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Highlights 

 A key problem in neural spike sorting is highlighted. 

 A new method to measure the position of action potentials in real-time is described. 

 This method is validated using detailed simulations. 

 Major improvements are demonstrated compared to standard methods.  

 

Abstract  

Background: This paper describes a new method to calculate the positions of action 

potentials (APs) in extracellular neural recordings in real-time. Extracellular 

recordings made using various types of electrode structures are a key tool in 

experimental electrophysiology and involve the identification of signals from 

individual neurons, a process known by the generic name spike sorting. An essential 

feature of the process is the alignment of individual APs (‘spikes’) in time. Given the 

recordings are invariably made in noisy environments there is a tendency to timing 

jitter leading to alignment errors. This is especially true if single point methods of AP 

location are employed.  

New Method: The problems of single point AP location in the presence of noise are 

significantly reduced by the use of the centroid as a measure of position, which is 

based on a time average of all the points in the AP. The method is described and 

analysed in detail and it is shown that a very economical hardware realisation is 

possible. 

Results: The new methods are investigated by simulation using deterministic models 

of nerve signals (i.e. APs with added noise; both correlated and uncorrelated noise 

models are considered) as well as results measured from a hardware implementation. 

A power efficient realisation of the centroid filter is demonstrated using a complex 

programmable logic device (CPLD). 

Comparison with Existing Method: Detailed simulations demonstrate the superiority 

of the centroid method compared to several standard, single point metrics.  

Conclusions: A new method has been suggested that significantly improves one of 

the key issues in neural spike sorting. The technique has the potential to influence 

significantly the design of electrophysiological recording systems in the future.  

Keywords: action potentials, spike sorting, electrophysiology, centroid filter 
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1. INTRODUCTION 

Extracellular recording of physiological neural activity is the dominant experimental 

technique in electrophysiology providing valuable information about both the central 

and peripheral nervous systems [1]. Extracellular electrodes such as hooks or suction 

electrodes are considered to be both reliable and minimally invasive recording 

approaches. These types of electrode spontaneously record the electrical activity from 

an unknown number of excited  may serve different functions such as movement or 

memory. The study of these high-order functions often requires simultaneous 

recording from large areas of interconnected neurons using, for example, multi-

channel electrode arrays [2]. There is a special interest in reconstructing the waveform 

of individual neurons from these multi-channel recordings so that the firing rates, or 

spike trains, can be extracted and compared. This procedure is referred to as neural 

spike sorting which is the labelling and classification of individual action potentials 

(AP) based on both shape and amplitude. It is generally considered that the shape and 

amplitude of APs recorded from a single neuron are time invariant and are a function 

of the axon diameter and the distance from the neuron to the recording electrode. 

Historically the spike sorting process was performed visually by a researcher who, 

after first determining the number of different classes, would classify each AP based 

on shape and reconstruct individual spike trains for each neuron. This time-consuming 

process has since been replaced by more reliable computer based, automated methods 

that make use of statistical analysis and signal processing [3], [4], [5]. There are many 

different approaches to automated spike sorting but the majority can be broken down 

into seven main steps [6]: 

1. Filtering – In the first stage the raw data recorded from a single extracellular 

electrode is band-pass filtered to remove the frequency components of 

interference and noise that are out of band. The frequency range of interest is 

typically 10 – 10,000 Hz. 

2. Spike Detection – After filtering individual APs need to be identified. Nearly all 

methods detect APs with two main steps; the pre-emphasis of the signal and the 

use of an amplitude threshold. Pre-emphasis may be performed using methods 

such as the non-linear energy operator that attempts to locate rapid changes 

within the signal [7]. The amplitude threshold is generally determined 

automatically using an un-supervised training process [8].  
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3. Alignment – Once APs have been identified within the recording a window of 

data is extracted and the waveforms are captured. At this point each AP is aligned 

based on a measure such as the maximum value or the point of maximal slope [9]. 

4. Feature Extraction – Often very simple features such as the maximum amplitude 

are used to describe the morphology of the AP [9].  More complex methods 

employ statistical concepts such as principal component analysis (PCA) to extract 

unique features from the captured AP [10]. 

5. Dimensionality Reduction – The resulting features have many dimensions that 

make identification computationally expensive; one method to reduce the 

dimensionality of the features is simply to subsample at regular intervals. (there 

are more advanced statistical methods such a Hartigan’s dip test [11], [12]). In 

PCA it is common to reduce the number of dimensions considered for clustering 

by simply truncating to N dimensions, where N is typically 2 or 3 [13]. 

