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Abstract

Introduction

HIV-1 genotypic resistance test (GRT) interpretation systems (IS) require updates as new

studies on HIV-1 drug resistance are published and as treatment guidelines evolve.

Methods

An expert panel was created to provide recommendations for the update of the Stanford HIV

Drug Resistance Database (HIVDB) GRT-IS. The panel was polled on the ARVs to be included

in a GRT report, and the drug-resistance interpretations associated with 160 drug-resistance

mutation (DRM) pattern-ARV combinations. The DRM pattern-ARV combinations included 52

nucleoside RT inhibitor (NRTI) DRM pattern-ARV combinations (13 patterns x 4 NRTIs), 27

nonnucleoside RT inhibitor (NNRTI) DRM pattern-ARV combinations (9 patterns x 3 NNRTIs),

39 protease inhibitor (PI) DRM pattern-ARV combinations (13 patterns x 3 PIs) and 42 integrase

strand transfer inhibitor (INSTI) DRM pattern-ARV combinations (14 patterns x 3 INSTIs).

Results

There was universal agreement that a GRT report should include the NRTIs lamivudine,

abacavir, zidovudine, emtricitabine, and tenofovir disoproxil fumarate; the NNRTIs
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efavirenz, etravirine, nevirapine, and rilpivirine; the PIs atazanavir/r, darunavir/r, and lopina-

vir/r (with “/r” indicating pharmacological boosting with ritonavir or cobicistat); and the INSTIs

dolutegravir, elvitegravir, and raltegravir. There was a range of opinion as to whether the

NRTIs stavudine and didanosine and the PIs nelfinavir, indinavir/r, saquinavir/r, fosampre-

navir/r, and tipranavir/r should be included. The expert panel members provided highly con-

cordant DRM pattern-ARV interpretations with only 6% of NRTI, 6% of NNRTI, 5% of PI,

and 3% of INSTI individual expert interpretations differing from the expert panel median by

more than one resistance level. The expert panel median differed from the HIVDB 7.0 GRT-

IS for 20 (12.5%) of the 160 DRM pattern-ARV combinations including 12 NRTI, two NNRTI,

and six INSTI pattern-ARV combinations. Eighteen of these differences were updated in

HIVDB 8.1 GRT-IS to reflect the expert panel median. Additionally, HIVDB users are now

provided with the option to exclude those ARVs not considered to be universally required.

Conclusions

The HIVDB GRT-IS was updated through a collaborative process to reflect changes in HIV

drug resistance knowledge, treatment guidelines, and expert opinion. Such a process

broadens consensus among experts and identifies areas requiring further study.

Introduction

HIV-1 drug resistance is one of the main obstacles to the long-term effectiveness of antiretro-

viral (ARV) therapy. In upper-income countries, genotypic resistance testing (GRT) is per-

formed routinely at diagnosis, treatment initiation, and at the time of virological failure (VF).

In lower- and middle-income countries, it is performed in the public health sectors for ad hoc
drug resistance surveillance and, increasingly, for managing patients with VF. Interpreting

GRT results is one of the most difficult challenges facing HIV care providers because there are

many drug-resistance mutations (DRMs) associated with each of the ARV classes. These

DRMs have variable effects on in vitro ARV susceptibility and occur in many different

combinations.

Because of the complexity inherent in GRT interpretation, automated interpretation sys-

tems have been developed to infer the extent of ARV resistance from DRMs in the targets of

ARV therapy [1, 2]. The Stanford HIV Drug Resistance Database (HIVDB) GRT interpreta-

tion system (GRT-IS) is a rule-based system in which penalties are assigned to DRMs and to

DRM combinations for ARVs in the four most commonly used ARV classes [3]: nucleoside

RT inhibitors (NRTIs), nonnucleoside RT inhibitors (NNRTIs), protease inhibitors (PIs), and

integrase strand transfer inhibitors (INSTIs). The resistance interpretation is determined by

adding the DRM penalties for each ARV. The HIVDB GRT-IS also provides comments about

each DRM in a submitted HIV-1 sequence.

The HIVDB GRT-IS DRM includes penalty scores and comments based on several types of

data including the relative frequency of a DRM in ARV-naïve and ARV-experienced individu-

als; the contribution of the DRM to reduced in vitro susceptibility; and the association of the

DRM with reduced virological response to an ARV regimen. This system requires updates as

new studies on HIV drug resistance are published and as treatment guidelines evolve. Three of

the authors of this study (RP, JMS, and RWS) organized a group of international experts to

assist with updating the HIVDB GRT system. These experts, who regularly attend HIV drug
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PLOS ONE | https://doi.org/10.1371/journal.pone.0181357 July 28, 2017 2 / 31

Gilead Sciences, Bristol Myers Squibb, Merck

Pharmaceuticals and has received consulting fees

from ViiV Health Care. PR Harrigan has received

grants from, served as an ad hoc advisor to, or

spoke at various events sponsored by Abbott,

Merck, and Gilead. He has also served as a

consultant for ViiV Health Care, and Gilead. DRK

has received consulting fees and research support

from Gilead, Janssen, Merck and ViiV. JMS has

received research support, honorarium or

consulting fees from the following: Abbvie, Merck,

Gilead Sciences, GlaxoSmithKline, Tibotec-

Janssen, BMS, Teva, Virology Education and ViiV

Healthcare. This does not alter our adherence to

PLOS ONE policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0181357


resistance meetings and have published one or more peer-reviewed papers on HIV drug resis-

tance, were polled on a variety of aspects of GRT interpretation including the analysis of spe-

cific DRM patterns. This manuscript describes the HIVDB GRT-IS and summarizes the

authors’ opinions on some of the most relevant clinical topics in HIV GRT interpretation in

light of recent publications and publicly available in vitro susceptibility data.

Methods

HIVDB genotypic resistance test (GRT) interpretation system (IS)

The HIVDB GRT is a rules-based system in which the resistance interpretation for 22 ARVs

(Table 1) is determined by adding the ARV penalties for each of the DRMs present in a virus

sample. A total penalty score of<10 indicates susceptibility; 10 to 14 indicates potential low-

level resistance; 15 to 29 indicates low-level resistance; 30 to 59 indicates intermediate resis-

tance; and�60 indicates high-level resistance. Mutation penalties are assigned both to individ-

ual DRMs and to combinations of DRMs.

The HIVDB GRT-IS classification "Susceptible" is assigned when a virus displays no evi-

dence reduced susceptibility when compared with a wild-type virus. "Potential low-level resis-

tance" is assigned when a virus has DRMs consistent with previous ARV exposure or contains

DRMs associated with resistance only when they occur with other DRMs. "Low-level resis-

tance" is assigned when a virus has DRMs associated with reduced in vitro ARV susceptibility

or a suboptimal virological response to ARV treatment. "Intermediate resistance" is assigned

when, although there is a high likelihood that an ARV’s activity would be reduced in the pres-

ence of a virus’s DRMs, the ARV would likely still retain significant antiviral activity against

Table 1. List of antiretroviral (ARV) drugs and their abbreviations by ARV class.

ARV Class Abbreviation Generic Name

Nucleoside RT Inhibitors (NRTIs) 3TC Lamivudine

ABC Abacavir

AZT Zidovudine

D4T Stavudine

DDI Didanosine

FTC Emtricitabine

TDF Tenofovir disoproxil fumarate

Nonnucleoside RT Inhibitors (NNRTIs) EFV Efavirenz

ETR Etravirine

NVP Nevirapine

RPV Rilpivirine

Protease Inhibitors (PIs)* ATV Atazanavir

DRV Darunavir

FPV Fosamprenavir

IDV Indinavir

LPV Lopinavir

NFV Nelfinavir

SQV Saquinavir

TPV Tipranavir

Integrase Strand-Transfer Inhibitors (INSTIs) DTG Dolutegravir

EVG Elvitegravir

RAL Raltegravir

*With the exception of NFV, each of the PIs are usually administered with a drug to boost PI levels. Ritonavir, usually indicated by “/r” is available for ATV,

DRV, FPV, IDV, LPV, SQV, and TPV. Cobicistat, usually indicated by “/c” or “/cobi” is available for ATV and DRV.

https://doi.org/10.1371/journal.pone.0181357.t001
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the virus. "High-level resistance" is assigned when a virus has DRMs predicted to confer a level

of resistance similar to that observed in viruses with the highest levels of reduced in vitro sus-

ceptibility or in viruses that have little or no virological response to ARV treatment [3].

In June 2016, the expert panel was provided access to the five sources of background material

outlined in Table 2: (i) DRM penalty scores for HIVDB version 7.0 (February 2014) and an

interim update (version 8.0; June 2016); (ii) A list of the calculated summed version 8.0 DRM

penalty scores for each of the distinct DRM patterns present in sequences in HIVDB; (iii) Muta-

tion classifications updated in June 2016; (iv) Mutation comments updated in June 2016; and (v)

Mutation notes updated June 2016. These five sources of background material were compiled by

RWS and reviewed by RP and JMS to extract specific material to be evaluated by the expert panel.

