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Abstract

The biomechanical environment within the optic nerve head (ONH) is complex and is likely 

directly involved in the loss of retinal ganglion cells (RGCs) in glaucoma. Unfortunately, our 

understanding of this process is poor. Here we describe factors that influence ONH biomechanics, 

including ONH connective tissue microarchitecture and anatomy; intraocular pressure (IOP); and 
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cerebrospinal fluid pressure (CSFp). We note that connective tissue factors can vary significantly 

from one individual to the next, as well as regionally within an eye, and that the understanding of 

ONH biomechanics is hindered by anatomical differences between small-animal models of 

glaucoma (rats and mice) and humans. Other challenges of using animal models of glaucoma to 

study the role of biomechanics include the complexity of assessing the degree of glaucomatous 

progression; and inadequate tools for monitoring and consistently elevating IOP in animal models. 

We conclude with a consideration of important open research questions/challenges in this area, 

including: (i) Creating a systems biology description of the ONH; (ii) addressing the role of 

astrocyte connective tissue remodeling and reactivity in glaucoma; (iii) providing a better 

characterization of ONH astrocytes and non-astrocytic constituent cells; (iv) better understanding 

the role of ONH astrocyte phagocytosis, proliferation and death; (v) collecting gene expression 

and phenotype data on a larger, more coordinated scale; and (vi) developing an implantable IOP 

sensor.

1. Introduction

Previous controversies as to whether and how intraocular pressure (IOP) is important in the 

pathogenesis of glaucoma have faded over the past 20 years. There is now broad consensus 

among both scientists and clinicians that IOP and the mechanisms by which the relevant 

tissues respond to IOP are critical in the pathogenesis of glaucoma. It is also recognized that 

glaucomatous damage can be initiated at any level of IOP; further, additional genetic and/or 

environmental risk factors contribute to the eye-specific risk of developing the disease, some 

of which are IOP-related and some of which are IOP-independent. Nonetheless, while the 

biomechanical processes by which IOP contributes to retinal ganglion cell (RGC) axon 

damage within the optic nerve head (ONH) are considered to be a fundamental part of the 

pathogenesis of glaucoma, they are not fully understood.

This article focuses on the role of ONH biomechanics in glaucoma. For the purposes of this 

discussion we define the ONH to include the tissues within and immediately surrounding the 

scleral canal. In this article we identify fundamental questions and discuss the usefulness 

(including benefits and limitations) of various animal models to answer these questions. We 

will also identify important developments over the last five years and propose experiments 

for the next five years. Because the Lasker Meeting sessions dealing with astrocytes (Tamm 

et al., in preparation) and ONH biomechanics (the present report) were combined into a 

single discussion session, some overlap between the articles devoted to each session is 

necessary to ensure that each summary is complete.

2. Questions related to ONH structure and glaucoma susceptibility

We first focus on connective tissues elements of the ONH, principally the lamina cribrosa 

(LC) and peripapillary scleral (pp-sclera), since these elements provide the majority of the 

structural support to the ONH in the face of IOP. Are all humans formed equally with 

respect to the quality and quantity of their ONH connective tissues? The answer is almost 

certainly “no” for any genetically diverse species, including humans. Moreover, the 

Stowell et al. Page 2

Exp Eye Res. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



likelihood of intra-individual (between-eye) and regional (within-eye) differences in 

connective tissue properties and glaucomatous damage susceptibility must be borne in mind.

ONH connective tissue variability arises from both macro- and micro-architectural factors. 

Macro-architectural (anatomical) factors include the size and shape of the scleral canal; the 

thickness of the LC and pp-sclera; and LC beam and pore dimensions. Microarchitectural 

factors include the density, quantity, orientation and molecular nature of relevant fibrillar and 

non-fibrillar extracellular matrix (ECM) components, which ultimately depend on the ability 

of fibroblasts and astrocytes to robustly maintain and remodel ECM components. The micro-

architectural factors determine the local tissue material properties. We must also recall that 

each of these factors likely change with age and disease state. Taken together, differences in 

these factors will influence the biological, mechanical and physical properties of the ONH 

connective tissue elements.

The combination of macro-architecture (anatomic) features and material properties defines 

the overall structural stiffnesses of ONH connective tissues, which in turn dictate the 

magnitude of global and local deformations (strains) experienced by the ONH tissues for a 

given pressure-related load, including loads due to IOP, cerebrospinal fluid pressure (CSFp) 

and possibly even orbital pressure.

Apart from determining the material properties of a given connective tissue, 

microarchitectural features also influence diffusion coefficients (including those of signaling 

molecules) and the ease with which monocytes and macrophages pass into and within those 

tissues. These issues should be of special importance within the LC beams, as the lamina is 

the only location in the central nervous system where astrocyte processes do not directly 

contact local capillaries (Burgoyne, 2011; Hogan et al., 1971). Because the RGC axons have 

no direct blood supply within the LC, it is believed they are dependent upon local astrocytes 

for nutrient delivery. The ECM of LC beams, as well as the basal laminae of the LC beam 

endothelial cells and astrocytes, are thus potential barriers to nutrient delivery to the RGC 

axons within this region.

To further complicate the situation, signaling molecules that cause cells to modify ECM 

quality or quantity, such as those of the transforming growth factor-β (TGF-β) family, can 

bind to ECM components and be activated and released from the ECM in response to 

mechanical cues. Consequently those molecules likely play an important role in ONH 

biomechanics and its changes with aging and glaucoma (Burgoyne and Downs, 2008; Tamm 

et al., in preparation).