6. Clustering – The reduced data set can now be automatically examined for clusters 

that correspond to different classes. Clustering (especially un-supervised) 

clustering is often the most difficult part of the sorting process. The de-facto 

benchmark is k-means clustering but this relies directly on human intervention and 

so is not suitable for un-supervised learning. One algorithm that is suitable for un-

supervised clustering is called valley seeking [14], however the algorithm is not 

real time and has serious drawbacks in terms of complexity. When dealing with 

clusters that are irregular in shape,  improvements may be obtained with 

superparamagnetic clustering [1]. 

7. Classification – As new APs are observed in the recorded data the clusters are 

updated and can be used to classify new APs. From this a visual record called a 

spike train can be produced that shows the firing patterns of each class of AP. 

There are two main sources of spurious signals that pose significant challenges in 

extracellular recordings: deterministic common mode interference from sources such 

as excited muscles and random signals such as thermal noise. When noise and 

interference are present, similar APs originating from different neurons may appear to 

be the same or, alternatively, APs from the same neuron may appear different. One of 

the critical constraints of the spike sorting process is the alignment of individual APs 

before feature extraction is applied. Any temporal misalignment of APs at this time 

can have a detrimental effect on spike classification. The alignment process is often 
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performed at higher sampling rates in order to minimise sampling jitter and the most 

common method is to align each AP to the point of maximum slope [9]. Other 

methods consider the point of maximum amplitude or the point (or points) at which 

the amplitude has been reduced by 3 dB. These methods typically employ only one or 

two samples from the entire AP and so are highly sensitive to the broadband noise 

that is typical of biological recordings [15]. Alignment to a metric that is derived from 

the whole AP rather than from a single point will in general be less susceptible to the 

effects of both background noise and interference and it is this approach that is 

considered in this paper. 

Section 2 of the paper begins with a brief overview of the existing methods for spike 

alignment and describes some of the basic limitations of these methods, in particular 

the effect of noise on the alignment process. A novel real time approach for spike 

alignment based on a centroid filter that provides an alternative to the traditional spike 

alignment methods and substantially improves the resilience to noise and sampling 

jitter is then described (Section 3). Validation of the new methods is achieved by 

simulation using deterministic models of nerve signals (i.e. APs with added noise; 

both correlated and uncorrelated noise models are considered) as well as results 

measured from a hardware implementation. Comparisons are made between the 

methods. A power efficient realisation of the centroid filter is described that operates 

in real time on a single Altera Max V complex programmable logic device (CPLD). 

The use of CPLDs for signal processing tasks is well documented and they are 

particularly well suited to the rapid analysis and assessment of novel techniques. A 

CPLD is used here to evaluate the power and resource requirements for the proposed 

designs that are key metrics for implantable technologies [16] (Section 4).  

 

2. CENTROID FILTERING TECHNIQUE 

In this section we describe a more robust and effective method that performs temporal 

alignment of APs based on an average of all of the samples within the AP. If the AP is 

considered to be a topological shape (i.e. a closed non-self-intersecting polygon) then 

the centre of the AP in both time and amplitude can be considered to be the centroid 

[17][18]. This concept is illustrated in Figure 1 where a waveform (solid line) has 

been partitioned into the shaded area that can be treated as a plane polygon with 

centroid located at 𝐶𝑥, 𝐶𝑦, this is the centre of mass of the hypothetical polygon. 
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Because the waveform is considered as a plane figure, the time axis is labelled x and 

the voltage axis y. We regard it as a polygon because the continuous time waveform 

has been sampled. Alignment to the centroid has the potential to be substantially more 

robust to noise and interference. Consider now the hypothetical time domain AP 

shown in the solid trace of Figure 2. The AP can be partitioned into a polygon 

bounded by its width at the points 𝜔1 and 𝜔2 and by the interception with the line 

𝑦 = 0, forming a plane polygon with unit density per unit area. In practice the 

interception with the line y = 0 may be found by half-wave rectification of the 

waveform. The centroid of the AP calculated along the x axis can therefore be found 

by using standard methods, i.e. taking the first moment of area about the axis and 

dividing by the total area [19]: 

 𝐶𝑥 ≝
1

𝐴
∫ 𝑥𝑓(𝑥)𝑑𝑥

𝜔2

𝜔1

 (1) 

where the centroid calculated along the x axis is 𝐶𝑥, 𝐴 is the area under the AP, (𝜔2 −

𝜔1) is the width of the AP and 𝑓(𝑥) represents the AP function itself. Consider next 

the convolution integral of f(x) with another function h(x): 

 𝑦(𝑥) = (ℎ ∗ 𝑓)(𝑥) = ∫ ℎ(𝑥 − 𝜆)
∞

−∞

𝑓(𝜆)𝑑𝜆 (2) 

Note that if this integral is evaluated at the origin (x = 0), after a change of variables 

and a suitable choice of limits, it reduces to: 

 𝑦(0) = ∫ ℎ(−𝜆)
∞

−∞

𝑓(𝜆)𝑑𝜆 (3) 

Furthermore if h(x) is chosen to be kx, where k is a negative constant, then Equation 

(3) reduces to Equation (1) (with the exception of the 1/A scaling term that is not 

required if the integral is evaluated at the origin). To illustrate this process consider 

the test pulse 𝑓(𝑥) shown in Figure 3 (dashed ‘top hat’ function of unit area). 