The expert panel was asked to provide feedback on the following aspects of GRT interpreta-

tion: (i) The ARVs and the extent to which pharmacologic considerations should be included

in a GRT report; (ii) The predicted drug resistance levels associated with 52 NRTI DRM

Table 2. Materials available for review by the expert panel.

Material and Description Link

Mutation Scores: For each ARV class, a table contained lists of

individual DRMs and their associated scores, followed by a list of

DRM combinations and their associated scores. Mutation penalty

scores were multiples of 5 and ranged from -15 (increased ARV

activity) to 60 (loss of ARV activity). ARV activity was estimated

by adding the penalties for each DRM in a sequence and

converting the total score to one of five interpretations: (i)

“Susceptible”, total score <10; (ii) “Potential low-level resistance”,

total score between 10 and 14; (iii) “Low-level resistance”, total

score between 15 and 29; (iv) “Intermediate resistance”, total

score between 30 and 59; and (v) “High-level resistance”, total

score�60.

• https://hivdb.stanford.edu/dr-

summary/mut-scores/NRTI/

• https://hivdb.stanford.edu/dr-

summary/mut-scores/NNRTI/

• https://hivdb.stanford.edu/dr-

summary/mut-scores/PI/

• https://hivdb.stanford.edu/dr-

summary/mut-scores/INSTI/

Mutation Pattern Scores: A list of the calculated summed DRM

penalty scores for each of the distinct DRM patterns present in

HIVDB sequences.

• https://hivdb.stanford.edu/dr-

summary/pattern-scores/NRTI/

• https://hivdb.stanford.edu/dr-

summary/pattern-scores/NNRTI/

• https://hivdb.stanford.edu/dr-

summary/pattern-scores/PI/

• https://hivdb.stanford.edu/dr-

summary/pattern-scores/INSTI/

Mutation Classifications: (i) PR mutations were classified as

“Major”, “Accessory”, or “Other; (ii) RT mutations were classified

as “NRTI”, ‘NNRTI”, or “Other”; and (iii) IN Mutations were

classified as “Major”, “Accessory”, or “Other”.

In the comments sections (below)

Mutation Comments: For each ARV class, there was a

comment for each mutation with a penalty score and for several

mutations without mutation penalty scores, which were once

considered to be associated resistance.

• https://hivdb.stanford.edu/dr-

summary/comments/NRTI/

• https://hivdb.stanford.edu/dr-

summary/comments/NNRTI/

• https://hivdb.stanford.edu/dr-

summary/comments/PI/

• https://hivdb.stanford.edu/dr-

summary/comments/INSTI/

Mutation Notes: For each ARV class, there was an HTML page

containing a summary of the DRMs associated with that class.

• https://hivdb.stanford.edu/dr-

summary/resistance-notes/NRTI/

• https://hivdb.stanford.edu/dr-

summary/resistance-notes/NNRTI/

• https://hivdb.stanford.edu/dr-

summary/resistance-notes/PI/

• https://hivdb.stanford.edu/dr-

summary/resistance-notes/INSTI/

ARV: antiretroviral; DRM: drug resistance mutation; NRTI: nucleoside RT inhibitor; NNRTI: nonnucleoside

RT inhibitor; PI: protease inhibitor; INSTI: integrase strand transfer inhibitor

https://doi.org/10.1371/journal.pone.0181357.t002
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pattern-ARV combinations (13 patterns x 4 NRTIs), 27 NNRTI DRM pattern-ARV combina-

tions (9 patterns x 3 NNRTIs), 39 PI DRM pattern-ARV combinations (13 patterns x 3 PIs)

and 42 INSTI DRM pattern-ARV combinations (14 patterns x 3 INSTIs). Feedback was solic-

ited through the distribution of blank worksheets (S1 File).

DRM patterns: Selection and analysis

The DRM patterns were selected to reflect several challenges in GRT interpretation: (i) The

extent to which the most commonly occurring TDF-associated DRMs are likely to interfere

with the success of TDF-containing regimens; (ii) The clinical significance of thymidine analog

mutations (TAMs) for TDF, ABC, and cytosine-analog (3TC and FTC)-containing regimens;

(iii) The DRM patterns associated with high-level resistance to the ARVs with the highest

genetic barrier to resistance (DTG and pharmacologically boosted DRV and LPV); and (iv)

The extent to which certain polymorphic DRMs (i.e., DRMs that are selected by ARV therapy

but that also occur in the absence of therapy) might interfere with success of NNRTI- and

INSTI-containing regimens.

The expert panel members were asked to assign interpretations of susceptible, potential

low-level resistance, low-level resistance, intermediate resistance, or high-level resistance to

five NRTIs (3TC, ABC, AZT, FTC, and TDF), three NNRTIs (EFV, RPV, and ETR), three PIs

(ATV/r, DRV/r, and LPV/r), and three INSTIs (DTG, EVG, and RAL). The cytosine analogs

3TC and FTC were considered by each expert to have similar drug-resistance interpretations

and are henceforth referred to as 3FTC. ATV, DRV, and LPV were each considered to be

pharmacologically boosted by either ritonavir or cobicistat.

Expert panel members were instructed to leave an ARV interpretation for a DRM pattern

blank if they were uncertain of the pattern’s effect on that ARV. Each panel member’s scores

were anonymous to all but RP, JMS, and RWS. After all interpretations were submitted, those

who provided an outlier interpretation–defined as differing from the median interpretation by

more than one level–were asked to review their interpretation to exclude the possibility that

the submitted result was an error.

For each DRM pattern-ARV combination, consistency among panel members was assessed

using the mean absolute deviation from the median expert level. All differences between

HIVDB 7.0 and the median expert panel level were reviewed by RP, JMS, and RWS. The effects

of proposed HIVDB scoring changes were evaluated by re-interpreting the complete set of dis-

tinct DRM patterns in HIVDB using the updated scores. This process generated tables for each

ARV class that were identical in format to those on the four Mutation Pattern Scores pages

(Table 2). DRM patterns influenced by a scoring change (i.e., a scoring change that resulted in

a changed resistance level) were sorted by their frequency. The updated scoring system was

called HIVDB version 8.1 because it replaced the interim version HIVDB 8.0 completed in

June 2016. HIVDB 8.1 was released online September 19, 2016. Each of the HIVDB 8.1 scores

and each of the changes between HIVDB 7.0 and 8.1 are available in the supplementary mate-

rial and at https://hivdb.stanford.edu/page/version-updates/#version.8.1.1.update.2016-09-15.

Relative ARV susceptibility profiles

For each ARV class, we tabulated the proportion of viruses in HIVDB with each distinct pat-

tern of DRMs for that class. We then determined the HIVDB 8.1 resistance interpretation for

the NRTIs 3TC, ABC, AZT, FTC, and TDF for each NRTI DRM pattern; for the NNRTIs EFV,

ETR, and RPV for each NNRTI DRM pattern; for the PIs ATV/r, DRV/r, and LPV/r for each

PI DRM pattern; and for the INSTIs DTG, EVG, and RAL for each INSTI DRM pattern.

HIV-1 genotypic resistance test interpretation
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Sequences with DRM patterns resulting in similar profiles of relative ARV susceptibility

were pooled to determine the frequency of each distinct cross-resistance profile within each

ARV class. To reduce the number of potential relative susceptibility profiles (i.e. number

ARVs number of ARV levels) from 54 (625) for the NRTIs and 53 (125) for the NNRTIs, PIs and

INSTIs to a more manageable number, we pooled viruses with potential low-level and low-

level susceptibility which resulted in 44 (256) potential profiles for the NRTIs and 43 (64)

potential profiles for the NNRTIs, PIs, and INSTIs.

The most common relative ARV susceptibility profiles are listed in separate tables for each

ARV class in which each profile is also associated with the three most common DRM patterns

responsible for the profile.

In vitro susceptibility (phenotype) data

Following the expert panel’s assessments, we created tabular summaries of phenotypic data

from HIVDB for each of the NRTI, NNRTI, PI, and INSTI DRM patterns selected for analysis.

Each tabular summary contained the DRM pattern, the proportion of viruses in HIVDB that

exactly matched the DRM pattern, and the median fold reduction in susceptibility produced

by the pattern for each ARV. Exactly matching DRM patterns were defined as not having addi-

tional major DRMs. For the NRTIs, these included DRMs at RT positions 41, 65, 67, 70, 74,

115, 184, 210, and 215. For the NNRTIs, these included DRMs at RT positions 100, 101, 103,

106, 181, 188, 190, and 230. For the PIs, these included DRMs at protease positions 30, 32, 46,

47, 48, 50, 54, 76, 82, 84, 88, and 90. For the INSTIs, these included DRMs at integrase posi-

tions 66, 92, 118, 121, 138, 140, 143, 147, 148, 155, and 263.

