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ABSTRACT 

This study investigates GABAB protein expression and mRNA levels in two specimens 

from patients with TLE, secondary to hippocampal sclerosis, removed during epilepsy 

surgery (sclerotic hippocampal samples) TLE-HS, and tissue from the healthy, non-

spiking ipsilateral superior temporal gyrus (TLE-STG); and hippocampal tissue specimen 

from individuals with no history of epilepsy (post-mortem controls, PMC).  

mRNA expression of GABAB subunits was quantified in PMC, TLE-STG and TLE-HS 

specimens by qRT-PCR. Qualitative and quantitative Western blot (WB) and 

immunohistochemistry techniques were employed to quantify and localize GABAB proteins 

subunits. 

qRT-PCR data demonstrated an overall decrease of both GABAB1 isoforms in TLE-HS 

compared to TLE-STG. These results were mirrored by the WB findings. GABAB2 mRNA 

and protein were significantly reduced in TLE-HS samples compared to TLE-STG; however 

they appeared to be upregulated in TLE-HS compared to the PMC samples. IHC showed 

that GABAB proteins were widely distributed in PMC and TLE-HS hippocampal sections 

with regional differences in the intensity of the signal.  The co-localisation of GABAB1(a-b) 

and GABAB2 seemed to support the idea that the receptor is heterodimeric. The higher 

expression of mature GABAB protein in TLE-HS than PMC is in agreement with previous 

studies. However, these findings could be due to post-mortem changes in PMC specimens. 

Possibly the TLE-STG samples examined here represent a better ‘control’ tissue. If so, 

TLE-HS samples would be characterised by lower than expected GABAB expression. This 

interpretation would provide a better explanation for functional studies suggesting reduced 

inhibition in TLE-HS tissue due to attenuated GABAB currents.  

 

KEYWORDS: human temporal lobe epilepsy, hippocampal sclerosis, GABAB qRT-PCR, 

quantitative Western blot, immunohistochemistry. 
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1. INTRODUCTION 

The main inhibitory neurotransmitter in the mammalian central nervous system (CNS), -

aminobutyric acid (GABA), plays important roles in regulating neuronal activity, plasticity, 

and pathogenesis. Its action is mediated through distinct receptor types: ionotropic (GABAA 

and GABAC) and metabotropic (GABAB). Both GABAA and GABAB receptors have been 

implicated in many important physiological functions and pathological conditions in the 

brain (Mott and Lewis 1994; Misgeld et al. 1995, Bowery 1997; Deisz et al.1997; Bettler et 

al. 1997). 

GABAB receptors have been demonstrated at both pre- and postsynaptic sites of both 

excitatory and inhibitory neurones (Chen et al. 2004). Presynaptic receptor stimulation 

reduces the evoked release of GABA and other neurotransmitters, whereas postsynaptic 

GABAB receptor activation increases neuronal K+ conductance to generate long-lasting 

inhibitory postsynaptic potentials (IPSPs). 

Along with other findings, previous pharmacological and physiological studies have 

suggested the existence of two distinct GABAB1 receptor subtypes at pre- and postsynaptic 

sites and in different cells types and brain structures (Bowery 1997; Deisz et al.1997; Dutar 

and Nicoll 1988; Pitler and Alger 1994). The evidence for two different GABAB1 receptor 

isoforms (GABAB1a and GABAB1b) was first characterised by Kaupmann and colleagues 

(1997). A second subunit was subsequently characterised (Kaupmann et al. 1998; Jones 

et al. 1998; White et al. 1998).  