Evaluating the integral in Equation (1) where the limits of the integration are the 

dimensions of f(x) along the x axis (𝜔1 = −0.5, 𝜔2 = 0.5) the centroid can be shown 

to be at the origin (Cx = 0). 

For the convolution method, as noted above, we choose h(x) to be a linear function of 

x with a negative gradient passing through the origin. The width of the function h (i.e. 

the points at which h = ±1) is chosen to be greater than the width of f, for reasons that 
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will become apparent shortly. In this example the constant N was chosen to be 1.5, as 

indicated in Figure 3: 

ℎ(𝑥) =  −
2

𝑁
𝑥                                                                   (4) 

For values of x where the two functions do not overlap the product of (ℎ ∗ 𝑓)(𝑥) is 

zero. Where overlap occurs, since both functions are discontinuous, a piecewise 

approach is taken. There are three phases to be considered, depending on the extent of 

the overlap of the two functions, as h(x – λ) approaches f(x) from the left. The first 

phase occurs as h approaches ω1, which is  – 0.5 in this case and terminates when the 

leading edge of h is coincident with ω2 (0.5): 

(ℎ ∗ 𝑓)1(𝑥) =
−2

𝑁
∫ (𝑥 − 𝜆)

𝑥+0.5𝑁

𝜔1

𝑑𝜆  

=
0.25𝑁2 − (𝑥 − 𝜔1)2

𝑁
 

(5) 

This function is a parabola symmetrical about the vertical axis x = ω1 (-0.5 in this 

case) and displaced vertically by 0.25 N, as indicated in normalised form in the lower 

plot in Figure 3. Similarly the third phase of the process ends when the trailing edge 

of h makes its last contact with ω2 (i.e. 0.5) and is given by the following integral: 

(ℎ ∗ 𝑓)3(𝑥) =
−2

𝑁
∫ (𝑥 − 𝜆)

𝜔2

𝑥−0.5𝑁

𝑑𝜆  

=
−0.25𝑁2 + (−𝑥 + 𝜔2)2

𝑁
 

(6) 

Between phases 1 and 3, during phase 2, h completely encloses f since N was chosen 

to be greater than │ω2 – ω1│. In this phase the convolution integral is a linear 

function: 

(ℎ ∗ 𝑓)2(𝑥) =
−2

𝑁
∫ (𝑥 − 𝜆)

𝜔2

𝜔1

𝑑𝜆  

=
(𝜔2 − 𝜔1)

𝑁
[−2𝑥 + (𝜔2 + 𝜔1)] 

 

(7) 

passing through the point x = (ω2 + ω1)/2, which is the centroid of f(x). So in the 

example shown in Figure 3, where f(x) is symmetric about the origin in x (ω1 = -ω2), 

the convolution integral is simply a straight line passing through the origin with 

gradient -2/N. In addition, from Equations (5)-(7) it is easy to show that the parabolas 
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of phases 1 and 3 intersect with the linear phase 2 at the following points on the x 

axis: 

x12 = -0.5N - ω1 (intersection of phases 1 & 2) 

x23 = 0.5N - ω2 (intersection of phases 2 & 3) 

For the example in Figure 3 these values of x are -0.25 and 0.25, respectively, as can 

be seen clearly in the Figure. These equations also show the significance of the earlier 

observation that the function h must be wider than f. In the limit where the widths of 

the functions are equal, the intersection points x12 and x23 are both zero and the linear 

phase 2 disappears.  In this case it is not possible to use the method to determine the 

centroid of f(x). Of course if the width of h(x) is increased to be much wider than f(x) 

then it will find the centroid of the combination of f(x) and any noise either side of 

f(x). Since h(x) can be realised as an FIR filter of length N, given that the relative 

length condition is satisfied, a single filtering operation on f(x), plus zero crossing 

detection, is sufficient to calculate its centroid. Returning to the example shown in 

Figure 3, the result of the filter operation on a single realistic AP (solid line) is shown, 

the output from the filter crosses the origin at a point coincident with the centroid of 

the AP (dashed line). Note that the output from the filter goes negative after zero 

crossing, this corresponds to third phase of the process as described in Equation (6).  

