (Save et al. 1998). These results, together with the fact that place cells 

fire when animals have run specific distances on a stationary treadmill (Pastalkova et al. 

2008), suggests that their firing also depends on self-motion inputs. Indeed, a number of 

results indicate that although individual place cells may be modulated to a greater or lesser 

extent by one or the other, as a population, both external sensory and internal self-motion 

inputs determine place cell activity. For example, Gothard and colleagues recorded place 

cells in rats running on a linear track between a fixed reward site and a moving reward site, 

such that the length of the track could be varied. Place cells that fired at fixed distances from 

the moving reward site were observed. Place cells that did so on runs towards the moving 

goal must have been driven by visual cues, as the distance since leaving the fixed goal was 

variable between trials. In contrast, place cells that fired at a fixed distance on runs away 

from the moving site must have done so via path integration, as they could no longer see the 

moving goal. On trials in which the track was shortened significantly from its normal length, 

the population vector of activity across recorded place cells ‘jumped’ abruptly between 

representations of the two sites, indicating the conflicting influence of sensory and self-

motion inputs (Gothard, Skaggs, and McNaughton 1996). Similarly, when visual and self-

motion cues were placed in disagreement in a virtual reality environment, the relative 

influence of the two cue types varied widely across place cells. In around 25% of cells, visual 

information alone was sufficient to maintain localised firing, whereas in 75% of cells firing 

also depended on self-motion information (Chen et al. 2013).  

Further evidence for the salience of external sensory cues is seen in the tendency of place 

cells to change the location of their firing fields, to ‘remap’, in novel environments (O’Keefe 

and Conway 1978), or following substantive changes to the sensory features of the 

environment (Muller and Kubie 1987). Smaller modifications of external sensory cues, such 

as to the odour or colour associated with the enclosure, generally gives rise to ‘rate 

remapping’, in which the in-field firing rate is altered without change in the cell’s spatial 

tuning (Anderson and Jeffery 2003; Leutgeb et al. 2005). Other modifications, such as the 

colour of a distal cue card, or the shape of the enclosure, may evoke little initial remapping, 

with changes only emerging following prolonged experience (Bostock, Muller, and Kubie 

1991; Lever et al. 2002). The variance between environments in the distinct set of place cells 

active, and their specific firing locations, implies that the place cell system forms a unique 
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spatial map for each environment encountered by the animal. Importantly, the location of a 

cell’s firing in one environment is apparently unpredictable both from its own firing in a 

second environment, or from the firing of other place cells in either environment. That is, 

place fields are not easily predicted from the sensory features of environments, while place 

cells do not maintain consistent spatial relationships with one another across environments 

(Muller and Kubie 1987) 

1.2.3.2 Computational models of place cells based on external sensory 
inputs 

Investigators have employed computational models to assess the sufficiency of particular 

combinations of sensory information and network architecture to give rise to the location-

specific firing of place cells. The earliest models described place fields as arising entirely 

from theoretical inputs encoding the distance and direction of the animal to distal sensory 

cues, either through hard-wired feedforward connections (Zipser 1985), or unsupervised 

competitive learning (Sharp 1991). While compelling in their simplicity, such models fail to 

account for the capacity of place cells to update their representation of self-location through 

self-motion cues, as is seen in the dark for example. While also failing to account for path 

integration, an alternative set of models can explain place cells’ firing in darkness, as 

stemming from non-visual sensory inputs indicating the presence of borders. Such models 

followed the observation that, when recordings were made in a rectangular enclosure whose 

length could be varied on one or both sides, certain place fields stretched in the same 

dimension along which the enclosure was stretched (O’Keefe and Burgess 1996). That is, 

place cells appeared to fire at fixed distances to particular borders of the environment. 

O’Keefe and Burgess proposed a simple model in which place cell activity was described as 

being the thresholded sum of Gaussian curves tuned to specific distances of the rat from 

specific boundaries. This model was later updated, hypothesising the existence of ‘boundary 

vector cells’, which are tuned to borders at specific allocentric directions and distances. The 

thresholded linear sum of two or more such boundary vector cells is sufficient to account for 

the location specific firing of place cells (Hartley et al. 2000). In support of the model, the 

putative boundary vector cells which would give rise to place fields observed in one 

environment can be used to predict the place field locations of the same cells in novel 

environments that differ only in the shape of the enclosure (Hartley et al. 2000). Indeed, cells 

who fire along specific borders have subsequently been identified in the subiculum (Barry 

and Burgess 2007; Lever et al. 2009), medial entorhinal cortex (Solstad et al. 2008), and 

parasubiculum (Solstad et al. 2008) (Figure 1.4C), however cells which fire at a set distance 

away from specific allocentric borders are rarer (though see Supplementary Material of 
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(Koenig et al. 2011). The boundary vector cell model has been subsequently updated to 

include Hebbian learning, such that it can also account for the plasticity of place cell firing 

seen across time (Barry and Burgess 2007). 

1.2.3.3 Computational models based on self-motion inputs 

1.2.3.3.1 Continuous attractor network models 

Alternative computational models have attempted to explain how place cell firing could 

emerge from self-motion inputs. McNaughton and colleagues suggested that place cells are 

connected so as to form a two-dimensional continuous attractor network, through excitatory 

connections between place cells in which the connection strength decreases as the distance 

between their preferred firing locations increases (McNaughton et al. 1996; Samsonovich 

and McNaughton 1997). Together with global inhibition, such connectivity gives rise to a 

stable ‘bump’ of activity in a hypothetical, topographically-organised sheet of place cells. The 

model envisions an additional set of neurones tuned to specific movement directions and 

speeds at specific locations in the environment. Through asymmetric excitatory projections 

to place cells offset in their preferred movement direction from those that are active at their 

preferred location, such cells can shift the bump of activity around the sheet in accordance 

with self-motion inputs specifying the animal’s velocity. That is, the model describes how 

place cells, together with the ‘shifter cells’, could perform path integration (McNaughton et al. 

1996; Samsonovich and McNaughton 1997). Learned associations between distal sensory 

cues and place cells representing specific locations are used to reset noise accumulated in 

the system. Such a model is thus attractive in explaining how place cell firing could emerge 

from a combination of self-motion and sensory inputs. In accordance with the model, place-

by-direction cells tuned to specific movement directions at specific locations have been 

observed in the pre- and parasubiculum (Cacucci et al. 2004). However, that place cells with 

overlapping fields can respond inhomogeneously to manipulation of the sensory features of 

the environment (O’Keefe and Conway 1978) suggests they are not organised in a 

continuous attractor: the excitatory connectivity between place cells in such a network would 

ensure that all cells are modulated in concert with one another. Further, the remapping of 

place fields to unpredictable locations between environments is problematic for the putative 

connectivity of such a network. For each environment, the connectivity between the ‘shifter 

cells’ and place cells would have to be relearned, and the system be able to switch between 

connectivity patterns according to which environment the animal was currently in.  



33 
 

1.2.3.3.2 Oscillatory interference models 

Low-pass filtering of recorded voltage traces can be used to generate the ‘Local Field 

Potential’ (LFP) of the region of brain surrounding the electrodes. An epiphenomenon, the 

LFP likely represents the summation of individually minute electrical currents during 

spatiotemporally consistent flows of ions across the membranes of large populations of 

neurones (Buzsáki, Anastassiou, and Koch 2012). LFP recordings in the hippocampus 

indicate a significant oscillatory tendency, particularly in the theta (5-11Hz) range (Figure 

1.5A) (Green and Arduini 1954), likely reflecting temporally coordinated network-level activity 

patterns (Buzsáki 2002). When animals run through a place field, place cells emit bursts of 

action potentials which span multiple cycles of the theta oscillation. Strikingly, spikes are 

emitted at progressively earlier theta phases as the animal runs through the field (Figure 

1.5A-C). This phenomenon, termed ‘theta phase precession’, provides a temporal code for 

the distance travelled through the place field (O’Keefe and Recce 1993; Huxter et al. 2008). 

This temporal code is independent of the cell’s firing rate code, with the latter better 

correlating with the animal’s in-field running speed (Huxter, Burgess, and O’Keefe 2003). 

The frequency of theta oscillations in the LFP of the hippocampus increases as a function of 

the animal’s running speed (Sławińska and Kasicki 1998; Jeewajee et al. 2008). As such, 

theta phase precession can be explained by computational models in which the place cell 

emits action potential bursts at frequencies which increase with a steeper slope than the LFP 

frequency-speed relationship: the cell’s higher theta frequency causing it to fire at 

progressively earlier phases in successive theta cycles. As the difference in frequency 

between the LFP and cellular oscillation varies as a function of the animal’s running speed, 

the amount of phase precession per unit time increases as the animal runs faster, such that 

distance travelled, rather than time elapsed since entering the field, is encoded (O’Keefe and 

Recce 1993). This fact entails that oscillatory interference models can also account for the 

capacity of place cells to show location specific firing based on self-motion inputs alone. For 

example, place cell firing can be modelled as being determined by a membrane potential 

that equates to the interference pattern of two oscillations, each coupled to the animal’s 

running speed with differing slopes. When the two oscillations are in phase, their summation 

exceeds the firing threshold and spikes are emitted, defining the cell’s place field. The 

different frequency-speed slopes of the oscillations means the change in phase-offset 

between them encodes the animal’s speed, such that the cell’s membrane potential and 

firing is updated across time by the distance travelled by the animal (Lengyel, Szatmáry, and 

Erdi 2003). While attractive in proposing a single-cell account of how place cells could 

perform path integration, the problem with such models is that, unlike recorded place cells, 
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modelled cells display periodic firing patterns due to the two oscillators moving cyclically in 

and out of phase as the animal moves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Theta phase precession examples in place and grid cells.  A, Light grey: raw LFP trace recorded 
in area CA1. Darker grey: the LFP trace low-pass filtered around the theta frequency. Black: phase of spikes from 
a single place cell as an animal runs through the cell’s place field. On first entering the field, spikes are 
predominantly fired at later phases (left hand side). As the animal moves through the field, spikes are seen at 
earlier phases of the theta cycle (towards right hand side). B, D, Example ratemap and raw spike plots for the 
place cell (B) and grid cell (D) whose phase precession are shown. C, E, Each data point indicates the phase of 
the first spike in each theta cycle plotted as a function of the proportion of the distance along the run through the 
field. Red lines indicate the circular-linear regression line which best fits the data. Panels B-E are adapted from 
Jeewajee et al. 2014. Panel A is adapted from Pastalkova et al. 2008.  

1.2.3.4 Using place cells for navigation 

To act as the neural basis of the cognitive map envisioned by Tolman, a population of place 

cells must be capable of supporting the observed capacity of animals to navigate directly to 

a goal location. Several results implicate place cell firing in navigation. For example, CA1 

place cell representations reorganise to track changes in the position of an un-cued goal 
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location (Dupret, O’Neill, and Csicsvari 2013). Further, place cells have also been observed 

to fire at specific distance and direction offsets to goal locations (Sarel et al. 2017). While 

such results indicate a role for place cells in representing navigational goals and vectors, 

they do not demonstrate that the vectors separating current and goal locations are computed 

by place cells. A number of models suggest how place cells could underlie vector navigation, 

with the majority involving comparison of the current pattern of place cell activity to that seen 

at the goal (Burgess and O’Keefe 1996; Touretzky and Redish 1996). For example, Burgess 

& O’Keefe’s model uses one-shot Hebbian learning between a ‘goal cell’ representing the 

location of a target, and the place cells whose firing field overlap with the goal. As such, to 

navigate back to the goal, the animal can simply move in the direction which continually 

increase the activity of the goal cell, which will be driven to fire maximally when all the place 

cells with which it is wired are active, i.e. at the goal location. However, such models are 

unsatisfactory in a number of ways. First, as they suggest rats should navigate by 

progressively testing multiple movement directions, rather than by running in straight lines to 

the goal, as is reported by Lashley for example. Second, as the maximum navigational 

distance is limited by the diameter of the largest place field: if the goal is not within the place 

field of any currently active place cells, the goal cell will have a firing rate of zero, and will 

therefore be uninformative as to which direction the rat should move in. While place fields as 

large as 10m have been reported (Kjelstrup et al. 2008), this is still significantly smaller than 

the estimated foraging distances of rats (100m to 1km (Russell et al. 2005)).  

1.2.3.5 Summary 

To what extent do the data reviewed indicate that place cells alone underlie Tolman’s 

cognitive map? In favour, even relatively small numbers of place cells can accurately encode 

locations within certain environments. Further, the activity of place cells depends on both 

external sensory cues and internal self-motion cues, in line with behavioural evidence that 

animals can navigate using both. However, it is not clear that place cells alone are capable 

of, or likely to, support either path integration or goal-directed navigation. The tendency of 

place cells to remap unpredictably across environments means that the connectivity 

supporting network-level path integration mechanisms would have to be relearned and 

adaptively applied across environments. Single-cell oscillatory interference models 

satisfactorily explain theta phase precession, but are unsatisfactory as models of path 

integration in suggesting that place cells should fire at multiple, periodically organised firing 

locations. In addition, models of goal-directed navigation employing place cells cannot easily 

account for navigation across distances greater than the diameter of the largest place field. 

Indeed, the identity code used by place cells (which cells are firing) is likely to be a fatally 
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inefficient scheme for specifying self-location in large environments: the number of distinct 

states (such as locations in space) which can be represented by an identity code increases 

only linearly with the number of neurones in the population. As such, the number of place 

cells required to specify an animal’s self-location with constant precision increases linearly 

with the environment’s size. The total number of place cells in the hippocampus of an animal 

therefore places an upper limit on the size of environment which could be effectively 

represented. The fact that place cells appear to only be recruited as a logarithmic function of 

the size of the environment (Rich, Liaw, and Lee 2014), instead suggests that place cells are 

fundamentally incapable of representing self-location in larger environments. For these 

reasons, we must look beyond place cells to explain animals’ ability to path integrate, self-

locate, and navigate, particularly in large environments. The question of what the function of 

place cells is, if not underpinning these capacities, is returned to in Section 1.2.6.  

1.2.4 Head direction cells 

Following results demonstrating that place cells can show location specific firing independent 

of the sensory features of the environment, O’Keefe hypothesised the existence of “a 

navigational system… that could calculate subsequent positions in the environment on the 

basis of how far, and in what direction, the animal had moved in the interim” (O’Keefe 1976). 

That is, he hypothesised the existence of a path integration system which incorporates 

distance and direction signals. Around a decade later, cells tuned to specific movement 

directions were reported in the presubiculum (Taube, Muller, and Ranck 1990a). These head 

direction cells fired when the animal moved in a specific direction, regardless of its location 

(Figure 1.4D). Such cells have since been identified in a number of regions, including the 

dorsal tegmental nucleus, lateral mammillary nucleus, anterior dorsal thalamus, entorhinal 

cortex, and retrosplenial cortex (Taube 2007). Lesion studies indicate the existence of a 

hierarchical circuit generating the head direction signal: lesions of the lateral mammillary 

nucleus and dorsal tegmental nucleus abolish directional tuning in the downstream anterior 

dorsal thalamus and presubiculum (Blair, Cho, and Sharp 1998, 1999). In turn, lesions to the 

anterior dorsal thalamus disrupt direction-selective firing in the presubiculum, but not vice 

versa (Goodridge and Taube 1997).  

Like place cells, head direction cells are influenced by both sensory and self-motion cues: 

their preferred firing directions are anchored to distal visual cues in the environment, rotating 

together if the cue is moved (Taube, Muller, and Ranck 1990b). Head direction cells 

continue to show direction specific firing in the dark, but if the light is turned back on their 

firing will re-align if the cue has been rotated in the interim (Zugaro et al. 2003). Continuous 

attractor network models of head direction cells provide convincing accounts of how their 
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direction-selective firing arises (Skaggs et al. 1995; Zhang 1996; Redish, Elga, and 

Touretzky 1996). Equivalent to one-dimensional versions of the continuous attractor 

accounts of place cells described above, such models envision a hypothetical ring of head 

direction cells connected topographically, with excitatory connectivity between cells that falls 

off as the angular separation between their preferred firing directions increases. Together 

with global inhibitory connections, this connectivity profile gives rise to a stable bump of 

activity in the ring. A second layer of neurones are tuned to specific turning directions, 

modulated by the velocity of the animal’s rotation, with inputs from head direction cells at a 

specific point on the ring. When activated by turning, these cells project asymmetrically back 

to the main ring, such that they shift the bump according to the direction and velocity of 

movement. Recordings in the anterior dorsal thalamus have identified such turning-velocity 

modulated cells (Blair and Sharp 1995; Taube 1995). Systems such as this, which integrate 

noisy signals across time, are sensitive to the accumulation of error. Models of head 

direction cells therefore use Hebbian plasticity between visual cues and head direction cells 

to learn direction-specific sensory input patterns which can reset the network periodically 

(Skaggs et al. 1995; Zhang 1996).  

Continuous attractor network models well account for the direction-selective tuning of head 

direction cells, and their modulation by both internal self-motion and external sensory cues. 

That head direction cells are found throughout the hippocampal formation, and in areas with 

which it is highly interconnected, suggests that their encoding of the direction of current 

movement is central to the brain’s representation of space, probably in supporting path 

integration. However, head direction cells are incapable of representing linear distances 

moved by an animal, such that, for a full account of path integration, we must look 

elsewhere. 

1.2.5 Grid cells 

1.2.5.1 Properties and determinants of grid cell firing patterns 

Given its extensive connectivity with the hippocampus, in-vivo recordings were frequently 

made in the entorhinal cortex following the discovery of place cells. Early attempts observed 

cells whose firing was modulated by the animal’s location in space, but with lower signal to 

noise than is seen in place cells (Quirk et al. 1992). Recordings throughout the entorhinal 

cortex showed a clear medio-lateral dissociation: medial entorhinal neurones were seen to 

display highly localised spatial firing, unlike those of the lateral entorhinal cortex (Hargreaves 

et al. 2005). Strikingly, recordings from more dorsal areas of the medial entorhinal cortex 

revealed cells which fire at multiple locations within the environment (Fyhn et al. 2004). 
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Indeed, when recorded in a larger enclosure, the individual firing fields of these cell form a 

repeating triangular pattern which tessellates to cover its extent (Figure 1.4B) (Hafting et al. 

2005). That is, the periodic firing pattern forms a triangular grid, leading Hafting and 

colleagues to coin the name ‘grid cells’. subsequent investigations have identified grid cells 

in a range of species including mice (Fyhn et al. 2008), bats (Yartsev, Witter, and Ulanovsky 

2011) and humans (Doeller, Barry, and Burgess 2010; Jacobs et al. 2013). Grid cells are 

seen in all layers of the entorhinal cortex (Sargolini et al. 2006), as well as in the pre- and 

parasubiculum (Boccara et al. 2010).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Properties of grid cell firing patterns; organisation of grid cells into modules.  A, Properties of 
grid cell firing patterns indicated on the ratemap of a single grid cell. Each cell’s firing is defined by a phase (left: 
offset in each dimension of the peaks from some origin: φx, φy), scale (centre: distance between firing peaks: λ) 
and orientation (right: angle of the major grid axis relative to the horizontal: θ). B, Left: a Nissl-stained sagittal 
section through a mouse brain, with the medial entorhinal cortex encircled by a dashed line. Right: example firing 
rate maps from four grid cells, one pair from each of two example modules. As indicated, smaller scale grid cells 
are predominantly recorded in dorsal areas of the entorhinal cortex, larger scale grids are found in more ventral 
areas. The image in panel B is adapted from Paxinos & Franklin 2012.  

The firing patterns of individual grid cells are parameterised by an orientation (angle of the 

major axes of the grid), scale (distance between the firing peaks), and phase (location of the 

firing peaks) (Figure 1.6A). When initially discovered, it was reported that co-recorded grid 

cells at particular positions in the entorhinal cortex’s dorso-ventral axis tended to have 

identical orientations and scales, but different firing field locations (Hafting et al. 2005). 

Moving along the dorso-ventral axis, the scale of observed firing patterns increases (Hafting 

et al. 2005) (Figure 1.6B), matching the increase in scale of place cells seen along the 
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hippocampus’ septo-temporal axis. Further investigations suggested that the scale of grid 

cells increases in discrete jumps along the dorso-ventral axis (Barry et al. 2007; H. Stensola 

et al. 2012). These observations of discontinuous jumps in grid scale stem from progressive 

recordings being made from distinct ‘modules’ of grid cells (Figure 1.6B). Each module 

shares a common orientation and scale, with its constituent cells displaying internal 

consistency in their firing patterns, but with distinct firing phases (H. Stensola et al. 2012). 

Recordings from the majority of the dorso-ventral axis, made while rats run on an 18m linear 

track, suggest the existence of 8-10 grid modules, with the most ventral module displaying a 

grid scale of 2-3m (Brun, Solstad, et al. 2008). When moved to a novel environment, a cell’s 

firing pattern initially expands in scale (Barry, Ginzberg, et al. 2012), before settling back to 

the scale seen in the familiar environment, but with a distinct orientation and phase. Within a 

module, pairs of grid cells show consistency in their scale, orientation, and phase offset 

relationships between environments (Fyhn et al. 2007; Yoon et al. 2013).  

As in place and head direction cells, both external sensory and internal self-motion cues 

modulate grid cell activity. For example, the orientation of grid cell firing is anchored to distal 

sensory cues: as the angle from a single cue card to the enclosure is altered, grid patterns 

rotate in concert (Hafting et al. 2005). Changes in grid firing patterns seen following 

translation or rotation of the enclosure’s position within the recording room provides similar 

evidence for the anchoring of grid patterns to remote cues (Savelli, Luck, and Knierim 2017). 

In rats, the maintenance of the grid pattern in total darkness has been taken as evidence 

that path integration alone is sufficient to maintain normal grid activity, at least over short 

timeframes (Hafting et al. 2005). However, in mice, the contribution of visual cues may be 

greater, in that grid firing patterns quickly break down in total darkness (Chen et al. 2016; 

Pérez-Escobar et al. 2016). As in place cells, the boundaries of the enclosure appear to 

exert a particular influence over grid firing. Replicating the paradigm of O’Keefe & Burgess 

(1996) previously discussed, Barry et al. observed a similar anisotropic stretching of grid 

firing patterns that matched the axis of change in the enclosure length (Barry et al. 2007). 

Indeed, if a square environment is divided into multiple corridors connected by sequential 

hairpin turns, grid firing breaks into multiple fragments, often repeating across corridors in 

which the animal runs in the same direction (Derdikman et al. 2009). The shape of the 

enclosure can also determine the orientation of the firing pattern, both locally (T. Stensola et 

al. 2015) and globally (Krupic et al. 2015), depending on the size of the environment. Finally, 

the symmetry of the triangular pattern is disrupted in certain environments, such as the 

narrow end of a trapezoidal enclosure (Krupic et al. 2015). Grid cell firing patterns are thus 

determined both by distal sensory cues and the geometry of the enclosure, though may also 

be maintained by self-motion inputs alone, at least in some species.  
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1.2.5.2 Models of grid cells 

From their initial discovery, the spatially periodic patterns expressed by grid cells – their 

firing every time the animal runs a specific distance in a specific direction – led to models 

which described their activity as arising from self-motion information. These models 

formulate how individual grid cells, or networks of grid cells, perform path integration based 

on inputs describing the animal’s running speed and heading direction. Two major classes of 

grid cell model have been proposed, both extensions of equivalent models, discussed 

above, which describe how place cells could perform path integration.  

1.2.5.2.1 Continuous attractor network models 

Continuous attractor network models of grid cells are extensions of the one- and two-

dimensional networks described, which were proposed to account for place and head 

direction cell updating via self-motion inputs. Though differing from one another in their 

details, continuous attractor models are unified in involving grid cells organised in a 

hypothetical two-dimensional topographic sheet, with the weight of excitatory connections 

between grid cells decreasing as the spatial offset of their firing locations increases (Figure 

1.7A) (Fuhs and Touretzky 2006; McNaughton et al. 2006; Burak and Fiete 2009). In the 

model of McNaughton and colleagues for example, this pattern of local-excitation, together 

with longer-distance inhibitory connections, gives rise to a stable bump of activity on the 

sheet (Figure 1.7B) (McNaughton et al. 2006). Connections at the edges of the sheet ‘wrap 

around’, joining cells at opposite edges, such that each location on the sheet is equivalent to 

a position on the surface of a three-dimensional torus (Figure 1.7A, C). The bump of activity 

on the torus can be shifted according to the speed and direction of movement, by a second 

population of cells tuned to specific movement velocities at specific locations in the 

environment. Such cells receive inputs from grid cells at a specific point on the torus, and 

project back with asymmetric excitatory connections, to a nearby point offset in the direction 

of their velocity tuning (Figure 1.7D). As such, the heading direction and running speed 

information encoded by the firing rates of these ‘shifter cells’ can be used to move the bump 

of activity around the network of grid cells, updating their representation of self-location, and 

thus performing path integration (Fuhs and Touretzky 2006; McNaughton et al. 2006; Burak 

and Fiete 2009).  

In favour of continuous attractor models, cells with triangular firing patterns which are also 

tuned to specific running directions and speeds, as is required of the ‘shifter cells’, have 

been described in the deep layers of medial entorhinal cortex (Sargolini et al. 2006). Further, 

grid cells within a module maintain fixed spatial offsets between their firing locations when 
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recorded in multiple environments (Fyhn et al. 2007; Yoon et al. 2013). The consistent 

spatial relationships between grid cells suggests that the connectivity between them is 

maintained across environments, implying the same continuous attractor underlies the 

activity in each. Finally, such models suggest that when moving through a firing field, the 

membrane potential of grid cells ramps up smoothly, as is observed in intracellular 

recordings from mice navigating in virtual reality (Schmidt-Hieber and Häusser 2013; 

Domnisoru, Kinkhabwala, and Tank 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Illustration of principles of continuous attractor network models of grid cells.  A, Illustration of 
the organisation of grid cells in a module into a two-dimensional sheet, with cells’ position on the sheet defined by 
their phase of firing. Red arrows indicate the excitatory connectivity that exists between nearby cells of similar 
firing phase. Local excitatory connectivity is combined with more distant inhibitory connectivity in a Mexican-hat 
profile (B). At the edges of the sheet of cells, connections ‘wrap around’, such that positions on the two-
dimensional sheet map to the surface of a three-dimensional torus, as is illustrated in C. D, Top layer represents 
the sheet of grid cells, who project to a separate population of ‘shifter cells’ in a location-specific manner, with the 
shifter cells also tuned to the animal’s movement velocity. Once activated, the shifter cells shift the bump of 
activity in the sheet of grid cells through asymmetric excitatory projections onto grid cells offset in the direction of 
their velocity tuning from those they receive input from. Panel A, C and D are adapted from McNaughton et al. 
2006. Panel B is adapted from Burak & Fiete 2009.  

While criticisms have been made of continuous attractor networks, most relate to details of 

specific instantiations of particular models, rather than the concept of attractor networks 

themselves. For example, while ocean-stellate cells of LII of the entorhinal cortex do not 

show recurrent excitatory connections, grid cell firing patterns can also emerge from 
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networks with disynaptic inhibitory connections between grid cells (Couey et al. 2013). 

Similarly, while parvalbumin positive interneurones in medial entorhinal cortex do not show 

grid cell firing patterns, as is predicted by most continuous attractor network models 

(Buetfering, Allen, and Monyer 2014), other instantiations can produce normal grid cell 

activity with only weak spatial modulation amongst interneurones (Solanka, van Rossum, 

and Nolan 2015). Perhaps more problematically, the connectivity profiles required to support 

continuous attractor networks are highly complex, and the mechanisms by which such 

connections could develop are unclear. However, unsupervised learning using spike-time-

dependent plasticity has been demonstrated to be capable of producing the required 

connectivity, though only if direction and location specific inputs are provided (Widloski and 

Fiete 2014).  

1.2.5.2.2 Oscillatory interference models 

As seen, oscillatory interference models of place cell firing are hampered by the tendency of 

the envelope of the interference pattern between two speed-modulated oscillators to be 

periodic. Of course, in explaining the cyclical activity of grid cells, this fact is a clear 

advantage of such models. In one-dimension, oscillatory interference models of grid cell 

firing simply replicate the proposals of previous place cell models (O’Keefe and Burgess 

2005). For example, Burgess and colleagues envisioned two membrane potential 

oscillations, one somatic and one dendritic. The frequency of both oscillations increases 

linearly with running speed, but the dendritic oscillation with steeper slope. As such, the two 

oscillations move in and out of phase as the rat runs unidirectionally, such that their 

interference pattern causes the cell’s membrane potential oscillation to periodically surpass 

its firing threshold, giving rise to the cell’s firing fields. As the difference in frequency 

between the two oscillations increases with running speed, at higher speeds the two move in 

and out of phase at a higher rate, such that the cell’s spatial firing tracks the distance 

travelled by the animal, rather than its speed (Burgess, Barry, and O’Keefe 2007). To 

generate two-dimensional firing, the oscillators’ frequencies must also vary as a function of 

the animal’s heading direction. That is, two-dimensional oscillatory interference models 

envision so-called velocity controlled oscillators, whose frequency varies as a linear function 

of running speed and as a  cosine function of heading direction. If a single cell receives 

inputs from two or more velocity controlled oscillators, whose preferred firing direction are 

multiples of 60 degrees from one another, the interference pattern between them forms the 

characteristic triangular pattern seen in grid cells. Unsupervised learning between velocity 

controlled oscillators could give rise to such wiring, if the strength of their connections onto 

downstream grid cells were modulated so as to maximise post-synaptic activity (assuming 
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that pairs of oscillators with co-linear preferred firing directions are excluded) (Burgess, 

Barry, and O’Keefe 2007; Mhatre, Gorchetchnikov, and Grossberg 2012). In such models, 

the scale of the firing pattern expressed by a grid cell is determined by the difference in the 

slopes of the theta frequency vs running speed relationships of its component oscillators. A 

large difference in slope means the two oscillators move in and out of phase more quickly at 

each running speed, such that the scale of the cell is smaller than in cells with two oscillators 

of similar slope.  