ONH connective tissues stiffen with age (Fazio et al., 2014a; Fazio et al., 2014b; Grytz et al., 

2014), although it is not clear if the individual components of those tissues stiffen at 

different rates. The process may not progress at comparable rates in all humans, as there is 

strong evidence that it is influenced by genetic factors (Fazio et al., 2014b). It is currently 

assumed that the LC contributes to RGC axon susceptibility within the ONH at all levels of 

IOP and at all ages, but the critical molecular components of this susceptibility remain 

unknown. Some humans develop glaucomatous optic neuropathy at low (“normal”) levels of 

IOP, while others can be followed with IOPs in the 30 – 40 mmHg range without evidence 
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of the neuropathy for 5 to 10 years (there currently are no studies that extend beyond 10 

years of follow up). Are there specific biological/mechanical/physical properties of the ONH 

connective tissues that can wholly or partially explain these differences in susceptibility?

With these concepts in mind, another question is: What are “good” and “bad” properties of 

the ONH connective tissues? One would presume that “good” properties are those that 

prevent reactive changes in ONH astrocytes and microglia, keep monocytes and 

macrophages out of the ONH, and facilitate normal function of RGC axons. Still, what is the 

exact role of those cells in glaucoma? Do glial cells become reactive to protect from 

neuronal damage or do they accelerate it? Is it better to have rigid or compliant ONH scleral 

connective tissue elements to achieve all or some of those goals? Alternatively, is a 

mismatch of a stiff LC and compliant sclera best? What makes for a robust versus a weak 

LC in terms of axonal preservation? These important questions remain unanswered.

A related point concerns the role of focal laminar defects (“pits”) (Irvine et al., 1986; Ohno-

Matsui et al., 2013). While it might be argued that a “good” LC is one without pits, pits 

might instead be beneficial strain relievers for the rest of the ONH connective tissue 

elements. Clinically, some patients have focal LC defects, and although RGC axons in the 

pit area will sustain damage regardless of the IOP, the rest of the ONH and its optic nerve 

axons remain stable. Overall, better phenotyping of the biomechanical responses of the ONH 

connective tissues along with improved molecular characterization is required to allow their 

contributions to RGC axon susceptibility to be determined.

Years ago, two laboratories independently demonstrated that in both monkeys (non-human 

primates) and humans the connective tissue beams of the LC are made of collagen I, III, and 

IV (the latter especially in the endothelial and astrocyte basal lamina), and elastin 

(Hernandez et al., 1990; Morrison et al., 1990; Morrison et al., 1988). The respective roles of 

those molecules for the biomechanical properties of the LC are as yet unclear. If monkeys 

could be genetically modified, the effects of changing collagen and elastin in the ONH 

scleral connective tissue elements (including the LC) could be assessed. Unfortunately, as of 

now, such genetic modifications are only feasible in mice in which the ONH contains a 

cellular (glial) rather than a connective tissue LC (Sun et al., 2009).

It should be noted that the biomechanical environment of the LC is intricately linked to that 

of the pp-sclera (Burgoyne et al., 2005; Sigal et al., 2009a, b), since the pp-sclera establishes 

the boundary conditions for the LC beam insertions into and through the scleral canal wall. 

The magnitude of pp-scleral load delivered to the LC is likely larger than the load due to the 

translaminar pressure difference (defined as IOP minus retrolaminar tissue pressure, which 

is close to or slightly above CSFp) at all levels of IOP. Currently, experiments designed to 

address the role of scleral stiffness in RGC axon insult in glaucoma are most common in 

rodent experimental glaucoma models. For example, experimental cross-linking of the 

scleral ECM increased stiffness and susceptibility to RGC damage in mice (Kimball et al., 

2014). Preliminary data published as abstract indicate a potentially different outcome in rats 

(Gonzalez P, et al. IOVS 2015; 56: ARVO E-Abstract 2006). Here, virally-mediated 

overexpression of bone morphogenetic protein 2 (BMP2), presumably acting by increasing 

the rigidity of the sclera, partially protected against IOP-induced optic nerve damage. Other 
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approaches may stiffen or loosen the sclera by alternative methods. Moreover, genetically 

modified mouse models are available which are deficient in specific ECM molecules or 

signaling pathways (including TGF-β). Taken together, rodent animal models are being used 

to address the biological and/or mechanical influences of the pp-sclera on glaucomatous 

ONH damage. However, because of their lack of a connective tissue LC (Tamm et al., in 

preparation) rodent models must be complemented with experiments in animals with a 

connective tissue LC.

3. Animal models of glaucoma

Since the Lasker meeting, a series of review articles on animal models in glaucoma have 

been published which are a recommended reference for the section that follows (Ethier et al., 

2015). Even though there is currently no animal model that mimics human glaucoma and its 

tremendous variability, models, when correctly implemented and interpreted, are valuable 

for addressing specific questions in glaucoma. There are, however, general limitations that 

need to be addressed

1. There is very little consensus on how to “stage” glaucoma in any species, other 

than to quantify retinal ganglion cell (RGC) somata or orbital optic nerve axons. 

The same endpoint defined in this way can be generated quickly at high IOP or 

slowly at low IOP. It is possible that different damage mechanisms are at work in 

each setting, some of which are not relevant for glaucoma in humans.

2. Even at a given level of RGC somata or optic nerve axon loss in an eye, there 

may be profound regional differences, i.e., some ONH regions within an optic 

nerve may appear normal, while other regions show early insult, and still other 

regions show profound alteration. Careful phenotyping is required to identify 

these differences, which may include molecular, cellular, and tissue-specific 

features. It is hoped that the effort to phenotype and stage the neuropathy (both 

its neural and connective tissue components) will ultimately lead to mechanistic 

insights, and vice versa.

3. There is great difficulty characterizing the magnitude of IOP insult in a given 

eye, regardless of species. For example, recent work indicates that IOP is highly 

dynamic, a feature not captured by standard “snapshot” IOP measurements 

(Downs, 2015). Continuous telemetric IOP monitoring may reveal which aspects 

of a given eye’s IOP profile are most important in models of glaucoma. 