The general form of the output expression y[n] for an FIR filter of length N in the time 

domain with inputs x[n] and coefficients bi is as follows: 

 𝑦[𝑛] = 𝑏0. 𝑥[𝑛] + 𝑏1. 𝑥[𝑛 − 1] + ⋯ + 𝑏𝑁 . 𝑥[𝑛 − 𝑁] =  ∑ 𝑏𝑖. 𝑥[𝑛 − 𝑖]

𝑁

𝑖=0

 (8) 

To realise Equation (4) as an FIR filter we set: 

 𝑏𝑖 = −
2

𝑁
𝑖 + 1 = 𝑚𝑖 + 1 (9) 

i.e. b0 = 1 and bN = -1 and m = -2/N and where the constant (unity) term is required to 

make the filter realisable. However, substitution of Equation (9) into Equations (5) - 

(7) shows that the modified form of h introduces an output delay proportional to N/2 

that offsets the position of the zero crossing. This can be compensated for by using a 

shift register of the same length to delay the input signal before processing.  
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3. IMPLEMENTATION AND OPTIMISATION 

The centroid filter discussed in Section 2 can now be optimised for implementation in 

VLSI architectures where power consumption is a prime concern. In a direct form 

implementation, a length N FIR filter requires N multipliers and N adders and 

generally speaking multiplication will dominate the power budget. In this section we 

describe a method that uses the linear form of Equation (9) to advantage in order to 

avoid the use of multipliers as far as possible. We begin by expanding Equation (8) 

and hence calculate the next output (Equation (11)): 

𝑦[𝑛 + 1] = 𝑏0. 𝑥[𝑛 + 1] + ⋯ + 𝑏𝑁 . 𝑥[𝑛 − 𝑁 + 1]  = ∑ 𝑏𝑖. 𝑥[𝑛 + 1 − 𝑖]

𝑁

𝑖=0

  (10) 

Recalling that b0 = 1 and bN = -1, then, from Equation (9): 

𝑏𝑖 = 𝑚𝑖 + 1 
(11) 

 

and the following recurrence relation between the coefficients can be derived: 

    𝑏𝑖 − 𝑏𝑖−1 = 𝑚 (12) 

Using this expression, Equation (10) for the next output value can be rearranged as 

follows: 

𝑦[𝑛 + 1] = 𝑦[𝑛] +  {𝑚 ∑ 𝑥[𝑛 − 𝑖]

𝑁−1

𝑖=0

} + 𝑥[𝑛 + 1]  − 𝑥[𝑛 − 𝑁] (13) 

The computation of y[n + 1] in this way requires N + 3 additions and one 

multiplication. Furthermore, if m is a power of 2 the multiplication can be replaced by 

a left shift. Also, the computation of the summation term in Equation (13) can be 

accomplished by using a rolling sum expressed as follows where ω[n] is the rolling 

sum: 

 𝜔[𝑛] = 𝑚 ∑ 𝑥[𝑛 − 𝑖]

𝑁−1

𝑖=0

 (14) 

                

ω[n] can be expanded as follows: 

 𝜔[𝑛 + 1] =  𝜔[𝑛] + 𝑚{𝑥[𝑛 + 1] − 𝑥[𝑛 − 𝑁 − 1]} (15) 

 

Substitution of Equation (15) back into Equation (13) results in the following 
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optimised expression for y[n + 1]: 

 
𝑦[𝑛 + 1] = 𝑦[𝑛] + 𝜔[𝑛] + 𝑚{𝑥[𝑛 + 1] − 𝑥[𝑛 − 𝑁 − 1]} + 𝑥[𝑛 + 1]

−  𝑥[𝑛 − 𝑁] 
(16) 

The computational effort has been reduced drastically compared to a direct 

implementation of an FIR filter and an implementation of Equation (16) requires one 

multiplier and five adders regardless of the length of the filter (the earlier remark 

about m being chosen as a power of 2 still applies). The shift register used to store the 

previous samples is the only component that is dependent on the order of the filter.  

4. MODELLING AND SIMULATED RESULTS 

This section provides validation of the new methods using simulations based on 

deterministic models of the AP and noise functions. 

A. Single Fiber Action Potential Model 

The TMAP model used for generating SFAPs is described in Equation (17). It is a 

first-order analytical model of the extracellular AP and is based on a damped 

sinusoidal function as proposed in [13], [20].  