Oscillatory interference models therefore describe how path integration could be performed 

by individual grid cells based on self-motion inputs in which the speed and direction of 

movement is encoded in the frequency of theta oscillations (Blair, Gupta, and Zhang 2008; 

Hasselmo, Giocomo, and Zilli 2007). In favour of such accounts, the membrane potential of 

ocean-stellate cells of LII of the medial entorhinal cortex shows resonance at theta 

frequencies (Klink and Alonso 1997), while putative grid cells also display subthreshold theta 

oscillations in intracellular recordings made while mice navigate in virtual reality 

environments (Domnisoru, Kinkhabwala, and Tank 2013; Schmidt-Hieber and Häusser 

2013). Indeed, a gradient in the resonant frequency of ocean-stellate cells along the dorso-

ventral axis of the medial entorhinal cortex matches the gradient seen in grid cell scale along 

the same axis (Giocomo et al. 2007). The resonant frequency of these neurones is 

dependent on hyperpolarisation-activated cyclic nucleotide-gated (HCN1) channels 

(Giocomo and Hasselmo 2009), and mice with a genetic knockout of the HCN1 channel also 

show alterations in grid scale (Giocomo et al. 2011). Further, pairs of grid cells more similar 

in scale tend to fire bursts of action potentials at more similar theta frequencies (H. Stensola 

et al. 2012), while changes in the burst frequency of grid cells in novel environments 

covaries with the observed increase in grid scale (Barry, Ginzberg, et al. 2012). Perhaps 

most convincingly, inactivation of the medial septum, either with lidocaine or muscimol, 

abolishes theta oscillations, and simultaneously disrupts the periodic firing of grid cells 

(Brandon et al. 2011; Koenig et al. 2011). In addition, cells whose firing matches that of 

hypothesised velocity controlled oscillators have been observed in the medial septum and 

anterior dorsal thalamus (Welday et al. 2011). Cells with band-like firing patterns, potential 

‘building blocks’ of grid firing patterns, and as would be observed in cells with input from a 

single velocity controlled oscillator, have also been recorded, in the entorhinal cortex and 

parasubiculum (Krupic, Burgess, and O’Keefe 2012). Oscillatory interference models can 

also account for the tendency of grid cells to show theta phase precession as animals run 

through their firing fields (Hafting et al. 2008; Jeewajee et al. 2014). 

However, oscillatory interference models have been widely criticised, particularly for their 

reliance on precisely timed oscillations, especially given the noise in experimentally 
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observed oscillations (Giocomo and Hasselmo 2008; Dodson, Pastoll, and Nolan 2011; Fiete 

2010). Further, intracellular recordings indicate that the location of firing fields of putative grid 

cells is better explained by depolarising ramps in their membrane potential, rather than the 

envelope of subthreshold theta oscillations (Schmidt-Hieber and Häusser 2013; Domnisoru, 

Kinkhabwala, and Tank 2013). In addition, grid cell firing patterns have been recorded in 

crawling bats, despite the absence of discernible theta oscillations (Yartsev, Witter, and 

Ulanovsky 2011), though these findings are disputed (Barry, Bush, et al. 2012).  

While not discussed in detail here, both oscillatory interference and continuous attractor 

network models use learned conjunctions of location-specific sensory features to anchor 

firing patterns and minimise the accumulation of error stemming from the integration of noisy 

self-motion inputs. Apparently similar error-correction systems have been observed in grid 

cell recordings, with noise accumulating and then resetting between visits to the borders of 

the enclosure (Hardcastle, Ganguli, and Giocomo 2015).  

1.2.5.2.3 Hybrid models 

Though oscillatory interference and continuous attractor network models are often 

considered to be competing accounts of grid cell firing, many of their properties are not 

mutually exclusive, such that a number of hybrid models including features of both have 

been proposed (Navratilova et al. 2012; Hasselmo and Brandon 2012; Bush and Burgess 

2014). For example, Bush & Burgess described a model in which velocity controlled 

oscillators are wired together in ring attractors, with each attractor sharing a preferred 

running direction, but with cells differing in the phase of their oscillations. Grid cells sharing 

inputs from velocity controlled oscillators with the same firing phases (and which therefore 

have overlapping firing fields) are in turn connected through recurrent inhibition in an 

attractor network. Such hybrid models are attractive in accounting for a wider range of 

experimental data than either type of model alone, such as both theta phase precession and 

the consistent phase offsets seen between pairs of cells across environments.  

1.2.5.3 Encoding across grid modules 

The models described above indicate that grid cells are well suited to perform path 

integration, suggesting that this may be their functional contribution to the hippocampal 

formation’s spatial processing. However, to understand the genuine value of grid cells, it is 

necessary to consider what information downstream networks could decode from their 

representations. Alternative accounts of how populations of grid cells could encode the 

animal’s self-location across modules demonstrate how the modular organisation and 
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periodic nature of grid cell firing can act as an extremely efficient encoding system, either to 

represent large environments (Fiete, Burak, and Brookings 2008) or small environments at 

high resolution (Mathis, Herz, and Stemmler 2012). That is, these theories indicate how 

populations of grid cells could form efficient cognitive maps of the environment, as 

envisioned by Tolman.  

The orientation and scale of firing patterns within a module is consistent, but the firing 

locations of different grid cells are distributed evenly across space (Hafting et al. 2005). A 

grid module therefore encodes self-location as a pair of phases in a two-dimensional phase-

space: which cells are active. Because grid cell firing is periodic, the phase of each module 

repeats once an animal traverses a distance larger than its grid scale. A repetition in phase 

mean that the module’s encoding of the animal’s location is ambiguous: as the module has 

the same phase in two locations the animal could be at either. However, the firing phase 

across modules of different scale can be combined to resolve this ambiguity. For example, in 

one dimension, a cell from a module with scale 20cm will fire every time the animal moves 

20cm. The phase of a second module of 18cm will differ between adjacent firing fields of the 

cell in the first module however, enabling a decoding network to distinguish between them, 

even though the second module is itself ambiguous. Depending on the relative scale of the 

modules, the conjunction of phases across multiple modules (the ‘population phase’), can be 

an extremely efficient code for self-location (Fiete, Burak, and Brookings 2008). Specifically, 

if grid scales across modules take integer values that are not a consistent multiple of one 

another, the number of unique population phases can be calculated as the lowest common 

multiple of their scales, according to the Chinese Remainder Theorem (Fiete, Burak, and 

Brookings 2008). Doing so demonstrates that the population phase could encode an 

animal’s location with extreme efficiency, with the number of unique locations that can be 

encoded increasing exponentially with the number of grid modules.  

Like the phases of single modules, the population phases of a set of grid modules 

representing a two-dimensional environment can be mapped onto the surface of a three-

dimensional torus. Doing so illustrates an important feature of the ‘combinatorial’ system of 

encoding described above. Specifically, adjacent positions in population phase space map to 

non-adjacent positions in real space and vice versa (Sreenivasan and Fiete 2011). As such, 

small errors in the decoded population phase can give rise to catastrophically large errors in 

estimates of the animal’s location (Mathis, Herz, and Stemmler 2012). As such, in 

environments similar in size to the encoding capacity of the grid network, the system will be 

intolerably sensitive to noise. However, if the navigable environment is considerably smaller, 

then an error-correction system can be envisioned. For example, if noise leads the 

population phase to encode the animal’s self-location as being outside the navigable 
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environment, then the network may simply reset the population phase to the nearest 

plausible value (Sreenivasan and Fiete 2011).  

Alternatively, ‘nested’ systems propose that grid cells encode an animal’s self-location in 

environments smaller than the largest grid scale, but with high resolution (Mathis, Herz, and 

Stemmler 2012). Here, as the largest grid scale is larger than the size of the environment, its 

phase does not repeat, such that it provides an unambiguous code for the animal’s location. 

A constant integer ratio between grid scales means that modules are iteratively ‘nested’ 

within the scale of the next largest module, specifying the animal’s location at increasingly 

high resolutions. Such a system is equivalent to an analogue clock, in which the 

unambiguous but coarse unit of hours is subdivided sequentially into minutes and seconds. 

As animals are thought to forage over areas of 100m-1km (Russell et al. 2005), and the 

largest grid scale is 2-3m (Brun, Solstad, et al. 2008), the feasibility of such nested systems 

remains to be seen. Further, as the difference in grid scale across modules can be in the 

range of orders of magnitude in nested codes, it is not clear that a unitary velocity signal 

could provide the resolution required to accurately update both the smallest and largest grid 

scales concurrently (Fiete, Burak, and Brookings 2008).  

More recently, an intermediate system in which the ratio of grid scales between modules is a 

fixed but non-integer value has been considered in detail (Wei, Prentice, and 

Balasubramanian 2015; Stemmler, Mathis, and Herz 2015). The non-integer ratio between 

scales means smaller modules do not perfectly subdivide larger ones, ensuring the 

population phase is unambiguous in environments larger than the largest scale. The number 

of unique population phases is smaller than the lowest common multiple of the constituent 

grid scales however (i.e. the Chinese Remainder Theorem is not obeyed), but this reduced 

capacity can be used as an alternative error-correction system. The fixed ratio of grid scales 

means that certain conjunctions of phase across module are invalid, a fact which could be 

used to correct errors stemming from the independent accumulation of noise across 

modules (Stemmler, Mathis, and Herz 2015).  

In sum, the periodic nature of their firing means that by combining activity across multiple 

modules of different scale, grid cells can encode an animal’s self-location with extreme 

efficiency. Depending on the relative scale of modules within the network, this efficiency 

could encode an animal’s location in very large environments or in smaller environments 

with high resolution.  
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1.2.5.4 Using grid cell representations for navigation 

As discussed, animals appear capable of navigating in straight lines to goal locations, even 

via routes not previously taken (Lashley 1929; Tolman, Ritchie, and Kalish 1946). A number 

of recent models have proposed how a population of grid cells could calculate the vector 

separating current and goal locations, each relying on the fact that grid cell’s periodic firing 

means that particular distance and direction offsets in real-space equate to a particular offset 

in population phase space. Erdem & Hasselmo hypothesised that constant-speed look-

ahead sweeps of activity could emanate from the grid cell representation of the animal’s 

location. Once the population vector of activity in one of the sweeps matched that of the goal 

location, the direction of the sweep and the time taken for a match to occur could be used to 

infer the direction and distance to the goal respectively (Erdem and Hasselmo 2012, 2014). 

Bush and colleagues proposed three models of how biologically plausible decoding networks 

could directly calculate the vector to a goal from the grid cell population phase. In perhaps 

the most compelling, individual ‘rate-coded vector cells’ are each activated by a specific 

offset in population phase space (Bush et al. 2015). The rate-coded vector cells thus 

transform a pair of population phases specifying current and goal locations into an identity 

code for the real-space vector separating the two. Depending on the relationship between 

grid scales, such decoding could operate across grid modules (Bush et al. 2015), or 

independently in each (Edvardsen 2016). Finally, Stemmler and colleagues note that the 

population phase encoding each point in space is effectively measured relative to an 

arbitrary origin (i.e. where the phase of each module is 0). By multiplying the phase of each 

module by an appropriate sinusoidal grating, they suggest that the arbitrary reference could 

be shifted between goal locations, such that the population phase continually encodes the 

animal’s vector displacement from its goal (Stemmler, Mathis, and Herz 2015). While each of 

the proposed decoding networks suffers from its own particular drawbacks, they also 

demonstrate that a population of grid cells encodes sufficient information for biologically 

plausible networks to decode the vector separating an animal’s location from its goal.  

1.2.5.5 Grid cells as input to place cells 

The highest density of grid cells is seen in the superficial layers of the medial entorhinal 

cortex (Sargolini et al. 2006). As the hippocampus receives dense input projections from 

these layers, it has been suggested that hippocampal place cells are the probable decoders 

of grid cell activity (Sreenivasan and Fiete 2011; O’Keefe and Burgess 2005; Fuhs and 

Touretzky 2006). A number of simple models propose how the location-specific activity of 

place cells could arise from the linear summation (‘Fourier synthesis’) of inputs from specific, 

spatially-overlapping grid cells of different scale. Specifically, such models propose that the 
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strength of input from each grid cell is proportional to its degree of overlap with the output 

place field. Different accounts propose various mechanisms by which the required 

connectivity could arise, including hard-wiring (Solstad, Moser, and Einevoll 2006), 

heterosynaptic Hebbian learning (Savelli and Knierim 2010), and competitive network 

interactions (Fuhs and Touretzky 2006).  

Despite the simplicity of the connections which can generate place cell firing from a small 

number of grid cells, a range of experimental results suggest that place fields are not simply 

the product of the summation of multiple grid patterns (Bush, Barry, and Burgess 2014). 

First, the location-specific firing of place cells is seen at earlier stages of development than 

the triangular firing of grid cells (Wills et al. 2010; Langston et al. 2010). Further, Fourier 

synthesis models suggest that removal of inputs from smaller-scale grid cells in dorsal 

medial entorhinal cortex should increase the size of place fields, a result not observed 

experimentally (Miao et al. 2015). In addition, place cell firing continues in conditions in 

which inputs from grid cells are disrupted, including inactivation of the medial septum 

(Brandon et al. 2014; Wang et al. 2015) and lesions to the entorhinal cortex (Brun, Leutgeb, 

et al. 2008; Schlesiger et al. 2015). Finally, neurones in medial entorhinal cortex tend to 

show peak firing later in the theta cycle than principal neurones of the hippocampus, making 

a causal relationship unlikely (Mizuseki et al. 2009). Bush and colleagues therefore argued 

that place cell firing likely arises predominantly from boundary vector cell and direct sensory 

inputs, with grid cell connections helping to maintain place cell firing through path integration, 

as is required in contexts of novelty and sensory deprivation (Bush, Barry, and Burgess 

2014).  

1.2.6 Summary: contributions of spatially-tuned neurones to the cognitive map 

As discussed, the identity code employed by place cells means that they are an inefficient 

means of encoding an animal’s self-location. Further, their tendency to remap to 

unpredictable locations constrains their ability to perform path integration and vector 

navigation, in that the complex connectivity required would have to be relearned and 

adaptively applied across environments. In contrast, the periodic, modular activity of grid 

cells allows them to encode an animal’s self-location with extreme efficiency, even in large 

environments. In addition, a consistent relationship between the population phase of grid 

cells and real space can support navigation, in enabling the decoding of vectors separating 

locations in the environment. Importantly, the consistent spatial offsets between pairs of cells 

across environments means the complex wiring patterns that support decoding need not be 

relearned. 
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If grid cells are capable of performing path integration, self-location, and navigation, to what 

end does the brain employ a place cell code? One possible explanation is that place cells 

are of value in providing a mechanism by which specific locations in space can be 

associated with non-spatial information, such as sensory inputs or events. While efficient, 

the grid cell code is highly distributed, such that the learning rules and connectivity patterns 

required to support bidirectional associations between locations and non-sensory features 

would be nontrivial. In contrast, place cells can easily form these associations through 

simple Hebbian learning. Having formed such associations, input from place cells could then 

reset accumulated noise in, and anchor grid cell firing patterns, as well as reactivate goal 

locations for navigation. In addition, location-specific associations formed by place cells 

could also form the basis of episodic memory, by encoding non-spatial features of mnemonic 

episodes within a spatial framework. In sum, the ‘distributed’ and ‘identity’ encoding 

schemes of grid and place cells may form complementary cognitive maps of the 

environment, with grid cells supporting self-location and navigation, and place cells enabling 

the association of specific locations with non-sensory features of the environment.  

1.3 Contributions of the medial septum to grid cell activity  

1.3.1 Anatomy, connectivity and neuronal subtypes of the medial septum 

The basal forebrain is a loose collection of heterogenous structures in the ventral and medial 

aspect of the telencephalon. The medial septum, one of the basal forebrain’s constituent 

nuclei, sits towards its anterior and ventral extremes. Horizontal and coronal sections reveal 

the medial septum to be chevron shaped: unitary about the midline in anterior and dorsal 

regions, but dividing bilaterally into a discrete ventro-lateral region in each hemisphere more 

posteriorly (Figure 1.8). In the coronal plane, the medial septum is generally divided into two 

regions, according to the distinct connectivity pattern of each. In this thesis, and as is 

common in the field (Swanson and Cowan 1979), the medial septum here refers both to the 

dorsal most region (the medial septum proper), as well as the more ventrally extending 

vertical and diagonal bands of Broca, due to their consistent connectivity. The most ventral 

and lateral regions seen more posteriorly, which exhibit distinct anatomical connections, are 

termed the horizontal bands of Broca. The medial septum sends dense projections to all 

subfields of the hippocampus and dentate gyrus (Swanson and Cowan 1979), and 

entorhinal cortex (Alonso and Köhler 1984), via the fornix. Further projections are seen to 

preoptic areas, the lateral hypothalamus, and the mammillary complex; as well as midbrain 

aminergic regions such as the ventral tegmental area and the raphe nucleus (Swanson and 

Cowan 1979). In contrast, the horizontal band of Broca sends projections predominantly to 
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the habenula and hypothalamus (Swanson and Cowan 1979). Both areas tend to show a 

large degree of reciprocal connectivity, with the inputs to each arising mainly from areas 

which they also send efferent projections to (Swanson and Cowan 1979; Alonso and Köhler 

1984).  

Early immunohistochemical analyses identified a population of cholinergic neurones within 

the medial septum (Kimura et al. 1980). These acetylcholine synthesising neurones were 

subsequently shown to project to the hippocampus (Mesulam et al. 1983) and entorhinal 

cortex (Alonso and Köhler 1984). Only a subset of all projections from the medial septum 

were identified as cholinergic however (Alonso and Köhler 1984), and later studies 

demonstrated the existence of an additional population of GABAergic neurones (Panula et 

al. 1984), which were subsequently shown to also project to the hippcocampus and 

entorhinal cortex (Köhler, Chan-Palay, and Wu 1984). Only more recently has a third 

population of neurones been identified, expressing the neurotransmitter glutamate, and 

again projecting broadly throughout the hippocampal formation (Manns, Mainville, and Jones 

2001). Each of the three types of neurone appear to be highly interconnected with each 

other within the medial septum. Electron microscopy together with immunohistochemical 

staining demonstrates the presence of bidirectional synaptic connections between 

cholinergic and GABAergic neurones (Leranth and Frotscher 1989). Both neurone types also 

show AMPA receptor mediated glutamatergic inputs from within the septum (Manseau, 

Danik, and Williams 2005).  

 

 

 

 

 

 

 

 

 

Figure 1.8 Position and shape of the medial septum in the mouse brain.  A-B, Coronal (A) and horizontal 
(B) mouse brain slices stained for acetylcholinesterase. Dashed black lines indicate the outline of the medial 
septum. D-V: dorso-ventral axis. M-L: medio-lateral axis. A-P: antero-posterior axis. 
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1.3.2 A role for the medial septum in spatial processing… 

1.3.2.1 …Through the encoding of running speed 

Unsurprisingly given its degree of reciprocal connectivity with the hippocampal formation, the 

medial septum appears salient to the capacity of animals to perform spatial tasks. 

Excitotoxic lesions of the medial septum impair rats’ ability to learn to navigate to a hidden 

platform in the Morris water maze (Hagan et al. 1988). Similarly, electrolytic lesions of the 

medial septum prevent rats from learning to identify a goal purely by its location in the room 

(Winson 1978). In the latter experiment, the deficit was suggested to be spatial rather than 

purely mnemonic, in that lesioned rats still recognised the goal when they came upon it by 

chance (Winson 1978). However, both tasks contain a significant mnemonic component (for 

example in encoding the goal location), such that neither rules out the possibility that the 

medial septum’s contribution to such behaviours is predominantly through supporting 

learning and memory. More recently, temporary inactivation of the medial septum has been 

shown to impair rat’s estimations of linear distances travelled. While the task contained a 

mnemonic component, in that rats had to stop at specific remembered distances along a 

linear track, that the deficit was observed particularly when rats had to estimate longer 

distances suggests the impairment was primarily spatial (Jacob et al. 2017). The effect of 

medial septum inactivation on the hippocampal formation’s representations of space gives 

credence to the idea it supports the encoding of distance travelled. First, inactivation of the 

medial septum with lidocaine or muscimol causes the triangular firing pattern normally seen 

in grid cells to break down (Koenig et al. 2011; Brandon et al. 2011). Importantly, the 

directional tuning of grid cells is maintained during medial septum inactivation (Koenig et al. 

2011; Brandon et al. 2011). Second, the distance-specific firing of place cells on a running 

wheel, but not their location-specific firing on the arms of a horseshoe maze, is disrupted by 

septal inactivation (Wang et al. 2015). That its inactivation also modifies the firing rate vs 

running speed profile of speed-modulated entorhinal neurones (Hinman et al. 2016), 

suggests that the medial septum contributes to distance encoding through provision of one 

or more signals specifying the animal’s running speed (Hinman et al. 2016; Hayman and 

Burgess 2016). The exact roles of the medial septum and its constituent neuronal subtypes 

in supporting normal grid cell function remain unclear however. 

One possibility is that the medial septum is central to grid cell function in its role as a 

‘pacemaker’ of theta oscillations. As discussed, theta oscillations are paramount to the 

oscillatory interference class of models describing how grid cell firing could arise from 

multiple theta oscillations encoding an animal’s movement velocity in their relative 

frequencies (Burgess, Barry, and O’Keefe 2007). Evidence of an involvement of the medial 
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septum in the rhythmogenesis of theta oscillations is longstanding. For example, lesions of 

the medial septum abolish theta oscillations (Green and Arduini 1954; Petsche and Stumpf 

1960), electrical stimulation of the medial septum induces theta oscillations (Green and 

Arduini 1954; Petsche and Stumpf 1960; Gray and Ball 1970), and recordings from neurones 

in the medial septum demonstrates a tendency amongst a subset to emit bursts of action 

potentials at theta frequencies (Petsche, Stumpf, and Gogolak 1962; Ranck 1973; King, 

Recce, and O’Keefe 1998). Progress in elucidating the contributions of the distinct neuronal 

subgroups of the medial septum has been hampered by the existence of multiple types of 

theta oscillation however, which may or may not share common mechanisms. ‘Type I’ theta 

is observed during volitional movement, where it changes in frequency with running speed 

(Sławińska and Kasicki 1998), and is insensitive to the muscarinic receptor antagonist 

atropine (Kramis, Vanderwolf, and Bland 1975; Bland et al. 1984). Given its atropine 

sensitivity, Type II theta is thought to depend on cholinergic activity, but the involvement of 

acetylcholine in Type I theta is less clear. Lesions of cholinergic neurones in the medial 

septum reduce Type I theta power, but do not abolish it (Lee et al. 1994; Yoder and Pang 

2005). Optogenetically stimulating cholinergic neurones in the medial septum in behaving 

mice spares theta frequencies while adjacent frequencies are attenuated (Vandecasteele et 

al. 2014), and muscarinic receptor blockade flattens the normal increase in theta frequency 

with running speed (Newman et al. 2013). That cholinergic neurones fire at low rates, have 

long after-spike hyperpolarisation potentials (400-700ms), and only small Ih currents 

(Markram and Segal 1990), suggests they are unlikely to be the ultimate ‘pacemakers’ of 

theta oscillations however. As is seemingly confirmed by in-vivo juxtacellular recordings 

showing that septal cholinergic neurones do not burst at theta frequencies (Simon et al. 

2006). This pacemaker role is generally attributed to the GABAergic neurones, given their 

high firing rates, short hyperpolarisation potentials, and large Ih currents (Sotty et al. 2003), 

as well as their tendency to burst at theta frequencies in-vivo (Borhegyi et al. 2004; Simon et 

al. 2006). Further, GABAergic neurones lead hippocampal theta (Hangya et al. 2009), and 

are extensively connected with hippocampal interneurones (Freund and Antal 1988), which 

in turn pace theta oscillations (Amilhon et al. 2015). While the glutamatergic neurones can 

also pace theta oscillations (Fuhrmann et al. 2015; Robinson et al. 2016), this depends on 

local connectivity within the medial septum, probably through connections onto GABAergic 

neurones (Fuhrmann et al. 2015).  

An alternative possibility is that the medial septum supports grid cell function through 

encoding the animal’s running speed in the firing rates of neurones. A range of entorhinal 

neurones exhibit increases in firing rate as animals move faster (Sargolini et al. 2006; Sun et 

al. 2015; Kropff et al. 2015). As seen, in the continuous attractor class of grid cell models, 
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such activity is combined with directional information to shift the grid cell network’s 

representation of self-location as animals move (Fuhs and Touretzky 2006; Burak and Fiete 

2009). Firing rate coding of speed has been observed in glutamatergic neurones of the 

medial septum (Fuhrmann et al. 2015), and their entorhinal-projecting axons (Justus et al. 

2017). Interestingly however, inactivation of the medial septum with muscimol strengthens 

the speed-rate coding of entorhinal neurones (Hinman et al. 2016). Alternatively, the medial 

septum may not itself encode the animal’s running speed, but instead regulate the activity of 

cortical regions whose function contributes to the estimation of movement velocity. For 

example, Dannenberg and colleagues have proposed that septal cholinergic projections, 

which modulate activity in visual cortical areas, could influence the processing of optic flow, 

which in turn alters running speed estimation (Dannenberg, Hinman, and Hasselmo 2016).  

1.3.2.2 …Through novelty signalling  

A possible involvement of medial septal cholinergic neurones in learning and memory has 

been intensely studied following the identification of reduced choline acetyltransferase and 

acetylcholinesterase activity in post-mortem examinations of patients with Alzheimer’s 

disease (Davies and Maloney 1976). While pharmacological and lesion studies have been 

inconsistent in confirming such a role (Deiana, Platt, and Riedel 2011), numerous 

experiments indicate a cholinergic influence over hippocampal-dependent learning 

(Hasselmo 2006). For example, muscarinic receptor agonists and antagonists produce dose- 

and delay- dependent increases and decreases respectively in the performance of 

macaques in a delayed nonmatching-to-sample task (Aigner and Mishkin 1986). Similarly, 

systemic administration of the muscarinic receptor antagonist scopolamine produces delay-

dependent impairments in a delayed matching-to-sample task in humans (Robbins et al. 

1997).  

A range of data suggests a specific involvement of acetylcholine in the encoding of novel 

information. For example, acetylcholine concentration in the hippocampus increases in novel 

environments (Aloisi et al. 1997), and muscarinic receptor antagonism specifically impairs 

the encoding of novel but not familiar odours in rats in a delayed nonmatching-to-sample 

task (McGaughy et al. 2005). As such, a particular role for acetylcholine in priming networks 

to encode novel information, rather than retrieve existing memories, has been proposed 

(Hasselmo 2006). Acetylcholine could regulate the tendency of the hippocampal formation to 

either encode or retrieve memories through: modulating the relative strength of Schaffer 

collateral and cortical inputs to CA1 (Hasselmo, Schnell, and Barkai 1995; Giocomo and 

Hasselmo 2005), modulating the dendritic and somatic inhibition seen in theta rhythms 
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(Hasselmo, Bodelón, and Wyble 2002), enhancing persistent spiking (Klink and Alonso 

1997) and directly enhancing long term potentiation (Huerta and Lisman 1995).  

Given evidence that acetylcholine promotes the encoding of novel information, an increase 

in cholinergic tone has also been proposed to underlie the increase in grid scale seen in rats 

exposed to a novel environment for the first time (Barry, Ginzberg, et al. 2012; Barry, Heys, 

and Hasselmo 2012). In continuous attractor network models, the scale of the grid cell firing 

pattern depends on the relative balance of excitatory and inhibitory connectivity between grid 

cells with similar spatial tuning, and the degree of excitation in the velocity signal from the 

‘shifter’ cells (Fuhs and Touretzky 2006; Burak and Fiete 2009). Acetylcholine could 

therefore increase grid scale through its presynaptic-inhibition based suppression of 

glutamatergic inputs onto medial entorhinal LII neurones (Hamam et al. 2007). Alternatively, 

in oscillatory interference models, grid scale depends on the relative slope of the constituent 

oscillators’ theta frequency vs running speed relationships (Burgess, Barry, and O’Keefe 

2007). That a reduction in theta frequency is observed in novel environments (Jeewajee et 

al. 2008; Barry, Ginzberg, et al. 2012; Wells et al. 2013), and that systemic administration of 

scopolamine flattens the theta frequency vs running speed slope (Newman et al. 2013), has 

also led to suggestions that cholinergic modulation of theta oscillations could underlie grid 

scale increases in novelty (Barry, Ginzberg, et al. 2012).  

1.3.2.3 Summary 

Given its dense reciprocal interconnectivity with the hippocampus, evidence for involvement 

of the medial septum in both mnemonic and spatial processing is perhaps unsurprising. 

Even in non-spatial contexts, the medial septum, and particularly its cholinergic population, 

appears to play a significant part in supporting learning, possibly through promoting the 

encoding of novel information. However, the effects of inactivation of the medial septum also 

suggest a purely spatial role, possibly through the encoding of running-speed information. 

The relative contribution of the medial septum to mnemonic and spatial processing, and its 

precise role in each, remains poorly understood however. Though highly interconnected with 

each other, the distinct electrophysiological profiles and connectivity of the different genetic 

subgroups of septal neurones suggests some functional segregation between them. Further 

investigation is also required to better understand the involvement of each in the mnemonic 

and spatial functions of the hippocampal formation.  
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2 Grid cells form a global representation of 
connected environments 

Sections of this chapter have been published previously, in Carpenter et al. 2015, and 

Carpenter et al. 2016. 

2.1 Introduction 

As discussed, grid cells appear well suited to encoding an animal’s location within an 

environment, as well as the distances and directions separating the animal from specific goal 

locations. That is, their periodic, modular activity suggests that a population of grid cells 

provides a universal spatial metric. Models asserting the theoretical capacity of grid cells to 

act as a spatial metric have in general only considered what can be decoded from a 

population of cells with perfectly regular triangular firing patterns, as were observed in early 

recordings from grid cells (Hafting et al. 2005). However, more recent investigations have 

demonstrated that sensory cues, and particularly boundaries, can distort grid cell firing. For 

example, stretching the length of a rectangular enclosure along one axis results in a 

concomitant stretching of grid firing patterns in the same axis (Barry et al. 2007). Further, 

grid firing appears to be locally anchored to the boundaries of the enclosure, such that the 

orientation of the pattern can vary across the environment (T. Stensola et al. 2015). Indeed, 

specific enclosure geometries can disrupt the normally uniform triangular symmetry of grid 

firing: grid patterns can locally rotate and rescale in the narrow end of a trapezoidal 

environment (Krupic et al. 2015). Finally, when a square environment is subdivided by 

internal walls to form a sequence of corridors connected by hairpin turns, the grid pattern 

fragments into multiple sub-patterns, which tend to repeat across corridors in which the rat 

runs in the same direction (Derdikman et al. 2009).  

Results demonstrating irregularities in grid cell firing patterns across an environment are 

potentially problematic for conceptions of how grid cells could encode self-location and 

support navigation. For example, a decoding network is unable to distinguish between 

locations where the conjunction of phases across modules (the population phase) repeats 

within an environment. In a hairpin maze, in which grid patterns have been observed to 

fragment and repeat across corridors (Derdikman et al. 2009), if all modules repeated, an 

animal would be prone to errors of ambiguity in using grid cells for self-location and 

navigation. Further, local distortions in grid firing patterns indicate that, across the 

environment, the population phase evolves by an inconsistent amount per unit distance 

travelled by the animal. As such, estimates of the distances separating pairs of locations 



56 
 

based on changes in the population phase will inevitably also be inconsistent across the 

environment. Though the impact of any distortion or discontinuity in grid firing patterns 

depends on how the irregularity manifests across modules, in general the population phase 

can only be fully accurate as a universal metric for space if the grid patterns are continuous 

and regular across the entire environment.  

To establish whether grid firing is determined by local environmental cues, or provides a 

coherent global representation, we recorded from grid cells of the medial entorhinal cortex 

as rats foraged in an environment containing two perceptually identical compartments 

connected by a corridor. During initial exposures to the multicompartment environment, grid 

firing was dominated by local sensory cues, replicating between the two compartments. 