Telemetric systems have been developed for monkeys and may be available for 

mouse and rat eyes in the near future.

4. To control IOP insult in animal models is difficult, which hampers the ability to 

perform studies designed to assess the effect of non-IOP-related risk factors, 

since such studies would ideally incorporate identical IOP insults in all treatment 

groups. Eventually the control of IOP insult should include programmable short- 

and long-term IOP fluctuation. This issue has led several groups to concentrate 

their efforts on manometer-controlled, short-term IOP elevations as a means of 

studying various factors contributing to ONH susceptibility (Crowston et al., 
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2015). There are also efforts to create longer-duration IOP-control systems in 

rodents (Bello et al., 2016).

The advantages and limitations of specific animal models are summarized below. For more 

detailed information the reader is referred to the articles of a special journal issue recently 

published on this topic, mentioned above (Ethier et al., 2015).

Monkey

Similar to the human, monkeys are mammals of the order Primates. Their ONH is 

anatomically and functionally very much like the human, including having a connective 

tissue LC, which is important when considering biomechanical factors in the ONH and 

comparing them with the situation in human. The size of monkey species used in biomedical 

research (frequently from the genus macaques) allows certain experiments to be done that 

are more difficult to perform in smaller animal models. Because of the fact that it is 

essentially (i.e. practically) impossible to obtain human tissues at the transition from ocular 

hypertension to the earliest stage of alterations/damage in glaucoma, the monkey model is, 

and will remain, very advantageous for longitudinally studying early ONH damage induced 

by high IOP.

Significant limitations include the cost, accessibility, and the difficulty of housing and 

working with monkeys. Monkeys share with humans the wide range of genetic variability 

that is especially problematic for studies involving genome-wide assessment profiles of 

proteomes or transcriptomes. Genetic engineering as performed in mice or rats is not 

feasible, though the use of viral vectors for gene transfer is increasing. While IOP telemetry 

has been achieved, the ability to control the magnitude and character of IOP insult, as noted 

above, has not.

Rats and mice

These rodent species have been widely used because they are available in inbred strains with 

genetically identical individuals, an advantage that theoretically minimizes the number of 

animals needed to obtain significant data after experiments. In addition, the fact that they 

can readily be genetically manipulated has revolutionized the field of biomedical research 

over the past decades. The Knockout Mouse Project (KOMP), a trans-NIH initiative, aims at 

generating a comprehensive and public resource comprised of mouse embryonic stem (ES) 

cells containing a null mutation in every gene in the mouse genome. Rats and mice are 

cheap, and easy to breed and house. Possibly the largest limitation to the use of rats and 

mice is their ONH anatomic differences compared to humans. Specifically, in the rat and 

mouse eye, the scleral canal is surrounded by pp-sclera, but contains no connective tissue 

beams forming a LC (Dai et al., 2012; Howell et al., 2007; Johansson, 1987; May and 

Lütjen-Drecoll, 2002; Sun et al., 2009). Just posterior to the pp-sclera, astrocytes form an 

enmeshing network termed the “glial lamina” through which the RGC axons pass (Dai et al., 

2012; Howell et al., 2007; Sun et al., 2009). Despite those differences in ONH structure, 

increased IOP induces ONH axonal degeneration in rats and mice indicating that the 

presence of a LC is not essential for the development of glaucomatous damage, at least in 

these species. In addition, there are differences to primates with regards to the ONH 

vasculature. In mouse ONH the central retinal vessels obliquely enter the optic nerve at the 
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level of the sclera (May and Lütjen-Drecoll, 2002). In contrast, in human and monkey they 

enter the optic nerve posterior to the LC (May, 2008). The rat ONH contains two scleral 

openings: a superior neurovascular opening and an inferior arterial opening, separated by a 

thin connective tissue (“scleral sling”) from the superior opening. The superior opening 

contains a vascular plexus that passes through the sclera and partially surrounds the optic 

nerve. The inferior scleral opening contains the central retinal artery and three long posterior 

ciliary arteries (Pazos et al., 2015a, b).

Rabbits

This species is more accessible and easier to breed and house than monkeys, and has 

considerable larger eyes than rats or mice, a fact that facilitates experimental procedures. 

Rabbits with hereditary congenital glaucoma and optic nerve damage in response to high 

IOP have been characterized (Bunt-Milam et al., 1987a, b). At the ONH, a poorly developed 

LC has been described with some connective tissue beams that radiate from the central 

retinal vessels to the optic nerve sheath (Flage, 1977). A significant difference to the human 

is the fact that rabbit RGC axon myelination begins on the retinal surface before the axons 

exit the eye (Vaney, 1980). In humans, myelination of optic nerve axons on the retina is 

rarely observed and appears to protect against IOP insult (Toh et al., 2011). A similar 

protective effect of myelination in the rabbit would be a confounding factor when using this 

species as animal model to assess ONH damage in glaucoma. Other limitations include the 

presence of a tremendous inflammatory response (Bito, 1984), and large anatomic 

differences in the vascular supply compared to primates. In the rabbit, retinal vessels are 

confined to a broad horizontal band coincident with the area covered by myelinated axons 

(De Schaepdrijver et al., 1989; Rohen, 1954).