𝑓(𝑥) = 𝐴 sin (
𝑥

τ1
) e

−
𝑥
τ2 (17) 

 

The parameters A, 𝜏1 and 𝜏2 determine the amplitude, rising edge rate and duration of 

each SFAP, respectively. The parameters used are listed in Table I and were given in 

the literature as biologically plausible parameters for mammalian axons based on 

recordings made in frog [20]. The relationship between the axonal diameter and the 

conduction velocity can be loosely expressed by: 

𝑣 = 𝑑(0.06𝑇 + 0.6)  (18) 
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where v is the conduction velocity, d is the diameter of the fibre and T is the absolute 

temperature [20]. Figure 4 shows seven SFAPs generated using this model, where the 

parameters have been extracted from axons of different diameters (and thus 

conduction velocities).  

B. Noise models 

In each simulation random noise was added to noiseless APs to produce a signal with 

a specific, controllable signal-to-noise ratio (SNR). The following standard formula 

was employed to calculate SNR: 

𝑆𝑁𝑅(𝑑𝑏) = 10𝑙𝑜𝑔 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
) = 10𝑙𝑜𝑔 (

𝑚𝑒𝑎𝑛𝑠𝑖𝑔𝑛𝑎𝑙
2 +𝜎𝑠𝑖𝑔𝑛𝑎𝑙

2

𝑚𝑒𝑎𝑛𝑛𝑜𝑖𝑠𝑒
2 +𝜎𝑛𝑜𝑖𝑠𝑒

2 )                   (19) 

Where the SNR was measured over the entire simulated recording, which 

lasted 100 𝑚𝑠. Both additive white Gaussian noise (AWGN) and correlated 

stochastic noise processes were considered since both have relevance to the neural 

recording problem. For example AWGN is frequently used in theoretical studies of 

neural recordings because myelinated axons are considered to be electrically isolated 

and therefore have no synaptic interactions within a nerve [21]. In theory, therefore, 

background noise in recordings made from hook or suction electrodes of large 

myelinated nerves could be approximated by a Gaussian noise process. In practice, 

however, ephaptic interactions between axons and crosstalk between amplifiers and 

recording equipment introduce various levels of correlation [13]. Furthermore any 

interference from other sources such as muscle activity will appear with some level of 

correlation. Therefore a correlated noise model was also considered and used to 

describe the background activity. It was generated using a dynamic Ornstein-

Uhlenbeck (OU) process described by the difference equation: 

TABLE I 

MODEL PARAMETERS THAT DEFINE THE SFAP FUNCTIONS COMPUTED USING 

EQUATION (17). 

Axon Diameter (𝝁𝒎) Constant A 𝝉𝟏(ms) 𝝉𝟐(ms) 

5 2.42 0.175 0.25 

7 2.65 0.120 0.15 

9 2.73 0.093 0.11 

11 2.73 0.080 0.096 

13 2.79 0.078 0.092 

15 2.80 0.076 0.089 

19 2.89 0.072 0.084 
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𝑂𝑈𝑡+𝑑𝑡 = 𝑂𝑈𝑡 −
𝑂𝑈𝑡

𝜏
𝑑𝑡 + 𝑑Ω𝑡                                         (20) 

Where 𝑂𝑈𝑡 is the value of the noise process at each time step, 𝑑𝑡 is the simulation 

time step,  𝜏 is the time constant of the process and Ω𝑡 denotes a Wiener process [22]. 

A Weiner process is any process where Ω0 = 0, 𝐸[Ω𝑡] = 0 and Ω𝑡+𝑑𝑡 −

Ω𝑡 ~ 𝑁(0, 𝑑𝑡). Figure 7 illustrates the frequency content of the AWGN and OU noise 

processes from left to right respectively for purposes of comparison. The spectra were 

calculated using the FFT with time domain noise samples 100 𝑚𝑠 in length with a 

sample rate of 50 𝑘𝐻𝑧 and 𝜏 = 0.01 𝑚𝑠. The spectrum of the OU noise process is 

inherently band limited and the noise power of the OU noise process falls below that 

of the AWGN model at a frequency of approximately 3 𝑘𝐻𝑧.  

C. Results with AWGN and OU noise processes 

In the simulations described in this section both AWGN and OU noise processes were 

applied to APs separately using the following method: 

 A single AP was simulated in each case with a diameter of 15 𝜇𝑚 at 21 

degrees C, the sampling frequency was fs = 500 kHz; 

 The AP reference position was then calculated using (a) the point of maximum 

slope of the AP, (b) the maximum value, (c) the mid-point of the -3 dB points 

and (d) the centroid; 

 In all simulations the SNR was swept from +40 𝑑𝐵 to −40 𝑑𝐵 in linear steps 

of −1𝑑𝐵; 

 For each value of SNR the experiment was repeated 100,000 times and the 

pulse parameters (a-d) were computed each time and averaged; 

 The mean and the standard deviation for the pulse parameters at each level of 

SNR were computed relative to a normalized reference position of 100 

samples for the purposes of comparison and presentation. 