However, with prolonged experience, grid cell firing patterns formed a single, continuous 

representation that spanned both compartments. We therefore provide the first evidence 

that, even in a complex environment, grid firing can form the coherent global pattern 

necessary for them to act as a metric capable of supporting large-scale spatial navigation.  

2.2 Methods 

2.2.1 Animals 

8 experimentally naïve, male Lister Hooded rats (275-400g at surgery) were housed 

communally under a 12:12 inversed light-dark cycle for at least one week prior to surgery. 

Following surgery, animals were held individually in Perspex cages and restricted to 90% of 

their free-feeding body weight. All work was carried out within the terms of the Animals 

(Scientific Procedures) Act 1986, and according to Home Office and institutional guidelines. 

2.2.2 Microdrives and surgery 

During surgery, rats received either one or two custom-made microdrives. Each microdrive 

consisted of 32 HML-coated 17-µm platinum-iridium (90-10%) electrodes twisted into 8 

separate tetrodes. The electrodes were mounted on a single drive-mechanism (tetrodes not 

independently adjustable) which allowed for their advancement through the turning of a 

trapped screw. Before surgery, electrode tips were electroplated in a Platinum solution to 

<150kΩ impedance.  

Anaesthesia was maintained through an isoflurane-oxygen mix (1.5-4L/min). Viscotears 

Liquid Gel (carbomer) was used to cover the rats’ eyes and so prevent corneal damage due 

to their drying out. Rats rested on a water-heated pad which maintained a consistent body 
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temperature throughout surgery. Carprieve (carprofen – 5mg/kg) was injected 

subcutaneously at the start of surgery as an analgesic. Following surgery, Metacam 

(meloxicam - 1mg/kg) suspended in jelly, and Baytril (enroflaxicin – 4ml/100ml) dissolved in 

drinking water, were provided as analgesic and bactericidal agents respectively. 

Following steady anaesthesia, as indicated by loss of toe-pinch and eyeblink responses, and 

slowed breathing, rats were head-fixed in a custom-made stereotaxic frame. An incision was 

made along the midline to expose the skull, which was then levelled in the antero-posterior 

and medio-lateral planes. Seven 1.2mm diameter screw holes were drilled, one for the 

ground-screw and six for screws aiding mechanical stability. In four rats, a trephine was 

used to drill a single craniotomy above dorso-lateral medial entorhinal cortex in one 

hemisphere. In two rats, craniotomies were drilled bilaterally above dorso-lateral medial 

entorhinal cortex in both hemispheres. In the final two rats, craniotomies were drilled above 

the entorhinal cortex in one hemisphere and the hippocampus in the other. Screws were 

then inserted into the previously drilled holes. For medial entorhinal implants, electrodes 

were angled anteriorly 8-10° and implanted 4.5mm lateral to bregma, 0.3mm anterior to the 

transverse sinus, and at a depth of 1.6mm from the surface of the brain. Following insertion, 

a protective metal sheath was lowered around the electrodes, with Vaseline applied to cover 

any tissue still exposed by the craniotomies. Dental cement was then applied to fix the 

microdrives to the skull and screws.  

2.2.3 Electrophysiological recording and behavioural training 

Electrophysiological and positional data were acquired using the DACQ USB (Axona Ltd., St 

Albans, UK) recording system. Rats were connected to the recording system via RC-

coupled, unity-gain operational amplifiers and cables suspended on elastic thread. Each 

channel was amplified 9,000 to 20,000 times, bandpass filtered (360Hz – 7kHz) and 

recorded differentially against a reference channel on a separate tetrode. Spikes exceeding 

a trigger threshold (50-80µV) were sampled at 48kHz and time stamped with a 96kHz clock 

signal. One to two channels were also low-pass filtered (<500Hz), and recorded continually 

without a reference channel at 250Hz as LFPs. Two groups of infrared light-emitting diodes 

(LEDs) were mounted on a custom-made ‘boom’, which was attached to the implant during 

recording. The boom was positioned with four LEDs close to the animal’s head, and two at 

the end of the boom closer to the tail. The animal’s position and head direction was detected 

by a camera mounted to the ceiling above the enclosure, which monitored and recorded the 

position of the LEDs. The animal’s position was inferred from the location of the larger group 

of LEDs, and the angle between the larger and smaller group of LEDs was used to infer the 
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animal’s head direction. In this way, spike, LFP, and positional data were recorded as rats 

moved around enclosures in search of sweetened rice scattered by the experimenter.  

2.2.4 Experimental environment and protocol 

Each recording session began with a 20-minute baseline trial in a square ‘screening’ 

environment. Following identification of grid cells rats were placed in an enclosed white-

plastic travel box while the experimental environment was prepared. Comprising two 

90x90x50cm compartments connected by a 180x40x50cm corridor, the multicompartment 

environment was designed such that the two adjacent compartments would be as 

perceptually identical as possible (Figure 2.1). Painted matte black, the environment was 

placed on a transparent Perspex floor on top of a uniform black plastic groundsheet, and 

surrounded by four black curtains organised in a square. The experimental room beyond the 

curtains was kept dark during the experiment, with polarising auditory cues minimised. Each 

compartment contained a light at the centre of the south wall, 40cm from the floor. Each light 

was a battery-powered bike light mounted to the outside of the compartment and enclosed in 

aluminium foil. The light entered each compartment solely through a 3cm diameter window 

covered with translucent frosted Perspex. No other light source was present. Into the north 

face of each compartment was cut a trapezoidal doorway, measuring 10cm across at its 

base and 50cm across at its top. Each compartment was reinforced along its base with a 

1cm strip of stainless steel, allowing them to be easily moved without changing shape. 

At the beginning of each experimental session the floor of the environment was cleaned. The 

first experimental trial was then started, with the rat being placed in the corridor between the 

two compartments, facing the north wall. Throughout the trial the experimenter moved 

pseudo randomly around the circumference of the environment, distributing rice such that 

the rat explored the whole arena. The tether of the recording system was counterbalanced 

and suspended above the animal using ‘runners’, such that the centre of mass of the tether 

moved freely as the animal did, ensuring no directional cue was provided. After 40 minutes, 

or once coverage of the environment was deemed sufficient, the rat was returned to its travel 

box. The compartments were then removed and the Perspex floor was rotated 180º before 

being cleaned. Once dry, the compartments were replaced in the opposite positions to the 

first trial, such that the compartment in the west of the environment during the first trial was 

now in the east and vice versa. The animal was then again placed in the corridor facing the 

north wall and the second experimental trial began. Rats ran at most one session per day for 

a maximum of 20 sessions. Recordings in the multicompartment environment continued on 

subsequent days as long as at least one grid cell was still identifiable during screening. If no 

grid cell was present, the electrodes were again moved until further grid cells were found. 
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In one animal, following 16 sessions in the multicompartment environment, a ‘remapping’ 

probe session was recorded. Here, the first trial was recorded in the multicompartment 

environment as in all other sessions. In the second trial, the floor texture, wall colour, and 

brightness of the left-hand compartment was changed. In the third trial the environment was 

returned to its normal configuration. The middle trial of this probe session aimed to provoke 

remapping of recorded grid and place cells, so as to infer whether their firing fields were 

anchored locally or globally to sensory cues.  

2.2.5 Spike sorting and binning 

Spikes were assigned to putative clusters offline through fitting a mixture of Gaussians 

according to an expectation-maximisation algorithm using KlustaKwik (Kadir, Goodman, and 

Harris 2014). Putative clusters were then further analysed using the data analysis suite Tint 

(Axona Ltd., St Albans, UK). In particular, Tint was used to coordinate clusters across trials 

and to correct for over-clustering according to the amplitude, waveform, and temporal 

autocorrelation of spikes.  

For two-dimensional firing rate maps, the animals’ recorded positions and spikes were 

assigned to 2x2cm bins covering the environment. Unsmoothed firing rate maps were 

calculated by dividing the number of spikes assigned to each bin by the cumulative dwell 

time in each bin. Smoothed ratemaps were constructed using a 5x5 bin boxcar filter, with the 

firing rate in bin i equal to the number of spikes in the kernel centred on i divided by the 

occupancy of the kernel.  

For directional ratemaps, recorded heading directions and spikes were assigned to 4° 

directional bins between 0 and 360°. Smoothed circular ratemaps were generated using a 5 

bin boxcar filter. The Kullback-Leibler Divergence (KL Divergence) was used to measure the 

difference between the resulting circular ratemap and a uniform circular distribution with the 

same mean firing rate. Cells were classified as head direction cells where the KL Divergence 

in the screening environment exceeded 0.15.  

2.2.6 Spatial autocorrelograms and grid cell inclusion criteria 

For inclusion in subsequent analysis, putative grid cells were assessed using a gridness 

measure, following Sargolini et al. 2006. For both the screening environment, and for each 

compartment of the multicompartment environment, a spatial autocorrelogram was 

constructed from the smoothed ratemap, according to: 
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𝑟(𝜏𝑥 , 𝜏𝑦) =

𝑛Σ𝜆(𝑥, 𝑦)𝜆(𝑥 − 𝜏𝑥 , 𝑦 − 𝜏𝑦) − Σλ(x, y)Σλ(x − τx, 𝑦 − 𝜏𝑦)

√𝑛Σ𝜆(𝑥, 𝑦)2 − (Σ𝜆(𝑥, 𝑦))
2
 . √𝑛Σ𝜆(𝑥 − 𝜏𝑥 , 𝑦 − 𝜏𝑦)

2
− (Σ𝜆(𝑥 − 𝜏𝑥 , 𝑦 − 𝜏𝑦))

2
 

(1) 

 

Where 𝑟(𝜏𝑥 , 𝜏𝑦) is the autocorrelation between bins with spatial offset 𝜏𝑥 and 𝜏𝑦. λ(𝑥, 𝑦) is the 

firing rate in bin (𝑥, 𝑦), while 𝑛 is the total number of bins. The six local maxima closest to but 

excluding the origin of the autocorrelogram were used to identify the orientation, scale, and 

gridness of the putative grid cell. Orientation was measured as the angle from a consistent 

arbitrary horizontal reference line to the first peak of the autocorrelogram in an anticlockwise 

direction. The median distance from the origin to the six peaks was used to estimate the 

scale of the putative cell. Finally, the gridness score was calculated by rotating the 

autocorrelogram in 30° steps for 150°, and taking the Pearson product-moment correlation 

coefficient between each rotated autocorrelogram and the un-rotated autocorrelogram, 

including only the region between the edge of the central peak and the envelope of the six 

closest peaks. The maximal correlation obtained at 30, 90, or 150° was subtracted from the 

minimum correlation found at 60 or 120° to produce the gridness score. When analysing the 

gridness of firing patterns in the multicompartment environment, gridness scores were 

calculated separately for each compartment and subsequently mean averaged.  

For each putative grid cell, the gridness score obtained from the screening ratemap and the 

multicompartment ratemap were compared to the distribution of gridness scores observed 

following 1000 shuffles of the positional and spiking data of the same cell during the same 

trial. That is, for each shuffle, the relative timing of the position data relative to the spike data 

was circularly shifted by a random offset of at least 20 seconds, with the autocorrelogram 

and gridness then calculated using the ratemap resulting from each shift. To be considered a 

grid cell and included in subsequent analysis, a cell was required to have a gridness score in 

the 99th percentile of the distribution of shuffled gridness scores in either the screening or 

multicompartment environment.  

To ensure that no single grid cell recorded across tetrodes was considered to be two 

separate cells, where any putative cells with similar firing fields were observed within or 

between tetrodes, a spatial cross-correlation was first performed. If the two putative grid cells 

had consistent spatial firing the temporal cross-correlation between the cells was 

subsequently analysed. Where pairs of putative grid cells had both high spatial and temporal 

cross-correlations they, were considered to be a single cell.  

85 grid cells passed these inclusion criteria, with a mean average gridness of 0.89 in the 

screening environment.   
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2.2.7 Analyses 

2.2.7.1 General 

The 85 grid cells were recorded across 99 sessions. There were 59 instances of recording a 

cell in a session in which that cell had been recorded in at least one previous session. In 

total, there were 144 grid cell/session conjunctions therefore (85 unique cells + 59 instances 

of re-recording). In 115/144 of the cell/session conjunctions the grid cell was held across 

both multicompartment trials. Here, any calculated metric was mean-averaged across the 

two trials, yielding a single value for each cell in each session. 

Unless specifically analysing the corridor, all other analyses discarded the corridor and 

analysed only ratemaps formed by the left and right compartments separated by the gap 

created by the central wall. As is discussed fully in Section 2.3.5, while activity in the corridor 

was grid-like, with peaks and troughs in firing (Figure 2.5A), and stable (Figure 2.5B), 

corridor firing patterns were also significantly less regular and hexagonal than in the 

compartments (Figure 2.5C). This irregularity is consistent with past recordings of grid cells 

in linear environments (Hafting et al. 2008; Domnisoru, Kinkhabwala, and Tank 2013), and 

was likely exacerbated by highly stereotyped behaviour: in the corridor animals tended to run 

in a ballistic fashion between the compartments, resulting in a highly uneven sampling of 

space and direction (Figure 2.5D-F). As any ideal grid could only be poorly fitted to the 

corridor, the comparison of alternative models through the fitting of ideal grids was 

uninformative. 

2.2.7.2 Correlations 

To measure the similarity of grid cell representations between the left and right 

compartments, a Pearson product-moment correlation coefficient was calculated comparing 

the firing rates in equivalent bins of the smoothed ratemaps of the two compartments. Bins 

were discarded if they were unvisited in either compartment, or if they had a firing rate of 0 in 

both compartments.  

Further correlations were used to assess whether grid cell representations tracked the 

movement of the compartments between trials. For each cell recorded across both trials in a 

single day, Pearson product-moment correlation coefficients were calculated between firing 

rates in equivalent bins in the same compartment in successive trials (‘compartment-wise’ 

correlation), or between equivalent bins in the same position in global space in successive 

trials (‘space-wise’ correlation).  
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2.2.7.3 Fitting of ideal grids 

Ideal grid patterns were fitted to ratemaps according to three models, to analyse whether the 

recorded grid representations could be best described as being determined by local or global 

features of the environment. The idealised grid patterns were fit by identifying that which 

achieved the highest spatial correlation with the recorded ratemap. The ‘independent’ model 

was fit first. Here, 900 ideal grids were generated, each the product of three cosine gratings 

with wave vectors k1, k2, and k3 and phase offsets c1, c2, and c3. The wave vector 𝑘⃗ =

(
2𝜋

𝜆
cos(𝜑) ,

2𝜋

𝜆
sin(𝜑)) where λ is the grating wavelength (λ = G√3/2, where G is the grid 

scale), and φ is the grating orientation. The three wave vectors form a regular triangular grid 

where orientations differ by 
2𝜋

3
 (i.e., 120°) and c1 + c2 = c3. As such, firing rate as a function of 

location is given by:  

 𝑓(𝑥 ) = 𝐴(1 + cos(𝑘1
⃗⃗⃗⃗ . 𝑥 + 𝑐1))(1 + cos(𝑘2

⃗⃗⃗⃗ . 𝑥 + 𝑐2)) (1 + cos(𝑘3
⃗⃗⃗⃗ . 𝑥 + 𝑐3)) (2) 

 

where A determines the peak firing rate, and does not affect spatial correlations with f(𝑥 ). 

Each of the 900 ideal grids was a unique combination of one of 30 increments of scale and 

30 increments of orientation. Orientation varied in increments of 2° between 0 and 58°, while 

scale varied in equal increments between the scale of the cell as estimated from the 

screening autocorrelogram ±20%. Spatial cross-correlograms between the ideal grid and the 

recorded ratemap were used to find the Pearson product-moment correlation at all spatial 

offsets, ignoring unvisited bins. From the spatial cross-correlogram the phase offsets which 

yielded the highest correlation for that orientation and scale combination were then 

identified. The independent fit value was then calculated as the highest correlation found 

between the independent model and the ratemap across all combinations of scale, 

orientation, and phase. The independent model was used to assess the scale and 

orientation of the recorded grid, with subsequently fitted ‘local’ and ‘global’ models 

constrained to the orientation and scale achieving the best fit in the independent model. 

Further, as the independent fit indicates the highest correlation that can be achieved 

between any ideal grid and the ratemap, grid cells with an independent fit <0.45 were 

excluded from subsequent analysis to account for cells which could not be well fitted by any 

model. A criterion of 0.45 was chosen as it was near the median independent fit of 0.4702. 

As such, just under half of grid cell/session conjunctions were excluded (65/144, 45.14%). 

Varying the required inclusion criterion between 0.4 and 0.5 had little effect on the overall 

conclusions drawn from the results. 
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To subsequently fit the local and global models, two additional ideal grids were generated, 

each with the same orientation and scale as was found to achieve the best independent fit. 

In the local model, the ideal grid had the same phase in the two compartments, whereas the 

global grid had a continuous phase across both compartments. The Pearson product-

moment correlations between the firing rate map and the local and global ideal grids was 

then calculated at each phase offset as above. The maximum correlations achieved between 

the local and global grid and the recorded firing pattern were then identified. These 

maximum correlations were divided by the maximum correlation found under the 

independent fit, giving normalised local and global fit values, with which comparisons could 

be made across cells of differing regularity.  

To assess the significance of the local and global fits, each recorded ratemap was also fitted 

with 1000 randomly phase offset grids. As in the local and global models, each of the 

randomly offset grids was constrained to the same orientation and scale as was found to 

achieve the best fit under the independent model. However, each had a random phase offset 

(0-2π along the first two grid axes) between the two compartments. For each of the 1000 

grids, a spatial cross-correlogram with the recorded ratemap was calculated to find the 

spatial offset which achieved the maximum correlation between that ideal grid and the 

ratemap. Again, as in the local and global model, the maximum correlation at any offset was 

divided by the independent fit to yield the fit value for each randomly offset grid. For each 

cell/session conjunction, the proportion of the 1000 randomly phase offset grids which 

achieved a fit greater than that of the local and global models was then calculated. That is, 

we identified where the local and global fits fell in the distribution of fits achieved by the 1000 

randomly offset grids. These values were then collapsed (mean averaged) within animals to 

create a single value for each animal in every session in which grid cells were recorded. 

Under the null hypothesis of no consistent phase relationship between the grid firing in each 

compartment, a Wilcoxon signed rank test was used to examine whether the observed 

proportions of the 1000 grids with a better fit than the local or global model differed 

significantly from 0.5. This test was applied in the first and last five sessions. 

To identify whether the apparent transition between local and global representations could 

be explained by biases in the sampling of different grid scales across time, we repeated the 

above analyses on particular subsets of the data (see Section 2.3.3). First, the analysis was 

repeated including only those cells with a scale of 45-55cm, as estimated from the spatial 

autocorrelogram calculated from the screening environment’s ratemap. In addition, the 

analysis was repeated on only those grid cells from a single animal in which a number of 

cells with independent fits > 0.45, and from a single module, were recorded over a number 

of sessions. Grid cells were assigned to putative modules based on the scale of the cell in 
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the screening environment. Cells were considered to be of the same grid module if the ratio 

of the larger to the smaller scale cell was less than 1.4 (H. Stensola et al. 2012). 

Finally, we fitted recorded grids in the same way as described above, except the thirds of 

each compartment closest to and furthest from the corridor were fitted separately. Again, for 

each recording, we discarded the corridor to produce a ratemap comprising both 

compartments separated by the gap due to the dividing walls. Here, we then divided the two 

compartments into three sections, according to distance from the corridor, to produce three 

ratemaps of ~180x30cm. For each cell/trial conjunction, idealised grids were then fitted to 

the thirds closest to and furthest from the corridor, under the same principles as above. 

Again, fits were collapsed within animals such that each data point corresponded to the 

average of all cells recorded from one animal in one session. These third-compartment fits 

were then used to test the hypothesis that the thirds of each compartment closest to the 

corridor are more globally coherent/less locally coherent than the thirds furthest away. That 

is, as the thirds nearer the corridor are closer together, there is a reduced distance over 

which the path integrator may accumulate error, potentially resulting in a more globally 

coherent firing pattern. In the first five sessions, when the grids displayed a local 

representation, a paired, one-tailed t-test was used to assess whether the thirds furthest 

from the corridor were significantly more local than the thirds closest to the corridor. In 

contrast, in the last five sessions, when the grids displayed a global representation, a paired, 

one-tailed t-test asked whether the grid patterns were more globally coherent in the thirds 

closest to rather than furthest from the corridor.  

2.2.7.4 Analysis of head direction cells 

To analyse whether the activity of head direction cells disambiguated the two compartments, 

we calculated the angle of directional tuning and peak firing rate of head direction cells 

separately for the two compartments. Directional firing rate maps were calculated as 

described above, using positional and spiking data from the left or right compartments 

separately. We then produced an angular cross-correlogram between the two directional 

firing rate maps for each cell, by rotating one ratemap relative to the other and calculating 

the correlation between the two at each offset. To calculate the degree of angular offset 

between the directional tuning in each compartment, we calculated the distance to the 

closest positive peak of the cross-correlogram from the origin, such that an offset of 0 

indicates the highest correlation in the cross-correlogram occurred with no rotation of either 

directional ratemap. Angular offsets were then plotted as a function of experience of the 

multicompartment environment. The correlation between angular offset and recording 

session was used to assess whether the representation similarity of head direction cells in 
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the two compartments changed with increasing experience. We next calculated the firing 

rate peak separately for the left and right compartments. A paired Wilcoxon signed-rank test 

was used to analyse whether head direction cell firing rates disambiguated the two 

compartments.  

2.2.7.5 Analysis of place cells 

In one animal (that in which the remapping experiment was performed), a number of CA1 

place cells were recorded concurrently with contralateral grid cells. Place cells were 

identified by eye based on ratemaps recorded in the screening environment. Only those 

putative place cells with a firing field in one of the main compartments, and with a peak rate 

of at least 1Hz were analysed further. Firing fields were defined as areas of at least 20 

contiguous bins whose firing rates were at least two times greater than the mean firing rate 

across the compartment.  

For each valid place cell, a Pearson product-moment correlation coefficient was calculated 

between the firing rate maps of each compartment, in an identical fashion to the method 

described above for grid cells. A correlation value was calculated for each trial, and 

averaged together for each session. Correlation values for each session were plotted as a 

function of experience of the environment. The standard deviation of the correlation values 

of each session were also calculated, and plotted against experience in the same way.  

In addition, the peak firing rates of each cell in each compartment were identified. The 

absolute difference in the compartments’ peak firing rates was then calculated, and the 

standard deviation of the peak rate differences plotted as a function of experience of the 

environment.  

2.2.7.6 Phase offset analysis 

The conclusions drawn from the fitting of ideal local and global grids were verified through a 

separate analysis of observed grid phases. In particular, we identified the difference in grid 

phase between the observed firing patterns in the right-hand compartment, and that 

predicted from observed firing patterns in the left-hand compartment extended under a local 

or global representation. First, an ideal grid was fitted to the firing rate map recorded in the 

left-hand compartment of each grid cell, as per the fitting principles described above. The 

ideal fitted grid was used to analyse the scale, orientation, and phase of the recorded grid in 

the left compartment. The expected location of grid fields in the right-hand compartment 

were then predicted, based on the identified grid parameters observed in the left-hand 

compartment. That is, the local model predicts that firing fields replicate in the two 
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compartments, so the phase in the right-hand compartment should equal the left. In the 

global model a single grid spans both compartments, thus the phase in the left compartment 

was ‘projected’ out, to identify the phase in the right-hand compartment, such that placed 

adjacent to one another, a single grid spans both compartments. An ideal grid was then 

fitted to the firing pattern recorded in the right-hand compartment. Thus, the right-hand 

compartment’s recorded phase could be compared to the phase predicted under the local 

and global models. The reported ‘phase error’ between the data and the local and global 

models was then calculated as the magnitude of the vector connecting the observed and 

predicted phases in grid phase-space, and collapsed across all cells recorded in the same 

animal in the same session. Grid cells were again discarded where the previously calculated 

independent fit was <0.45. Further, the 10 data points where the predictions made by the 

local and global model were most similar were also discarded, to remove cells in which the 

models could not be distinguished. This equated to (18.52% of the 54 collapsed data points 

with an independent fit >0.45). 

2.2.7.7 Corridor grid cell classifier 

The long and thin shape of the corridor meant analysis of the hexagonality of grid cell firing 

using a spatial autocorrelogram was unfeasible due to only sampling a small number of 

fields. To assess whether firing in the corridor was ‘grid-like’, we therefore used a grid cell 

classifier developed for analysing grid cells based on one-dimensional linear-track firing 

(Domnisoru, Kinkhabwala, and Tank 2013). A smoothed firing rate map of the corridor of the 

multicompartment environment was first calculated. For each 2x2cm bin, a shuffled 

distribution of firing rates was calculated by shifting the positional information relative to 

spike times by at least 20 seconds, and recalculating the firing rate in each bin for each of 

1000 shuffles. The proportion of shuffles which had a firing rate greater than that of the 

original firing rate map was then calculated for each spatial bin. These proportions therefore 

allowed identification of bins in the original ratemap in which firing rates were higher or lower 

than would be expected by chance. Firing fields were defined as areas of at least 20 

contiguous bins in which firing rates were greater than the 85th percentile of the shuffle 

distribution for those bins. Out of field regions were defined as areas with at least 20 

contiguous bins where firing rates were less than the 5th percentile of the shuffled 

distribution. Cells were then classified as grid cells if: i. the corridor contained at least 3 firing 

fields as well as at least one out of field region. ii. 30% or more of the bins were assigned to 

either in-field or out-of-field areas. iii. The mean in-field to out-of-field firing rate ratio was 

greater than 2. The proportion of grid cells recorded in each day which satisfied these criteria 

was then plotted as a function of experience of the environment. 
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2.2.7.8 Remapping analysis 

In one animal, as described, a remapping probe session was recorded. This session 

consisted of three trials, with trial 2 a probe in which the sensory features of the left-hand 

compartment were changed. Trials 1 and 3 were normal multicompartment trials, as 

recorded on all other days. 

To quantitatively assess changes in firing patterns in trial 2, Pearson product-moment 

correlation coefficients were calculated, as described previously, separately for the left and 

right compartments, between trials 1 and 2, and trials 1 and 3.  

2.3 Results 

2.3.1 Grid cell firing disambiguates the compartments after prolonged experience 

We investigated whether grid cell firing patterns are determined by local sensory cues, or if 

they provide a coherent global representation of space, by recording from 85 medial 

entorhinal grid cells in 8 rats, as they foraged within an environment containing two 

perceptually identical compartments connected via a corridor (Figure 2.1A). We 

hypothesized that if grid cell representations are dominated by sensory cues, their firing 

should replicate between the two compartments. Conversely, if grid cell activity is 

determined by the global spatial features of the environment, their firing patterns should 

distinguish the two compartments due to their different absolute positions in space.  

During early sessions, periodic firing patterns typical of grid cells were present in the 

environment and were replicated between the two compartments (Figure 2.1B). However, 

with increasing experience, the similarity of the representations between the two 

compartments decreased (Figure 2.1C); apparent in a negative correlation between the 

session number and the spatial correlation of firing rates between the two compartments (r = 

-0.67, r2 = 0.45, p = 1.67x10-12, Figure 2.1D). The decrease in representation similarity 

across sessions was accompanied by an increase in the triangular regularity of grid cell firing 

patterns within the compartments (Figure 2.1F). Quantitatively, in the first five, but not the 

last five sessions, gridness in the screening environment was greater than in the 

multicompartment environment (one sample t-tests, t41 = 11.46, p = 2.33x10-14 and t25 = 

0.852, p = 0.402 respectively, Figure 2.1G); with the difference in gridness between the 

screening and multicompartment environments greater in the first than the last five sessions 

(unpaired t-test, t66 = 5.28, p = 1.44x10-6). 
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Figure 2.1 With increasing experience of the multicompartment environment, grid cell firing patterns 
show reduced representation similarity between the compartments, and increased regularity. A, 
Schematic representation of the multicompartment environment and protocol for each recording session. B-C, 
Example firing rate maps. The left and right ratemaps in each row are the same cell recorded in trial 1 and trial 2 
respectively. Hotter colours indicate higher firing rates, unvisited bins are white. The correlation values above 
each plot are the spatial correlations of firing rates between the two compartments. B, Example grid cells 
recorded during early exposures to the multicompartment environment, where firing fields replicated between 
compartments. C, Example grid cells from late recording sessions, where firing patterns distinguished the 
compartments. D, Spatial correlations of grid cell firing rates between the compartments as a function of the 
animals’ experience of the environment. Each data point represents the average correlation across all cells from 
one animal in one session, with different animals plotted in different colours. E, Spatial correlations between grid 
cell firing in equivalent absolute locations in successive trials (‘space-wise correlation’: e.g. compartment A trial 1 
vs compartment B trial 2) or between equivalent locations within the same physical compartment in successive 
trials (‘compartment-wise correlation’: e.g. compartment A trial 1 vs compartment A trial 2), showing mean + SEM 
for cells in the last five sessions. F, The difference in gridness of firing patterns between the familiar square 
screening environment and the average of the gridness in each compartment (screening gridness – 
multicompartment gridness) as a function of experience. Plotted values are mean ± SEM across all cells 
recorded in each session. G, Difference in gridness (screening gridness – multicompartment gridness) in the first 
and last five sessions, showing mean and SEM. *** = p< 0.001. 

To eliminate the possibility that unidentified local sensory cues allowed disambiguation of the 

two compartments, we verified that firing was stable in global space, and did not track the 

physical compartments when their positions were switched between trials. Specifically, in the 

last five sessions, the inter-trial spatial correlation between compartments in the same 

location was greater than between the same physical compartments in their new positions 

(paired t-test, t20 = 6.56, p = 2.16x10-6 Figure 2.1E).  
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2.3.2 Grid cell firing transitions from a local to a global representation with experience 

To determine whether grid firing in the two compartments predominantly reflected a local or 

global reference frame, we fitted ideal grid patterns to the recorded firing rate maps 

according to three models. Briefly, the grids were first fit by the ‘independent’ model, in which 

grid phase was allowed to vary freely between the two compartments, while orientation and 

scale were required to be consistent. The independent fit represented the best possible fit of 

an ideal grid pattern to the data, and was used to exclude grids too irregular to be well fit by 

any model; a necessary step given the reduced gridness seen in the multicompartment 

environment, particularly during early sessions (Figure 2.1F). The independent fit also 

determined the scale and orientation used in the ‘local’ and ‘global’ models. In the local 

model, the fitted grid had the same phase in each compartment, such that the firing fields 

replicated. The global model required the phase to be continuous across the compartments, 

such that a single grid spanned the two. Local and global fits were normalised by the 

independent fit to allow comparison across cells which differed in the regularity of their firing 

patterns.  