New Animal Models

Pig, cat and dog eyes have a well-developed LC (Coudrillier et al., 2016a; Coudrillier et al., 

2016b; Fatehee et al., 2011; Grozdanic et al., 2010; Radius and Bade, 1982a, b), but their 

ONH vascular anatomy is considerably different to that of the human (De Schaepdrijver et 

al., 1989; May, 2008). Glaucoma commonly caused by anterior segment dysgenesis and high 

IOP is a frequent condition seen in cats and dogs (McLellan and Miller, 2011; Pizzirani, 

2015). Colonies of cats and dogs with hereditary glaucoma are available (Grozdanic et al., 

2010; Kuchtey et al., 2011; Narfstrom et al., 2013). The ONH of the guinea pig has laminar 

beams that are radially oriented, emanating from a central fibrovascular stalk (Morrison et 

al., 1995; Ostrin and Wildsoet, 2016). The guinea pig retina is avascular (De Schaepdrijver 

et al., 1989), which is a substantial difference to the human. Spontaneous glaucoma has not 

been reported for guinea pigs (Williams and Sullivan, 2010) and it is still uncertain whether 

or not animals of this species would develop glaucomatous damage after experimental 

elevation of IOP. A promising novel animal model for glaucoma research may be the tree 

shrew (family Tupaiidae), a non-rodent, primate-like species (Cao et al., 2003) that has been 

widely used in myopia research. The animals are easy to breed, inexpensive and their use in 

myopia research provides substantial knowledge of their scleral biology as well as the ability 

to study, in the same species, myopia, glaucoma and myopic eyes in which chronic IOP 

elevation has been introduced. A first characterization of the LC and scleral canal, and its 

ECM components in the normal tree shrew eye is available (Albon et al., 2007). In more 
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recent preliminary studies, magnetic beads were used for chamber angle occlusion in tree 

shrew eyes to achieve unilateral IOP elevations into the mid-20 mmHg range (Zhan W., et al. 

IOVS 2015; 56: ARVO E-Abstract 2428). After several weeks, thickness of the retinal nerve 

fiber layer was reduced in the treated eye. Moreover, in vivo SD-OCT imaging showed ONH 

and LD cupping in the glaucomatous eye of all animals, which was confirmed by 3-D 

histomorphometry. A high-quality genome sequence and the annotation of Chinese tree 

shrew are available (Fan et al., 2013). Still, questions remain how easily they can be 

genetically engineered.

In general, the differences between animal models, although a source of complexity, have 

the potential to inform us about the pathogenesis of glaucoma. There is no single model that 

best replicates human glaucoma and a diversity of models is needed to address the diversity 

of research questions in glaucoma.

4. Fundamental questions to be answered in animal models

Using the models discussed above, there are a number of questions that should be addressed 

to increase our understanding of glaucoma.

(1) Are ONH astrocytes fundamentally different from astrocytes in other regions of the 

central nervous system (CNS)? Glial lamina astrocytes of the mouse optic nerve appear to 

differ in structure from white matter astrocytes in other parts of the CNS, since the processes 

of individual astrocytes are far-reaching to span most of the width of the optic nerve (Sun et 

al., 2009), a structural peculiarity that could be explained by the unique spatial and 

biomechanical requirements of ONH astrocytes. It is unclear, but not necessarily unlikely, 

that ONH astrocytes also differ in their gene expression profile from other populations of 

astrocytes in the CNS. In order to address this important question and to analyze their gene 

expression profile, ONH and other astrocytes from different species, including humans, 

could be isolated, dissociated and sorted using cell-specific markers. This approach should 

be feasible for the mouse glial lamina, since mice are available with astrocytes that 

specifically express fluorescent markers such as GFP that could be used for cell sorting. A 

comparable approach could be used to isolate and molecularly characterize subpopulations 

of ONH astrocytes (if there are any). To achieve this goal, isolated cells could undergo 

transcription profiling using single-cell RNA sequencing (scRNA-seq).

Do ONH astrocytes of the normal and glaucomatous glial lamina (in species that lack a 

connective tissue LC) differ in their gene expression pattern from those that cover the LC 

beams in species that have a connective tissue LC? To date, while gene array studies have 

been performed in the ONH of animals with experimental glaucoma, the studies have only 

investigated the total RNA expression profile which included all cell types (Howell et al., 

2011; Johnson et al., 2011; Johnson et al., 2007).

(2) Why do some animal species have a connective tissue LC with beams containing 

capillaries covered by astrocytes while others have a glial lamina consisting of astrocytes 

and capillaries only, without additional connective tissue structural support? One hypothesis 

for the lack of a collagenous LC in the mouse is that in a relatively small, normal, healthy 
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eye at normal IOP, the additional structural support from collagenous beams may be 

unnecessary. Supporting evidence for this assumption comes from studies showing that 

single astrocytes are able to span the entire scleral canal in mice (Lye-Barthel et al., 2013; 

Sun et al., 2009). It would be important to know if this is also true in the rat, where the 

scleral canal is bigger. Some observations appear to support this concept but are not 

definitive on this point (Dai et al., 2012).

RGC axonal transport is obstructed within the ONH in response to high IOP, irrespective if 

there is a LC or a glial lamina. Thus, a LC obviously does not protect the RGC axons from 

transport difficulties. Could the evolutionary role of the LC be related to the size of the canal 

or the fact that the LC connective tissue beams are formed around the ONH capillaries? 

Connective tissue could prevent mechanical obstruction of capillaries. Alternatively, 

connective tissue might constitute a barrier against macrophage evasion from capillaries or 

change the activity of growth factors; for example, TGF-β being inactive when bound to 

ECM. The genes that control the development of a collagenous LC have not been identified 

and there are no human diseases that result in the complete absence of a LC. There are, 

however, congenital and acquired laminar pits (Irvine et al., 1986; Ohno-Matsui et al., 2013), 

which appear to be focal absences of the laminar insertion and can span several clinical 

clock hours.