For the NRTI, NNRTI, and PI classes, the tables contained phenotypic data determined by

the PhenoSense assay [4, 5]. Because fewer phenotypic data were available for the INSTI class,

the INSTI table contained susceptibility data determined by the PhenoSense assay and by the

ViiV HeLa-CD4 reporter gene assay, which for the INSTIs provides results similar to the Phe-

noSense assay [6]. Virus isolates containing electrophoretic mixtures at DRM positions were

excluded. For composite DRM patterns, separate rows of data were provided for each individ-

ual pattern. For example, for the NRTI DRM pattern “T215YF”, there were separate rows for

“T215Y” and “T215F”. The number of phenotypic tests for a pattern was indicated by a sub-

script following the median fold reduction in susceptibility.

Fold-reductions in susceptibility considered to be associated with partial loss of clinical activity

were indicated in bold whereas those considered to be associated with near-complete loss of clini-

cal activity were indicated in bold and underlined. Such ARV-specific “clinical cut-offs” are com-

monly used because the clinical significance of different levels of reduction in susceptibility

differs among ARVs. These cut-offs, however, should be considered rough guides of expected

clinical activity for the following reasons. First, these cut-offs have usually been derived from the

retrospective analysis of just a single clinical trial. Second, for some ARVs, there is only one cut-

off (rather than separate low and high cut-offs). Finally, for other ARVs, there is only a “biologi-

cal” cut-off, designed to distinguish reduced susceptibility from the naturally occurring variation

in susceptibility observed in viruses from ARV-naïve persons lacking DRMs [7]. In this paper, we

define two cut-offs for each ARV relying primarily on published studies, the Monogram Biosci-

ences template report, and in some cases by extrapolating from closely related ARVs [5, 8–13].

Results

ARVs to include in a GRT interpretation system

Each of the 16 panel members recommended reporting susceptibility estimates for each of the

four NNRTIs and three INSTIs currently reported by HIVDB 7.0. Each also recommended

HIV-1 genotypic resistance test interpretation
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reporting susceptibility for the five NRTIs: 3FTC, ABC, AZT, and TDF. However, just 11 and

five members, respectively, recommended reporting susceptibility estimates for d4T and ddI,

which are no longer recommended for routine use. Each of the panel members recommended

reporting results for ATV/r, DRV/r, and LPV/r. However, just 12, nine, seven, three, and one

panel member recommended reporting results for TPV/r, FPV/r, SQV/r, IDV/r, and NFV,

respectively.

The panel members each recommended that PI interpretations should be for boosted PIs.

Six panel members recommended that the type of PI boosting (ritonavir vs. cobicistat) should

be indicated even though it would not affect susceptibility estimates. Eleven panel members

recommended indicating when DRV/r and DTG should be administered at the higher of their

two recommended dosages [12, 14]. Three panel members advised distinguishing between

TDF and TAF but no panel member recommended different susceptibility estimates for the

two tenofovir prodrugs.

Effects of DRM patterns on predicted NRTI susceptibility

Fig 1 summarizes the expert panel’s NRTI interpretations. The completion rate was 97.4% for

the 832 DRM pattern-ARV-interpretations (13 patterns x 4 NRTIs x 16 experts). Originally, 46

(5.5%) pattern-ARV-interpretations differed from the expert median by more than one-level.

Following re-evaluation of outliers, 32 (3.8%) pattern-ARV-interpretations differed by more

than one level.

Overall, the mean absolute deviation from the expert panel median was 0.34 levels: <0.5

levels for 38 pattern-ARV combinations and 0.5 to 1.0 for 14 pattern-ARV combinations.

There was a one-level difference between the expert median and HIVDB 7.0 for 12 of 52 pat-

tern-ARV combinations: six for TDF, four for ABC, one for 3FTC, and one for AZT. Table 3

lists these differences and indicates that for each a change was made to the HIVDB scoring sys-

tem such that HIVDB 8.1 yielded a result that matched the expert median.

After updating the scoring system, we determined the relative NRTI susceptibility profiles

of 35,377 viruses in HIVDB with 4,749 distinct NRTI DRM patterns. Of the 256 possible pro-

files, 21 occurred in at least 1% of published sequences. Table 4 displays these 21 profiles,

which accounted for 93.3% of viruses with one or more NRTI DRM. The most common rela-

tively susceptibility profile–susceptibility to AZT and TDF, low-level resistance to ABC, and

high-level resistance to 3FTC–occurred in 23.7% of all viruses with one or more NRTI DRMs.

This profile was usually caused by M184V/I alone or M184V/I in combination with a second

DRM with low mutation penalty scores.

Table 5 summarizes available phenotypic data in HIVDB for the 13 DRM patterns. HIVDB

contained many phenotypic results for M184V alone, K65R alone, M184V+K65R, and for sev-

eral of the patterns with multiple TAMs ± M184V. However, HIVDB contained few results for

several other patterns including the TDF-associated DRMs K65N and K70E/Q/G [15].

Effects of DRM patterns on predicted NNRTI susceptibility

Fig 2 summarizes the expert panel’s NNRTI interpretations. The completion rate was 91.4%

for the 432 DRM pattern-ARV-interpretations (9 patterns x 3 NNRTIs x 16 experts). Origi-

nally, 25 (5.8%) pattern-ARV-interpretations differed from the expert median by more than

one-level. Following re-evaluation of outliers, 16 (3.7%) pattern-ARV-interpretations differed

by more than one level.

The mean absolute deviation from the expert median was 0.43 levels: <0.5 levels for 16 pat-

tern-ARV combinations and 0.5 to 1.0 for 11 pattern-ARV combinations. There was a one-

level difference between the expert median and HIVDB 7.0 for two of the 27 pattern-ARV
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Fig 1. Expert panel assessments of 14 NRTI-associated drug-resistance mutation (DRM) patterns.

Abbreviations: ABC (abacavir), AZT (zidovudine), TDF (tenofovir), 3FTC (lamivudine and emtricitabine), S
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combinations: one for EFV and one for ETR. Table 3 lists these differences and indicates that

for each a change was made to the HIVDB scoring such that HIVDB 8.1 yields results that

match the expert median.

After updating the scoring system, we determined the relative NNRTI susceptibility profiles

of 31,484 viruses in HIVDB with 2,347 distinct NNRTI DRM patterns. Of the 64 possible pro-

files, 15 occurred in at least 1% of published sequences. Table 6 displays these 15 profiles,

which accounted for 98.5% of virus sequences with one or more NNRTI DRMs. The most

common profile, high-level EFV resistance and susceptibility to RPV and ETR, occurred in

26.6% of viruses. This profile was caused by K103N ± (P225H or V108I) in 75% of cases.

Table 7 summarizes available phenotypic data in HIVDB for the nine NNRTI DRM patterns.

Effects of DRM patterns on predicted PI susceptibility

Fig 3 summarizes the expert panel’s PI interpretations. The completion rate was 87.8% for the

624 DRM pattern-ARV-interpretations (13 patterns x 3 PIs x 16 experts). Originally, 32 (5.1%)

pattern-ARV-interpretations differed from the expert median by more than one level. Follow-

ing re-evaluation of outliers, 19 (3.0%) pattern-ARV-interpretations differed by more than one

level. The mean absolute deviation from the median was 0.34 levels:<0.5 levels for 34 pattern-

ARV combinations and 0.5 to 1.0 for 5 pattern-ARV combinations. There was no difference

between the expert median and HIVDB 7.0 for any of the 39 pattern-ARV combinations.

(susceptible), P (potential low-level resistance), L (low-level resistance), I (intermediate resistance), H (high-

level resistance). The diameter of each circle is proportional to the number of experts at the assigned level

shown on the Y-axis. The bold dash is the median of the expert assessments. The vertical lines represent the

HIVDB version 7.0 interpretations.

https://doi.org/10.1371/journal.pone.0181357.g001

Table 3. Comparison of the HIVDB version 7.0, expert panel median, and eventual HIVDB version 8.1 levels for the 20 DRM pattern / ARV combina-

tions with a difference between HIVDB version 7.0 and the expert panel median.

Class ARV Pattern Version 7.0 Panel Median Version 8.1

NRTI TDF 65R+184V High Intermediate Intermediate

65N Low Intermediate Intermediate

77L+116Y+151M Low Intermediate Intermediate

215FY Low Potential Potential

41L+215FY Intermediate Low Low

41L+210W+215FY High Intermediate Intermediate

ABC 65N Low Intermediate Intermediate

215FY Low Potential Potential

41L+184V+215FY High Intermediate Intermediate

67N+70R+184V+219QE Intermediate High High

3FTC 41L+215FY Potential Susceptible Susceptible

AZT 41L+184V+215Y High Intermediate Intermediate

NNRTI EFV 98G Potential Low Low

ETR 138A Susceptible Potential Potential

INSTI RAL 97A Low Potential Potential

157Q Low Potential Potential

118R Intermediate Low No change

EVG 157Q Low Potential Potential

118R Intermediate Low No change

DTG 118R Potential Low Low

https://doi.org/10.1371/journal.pone.0181357.t003
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Table 4. Patterns of predicted relative NRTI susceptibility profiles for 35,377 viruses in HIVDB with 4,749 Distinct NRTI-Resistance patterns*.