During early exposures, grid cell firing in the two compartments was best described by the 

local model. (Figure 2.2A). However, with increasing experience, the local model’s fit to the 

data decreased (r = -0.591, r2 = 0.349, p = 2.5x10-6, Figure 2.2C). In contrast to the local 

model, the fit to the global model increased with experience, showing a positive correlation (r 

= 0.419, r2 = 0.175, p = 0.0016, Figure 2.2B, D). A two-way ANOVA revealed an interaction 

between experience of the environment and the goodness of fit of the two models 

(Session*Model, F(19,68) = 1.89, p = 0.0293, Figure 2.2E). We assessed whether, in the first 

and last five sessions, the local or global models fitted the data significantly better than 

would be expected under the null hypothesis of no consistent phase relationship between 

the grids in each compartment. Specifically, each recorded ratemap was fitted by 1000 ideal 

grids with random phase offsets between the two compartments. For each cell/session 

conjunction with an independent fit > 0.45, we then calculated the proportion of the 1000 

randomly phase offset grids which achieved a better fit than the local and global models. If 

no consistent phase relationship between the grids in each compartment existed, the local 

and global models would on average fall in the middle of the distribution of the randomly 

offset grids. In contrast, in the first five sessions, the proportion of the 1000 grids with a 

better fit than the local model was significantly lower than 0.5 (Wilcoxon signed-rank test 

(WSRT), z = -3.72, p = 1.96x10-4, Figure 2.2F). However, in the last five sessions, the local 

model no longer fit the data better than would be expected by chance (WSRT, p = 0.6377, 

Figure 2.2F). Conversely, in the last five sessions, but not the first five, the global model’s fit 

to the data was significantly better than expected from the null distribution (WSRTs, p = 
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0.0019 & z = -0.109, p = 0.913, Figure 2.2F). It is important to note that local and global 

representations are not mutually exclusive: grid patterns can be both identical in the two 

compartments and continuous across them both. As such, one would not necessarily expect 

consistently low local fits during late sessions nor consistently low global fits during early 

sessions.  

An independent ‘phase offset’ analysis confirmed transition from a local to a global firing 

pattern (Figure 2.3G-H). Here, we calculated the difference in grid phase between that 

observed in the right-hand compartment, and that predicted from extending firing in the left-

hand compartment to the right according to a local or global representation. The phase error 

was calculated as the magnitude of the vector in grid phase space which connected the 

observed and predicted phases. The phase error from the local model increased across 

sessions (r = 0.627, r2 = 0.394, p = 5.18x10-7). Phase error from the global model instead fell 

as animals became more familiar with the environment (r = -0.551, r2 = 0.304, p = 1.05x10-4).  

Implicit in both analyses described above is the assumption that the scale and orientation of 

grid firing patterns are the same in the two compartments. Given that grid scale and 

orientation can vary across larger environments (T. Stensola et al. 2015; Krupic et al. 2015), 

we compared the differences in the autocorrelogram-based estimates of these values seen 

between the compartments within a trial, with the differences in estimates seen between the 

two trials in each session. In both cases, the differences in estimates of both grid scale and 

orientation were tightly clustered around 0, indicating both temporal and spatial consistency 

(Figure 2.3A-D). The differences in estimated values between compartments did not differ 

from those observed between trials in a session (WSRTs: Scale: z = -0.739, p = 0.459; 

Orientation: z = 0.898, p = 0.369). These results therefore indicate that the orientation and 

scale were no more different between the two compartments than they are between adjacent 

trials, suggesting that the assumption of equal scale and orientation is unlikely to be 

problematic. 
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Figure 2.2 Grid cell firing patterns transition from a local to a global representation with increasing 
experience. A-B, Fits of local and global models to grid cell firing patterns in the two compartments. The local 
model was an ideal grid constrained to replicate between the two compartments, whereas the global model was a 
single continuous grid spanning both compartments. Each row is one cell in one trial: the underlying ratemaps in 
the left and right columns are the same. The white rings overlaid indicate the best fitting local and global models 
in the left and right columns respectively. Fit values show the spatial correlations between the local or global 
models and the data, normalised by the independent model’s fit. A, Examples of grid cells recorded during early 
sessions, where the local model best fit the data. B, Example grids recorded during late sessions, where the 
global model best fit the data. C-D, The fit between grid cell firing patterns and ideal local (C) and global (D) grids 
respectively, as a function of experience of the environment. E, The difference in the fit (global fit – local fit) 
between the global and local models across sessions. In C, D, and E, each data point represents the average fit 
for all cells with an independent fit > 0.45 recorded from one animal in one session. F, The proportion of 1000 
ideal grids, with random phase offsets between compartments, with a better fit to the data than the local or global 
models. Values are mean + SEM across all cells with an independent fit > 0.45 in the first or last 5 sessions. 
Wilcoxon signed rank tests compare observed values to an expected median of 0.5. ** = p < 0.01,*** = p < 0.001. 
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Figure 2.3 Grid properties are consistent in the two compartments; grid phase analysis confirms local to 
global representation transition.  A-D, Grid properties are consistent in the two compartments. For each grid 
cell recorded in both trials of a single session, the differences in grid scale (A-B), and orientation (C-D), between 
trial 1 and trial 2 (A, C), and between the left and right compartments (B, D), were calculated from each trial’s 
spatial autocorrelogram. Only cells with a fit of the independent model of 0.45 or greater were included, to discard 
cells which were sufficiently irregular that estimates of grid properties were inaccurate. E-F, Both small and large 
scale grid cells transition from local to global representations. The difference in fits between the global and local 
model (global – local) is plotted as a function of experience of the environment separately for grid cells with scale 
greater than (E) or less than (F) the median scale. Significant positive correlations are observed in both smaller 
and larger scale grid cells (smaller: r = 0.506, r2 = 0.256, p = 0.0071; larger: r = 0.686, r2 = 0.471, p = 0.0001). G-
H, The phase offset analysis confirms transition from a local to a global representation. Phase error equates to 
the magnitude of the vector in grid-phase space connecting the observed phase in the right-hand compartment to 
the phase predicted under local or global models based on grid parameters estimated from firing fields in the left-
hand compartment. Each data point represents the average phase error for all cells recorded from one animal in 
one session.  
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2.3.3 The observed local to global transition cannot be explained by biases in sampling of 
grid modules across time 

Grid cells are organized into functionally distinct modules (Barry et al. 2007; H. Stensola et 

al. 2012). These modules are distributed non-uniformly in the brain, with modules in dorsal 

areas of the medial entorhinal cortex often having smaller scale firing patterns than those 

found more ventrally (Hafting et al. 2005; Brun, Solstad, et al. 2008). Here, as is typical of 

recordings in the entorhinal cortex, electrodes were implanted dorsally and advanced 

ventrally to locate grid cells. As such, the transition from a local to a global representation 

could be due to biases in the sampling of modules across time. Specifically, if smaller scale 

grid modules formed local representations, and larger scale modules global representations, 

the dorsal to ventral progression of recordings could produce an artefactual local to global 

representation shift across time. To eliminate this possibility, we repeated the fitting analysis 

separately for cells with scale either above or below the median grid scale. Both groups 

exhibited a significant shift from local to global representations (Figure 2.3E, F). However, as 

we did not record any grid cells with a scale less than the median in the last 5 sessions, we 

further analysed the single grid scale (45-55cm) for which grid cells with an independent fit > 

0.45 were recorded throughout the experiment. Again, the local model’s fit decreased with 

experience (r = -0.619, r2 = 0.383, p = 0.0048, Figure 2.4A), while the global model’s fit 

increased (r = 0.80, r2 = 0.64, p = 3.90x10-5, Figure 2.4B). Indeed, within this scale, grid firing 

patterns changed with experience from significantly more local to significantly more global 

than expected by chance between the first and last five sessions (Figure 2.4C).  

The same transition was also evident when analysis was further restricted to grid cells from 

a single module within an individual animal. In the animal with the most sequential 

recordings of grid cells from a single grid module and with an independent fit > 0.45 (nine 

sessions), a two-way ANOVA revealed an interaction between experience of the 

environment and the goodness of fit of the two models (Session*Model, F(8,25) = 9.99, p = 

0.0019, Figure 2.4D, E), with the global model’s fit increasing significantly with experience (r 

= 0.719, r2 = 0.517, p = 0.0056, Figure 2.4E). That the transition from local to global 

representations is apparent within individual grid scales and modules demonstrates that it 

cannot be explained simply by biases in the sampling of grid scales and modules across 

time. 
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Figure 2.4 The transition from local to global representations cannot be explained by biases in the 
sampling of grid cells.  A-B, The fit between recorded firing patterns of grid cells of a single scale, and ideal 
local and global grids respectively, as a function of experience of the environment. Only cells with a scale of 45-
55cm in the screening environment are included. Each data point represents the average local and global fits 
across all 45-55cm cells with an independent fit > 0.45 recorded from one animal in one session. C, The 
proportion of 1000 ideal grids, with random phase offsets between the compartments, with a better fit to the cells 
in A and B than the local or global models. Values are mean + SEM across 45-55cm cells with an independent fit 
> 0.45 in the first or last 5 sessions. Wilcoxon signed rank tests compare observed values to an expected median 
of 0.5. D-E, The fit between recorded firing patterns of grid cells from a single module in a single animal and ideal 
local and global grids respectively, as a function of experience. Dashed lines extend the least-squares lines to 
predict local and global fits in unrecorded sessions. F, The best fit achieved by the local model in the first five 
sessions, and the global model in the last five sessions, to the grid patterns in the thirds of the compartments 
nearest to or furthest from the corridor. Values are mean + SEM of the collapsed average within animals of cells 
with an independent fit > 0.45. Paired, one-tailed t-tests assess whether the difference in observed means differs 
from an expected mean of 0. * = p < 0.05, ** = p < 0.01.  

2.3.4 Transition to a global representation may depend on path integration 

The firing of grid cells likely depends in part on their performing path integration based on 

inputs encoding the animal’s direction and speed of movement (Fuhs and Touretzky 2006; 

Burgess, Barry, and O’Keefe 2007). We therefore asked whether there was any difference in 

the grid representations between the thirds of each compartment closest to and furthest from 

the corridor. We hypothesized that the reduced distance between the sections of the 

compartments nearest the corridor may result in the accumulation of less path integration 

error, and so produce more accurate global representations than in the sections furthest 

away. Confirming this hypothesis, in the first five sessions, grid patterns in the near third of 

each compartment were significantly less local than those in the furthest third (paired one-
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tailed t-test, t17 = -1.93, p = 0.0352, Figure 2.4F). In contrast, in the last five sessions, grid 

patterns in the thirds closest to the corridor were significantly more global than those in the 

furthest thirds (paired one-tailed t-test, t10 = 1.96, p = 0.0392, Figure 2.4F).  

2.3.5 Grid cell firing patterns in the corridor 

The local vs global fitting analysis was performed on a composite ratemap encompassing 

only the main two compartments, with activity in the corridor excluded. While firing patterns 

in the corridor were stable and ‘grid-like’, consisting of peaks and troughs in firing, they were 

sufficiently irregular to make uninformative the comparison of the relative goodness of fits of 

different models. The irregularity of firing observed in the corridor was consistent with past 

recordings of grid cells in linear environments (Hafting et al. 2008; Domnisoru, Kinkhabwala, 

and Tank 2013).  

 

Figure 2.5 Firing patterns in the corridor are ‘grid-like’ and stable, but irregular, and co-occur with highly 
stereotyped behaviour.  A, The proportion of cells designated as grid cells by a grid cell classifier analysing 
firing in the corridor, as a function of experience of the environment. B, The spatial correlation of firing rates in 
trial 1 with the firing rates in equivalent positions in space in trial 2, calculated separately for the corridor and 
compartments. Data are presented as mean + SEM across all cells recorded in both trials of a single session. C, 
The best fit achieved between ideal grids and the recorded firing patterns in the corridor or compartments. Ideal 
grids fitted were required to have the same scale and orientation as those found to achieve the best independent 
fit. D, Top: cumulative position plot of the path taken by the animal in a typical 40-minute trial. Bottom: heat map 
of the unsmoothed dwell times for the same trial, hotter colours indicate longer dwell times. E, The coefficient of 

variation ( σ / µ ) of dwell time between bins, averaged across all recording trials. F, The mean proportion of time 

spent in each head direction bin, across all animals in the corridor (red) and compartments (blue).  
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The correlations of spatially-binned firing rates across the first and second trial were not 

significantly different between the corridor and compartments (paired t-test, t114 = 1.28, p = 

0.204, Figure 2.5B), indicating similar stability across time. However, firing patterns in the 

corridor could only be poorly fit with an idealised grid pattern: only a very small number of 

trials had greater fits in the corridor than the compartments (Figure 2.5C), despite grid firing 

in the compartments being relatively irregular (Figure 2.1F). As in the main compartments, 

firing appeared to become more grid-like in the corridor with experience. A classification 

procedure designed for one-dimensional environments was used to assess how grid-like 

activity in the corridor was (Domnisoru, Kinkhabwala, and Tank 2013). A significant 

correlation was found between session number and the proportion of cells whose firing in the 

corridor was significantly grid-like according to the classifier (r = 0.524, r2 = 0.274, p = 

0.0177, Figure 2.5A). The irregular firing patterns observed in the corridor likely stemmed 

from the highly-stereotyped behaviour displayed there. Example cumulative position and 

binned dwell-time plots indicated that rats tended to run in a highly ballistic manner between 

the two compartments. Areas of the corridor not directly between the entrances to the main 

compartments were only sampled relatively poorly (Figure 2.5D). The coefficient of variation 

(standard deviation / mean) of binned dwell times in the corridor was significantly greater 

than in the compartments (paired t-test, t85 = 3.73, p = 3.41x10-4, Figure 2.5E), indicating 

less even positional sampling. Finally, a plot of the average time spent in each running-

direction bin indicated that in the corridor rats spent much longer in bins corresponding to 

movements along its long axis; with the distribution of dwell times across directional bin 

being significantly less even than that seen in the main compartments (Kolmogorov-Smirnov 

test, p = 4.35x10-4, Figure 2.5F).  

2.3.6 Head direction and boundary vector cells show consistent firing between 
compartments, regardless of experience 

In contrast to grid cells, head direction cells continued to show the same directional tuning in 

the two compartments, regardless of experience: no significant correlation was seen 

between session number and the angular offset in directional tuning between the 

compartments (r = -0.174, r2 =0.0304, p = 0.348, Figure 2.6A). Neither was a difference 

observed between the peak firing rates in each compartment (WSRT, z = 1.66, p = 0.0958, 

Figure 2.6B). The firing of a single border cell recorded in a late session also replicated 

between the two compartments (Figure 2.6D-F).  
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Figure 2.6 Head direction and boundary vector cells firing replicates in the two compartments regardless 
of experience.  A, The angular offset between the firing rate peaks of directional ratemaps from the left and right 
compartments. Each data point represents the average angular offset across the two trials recorded for each 
head direction cell in each session. A negative angular offset indicates the firing peak in the left compartment is 
anticlockwise of the firing peak in the right compartment. B, Mean + SEM peak directional firing rates across all 
head direction cells in the left and right compartments respectively. C, Example directional firing rate maps for 
two representative head direction cells from two rats. The directional firing rate map of the left compartment is 
plotted in blue and the right compartment in red. D, The firing rate map from the screening environment of a 
putative boundary vector cell recorded on the 11th day of exposure to the multicompartment environment. E, The 
unbinned path of the animal as it explores the multicompartment environment in black, overlaid in green with the 
location of the spikes of the boundary vector cell. F, Firing rate map of the same boundary vector cell in the same 
trial.  

2.3.7 Place cell firing disambiguates the compartments after a similar timeframe to that 
seen in grid cells 

In one animal, a number of place cells (range: 13-25) were recorded across 14 sessions, 

concurrent with grid cell recordings from the contralateral hemisphere. Only putative place 

cells with a firing field in one of the two compartments, and with a peak rate of at least 1Hz 

were included in further analysis. During early exposures to the environment, place cell firing 

replicated between the compartments (Figure 2.7D), as has been observed previously 
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(Skaggs and McNaughton 1998; Spiers et al. 2015). In contrast to previous reports however, 

experience of the environment caused place cell activity to increasingly disambiguate the 

two compartments; apparent in a significant negative correlation between session number 

and the spatial correlation of firing rates between the compartments (r = -0.488, r2 = 0.238, p 

= 5.34x10-18, Figure 2.7A). The time course by which place cells disambiguated the 

compartments was similar to that observed in grid cells (Figure 2.1D). After 20 sessions, the 

correlation between compartments predicted from the regression line for grid cells and place 

cells were similar (grid cells: 0.0368, place cells: 0.0162). Place cells had higher initial 

correlation values however, with a greater reduction in correlation per session (grid cell 

regression line: y = 0.533 – 0.0248x, place cell regression line: y = 0.792 – 0.0388x). While 

the average place cell correlation between the two compartments fell across sessions, the 

range of correlation values seen in each session increased, with a significant relationship 

between the session number and the standard deviation of correlations across cells 

observed (r = 0.818, r2 = 0.669, p = 0.00035, Figure 2.7B). No such increase in the standard 

deviation of correlation values was seen in grid cells (r = 0.149, r2 = 0.0223, p = 0.529). 

Further, the standard deviation in the difference in absolute peak firing rates between the 

two compartments also increased across trials (r = 0.668, r2 = 0.446, p = 0.009, Figure 

2.7C). That is, the range of firing behaviours observed across place cells increased as 

animals became more familiar with the environment. In early sessions, place fields had 

similar firing rates and locations within the compartments (Figure 2.7D). In contrast, in later 

sessions, while some place cells continued to have similar firing fields in each compartment, 

others exhibited differences in firing rates and/or field locations (Figure 2.7E).  
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Figure 2.7 The range of place cell representation behaviours becomes more diverse with increasing 
experience of the multicompartment environment.  A, The spatial correlation of place cell firing rate maps 
between the left and right hand compartments, as a function of experience of the environment. Each grey cross 
indicates the correlation for each place cell for each session, averaged across the two trials comprising each 
session. Blue lines indicate the mean ± SEM correlation across all place cells recorded in each session. B-C, The 
standard deviation of correlation (B) and peak firing rate (C) values across all place cells recorded in each 
session, as a function of experience of the environment. D, Example firing rate maps from place cells recorded 
during the second session in the multicompartment environment. Note that place cell firing fields tend to be in 
similar positions with similar peak rates. E, Example firing rate maps from the 15th session in the 
multicompartment environment, demonstrating the range of representation similarities between the 
compartments seen in place cells in later sessions.  
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2.3.8 Grid and place cells are anchored locally to the environment 

In the same animal in which place and grid cell recordings were made concurrently, a 

‘remapping’ probe was performed after 16 sessions in the multicompartment environment. 

Here, the lighting, floor texture, and wall colour in the left-hand compartment were modified 

for one trial of the probe session (trial 2). Two normal multicompartment trials were recorded 

either side of the probe (trials 1 and 3). This probe aimed to infer whether grid and place cell 

firing was locally or globally anchored to the sensory features of the environment. If locally 

anchored, only firing in the left-hand compartment would be expected to change in the probe 

trial. In contrast, if firing across the environment was uniformly anchored to specific cues, 

then the whole ratemap would be expected to change in the probe. By eye, the firing of both 

grid and place cells appeared to change only in the left-hand compartment in the probe trial, 

indicating local anchoring (Figure 2.8B). To assess this quantitatively, correlation values 

were calculated between the ratemaps recorded in each compartment across the trials. 

Specifically, for the left and right compartments separately, correlations were performed 

between trials 1 and 2, and trials 1 and 3. Place cell correlation values in the left-hand 

compartment between trials 1 and 2 were significantly lower than between trials 1 and 3 

(paired t-test, t27 = -7.42, p = 5.52x10-8, Figure 2.8A). Place cell correlations in the left-hand 

compartment between trials 1 and 2 were also significantly lower than in the right-hand 

compartment between the same trials (paired t-test, t27 = -8.11, p = 1.027x10-10, Figure 

2.8A). In contrast, no differences were seen in the correlation values between trials 1 and 3 

in the left- and right-hand compartments (paired t-test, t27 = -0.288, p = 0.776, Figure 2.8A). 

A similar pattern of results was observed in the grid cell correlation values (Figure 2.8C-D), 

however only two grid cells were recorded, making statistical testing difficult.  
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Figure 2.8, Grid and place cells are locally anchored to the multicompartment environment.  A, C, Spatial 
correlations of place cell (A) and grid cell (C) ratemaps separately for the left and right compartments between 
trials 1 and 2 and between trials 1 and 3 of the remapping day. Grey crosses indicate the correlation value for 
each place or grid cell. Blue bars indicate the mean ± SEM across all cells for that correlation type. B, D, Firing 
rate maps (top) and raw spike plots (bottom) of an example place cell (B) and grid cell (D). The left and right 
hand plots are from trials 1 and 3, in which the multicompartment environment was in its normal configuration. 
The middle plots represent recordings made during trial 2, in which the floor, wall, and lighting colour of the left-
hand compartment only were modified.  
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2.4 Discussion 

2.4.1 Summary of results and significance 

The periodic, modular activity of grid cells theoretically enables a population of them to 

efficiently encode an animal’s location within an environment, as well as the vector 

separating the animal from specific goal locations (Fiete, Burak, and Brookings 2008; Bush 

et al. 2015). Computational accounts of how grid cells could support such behaviour assume 

that their firing patterns are regular and continuous across the entire navigable environment. 

Grid firing failed to meet this assumption during initial exposures to the multicompartment 

environment, with grid patterns replicating between the two compartments, probably due to 

their being dominated by local sensory cues. However, with increasing experience, 

discontinuities in grid cell firing patterns between the compartments were incrementally 

reduced, such that a single representation spanning both compartments was eventually 

formed. This transition suggests grid cells adjusted their firing to produce the globally 

coherent representation required for them to act as an effective spatial metric. That is, we 

provide the first evidence that, even in complex environments, grid cell firing can form 

regular and continuous firing patterns capable of supporting self-location and navigation.  

2.4.2 Mechanisms underlying transition to a global representation 

For grid cells to form a coherent global representation, it is necessary for them to identify the 

relative position of all locations within the environment. Models of grid cell firing largely 

describe their activity as arising from inputs describing the animal’s direction and speed of 

movement, and the integration of self-motion as the animal explores the environment (i.e. 

path integration) is one way in which the relative positions of points in space can be 

discerned. The more globally coherent firing patterns observed in the sections of the 

compartments closest together gives credence to this explanation: the reduced distance 

between these portions of the environment resulting in reduced accumulation of error in the 

cells’ path integration, and thus more coherent firing. However, unidentified distal sensory 

cues on the side of the environment with the corridor could also explain the more global 

patterns seen towards that side. While distal cues were minimised as far as possible, 

rotation of the multicompartment environment within the curtained area could have provided 

further evidence that disambiguation of the compartments did not depend on extraneous 

sensory information. To fully account for all sensory cues, the experiment described here 

could be repeated in a virtual reality environment, in which one could more easily ensure that 

the only distinguishing feature of the compartments was their locations within the virtual 

environment. However, current rodent virtual reality systems involve the animal running in 
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place on low-friction treadmills (Harvey et al. 2009; Domnisoru, Kinkhabwala, and Tank 

2013). As the animal’s head is stationary in these setups, the otolith organs of the vestibular 

system remain inactive, unlike during normal movement, in which they signal linear 

acceleration (Angelaki and Dickman 2000). Vestibular inputs encoding linear and angular 

acceleration of the head likely form a subset of the self-motion inputs to grid cells, such that 

their absence could lead to a reduction in path integration accuracy in current virtual 

environments. The absence of non-visual sensory cues (such as somatosensory inputs to 

the body and whiskers) in virtual reality setups may further hinder accurate path integration. 

As such, the results of a virtual-reality version of the multicompartment experiment may need 

careful interpretation.  

The highly-extended time frame over which grid cells transitioned from a local to a global 

representation made the continual recording from single cells across the whole period 

difficult. While the precise temporal dynamics remain unclear, that single grid modules 

(which are thought to form functional units (H. Stensola et al. 2012)) appear to adjust their 

representations gradually and continuously argues against an abrupt change. Further, the 

firing fields of one grid cell recorded across 15 consecutive sessions appeared to shift 

continuously, rather than undergo a sudden transformation (see Supplementary Video 1 of 

Carpenter et al. 2015). It is similarly unclear how a single firing pattern emerged from the two 

discontinuous patterns initially observed. For example, the ratemap of one compartment 

could have extended into the other, or the firing fields in both compartments could have 

similarly adjusted until continuous with one another. To fully understand the spatiotemporal 

dynamics of the transition from a local to a global representation, one would ideally follow 

the same population of cells throughout, perhaps possible through two-photon imaging of 

grid cells in a virtual-reality version of the experiment (Heys, Rangarajan, and Dombeck 

2014).  

2.4.3 Grid firing is locally anchored to the environment 

That firing patterns were only locally modified following changes to the sensory features of 

just one compartment suggests that subsets of firing fields are independently anchored to 

local sensory cues. Sensory inputs are required for grid cell firing to be stable across 

multiple visits to the same environment (Hafting et al. 2005), and to prevent the 

accumulation of excessive noise in the path integration system (Hardcastle, Ganguli, and 

Giocomo 2015). Particularly given the latter, it is not altogether surprising that multiple 

sensory cues are used to locally anchor distinct portions of the grid pattern: if a single cue 

was used, noise would be continually accumulated away from that cue, likely resulting in 

deleteriously high levels of noise in large environments. The number of sensory cues used to 
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anchor firing may therefore depend on the size of the environment, perhaps explaining why 

the geometry of the enclosure appears to determine the orientation of grid firing globally in 

small environments (Krupic et al. 2015) and locally in larger environment (T. Stensola et al. 

2015).  

2.4.4 Impact of irregular firing on grid cells’ capacity to act as a spatial metric 

While sensory cues allow for the resetting of accumulated noise in path integration systems, 

they may also give rise to distortions of the triangular firing pattern normally expressed by 

grid cells (Krupic et al. 2015). In the current experiment, while grid firing eventually formed a 

continuous representation that spanned both compartments, grid patterns were highly 

irregular and discontinuous for long periods, even after many days of experience with the 

environment. The significance of distortions and discontinuities to the capacity of grid cells to 

act as a spatial metric is not well understood, and further experiments are required to relate 

the regularity of grid cell firing patterns to animals’ navigational performance. Theoretically 

however, and as is discussed below, the impact of any irregularity depends on multiple 

factors, including the system by which information is encoded across modules, the 

consistency of any irregularities across modules, and the size of the environment relative to 

the ensemble’s encoding capacity.  

2.4.4.1 Grid cells robustly encode self-location despite distortions 

A network downstream of grid cells, with access to each module’s phase, can accurately 

decode self-location provided that the population phase is sufficiently dissimilar at each 

location in the environment. Distortions and discontinuities, which respectively equate to 

shifts in the rate of change and sudden jumps in the population phase, are immaterial unless 

they cause the population phase to take the same value at two or more points in the 

environment. Given the large estimated capacity of an ensemble of grid modules (Fiete, 

Burak, and Brookings 2008), random distortions and discontinuities are likely only to 

generate different but still unique population phases across the environment. As such, an 

ensemble of grid cells robustly encodes self-location, despite irregularities in their individual 

firing patterns. In the present experiment, as soon as grid firing across modules 

distinguished the two compartments, the population phase could be used to decode the 

animal’s location. As adjacent positions in grid phase space map to divergent positions in 

real space (Sreenivasan and Fiete 2011), even apparently small differences in firing patterns 

between the compartments would unambiguously encode distinct locations.  
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Nevertheless, the present data confirm previous results indicating that grid patterns do 

replicate in environments comprised of multiple compartments of high perceptual similarity 

(Derdikman et al. 2009). Such environments are perhaps rare outside the laboratory, and the 

repetition of firing patterns observed here may therefore be of minimal ethological 

significance. Indeed, without concurrent recordings across all modules, it is unknown if the 

firing of each replicated in the same way, such that the population phase repeated. If this 

were the case, grid cell activity alone would be insufficient to disambiguate the 

compartments.  

2.4.4.2 Distorted grid firing introduces metric errors to vector navigation  

Conceptions of grid firing as a basis for navigation use the difference in population phase 

between two positions to calculate the vector that connects them in real space. This requires 

that all points separated by a consistent vector in real-space be separated by a consistent 

vector in phase-space. Thus, for accurate navigation, the population phase must change at a 

constant rate across the environment, as well as being unique at each location. Therefore, 

distortions and discontinuities in grid patterns will by definition introduce errors into 

navigation vectors that span those irregularities.  

The nature of these errors depends primarily on whether any disruption of the grid-pattern is 

consistent across modules. If the distortion or discontinuity shift each module’s phase in 

inverse proportion to its scale, the encoded location will remain in agreement across 

modules. In such cases, the population phase will shift by an amount proportional to the size 

of the disruption in real-space. Navigational vectors spanning such a region would be 

erroneous by an amount proportional to the magnitude of the disruption. In contrast, if the 

distortion or discontinuity affects modules inconsistently, the population phase can jump to 

any other value. Resulting navigational errors would be disproportionate to the magnitude of 

the disruption, and potentially catastrophic given the large capacity of the grid system.  

As discussed, spare capacity in grid-networks has been proposed to provide a form of error 

correction (Sreenivasan and Fiete 2011). Such a scheme relies on the fact that, in 

enclosures smaller than the capacity of the grid population, a proportion of population 

phases are redundant, encoding locations outside the navigable enclosure. Disruptions 

resulting in invalid population phases could then in principle be identified as erroneous, with 

the phase returned to the most recent or closest plausible value (Sreenivasan and Fiete 

2011). However, this requires a separate neural representation of which population phases 

are valid (Sreenivasan and Fiete 2011). Thus, errors stemming from misshapen grid-

patterns may only be corrected if they arise after the set of valid phases has previously been 
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identified: distortions or discontinuities that appear on first exposure to an environment may 

be uncorrectable using this system.  

Thus far, the impact of distortions on navigation has been considered based on the 

assumption that the difference in grid scale between adjacent modules is inconsistent, such 

that together they form a ‘combinatorial’ encoding system (Fiete, Burak, and Brookings 

2008). As seen, in an alternative framework, the largest module alone coarsely encodes self-

location, though only unambiguously in enclosures smaller than its scale (Mathis, Herz, and 

Stemmler 2012). A constant integer ratio between the scales of adjacent modules means 

that smaller-scale modules are ‘nested’ within the largest module, providing increased 

resolution to the self-location code. As the phase in larger-scale modules resolves ambiguity 

in smaller-scale modules, the impact of disruptions in grid-patterns again depends on how 

they are distributed across modules: distortions to a given module potentially render 

erroneous the contribution of all smaller-scale modules. Disruptions to small-scale modules 

would therefore result in small navigational errors, whereas disruptions to large-scale 

modules would potentially result in catastrophic errors. 

In considering the implications of misshapen-grids for navigation, it has been assumed that 

the decoding network has limited capacity to account for such disruptions. While the 

possibility that all deformations are ‘mapped-out’ downstream of grid cells cannot be 

rejected, doing so would require accurate identification of the location, nature, and 

magnitude of all disruptions. If this were possible, it is unclear why the same information 

would not be used directly to correct grid-firing. Indeed, that grid-patterns are here seen to 

regularise with experience suggests that disruptions can be resolved at the level of grid cells 

in certain conditions. Conversely, if the decoding-network could account for all disruptions, it 

is unclear why grid-patterns would regularise.  