(3) Are astrocytes and LC beam fibroblasts the only cells that synthetize the ECM of the LC 

beams? Astrocytes are characterized in part by their basal lamina and transmission electron 

microscopy studies have demonstrated the basal lamina to be integral with the LC beam 

ECM. During embryonic development of the human eye, the beams of the LC are formed in 

the second and third months of gestation by astrocytes that orient themselves 

perpendicularly to the ganglion cell axons (Morrison et al., 1989). The basal laminae of the 

astrocytes form the outer boundaries of the beams and label for laminin and collagen type 

IV. At the same time, neural crest-derived mesenchymal cells build the sclera while 

subsequent migration of these mesenchymal cells into the LC beams is presumably 

prevented by the astrocyte basal laminae. Still, around the nerve head (within the developing 

peripapillary sclera) there are mesenchymal cells that are very efficient in generating 

extracellular matrix, most likely more efficiently than the astrocytes (Morrison et al., 1989), 

Years ago it was proposed that in addition to astrocytes characterized by a basal lamina, 

there is another type of ONH cells, the so-called lamina cribrosa cells (lamina cribrocytes), 

which lack a typical basal lamina as seen by transmission electron microscopy of the LC 

(Hernandez, 2000) and in cultures from explants (Hernandez, Igoe and Neufeld, 1988). 

Lamina cribrocytes might indeed constitute a population of neural crest-derived 

mesenchymal cells that constitute the laminar beam fibroblasts in a mature eye. A 

comprehensive molecular characterization of LC cells should be performed in embryonic 

human eyes to differentiate localization and time of migration into the LC of neural crest-

derived cells (scleral fibroblasts and/or possible lamina cribrocytes) versus neural tube-

derived astrocytes.

(4) In the human eye, the LC ECM is rudimentary in premature eyes and its development is 

not completed until the late teenage years (Morrison et al., 1989). There is the distinct 

possibility that through human development the astrocytes experience physiologic levels of 
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biomechanical stress and strain and, in response, lay down collagen as a means of coping 

with it. It is of yet unclear if laminar beam capillaries differentiate first and then astrocytes 

migrate to them and lay down ECM including a basal lamina, or if the LC ECM forms at the 

same time as the capillaries. Careful studies to address those questions are warranted.

5. Recent developments

Over the last five years, an extensive body of research has been conducted in both animal 

models and humans leading to the following (selected) key developments:

1. In the area of biomechanics, important characterization of very early 

morphometric changes in the monkey ONH unilateral experimental glaucoma 

model has occurred (Yang et al., 2015). Briefly, the monkey ONH surface, LC, 

scleral canal and pp-sclera are compliant structures, demonstrating modest 

deformations that are reversible through an IOP range of 0 to 45mmHg. In a 

given eye, confocal laser scanning tomographic (CSLT)- and spectral domain 

OCT (SDOCT)-detected ONH surface compliance is not representative of 

underlying LC compliance. In subsets of eyes, scleral canal expansion and 

outward bowing of the pp-sclera are part of the ONH response to IOP. ONH 

finite element models in bilateral normal animals suggest that contralateral eyes 

exhibit similar mechanical behavior, and that local mechanical stress and strain 

correlate highly with local laminar connective tissue volume fraction (a measure 

of connective tissue density). Initial descriptions of decreased LC beam thickness 

and increased pore diameters within the superior and inferior scleral canal of 

monkey and human eyes were recently confirmed in 21 normal and control 

monkey eyes using three dimensional histomorphometric reconstruction (3D 

HMRN) techniques that regionalize the ONH tissues relative to the axis between 

the fovea and the center of Bruch’s membrane opening (the FoBMO axis).

2. In the area of glial cells, the discovery that resident astrocytes have a phagocytic 

role in the normal ONH is very important (Davis et al., 2014; Nguyen et al., 

2011). Changes in phagocytosis in reactive astrocytes might contribute to ONH 

axonal damage. Another important finding is the causative role of optic nerve 

monocytes/microglia for optic nerve degeneration in the mouse model of 

hereditary glaucoma (Howell et al., 2012).

6. Proposed experiments for the next five years

The following experiments are proposed to provide more knowledge on the role of 

biomechanics for astrocyte biology.

1. Create a systems biology description of the ONH including, but not limited to, 

RGC axons, constituent cells (astrocytes, endothelia, pericytes, fibroblasts, 

oligodendrocytes) connective tissue morphometry, biomechanics and blood flow.

2. Address the question of how astrocyte connective tissue remodeling and 

reactivity in response to IOP influences the ability to provide trophic support to 

the RGC axons within the ONH. The retina appears to be very different from the 
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ONH with regard to astrocyte reactivity. Extreme retinal astrocyte remodeling on 

the retinal surface occurs after retinal injury, but without any obvious signs of 

RGC death (Luna et al., 2016).

3. A complete molecular and morphometric characterization of the ONH astrocytes 

and non-astrocytic constituent cells is needed. This would include, but not be 

limited to, creating a catalog of molecular markers (through characterization of 

both RNA and protein changes) that astrocytes exhibit differentially in different 

contexts in response to tissue change. Moreover, it needs to be investigated 

whether susceptibility to astrocyte reactivity and RGC loss changes with age. 

Are there differences in absolute and relative aging? Some ECM proteins are 

made early and have hardly any turnover. Do these proteins contribute to an age-

dependent susceptibility to damage? Age-related differences in ONH 

susceptibility to elevated IOP are under study in mice, rat and monkey 

experimental glaucoma models.

4. The role of ONH astrocyte phagocytosis (Davis et al., 2014; Nguyen et al., 2011) 

needs to be explored in more detail. Astrocyte reactivity may reduce the cells’ 

ability to perform this essential function, leaving the RGC axons more 

susceptible to glaucomatous insult.

5. Proliferation and death of ONH astrocytes in the normal eye and in response to 

injury needs to be investigated. Is proliferation a consequence of IOP-induced 

mechanical strain and/or axonal degeneration? If astrocytes divide early in 

response to acute or chronic IOP elevation, would blocking of proliferation be 

beneficial or detrimental? If astrocytes die, can they regenerate? Do astrocytes 

migrate away from the LC beams (and their connections to capillary nutrient 

delivery) as part of “glaucomatous” reactivity?

6. Gene expression and phenotype data need to be collected on a larger, more 

coordinated scale. Databases of the genetic changes in all models need to be 

established.