 

The normalized plots shown in Figures 5 and 6 were obtained by applying these 

methods using AWGN. The mean locations and standard deviations of the pulse 

parameters are plotted for the four alignment methods (a – d). For the case of AWGN, 

in addition to applying the white noise directly, the noise was low-pass filtered 

representative of the first part of the spike sorting process. An 8th order Butterworth 

digital (IIR) filter with a cut-off frequency of 10 kHz was employed. Figures 5 and 6 

are split into two pairs (5a, 5b & 6a, 6b) to accommodate this comparison. 

The main feature of these results (i.e. for both mean and standard deviation) is that 

pulse location based on maximum slope (a) appears to be the most susceptible to 
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noise, degrading severely with an SNR less than about 30 dB. This is followed by the 

method based on the maximum value of the pulse (b), which fails with an SNR of 

approximately 0 dB. The methods based on the mean of the -3 dB points (c) and the 

centroid (d) perform much better, operating well with SNRs of about -10 dB. In these 

simulations the centroid method always outperformed the others.  

In the second case white (i.e. uncorrelated) noise was replaced by correlated noise 

generated using the OU model defined above. The results are shown in Figures 8 and 

9 for the mean and standard deviation respectively. The main effect of this change 

was that methods (a) and (b), which performed worst under AWGN (especially in the 

case where filtering was not employed), performed much better using OU noise. The 

overall effect was that the spread in performance of all four methods was much less 

than when AWGN was used, for both the mean and SD measures. This suggests that 

single point temporal measures such as methods (a) and (b) are particularly sensitive 

to high frequency noise components such as are present in AWGN. In addition both 

these methods rely on determining turning points in the time record, emphasising 

their vulnerability to noise in general and high frequency components in particular. 

D. Power and area measurements 

An analysis of the power and resource requirements for the proposed centroid filter 

was performed using dedicated hardware implementations constructed using an 

FPGA (Altera Cyclone II EP2C35F672C6N FPGA) and a CPLD (Altera MAX V 

5M570ZF256C5N).  These devices were chosen as rapid prototyping platforms both 

because of their low cost compared to a custom ASIC and because at lower sampling 

rates an FPGA or CPLD can consume less power than an equivalent processor-based 

implementation [23]. Furthermore the relatively low sampling rates associated with 

ENG, typically less than 100 kS/s, may allow a reduction in core operating voltages 

and thus a saving in static power consumption in an FPGA [24].  Additionally the use 

of a MAX V CPLD allowed for separate external regulation of the core and I/O 

voltage busses. This configuration permits more accurate power consumption 

measurements as the two domains can be easily separated. The designs were produced 

using the SystemVerilog hardware description language and RTL verification was 

performed using the QuestaSim environment (QuestaSim 10.2c, Mentor Graphics Inc, 

Oregon, USA). 

The synthesis tools (Quartus 13.0, Altera Corporation, Calif. USA) reported an initial 
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maximum clock rate for the centroid filter of 25 MHz. The designed clock rate was 

chosen to be 500 kHz, representative of the fastest sampling rate used in recent acute  

experiments [25]. Power measurements were made using a current sense resistor 

(1 Ω) connected in-line with the DC power supply. Baseline power measurements 

were made using clock gating to isolate the filter structure, as well as to estimate the 

power consumed by the I/O and clock propagation circuitry. The CPLD 

implementation utilized separate core and I/O power supplies, both at 3.3 V, for more 

accurate measurements. The power requirements were measured at a clock frequency 

of 500 kHz. Resource measurements were taken from the synthesis tools after 

optimisation and fitting of the design. An overview of the resource and power 

requirements achieved for both methods, is provided in Table II. Power analysis tools 

(Powerplay Power Analyser, Altera Corporation) were used to predict the power 

consumption of the designs and the predicted values were in close agreement with 

measured data.  

 

E. Verification 

Test pattern waveforms were generated in MATLAB using the SFAP model Equation 

(1) before being sampled and transformed into a Qs0:7 fixed point format. The RTL 

codes used to produce designs for the two devices were identical. In addition to the 

sample memories a verification block was included within the design. This block 

contained the expected output from both filters and performed simple on-line 

comparisons on a sample-by-sample basis. The data files for both the sample memory 

and the verification block were transferred using a custom JTAG programming 

interface into the on-chip synchronous memories – implemented in 4K RAM blocks - 

of both the FPGA and the CPLD. A memory pointer was driven from a variable down 

 

TABLE  II 

DEVICE UTILIZATION SUMMARY AND POWER CONSUMPTION fclk = 500 kHz 

Device Parameter Result 

CPLD - 5M570ZF256C5N LC Registers 

Logic Cells 

Current Consumption 

Total Power (measured) 