 The distribution of GABAB1 receptors in human hippocampus has been demonstrated with 

receptor binding autoradiography (Princivalle et al. 2002). Expression of GABAB1 mRNA in 

the rat CNS, human hippocampus and spinal cord has been established by radiolabelled 

riboprobes recognising the two GABAB1 mRNA variants (Kaupmann et al. 1997; Benke et 

al. 1999; Liang et al. 2000; Towers, et al. 2000). The expression of GABAB2 messengers 

has also been described in rat brain (Kaupmann et al. 1998; Jones et al. 1998). In addition 

GABAB1 (a/b) and GABAB2 immunoreactivity has been demonstrated in the rat CNS (Ige et 

al. 2000; Princivalle et al. 2000a; 2000b; 2001; Charles et al. 2001). Nevertheless, it is still 
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unclear how the two GABAB1 variants and the GABAB2 mature proteins are distributed in 

different neuronal regions and cell types in human brain tissue such as the hippocampus, 

or how the transcription of GABAB1 and GABAB2 may be affected by pathological states 

such as epilepsy. 

Temporal lobe epilepsy (TLE) is the commonest and best researched drug-refractory focal 

epilepsy. Electrophysiological evidence has demonstrated that there is a lack of inhibition 

in TLE due to the abolished slow component of GABAB receptor-mediated IPSPs (Mangan 

and Lothman, 1996, Teichgrӓber et al. 2009). In addition, there is pharmacological and 

physiological evidence that GABAB is impaired in animal models of TLE (Chandler et al. 

2003; Furtinger et al. 2003a; Mares and Kubová 2015; Leung et al. 2016). However, the 

localization and quantitative expression of GABAB isoforms and subunits have not yet been 

elucidated in animal models or in human TLE. 

This study aimed to examine how possible differences in GABAB1a, GABAB1b and GABAB2 

mRNA and protein expression may contribute to the impaired GABAB mediated currents 

reported in TLE (Straessle et al. 2003; Rocha et al. 2015). We investigated whether GABAB 

protein expression showed a reduction in the hippocampal tissue of patients with mesial 

temporal sclerosis (TLE-HS) compared to tissue taken from the same patients’ superior 

temporal gyrus (TLE-STG) and post-mortem hippocampal control (PMC) tissue from 

individuals with no history of epilepsy.  

 

2. MATERIALS AND METHODS 

2.1. Patient tissue collection and clinical data  

The majority of surgical samples were obtained from the Royal Hallamshire Hospital (R&D 

approval STH15210). The post-mortem immunohistochemistry samples were obtained 

from The National Hospital for Neurology and Neurosurgery.  All samples were obtained 

with the understanding and the written consent of each patient. The sample collection 

procedure fully conformed with the Code of Ethics of the World Medical Association 

(Declaration of Helsinki), British Medical Journal (1964), and the Institute of Neurology Joint 
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Research Ethics Committee [Ethics Committee Protocol Pro-Forma (January 1998)]. The 

study was approved by the South Yorkshire Research Ethics Committee (08/H1310/49). 

The surgical sclerotic human hippocampal tissue (TLE-HS) and non-sclerotic (TLE-STG) 

samples were obtained from patients with medically refractory TLE, undergoing surgical 

resection. Only patients with TLE secondary to unilateral hippocampal sclerosis were 

included. Clinical and demographic information about these patients is in Table 1.  In 

summary, the median age of patients was 38 years (range 22-63). Patients had had 

epilepsy for a median of 23 years prior to surgery (range 2-53).  Patients were taking a 

median of 3 antiepileptic drugs at the time of surgery. The patients had simple or complex 

partial seizures and 36% of them had also generalized tonic clonic seizures. 26% of 

patients had a history of febrile seizures. Only 14 from 23 patients (60%) of patients were 

seizure free after 1 year of epileptic surgery. The excision of the samples was based on 

pre-surgical clinical evaluation including interictal and ictal EEG studies and magnetic 

resonance imaging (MRI) in all cases. Each sample was divided into two parts, one part 

was snap frozen (Kingsbury et al. 1996) and stored at -80°C until RNA and protein 

extraction were performed. The second part of the sample was fixed for histopathological 

analysis and all pre-operative diagnoses of HS were confirmed after surgery by 

histopathological examination based on established diagnostic criteria (Thom at al. 2002), 

and immunohistochemistry experiments. The TLE-STG specimens were taken from the 

superior temporal gyri which looked structurally healthy on MRI, and had not been shown 

to generate ictal or inter-ictal epileptiform activity during pre-surgical 

electroencephalographic monitoring. If this kind of samples does not follow the above 

criteria they were not collected.  