In summary, the capacity of grid population codes, together with the requirement only for a 

unique population phase at each location in the environment, likely makes grid firing a robust 

code for self-location. In contrast, a requirement for a constant rate of change in population 

phase means that using distorted or discontinuous grid patterns for navigation is inherently 

prone to errors. In the multicompartment environment, grid firing could unambiguously 

encode the animal’s location as soon as differences in firing between the compartments give 

rise to unique population phases in each. In contrast, navigation may be prone to significant 

errors until grid firing had formed a single, continuous firing pattern across the environment.  
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2.4.5 Place cell representations in the multicompartment environment; their relationship 
with other spatially tuned cell types 

Here, both grid and place cells formed dissimilar representation of the two compartments 

following prolonged experience of the environment. In a past experiment, in which place 

cells were recorded in a similar environment, no change in the correlations between 

compartments was reported across sessions (Skaggs and McNaughton 1998). In the four 

rats from which data are presented, three had a wide range of correlation values in early 

sessions, with a similar range seen across all sessions. The fourth rat displayed a similar 

pattern of correlations to that observed here. Namely, consistently high correlation values 

were observed in early sessions, with an increasing range of correlations apparent in later 

sessions. That is, following prolonged experience, while some cells continued to show highly 

similar firing in the two compartments, others showed distinct firing rates or field locations. In 

the previous experiment, the greater range and lower average correlations seen in the first 

session may indicate that distal sensory cues were less well controlled. For example, the 

environment was not surrounded by curtains, such that rats could potentially distinguish the 

two compartments according to the angle from each to individual visual cues in the 

experimental room (Skaggs and McNaughton 1998). 

The increase in the standard deviation of the correlation between compartments of place cell 

firing across sessions was not observed in grid cells, where a reduction in representation 

similarity was seen across all cells following extensive experience of the environment. That 

is, when familiar with the environment, whereas all grid cells disambiguated the two 

compartments, the similarity of firing patterns between the compartments was highly variable 

between place cells. This may reflect variance amongst place cells in the relative strength of 

inputs determined by sensory and self-motion cues. Specifically, place cells whose firing 

distinguished the two compartments may be predominantly driven by grid cell inputs. In 

contrast, place cells whose firing remained similar in the two compartments, even when the 

environment was highly familiar, may predominantly receive inputs from boundary vector 

cells (which also continue to fire consistently). Variance in the strength of afferent 

connectivity from grid and boundary vector cells, whose firing do and do not distinguish the 

compartments respectively, thus giving rise to the large range of representation similarities 

seen in place cells after prolonged experience. Following similar logic, the compartment-

consistent firing seen in boundary vector and head direction cells implies that they do not 

receive location-specific inputs from grid cells.  
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3 Modulating medial septal cholinergic tone alters 
the frequency of theta oscillations without 
affecting grid cell activity 

3.1 Introduction 

The dense interconnectivity between the medial septum and the hippocampal formation has 

historically been linked with the generation of theta oscillations (Buzsáki 2002) and the 

formation of episodic memories (Hasselmo 2006). More recently however, evidence for an 

involvement of the medial septum in the encoding of animals’ running speed has come to 

light. This latter potential function is of particular relevance to the spatially tuned firing of grid 

cells, whose tessellating triangular activity patterns are thought to arise from the integration 

of inputs conveying the animal’s speed and heading direction (Fuhs and Touretzky 2006; 

Burgess, Barry, and O’Keefe 2007). The encoding of one or more speed signals by the 

medial septum would explain observations that its inactivation disrupts the regular firing 

patterns seen in grid cells, without affecting representations of the animal’s heading direction 

(Koenig et al. 2011; Brandon et al. 2011); as well as the fact that medial septal inactivation 

impairs animals’ estimates of linear distances travelled (Jacob et al. 2017), and abolishes 

the distance-specific firing of place cells on a running wheel (Wang et al. 2015).  

While these data suggest a role for the medial septum in encoding running speed, its exact 

contribution to normal grid cell function, and indeed that of each of its constituent neuronal 

subtypes, remains unclear. We therefore recorded from medial entorhinal grid cells in 

familiar and novel environments while modulating the excitability of medial septal cholinergic 

neurones using Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). 

Increasing septal cholinergic tone led to a reduction in the frequency of theta oscillations, 

without a change in the depth of their modulation by running speed. However, no change 

was observed in the firing patterns of grid cells. The absence of clear change in their spatial 

firing was consistent with a lack of change in putative speed signals: both theta phase 

precession and grid cell firing rate vs running speed relationships were unaffected. As such, 

the activity of medial septal cholinergic neurones does not appear to play a central role in 

signalling running speed nor modulating grid firing patterns in familiar contexts. 

Medial septal cholinergic neurones are also implicated in the coordination of network 

dynamics which favour the encoding of new memories, rather than the retrieval of existing 

ones (Hasselmo 2006). Given the strong association between cholinergic tone and novelty, 

the increase in grid scale seen in rats during initial exposures to unfamiliar environments has 

been proposed to depend on an increase in acetylcholine concentration (Barry, Ginzberg, et 
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al. 2012; Barry, Heys, and Hasselmo 2012). We aimed to test this hypothesis by modulating 

the excitability of medial septal cholinergic neurones whilst recording from grid cells in mice 

exploring novel environments for the first time. In contrast to previous experiments in rats, no 

novelty-induced increase in grid scale was observed, making direct testing of the theory 

impossible. However, an increase in the proportion of time that mice spent not-moving and 

near the perimeter of familiar enclosures during elevation of cholinergic tone was 

reminiscent of patterns of behaviour seen in rodents on exposure to novel contexts. That is, 

the behavioural effects of increasing the excitability of medial septal cholinergic neurones 

suggest that doing so may induce a sense of novelty, consistent with a role for acetylcholine 

in biasing mnemonic systems towards encoding. However, such behaviours are also 

associated with anxiety, and while not mutually exclusive, the current data cannot 

conclusively indicate whether elevated cholinergic tone led to a perception of novelty or 

anxiogenesis. 

3.2 Methods 

3.2.1 Animals 

15 experimentally naïve, male ChAT-IRES-Cre (B6;129S6-Chattm2(cre)Lowl/J) mice, bred from a 

homozygous pair obtained from The Jackson Laboratory (ME, USA. Stock no: 006410), 

gave rise to the data presented in this chapter. Mice were housed communally under a 12:12 

inversed light-dark cycle with free access to food and water until surgery, at which point mice 

were 12-22 weeks old. Following surgery, mice were held individually in Perspex cages and 

food-restricted to a target weight of 85% of their pre-surgery weight. The target weight was 

then increased by 0.5g per week. All work was conducted within the terms of appropriate 

Home Office Project and Personal licences.  

3.2.2 Microdrives and surgery 

The custom-built microdrives used comprised 16 HM-L coated 17µm platinum-iridium (90-

10%) electrodes (California Fine Wire, CA, USA) twisted into 4 tetrodes. Tetrodes were 

wired to an 18-pin Omnetics connector (Omnetics Connector Corp., MN, USA) and 

cemented to a drive-mechanism (Axona Ltd., St Albans, UK) which allowed for advancement 

of the tetrodes through turning of a trapped screw. 

Anaesthesia was induced and maintained with an isoflurane-oxygen mix (1.5-3 L/min). 

During surgery, Viscotears Liquid Gel (carbomer) was applied to the mice’s eyes to prevent 

corneal damage. Mice rested on a water-heated pad to maintain body temperature 
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throughout surgery. Analgesia was provided by Carprieve (carprofen – 5mg/kg) injected 

subcutaneously at the start of surgery, and Metacam (meloxicam – 5mg/kg) suspended in 

jelly administered orally once a day for 4 days following surgery.  

After induction of steady anaesthesia, the animal’s head was fixed in a stereotaxic frame. An 

incision was made along the midline to expose the skull, which was subsequently levelled in 

the horizontal plane. Six 0.7mm diameter screw holes were drilled in the skull, one for the 

ground-screw and five for screws which provided mechanical stability. Craniotomies were 

drilled to expose the entorhinal cortex and transverse sinus in both hemispheres for insertion 

of electrodes. An additional craniotomy was drilled in line with but laterally offset from the 

medial septum, for injection of the virus. Viruses were obtained from UNC Vector Core (NC, 

USA). 10 mice were injected with the excitatory DREADD virus AAV2-hSyn-DIO-hM3D(Gq)-

mCherry, two mice were injected with the inhibitory DREADD virus AAV2-hSyn-DIO-

hM4D(Gi)-mCherry, and three mice were injected with the control virus AAV2-hSyn-DIO-

mCherry. Viruses were injected at a rate of 100nl/min using an UMPIII Microsyringe Pump 

connected to a Nanofil Syringe with a 33g bevelled needle (World Precision Instruments, FL, 

USA). Four 300nl injections were made 0.7-0.9mm anterior to bregma, 0.8mm lateral to 

bregma, with an angle of 12° towards the midline, and at depths of 4.3, 3.9, 3.5, and 3.1mm 

ventral from the brain surface, starting at the most ventral site. The needle was held in place 

for five minutes after each injection, then moved either to the next site or removed from the 

brain. Ground and stabilising screws were then inserted and the electrodes moved into 

position over the entorhinal cortex. Four tetrodes were implanted in each hemisphere, 

mounted on separate drive mechanisms. Electrodes were inserted 0.3-0.5mm anterior to the 

anterior edge of the transverse sinus, 3.2mm lateral to lambda, and with an angle of 6° in the 

posterior direction. The dura was removed at the insertion site and the electrodes implanted 

0.8-1mm below the brain surface. A protective metal sheath was lowered around the 

electrodes before dental cement was applied to fix the microdrives to the skull and screws. 

After surgery, mice were transferred to a heated chamber until recovered from anaesthesia. 

3.2.3 Experimental protocol and electrophysiological recording 

In the second week after surgery, mice were handled and exposed to the baseline 

environment for three to four sessions of 20 minutes, to familiarise them with the room and 

experimenter. The baseline or ‘familiar screening’ environment consisted of either a 

90x90cm square or a 1m diameter circular enclosure, each with 50cm high walls. The 

enclosure was placed on a black metal ground-sheet, partially enclosed on one side by black 

curtains, with a single white cue card with a desk lamp shining on it, and open on the other 

side to the rest of the experimental room. Ultimately, recordings were also made in two 
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additional ‘novel’ environments. Each of the novel environments were at opposite ends of a 

different room to the baseline environment. The enclosures used in the novel environments 

were of a different shape to that in which baseline recordings were made, but the same 

shape as each other (e.g. baseline square → novel circles). The two novel environments 

were not surrounded by curtains, and each had a similar brightness and a similar number of 

distal cues. The order in which mice experienced the two novel environments as well as 

which environment the DREADD agonist was administered in was counterbalanced between 

animals. 

At the start of the third week (i.e. at least 14 days after surgery), mice were connected via an 

RC-coupled unity-gain operational amplifier and a lightweight cable suspended on a pulley 

system to an Axona ‘DACQ USB’ recording system (Axona Ltd., St Albans, UK). Each 

channel was amplified 9,000 to 20,000 times, bandpass filtered (360Hz – 7kHz), and 

recorded differentially against a reference channel on a separate tetrode. Spikes exceeding 

a trigger threshold (50-80uV) were sampled at 48kHz and time stamped with a 96kHz clock 

signal. One to four channels were also low-pass filtered (0-500Hz), either with or without a 

notch filter around 50Hz, and recorded continually without a reference channel at 4.8kHz 

and 250Hz as LFPs. The mice’s location was tracked by way of an infrared LED on the 

operational amplifier and a camera above the enclosure recording at 50Hz. In this way, 

spike, LFP, and positional data were collected while mice moved around the enclosure in 

search of droplets of sweetened formula baby milk scattered by the experimenter.  

Each baseline or ‘screening’ trial lasted 15-30 minutes, terminated once the mouse was 

deemed to have covered the environment sufficiently to assess the spatial tuning of any 

recorded cells. Following recording, data was cut using an expectation-maximisation 

algorithm via the KlustaKwik software (Kadir, Goodman, and Harris 2014). Putative clusters 

were then investigated by eye using the Waveform software (d1manson.github.io/waveform), 

which was used to coordinate clusters across trials and to correct for over-clustering 

according to the amplitude, waveform, and temporal autocorrelation of putative cells.  

In seven of the 10 hM3Dq mice, screening was continued until grid cells were recorded, with 

electrodes advanced 30-60µm between screening sessions, and with at least 4 hours 

between sessions. In three of the hM3Dq and the three control-mCherry mice, no grid cells 

were recorded, and the experiment was commenced once the electrodes had been 

advanced such that large amplitude theta oscillations were observed in the LFP. To allow for 

virus expression, experiments were only initiated after a minimum of three weeks following 

surgery. 



92 
 

See Figure 3.1 for a pictorial representation of the experiment protocols. In the hM3Dq mice, 

two types of experimental day were performed. On ‘novel’ days, following a baseline trial, the 

mouse was briefly (<30 seconds) anaesthetised with isoflurane and 3mg/kg of Clozapine-N-

Oxide (CNO) or an equivalent volume of saline was injected intraperitoneally, before the 

mouse was returned to its home cage, with the order of the drugs across days 

counterbalanced between animals. One hour after the injection, a second trial in the familiar 

environment was recorded, termed a ‘CNO probe’ or ‘saline probe’ trial. Approximately 20 

minutes after the end of the probe trial, the animal was transferred to one of the novel 

environments and three ‘novel’ trials were recorded, each 15-30 minutes in length, and 

separated by approximately 20 minute gaps. Finally, the animal was then returned to the 

familiar environment and a second familiar trial was recorded (not considered a probe trial 

nor used in plots/hypothesis testing), such that six trials were recorded on each ‘novel’ day. 

In seven of the 10 hM3Dq mice, recordings were made across four novel days, two with 

injection of CNO and two with injection of saline. The other three mice only had two novel 

days, one with CNO and one with saline.  

In addition to the novel days, four mice also had ‘familiar’ day protocols to augment the data 

recorded in the familiar environment. Here, following the baseline trial, the mouse was first 

injected with saline, and after a one hour break, a saline probe trial was recorded in the 

familiar environment. Subsequently, the mouse was then injected with CNO, and after a 

second one hour break, a familiar CNO probe trial was recorded. Familiar days thus included 

three trials, with the saline probe trial always leading the CNO probe trial due to the long-

lasting time course of CNO action (Alexander et al. 2009). Across both types of day, probe 

trials thus refer to the trial recorded in the familiar environment one hour after injection of 

either CNO or saline.  

The CNO solution injected was made by dissolving 1mg of powdered CNO (Tocris 

Bioscience, Bristol, UK) in DMSO (Sigma-Aldrich, MO, USA) and then sterile 0.9% saline, to 

a final volume of 5ml with a concentration of 0.2mg/ml.  

3.2.4 Analyses 

3.2.4.1  Position and speed data 

The recorded LED data was used to infer the position of the animal throughout the trial. 

Position data was smoothed separately in the x and y dimensions with a 400ms boxcar filter. 

The speed of the animal was calculated as the distance connecting the mouse’s location in 
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adjacent position samples using Pythagoras’ theorem, adjusting for the pixels per metre 

recorded by the camera, divided by the temporal offset between samples (20ms).  

3.2.4.2 LFP 

In mice where more than one LFP channel was recorded, an LFP channel from the same 

microdrive in which grid cells were recorded, and on which large amplitude theta could be 

observed, was used for all analyses. If no grid cells were recorded, then the LFP channel 

with maximal theta power was used. The same LFP channel was used for all trials in a 

single day.  

The power in the LFP at different frequency bands was assessed by analysing the entire trial 

through constructing a power spectrum using Welch’s method, with non-overlapping 

windows of 4096 samples, having down sampled the LFP from 4.8 to 1.2kHz. The power at 

each frequency was then log transformed. The peak theta frequency was defined as the 

frequency in the 6-10Hz band which had the highest power. The peak theta power was 

taken to be the log power of the peak in the 6-10Hz band. Theta signal to noise (S2N) was 

defined as the average logged power in a 2Hz band around the theta peak divided by the 

average logged power in the rest of the 3-25Hz frequency range.  

Following Torrence & Compo 1998, Morlet wavelets were used to analyse changes in theta 

frequency as a function of running speed. 500 wavelet scales assessed the power at 

frequencies between 3 and 100Hz around each sample of the 250Hz LFP trace. The 

resulting spectrogram was then down sampled in time to match the 50Hz position sampling. 

The constituent power spectra were then binned into 120 bins of width 0.25cm/s, between 0 

and 30cm/s, with the mean spectrum calculated for each speed bin. A maximum speed of 

30cm/s was chosen as higher speeds were only poorly sampled. For each speed bin the 

frequency within a 3-11Hz window with maximum power was identified. The relationship 

between the frequency of maximum power and the average speed in each bin was then fit 

with both linear and three-term exponential functions using linear and non-linear least 

squares respectively. In the latter, parameter A, B, and C values were limited to the ranges 

3-11, 0.5-4, and 0-1. The linear and non-linear functions fitted were defined as: 

 𝑦 = 𝐴 + 𝐵 ∗ 𝑥 (3) 

 𝑦 = 𝐴 − 𝐵 ∗ e (−𝐶 ∗ 𝑥) (4) 

 

Where x is the animal’s running speed, y is the frequency of maximum power in the theta 

window, and A, B, and C are parameters to be fit. In one familiar trial and two novel trials 

(out of 221 trials overall), poor and uneven sampling of running speeds, together with the 
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narrow speed bins, meant that there were intermediate speed bins with zero samples, and 

these trials were not analysed further.  

Each model’s quality of fit was assessed using the F-test: 

 𝐹 =
(𝑙𝑖𝑛𝑅𝑆𝑆 − 𝑒𝑥𝑝𝑅𝑆𝑆)/(𝑙𝑖𝑛𝐷𝐹 − 𝑒𝑥𝑝𝐷𝐹)

(𝑒𝑥𝑝𝑅𝑆𝑆/𝑒𝑥𝑝𝐷𝐹)
 (5) 

 

Where linRSS and expRSS are the residual sum of squared errors for the linear and 

exponential fits respectively, and linDF and expDF are the degrees of freedom of each 

model. Calculation of the F value enabled assessment of the significance of the difference in 

quality of fit between the two models through calculation of a p-value from the F distribution.  

To assess whether the apparently non-linear relationship between theta frequency and 

running speed was an artefact of the analysis described, we repeated the procedure on 

synthetic LFP data. To generate the artificial LFP traces, a 50Hz-sampled vector of running 

speeds from a single baseline trial was linearly interpolated to 250Hz. A frequency value for 

each 250Hz sample was then calculated, varying as a linear, exponential, or sinusoidal 

function of the running speed values: 

 𝑦 = 4 + (0.15 ∗ 𝑥) (6) 

 𝑦 = 7.5 − 3 ∗ e (−0.25 ∗ 𝑥) (7) 

 𝑦 = 7.5 + 3 ∗ sin (𝑥) (8) 

 

Where x is the animal’s running speed, and y is the frequency of maximum power in the 

theta window. From the instantaneous frequency values, the phase-advance between each 

250Hz LFP sample was calculated, and used to construct a continuous sinusoidal trace. 

This artificial LFP traces were then fit with the above-described procedure, to confirm that 

the extracted frequency vs run-speed relationship matched the artificial data, and that the 

exponential fit did not outperform the linear fit even when the underlying relationship was 

linear or sinusoidal.  

3.2.4.3 Theta modulation of single units 

The entire trial was divided into contiguous blocks of position samples where the speed 

remained above a minimum threshold of 2cm/s. For each contiguous block with at least two 

spikes, a temporal autocorrelogram of length 500ms was generated from the cell’s spike 

train. The individual autocorrelograms were then weighted according to the length of the 

block, with a weighted average calculated across the trial. A power spectrum of the temporal 



95 
 

autocorrelogram was then calculated using the Fourier transform, and smoothed using a 

Gaussian kernel (width 187.5ms). The peak theta frequency was then defined as the 

frequency in the 6-10Hz band which had the highest power. Theta signal to noise (S2N) was 

defined as the average power in a 2Hz band around the theta peak, divided by the average 

power in the rest of the 3-25Hz frequency range. 

The significance of a cell’s theta modulation was assessed using a shuffle procedure. The 

above procedure was repeated 100 times on artificial data in which the cell’s spike times had 

been randomly reassigned to another time within the trial. A cell was deemed to be 

significantly theta modulated if its theta S2N exceeded that seen in 99/100 of the shuffles. 

Because of the small number of grid cells which showed significant theta modulation (Figure 

3.5), we instead focused on cells assessed by eye as having theta-modulated temporal 

autocorrelograms, but which were not spatially modulated (either by the animal’s location or 

heading direction). Only the subset of these cells which had significant theta modulation in 

either a baseline or probe trial were used for hypothesis testing. 

The change in the burst frequency of single units as a function of running speed was also 

assessed. To do so, the trial was first divided into two second windows, each with a one 

second overlap with the previous window. In each window with at least two spikes, the mean 

running speed and the power spectrum derived from the Fourier transform of the spike 

train’s temporal autocorrelogram was calculated. Windows were then binned into 4cm/s 

speed bins between 0 and 24cm/s (24cm/s was chosen as the upper limit as it was the 

highest bin with reliable sampling of sufficient numbers of spikes), with the power spectra 

averaged together in each speed bin. Only bins up to the first bin which contained < 5% of 

the total number of valid windows were included. The frequency of maximum power in a 3-

11Hz theta window was identified for each valid speed bin, and plotted as a function of the 

bin’s average speed. The data were then fitted with linear and non-linear least squares as 

per the procedure described above for the LFP (see Section 3.2.4.2).  

Again, as in the LFP, the difference in quality of the fits was assessed using the F test. Only 

cells which had significant theta modulation in either a baseline or probe trial, and only trials 

which had a significantly better (p < 0.05) exponential fit were included in plotting and 

hypothesis testing. That is, in assessing the null hypothesis of no-change in the parameter 

values which gave the best fits following CNO administration, only cells meeting these 

criteria were included. These requirements aimed to restrict analysis to only those trials in 

which the cell’s exponential fit was sufficiently good for the best fitting parameter values to 

be meaningful. 
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3.2.4.4 Behaviour 

To assess changes in the running behaviour of animals, the mean average speed in both the 

first five minutes and across the whole trial were calculated. A distribution of speeds was 

also generated, as the proportion of the whole trial spent in 2cm/s speed bins between 0 and 

30cm/s. The amount of time the animal spent sitting still (running speed < 1 cm/s) was 

calculated for the first five minutes of the trial.  

To quantitatively analyse the apparent increase in avoidance of the centre of the 

environment, the periphery of the environment was defined as the area within 10cm of the 

outermost extent of position samples recorded across the entire trial. ‘Perimeter dwell’, a 

measure of avoidance of the centre, was then calculated as the proportion of the first five 

minutes of the trial spent within this peripheral zone.  

3.2.4.5 Grid cell analysis 

Two-dimensional firing rate maps were calculated by assigning both the animal’s recorded 

positions and the spikes of each cell to 2x2cm bins. The firing rate in bin i was then 

calculated by dividing the number of spikes in a 5x5bin boxcar kernel centred on bin i by the 

cumulative dwell in the kernel.  

The smoothed ratemap of each putative grid cell was assessed through construction of a 

spatial autocorrelogram, following Sargolini et al. 2006, in which the ratemap was shifted 

relative to itself and the correlation calculated at each offset. Concretely: 

 𝑟(𝜏𝑥 , 𝜏𝑦) =
𝑛Σ𝜆(𝑥, 𝑦)𝜆(𝑥 − 𝜏𝑥 , 𝑦 − 𝜏𝑦) − Σλ(x, y)Σλ(x − τx, 𝑦 − 𝜏𝑦)

√𝑛Σ𝜆(𝑥, 𝑦)2 − (Σ𝜆(𝑥, 𝑦))
2
 . √𝑛Σ𝜆(𝑥 − 𝜏𝑥 , 𝑦 − 𝜏𝑦)

2
− (Σ𝜆(𝑥 − 𝜏𝑥 , 𝑦 − 𝜏𝑦))

2
 (9) 

 

Where 𝑟(𝜏𝑥 , 𝜏𝑦) is the autocorrelation between bins with spatial offset 𝜏𝑥 and 𝜏𝑦. λ(𝑥, 𝑦) is the 

firing rate in bin (𝑥, 𝑦), while 𝑛 is the total number of bins. The rate map’s degree of 

hexagonal regularity, or ‘gridness’, was calculated by rotating the autocorrelogram in 30° 

steps for 150° and taking the Pearson product-moment correlation coefficient between each 

rotated autocorrelogram and the un-rotated autocorrelogram, including only the area of the 

autocorrelogram extending from the edge of the central peak to the envelope of the six 

closest peaks. Gridness was defined as the maximum correlation at 30, 90, or 150° 

subtracted from the minimum at 60 or 120°. A cell was considered to be a grid cell if its 

gridness exceeded 0.3. The scale of each grid cell was also calculated, as the median 

distance (in cm) to the six peaks closest to the autocorrelogram’s centre.  
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To assess the intra-trial stability of each grid cell’s firing pattern, each trial was divided into 

two halves, with a ratemap generated separately for each, according to the above described 

procedure. A cross-correlogram was generated using the same correlation procedure 

discussed above, but instead using the ratemaps from the two halves of the trial, rather than 

two copies of a single ratemap. The value at the centre of the cross-correlogram was used 

as a measure of the stability of the cell’s firing between the two halves of the trial.  

Inter-trial stability was assessed between the baseline and familiar probe trials, again using 

the same procedure described above, but instead with the two ratemaps being those from 

the entirety of the first and second trials respectively. The degree of stability was again 

measured as the correlation value at the centre of the cross-correlogram between the two 

ratemaps. 

For cells to be included in hypothesis testing of gridness and stability, the cell had to have 

gridness > 0.3 in either a baseline or probe trial. Only trials with gridness > 0.3 were used to 

assess grid scale, and therefore the cells included in grid scale analyses had gridness > 0.3 

in both the baseline and probe trials.  

3.2.4.6 Grid cell speed modulation  

Following Kropff et al. 2015, to assess the firing rate vs speed modulation of grid cells, each 

cell’s firing rate was calculated at the same frequency as the position sampling (50Hz), by 

binning spikes into 20ms bins and then smoothing with a Gaussian kernel of 60ms width and 

a sigma of 30ms. The regression line relating speed and firing rate was then fit for position 

samples above 2cm/s and below 30cm/s, with the correlation and slope identified. The 

correlation between speed and firing rate was termed the cell’s ‘speed score’.  

To assess the significance of a cell’s firing rate vs running speed relationship, each trial’s 

speed score was compared to a distribution of 1000 shuffled speed scores calculated after 

circularly rotating the animal’s speed relative to the cell’s firing rate by a random temporal 

offset of at least 20 seconds. A grid cell was deemed to be significantly speed modulated if 

its speed score fell in the top 1% of the shuffled distribution of speed scores and had a 

gridness score above 0.3 in the same trial. Only grid cells with significant speed modulation 

in either a baseline or probe trial were included in hypothesis testing.  

3.2.4.7 Grid cell phase precession  

In order to analyse the tendency of grid cells to display phase precession, the procedure 

described in Jeewajee et al. 2014 was followed. Briefly, the 250Hz LFP was smoothed and 
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filtered with a Blackman filter between 6 and 10Hz. The Hilbert transform of the filtered LFP 

was then used to calculate the instantaneous phase of the theta oscillation for each LFP 

sample. The grid cell’s firing rate map was produced as described above, but instead using 

0.5x0.5cm bins and a Gaussian smoothing kernel of 100x100bins (sigma of 7.5cm). Grid 

firing fields were defined using a watershed function. Fields near the edges of the 

environment were only included if their area exceeded 75% of the mean area of fields in the 

centre of the environment. The time between entry and exit from a valid firing field was 

termed a ‘run’. Individual runs through the field were normalised so as to fall within a unit 

circle, and rotated so that the average movement direction of each run was left to right. The 

‘proportion of way along run’ was then calculated as the animal’s signed distance to the field 

peak, accounting for running direction by projecting onto the vector joining current position in 

the field to the edge of the field, assuming no future change in running direction. Proportion 

of way along run varies from -1 as the animal enters to 1 as it exits the field, with a value of 0 

when crossing the field’s peak. A circular-linear regression was then performed, relating 

proportion of way along run to the phase of the first spike in each theta cycle in the run, with 

slope and correlation values identified. 

Only grid cells that were not modulated by heading direction were included in the analysis. 

Directional ratemaps were generated by assigning heading directions and spikes to 6° bins 

between 0 and 360°, smoothing circularly with a Gaussian kernel of 5 bins, and dividing the 

number of spikes by the time spent in each bin. The Kullback-Leibler divergence (KL 

divergence) comparing the cell’s directional ratemap to a uniform distribution of equal mean 

was then calculated. A cell was considered directionally modulated and not further analysed 

if its KL divergence exceeded 0.15.  

The significance of the phase precession exhibited by a grid cell was determined using a 

shuffling procedure. A cell was considered to display significant phase precession if its 

correlation value was more negative than 95% of 1000 shuffles where distance-along-run 

and spike-phase were randomly repaired. To be included in hypothesis testing, a cell had to 

have KL divergence < 0.15, gridness > 0.3, and significant phase precession in either a 

baseline or probe trial.  

3.2.4.8 Hypothesis testing 

The analyses discussed above generated a number of measures for which we assessed 

whether or not there was sufficient evidence to reject the null hypothesis that there was no 

change in the measure following injection of CNO. Throughout, hypothesis testing here used 

Repeated Measures ANOVA (RM-ANOVA) at the level of animal. Specifically, for each 
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measure, we averaged together values from all appropriate cells and trials to generate four 

values for each animal: a CNO baseline value, a saline baseline value, a CNO probe value, 

and a saline probe value. CNO baseline and saline baseline values were distinguished by 

whether the baseline trial was followed by a CNO or saline probe trial. The Repeated 

Measures ANOVA test was then used to look for an interaction effect between the baseline 

vs probe groups and CNO vs saline groups. That is, to assess whether the change between 

baseline and probe averages was significantly different between the CNO and saline groups.  

The only exception to the use of the RM-ANOVA test was in analysing the inter-trial stability 

of grid cell firing patterns, for which a paired t-test was used, as looking at the correlation 

between trials meant there was only a single value for each of the CNO and saline groups.  

Analysis was performed at the level of animal as cells are often not independent of one 

another within animals, making statistical testing problematic (Fyhn et al. 2007; Yoon et al. 

2013). For an animal to be included in the RM-ANOVA analysis it was required to have a 

data point for all four groups used in statistical testing (CNO baseline, saline baseline, CNO 

probe, and saline probe). Averaging at the level of animal therefore meant that for the LFP 

and behaviour analyses the statistical tests had an n of 10. Each of the cellular analyses had 

further criteria for inclusion as discussed above, which lowered the number of data points. 