AZT ABC XTC TDF % of Total Relative NRTI

Susceptibility Profiles†
Example DRM Patterns§ DRM Pattern % with

Profile

DRM Pattern % of

Total

Susc Low High Susc 23.7 M184V 80.4 19.0

A62V,M184V 3.7 0.9

M41L,M184V 3.4 0.8

High High High Int 10.2 M41L,M184V,L210W,T215Y 14.5 1.5

D67N,K70R,M184V,T215F,K219Q 6.1 0.6

M41L,D67N,M184V,L210W,T215Y 5.5 0.6

High High High High 8.0 M41L,E44D,D67N,M184V,L210W,

T215Y

6.2 0.5

M41L,E44D,D67N,T69D,M184V,

L210W,T215Y

5.0 0.4

M41L,E44D,D67N,M184V,L210W,

T215Y,K219N

2.7 0.2

High High Low High 6.0 M41L,D67N,L210W,T215Y 11.0 0.7

M41L,E44D,D67N,L210W,T215Y 6.2 0.4

M41L,D67N,K70R,T215F,K219Q 4.3 0.3

Low Susc Susc Susc 4.7 M41L 19.9 0.9

T215S 19.4 0.9

T215D 13.0 0.6

Int High High Low 4.1 D67N,K70R,M184V,K219Q 43.2 1.8

M41L,L74V,M184V,T215Y 10.2 0.4

D67N,K70R,M184V,K219E 9.6 0.4

High Int Susc Int 3.9 D67N,K70R,T215F,K219Q 14.4 0.6

M41L,D67N,T215Y 6.9 0.3

M41L,L210W,T215D 5.5 0.2

Int Int High Low 3.5 M41L,M184V,T215Y 61.2 2.1

M41L,M184V,T215F 13.0 0.5

M41L,D67N,M184V,L210W 5.5 0.2

Susc Susc Susc Susc 3.4 A62V 49.3 1.7

K219Q 8.8 0.3

F77L 5.8 0.2

Int Low High Susc 2.9 M184V,T215Y 39.7 1.1

D67N,K70R,M184V 21.2 0.6

M184V,T215F 17.3 0.5

Int Susc Susc Susc 2.7 K70R 33.2 0.9

T215Y 29.5 0.8

D67N,K70R 10.3 0.3

Int Low Susc Low 2.4 M41L,T215D 15.3 0.4

M41L,T215S 11.7 0.3

M41L,T215E 8.3 0.2

Susc High High Susc 2.2 L74V,M184V 40.2 0.9

L74V,Y115F,M184V 15.5 0.3

L74I,M184V 9.7 0.2

Susc High High Int 2.0 K65R,M184V 47.7 1.0

A62V,K65R,M184V 14.0 0.3

K65R,M184I 8.9 0.2

High High High Low 1.9 D67N,K70R,M184V,T215I,K219E 14.6 0.3

D67N,K70R,M184V,T215V,K219Q 9.9 0.2

(Continued)
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After updating the scoring system, we determined the relative PI susceptibility profiles of

19,379 virus sequences in HIVDB with 5,634 distinct PI DRM patterns. Of the 64 possible pro-

files, 14 occurred in at least 1% of the virus sequences. Table 8 displays these 14 patterns,

which accounted for 94.6% of sequences. The most common profile was susceptibility to

ATV/r, DRV/r, and LPV/r, which was caused by D30N ± N88D, L33F, M46L, or Q58E in

nearly 60% of cases. The second most common susceptibility profile was high-level resistance

to ATV/r and LPV/r and susceptibility to DRV/r, which was often caused by V82A in combi-

nation with M46I/L, I54V, and/or L90M. Table 9 summarizes available phenotypic data for the

13 PI DRM patterns. Incomplete data was available for five of the patterns, most notably L76V

alone.

Table 4. (Continued)

AZT ABC XTC TDF % of Total Relative NRTI

Susceptibility Profiles†
Example DRM Patterns§ DRM Pattern % with

Profile

DRM Pattern % of

Total

D67N,K70R,M184V,T215I,K219Q 8.8 0.2

High Low Susc Low 1.7 D67N,K70R,K219Q 39.5 0.7

L210W,T215Y 9.6 0.2

D67N,K70R,K219E 6.5 0.1

Low Low High Susc 1.6 K70R,M184V 76.6 1.3

M41L,D67N,M184V 4.0 0.1

D67N,M184V,K219Q 3.1 0.1

High Int Susc Low 1.5 M41L,T215Y 77.0 1.2

M41L,T215F 15.0 0.2

D67N,K70R,L74V,K219Q 2.2 0.0

High Int High Low 1.5 M41L,D67N,M184V,T215Y 19.7 0.3

M41L,D67N,T69D,M184V,T215Y 5.4 0.1

M41L,A62V,M184V,T215Y 4.6 0.1

High High Low Int 1.5 M41L,L210W,T215Y 71.9 1.0

M41L,L74V,L210W,T215Y 13.2 0.2

M41L,L210W,T215F 3.3 0.0

High High Int High 1.3 M41L,D67N,K70R,L210W,T215Y,

K219E

3.2 0.0

M41L,E44D,D67N,K70R,L210W,

T215Y,K219E

2.5 0.0

M41L,T69Insertion,L210W,T215Y 2.3 0.0

Int Int High Susc 1.3 M41L,M184V,L210W 23.9 0.3

D67N,M184V,T215Y 7.7 0.1

A62V,M184V,T215Y 5.0 0.1

Susc Int Int High 1.3 K65R 73.7 0.9

A62V,K65R 4.2 0.1

K65R,K219R 2.9 0.0

*Obtained from HIVDB (https://hivdb.stanford.edu/dr-summary/pattern-scores/INSTI/) January 2017. For the purposes of this analysis, the HIVDB

interpretations of “Susceptible” and “Potential Low resistance” were grouped together as “Susceptible”.
†Relative susceptibility patterns accounting for�1% of all such patterns are shown. These patterns account for the HIVDB interpretations of 93.3% of

sequences containing�1 NRTI DRM.
§For each relative NRTI susceptibility pattern, the three most common NRTI DRM patterns responsible for the relative susceptibility pattern are shown as

examples.

https://doi.org/10.1371/journal.pone.0181357.t004
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Effects of DRM patterns on predicted INSTI susceptibility

Fig 4 summarizes the expert panel’s INSTI interpretations. The completion rate was 85.0% for

the 672 DRM pattern-ARV-interpretations (14 patterns x 3 INSTIs x 16 experts). Originally,

22 (3.2%) pattern-ARV-interpretations differed from the expert median by more than one

level. Following re-evaluation of outliers, 16 (2.3%) pattern-ARV-interpretations differed by

more than one level.

The mean absolute deviation from the median was 0.31 levels: <0.5 levels for 33 pattern-

ARV combinations and 0.5 to 1.0 for nine pattern-ARV combinations. There was a one-level

difference between the expert median and HIVDB 7.0 for six of the 42 pattern-ARV combina-

tions: three for RAL, two for EVG, and one for DTG. Table 3 lists these differences and indi-

cates that for four of these a change was made in the HIVDB scoring such that HIVDB 8.1

system yields results matching the expert median.

After updating the scoring system, we determined the relative INSTI susceptibility profiles

of 1,536 viruses in HIVDB with 209 distinct INSTI DRM patterns. Of the 64 possible profiles,

Table 5. In vitro susceptibilities associated with the 13 NRTI drug resistance mutation (DRM) patterns.

Overall Pattern* Specific Pattern* Exact† Included† 3TC§ ABC§ AZT§ TDF§

M184V M184V 19.03% 63.33% >200175 3.1125 0.5124 0.563

K65R K65R 0.93% 5.64% 8.930 2.520 0.520 1.817

K65R, M184V K65R, M184V 0.96% 2.88% >20027 8.416 0.416 1.216

K65N K65N 0.02% 0.10% 7.31 2.11 - 1.71

K70EGQ K70E 0.07% 0.85% 5.35 1.43 0.22 0.93

K70G 0.00% 0.31% - - - -

K70Q 0.03% 0.27% - - - -

Q151M Q151M 0.03% 2.74% 316 5.510 710 19

F77L, F116Y, Q151M F77L, F116Y, Q151M 0.01% 1.04% 4.42 6.82 482 1.62

T215YF T215Y 0.80% 28.76% 2.419 1.612 7.415 1.414

T215F 0.21% 10.29% 2.44 1.82 52 1.32

M41L, T215YF M41L, T215Y 1.18% 23.87% 215 29 1212 1.37

M41L, T215F 0.23% 5.24% 2.61 3.21 501 -

M41L, M184V, T215YF M41L, M184V, T215Y 2.13% 14.34% >20055 5.141 641 1.124

M41L, M184V, T215F 0.45% 3.39% >2006 5.47 3.57 0.51

M41L, L210W, T215YF M41L, L210W, T215Y 1.05% 16.44% 2.834 3.119 16421 3.118

M41L, L210W, T215F 0.05% 1.04% 3.14 3.21 2173 4.12

M41L, M184V, L210W, T215YF M41L, M184V, L210W, T215Y 1.48% 9.65% >20069 6.548 1851 1.638

M41L, M184V, L210W, T215F 0.10% 0.66% 1481 - 691 2.81

D67N, K70R, M184V, K219QE D67N, K70R, M184V, K219Q 1.76% 6.12% >20012 5.69 4.69 1.45

D67N, K70R, M184V, K219E 0.39% 2.85% >2004 3.93 1.73 0.72

*Mutation patterns are defined as those matching the listed DRMs and not containing additional DRMs at positions 41, 65, 67, 70, 74, 115, 151, 184, 210,