The flash-frozen post-mortem hippocampal samples were obtained from the UCL Brain 

Bank (08/H0718/54). They were from individuals with no previous medical history of 

neurological or psychiatric disease (Table 2). At autopsy the hippocampi were dissected, 

pH was checked to be between 6 and 7, and the samples were flash frozen and stored at 

-80°C. 
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2.2. Quantitative real-time polymerase chain reaction (qRT-PCR) 

2.2.1. RNA extraction: The total RNA was extracted from samples using SV Total RNA 

Isolation System kit according to manufacturer's instructions (Promega). Briefly, the 

hippocampal tissue lysates were prepared by adding 1 ml RNA lysis buffer to 342 mg of 

tissue weight. The tissue lysates were diluted with SV RNA dilution buffer and RNA was 

then adsorbed to a silica membrane-based column where it was purified by a spin method. 

RNA was subjected to DNase treatment, washed and eluted with 100 µl of Nuclease-free 

water. The RNA purity was checked by the NanoDrop-1000 spectrophotometer, and the 

RNA integrity was checked by 1% agarose gel electrophoresis. 

2.2.2. cDNA synthesis: Complementary DNA (cDNA) was synthesised by using the 

Superscrpit III first strand synthesis system (Life Technologies, 18080-051) according to 

the manufacturer's recommendation. Starting from 1µg of total RNA, cDNA was 

synthesised by using 50 µM of oligo (dT)20 primer, 40 U of RNaseOUT and 200 U of 

Superscrpit III reverse transcriptase enzyme. The cDNA was then purified by using 

QIAquick PCR purification kit (Qiagen, 28104) and quantified with the NanoDrop-1000 

spectrophotometer. 

2.2.3. qRT-PCR: The mRNA expression of GABAB1 and GABAB2 subunits was investigated 

by qRT-PCR in 26 TLE-HS and 11 TLE-STG specimens (Table 1) and 10 post-mortem 

samples (Table 2). The qRT-PCR was performed on a StepOnePlus™ Real-Time PCR 

System (Applied Biosystems) using TaqMan gene expression assays (Table 3).  A 10 µl 

volume of PCR reaction mix was prepared by combining template cDNA sample, TaqMan 

Universal PCR Master Mix (Applied Biosystems, 4352042) and TaqMan gene expression 

assays (Life Technologies). Cyclophilin A (PPIA) and cyclin-dependent kinase inhibitor 1B 

(CDKN1B) were selected as reference genes for our study as they were among the most 

stably expressed genes in TLE (Wierschke et al. 2010). 

2.2.4. Data analysis: Results were analysed using the 2–ΔCt method and presented as 

relative gene expression normalised to the average threshold cycle of the two 
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housekeeping genes. The GraphPad Prism 6 software for Windows, version 6.05 was used 

for the statistical analysis (San Diego, CA, USA; www.graphpad.com). The Shapiro-Wilk W 

test was performed to test the normality of the data. The Kruskal-Wallis with Conover-Inman 

post hoc analysis test was used to identify significant differences between samples (P < 

0.05). 

2.3 Quantitative two colour Western blot (qWB) 

2.3.1. Protein extraction and quantification: The hippocampi tissues were homogenised 

at 4°C in CelLyticTM (C3228, Sigma) and protease inhibitor cocktail (P8340, Sigma). The 

lysate was centrifuged twice at 500 XG for 15 minutes at 4°C. The supernatant was 

centrifuged at 20000 XG for 40 minutes at 4°C and pellet was suspended in 50mM TrisHCl 

buffer pH 7.5 (TBS). The total protein was then quantified by Bicinchoninic acid protein 

assay kit according to the manufacturer's protocol (BCA1, B9643, Sigma-Aldrich). 