As such, some of the analyses only had a small number of data points. When no change 

was seen in analyses averaging at the level of animal, we therefore repeated analyses 

averaging at the level of cell. As instability in recordings meant that the same cell was only 

rarely recorded across both saline and CNO days, cells were included as long as they had a 

value in both CNO baseline and CNO probe, or saline baseline and saline probe trials. As 

such, a mixed-design ANOVA was used for hypothesis testing, to allow inclusion of cells 

which did not have values for all four trial types.  

3.2.5 Experimental protocol for control mice 

Control mice injected with DIO-mCherry were used to assess whether any change seen in 

the hM3Dq mice was due to non-specific effects of CNO administration. Control mice were 

familiarised with the baseline environment and electrophysiological recordings made as 

described above for the hM3Dq mice.  

At least three weeks after surgery, and once familiarised with the environment, three 

‘familiar’ experiment days were carried out on consecutive days (that is, following the same 

familiar-day protocol used in the hM3Dq mice, see Figure 3.1). Briefly, a baseline trial was 

followed by intraperitoneal injection of saline. The animal was then returned to its home cage 

for one hour, with a saline probe trial subsequently run. Injection of CNO and a second one 
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hour pause then followed, before a CNO probe trial was performed; all in the familiar 

environment. On each day, an equivalent volume of saline to the volume of CNO solution 

was administered, with 1mg/kg of CNO on the first day, 3mg/kg of CNO on the second day, 

and 5mg/kg of CNO injected on the third day. As in the hM3Dq mice, injections were 

performed under brief isoflurane anaesthesia.  

In assessing whether any effect was seen in control mice, the measures in which a 

significant difference was seen in the hM3Dq mice were examined by eye, averaging at the 

level of animal both across all drug concentrations, and separately for each drug 

concentration, to see if any dose-dependent effects could be observed.  

3.2.6 Immunohistochemistry and cell counting 

At the end of the experiment, mice were anaesthetised with isoflurane before intraperitoneal 

injection of 0.5ml of Euthatal (sodium pentobarbital). Following loss of toe-pinch and eye-

blink reflexes, mice were trans-cardially perfused with 10ml of 0.9% saline followed by 20ml 

of 4% paraformaldehyde (PFA). Brains were extracted and left in PFA for 4-6 hours, and 

then transferred to a cryoprotectant solution of 30% sucrose in tris-buffered saline (TBS) 

until the brains had sunk.  

Brains were then cut in the coronal plane into 50µm sections using a freezing microtome. 

Sections were collected in TBS before being washed three times for 10 minutes in a solution 

of TBS and 0.3% Triton X-100. Slices were subsequently incubated with DAKO Serum-Free 

Protein Block for one hour. Slices were then incubated on a shaker table for 24 hours at 4°C 

with primary antibodies for choline acetyltransferase (ChAT) (EMD Millipore, AB144P, 1:100) 

and mCherry (Abcam, AB167453, 1:1000). Slices were then again washed three times in 

TBS with 0.3% Triton X-100, before incubation at room temperature with secondary 

antibodies at 1:1000 for 18 hours (ChAT: ThermoFisher Scientific, A-10042 Alexa-488 

conjugated. mCherry: ThermoFisher Scientific, A-11055 Alexa-568 conjugated). Slices were 

washed a final three times in TBS before being mounted in Vectashield and a coverslip 

applied.  

Slices were viewed at 2.5x and 10x magnification using an epifluorescence microscope and 

at 40x magnification using a Leica SP8 confocal microscope. Confocal images of different 

planes of the slice were layered to produce z-stacks of the entire slice. Images of the medial 

septum were captured using filters appropriate for the 488 and 568nm dyes conjugated to 

the secondary antibodies. Selected captured images were exported as TIFF files using the 

Leica LAS X software.  
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In addition, cell counting was performed manually on composite images of microscope slides 

at 10x magnification, captured using a Zeiss Axioscan Slide Scanner. For each animal in 

which cell counting was performed (four hM3Dq mice and two hM4DI mice), the slide with 

the eight slices (400µm range) of the medial septum with maximal expression of mCherry 

was selected. Of these eight slices, cell counting was performed on one slice from each pair 

of adjacent slices (thus, in each animal, counting covered four slices over a minimum range 

of 300µm). The number of mCherry+, ChAT+, and mCherry+/ChAT+ cells were counted. 

This enabled calculation for each slice of the proportion of ChAT+ cells co-labelled for 

mCherry, and the proportion of mCherry+ cells co-labelled for ChAT. The values were then 

averaged together across the four slices counted to create average proportions for each 

animal.  

3.3 Results  

To investigate the function of medial septal cholinergic neurones, we enhanced their 

excitability using DREADDs while recording extracellularly from grid cells (Figure 3.2A). The 

Cre-dependent AAV2-hSyn-DIO-hM3D(Gq)-mCherry virus was injected into the medial 

septum of ChAT-IRES-Cre mice, so as to express hM3Dq exclusively in cholinergic 

neurones of the medial septum. Expression of hM3Dq (a modified Gq-coupled human M3 

muscarinic receptor) leads subsequent intraperitoneal injection of its normally inert agonist, 

Clozapine-N-Oxide (CNO), to increase the excitability of hM3Dq expressing neurones 

(Alexander et al. 2009). Immunohistochemical staining for choline acetyltransferase (ChAT) 

and mCherry confirmed that expression of hM3Dq was limited to the medial septum (Figure 

3.2B), while confocal imaging indicated a tight overlap in expression of ChAT and mCherry 

(Figure 3.2C). Cell counting revealed that mCherry was expressed in the majority of ChAT+ 

neurones of the medial septum (mean ± SEM proportion of ChAT+ neurones co-labelled for 

mCherry = 0.57 ± 0.039, Figure 3.1D), while almost all mCherry+ neurones were ChAT+ 

(mean ± SEM proportion of mCherry+ neurones co-labelled for ChAT = 0.95 ± 0.0032, 

Figure 3.1E), indicating that hM3Dq was expressed almost exclusively in cholinergic 

neurones. In contrast, in mice injected with the inhibitory DREADD hSyn-DIO-hM4D(Gi)-

mCherry, a high proportion of mCherry expressing neurones did not co-stain for ChAT 

(mean ± SEM proportion of mCherry+ neurones co-labelled for ChAT = 0.28 ± 0.14, Figure 

3.1B, E). As such, experiments were limited to the excitatory DREADD hM3Dq. 
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Figure 3.1 Confirmation hM3Dq is expressed almost exclusively in medial septal cholinergic neurones; 
pictorial representation of the experimental protocol.  A-B, Example 10x epifluorescence image of coronal 
brain sections showing ChAT expression (green) and mCherry expression (red) following injection of hM3Dq (A) 
and hM4Di (B). Note the minimal overlap in ChAT and mCherry staining in B. C, Additional example 40x confocal 
z-stack images demonstrating tight overlap between ChAT and mCherry expression following injection of hM3Dq. 
D-E, Bars indicate mean ± SEM across all animals, crosses indicate average value for each animal. D, 
Proportion of ChAT+ neurones co-labelled for mCherry, as indicated by manual cell counting. E, Proportion of 
mCherry+ neurones co-labelled for ChAT. F, Experimental protocol for recordings made on novel and familiar 
days. A full description of the protocol can be seen in Section 3.2.3.  
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3.3.1 Increasing septal cholinergic tone reduces the frequency of LFP theta oscillations 

Electrophysiological recordings were made from the medial entorhinal cortex of 10 mice 

exploring a familiar environment during ‘baseline’ trials and one hour after injection of either 

CNO (3mg/kg) or an equivalent volume of saline (‘CNO probe’ and ‘saline probe’ trials 

respectively; see Figure 3.1E for full experimental protocol). Following injection of CNO, a 

clear reduction in the frequency of theta oscillations was observed (mean ± SEM, peak theta 

frequencies, baseline = 8.13 ± 0.052, CNO probe = 7.42 ± 0.064, saline probe = 7.85 ± 

0.067, Figure 3.2D). Repeated Measures Analysis of Variance (RM-ANOVA) was used to 

assess the significance of differences between CNO and saline injections on the change in 

theta frequency between baseline and probe trials. CNO significantly reduced the frequency 

of theta oscillations (RM-ANOVA, trial*drug interaction; F(1,9) = 15.50, p = 0.003, Figure 3.2E) 

but did not affect their absolute power, or the ratio of power in the theta band compared to 

adjacent frequency bands, termed signal to noise (S2N) (RM-ANOVA, trial*drug interaction; 

log power: F(1,9) = 0.39, p = 0.25; S2N: F(1,9) = 0.23, p = 0.37, Figure 3.2F&G). Hence, 

analysis of power spectra indicated that stimulating medial septal cholinergic neurones 

reduced the frequency of LFP theta oscillations without changing their power.  

The frequency of theta oscillations vary as a function of the animal’s running speed 

(Sławińska and Kasicki 1998; Jeewajee et al. 2008). We therefore analysed what impact 

elevating cholinergic tone had on the theta frequency vs running speed relationship. 

Wavelets were used to generate instantaneous estimates of the LFP power spectrum, which 

were combined to produce average power spectra in running speed bins of width 0.25cm/s 

from 0-30cm/s. For each speed bin, the theta-band (3-11Hz) frequency with maximum power 

was identified. The theta frequency vs running speed relationship consistently appeared to 

be non-linear (Figure 3.2H, Figure 3.3A). Analysis of artificial LFP traces confirmed this was 

not an artefact of the analysis procedure (Figure 3.3B). The data were therefore fit with both 

linear (y = A + B * x) and three-term exponential (y = A – B * exp [ -C * x ]) functions using 

linear and non-linear least squares respectively. The effect of varying each parameter in the 

exponential function can be seen in Figure 3.3. The F-test was then used to assess whether 

there was a significant difference in the quality of the fits. In 100% of the 95 baseline, CNO, 

and saline probe trials performed, the exponential fit was significantly better (all p < 0.001). 

Following injection of CNO, the average theta frequency vs running speed relationship was 

shifted to lower frequencies (Figure 3.2H). This change was reflected in a significant 

reduction in the exponential fit parameter A value which best fitted the theta frequency vs 

running speed relationship (RM-ANOVA, trial*drug interaction; F(1,9) = 37.42, p = 0.00018, 

Figure 3.2I). In contrast, there was no significant effect of CNO on parameter B or C (RM-

ANOVA, trial*drug interaction; parameter B: F(1,9) = 1.15, p = 0.31; parameter C: F(1,9) = 
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0.0044, p = 0.95, Figure 3.2J&K). Increasing the excitability of medial septal cholinergic 

neurones therefore decreased the frequency of theta oscillations, by reducing the average 

frequency observed at each running speed, without attenuating the extent to which the 

animal’s speed modulated theta frequency.  
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Figure 3.2 Increasing medial septal cholinergic tone reduces LFP theta frequency by shifting its 
relationship with running speed to lower frequencies. A, Schematic representation of the experiment design: 
the Cre-dependent excitatory DREADD hM3Dq was injected into the medial septum of ChAT-Cre mice. In the 
same animal, tetrodes were implanted in the medial entorhinal cortex. B, 2.5x epifluorescence images of coronal 
brain sections showing ChAT expression (green) and mCherry expression (red), with expression of the latter 
limited to the medial septum. C, 40x confocal z-stack images demonstrating tight overlap between ChAT and 
mCherry expression. D, Average LFP power spectra: mean ± SEM log power at each frequency across all 
baseline, CNO, and saline probe trials respectively. E-G, I-K, Blue = CNO, black = saline. Bars indicate mean ± 
SEM across all animals in each group. Crosses indicate average value for each animal in each group. Stars 
indicate RM-ANOVA baseline vs probe * CNO vs saline interaction significance. *** = p<0.001, ** = p<0.01, * = 
p<0.05, ns = p>0.05. E, Frequency of maximum power in the LFP power spectrum in the theta (6-10Hz) band. F, 
Maximum log power in the theta band of the LFP power spectrum. G, Theta S2N: the ratio of average power in a 
2Hz window around the theta peak compared to average power in the rest of the 3-25Hz range of the LFP power 
spectrum. H, Mean ± SEM frequency of maximum power in the 3-11Hz range at each running speed, averaged 
across all baseline, CNO, and saline probe trials respectively. I-K, Three-term exponential fit parameter A, B, and 
C values respectively that best fitted the LFP theta frequency vs running speed relationship. 
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Figure 3.3 Examples of observed and artificial LFP theta frequency vs running speed plots demonstrate a 
clear non-linear relationship between the two. A-B, Black crosses indicate theta frequency of maximum power 
in the 3-11Hz range in each running speed bin. Green line indicates the best three-term exponential fit fitted with 
non-linear least squares. Red line indicates the best linear fit fitted with linear least squares. Stars indicate 
whether the exponential model fits the data significantly better than the linear model, accounting for the increased 
number of free parameters, using the F-test. *** = p<0.001, ** = p<0.01, * = p<0.05, ns = p>0.05. A, Examples 
from three baseline trials of observed theta frequency vs running speed profiles B, Examples of artificial 
sinusoidal LFP plots whose frequency was set to vary as a linear (left), saturating-exponential (middle), and 
sinusoidal (right) function of running speed. C, Left to right: pIots demonstrating the effect of systematically 
varying the parameter A, B, and C values respectively in the three-term exponential function used for fitting, while 
holding the other parameters constant. Darker colours indicate lower parameter values, lighter colours higher 
values. 

3.3.2 Increasing septal cholinergic tone also reduces the theta burst frequency of single 
units 

Theta oscillations can also be observed in the bursts of action potentials emitted by 

individual neurones of the entorhinal cortex (Jeffery, Donnett, and O’Keefe 1995). We 

therefore asked whether modulating the excitability of medial septal cholinergic neurones 

affected the theta bursting of single units. The theta band modulation of cells’ firing was 

quantified from the power spectra of the temporal autocorrelogram of each neurone’s spike 
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train. Theta modulated cells were defined as those whose signal to noise ratio (S2N) 

comparing theta to other frequency bands was greater than that seen in 99/100 shuffles 

where spike times were randomly set. As only a small number of grid cells were significantly 

theta modulated (27 out of 227 baseline and probe grid cell trials [11.95%: 11.86% of 

baseline trials, 10.34% of CNO trials, 14.00% of saline trials], Figure 3.5B), we instead 

focused on a population of theta bursting cells not modulated by the animal’s position or 

heading direction (125 out of 145 baseline and probe trials with significant theta modulation 

[86.21%], Figure 3.5A). As in the LFP, after injection of CNO, the theta burst frequency of 

these cells was reduced, without change in the strength of theta modulation (RM-ANOVA, 

trial*drug interaction; frequency: F(1,6) = 30.93, p = 0.0014; S2N: F(1,6) = 0.20, p = 0.67, Figure 

3.4A-C).  

The relationship between theta burst frequency and running speed was also assessed. To 

do so, power spectra of the temporal autocorrelograms generated from spike trains seen in 2 

second windows across the trial were averaged together into 4cm/s speed bins, with the 

theta frequency of maximum power identified in each bin. Administration of CNO shifted the 

speed-frequency relationship downwards (Figure 3.4D). Again, this change corresponded to 

a reduction in parameter A of the exponential fit, whereas no change was seen in 

parameters B and C (RM-ANOVA, trial*drug interaction; parameter A: F(1,3) = 40.40, p = 

0.008, parameter B: F(1,3) = 3.66, p = 0.15; parameter C: F(1,3) = 5.97, p = 0.092, Figure 3.4E-

G). The same conclusions were reached when averaging at the level of cell rather than 

animal, to increase the number of data points (Figure 3.5E-G). Hence, as in the LFP, 

increasing cholinergic tone reduced the burst frequency of theta modulated neurones by 

shifting the theta frequency vs running speed relationship to lower frequencies, without 

affecting the depth of theta frequency modulation across different speeds. Repeating these 

analyses averaging at the level of cell, rather than animal, did not affect these conclusions 

(Figure 3.5C-G).  
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Figure 3.4 Increasing medial septal cholinergic tone reduces the burst frequency of theta-modulated 
single units. A, Example power spectra indicating the power at each frequency in the 3-25Hz range in temporal 
autocorrelograms of spike trains from two theta-modulated single units. Left: a unit in a baseline trial and the 
same unit in a CNO probe trial. Right: a unit in a baseline trial and the same unit in a saline probe trial. Inset: 
smoothed spike train temporal autocorrelograms from the same cells/trials from which the power spectra were 
derived. B-C, E-G, Blue = CNO, black = saline. Bars indicate mean ± SEM across all animals in each group. 
Crosses indicate average value for each animal in each group. Stars indicate RM-ANOVA baseline vs probe * 
CNO vs saline interaction significance. *** = p<0.001, ** = p<0.01, * = p<0.05, ns = p>0.05. B-C, Only cells with 
significant theta modulation (assessed by a shuffle procedure) in either a baseline or probe trial are included. B, 
Theta burst frequency of single units, as inferred from the frequency of maximum power in the 6-10Hz theta 
window of each unit’s power spectrum. C, Theta S2N: the ratio of average power in a 2Hz window around the 
theta peak compared to average power in the rest of the 3-25Hz range of each unit’s power spectrum. D, Mean ± 
SEM unit burst frequency of maximum power in the 3-11Hz range in each running speed bin, averaged across all 
baseline, CNO, and saline probe trials with significant theta modulation respectively. E-G, Parameter A, B, and C 
values respectively that best fit the single unit theta frequency vs running speed relationship. Only cells with 
significant theta modulation (assessed by a shuffle procedure) in either a baseline or probe trial, and only trials 
with a significantly better exponential than linear fit are included. 
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Figure 3.5 Conclusions of the effect of CNO on theta-modulated unit burst frequency are unchanged by 
performing analyses averaging at the level of cell A-B, Distribution of theta signal to noise (Theta S2N) as a function 

of location within a distribution of shuffled theta S2N values (shuffle percentile) for theta-modulated non-spatial cells (A) and 
grid cells (B). Only baseline and probe trials are included. Vertical dashed grey lines represent the significance threshold. Inset 
are example temporal autocorrelograms representative of specific S2N values. C-G, Blue = CNO, black = saline. Bars indicate 
mean ± SEM across all cells in each group. Crosses indicate average value for each cell in each group. Only cells with 
significant theta modulation (assessed by the shuffle procedure) in either a baseline or probe trial are included. Stars indicate 
mixed-model ANOVA baseline vs probe * CNO vs saline interaction significance. *** = p<0.001, ** = p<0.01, * = p<0.05, ns = 
p>0.05. C, Theta burst frequency of single units. D, Theta S2N. E-G, Only cells with significant theta modulation (assessed by a 
shuffle procedure) in either a baseline or probe trial and only trials with a significantly better exponential than linear fit 
(according to the F-test) are included. E-G, Parameter A, B, and C values respectively that best fit the single unit theta 
frequency vs running speed relationship. 

3.3.3 Increasing septal cholinergic tone induces a pattern of behaviour consistent with the 
detection of novelty 

At the start of probe trials following injection of CNO, mice displayed a pattern of behaviour 

normally seen during exposure to novel environments. In the first five minutes of CNO probe, 



110 
 

but not saline probe trials, mice exhibited a clear tendency to run predominantly around the 

perimeter of the environment (Figure 3.6A). Indeed, injection of CNO led to a significant 

increase in the proportion of the first five minutes of the trial that mice spent within 10cm of 

the walls of the enclosure (‘perimeter dwell’, RM-ANOVA, trial*drug interaction; F(1,9) = 17.10, 

p = 0.0025, Figure 3.6B), and not moving (RM-ANOVA, trial*drug interaction; F(1,9) = 7.25, p 

= 0.025, Figure 3.6C). These changes were seen despite there being no effect of CNO on 

the average running speed, either in the first five minutes or across the whole trial (RM-

ANOVA, trial*drug interaction, first five minutes; F(1,9) = 0.21 p = 0.66; whole trial; F(1,9) = 

0.11, p = 0.75, Figure 3.6D). There was also no difference in the average distribution of 

running speeds across CNO and saline probe trials (Kolmogorov-Smirnov test, p = 0.998, 

Figure 3.6E). Therefore, in addition to modulating theta frequency, increasing the excitability 

of medial septal cholinergic neurones also led mice to spend a greater proportion of the 

beginning of subsequent trials near the perimeter of the enclosure and not moving. 

 

Figure 3.6 Increasing medial septal cholinergic tone results in a pattern of behaviour normally seen 
during exposure to a novel environment. A, Cumulative position plots from two animals (one in each row), 
indicating coverage of the environment in the first five minutes of baseline, CNO, and saline probe trials. B-D, 
Blue = CNO, black = saline. Bars indicate mean ± SEM across all animals in each group. Crosses indicate 
average value for each animal in each group. Stars indicate RM-ANOVA baseline vs probe * CNO vs saline 
interaction significance. *** = p<0.001, ** = p<0.01, * = p<0.05, ns = p>0.05. B, Proportion of the first five minutes 
of the trial spent within 10cm of the walls of the enclosure (‘perimeter dwell’). C, Proportion of the first five 
minutes of the trial spent sitting still (running speed <1cm/s). D, Mean running speed across the whole trial. E, 
Mean ± SEM proportion of the whole trial spent at each 2cm/s speed bin across all baseline, CNO, and saline 
probe trials respectively. 
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3.3.4 Injection of CNO has no effect in control mice 

Control animals transfected with the fluorophore virus AAV2-hSyn-DIO-mCherry were 

exposed through intraperitoneal injections to 1, 3, and 5mg/kg doses of CNO, and equivalent 

volumes of saline. In contrast to mice injected with the hM3Dq virus, no effect of CNO was 

observed on peak LFP theta frequency (Figure 3.7A), LFP theta frequency vs running speed 

exponential fit parameter A (Figure 3.7B), perimeter dwell (Figure 3.7C), or the proportion of 

time spent sitting still (Figure 3.7D). That is, no difference was seen between baseline, CNO 

probe, or saline probe trials averaging across all concentrations at the level of animal. 

Further, no dose-dependent effects of CNO were seen on any of these measures when 

values were separated according to the concentration of CNO administered (Figure 3.7E-H). 

Further, the changes observed in hM3Dq mice cannot be explained by the fact that CNO 

probe trials always followed saline probe trials on days in which a baseline, saline, and CNO 

probe trial were carried out: when only data from days in which only either a CNO or saline 

probe trial were performed, with the order of days counterbalanced between animals, all 

significant results were maintained (Figure 3.8A-D). These data thus give credence to the 

conclusion that the effects of CNO described here result from increases in the excitability of 

medial septal cholinergic neurones. 
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Figure 3.7 Effects observed following injection of CNO in hM3DQ mice are not seen in DIO-mCherry 
control mice.  A-H, Grey = baseline, blue = CNO, black = saline. Bars indicate mean ± SEM across all animals 
in each group. Crosses indicate average value for each animal in each group. A-D, Values are averaged across 
all three drug concentrations administered. E-H, Values are separated according to the drug concentration 
administered. A, E, Frequency of maximum power in the LFP power spectrum in the theta (6-10Hz) band. B, F, 
Three-term exponential fit parameter A values that best fitted the LFP theta frequency vs running speed 
relationship. C, G, Proportion of the first five minutes of the trial spent within 10cm of the walls of the enclosure 
(‘perimeter dwell’). D, H, Proportion of the first five minutes of the trial spent sitting still (speed <1cm/s). 
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Figure 3.8 Effect of CNO on theta frequency and behaviour still seen when analysis is restricted to 
novelty days, in which only either CNO or saline were administered. A-C, Blue = CNO, black = saline. Bars 
indicate mean ± SEM across all animals in each group. Crosses indicate average value for each animal in each 
group. Stars indicate RM-ANOVA baseline vs probe * CNO vs saline interaction significance. *** = p<0.001, ** = 
p<0.01, * = p<0.05, ns = p>0.05. A, Frequency of maximum power in the LFP power spectrum in the theta (6-
10Hz) band. B, Three-term exponential fit parameter A values that best fitted the LFP theta frequency vs running 
speed relationship. C, Proportion of the first five minutes of the trial spent within 10cm of the walls of the 
enclosure (‘perimeter dwell’). D, Proportion of the first five minutes of the trial spent sitting still (speed <1cm/s). 

3.3.5 Increasing septal cholinergic tone has no effect on grid firing patterns in familiar 
environments 

Grid cells were recorded in seven of the 10 mice. A cell was classified as a grid cell if it 

exhibited hexagonally periodic spatial firing (gridness score > 0.3) in either a baseline or 

probe trial. Following injection of CNO, little change was observed when comparing 

ratemaps of the same grid cells between the baseline and CNO probe trials (Figure 3.9A). 

Indeed, there was no significant change in gridness scores following injection of CNO (RM-

ANOVA, trial*drug interaction; F(1,6) = 1.05, p = 0.34, Figure 3.9B). Neither was there a 

significant effect on grid scale, assessed from the spatial autocorrelogram of the ratemap, 

when looking at cells with gridness > 0.3 in both a baseline and probe trial (RM-ANOVA, 

trial*drug interaction; F(1,5) = 0.021, p = 0.89, Figure 3.9C).  
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Figure 3.9 Increasing medial septal cholinergic tone has no effect on grid cell firing patterns in familiar 
environments. A, Example ratemaps and spatial autocorrelograms from four grid cells (one in each row), in a 
baseline trial (left hand side) and a CNO probe trial (right hand side). B-E, Blue = CNO, black = saline. Bars 
indicate mean ± SEM across all animals in each group. Crosses indicate average value for each animal in each 
group. Only cells with gridness > 0.3 in either a baseline or probe trial are included. B-D, Stars indicate RM-
ANOVA baseline vs probe * CNO vs saline interaction significance. *** = p<0.001, ** = p<0.01, * = p<0.05, ns = 
p>0.05. B, Degree of hexagonal regularity of grid cell firing patterns, as measured by the gridness score. C, Grid 
cell scale in cm, measured as the median distance to the six peaks closest to the centre of the autocorrelogram. 
Only trials with gridness > 0.3 are included. D, Intra-trial stability of grid cell firing patterns, as measured by the 
value at the centre of a cross-correlogram constructed from two ratemaps, one from each half of the trial. E, Inter-
trial stability of grid cell firing patterns, as measured by the value at the centre of a cross-correlogram constructed 
from two ratemaps, one from the baseline and one from the probe trial. No significant difference was found 
between the groups using a paired t-test. 
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In analysing whether CNO affected the intra-trial stability of grid-patterns, bin-wise Pearson 

correlations were calculated between ratemaps corresponding to the first and second half of 

each trial. No effect of CNO was observed (RM-ANOVA, trial*drug interaction; F(1,6) = 0.75, p 

= 0.42, Figure 3.9D). Similarly, we assessed the inter-trial stability of grid cells using the 

same procedure to compare baseline ratemaps with those from saline and CNO probe trials. 

CNO was not found to affect the spatial stability of grid firing across trials (paired t-test, t6 = -

0.38, p = 0.72, Figure 3.9E). The same conclusions were reached when averaging at the 

level of cell, rather than animal, to increase the number of data points (Figure 3.12A-B). That 

is, while increasing cholinergic tone modulated theta frequency and behaviour, no effect was 

seen on grid cell firing patterns in familiar environments. 

3.3.6 Increasing septal cholinergic tone has no effect on grid cell speed signals 

Given the absence of change in grid cell firing patterns, we next asked whether stimulating 

medial septal cholinergic neurones affected putative speed signals seen in grid cells. First, 

we analysed changes in the firing rates of grid cells seen as a function of running speed. 

Specifically, following Kropff et al. 2015, we calculated the instantaneous firing rate of each 

grid cell, using linear regression to identify the slope and correlation (‘speed score’) of its 

relationship with running speed. A grid cell was identified as significantly speed modulated if, 

in either a baseline or probe trial, it had both gridness > 0.3 and a speed score exceeding 

99% of a null distribution of 1000 speed scores generated by randomly permuting the cell’s 

spike train relative to the animal’s running speed. No effect of CNO could be seen in the 

binned average firing rate vs running speed plots of speed modulated grid cells (Figure 

3.10A). Indeed, in animals with speed modulated grid cells, there was no effect of CNO on 

the speed score, nor the slope of the firing rate vs running speed regression line (RM-

ANOVA, trial*drug interaction; speed score: F(1,5) = 0.00079, p = 0.979; slope: F(1,5) = 0.41, p 

= 0.55, Figure 3.10B&C). Next, we asked whether the putative encoding of speed in the 

difference in slope of intracellular and LFP theta frequency vs running speed relationships 

was affected by CNO injections. Such differences are thought to manifest in theta phase 

precession (O’Keefe and Burgess 2005), the tendency of grid cells to fire at progressively 

earlier phases of the theta cycle as the animal moves through grid fields (Hafting et al. 2008; 

Jeewajee et al. 2014). Following CNO injection, theta phase precession could still be 

observed in grid cells (Figure 3.10D), and there was no effect on the correlation or slope of 

phase precession in grid cells assessed as significantly phase precessing by a shuffle 

procedure (RM-ANOVA, trial*drug interaction; F(1,3) = 1.10, p = 0.38; F(1,3) = 1.51, p = 0.31, 

Figure 3.10E&F). Repeating the speed modulation and phase precession analyses 

averaging at the level of cell, rather than animal, to increase the number of data points, did 
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not change these conclusions (Figure 3.12C-F). The absence of change in grid cell firing 

patterns was therefore consistent with a lack of change in putative speed signals in grid cells 

following modulation of medial septal cholinergic tone.  

 

Figure 3.10 Increasing medial septal cholinergic tone has no effect on putative grid cell speed signals. A, 
Mean ± SEM firing rate of grid cells as a function of running speed, averaged across all baseline, CNO, and 
saline probe trials respectively. Only grid cell trials with significant speed modulation (determined by a shuffle 
procedure) are included. B-C, E-F, Blue = CNO, black = saline. Bars indicate mean ± SEM across all animals in 
each group. Crosses indicate average value for each animal in each group. Stars indicate RM-ANOVA baseline 
vs probe * CNO vs saline interaction significance. *** = p<0.001, ** = p<0.01, * = p<0.05, ns = p>0.05. B-C, Only 
grid cells with significant speed modulation in either a baseline or probe trial are included. B, Grid cell speed 
scores: the Pearson correlation between a cell’s instantaneous firing rate and the animal’s running speed. C, Grid 
cell speed slope: the slope of the regression line which best fitted the relationship between instantaneous firing 
rate and running speed. D, Two example CNO probe trials in which significant grid cell phase precession was 
seen. One cell in plotted in each row. Left-hand side: smoothed firing rate map, with crosses indicating field 
peaks. Centre: watershed-isolated valid fields. Right: scatter of theta phase as a function of proportion of distance 
along run through the field. Red line indicates best fitting circular-linear regression slope. E-F, Only grid cells with 
significant phase precession in either a baseline or probe trial are included. E, Circular-linear correlation values 
relating theta phase to proportional distance through the field. F, The slope of the circular-linear phase 
precession regression line. 
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3.3.7 Increasing septal cholinergic tone has no effect on grid firing patterns in novel 
environments 

Finally, to assess whether a lack of change in grid cell firing patterns following CNO injection 

was the result of their being stabilised by familiar sensory cues, we recorded from grid cells 

while mice explored novel environments after injection of either CNO or saline. In the first 

novel trial following both CNO and saline injections, some grid cells exhibited significantly 

hexagonal firing patterns (Figure 3.11A). While gridness was reduced in the first novel trial, 

there was not a significant interaction between CNO and saline in the change in gridness 

between baseline and novel trials (main effect trial (baseline vs novel); F(1,9) = 10.54, p = 

0.023; trial*drug interaction; F(1,5) = 1.07, p = 0.35, Figure 3.11B). Neither was there a 

significant effect of CNO on grid scale, when looking at cells with gridness above 0.3 in both 

the familiar and novel environments (trial*drug interaction; F(1,9) = 0.92, p = 0.38, Figure 

3.11C). Again, analysis at the level of cell did not change these conclusions (Figure 3.12G-I). 