7. There is need for better alignment of staging and outcome measures in all animal 

models of glaucoma.

8. The development of an implantable IOP sensor that is able to gather data at 

sufficiently high frequency, and is sensitive enough to determine IOP changes in 

individual patients/animals, is highly desirable. The data would allow a better 

understanding of how IOP affects disease progression. One of the issues with 

trying to classify the disease into various susceptibility phenotypes is that, 

because we don’t know much about one of the main drivers of the disease (IOP), 

we cannot effectively control for IOP. This in turn makes it difficult to isolate and 

understand other risk factors. Such an approach would ideally incorporate both 

IOP characterization and IOP control. Experiments could be designed to assess 

the effects of pressure (sustained, transient, spikes, prolonged, etc.) on retinal 

neurons and glial cells. In other experiments, the magnitude and character of IOP 

insult could be controlled and other risk factors could then be varied.

Stowell et al. Page 11

Exp Eye Res. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

Albon J, Farrant S, Akhtar S, Young R, Boulton ME, Smith G, Taylor M, Guggenheim J, Morgan JE. 
Connective tissue structure of the tree shrew optic nerve and associated ageing changes. Invest 
Ophthalmol Vis Sci. 2007; 48:2134–2144. [PubMed: 17460272] 

Bello SA, Malavade S, Passaglia CL. Development of a Smart Pump for Monitoring and Controlling 
Intraocular Pressure. Ann Biomed Eng. 2016

Bito LZ. Species differences in the responses of the eye to irritation and trauma: A hypothesis of 
divergence in ocular defense mechanisms, and the choice of experimental animals for eye research. 
Exp Eye Res. 1984; 39:807–829. [PubMed: 6394354] 

Bunt-Milam AH, Dennis MB Jr, Bensinger RE. Hereditary glaucoma and buphthalmia in the rabbit. 
Prog Clin Biol Res. 1987a; 247:397–406. [PubMed: 2446337] 

Bunt-Milam AH, Dennis MB Jr, Bensinger RE. Optic nerve head axonal transport in rabbits with 
hereditary glaucoma. Exp Eye Res. 1987b; 44:537–551. [PubMed: 2439361] 

Burgoyne CF. A biomechanical paradigm for axonal insult within the optic nerve head in aging and 
glaucoma. Exp Eye Res. 2011; 93:120–132. [PubMed: 20849846] 

Burgoyne CF, Downs JC. Premise and prediction-how optic nerve head biomechanics underlies the 
susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma. 2008; 17:318–328. 
[PubMed: 18552618] 

Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical 
structure: a new paradigm for understanding the role of IOP-related stress and strain in the 
pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005; 24:39–73. 
[PubMed: 15555526] 

Cao J, Yang EB, Su JJ, Li Y, Chow P. The tree shrews: adjuncts and alternatives to primates as models 
for biomedical research. J Med Primatol. 2003; 32:123–130. [PubMed: 12823622] 

Coudrillier B, Campbell IC, Read AT, Geraldes DM, Vo NT, Feola A, Mulvihill J, Albon J, Abel RL, 
Ethier CR. Effects of Peripapillary Scleral Stiffening on the Deformation of the Lamina Cribrosa. 
Invest Ophthalmol Vis Sci. 2016a; 57:2666–2677. [PubMed: 27183053] 

Coudrillier B, Geraldes DM, Vo NT, Atwood R, Reinhard C, Campbell IC, Raji Y, Albon J, Abel RL, 
Ethier CR. Phase-Contrast Micro-Computed Tomography Measurements of the Intraocular 
Pressure-Induced Deformation of the Porcine Lamina Cribrosa. IEEE Trans Med Imaging. 2016b; 
35:988–999. [PubMed: 26642429] 

Crowston JG, Kong YX, Trounce IA, Dang TM, Fahy ET, Bui BV, Morrison JC, Chrysostomou V. An 
acute intraocular pressure challenge to assess retinal ganglion cell injury and recovery in the 
mouse. Exp Eye Res. 2015; 141:3–8. [PubMed: 25753840] 

Dai C, Khaw PT, Yin ZQ, Li D, Raisman G, Li Y. Structural basis of glaucoma: the fortified astrocytes 
of the optic nerve head are the target of raised intraocular pressure. Glia. 2012; 60:13–28. 
[PubMed: 21948238] 

Davis CH, Kim KY, Bushong EA, Mills EA, Boassa D, Shih T, Kinebuchi M, Phan S, Zhou Y, 
Bihlmeyer NA, Nguyen JV, Jin Y, Ellisman MH, Marsh-Armstrong N. Transcellular degradation of 
axonal mitochondria. Proc Natl Acad Sci U S A. 2014; 111:9633–9638. [PubMed: 24979790] 

De Schaepdrijver L, Simoens P, Lauwers H, De Geest JP. Retinal vascular patterns in domestic 
animals. Res Vet Sci. 1989; 47:34–42. [PubMed: 2772405] 

Downs JC. IOP telemetry in the nonhuman primate. Exp Eye Res. 2015; 141:91–98. [PubMed: 
26216571] 

Ethier CR, Morrison JC, Clark AF. Introduction to special issue on glaucomatous optic neuropathy: In 
vivo models and techniques. Exp Eye Res. 2015; 141:1–2. [PubMed: 26220833] 

Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, He J, Hou HL, Hu L, Hu XT, Jiang XT, Lai 
R, Lang YS, Liang B, Liao SG, Mu D, Ma YY, Niu YY, Sun XQ, Xia JQ, Xiao J, Xiong ZQ, Xu 
L, Yang L, Zhang Y, Zhao W, Zhao XD, Zheng YT, Zhou JM, Zhu YB, Zhang GJ, Wang J, Yao 
YG. Genome of the Chinese tree shrew. Nat Commun. 2013; 4:1426. [PubMed: 23385571] 