2.3.2. Quantitative WB:  The GABAB receptor subunits were investigated by qWB in 9 

TLE-HS, 6 TLE-STG, and 4 PMC samples (according to sample availability). 20 µg of 

protein was loaded on 8% sodium dodecyl sulphate-polyacrylamide gel for electrophoresis 

(SDS-PAGE). The separated proteins were electro-transferred onto a nitrocellulose 

membrane, which was washed briefly in phosphate buffered saline (PBS) for few minutes. 

The membranes were then blocked with 5% w/v non-fat dry milk (NFDM) in PBS and 0.1% 

Tween 20 (PBST) for 1 hour at room temperature (RT). Then they were incubated with 

primary diluted antibodies (Table 4) over night at 4°C with gentle shaking. A generous 

amount of 0.1% PBST buffer was used to wash the membranes 4 times for 5 minutes each. 

Then membranes were incubated with infrared-labelled secondary antibodies for 1 hour at 

RT followed by 4 washes with 1X PBS for 5 minutes each. The membranes were scanned 

on an Odyssey infrared imaging system (LI-COR, Biosciences, NE, U.S.A.). The 700nm 

and 800nm channel scanning intensities were set to 4 and 6 respectively. The images 

acquired were quantified on the Odyssey software (version 1.2) according to the software 

manual and Picariello et al. (2006). 

http://www.graphpad.com/
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2.3.3. Data analysis: GABAB1(a-b), and GABAB2 bands intensities were normalized to β-actin 

to eliminate any loading variation. The GraphPad Prism 6 software version 6.01 for 

Windows was used for all the statistical analysis (San Diego, CA, USA). The Shapiro-Wilk 

W test was performed to test the normality of the data. The Kruskal-Wallis with Conover-

Inman post hoc analysis test was used to identify significant differences between samples 

(P < 0.05). 

2.4 Immunohistochemistry (IHC)  

2.4.1. Brain sections preparation: Sections (10 µm) of paraffin-embedded human 

hippocampal tissue were cut by a microtome, mounted onto charged microscope slides 

(BDH Superfrost Plus) and stored with desiccant in plastic slide boxes at RT until required. 

2.4.2. Tissue pre-treatment and application of antibodies 

The immunohistochemistry antibodies sub-types specificity to human GABAB1a, GABAB1b 

or GABAB2 was previously tested (Calver et al. 2000). Immunohistochemistry (IHC) was 

conducted on 7 TLE-HS (Table 1) and 5 PMC specimens (Table 2) according to specimen 

availability. Following antigen retrieval, sections were rinsed in PBS, endogenous 

peroxidase activity blocked by incubation with hydrogen peroxide (0.3% in PBS) for 30 

minutes, and followed by a rinse in fresh PBS. Sections were then incubated with normal 

goat serum (NGS) (1:10 in PBS) for 75 minutes, and subsequently overnight at 4°C with 

the primary antibodies (Table 4) respectively in PBS containing 1% NGS. 

Following incubation with primary antibodies, the sections were washed with fresh PBS for 

1 hour then incubated with secondary biotinylated antibodies (Table 4) for 75 minutes, 

rinsed for 1 hour in PBS and incubated with the avidin-biotin peroxidase complex (ABC; 

Vector) for 75 minutes. Peroxidase staining was performed by incubating the sections in 

0.002% 3.3'diaminobenzidine - 0.08% nickel ammonium sulphate and 0.002% H2O2 in 

50mM Tris buffer, pH 7.6. The sections were dehydrated, and cover-slipped with diethyl-

pyro carbonate (DPX). 
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2.4.3. Microscope visualization and quantitative IHC (qIHC) 

Neuronal counting was performed as before (Princivalle et al. 2002; 2003). The number 

and intensity of GABAB receptor subunits were quantified in pyramidal and granular cells in 

TLE-HS and PMC IHC sections using the Q-Capture Pro 7™ (QCapture 10, 2010) 

connected to an Olympus BX60 microscope.  