and 215.
†Exact: % of sequences in HIVDB exactly matching the mutation pattern; Included: % of sequences in HIVDB matching or including the mutation pattern.
§Median fold reduced susceptibility as determined by the PhenoSense assay (Monogram Biosciences, South San Francisco). Sequences with

electrophoretic mixtures were excluded. “-”indicates that no phenotype results were available for a particular DRM pattern / NRTI combination. Fold

reductions in susceptibility�1.4 fold for TDF,�2 fold AZT,�3 fold for 3TC, and�4.5 fold ABC are in bold consistent with the PhenoSense assay cut-off for

partial loss of clinical efficacy [5]. Fold reductions in susceptibility �4 fold for TDF and�6.5 fold for ABC are also underlined consistent with the PhenoSense

assay upper cut-offs for where most clinical efficacy is considered to be lost [5]. In the absence of specific PhenoSense upper cut-offs for AZT and 3TC, we

underlined AZT folds�5 fold and 3TC folds�100-fold.

https://doi.org/10.1371/journal.pone.0181357.t005
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Fig 2. Expert panel assessments of 9 NNRTI-associated drug-resistance mutation (DRM) patterns.

Abbreviations: EFV (efavirenz), ETR (etravirine), RPV (riplivirine), S (susceptible), P (potential low-level

resistance), L (low-level resistance), I (intermediate resistance), H (high-level resistance). The diameter of

each circle is proportional to the number of experts at the assigned level shown on the Y-axis. The bold dash

is the median of the expert assessments. The vertical lines represent the HIVDB version 7.0 interpretations.

https://doi.org/10.1371/journal.pone.0181357.g002
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Table 6. Patterns of predicted relative NNRTI susceptibility profiles for 31,484 viruses in HIVDB with 2,347 distinct NNRTI-Resistance patterns*.

EFV RPV ETR % of Total Relative NNRTI Susceptibility

Profiles†
Example DRM

Patterns§
DRM Pattern % with

Profile

DRM Pattern % of

Total

High Susc Susc 26.6 K103N 61.1 16.2

K103N,P225H 8.6 2.3

K103N,V108I 6.4 1.7

High High Int 15.2 L100I,K103N 16.9 2.6

Y181C,G190A 7.9 1.2

K101E,G190A 6.6 1.0

High Low Susc 8.2 K103N,G190A 14.2 1.2

A98G,K103N 8.9 0.7

K103S,G190A 8.1 0.7

High High High 7.7 K101E,Y181C,G190A 8.4 0.6

K101P,K103N 7.4 0.6

K101E,Y181C,G190S 4.1 0.3

Susc Susc Susc 7.7 V179D 47.2 3.6

V179E 22.5 1.7

V108I 17.9 1.4

Susc Low Susc 7.4 E138A 83.6 6.1

E138G 8.2 0.6

H221Y 5.9 0.4

Int Int Int 4.6 Y181C 75.8 3.5

V108I,Y181C 11.5 0.5

Y181C,N348I 2.6 0.1

High Int Int 4.4 K103N,Y181C 64.9 2.9

K103N,V108I,Y181C 5.8 0.3

G190Q 4.3 0.2

High High Susc 3.2 Y188L 72.0 2.3

K103N,Y188L 15.3 0.5

V106M,Y188L 4.0 0.1

Int Low Susc 2.5 G190A 73.5 1.8

K103R,V179D 14.4 0.4

G190A,N348I 2.9 0.1

Int High Int 2.5 Y181C,H221Y 39.2 1.0

V108I,Y181C,H221Y 23.2 0.6

A98G,Y181C 16.0 0.4

Low Low Susc 1.7 A98G 93.4 1.6

A98G,V108I 2.2 0.0

V108I,H221Y 2.2 0.0

High Int Low 1.7 A98G,G190A 12.8 0.2

K101E,K103N 5.8 0.1

K103R,V179D,G190A 5.4 0.1

High High Low 1.4 A98G,Y188L 14.8 0.2

V179D,Y188L 12.4 0.2

V179E,Y188L 10.8 0.1

Int Susc Susc 1.2 K103S 32.5 0.4

V106A 21.4 0.3

(Continued)

HIV-1 genotypic resistance test interpretation

PLOS ONE | https://doi.org/10.1371/journal.pone.0181357 July 28, 2017 14 / 31

https://doi.org/10.1371/journal.pone.0181357


11 occurred in at least 1% of the virus sequences. Table 10 displays these 11 profiles, which

accounted for 97.7% of virus sequences. The most common susceptibility profile was suscepti-

bility to all INSTIs, which was caused by either E157Q, T97A, or Q95K alone. The second

most common INSTI profile–high-level RAL and EVG resistance with intermediate (18.4%)

or low-level (17.1%) DTG resistance–was caused by G140S + Q148H in 67% of cases. Table 11

summarizes available phenotypic data for the 14 INSTI DRM patterns. For many patterns, few

data were available for DTG.

Discussion

Decision support systems have become increasingly important for the interpretation of genetic

sequences for clinical purposes. Such systems comprise rule-based systems designed to emu-

late consultation with a subject-matter expert and machine-learning systems that use an algo-

rithm to arrive at an optimized result through the analysis of a large dataset. Machine-learning

systems are useful for scenarios in which sufficient amounts of appropriate raw data are avail-

able for algorithm training and validation. Rule-based systems are useful for scenarios that

Table 6. (Continued)

EFV RPV ETR % of Total Relative NNRTI Susceptibility

Profiles†
Example DRM

Patterns§
DRM Pattern % with

Profile

DRM Pattern % of

Total

K238T 20.3 0.2

Footnote

*Obtained from HIVDB (https://hivdb.stanford.edu/dr-summary/pattern-scores/NNRTI/) January 2017. For the purposes of this analysis, the HIVDB

interpretations of “Susceptible” and “Potential Low resistance” were grouped together as “Susceptible”.
†Relative susceptibility patterns accounting for�1% of all such patterns are shown. These patterns account for the HIVDB interpretations of 98.5% of

sequences containing�1 NNRTI DRM.
§For each relative NRTI susceptibility pattern, the three most common NNRTI DRM patterns responsible for the relative susceptibility pattern are shown as

examples.

https://doi.org/10.1371/journal.pone.0181357.t006

Table 7. In vitro susceptibilities associated with the 9 NNRTI drug resistance mutation patterns.

Overall Pattern* Specific Pattern* %Exact† %Included† EFV§ ETR§ RPV§

E138A E138A 6.15% 8.82% 1.314 2.16 1.85

E138K E138K 0.30% 0.77% 1.33 2.23 2.33

E138GQ E138G 0.60% 1.44% 1.33 1.82 1.51

E138Q 0.09% 1.16% 1.23 - 2.91

A98G A98G 1.63% 7.68% 0.716 0.54 -

V179D V179D 3.62% 6.59% 3.45 1.25 2.81

K101E K101E 0.58% 7.98% 2.112 1.87 1.87

Y181C Y181C 3.47% 22.08% 1.681 5.527 2.212

L100I, K103N L100I, K103N 2.58% 4.26% 20059 6.825 147

K101E, G190A K101E, G190A 1.00% 4.27% 839 3.43 3.12

*Mutation patterns are defined as those matching the listed mutations and not containing additional mutations at positions 100, 101, 103, 106, 181, 188,

190, and 230.
†Exact: % of sequences exactly matching the mutation pattern; Included: % of sequences matching or including the mutation pattern.
§Median fold reduced susceptibility as determined by the PhenoSense assay (Monogram Biosciences, South San Francisco). Sequences with

electrophoretic mixtures were excluded. “-”indicates that no phenotype results were available for a particular mutation pattern / NNRTI combination. Fold

reductions in susceptibility�2.5 for RPV and�3 for EFV and ETR are in bold. Fold reductions in susceptibility�10 are also underlined [5, 11].

https://doi.org/10.1371/journal.pone.0181357.t007
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Fig 3. Expert panel assessments of 13 PI-associated drug-resistance mutation (DRM) patterns.

Abbreviations: ATV (boosted atazanavir), DRV (boosted darunavir), LPV (boosted lopinavir), S (susceptible), P
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require knowledge for which the raw data are either not available or are too heterogeneous to

combine in a manner amenable to machine learning. Compared with machine-learning sys-

tems, rule-based systems have the advantage of being transparent and educational but the dis-

advantage of being subjective.

There are several machine-learning systems for HIV-1 GRT interpretation that use proprie-

tary datasets containing either large numbers of correlations between viral genotype and phe-

notype [16–20] or between genotype and the virological response to a new treatment regimen

[21–25]. However, rule-based systems have been used more commonly than machine-learning

systems for HIV-1 GRT interpretation due to their transparency, ability to take into account

diverse forms of data, and ability to represent expert opinion [26–31].