Fatehee N, Yu PK, Morgan WH, Cringle SJ, Yu DY. Correlating morphometric parameters of the 
porcine optic nerve head in spectral domain optical coherence tomography with histological 
sections. Br J Ophthalmol. 2011; 95:585–589. [PubMed: 21156705] 

Stowell et al. Page 12

Exp Eye Res. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fazio MA, Grytz R, Morris JS, Bruno L, Gardiner SK, Girkin CA, Downs JC. Age-related changes in 
human peripapillary scleral strain. Biomech Model Mechanobiol. 2014a; 13:551–563. [PubMed: 
23896936] 

Fazio MA, Grytz R, Morris JS, Bruno L, Girkin CA, Downs JC. Human scleral structural stiffness 
increases more rapidly with age in donors of African descent compared to donors of European 
descent. Invest Ophthalmol Vis Sci. 2014b; 55:7189–7198. [PubMed: 25237162] 

Flage T. Permeability properties of the tissues in the optic nerve head region in the rabbit and the 
monkey. An ultrastructural study. Acta Ophthalmol (Copenh). 1977; 55:652–664. [PubMed: 
409092] 

Grozdanic SD, Kecova H, Harper MM, Nilaweera W, Kuehn MH, Kardon RH. Functional and 
structural changes in a canine model of hereditary primary angle-closure glaucoma. Invest 
Ophthalmol Vis Sci. 2010; 51:255–263. [PubMed: 19661222] 

Grytz R, Fazio MA, Libertiaux V, Bruno L, Gardiner S, Girkin CA, Downs JC. Age- and race-related 
differences in human scleral material properties. Invest Ophthalmol Vis Sci. 2014; 55:8163–8172. 
[PubMed: 25389203] 

Hernandez MR, Andrzejewska WM, Neufeld AH. Changes in the extracellular matrix of the human 
optic nerve head in primary open-angle glaucoma. Am J Ophthalmol. 1990; 109:180–188. 
[PubMed: 2405683] 

Hogan, JJ., Alvarado, JA., Weddell, JE. Optic Nerve, Histology of the Human Eye. WB Saunders co; 
Philadelphia: 1971. p. 523-606.

Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, Barbay JM, Marchant JK, 
Mahesh N, Porciatti V, Whitmore AV, Masland RH, John SW. Axons of retinal ganglion cells are 
insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol. 2007; 179:1523–1537. 
[PubMed: 18158332] 

Howell GR, Macalinao DG, Sousa GL, Walden M, Soto I, Kneeland SC, Barbay JM, King BL, 
Marchant JK, Hibbs M, Stevens B, Barres BA, Clark AF, Libby RT, John SW. Molecular 
clustering identifies complement and endothelin induction as early events in a mouse model of 
glaucoma. J Clin Invest. 2011; 121:1429–1444. [PubMed: 21383504] 

Howell GR, Soto I, Zhu X, Ryan M, Macalinao DG, Sousa GL, Caddle LB, MacNicoll KH, Barbay 
JM, Porciatti V, Anderson MG, Smith RS, Clark AF, Libby RT, John SW. Radiation treatment 
inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model 
of glaucoma. J Clin Invest. 2012; 122:1246–1261. [PubMed: 22426214] 

Irvine AR, Crawford JB, Sullivan JH. The pathogenesis of retinal detachment with morning glory disc 
and optic pit. Retina. 1986; 6:146–150. [PubMed: 3797832] 

Johansson JO. The lamina cribrosa in the eyes of rats, hamsters, gerbils and guinea pigs. Acta Anat 
(Basel). 1987; 128:55–62. [PubMed: 3825488] 

Johnson EC, Doser TA, Cepurna WO, Dyck JA, Jia L, Guo Y, Lambert WS, Morrison JC. Cell 
proliferation and interleukin-6-type cytokine signaling are implicated by gene expression 
responses in early optic nerve head injury in rat glaucoma. Invest Ophthalmol Vis Sci. 2011; 
52:504–518. [PubMed: 20847120] 

Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC. Global changes in optic nerve head gene 
expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest 
Ophthalmol Vis Sci. 2007; 48:3161–3177. [PubMed: 17591886] 

Kimball EC, Nguyen C, Steinhart MR, Nguyen TD, Pease ME, Oglesby EN, Oveson BC, Quigley HA. 
Experimental scleral cross-linking increases glaucoma damage in a mouse model. Exp Eye Res. 
2014; 128:129–140. [PubMed: 25285424] 

Kuchtey J, Olson LM, Rinkoski T, Mackay EO, Iverson TM, Gelatt KN, Haines JL, Kuchtey RW. 
Mapping of the disease locus and identification of ADAMTS10 as a candidate gene in a canine 
model of primary open angle glaucoma. PLoS genetics. 2011; 7:e1001306. [PubMed: 21379321] 

Luna G, Keeley PW, Reese BE, Linberg KA, Lewis GP, Fisher SK. Astrocyte structural reactivity and 
plasticity in models of retinal detachment. Exp Eye Res. 2016; 150:4–21. [PubMed: 27060374] 

Lye-Barthel M, Sun D, Jakobs TC. Morphology of astrocytes in a glaucomatous optic nerve. Invest 
Ophthalmol Vis Sci. 2013; 54:909–917. [PubMed: 23322566] 

Stowell et al. Page 13

Exp Eye Res. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



May CA. Comparative anatomy of the optic nerve head and inner retina in non-primate animal models 
used for glaucoma research. Open Ophthalmol J. 2008; 2:94–101. [PubMed: 19516911] 

May CA, Lütjen-Drecoll E. Morphology of the murine optic nerve. Invest Ophthalmol Vis Sci. 2002; 
43:2206–2212. [PubMed: 12091418] 

McLellan GJ, Miller PE. Feline glaucoma--a comprehensive review. Vet Ophthalmol. 2011; 14(Suppl 
1):15–29. [PubMed: 21923820] 