In order to quantify the immunosignals of the GABAB1 receptor isoforms and subunit, 13 

sections from TLE patients and 5 from PMC were analysed. The microscope amplification 

used for quantification of each slide was 10 (ocular lens) x 20 (objective lens), giving a total 

amplification of 200x. For each slide 6 images of the area of interest (hippocampus) were 

captured. The raw relative optical density (ROD) of GABAB immunosignals was determined 

using the measuring tools of Q-Capture Pro 7™ software. The pyramidal cells were marked 

with a yellow triangle and granular cells with a blue square measuring tool. The ROD was 

normalized by subtracting the background (calculated by averaging 10 background spots 

in each slide). To correct for neuronal loss, ROD per neuron was calculated by dividing the 

total ROD on the number of GABAB immunopositive neurons. 

 

3. RESULTS 

3.1. qRT-PCR 

The correlation between PMC mRNA samples versus age and post-mortem interval in 

figure 1 demonstrates no correlation between the mRNA findings and these factors which 

could have influence the mRNA expression. The data from qRT-PCR, obtained from the 

whole resected hippocampi, show a very similar trend for both GABAB1 and GABAB2
 

subunits. The comparison of TLE-HS and the PMC samples reveals no difference in 

GABAB1 subunit expression between the groups, but an increased GABAB2 expression in 

the TLE-HS tissue. In contrast, the comparison of TLE-HS with the TLE-STG samples 

showed a lower level of expression of both GABAB in the TLE-HS tissue (see Figure2). 
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3.2. Qualitative and Quantitative WB 

Figure 3A shows a double-labelled Western blot image demonstrate a fairly consistent level 

of β-actin expression in the three study groups. However, there is a clear gradient of the 

expression of all three GABAB variants across the study groups. These proteins are 

expressed most strongly in TLE-STG, less strongly in TLE-HS and least strongly in PMC 

tissue. The data obtained by quantitative double-labelled analysis (Figure 3B) follows the 

same trend although differences between the TLE-HS and the TLE-STG comparisons were 

only significant for GABAB2. 

3.3. Distribution and comparison of GABAB receptor protein immunoreactivity in 

PMC and TLE-HS hippocampi 

GABAB1a, GABAB1b and GABAB2 receptor proteins appeared to have a similar location in 

the TLE-HS and PMC hippocampal sections; furthermore, no evidence of single subunit 

labelling was observed in the hippocampal subregions of either sample category (Figure 4 

A-F). In PMC cases GABAB2 and GABAB1b exhibited the highest and the lowest 

immunoexpression respectively. All the three proteins displayed the highest expression in 

the dentate gyrus (DG) followed by the different cornu ammonis (CA) areas (all with 

comparable immunointensity), and the subiculum, which showed the lowest level of 

immunopositivity.  

Figure 5A shows the total number of pyramidal and granular cells per mm3 highlighting 

neuronal loss in the TLE-HS. 5B and 5C show the percentage of GABAB positive pyramidal 

and granular neurons respectively. Whereas immunopositivity to GABAB1 was greater in 

pyramidal PMC than TLE-HS cells it was lower in granular PMC than TLE-HS cells. In 

contrast, GABAB2 immunopositivity was more marked in TLE-HS than PMC in both types 

of neurons. Figures 5D and 5E show semi-quantitative immunosignal measurements 

demonstrating the intensity of immunopositivity per remaining neuron in PMC and TLE-HS. 

The GABAB2 signal intensity is higher while GABAB1a is lower in TLE-HS patients compared 

to PMC in both pyramidal and granular cells. The comparison of GABAB1b intensity between 
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TLE-HS and PMC cells on the other hand showed higher GABAB1b intensity in granular and 

lower intensity in pyramidal cells (resulting not only from the image shown but from the 

averaged analysis of 5 patients); however, these differences did not achieve significance 

in the small number of samples available for comparison. 