Rule-based systems represent knowledge in the form of IF/THEN rules in which the IF

clause specifies a condition to be evaluated and the THEN clause specifies an action to be

taken. In the HIVDB GRT-IS, one type of condition–the presence of a particular DRM–trig-

gers a comment about that DRM. A second type of condition–the sum of DRM penalty

scores associated with an ARV–triggers the assignment of a predicted level of susceptibility

for that ARV. In this paper, we described the HIVDB GRT-IS and summarized the authors’

opinions on several aspects of HIV-1 GRT interpretation, including which ARVs should be

included in an analysis and how various combinations of DRMs interact to influence ARV

susceptibility.

ARVs and pharmacologic considerations

There was universal agreement within the expert panel that a GRT report should include the

following five NRTs (3TC, ABC, AZT, FTC, and TDF), four NNRTIs (EFV, ETR, NVP, and

RPV), three PIs with pharmacologic boosting (ATV/r, ATV/c, DRV/r, DRV/c, and LPV/r),

and three INSTIs (DTG, EVG, and RAL). There was a range of opinion on whether the NRTIs

d4T and ddI and the PIs NFV, FPV/r, IDV/r, SQV/r, and TPV/r should continue to be

included because the use of these ARVs is no longer recommended in all but a few clinical situ-

ations. In response to this feedback, HIVDB users are now provided the option of excluding

ddI, d4T, IDV/r, SQV/r, FPV/r, and TPV/r.

The panel agreed that TDF and TAF should receive similar mutation penalty scores but

stipulated that this decision should be re-evaluated if the greater intracellular levels of tenofovir

produced by TAF could be shown to be clinically significant in the presence of reduced in vitro
tenofovir susceptibility [32, 33]. In response to the panel’s recommendation to indicate which

of the two DRV/r and DTG dosing schedules should be used, the HIVDB output was modified

to include comments indicating that the higher dosing schedule should be used in the presence

of low-level, intermediate, or high-level resistance to these ARVs [12, 14, 34].

DRM patterns: Overall concordance

There was a high level of concordance in the interpretation of 48 DRM test patterns. Only

5.5%, 5.8%, 5.1%, and 3.2% of NRTI, NNRTI, PI, and INSTI interpretations, respectively,

were considered outliers. These proportions were reduced to 3.8%, 3.7%, 4.8%, and 2.3%,

respectively after the outliers were re-reviewed by panel members. The proportion of

(potential low-level resistance), L (low-level resistance), I (intermediate resistance), H (high-level resistance).

The diameter of each circle is proportional to the number of experts at the assigned level shown on the Y-axis.

The bold dash is the median of the expert assessments. The vertical lines represent the HIVDB version 7.0

interpretations.

https://doi.org/10.1371/journal.pone.0181357.g003
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Table 8. Patterns of predicted relative PI susceptibility profiles for 19,379 viruses in HIVDB with 5,634 distinct PI-Resistance patterns*.

ATV LPV DRV % of Total Relative PI Susceptibility

Profiles†
Example DRM Patterns§ DRM Pattern % with

Profile

DRM Pattern % of

Total

Susc Susc Susc 18.3 D30N,N88D 17.8 3.3

L33F 10.4 1.9

M46L 9.8 1.8

High High Susc 17.3 I54V,V82A,L90M 6.0 1.0

L24I,M46L,I54V,V82A 3.5 0.6

M46L,I54V,V82A,L90M 2.9 0.5

High High Low 16.7 M46I,I84V,L90M 2.6 0.4

M46I,G73S,I84V,L90M 2.1 0.4

M46I,G73T,I84V,L90M 1.7 0.3

Low Low Susc 8.9 L90M 83.6 7.4

I54V 3.9 0.4

D30N,L90M 1.6 0.1

High High Int 6.9 I54L,I84V,L90M 1.0 0.1

L33F,I54L,G73T,I84V,L90M 0.9 0.1

M46I,L76V,I84V 0.7 0.1

Int Low Susc 6.0 M46I,L90M 23.1 1.4

G73S,L90M 17.6 1.1

K20T,L90M 13.6 0.8

High Int Low 4.0 I84V,L90M 15.5 0.6

G73S,I84V,L90M 13.4 0.5

I84V 6.8 0.3

High High High 3.8 V32I,K43T,M46I,I47V,I54M,V82A,L90M 1.3 0.1

V32I,L33F,M46I,I47V,I54M,V82A,L90M 0.9 0.0

L10F,V11I,K20T,V32I,L33F,I54V,G73S,

I84V,L89V,L90M

0.8 0.0

Int Int Susc 3.7 I54V,V82A 30.0 1.1

V82A,L90M 7.7 0.3

M46L,V82A 7.3 0.3

High Int Susc 3.2 M46I,G73S,L90M 16.7 0.5

M46I,G73T,L90M 6.3 0.2

M46I,F53L,G73S,L90M 3.4 0.1

Low Susc Susc 1.8 K20T,D30N,N88D 25.5 0.5

D30N,L33F,N88D 15.6 0.3

D30N,M46I,N88D 13.0 0.2

High Susc Susc 1.5 N88S 27.9 0.4

M46I,N88S 19.5 0.3

I50L 8.4 0.1

Low Int Susc 1.4 V82A 80.5 1.1

L10F,V82A 4.1 0.1

L24I,V82A 3.0 0.0

Int High Susc 1.1 L24I,I54V,V82A 22.3 0.2

L24I,M46L,V82A 14.6 0.2

(Continued )
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outliers, however, would likely have been higher if panel members did not have the oppor-

tunity to ignore patterns of which they were uncertain (3% to 15% depending on the ARV

class).

The median expert level differed from HIVDB 7.0 by one level for 12 (23.1%) of the 52

NRTI DRM pattern-ARV interpretations, two of the 27 NNRTI DRM pattern-ARV interpreta-

tions, none of the 39 PI DRM pattern-ARV interpretations, and six (14.2%) of the 42 INSTI

DRM pattern-ARV interpretations. For 18 of the 20 differences, the HIVDB GRT scoring was

modified so that the interpretation matched the expert median. The following paragraphs

Table 8. (Continued)

ATV LPV DRV % of Total Relative PI Susceptibility

Profiles†
Example DRM Patterns§ DRM Pattern % with

Profile

DRM Pattern % of

Total

L10F,I54V,V82A 12.6 0.1

*Obtained from HIVDB (https://hivdb.stanford.edu/dr-summary/pattern-scores/PI/) January 2017. For the purposes of this analysis, the HIVDB

interpretations of “Susceptible” and “Potential Low resistance” were grouped together as “Susceptible”.
†Relative susceptibility patterns accounting for�1% of all such patterns are shown. These patterns account for the HIVDB interpretations of 94.6% of

sequences containing�1 PI DRM.
§For each relative PI susceptibility pattern, the three most common PI DRM patterns responsible for the relative susceptibility pattern are shown as

examples.

https://doi.org/10.1371/journal.pone.0181357.t008

Table 9. In vitro susceptibilities associated with the 13 PI drug resistance mutation patterns.

Overall Pattern* Specific Pattern* %Exact† %Included† LPV§ ATV§ DRV§

N46IL M46I 1.66% 32.22% 2.73 2.23 0.82

M46L 1.79% 14.67% 1.62 2.41 0.71

L90M L90M 7.43% 50.86% 1.642 3.133 0.919

M46I, L90M M46I, L90M 1.38% 19.36% 2.723 4.917 0.86

M46I, I84V, L90M M46I, I84V, L90M 0.43% 7.65% 1727 2219 44

M46L, I54V, V82A M46L, I54V, V82A 0.41% 5.99% 3717 319 1.74

L76V¶ L76V¶ 0.09% 4.15% - - -

I50V I50V 0.12% 2.63% 6.74 1.42 -

I54LM I54L 0.15% 4.50% 4.61 1.71 3.61

I54M 0.07% 3.74% 2.91 3.41 -

V32I, I47V V32I, I47V 0.08% 4.17% 41 6.31 1.31

V32I, M46I, I47V, I84V V32I, M46I, I47V, I84V 0.01% 0.75% 772 402 251

L33F, M46I, I47V, I54M, 84V, 90M L33F, M46I, I47V, I54M, 84V, 90M 0.01% 0.02% 1756 746 >2003

V32I, L33F, M46I, I47V, I54M V32I, L33F, M46I, I47V, I54M 0.01% 0.61% - - -

L33F, M46L, I54M, I84V, V89I, L90M L33F, M46L, I54M, I84V, V89I, L90M 0.00% 0.00% 431 - -

*Mutation patterns are defined as those matching the listed mutations and not containing additional mutations at positions 30, 32, 46, 47, 48, 50, 54, 76, 82,

84, 88, and 90.
†Exact: % of sequences exactly matching the mutation pattern; Included: % of sequences matching or including the mutation pattern.
§Fold reduced susceptibility as determined by the PhenoSense assay (Monogram Biosciences, South San Francisco). Sequences with electrophoretic

mixtures were excluded. “-”indicates that no phenotype results were available for a particular mutation pattern / PI combination. Fold reductions in

susceptibility �3 for ATV,�9 for LPV, and�10 for DRV are in bold [5, 8, 9]. Fold reductions in susceptibility �6 for ATV,�40 for LPV, and�90 for DRV are

also underlined [5, 8, 9].
¶Of 67 LPV susceptibility results in HIVDB on viruses containing L76V, all had one or more additional DRMs.

https://doi.org/10.1371/journal.pone.0181357.t009
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summarize the considerations leading to the changes to the HIVDB scoring system as they

pertain to the 48 DRM test patterns.