Thus, increasing the excitability of medial septal cholinergic neurones had similarly little 

effect on grid cell firing patterns in familiar and novel environments.  
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Figure 3.11 Increasing medial septal cholinergic tone has no effect on grid cell firing patterns in novel 
environments.  A, Example ratemaps and spatial autocorrelograms from eight cells which had significant 
hexagonal firing patterns (gridness > 0.3) in the first trial in a novel environment following administration of CNO 
(left) or saline (right). B-C, Blue = CNO, black = saline. Bars indicate mean ± SEM across all animals in each 
group. Crosses indicate average value for each animal in each group. Stars indicate RM-ANOVA baseline vs 
Novel * CNO vs saline interaction significance. *** = p<0.001, ** = p<0.01, * = p<0.05, ns = p>0.05. Only cells 
with gridness > 0.3 in either a baseline or novel trial are included. B, Degree of hexagonal regularity of grid cell 
firing patterns, as measured by the gridness score. C, Grid cell scale in cm, measured as the median distance to 
the six peaks closest to the centre of autocorrelogram. Only trials with gridness > 0.3 are included. 
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Figure 3.12 Conclusions of the effect of CNO on grid cell firing patterns are unchanged by repeating 
analyses averaging at the level of cell. A-I, Blue = CNO, black = saline. Bars indicate mean ± SEM across all 
cells in each group. Crosses indicate average value for each cell in each group. Only cells with gridness > 0.3 in 
either a baseline or probe trial are included. Stars indicate mixed-model ANOVA baseline vs probe * CNO vs 
saline interaction significance. *** = p<0.001, ** = p<0.01, * = p<0.05, ns = p>0.05. A-F, Only baseline and probe 
trials in the familiar environment are included. A, Degree of hexagonal regularity of grid cell firing patterns, as 
measured by the gridness score. B, Grid cell scale in cm, measured as the median distance to the six peaks 
closest to the centre of the autocorrelogram. Only trials with gridness > 0.3 are included. C-D, Only grid cells with 
significant speed modulation in either a baseline or probe trial are included. C, Grid cell speed scores: the 
Pearson correlation between a cell’s instantaneous firing rate and the animal’s running speed. D, Grid cell speed 
slope: the slope of the regression line which best fitted the relationship between instantaneous firing rate and 
running speed. E-F, Only grid cells with significant phase precession in either a baseline or probe trial are 
included. E, Circular-linear correlation values relating theta phase to proportional distance through the field. F, 
The slope of the circular-linear phase precession regression line. G-I, Comparison of grid cell firing patterns 
between baseline and novel trials. G, Degree of hexagonal regularity of grid cell firing patterns, as measured by 
the gridness score, including only the first novel trial. H, Degree of hexagonal regularity of grid cell firing patterns, 
as measured by the gridness score, including all novel trials and days. I, Grid cell scale in cm, measured as the 
median distance to the six peaks closest to centre of autocorrelogram. Only trials with gridness > 0.3 are 
included, including all novel trials and days. 
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3.4 Discussion 

3.4.1 Summary of results and significance 

Aiming to illuminate the functions of the medial septum, and in particular its contribution to 

grid cell activity, we modulated septal cholinergic tone while recording from grid cells in mice 

exploring familiar and novel environments. Increasing the excitability of medial septal 

cholinergic neurones reduced theta frequency by shifting its saturating-exponential 

relationship with running speed to lower frequencies. However, no effect was seen on grid 

cell firing patterns in familiar environments, consistent with a lack of change in putative 

speed signals used by grid cells. While the regularity of grid firing decreased in novel 

environments, no novelty-induced increase in grid scale was observed, preventing testing of 

the hypothesis that, in rats, grid scale increases in novel contexts is a result of an increase in 

cholinergic tone. However, mice exhibited behaviours normally seen on exposure to novel 

environments during increases in the excitability of cholinergic neurones, consistent with a 

role for acetylcholine in the signalling of novelty.  

3.4.2 Role of septal acetylcholine in theta oscillations 

A reduction in theta frequency following an increase in cholinergic tone is concordant with 

evidence demonstrating that application of the muscarinic receptor agonist carbachol 

reduces the frequency of subthreshold membrane potential oscillations (Klink and Alonso 

1997) and resonant frequency (Heys, Giocomo, and Hasselmo 2010) of entorhinal layer-II 

ocean-stellate cells in-vitro. Through application of the acetylcholinesterase inhibitor 

physostigmine, similar results have also been observed in-vivo (Tsuno, Schultheiss, and 

Hasselmo 2013). Blockade of muscarinic receptors with systemic administration of 

scopolamine has also been observed to reduce theta frequency in-vivo, though in contrast to 

the present results, through a flattening of the theta frequency vs running speed slope 

(Newman et al. 2013). Further, lesions specifically targeting septal cholinergic neurones 

have been found to reduce the power of Type I theta oscillations without affecting their 

frequency (Lee et al. 1994; Yoder and Pang 2005). The current results therefore 

complement a growing body of evidence demonstrating a role for medial septal cholinergic 

neurones in modulating Type I theta oscillations, though one in which their precise functional 

contribution remains unclear. Some variability in the described results likely stems from 

differences in the techniques employed both to modulate cholinergic tone and record theta. 

For example, recording in the hippocampus rather than the entorhinal cortex may lead to a 

change in power without a change in frequency of theta oscillations, because of an absence 

of the ocean-stellate cells whose subthreshold oscillatory dynamics are modulated by 
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acetylcholine. Similarly, non-linear responses to acetylcholine concentration, and adaptation 

over time, may mean that the impact of any intervention depends on whether it increases or 

decreases cholinergic tone, is acute or chronic. Further experiments are also required to 

identify whether the observed reduction in theta frequency is due to local connections of 

cholinergic neurones within the medial septum, or direct projections to the entorhinal cortex.  

3.4.3 Non-linear relationship between theta frequency and running speed 

The non-linear relationship between theta frequency and running speed observed here is 

unlikely to be an artefact of the analysis, as the same procedure was capable of correctly 

identifying linear and sinusoidal relationships in artificially-generated data. Further, though 

not remarked upon, a number of observations of non-linear increases in theta frequency 

have been made in the past (Jeewajee et al. 2008; Newman et al. 2013; Chen et al. 2016). 

The saturating-exponential relationship consistently observed here means that the fastest 

rate of change in theta frequency is seen at the lowest running speeds. It is possible that this 

rapid change in frequency represents a discontinuous transition between immobility-related 

Type II and mobility-related Type I theta. However, in the current data, analysis using 

narrow-width (0.25cm/s) speed bins consistently indicated a smooth increase in frequency, 

rather than a discontinuous jump between low- and high-frequency theta states. Oscillatory 

interference models, which use differences in the frequency vs running-speed slopes of 

multiple theta oscillations to encode an animal’s velocity, are not in theory invalidated by 

non-linear slopes: to generate firing patterns that track the distance travelled by an animal, 

current models only require that the difference in the slopes of the constituent oscillators be 

linear across running speeds.  

3.4.4 No evidence for an involvement of septal acetylcholine in the generation of grid firing 
patterns 

In contrast to the observed effects on theta frequency, no change was seen in the firing 

patterns of grid cells recorded in familiar environments, consistent with an absence of 

change in their putative speed signals. The absence of change in firing rate vs speed profiles 

of grid cells seen here suggests such activity does not depend on cholinergic projections 

from the medial septum. Recordings from septal glutamatergic neurones indicate that their 

projections to the entorhinal cortex provide a firing rate signal which varies as a function of 

running speed (Fuhrmann et al. 2015; Justus et al. 2017), and it may be their activity which 

underlies a change in speed coding in entorhinal neurones following inactivation of the 

medial septum (Hinman et al. 2016). In the present experiment, increasing cholinergic tone 

had no effect on the depth of change in theta frequency seen as a function of running speed, 
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in contrast to the flatter profile seen following systemic administration of the muscarinic 

receptor antagonist scopolamine (Newman et al. 2013). This difference possibly reflects the 

fact that cholinergic tone was here increased, in contrast to the effective reduction in tone 

resulting from blockade of muscarinic receptors. The difference in effect on theta frequency-

speed profiles may explain why little change was seen here in grid cell firing patterns, in 

contrast to the breakdown of periodic firing that has previously been reported following 

scopolamine administration (Newman, Climer, and Hasselmo 2014). The present results are 

therefore consistent with the idea that the functional contribution of the medial septum to grid 

cell activity is provision of one or more speed signals, though provides little additional 

evidence to support this hypothesis.  

3.4.5 Absence of novelty-induced increases in grid scale 

In agreement with previous results, a reduction in the regularity of grid firing patterns was 

seen during exposure to novel environments (Barry, Ginzberg, et al. 2012). In contrast, 

however, a temporary increase in the scale of grid firing patterns was not observed. The 

possible reasons for this difference are discussed fully in Section 4.4.3, following replication 

of this result in wildtype mice. An absence of novelty-induced expansion of grid scale 

prevented testing of the hypothesis that an increase in cholinergic tone underlies this 

phenomenon in rats (Barry, Ginzberg, et al. 2012; Barry, Heys, and Hasselmo 2012). While 

modulating the excitability of cholinergic neurones here had no effect on grid firing in novel 

environments, it is possible that this was due to acetylcholine concentration reaching 

saturating levels. That is, an endogenous increase in cholinergic tone due to novelty may 

have masked any effect of the artificial elevation of the excitability of septal cholinergic 

neurones. However, the observation of lower theta frequency in novel environments 

following injection of CNO (data not shown) suggests that this is not the case.  

3.4.6 Possible role of septal acetylcholine in signalling novelty 

The tendency of rodents to remain still and avoid the centre of a novel open enclosure has 

long been used as a test to identify anxiolytic effects of drugs (Prut and Belzung 2003), while 

electric shocks have been shown to increase rats’ tendency to ‘freeze’, and remain near the 

perimeter of novel environments (Grossen and Kelley 1972). As such, these freezing and 

‘thigmotactic’ behaviours are closely associated with both novelty and anxiety. In the current 

experiment, the increased proportion of time spent in the periphery of the enclosure and not-

moving cannot be accounted for by an anxiogenic effect of the intraperitoneal injection 

alone, as the increase in both measures seen following injection of CNO was significantly 
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greater than that following injection of saline. Interestingly, the reduction in theta frequency 

seen here is similar to that observed following injection of anxiolytics in rats (Wells et al. 

2013), while the behavioural changes are redolent of anxiogenesis or novelty. Acetylcholine 

is closely related to learning and memory (Deiana, Platt, and Riedel 2011), and observed 

increases in cholinergic tone in novel contexts (Aloisi et al. 1997) are thought to drive the 

encoding of new memories in the hippocampal formation (Hasselmo 2006). The novelty-like 

behaviours seen here after stimulation of septal cholinergic neurones could therefore be 

interpreted as the result of inducing a sense of novelty, consistent with a role for 

acetylcholine in orchestrating network dynamics that favour the encoding of new memories; 

although the current data cannot distinguish this interpretation from an increase in anxiety.  
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4 Distal sensory features of the environment 
determine the scale, stability, and regularity of 
grid firing patterns 

4.1 Introduction 

When rats are transferred to a novel environment, the spacing between the peaks of the grid 

pattern, the grid scale, increases (Barry, Ginzberg, et al. 2012). The expansion in grid scale 

is greatest in the first trial in the novel environment, with the pattern returning to its ‘baseline’ 

scale after several days of experience (Barry, Ginzberg, et al. 2012). An apparently robust 

result, this phenomenon has been replicated in multiple labs (Hafting et al. 2005; T. Stensola 

et al. 2015). A number of theoretical accounts of the utility of an increase in grid scale in 

novel contexts have been proposed. First, grid expansion may represent a compensatory 

mechanism which minimises the impact of increased uncertainty in novel environments 

(Towse et al. 2014). That is, on entering a previously unexplored space, the unfamiliarity of 

the environment means an animal is less able to self-locate using sensory cues alone. As 

such, the capacity of grid cells to use sensory cues to ‘reset’ noise accrued through path 

integration is reduced. If path integration were performed separately by distinct modules, 

each would accumulate noise independently, potentially leading to catastrophic errors in the 

animal’s encoded location due to inconsistency across modules. In increasing their scale, 

grid cells may therefore sacrifice spatial resolution to increase their signal to noise ratio, and 

so reduce the chance of making egregious errors (Towse et al. 2014). Second, grid 

expansion may help generate place cell remapping (Barry, Ginzberg, et al. 2012). 

Temporary inconsistency between inputs to place cells from grid cells which expand, and 

boundary vector cell which do not (Solstad et al. 2008; Lever et al. 2009), could create a 

mismatch which causes place fields to shift. However, independent changes in the 

orientations and phases of distinct grid modules are probably alone sufficient to generate 

complete place cell remapping (Monaco and Abbott 2011). Finally, the expansion and 

subsequent contraction of the grid pattern could act as novelty and familiarity signals 

respectively to downstream regions (Barry, Ginzberg, et al. 2012).  

As discussed, an increase in cholinergic tone has been suggested to underlie grid expansion 

in novelty (Barry, Heys, and Hasselmo 2012). To test this hypothesis, we recorded from grid 

cells in familiar and novel enclosures whilst modulating the activity of medial septal 

cholinergic neurones (Section 3.3). In the first recording made in a novel environment during 

increased cholinergic tone, the absence of an increase in grid scale led to the excited belief 

that this represented evidence for a role of acetylcholine in grid expansion. However, 
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following recordings in novel environments after the injection of saline, it became clear that a 

lack of grid expansion was not the result of altered cholinergic tone. Indeed, no evidence for 

increases in grid scale in novel contexts was observed in recordings across seven mice, 

regardless of the modulation of septal cholinergic tone (Section 3.3.7).  

To assess whether the absence of novelty-based grid expansion could be attributed to the 

ChAT-Cre mice or medial septal injections used in the described experiments, we also 

recorded grid cells from C57/B6 wildtype mice in familiar and novel environments across 

multiple days of experience. Three mice were screened in Room 412, and tested in novel 

environments in Room 413. Two mice were screened in Room 413, and tested in a novel 

environment in Room 412. The room in which recordings were made had a profound 

influence on the properties of grid cell firing patterns, determining their scale, gridness, and 

intra-trial stability. Changes in these properties between rooms were seen despite a high 

degree of similarity in the immediate enclosure, and even when the same enclosure was 

used between rooms. Relatively little evidence for novelty-induced changes in grid scale was 

observed, however the regularity of firing patterns in the novel environment increased across 

days. These preliminary data therefore indicate that increases in grid scale in novel 

environments may be species specific, and that the distal sensory features of an 

environment can modulate salient properties of grid cell firing.  

4.2 Methods 

4.2.1 Animals 

All work was conducted within the terms of appropriate Home Office Project and Personal 

licences.  

Five C57/B6 ‘wildtype’ mice were used in this experiment. Prior to surgery, mice were 

housed communally under a 12:12 inversed light-dark cycle, with ad libitum access to food 

and water. After surgery, mice were transferred to individual Perspex cages, and their food 

was restricted such that their weight fell to 85% of that seen prior to surgery. Food was then 

provided such that the weight of each mouse increased by 0.5g per week.  

4.2.2 Microdrives and surgery 

Custom-built microdrives were produced and implanted as described in section 3.2.2, except 

no injections were made into the medial septum. All mice received two microdrives, each 

with four tetrodes, one targeting the medial entorhinal cortex of each hemisphere.  
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4.2.3 Experimental protocol and electrophysiological recording 

Electrophysiological and position data were recorded as described in section 3.2.3.  

The five mice were divided into two groups. The first group comprised three mice screened 

for grid cells in Room 412, the same room and configuration used for screening in the 

DREADD experiment. The other two mice were instead screened in Room 413, such that 

the screening environments were counterbalanced between mice.  

On identification of stable grid cell recordings, mice were transferred to the alternative room 

for recordings to be made in a novel environment. On each experimental day, a baseline trial 

in the familiar screening environment was followed by three novel probe trials in the novel 

environment. A fifth trial was then performed with the mouse returned to the familiar 

screening environment. Trials lasted 15-30 minutes, terminated once the mouse was 

deemed to have covered the enclosure sufficiently to assess the spatial tuning of any 

recorded cells. Adjacent trials were separated by a 20-30-minute break in which the animal 

was returned to its home cage and the enclosure was cleaned with water. Recordings in 

each novel environment were continued for five days.  

Screening of mice in Room 412 used a 1m diameter circular enclosure. The enclosure had 

50cm high walls, was surrounded by black curtains over the western 180°, and open to the 

dimly-lit experimental room over the eastern 180°. A single white cue-card lit by a desk-lamp 

hung at the western pole. These mice were then recorded in two novel environments, one at 

either end of Room 413. The first novel environment contained a 90x90cm square 

enclosure. The same 1m diameter circle used for screening was the enclosure of the second 

novel environment. Both novel environments were open to the experimental room, but 

differed from one another in the colour of the floor and the distal cues present. All five days 

of recording were performed in the first novel environment before moving to the second.  

Mice were screened in Room 413 using the 90x90cm enclosure and environment that acted 

as the novel square environment for mice screened in Room 412. In turn, upon identification 

of stable grid cell recordings, mice screened in Room 413 were transferred to Room 412. 

Recordings were there made in a second 90x90cm enclosure. Apart from being a 90x90cm 

square rather than a 1m diameter circle, the environment was otherwise identical to that 

used for screening the 412-first mice. Mice screened in Room 413 were only recorded in 

one, rather than two novel environments.  

90x90cm square and 1m diameter circular enclosure were chosen so that the surface area 

of recordings in square and circular environments were consistent (8100cm2 and 7854cm2 

respectively).  
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A summary of the experimental protocol and environments used can be seen in Figure 4.1 

below. 

 

Figure 4.1 Illustration of experimental protocol for novelty recordings in wild type mice.  A, Schematic 
illustration of the environments used for screening and novel recordings in the two groups of mice. Mice screened 
in Room 412 each were recorded across 10 novel recording days, five in each novel environment in Room 413. 
Mice screened in Room 412 had just five novel recording days, all in the same environment in Room 413. B, 
Each novel recording day consisted of five trials: a baseline trial followed by three novel probe trials, and finally a 
second familiar trial (not used in analysis).  

4.2.4 Analyses 

4.2.4.1 Clustering and ratemap generation 

Recorded spikes were organised into putative clusters as described in Section 3.2.3. 

Position data and the spikes from each putative cluster were spatially binned to generate 

firing rate maps, as described in 3.2.4.5.  

4.2.4.2 Grid cell analysis 

From recorded ratemaps, the gridness, scale, and intra-trial stability of each putative cluster 

was calculated as in Section 3.2.4.5.  

Any cell with a gridness of 0.3 in either a baseline or novel trial was considered a grid cell. 

For each grid cell, gridness and intra-trial stability values were mean-averaged across all 
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baseline and all novel trials. Across all unique grid cells, plots were then produced 

comparing gridness and stability in the baseline and novel environments, separately for the 

mice screened in Room 412 and Room 413.  

In comparing grid scale changes between environments, scale values for each grid cell were 

mean-averaged across all baseline and novel trials in which gridness exceeded 0.3. This 

was done separately for mice screened in Room 412 and mice screened in Room 413, with 

the mean values from each recording room plotted against one another for each group.  

For all three measures, the same analysis was also performed separately for each recording 

day. The mean and standard error of each value was then plotted as a function of 

experimental day, to assess changes in grid cell firing patterns that coincided with animals 

becoming more familiar with the novel environment.  

4.2.4.3 Hypothesis testing 

Given the small number of animals in this preliminary dataset, hypothesis testing was 

performed using values averaged at the level of grid cell, rather than animal. For mice 

screened in Room 412, data were pooled from both novel environments, as inspection of the 

data by eye indicated no differences between the two in any of the measures analysed. 

Paired t-tests were used to assess the null hypothesis of no difference in each measure 

between the baseline and novel environments, with tests performed separately for mice 

screened in Room 412 and Room 413. Further paired t-tests were used to assess the same 

null hypothesis, but with data only from specific recording days included. Finally, unpaired t-

tests were used to assess, separately for the two groups of mice, the null hypothesis that the 

difference in particular grid measures between baseline and novel environments were not 

different between the first and fifth days in the novel environment.  

4.3 Results 

4.3.1 Grid scale is determined by the distal sensory features of the environment 

To assess the influence of novel recording contexts on grid cell firing properties, we 

recorded grid cells from wildtype mice exploring familiar and novel environments in two 

experimental rooms, counterbalancing which room was used for screening between mice. In 

mice screened in Room 412, the grid scale of firing patterns in novel environments in Room 

413 were consistently lower than those seen during screening (Figure 4.2A). The reduced 

grid scale was seen even when the exact same enclosure was used (Figure 4.2A). Grid cells 
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of different baseline scale appeared to show a similar absolute reduction in grid scale in the 

novel environment (mean reduction of 4.94cm, a mean decrease of 10.69% from baseline 

scale, Figure 4.2C). The decrease in grid scale was significantly greater than would be 

expected by chance (paired t-test: t54 = 9.48, p = 4.39x10-13). No consistent change in the 

difference in scale between the environments was seen across multiple days of recording, 

during which time the animal became increasingly familiar with the novel environments. 

There was not a significant correlation between recording day and the difference in grid 

scale between environments, nor a significant change in the difference in grid scales 

between the first and fifth recording days (Spearman-rank correlation: ρ = 0.14, p = 0.216. 

Unpaired t-test, day 1 vs day 5, t27 = -0.0029, p = 0.998, Figure 4.2D, left-hand panel). 

In contrast, mice screened in Room 413 showed an increase in grid scale during recordings 

in a novel environment in Room 412 (Figure 4.2B). Again, the change in grid scale was seen 

despite the immediate enclosure being the same shape and size as that used for screening. 

Grid modules of different scale appeared to show a similar absolute increase in grid scale (a 

mean increase of 1.64cm, a 5.30% increase in grid scale compared to baseline, Figure 

4.2C). Grid scales observed in the novel environment of Room 413 were significantly greater 

than those seen during screening in Room 412 (paired t-test, t31 = -4.13, p = 2.55x10-4). 

Unlike mice screened in Room 412, a fairly consistent reduction in the difference in grid 

scale between the baseline and novel environments was observed as the novel environment 

became more familiar (Figure 4.2D, right-hand panel). A significant correlation between the 

difference in grid scales between the environments across days was observed, and a 

significant difference seen in the change in scale between the first and fifth recording days 

(Spearman-rank correlation: ρ = 0.51, p = 0.0083. Unpaired t-test, t7 = -2.41, p = 0.0467).  

The grid scale differences observed here cannot be explained by differences in grid 

regularity between environments, as only trials in which the cell’s gridness exceeded 0.3 

were included in the analysis. These data thus demonstrate that the scale of grid firing 

patterns are determined by the distal sensory features of the recording environment. In 

contrast, only relatively weaker evidence was found for an effect of novelty on grid scale.  
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Figure 4.2 Grid scale is determined by the distal sensory features of the environment.  A-B, Firing rate 
maps and spatial autocorrelograms of grid cells with gridness > 0.3 in both the baseline and ‘novel’ 
environments. Values indicate the grid scales observed. A, Grid cells from mice screened in Room 412 appeared 
to contract during recordings in novel environments in Room 413. B, Grid cells from mice screened in Room 413 
instead expanded during recordings in Room 412. C-D, Blue/left: mice screened in Room 412. Black/right: mice 
screened in Room 413. C, Grid scale in the novel environment as a function of scale in the familiar environment. 
Stars indicate significance level of paired t-tests comparing baseline and novel grid scales. *** = p < 0.001. D, 
Mean ± SEM difference in grid scale (baseline – novel) as a function of experience with the novel environment. 
Stars indicate significance level of unpaired t-tests comparing values on the first and fifth days of experience. * = 
p < 0.05; ns = p > 0.05.  
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4.3.2 Gridness is determined both by novelty and the distal sensory features of the 
environment 

In mice screened in Room 412, grid cells showed both increases and decreases in gridness 

in novel environments in Room 413 (Figure 4.3A). As such, no significant difference was 

found in gridness values between baseline and novel environments (paired t-test, t73 = 

0.343, p = 0.733, Figure 4.3C). However, a consistent pattern in the change in gridness 

values could be seen as the novel environment became more familiar (Figure 4.3D, left-hand 

panel). On the first novel day, gridness values were significantly lower in the novel 

environment (paired t-test, t31 = 4.55, p = 7.70x10-5, Figure 4.3D). However, following several 

days of experience, gridness values were on average higher in the novel environment, with 

significantly higher gridness observed on the fourth recording day (paired t-test, t28 = -3.06, p 

= 0.005, Figure 4.3D). Clear modulation of gridness by environmental familiarity could be 

seen in a significant correlation between the change in gridness across rooms and the 

recording day, and a significant difference in the change in gridness between the first and 

fifth days of experience (Spearman-rank correlation: ρ = -0.35, p = 2.28x10-5. Unpaired t-

test, t55 = 3.11, p = 0.0029, Figure 4.3D, left hand panel).  

In mice screened in Room 413, grid cells showed a reduction in gridness in the novel 

environment in Room 412 (paired t-test, t43 = 8.05, p = 4.02x10-10, Figure 4.3B-C). Indeed, 

not a single cell with significant gridness in the novel environment (gridness > 0.3) was 

observed which did not also have significant gridness in the baseline environment. A 

gradient of change in the difference in gridness values between the environments was 

observed as the novel environment became familiar, similar to that seen in mice screened in 

Room 412 Figure 4.3D, right-hand panel). However, the plot of mean difference in gridness 

across recording days had a higher intercept for mice screened in Room 413: a significant 

reduction in gridness was seen on the first novel day (paired t-test, t11 = 7.26, p = 1.61x10-5, 

Figure 4.3D) which was larger than the reduction observed on the first novel day in mice 

screened in Room 412 (unpaired t-test, t42 = -3.88, p = 3.62x10-4, Figure 4.3D). After five 

days of recording, no difference in gridness was seen between the baseline and novel 

environments (paired t-test, t5 = 0.302, p = 0.77, Figure 4.3D). As in mice screened in Room 

412, the influence of environment familiarity on grid regularity could be seen in both a 

significant correlation between recording day and the change in gridness across rooms, and 

a difference between the first and fifth recording days in the change in gridness across 

rooms (Spearman-rank correlation: ρ = -0.56, p = 2.76x10-4. Unpaired t-test, t16 = 4.04, p = 

9.56x10-4, Figure 4.3D, left hand panel). 

These results indicate that both the distal sensory features of the environment, and its 

degree of novelty, modulate the regularity of grid firing patterns. Initial reductions in gridness 
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were seen in novel environments, regardless of the counterbalancing of which was room 

was used for screening. However, the magnitude of the initial reduction in gridness, and the 

gridness values observed once the animals had become familiar with the novel environment, 

were dependent on the order in which animals experienced the two recording rooms.  
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Figure 4.3 Gridness is determined both by novelty and the distal sensory features of the environment.  A-
B, Firing rate maps and spatial autocorrelograms indicating differences in regularity of grid firing patterns for early 
and late exposures to the novel environment. Values indicate gridness scores observed. A, For mice screened in 
Room 412, during the first day in the novel environment, grid firing tended to be less regular. By the fifth day, the 
majority of cells were more regular in the novel environment. B, For mice screened in Room 413, on the first day 
in the novel environment, a large reduction in gridness was seen. By the fifth day, cells had similar gridness 
values in the two environments. C-D, Blue/left: mice screened in Room 412. Black/right: mice screened in Room 
413.C, Gridness in the novel environment as a function of gridness in the familiar environment. Stars indicate 
significance level of paired t-tests comparing baseline and novel gridness values. *** = p < 0.001; ns = p > 0.05. 
D, Mean ± SEM difference in gridness (baseline – novel) as a function of experience with the novel environment. 
Stars indicate significance level of paired t-tests comparing difference in gridness values between environments 
to 0, and unpaired t-tests comparing baseline – novel gridness values on the first and fifth days of experience. *** 
= p < 0.001; ** = p < 0.01; ns = p > 0.05.  
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4.3.3 The temporal stability of grid firing patterns is determined by the distal sensory 
features of the environment 

To assess the temporal stability of grid cell firing patterns, each trial was divided into two 

halves, with a ratemap generated for each. A spatial cross-correlogram between the 

ratemaps from each half was produced, with the value at the centre of the correlogram used 

as a measure of the stability of the firing pattern. For mice screened in Room 412, the 

temporal stability of grid firing was on average higher during recordings in novel 

environments in Room 413 (paired t-test, t73 = -2.84, p = 0.006, Figure 4.4A, C). As the novel 

environment became more familiar, a weak tendency for the difference in stability between 

environments to increase was observed (Figure 4.4D). However, the weak impact of 

environment familiarity on firing pattern stability was evidenced by the lack of a significant 

correlation between recording day and the difference in stability across environments, as 

well as the absence of a significant difference in change in stability between the first and fifth 

recording days (Spearman-rank correlation: ρ = -0.14, p = 0.098. Unpaired t-test, t55 = 1.39, 

p = 0.168, Figure 4.4D).  

In contrast, mice screened in Room 413 showed a consistent reduction in the stability of 

firing patterns during recordings in the novel environment in Room 412 (paired t-test, t43 = 

6.41, p = 9.30x10-8, Figure 4.4B-C). A weak tendency for the difference in stability between 

the recording rooms to decrease was observed as the novel environment became more 

familiar (Figure 4.4D). While significant correlation between recording day and the change in 

stability across environments was seen, as in mice screened in Room 412, the change 

between the first and fifth recording days was not significant (Spearman-rank correlation: ρ = 

-0.39, p = 0.0167. Unpaired t-test, t16 = 1.42, p = 0.176, Figure 4.4D).  