Figure 6 and 7 show how representative pyramidal cells in CA areas and DG granular 

neurones reacted with the three antibodies for GABAB1a, GABAB1b and GABAB2 at higher 

magnification. The immunosignal proved to be specific for all three antibodies. The left 

panel in Figure 6 represents pyramidal neurones in of CA1. The immunoreactivity was 

mainly expressed by the cell bodies and apical dendrites; there was no nuclear staining at 

all, either in PMC or in the TLE-HS sections. The main difference between PMC and TLE-

HS CA1 was the intensity of immunoreactivity in most of the neuronal cells. GABAB1a and 

GABAB2 immunoreactivity appeared stronger in a few neurones, whilst the GABAB1b 

immunosignal seemed fainter in the majority of TLE-HS compared to PMC neurons. Figure 

6, right panel shows CA2 pyramidal neurones. The immunosignal, for all three antibodies, 

was confined to the cell bodies and apical dendrites in the control specimen. In the TLE-

HS hippocampi there was neuronal loss. Furthermore the remaining neurones appeared 

smaller and contracted and the immunosignal seemed stronger in the cytoplasmic 

membrane. Figure 7, left panel displays pyramidal neurones in CA3. Immunopositivity was 

mainly confined to the neuronal bodies with almost no apical dendrites being 

immunolabelled with any of three antibodies in the PMC hippocampus. In TLE-HS neuronal 

loss was evident, the cells appeared to be smaller, and the immunoreactivity was present 

on the cytoplasmic membrane. There was also an apparent proliferation of glial cells as 

reported in literature (Charles et al. 2003; Kim et al. 1990; de Lanerolle 2012). The right 

panel of Figure 7 exhibits DG granular cells at higher magnification. In the PMC specimen 

the immunoreactivity with all three antibodies was present exclusively in the cell somata. In 

TLE-HS sections neuronal loss was evident, in addition the granule cells were smaller and 

more dispersed, immunolabelling was more intense.  
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Most of the pyramidal neurons in CAs areas and granule cells in DG were immunopositive. 

In addition, supported by recent evidence (Huyghe et al. 2014), some interneurons and 

possibly some astrocytes appeared immunopositive to the GABAB antibodies. It would be 

appropriate in future to perform double fluorescent immunostaining to verify which 

subpopulation of neurons and glia express GABAB receptors. 

 

4. DISCUSSION 

Previous studies have indicated that changes in the GABAB receptors subunits could be 

implicated in the pathophysiology of pharmaco-resistant TLE associated with HS (Billinton 

et al. 2001; Fürtinger et al. 2003b; Princivalle et al. 2003). Therefore, studying GABAB 

receptor protein expression may provide an important contribution to our understanding of 

one of the most important mechanisms implicated in temporal lobe epilepsy.  

 

The qRT-PCR results obtained in this study showed that there is no major difference in 

GABAB expression between TLE-HS and PMC samples. This is in agreement with previous 

data (Billinton et al. 2001). In contrast, the TLE-STG samples demonstrated a higher 

expression of both subunits compared to TLE-HS and PMC samples. The quantitative 

Western blot perfectly mirrored the trend of PCR data for GABAB2, but not for GABAB1. 

Figure 2 and 3 clearly demonstrate that the GABAB2 subunit expression is significantly lower 

in TLE-HS samples compared to the bioptic TLE-STG, and higher compared to the PMC 

as well as the IHC shows. It is difficult to compare qRT-PCR GABAB2 mRNA to previous in 

situ hybridization data (Princivalle et al. 2003; Fürtinger et al. 2003b). However, overall both 

techniques indicate a higher expression of GABAB2 mRNAs in the epileptic hippocampi 

compared to the PMC control.  