Total Power (estimated) 

330 

442 

0.09 mA 

0.17 mW 

0.15mW 

FPGA - EP2C35F672C6N LC Registers 

Logic Cells 

Current Consumption 

Total Power (measured) 

Total Power (estimated) 

330 

442 

34.5 mA 

62.2 mW 

61.5 mW 
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sampled clock (system clock speed was 500 kHz, down sampled from 10 MHz), this 

pointer was used to address the circular memory buffer, the returned samples being 

fed into the centroid filter. The clock control circuitry was used to activate individual 

modules to obtain accurate power measurements. The verification circuity confirmed 

correct operation of the centroid filter up to a maximum clock frequency of 24.5 MHz 

at which point the expected output deviated from the observed output, this frequency 

is in agreement with the predicted maximum clock frequency of 25 MHz.  

 

5. DISCUSSION 

A. General effects of noise on spike alignment 

As outlined in the introduction, neural recording methods have developed greatly in 

recent years with the development of multi-electrode methodologies for a wide 

variety of applications. Of these methods, morphological spike sorting is amongst the 

most popular. Unfortunately one of the key stages of such spike sorting methods, the 

temporal alignment stage, is very susceptive to noise and interference  [26]. This is 

because the methods employed to fix the position of individual spikes (APs) in time 

tend to depend on single point measurements of each spike and are therefore 

particularly sensitive to the effects of noise processes. This sensitivity was 

demonstrated in the simulations reported in Section 4 of this paper for both 

uncorrelated and correlated additive noise sources. The basic approach adopted in this 

paper is therefore to propose a method that does not rely on single point 

determinations of spike locations, but rather employing a measure that in some sense 

is an average of the whole AP. As we have demonstrated, this has the effect of 

reducing the sensitivity of the spike position measurement to additive noise, at least 

for uncorrelated sources. 

B. Comparison of AWGN and OU 

It is tempting to assume that because myelinated axons are generally considered to be 

electrically isolated and therefore have no synaptic interactions within a nerve that all 

noise sources can be considered to be uncorrelated (AWGN) [8], [21]. In practice, 

however, various interactions between axons and crosstalk between amplifiers and 

recording equipment introduce some correlation [13]. Therefore a correlated noise 

model was also considered in the simulation study, based on the Ornstein-Uhlenbeck 

process [22]. The effect of this change was dramatic on the two methods of spike 
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position determination based on single points in time. These were the point of 

maximum AP slope and the actual maximum point. This was not very surprising 

because in addition to being single point measures these methods require the 

calculation of a turning point in time, suggesting an enhanced sensitivity to high 

frequency noise components. This view was confirmed by lowpass filtering the signal 

after the application of AWGN. This is standard practice in spike sorting and the 

result was comparable to the effect of changing to a correlated source, which is 

naturally band limited (see Figures 5 & 6). 

C. Benefits of the centroid filter  

In all cases, and independent of the type of noise or interference applied to the 

recordings, the centroid proved to be a significantly more reliable metric for aligning 

the APs. Intuitively the centroid of the AP is a function of the energy (or area) 

contained within the AP itself, the addition of broadband AWGN with zero mean will 

have little if any effect on the amount of energy within the AP. Of course this 

simplification does not hold when considering finite time sequences or band-limited 

noise such as the OU process considered in this study.  

In its most basic form computing the centroid introduces significant overhead, 

especially in comparison to the single sample measures. However it has been shown 

that the computation can be performed with minimal effort using a novel FIR filter 

structure. It has been shown that the application of a low pass filter to the raw signal 

improves the performance of the single sample methods for AP alignment and in this 

study an 8th order Butterworth IIR lowpass filter with an upper cut-off frequency of 

10 kHz was used.  

When considering the implementation costs, the centroid filter, which uses only a 

single multiplier, will significantly out-perform a direct-form IIR filter of almost any 

order, as the number of multipliers required typically scales with the filter order. 

Table III details the relative implementation costs for both the centroid filter and the 

8th order Butterworth filter used in this study, the Butterworth filter consumes over 

five times the number of Logic Cells and nearly ten times as much power as the 

centroid filter. The centroid filter is an efficient and low power method for AP 

alignment that shows considerable resilience to noise even in SNRs less than – 10 dB. 

It should be noted that this method has applications in a wide range of areas wherever 
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phase information between different pulses is considered, for example in phase 

sensitive communication systems. 