NRTI DRM patterns

In HIVDB 7.0, K65R+M184V was assigned high-level TDF resistance because of the frequency

of this DRM pattern in individuals with VF on a TDF-containing regimen [35]. However, phe-

notypic data indicate that viruses with this DRM pattern have a median reduction in suscepti-

bility of just 1.2 fold (Table 5), which is below the 1.4 fold PhenoSense cut-off for the start of

low-level TDF [4, 7]. The minimal reduction in TDF susceptibility caused by K65R+M184V,

reflects the approximately two-fold reduction in susceptibility caused by K65R counteracted in

part by the nearly two-fold increase in susceptibility caused by M184V [36, 37]. Awareness of

these data by the expert panel led to the updated interpretation of intermediate TDF resistance

for K65R + N184V for HIVDB 8.1. Despite this change, AZT remains the NRTI of choice for

viruses with K65R+M184V because this DRM pattern increases AZT susceptibility (Table 5).

In HIVDB 7.0, the combination of the three type 1 TAMs—M41L, L210W, and T215Y —

led to the assignment of high-level TDF resistance because this pattern is associated with

about 4.0 fold reduced TDF susceptibility (Table 5) [36] and with a minimal (approximately

0.2 log) reduction in VL following TDF intensification [38]. Expert panel polling led to the

revised assignment of intermediate TDF resistance for this DRM pattern to indicate that

TDF, particularly when used in combination with 3TC or FTC, may retain ARV activity

against viruses with this DRM pattern and may be useful for salvage therapy. Of note, a

study published during the preparation of this manuscript reported that the presence of the

two Type 1 TAMs, M41L and L210W (without T215YF) did not appear to influence the

response to a first-line TDF-or TAF-containing regimen in nine clinical trials conducted by

Gilead Sciences from 2000 to 2013 [39]. This study did not examine the response to therapy

of viruses containing all three type 1 TAMs, because individuals with these viruses were

excluded from trial enrollment.

The HIVDB GRT-IS predicts that the NRTIs TDF, 3FTC, and AZT often have different sus-

ceptibility profiles because K65R and the 3FTC-resistance DRM M184V are associated with

increased ARV susceptibility (the former to AZT and the latter to AZT and TDF). Although

ABC has similar activity as TDF in vivo [40, 41], it is infrequently predicted to more active

because each of the TDF-associated DRMs confer ABC cross-resistance and because M184V

and L74V are associated with reduced susceptibility to ABC but not TDF. The NRTI-backbone

of ABC-3TC has also been associated with a higher risk of VF than TDF-FTC in patients with

plasma HIV-1 RNA levels exceeding 100,000 copies/ml [42].

NNRTI DRM patterns

Few changes were made to the NNRTI scoring system (Table 3). The cross-resistance profiles

shown in Table 6 indicate that viruses with high-level resistance to ETR will usually be cross-

resistant to EFV and RPV. Although RPV has a similar chemical structure to ETR, its genetic

barrier to clinically significant resistance is lower than ETR because it is administered at one-

sixteenth of ETR’s dose [43].

Fig 4. Expert panel assessments of 14 INSTI-associated drug-resistance mutation (DRM) patterns.

Abbreviations: DTG (dolutegravir), EVG (elvitegravir), raltegravir (RAL), S (susceptible), P (potential low-level

resistance), L (low-level resistance), I (intermediate resistance), H (high-level resistance). The diameter of

each circle is proportional to the number of experts at the assigned level shown on the Y-axis. The bold dash

is the median of the expert assessments. The vertical lines represent the HIVDB version 7.0 interpretations.

https://doi.org/10.1371/journal.pone.0181357.g004
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RPV was generally, but not always, predicted to be more active than EFV. Specifically, EFV

was predicted to be more active than RPV against viruses with E138A/G/Q/K mutations,

Table 10. Patterns of relative INSTI susceptibility for 1,536 viruses in HIVDB with 209 distinct INSTI-Resistance patterns*.

RAL EVG DTG % of Total Relative INSTI

Susceptibility Profiles†
Example DRM Patterns§ DRM

Pattern %

with Profile

DRM Pattern % of Total

Susc Susc Susc 34.9 E157Q 65.7 22.9

T97A 32.3 11.3

Q95K 2.1 0.7

High High Int 18.4 G140S,Q148H 66.7 12.3

G140S,Q148R 3.5 0.6

E138K,Q148R 3.2 0.6

High High Susc 17.1 N155H 55.5 9.5

N155H,G163R 12.5 2.1

N155H,E157Q 12.2 2.1

Low Low Susc 6.5 G163R 30 2.0

E138K 21 1.4

G163K 17 1.1

High High High 5.3 E138A,G140S,Q148H 23.2 1.2

E138K,G140S,Q148H 18.3 1.0

E138T,G140S,Q148H 6.1 0.3

High High Low 4.5 E92Q,N155H 23.2 1.0

Q148R 14.5 0.7

Y143C,N155H,S230R 7.2 0.3

High Int Susc 3.4 L74M,T97A,Y143R 15.4 0.5

T97A,Y143C,S230R 11.5 0.4

T97A,Y143R,G163R 11.5 0.4

High Low Susc 2.2 T97A,Y143R 58.8 1.3

L74M,Y143R 20.6 0.5

T97A,Y143C 8.8 0.2

Int High Susc 1.8 E92Q 55.6 1.0

E92Q,T97A 14.8 0.3

T66A,G163R 7.4 0.1

High Susc Susc 1.4 Y143R 71.4 1.0

Y143C 9.5 0.1

Y143S 9.5 0.1

Low Int Low 1.2 R263K 94.4 1.1

E157Q,R263K 5.6 0.1

High Int Low 1 L74M,T97A,Y143C,S230R 25 0.3

L74I,T97A,Y143C,S230R 12.5 0.1

Y143C,G163R,S230R 12.5 0.1

*Obtained from HIVDB (https://hivdb.stanford.edu/dr-summary/pattern-scores/INSTI/) January 2017. For the purposes of this analysis, the HIVDB

interpretations of “Susc” and “Potential Low resistance” were grouped together as “Susc”.
†Relative susceptibility patterns accounting for�1% of all such patterns are shown. These patterns account for the HIVDB interpretations of 97.7% of

sequences containing�1 INSTI DRM.
§For each relative INSTI susceptibility pattern, the three most common INSTI DRM patterns responsible for the relative susceptibility pattern are shown as

examples.

https://doi.org/10.1371/journal.pone.0181357.t010
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which are among the most common DRMs in individuals with VF on an RPV-containing regi-

men [43] and which are associated with greater reductions in susceptibility to RPV than EFV

(Table 7).

Although Y181C alone retains greater in vitro susceptibility to EFV compared with RPV

and ETR (Table 7), it yielded interpretations of intermediate resistance to each of the NNRTIs

(Table 6) because past studies have shown that EFV had reduced efficacy at treating viruses

Table 11. In vitro susceptibilities associated with the 14 INSTI drug resistance mutation patterns.

Overall Pattern* Specific Patterns* %Exact† %Include† RAL§ EVG§ DTG§

Q148HRK Q148H 0.20% 17.58% 198 5.33 0.53

Q148R 0.65% 5.99% 3010 1095 1.13

Q148K 0.00% 0.85% 406 673 1.53

G140SCA G140S 0.07% 19.99% 1.63 4.52 0.81

G140C 0.00% 0.39% 1.11 6.11 0.51

G140A 0.00% 1.37% 2.71 5.41 0.71

E138KAT E138K 1.37% 5.53% 0.93 0.73 0.91

E138A 0.20% 2.15% 1.11 1.31 0.91

G140SCA, Q148HRK G140S, Q148H 12.24% 17.32% >15018 >1509 3.67

G140S, Q148R 0.65% 1.82% >15010 >1503 8.47

G140S, Q148K 0.00% 0.52% 4.44 1172 1.51

G140A, Q148H 0.00% 0.00% >1501 - -

G140A, Q148R 0.39% 1.04% 965 1003 131

G140A, Q148K 0.07% 0.33% >1501 - -

G140C, Q148R 0.00% 0.39% 1142 >1502 4.91

E138KAT, Q148HRK E138A, Q148R 0.00% 0.33% 1101 >1501 2.61

E138K, Q148H 0.00% 0.98% 192 6.71 0.91

E138K, Q148R 0.59% 2.15% 757 >1503 3.54

E138K, Q148K 0.00% 0.26% >1505 >1502 133

E138KAT, G140SAC, Q148HRK E138K, G140A, Q148R 0.00% 0.13% >1502 >1502 -

E138K, G140S, Q148H 0.98% 0.98% >1503 >1501 8.43

E138K, G140S, Q148R 0.07% 0.20% >1501 - 8.31

T97A T97A 11.26% 21.16% 1.313 5.413 0.95

E157Q E157Q 22.92% 28.39% 1.117 1.818 1.12

E92Q E92Q 0.98% 3.71% 4.620 3314 1.53

N155H N155H 9.51% 21.61% 1723 4517 1.88

Y143RC Y143R 0.98% 5.53% 207 2.94 1.31

Y143C 0.13% 2.99% 4.47 1.96 0.81

T97A, Y143RC T97A, Y143R 1.30% 3.52% >15012 326 13

T97A, Y143C 0.20% 1.50% 769 4.97 14

R263K R263K 1.11% 1.30% 1.13 4.63 1.92

G118R G118R 0.00% 0.00% - - -

*Mutation patterns are defined as those matching the listed mutations and not containing additional mutations at positions 66, 92, 97, 118, 121, 138, 140,