Morrison J, Farrell S, Johnson E, Deppmeier L, Moore CG, Grossmann E. Structure and composition 
of the rodent lamina cribrosa. Exp Eye Res. 1995; 60:127–135. [PubMed: 7781741] 

Morrison JC, Dorman-Pease ME, Dunkelberger GR, Quigley HA. Optic nerve head extracellular 
matrix in primary optic atrophy and experimental glaucoma. Arch Ophthalmol. 1990; 108:1020–
1024. [PubMed: 2369339] 

Morrison JC, Jerdan JA, Dorman ME, Quigley HA. Structural proteins of the neonatal and adult 
lamina cribrosa. Arch Ophthalmol. 1989; 107:1220–1224. [PubMed: 2757553] 

Morrison JC, Jerdan JA, L’Hernault NL, Quigley HA. The extracellular matrix composition of the 
monkey optic nerve head. Invest Ophthalmol Vis Sci. 1988; 29:1141–1150. [PubMed: 3047074] 

Narfstrom K, Deckman KH, Menotti-Raymond M. Cats: a gold mine for ophthalmology. Annu Rev 
Anim Biosci. 2013; 1:157–177. [PubMed: 25387015] 

Nguyen JV, Soto I, Kim KY, Bushong EA, Oglesby E, Valiente-Soriano FJ, Yang Z, Davis CH, Bedont 
JL, Son JL, Wei JO, Buchman VL, Zack DJ, Vidal-Sanz M, Ellisman MH, Marsh-Armstrong N. 
Myelination transition zone astrocytes are constitutively phagocytic and have synuclein dependent 
reactivity in glaucoma. Proc Natl Acad Sci U S A. 2011; 108:1176–1181. [PubMed: 21199938] 

Ohno-Matsui K, Hirakata A, Inoue M, Akiba M, Ishibashi T. Evaluation of congenital optic disc pits 
and optic disc colobomas by swept-source optical coherence tomography. Invest Ophthalmol Vis 
Sci. 2013; 54:7769–7778. [PubMed: 24168988] 

Ostrin LA, Wildsoet CF. Optic nerve head and intraocular pressure in the guinea pig eye. Exp Eye Res. 
2016; 146:7–16. [PubMed: 26698659] 

Pazos M, Yang H, Gardiner SK, Cepurna WO, Johnson EC, Morrison JC, Burgoyne CF. Expansions of 
the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat 
experimental glaucoma model. Exp Eye Res. 2015a; 145:173–186. [PubMed: 26500195] 

Pazos M, Yang H, Gardiner SK, Cepurna WO, Johnson EC, Morrison JC, Burgoyne CF. Rat optic 
nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes. Exp 
Eye Res. 2015b; 139:1–12. [PubMed: 26021973] 

Pizzirani S. Definition, Classification, and Pathophysiology of Canine Glaucoma. Vet Clin North Am 
Small Anim Pract. 2015; 45:1127–1157. v. [PubMed: 26456751] 

Radius RL, Bade B. The anatomy at the lamina cribrosa in the normal cat eye. Arch Ophthalmol. 
1982a; 100:1658–1660. [PubMed: 7138335] 

Radius RL, Bade B. Axonal transport interruption and anatomy at the lamina cribrosa. Arch 
Ophthalmol. 1982b; 100:1661–1664. [PubMed: 7138336] 

Rohen J. The vascular system of the retina in rabbits. Ophthalmologica. 1954; 128:308–317. [PubMed: 
13236279] 

Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Modeling individual-specific human optic nerve head 
biomechanics. Part I: IOP-induced deformations and influence of geometry. Biomech Model 
Mechanobiol. 2009a; 8:85–98. [PubMed: 18309526] 

Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Modeling individual-specific human optic nerve head 
biomechanics. Part II: influence of material properties. Biomech Model Mechanobiol. 2009b; 
8:99–109. [PubMed: 18301933] 

Sun D, Lye-Barthel M, Masland RH, Jakobs TC. The morphology and spatial arrangement of 
astrocytes in the optic nerve head of the mouse. J Comp Neurol. 2009; 516:1–19. [PubMed: 
19562764] 

Tamm ER, Ethier CR. The Lasker/IRFF Initiative on Astrocytes and Glauomatous Neurodegeneration 
Participants, in preparation. Biological aspects of axonal damage in glaucoma: a brief review. Exp 
Eye Res. 

Toh T, Ruddle JB, Coote MA, Crowston JG. Preservation of myelinated nerve fibres in advanced 
glaucoma. Clin Exp Ophthalmol. 2011; 39:473–478. [PubMed: 21631660] 

Stowell et al. Page 14

Exp Eye Res. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vaney DI. A quantitative comparison between the ganglion cell populations and axonal outflows of the 
visual streak and periphery of the rabbit retina. J Comp Neurol. 1980; 189:215–233. [PubMed: 
7364963] 

Williams D, Sullivan A. Ocular disease in the guinea pig (Cavia porcellus): a survey of 1000 animals. 
Vet Ophthalmol. 2010; 13(Suppl):54–62. [PubMed: 20840091] 

Yang H, Ren R, Lockwood H, Williams G, Libertiaux V, Downs C, Gardiner SK, Burgoyne CF. The 
connective tissue components of optic nerve head cupping in monkey experimental glaucoma part 
1: Global change. Invest Ophthalmol Vis Sci. 2015; 56:7661–7678. [PubMed: 26641545] 

Stowell et al. Page 15

Exp Eye Res. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. Introduction
	2. Questions related to ONH structure and glaucoma susceptibility
	3. Animal models of glaucoma
	Monkey
	Rats and mice
	Rabbits
	New Animal Models

	4. Fundamental questions to be answered in animal models
	5. Recent developments
	6. Proposed experiments for the next five years
	References