6. CONCLUSIONS 

A new method has been described that significantly improves one of the key issues in 

neural spike sorting, i.e. the difficulty of correctly aligning action potentials (APs or 

‘spikes’) in the time domain in the presence of noise. A novel real-time approach for 

spike alignment based on a centroid filter is described that provides an alternative to 

traditional spike alignment methods and substantially improves resilience to noise and 

resulting sampling jitter.  We have validated the new methods by simulation using 

deterministic models of nerve signals (i.e. APs with added noise; both correlated and 

uncorrelated noise models are considered). In addition, we have shown that the new 

method lends itself particularly well to hardware realization and a power efficient 

solution is described that operates in real time on a single Altera Max V complex 

programmable logic device (CPLD). The technique has the potential to influence 

significantly the design of electrophysiological recording systems in the future. 

 
 

 

 
TABLE III 

DEVICE UTILIZATION SUMMARY AND POWER CONSUMPTION Fclk = 500 kHz 

Method Parameter Result 

Band-pass Filter 

(FPGA) 

LC Registers 

Logic Cells 

Current Consumption 

Total Power (measured) 

Total Power (estimated) 

168 

2533 

343.7 mA 

618 mW 

601mW 

Centroid Filter (FPGA) LC Registers 

Logic Cells 

Current Consumption 

Total Power (measured) 

Total Power (estimated) 

330 

442 

34.5 mA 

62.2 mW 

61.5 mW 
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Figure 2: The application of the centroid filter to a single channel of data 

containing a realistic AP. In this case the width of the centroid filter was chosen to 

be N = 100 samples, or approximately the width of the positive phase of the AP. 

The solid line represents a discrete time version of the AP, and the dashed line the 

filter output 𝑦[𝑛]. The vertical marker is set at the negative-going zero crossing of 

the filter output and is located at the centroid of the TM function. 
 

 

Figure 1: The concept of transforming a waveform into a polygon. The waveform 

(solid line) has been partitioned into a shaded area that may be treated as a plane 

polygon with centroid located at 𝐶𝑥, 𝐶𝑦. 



V1.8_30 August 2015 (BWM) 

20 
 

  

 

Figure 3: An example to illustrate the calculation of the centroid of an AP using 

the FIR filter h(x). For clarity, h is represented by the continuous-time function 

shown in the upper plot in the Figure while the ‘top hat’ function shown in the 

lower plot represents the AP. Application of the convolution and shift functions 

results in the output function y(x) whose zero crossing corresponds with the 

centroid of the ‘top hat’ function. Note y(x) is shown in normalised form here for 

simplicity. 

 

  

Figure 4: Seven different SFAPs generated using the damped sinusoid model 

given in Equation (1). The diameters are 5 (blue), 7 (red), 9 (yellow), 11 (mauve), 

13 (green), 15 (blue)  & 19 microns corresponding to conduction velocities of 9.3, 

13, 16.7, 20.4, 24.2, 28, 31.6 & 35.3 m/s respectively. 
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(a)                                                               (b) 

 

Figure 5: The mean locations for the pulse parameters in the presence of additive 

white Gaussian noise with SNR from 40 dB to -40 dB. In Fig 5(a) no filtering is 

applied to the noise whereas in (b) a lowpass filter with a cut-off frequency of 10 

kHz was used which is representative of the first stage of the spike sorting process. 

The simulated SFAP is representative of an axon with diameter 15 𝜇𝑚 at a 

temperature of 21 Celsius. The plots have been normalised to a theoretical mean 

of 100.  

 
(a)                                                                 (b)                    

 

Figure 6: The standard deviations of the pulse parameters in the presence of 

additive white Gaussian noise with SNR from 40 dB to -40 dB. In Figure 6(a) no 

filtering is applied to the noise whereas in (b) a lowpass filter with a cut-off 

frequency of 10 kHz was used which is representative of the first stage of the 

spike sorting process. The simulated SFAP is representative of an axon with 

diameter 15 𝜇𝑚 at a temperature of 21 Celsius. The plots have been normalised to 

a theoretical value of zero.  
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Figure 7: Frequency spectra for AWGN (left inset) and OU (right inset) noise 

processes computed using the FFT over a window of 100 𝑚𝑠. The time constant 

for the OU process (𝜏) was 0.01. 
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Figure 8: The mean locations for the pulse parameters in the presence of Orstein-

Uhlenbeck noise with SNR from 40 dB to -40 dB. The simulated SFAP is 

representative of an axon with diameter 15 𝜇𝑚 at a temperature of 21 Celsius. The 

plots have been normalised to a theoretical mean of 100.  

 

 

 

Figure 9: The standard deviations of the pulse parameters in the presence of 

Orstein-Uhlenbeck noise with SNR from 40 dB to -40 dB. The simulated SFAP is 

representative of an axon with diameter 15 𝜇𝑚 at a temperature of 21 Celsius. The 

plots have been normalised to a theoretical value of zero. 

 