143, 147, 148, 155, and 263.
†Exact: % of sequences exactly matching the mutation pattern; Included: % of sequences matching or including the mutation pattern.
§Fold reduced susceptibility as determined by the PhenoSense assay (Monogram Biosciences, South San Francisco). Sequences with electrophoretic

mixtures were excluded. “-”indicates that no phenotype results were available for a particular mutation pattern / INSTI combination. Fold reductions in

susceptibility �3 fold are in bold [12, 13]. Fold reductions in susceptibility�10-fold are also underlined [12, 13].

https://doi.org/10.1371/journal.pone.0181357.t011
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from patients with past NNRTI experience even if genotypic resistance testing demonstrated

Y181C alone [44–46].

The polymorphic mutation V179D appears to cause low-level reductions in EFV and RPV

susceptibility. However, one retrospective study reported that V179D does not increase the

risk of virological failure on a first-line EFV-containing regimen [47].

PI DRM patterns

There were no differences between HIVDB 7.0 and the expert panel median for the 13 PI

DRM patterns. This high level of agreement may be partly due to findings from several well-

powered studies that led to the development of genotypic susceptibility scores for the predic-

tion of in vitro susceptibility and in vivo response to salvage therapy with LPV/r and DRV/r-

containing regimens [48–51]. Fewer data, however, are available for the genotypic predictors

of in vitro ATV susceptibility and the virological response to ATV/r-containing regimens [52,

53].

The HIVDB GRT-IS PI susceptibility profiles predict that most viruses with high-level

DRV resistance will also have high-level resistance to the remaining PIs. Although LPV/r, like

DRV/r, has a high genetic barrier to resistance, no viruses were predicted to be more resistant

to DRV/r than to LPV/r because each of the DRV-associated DRMs confers cross-resistance to

LPV. When used in PI-naïve individuals, ATV and ATV/r usually select for DRMs rarely seen

with other PIs, namely I50L and N88S. However, the phenotypic data in Table 9 indicate that

many other DRM patterns cause clinically significant reductions in ATV/r susceptibility.

Indeed, this may not have been fully appreciated by the expert panel. For example, the DRM

pattern V32I+I47V was evaluated as having low-level, intermediate, and intermediate resis-

tance to ATV/r, DRV/r, and LPV/r, respectively. However, the phenotypic data in Table 9

indicated 6.3-fold, 1.3-fold, and 4.0-fold reduced susceptibility to ATV, DRV, and LPV,

respectively.

INSTI DRM patterns

T97A and E157Q are polymorphic accessory INSTI-selected DRMs that occur in 1 to 5% of

viruses from untreated persons depending on subtype [54–58]. T97A had previously been

reported to be synergistic with Y143C at reducing RAL susceptibility [59]. Based on expert

polling, the individual DRM penalty scores for RAL and EVG for T97A and E157Q were each

lowered from low-level to potential low-level resistance. In our post-hoc analysis of phenotypic

data in HIVDB, E157Q alone was not found to reduce RAL and EVG susceptibility, whereas

T97A alone was found to reduce EVG susceptibility by about five fold (Table 11). However, in

a study published during the completion of this manuscript, the presence of T97A at baseline

was reported to not interfere with virological response to therapy with a first-line EVG-con-

taining regimen [60].

R263K is selected in vitro by DTG and is associated with about two-fold reduction in sus-

ceptibility to DTG [61, 62] (Table 11). R263K has also been reported in previously INSTI-

naïve but ARV-experienced patients receiving DTG [63, 64] and in patients receiving DTG

monotherapy [65]. Considering the rarity of R263K in patients receiving DTG, its minimal

reduction in DTG susceptibility, and its association with reduced replication fitness [66], the

expert panel decided to leave the assignment of low-level DTG resistance unchanged from

HIVDB 7.0.

G118R is even more rare than R263K. It has been reported in two patients receiving DTG

monotherapy [67]. Depending on the study, site-directed mutants with G118R have been

reported to be fully susceptible or to have a more than five-fold reduction in susceptibility to
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each of the INSTIs [67–71]. However, there are no publicly available phenotypic data per-

formed using the PhenoSense assay for isolates with G118R. Given the rarity and uncertainty

surrounding the clinical significance of this DRM, the RAL and EVG assignments were left

unchanged at intermediate resistance and the DTG assignment was increased from potential

low-level to low-level resistance.

Q148H/R/K are nonpolymorphic DRMs selected in patients receiving RAL and EVG that

alone reduce RAL and EVG susceptibility by five- to 20-fold. These DRMs usually occur in

combination with G140S/A/C or E138K/A/T, in which case they confer a more than 100-fold

reduction in susceptibility to RAL and EVG. Q148H/R/K alone are not usually associated with

reduced DTG susceptibility. However, in combination with G140S/A/C or E138K/A/T, sus-

ceptibility may be reduced by two- to 10-fold [6, 72, 73]. The presence of DRMs at all three

positions is associated with a greater than 10-fold reduction in DTG susceptibility. Among

individuals receiving DTG In the VIKING-3 study, virological suppression was attained in 10

of 18 with Q148H/R + G140A/S without additional INSTI DRMs but in only three of 17 with

Q148H/R in combination with two or more INSTI DRMs (most commonly G140 + E138

mutations) [12, 56]. Considering the importance of DTG in combatting the HIV pandemic, it

is essential for there to be more published in vitro DTG susceptibility data.

Limitations and future directions

Many studies describe how DRMs influence ARV efficacy such as whether they are selected by

the ARV, whether they influence the in vitro activity of an ARV, and whether they influence

the virological response to a regimen containing the ARV. Darwinian logic suggests that if a

DRM is selected by an ARV, it likely reduces susceptibility to that ARV. Moreover, if individu-

als with VF while receiving an ARV regimen frequently develop the same DRM in the absence

of other DRMs, then the evidence linking the DRM to ARV resistance is stregnthened.

In vitro susceptibility data is the main quantitative form of HIV-1 drug resistance data.

However, genotype-phenotype correlations cannot always directly used to guide therapy. For

example, the RT mutation M184V causes high-level resistance to 3TC and FTC, but most

guidelines do not recommend discontinuing these ARVs when choosing a new ARV regimen

in patients with this DRM [34, 74]. Conversely, although some DRMs have a minimal effect on

ARV susceptibility when they occur alone, these DRMs can be markers for the presence of

other DRMs likely to emerge with continued selective drug pressure.

Correlations between genotype and virological outcome have been obtained in clinical trials

and retrospective cohort studies. These studies have usually been complicated by the many

variables that influence the virological response to a change in ART such as the previous ARVs

received, the baseline virus load and CD4 count, the ARVs in the new treatment regimen, and

adherence to therapy. Moreover, many of these studies have been confounded by the fact that

baseline GRT results were used to guide therapy. Nonetheless, several of these studies pro-

duced highly useful data including the influence of many NRTI-associated DRMs on the viro-

logical response to regimens containing ABC and TDF [38, 75], the influence of PI DRMs on

response to regimens containing LPV/r and DRV/r [8, 48, 50], the influence of NNRTI-associ-

ated DRMs on the response to therapy with the etravirine [76], and the influence of INSTI

DRMs on the response to therapy with DTG [56].

However, despite the large amount of published drug resistance data, it is often not possible

to validate the interpretations for uncommon DRM patterns To handle such scenarios, the

HIVDB system contains penalties for many individual DRMs and for several of the most com-

monly occurring DRM combinations. By adding the individual and combination DRM penal-

ties, the HIVDB system develops interpretations for complex DRM patterns that are based on
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the more reliable data associated with simpler DRM patterns. The HIVDB GRT-IS is subjec-

tive in that It relies on expert opinion to prioritize the relative importance of the various forms

of HIV drug resistance data summarized in the preceding paragraphs. The transparency of the

HIVDB GRT IS renders it amenable to user feedback and to the type of expert review

described in this manuscript. The review led to a series of changes to the HIVDB GRT report

and IS and identified many areas of consensus and several areas requiring additional research.

Supporting information

S1 File. The expert panel questionnaire.
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