That is, the temporal stability of grid firing patterns appears to be clearly determined by the 

sensory features of the recording environment: depending on which environment was used 

as the baseline, stability both increased and decreased during recordings in the alternate 

room. Only relatively little evidence indicating that stability was modulated by the degree of 

familiarity with the environment was observed.  
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Figure 4.4 Temporal stability of grid firing is determined by the distal sensory features of the 
environment.  A-B, Example firing rate maps from the first and second half of trials, and spatial cross-
correlograms based on these ratemap pairs. Values indicate stability observed, as measured by the correlation at 
the centre of the cross-correlogram. A, The firing patterns of grid cells from mice screened in Room 412 were 
more stable during recordings in Room 413. B, Grid cells from mice screened in Room 413 were instead less 
stable during recordings in Room 412. C-D, Blue/left: mice screened in Room 412. Black/right: mice screened in 
Room 413.C, Temporal stability of grid firing in the novel environment as a function of stability in the familiar 
environment. Stars indicate significance level of paired t-tests comparing baseline and novel grid stability values. 
*** = p < 0.001; ** = p < 0.01. D, Mean ± SEM difference in stability (baseline – novel) as a function of experience 
with the novel environment. Unpaired t-tests compared difference in stability values between the first and fifth 
days of experience. ns = p > 0.05.  
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4.4 Discussion 

4.4.1 Summary of results and significance 

The results presented here indicate a propensity of the environment in which grid cells are 

recorded to powerfully modulate the scale, regularity, and temporal stability of their firing 

patterns. That changes in measures of these properties were seen despite the same shape 

and size enclosure being used in both environments (and indeed when exactly the same 

enclosure was used), suggests that the observed changes were likely due to differences in 

the distal sensory features of the environments. These results are therefore complementary 

to demonstrations that the geometry and size of the recording enclosure can similarly 

modulate grid firing properties (T. Stensola et al. 2015; Krupic et al. 2015).  

Recording grid cells over five days of increasing familiarity with the novel environments 

allowed assessment of any effect of novelty on grid firing patterns. As reported previously, 

the regularity of grid firing was reduced during initial exposures to novel environments, a 

change that attenuated across days of experience (Barry, Ginzberg, et al. 2012). The effects 

of novelty and the distal features of the recording environments appeared to act 

independently on observed gridness scores. In mice moving from Room 412 to Room 413, 

gridness values were initially reduced in novelty, but after multiple days of experience were 

significantly greater than those seen in the baseline environment. In contrast, mice moving 

from Room 413 to Room 412 showed a larger initial reduction in gridness, with no difference 

between the environments after five days of experience. Evidence for an effect of novelty on 

the stability and scale of grid firing patterns was relatively weaker, with greater inconsistency 

in the change in these values seen across recording days, and between mice experiencing 

the environments in different orders.  

4.4.2 Factors giving rise to differences in grid properties between environments 

As noted, the shape and size of the proximal enclosure cannot account for the observed 

differences in grid firing patterns seen between environments. As such, it is probable that 

changes in grid properties stemmed from differences in the sensory features of the 

environment beyond the immediate boundaries of the enclosure. That is, differences in the 

availability of visual, auditory, and possibly even olfactory cues surrounding each enclosure 

may mean that animals’ capacity to self-locate using external sensory cues differs in each, in 

turn leading to differences in the regularity, stability, and scale of grid firing. Room 412 was 

smaller than Room 413 (3.2x3m and 5.6x3.2m respectively), with half of the enclosure 

surrounded by black curtains. While the other side of the enclosure was open to the 
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experimental room, light levels were relatively low. In contrast, both enclosures in Room 413 

were open to the room on all sides, with relatively higher brightness levels. This may have 

meant that more distal sensory cues, particularly visual ones, were available in Room 413. 

Indeed, recent experiments indicate a profound stabilising effect of visual input on grid firing, 

in that grid firing patterns in mice were seen to deteriorate in the total absence of visual cues 

(Chen et al. 2016; Pérez-Escobar et al. 2016). While the present results indicate that distal 

sensory features of the environment are an important determinant of grid firing properties, 

more carefully controlled experiments are necessary to confirm and specify the exact 

influence of distal cues. For example, grid cells could be recorded in curtained environments 

in which the availability of distal cues is quasi-parametrically varied. Such an experiment 

could also be performed in a virtual reality environment, such that all sensory cues could be 

tightly controlled and specified. 

4.4.3 Reconciling results concerning the impact of novelty on grid firing 

The present results replicates observed reductions in the regularity of grid patterns in novel 

environments (Barry, Ginzberg, et al. 2012). However, only weaker evidence was found for 

an influence of novelty on the stability and scale of grid firing. It is not clear why an increase 

in grid scale in novel environments was not observed here, despite replications by multiple 

labs previously (Barry, Ginzberg, et al. 2012; T. Stensola et al. 2015). One clear difference is 

the animal model used: the present data were collected from mice, whereas previous 

demonstrations of novelty-induced expansion have been based on experiments in rats. It 

could simply be that different neural mechanisms exist between the two species. Despite our 

hope that rats and mice are an effective model organism for humans, striking differences 

have been observed even between more closely related species. For example, bats do not 

show clear theta oscillations when locomoting (Yartsev, Witter, and Ulanovsky 2011). 

Further, normal activity is maintained by grid cells recorded in rats in total darkness (Hafting 

et al. 2005), in contrast to the deterioration of grid patterns observed in mice under similar 

conditions (Chen et al. 2016; Pérez-Escobar et al. 2016). Alternatively, it could be that grid 

cells in rats and mice do share common neural mechanisms, and that the lack of expansion 

seen here is a result of an interaction between animals’ past experience and the size of the 

recording enclosure. For example, grid expansion in rats could be evidence of a Bayesian 

prior-estimate of the size of the enclosure, with the prior adjusted through learning as the 

animal explores its new surroundings, resulting in subsequent contraction of grid patterns. In 

a natural setting, rats and mice experience similar size environments. However, in the lab, 

mice are held in much smaller cages than rats. Lab-reared rats and mice may therefore have 

distinct learned prior-estimates of the size of enclosures, such that lab rats expect a novel 
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context to be larger than mice. This theory makes several testable predictions. For example, 

that grid scale is modulated by the size of the enclosure, and that the initial grid scale seen 

in novel contexts should be modifiable by exposing an animal to many novel enclosures of a 

particular size, such that its prior-estimate changes accordingly. A more parsimonious 

explanation for the lack of grid expansion seen here is that the effect of novelty is simply 

masked by the relatively stronger and less variable effects of distal sensory cues on grid 

scale.  

4.4.4 Significance of results for theories of grid-expansion in novelty 

A number of accounts of the utility of an increase in grid scale in novel contexts have been 

proposed, including to give rise to place cell remapping, to act as a novelty/familiarity signal 

to downstream areas, and as a mechanism to minimise navigational errors in the face of 

increased uncertainty (Towse et al. 2014; Barry, Ginzberg, et al. 2012). If it were the case 

that grid scale genuinely did not change in novel contexts in mice, it would argue against 

these proposed explanations of grid expansion. Place cells remap in novel environments in 

mice (McHugh et al. 1996), suggesting changes in grid scale are not a prerequisite; while 

place cells have been observed to remap normally during inactivation of the medial septum, 

which also abolishes periodic grid cell activity (Brandon et al. 2014). Indeed, areas 

downstream of the entorhinal cortex presumably have a similar need for novelty/familiarity 

signals in rats and mice, suggesting that the function of grid expansion in rats is not to 

provide such a signal. Further, both rats and mice likely have a comparable reduction in 

ability to reset accrued error in path-integration systems in novel contexts, due to 

unfamiliarity with their sensory features. A lack of grid expansion in mice would therefore 

suggest that, in rats, changes in grid scale are not in compensation for increased 

uncertainty. Noticeably however, in the data presented here, the regularity and stability of 

grid firing varied inversely with the scale of the grid pattern: increases in stability and 

regularity coincided with reductions in grid scale between environments. This inverse 

relationship has been previously reported in rats exploring novel environments (Barry, 

Ginzberg, et al. 2012), and is consistent with theories suggesting that changes in grid scale 

may relate to the amount of uncertainty-induced noise in grid firing (Towse et al. 2014). That 

is, differences in grid properties between environments seen here may relate to the degree 

of certainty with which mice could self-locate according to distal sensory cues. However, 

such an explanation suggests that grid firing properties are modulated by uncertainty, which 

presumably also increases in novel contexts, in contrast with the relatively little evidence 

found in support of an effect of environmental novelty on grid scale and stability.  
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5 Discussion 

5.1 Overview 

Throughout the 17th, 18th, and 19th centuries, the Watchmaker Analogy was a widely cited 

theological argument for the existence of a divine creator. It describes how, coming upon an 

intricate pocket-watch for the first time, in its complexity one can infer the existence of a 

designer. By analogy therefore, the complexity of biological organisms argued for the 

existence of God: 

“I am like a man who sees the works of a watch for the first time; he is never weary of 
admiring the mechanism, though he does not know the use of the instrument and has never 
seen its face. I do not know what this is for, says he, but I see that each part of it is fitted to 
the rest, I admire the workman in the details of his work, and I am quite certain that all these 
wheels only work together in this fashion for some common end which I cannot perceive. Let 
us compare the special ends, the means, the ordered relations of every kind, then let us 
listen to the inner voice of feeling; what healthy mind can reject its evidence? Unless the 
eyes are blinded by prejudices, can they fail to see that the visible order of the universe 
proclaims a supreme intelligence?”.(Rousseau 1762)  

By the 20th century, the theory of natural selection and the genetic revolution meant that, 

asked how biological complexity came to be, a scientist would likely answer with confidence 

“through evolution”. Biology and neuroscience instead turned to the questions for which 

Rousseau’s hypothetical man is less sure of the answer: though convinced the watch has 

some purpose, he cannot fathom what it might be. Such enquiries were the first made of the 

hippocampal formation: treating it as a black box, early neuroscientific investigations studied 

the effects on behaviour of damage to the area, in neuropsychological patients and lesioned 

animals. As the purpose and functions of a system come to be better understood, we begin 

to peer inside the black box, and ask how it works. As was in turn the case with the 

hippocampal formation, with electrophysiological recordings in animals and functional 

imaging in humans in particular employed to probe the mechanisms underlying its functions. 

The course of understanding an information processing system through these questions was 

formalised by David Marr (1975), who envisioned three levels of analysis: computational: 

what problem does the system solve? Algorithmic: what algorithms does the system employ 

to solve the problem? And implementational: how are the algorithms realised physically? 

Analysis at the computational level thus asks what a system does, while analyses at the 

algorithmic and implementational levels are concerned with how its functions are achieved.  

While only loosely connected with one another, the experiments described in this thesis are 

unified in continuing to ask these ‘what-for’ and ‘how’ questions of the hippocampal 

formation, focusing in particular on the functions of medial entorhinal grid cells and the 
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mechanisms by which they are achieved. Tackling these questions in the reverse order, the 

present experiments specifically aimed to shed light on what factors influence grid cell firing 

patterns (how do the patterns arise?), and thus what potential functions their unique activity 

patterns sub serve (what are they for?). In this chapter, I will first review what insights into 

these questions can be gained from the results presented in this thesis. Second, I will use 

Marr’s levels of analysis as a framework to consider current understanding and remaining 

uncertainties regarding both the input-output transformation by which grid cells encode 

spatial information, and the processes by which downstream networks decode grid firing.  

5.2 Implications of the results described in this thesis 

5.2.1 Implications for the mechanisms by which grid firing patterns arise 

5.2.1.1  Importance of environmental cues 

In Section 2.3, I described results from an experiment in which grid cells were recorded from 

rats exploring a multicompartment environment comprising two perceptually identical 

compartments connected by a corridor. The environment was designed to place self-motion 

and environmental cues in conflict with one another: if self-motion cues dominated grid firing, 

their activity patterns should distinguish the compartments, reflecting their differing absolute 

positions in space. In contrast, if sensory cues determine grid patterns, the perceptual 

consistence of the two compartments should result in replication of the firing patterns in 

each. During early exposures, it was unequivocally the case that grid patterns were identical 

in the two compartments, indicating the dominance of sensory cues. Grid patterns are stable 

across multiple visits to the same environment (Hafting et al. 2005), indicating that they are 

anchored to sensory features of the environment. Theoretically, variability both in velocity 

inputs to grid cells, and their path integration mechanism, results in the accrual of noise in 

their firing (Fuhs and Touretzky 2006; Burgess, Barry, and O’Keefe 2007). Sensory cues 

which allow the animal to unambiguously self-locate are one potential mechanism by which 

accumulated noise could be reset, as appears to happen at environmental boundaries 

(Hardcastle, Ganguli, and Giocomo 2015). The replication of grid firing during initial 

exposures to the multicompartment environment may therefore reflect the importance of the 

anchoring and denoising of grid cell firing patterns by sensory cues. The observation that 

place cell firing also replicated between the compartments during initial exposures to the 

multicompartment environment suggests that they could provide the location-specific 

sensory inputs which led grid cell firing to replicate. Consistent with this, grid patterns 

deteriorate during inactivation of the hippocampus (Bonnevie et al. 2013).  
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The multicompartment environment was designed such that proximal sensory features of the 

environment were identical in the two compartments, while the lighting and curtains used 

aimed to minimise the presence of all distal sensory cues. As such, replication of grid 

patterns was implicitly assumed to result from inputs reflecting the consistency of proximal 

sensory features, especially given contemporaneous results indicating the influence of 

boundaries over grid firing (Barry et al. 2007; Derdikman et al. 2009; Krupic et al. 2015). In 

Section 4.3, I described data demonstrating that, in mice, grid cell firing patterns are also 

influenced by the distal sensory cues that surround the enclosure. Even when the same 

enclosure was used, the regularity, stability, and scale of grid firing patterns varied between 

the two rooms in which recordings were made. While further experiments are necessary to 

infer the precise cause of the observed differences in firing, the two rooms noticeably 

differed in the availability of distal visual cues. These results may therefore demonstrate that 

location-specific distal cues are also used to anchor and denoise grid firing. That is, an 

increased number of useful distal cues would mean that inputs to grid cells would specify the 

animal’s location more consistently and with greater accuracy, reducing the accumulation of 

noise and thus resulting in more stable and regular firing patterns. Interestingly, the scale of 

observed firing patterns varied inversely with the stability and regularity of grid firing, 

consistent with theories suggesting that grid scale is adjusted in proportion to the uncertainty 

with which an animal can use sensory cues to self-locate; the grid system sacrificing 

resolution in its code for the animal’s location to reduce the chance of egregious errors 

(Towse et al. 2014).  

5.2.1.2 Importance of self-motion inputs 

While grid firing patterns initially replicated in the multicompartment environment, their phase 

of firing came to distinguish the two compartments after prolonged experience. Indeed, a 

single continuous pattern that spanned both compartments eventually formed, though only 

after many days of exposure to the environment (see Section 2.3.2). The present results 

cannot definitively rule out the possibility that animals slowly came to identify subtle sensory 

features of the environment that could be used to distinguish the two compartments, despite 

their overwhelming perceptual similarity. However, the observation that grid patterns were 

more coherently continuous in the thirds of the compartments closest to the corridor instead 

suggests that animals used self-motion inputs and path integration to distinguish the 

compartments, according to their absolute positions in space. That is, the reduced distance 

between the thirds of the compartments closest together may result in the accumulation of 

less path integration noise, and thus a more coherent single representation. Assuming that 

grid cells indeed used path integration to distinguish the compartments, the extent to which 
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other spatial cell types disambiguated the two can be taken to indicate the influence of self-

motion inputs over their firing. Regardless of experience of the environment, boundary vector 

cells and head direction cells continued to display highly similar firing in each compartment, 

suggesting that their activity is not influenced by translational self-motion inputs, or indeed 

grid cells. After prolonged exposure to the multicompartment environment, place cells 

displayed a range of firing patterns, with some cells replicating between the compartments, 

while the firing of others distinguished the two. As such, place cells may vary on a continuum 

according to the relative influence of translational self-motion inputs (from grid cells) and 

sensory inputs (predominantly from boundary vector cells). Therefore, that all grid cells came 

to distinguish the compartments suggests that they are unique amongst the spatially 

modulated cell types of the hippocampal formation in the extent to which translational path 

integration determines their firing.  

In sum, the results presented in this thesis indicate that grid patterns are strongly influenced 

by both proximal and distal location-specific sensory features of the environment, which are 

likely used to anchor and denoise grid firing. However, the multicompartment experiment 

also demonstrates that grid cells are unique in the hippocampal formation in the extent to 

which translational self-motion inputs govern their firing, likely indicating their role in path 

integration.  

5.2.1.3 Absence of evidence for cholinergic influences on grid firing 

Section 3.3 described results indicating that increasing the excitability of medial septal 

cholinergic neurones had no discernible effect on grid cell firing patterns in either familiar or 

novel environments. The data presented here therefore fail to confirm past results indicating 

a direct role of cholinergic function in the generation of regular grid firing (Newman et al. 

2014). In that experiment, systemic administration of the muscarinic receptor antagonist 

scopolamine resulted in a reduction of the periodic firing of grid cells on an annular track and 

in an open-field enclosure. The difference between the two sets of results may indicate that 

grid cells require only a base level of cholinergic function, with increases of cholinergic tone 

above this level having little effect on grid firing. It is unlikely to be the case that the 

cholinergic system in general normally functions at saturating levels, as increasing the 

excitability of septal cholinergic neurones had marked effects on theta frequency and the 

animal’s behaviour. Alternatively, the studies may differ due to the specificity with which 

cholinergic function was modulated. In the present experiment, only the excitability of 

cholinergic neurones in the medial septum was increased. In contrast, systemic 

administration of scopolamine perturbs the function of all neurones expressing muscarinic 

receptors, regardless of their location in the brain. As such, while the present results do not 
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rule out the possibility that grid firing is influenced by cholinergic tone, the data here provide 

no evidence for this being the case, and suggests that any relationship between grid function 

and acetylcholine concentration is non-linear or not specific to the septo-hippocampal 

system.  

5.2.2 Implications for the potential functions of grid firing patterns 

5.2.2.1 Grid firing forms coherent global representations, even in complex 
environments 

The conjunction of phases across a set of grid modules, the ‘population phase’, can together 

encode an animal’s location, even if the individual modules are ambiguous due to repetitions 

in their phases across the environment (Fiete, Burak, and Brookings 2008). Further, the 

periodic activity of grid cells means that, if their firing patterns are regular, the population 

phase changes at a constant rate across the environment. Therefore, a specific change in 

the population phase equates to the animal having moved a specific distance. As such, 

population phase differences could be used to decode the vector separating pairs of 

locations in the environment, potentially the basis of goal-directed navigation (Bush et al. 

2015). However, distortions and discontinuities, which respectively equate to instantaneous 

jumps in the population phase, and shifts in its rate of change, by definition mean that the 

relationship between change in population phase and distance traversed is inconsistent 

across the environment. Using irregular grid patterns to calculate navigational vectors will 

likely be prone to errors therefore. A number of recent results indicate that the requirement 

for regular firing patterns is not met in certain contexts (Derdikman et al. 2009; Krupic et al. 

2015), leading to suggestions that grid cells do not provide a universal spatial metric capable 

of supporting navigation (Krupic et al. 2015). In contrast, the global firing patterns observed 

in the multicompartment environment in Section 2.3.2 provides the first evidence that, even 

in complex environments, grid firing patterns can form the regular and continuous 

representations required for them to underlie accurate navigation. 

Recordings in the multicompartment environment also demonstrated, however, that grid 

patterns were discontinuous and distorted for prolonged periods. During this time, spatial 

inconsistencies in grid firing would likely lead to errors in navigation, assuming that the 

system which decodes navigational vectors has been trained on regular grid patterns. The 

nature and magnitude of navigational errors stemming from irregular grid cell activity will 

depend on how information is encoded across grid modules, as well as how the size of the 

environment compares to the scale of the constituent grid modules. Given present 

uncertainty regarding these issues, the behavioural impact of irregular grid patterns is 
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currently unclear. Potentially however, relating the nature and magnitude of navigational 

errors to concomitant observations of the irregularities in grid firing could provide novel 

insights into the mechanisms by which grid cells support navigation. For example, in nested 

grid codes, larger scale modules resolve ambiguity in smaller ones (Mathis, Herz, and 

Stemmler 2012; Stemmler, Mathis, and Herz 2015), such that navigational errors should 

vary in magnitude with the scale of the largest module whose firing is distorted. In contrast, 

combinatorial grid codes distribute location encoding evenly across modules (Fiete, Burak, 

and Brookings 2008), such that navigational errors should instead be disproportionately 

large where distortions or discontinuities are inconsistent across modules.  

In sum, the continuous and regular firing patterns eventually formed by grid cells in the 

multicompartment environment indicate that grid firing can form the globally coherent 

representations theoretically required for them to support accurate navigation. However, 

further experiments are necessary to infer how grid cell population activity is encoded across 

modules, and thus what impact initial irregularities in grid firing have on animals’ navigational 

abilities. Conversely, experiments relating distortions in grid patterns to navigational errors 

could be used to shed light on these issues.  

5.2.2.2 Novelty-induced grid expansion is unlikely to signal 
novelty/familiarity, or generate place cell remapping 

In rats, increases in grid scale are seen when an animal is first exposed to a novel 

environment, with grid scale returning to its ‘baseline’ value after several days of experience 

(Barry, Ginzberg, et al. 2012). Various accounts of this phenomenon have been proposed, 

including that it provides a novelty/familiarity signal to downstream regions, and that it 

augments place cell remapping (Barry, Ginzberg, et al. 2012; Barry, Heys, and Hasselmo 

2012). In Sections 3.3.7 and 4.3.1, results demonstrating the absence of novelty-induced 

increases in grid scale in mice were presented. It is possible that grid expansion does occur 

in mice during exploration of unfamiliar contexts, and that its relatively smaller and more 

variable influence on grid firing was simply masked by differences in the availability of distal 

cues between recording rooms. However, a genuine absence of increases in grid scale in 

mice exploring novel environments would argue against theories proposing that grid 

expansion acts as a novelty/familiarity signal, or sub serves place cell remapping. In that, it 

is not apparent why regions downstream of grid cells would be more in need of a 

novelty/familiarity signal in rats than mice. Similarly, remapping of place cells in novel 

environments in mice (McHugh et al. 1996), and during interruption of normal grid firing 

(Brandon et al. 2014), suggest that changes in grid scale are not a prerequisite. 
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5.3 Current understanding and remaining uncertainties regarding the 
encoding and decoding of grid cell activity 

5.3.1 What do grid firing patterns encode 

Marr’s computational level of analysis aims to interrogate a system by asking what problem it 

solves. For grid cells, this level of analysis can thus be considered to ask ‘what is the value 

added by the output they provide’? Several features of the unique firing pattern of grid cells 

is highly suggestive of their acting as a spatial metric. First, their periodic firing and modular 

organisation means that a set of modules form a computationally efficient system for 

encoding continuous variables such as location (Sreenivasan and Fiete 2011). When 

regular, the periodicity in their firing patterns also results in their encoding, in the phase 

offsets across modules, the directions and distances separating pairs of locations. Further, 

that pairs of grid cells in the same module maintain constant phase offsets across 

environments potentially means that the wiring patterns and weights required for decoding 

grid firing may not need be relearned (Yoon et al. 2013). These features of grid firing 

patterns have led to the belief that they act as a spatial metric being widely held (Hafting et 

al. 2005; Fiete, Burak, and Brookings 2008; Stemmler, Mathis, and Herz 2015). However, 

direct evidence that grid cells indeed act as a spatial metric is lacking. In large part, this 

reflects the current absence of an experimental intervention which allows grid cells alone to 

be targeted. Genetic manipulations which use genomic promoters to exclusively express 

exogeneous proteins only in specific cell-types may be inappropriate, given that grid firing is 

observed in both ocean-stellate and island-pyramidal cells (Domnisoru, Kinkhabwala, and 

Tank 2013; Sun et al. 2015). Interventions based on calcium-imaging of activity patterns may 

thus be more suitable, however current ‘read-write’ technologies are likely unable to 

modulate the activity of sufficient numbers of neurones for an effective intervention (Packer 

et al. 2015).  

5.3.2 How is this information encoded? 

5.3.2.1  …By individual cells and individual models 

Assuming that grid cells do indeed act as a spatial metric, Marr’s algorithmic and 

implementational levels of analysis respectively consider what input-output function 

generates grid firing patterns, and how this transformation is implemented biologically. 

Recent evidence, including in this thesis, demonstrates the influence over grid patterns of 

both self-motion inputs conveying the animal’s movement velocity, and sensory inputs 

conveying information about perceived features of the environment. The periodicity of grid 
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firing is suggestive of their integrating self-motion inputs such that their representation of 

self-location is updated by velocity signals as the animal moves. Pure path integration in this 

way would be prone to the accumulation of excessive noise, and sensory inputs are 

therefore likely useful in denoising grid firing, and in providing consistency in firing phases 

across multiple visits to an environment. Computational modelling indicates that the 

transformation of self-motion and sensory inputs to grid firing patterns could be implemented 

in various ways, including through interference between multiple velocity-dependent 

oscillations in individual cells (O’Keefe and Burgess 2005; Burgess, Barry, and O’Keefe 

2007; Hasselmo, Giocomo, and Zilli 2007), or through a separate group of velocity-

modulated neurones updating the population-representation of networks of grid cells 

connected through attractor dynamics (Fuhs and Touretzky 2006; McNaughton et al. 2006; 

Burak and Fiete 2009). While these biologically plausible models of path integration are 

consistent with large swathes of experimental data, further experiments are required to 

confirm the genuine mechanisms by which path integration is realised by grid cells. Evidence 

in favour of both classes of model has been observed, and hybrid systems incorporating 

elements of each have thus also been proposed (Navratilova et al. 2012; Bush et al. 2015). 

Given the mutual compatibility of these models, complete understanding of the neural 

implementation of path integration likely means moving beyond the tendency of past 

experiments to simply attempt to disprove one type or the other. 

5.3.2.2  …Across groups of modules 

Their computationally tractable firing patterns have led to plausible models of how the 

activity of individual grid cells and grid modules could arise. However, the periodic firing of a 

single grid module is ambiguous in environments larger than its scale, as multiple locations 

in space share the same firing phase. A full account of the input-output transformation of grid 

cells thus requires understanding of how this ambiguity is resolved. One solution would be to 

use the conjunction of phases across multiple modules of distinct spatial scale. Two main 

types of model using this method have been proposed, differing in whether the ratio of 

scales between successive modules is constant or not. The consistency of this ratio 

determines the number of unique locations which can be encoded, and the mechanisms by 

which erroneous conjunctions of phase could be identified (Fiete, Burak, and Brookings 

2008; Sreenivasan and Fiete 2011; Stemmler, Mathis, and Herz 2015). Models involving a 

fixed scale ratio are only unambiguous in environments bigger than the largest scale if the 

ratio is not an integer. Alternative models envisioning a fixed integer ratio propose that 

instead of resolving ambiguity in larger scales, each smaller module encodes location with 

increasing resolution (Mathis, Herz, and Stemmler 2012). Such proposals thus assume 
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either that the scale of the largest module adapts according to the size of the environment, 

or that grid firing is inherently ambiguous in large environments, such that sensory cues are 

required to distinguish between equivocal navigational vectors. Recordings from multiple grid 

modules suggest that the ratio between adjacent scales is between 1.4 and 1.7, though too 

few modules were recorded simultaneously to identify whether a single, precise ratio exists 

between all grid scales (Barry et al. 2007; H. Stensola et al. 2012; Krupic et al. 2015). As has 

traditionally been the case, these recordings were made with groups of tetrodes organised in 

a bundle, such that cells recorded concurrently tend to be close together, and are thus 

predominantly from a single or a small number of modules. High-density silicon probes 

currently in development have large numbers of electrical contacts organised linearly, 

potentially allowing recordings to be made simultaneously from the entire dorso-ventral 

extent of the medial entorhinal cortex, and thus from multiple modules. Together with 

environments of varying sizes, such recordings may help shed light on the nature of the 

scale ratio between modules, and thus the exact mechanisms by which the phase of 

individual grid modules are combined to encode spatial information.  

5.3.3 How are grid patterns decoded? 

Given the absence of causal evidence demonstrating an involvement of grid cells in spatial 

behaviour, we can only make assumptions about what information is decoded from 

entorhinal grid cells. That animals are capable of navigating in straight line vectors to unseen 

goals (Tolman, Ritchie, and Kalish 1946), suggests that they have a neural representations 

both of their own location and that of the goal, which can be used to decode the distance 

and direction separating the two. Given that individual locations and vector offsets can 

theoretically be decoded from grid firing patterns, it is probably safe to assume that the 

navigational behaviours described depend on neurones downstream of grid cells doing so. 

Decoding an animal’s self-location from the conjunction of phases across a set of grid 

modules is trivial: a single layer of unsupervised Hebbian learning between grid cells and a 

layer of output neurones results in the latter demonstrating location-specific firing, which is 

updated by path-integration in the grid cells as the animal navigates. The firing properties of 

the output layer of this simple network looks remarkably like those of place cells, which, 

given the anatomical connectivity between the entorhinal cortex and hippocampus, has led 

to the belief that place cells decode self-location from grid cell firing being widely held (Bush 

et al. 2015). In contrast, networks capable of decoding the vector offsets between pairs of 

locations are more complicated. While models of how grid cell activity could be decoded to 

sub serve vector navigation have been proposed, most suffer drawbacks. For example, 

Erdem & Hasselmo’s model is slow, requiring multiple potential directions to be iteratively 
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tested (Erdem and Hasselmo 2012, 2014). Bush and colleagues’ ‘distance cell’ model 

requires an unviable number of neurones to decode grid firing, while their ‘rate-coded vector 

cell’ model depends on complex wiring that only enables decoding in single dimensions, 

such that band cells are a sufficient input, making grid patterns unnecessary (Bush et al. 

2015). While there is a relative dearth of biologically plausible models by which navigational 

vectors could be decoded from grid firing, recent results suggest that CA1 place cells are 

capable of doing so: recordings in bats demonstrate that certain cells fire when a specific 

direction or distance separates the animal from a goal (Sarel et al. 2017).  

5.3.4 Summary 

Their unique firing patterns have been taken to imply much about the spatial processing of 

grid cells. Namely, their periodic activity suggests grid patterns arise through path 

integration, and are used for self-location and navigation. That is, at Marr’s computational 

level it is widely held that grid cells act as a spatial metric, though there is little direct 

evidence to support this belief. Numerous plausible models demonstrating how the firing 

patterns of individual cells or modules could be derived from self-motion inputs have been 

proposed. While various algorithmic-level descriptions of the input-output transformation of 

grid cells therefore exist, further experimentation is required to infer the specifics of the 

neural implementation. Similarly, it remains unclear how the ambiguity inherent in the 

periodic firing of individual cells or modules is resolved. Presumably, this depends on 

combining the phases of a set of modules of distinct spatial scale, though the scheme 

employed remains to be determined. The decoding of self-location from a population of grid 

cells is conceptually easy, and is likely performed by place cells given their location-specific 

firing. Decoding vectors separating current and goal locations from grid firing is 

computationally much harder, and while recent evidence indicates that place cells appear 

capable of doing so, the underlying neural mechanism remains opaque. The current 

understanding of the encoding and decoding of grid firing described here is based on 

theories that assume grid patterns to be idealised in their regularity. As discussed, grid firing 

is instead often deformed by sensory cues. The significance of such irregularities in grid 

patterns is currently unclear: the implications depend on how spatial information is encoded 

and decoded across modules, which, as discussed, is one of the least well understood 

aspects of grid processing. As noted however, investigation of the relationship between 

navigational errors and grid disruptions could be one method by which current uncertainties 

regarding grid cell processing are resolved.  
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