The protein quantification obtained from qWB demonstrated that GABAB1 and GABAB2 

expression mirror the mRNA level in TLE-HS and TLE-STG. Visual comparison of the three 

proteins by IHC between PMC control and TLE-HS patients displayed a wide distribution 

of GABAB isoforms and subunits in both types of specimen. However, as previously 
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reported (Princivalle et al. 2003; Fürtinger et al. 2003b), the quantitative comparison 

showed that, despite neuronal loss in TLE-HS hippocampal samples, there was an 

increment of GABAB1b and GABAB2 protein expression per remaining neuron in the CA 

areas and DG, compared to the PMC samples.  

It may be argued that our findings are contradictory because the quantification of Western 

blot and IHC showed opposite trend for GABAB1a. However, it is important to point out that 

WB data represents the total GABAB1a expression as we used homogenates of 

hippocampal tissue containing neurones, microglia and astrocytes rather than just the 

neuronal portion. In contrast, the quantitative IHC data represent GABAB1a expression per 

neurone. Comparing the mRNA and protein expression in Figures 2 and 3, it is evident that 

the trend of the receptor subunits is the same, demonstrating that GABAB2 expression is 

very much lower in the hippocampi of pharmaco-resistant patients compared to TLE-STG. 

Previous binding and present immunohistochemical data in human hippocampal PMC 

control and epileptic specimens appear in reasonable agreement (Princivalle et al. 2002).  

In the IHC the higher expression of GABAB1b and GABAB2 in the surviving neurones of the 

DG reflects the mRNA per neurone levels reported elsewhere (Princivalle et al. 2003; 

Furtinger et al. 2003b). In addition, the GABAB receptor autoradiography binding assays, 

corrected for neuronal loss (Billinton et al. 2000; Princivalle et al. 2002), showed a 

significant increase in receptor density per neurone in specific hippocampal subregions of 

the TLE-HS compared to PMC samples. 

The lower expression of both GABAB receptor subunits in TLE-HS compared to TLE-STG, 

could indicate a decline in GABAB receptors which would provide an explanation for the 

compromised GABAB functionality previously reported in pharmacological and 

electrophysiological studies in animal model and in human TLE (Billinton et al. 2000; 

Princivalle et al. 2002; Fürtinger et al. 2003b; Mareš and Kubová 2015; Leung et al. 2016; 

Rocha et al. 2015). This may be affecting the formation of fully functional GABAB receptors: 

since the heterodimerisation of GABAB1 and GABAB2 in 1:1 stoichiometry is essential for 
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receptor trafficking and G-protein activation, the GABAB2 subunit could be a potential target 

for the development of new agonists or activating transcription factors drugs, which may 

have a major clinical impact on the treatment of pharmaco-resistant TLE-HS patients. 

However, there are other factors which could explain the reduced GABAergic inhibition (Gill 

et al. 2010; Armstrong et al. 2016), and there is a strong possibility of co-causation. 

 

The findings of this study could be interpreted in two different ways: GABAB protein 

expression in epileptogenic hippocampal tissue could be down-regulated (because of the 

higher expression in TLE-STG tissue) or it could be up-regulated (because of the lower 

expression in PMC tissue). The decision which explanation is more likely depends on the 

relative merits of the two non-epileptogenic “control”-tissues. Unfortunately, neither PMC 

nor non-spiking TLE-STG is a perfect match for the TLE-HS samples of interest for the kind 

of experiments conducted here. However, there is no real alternative in human studies and 

it is not the first time that neocortex (STG) has been used in studies on TLE (Teichgrӓber 

et al. 2009; Rocha et al. 2015). Even human non-epileptogenic hippocampi removed for 

other reasons (such as temporal lobe tumours) cannot be considered an ideal control tissue 

for TLE-HS samples (Kovács et al. 2012). Son et al. (2015) demonstrated that tissue 

surrounding or adjacent to a tumour is physiologically and molecularly perturbed by the 

tumour itself or by previous irradiation. 

In view of these difficulties, many studies investigating TLE pathophysiology have recently 

compared their results obtained in epileptogenic TLE specimens to other surgically 

resected samples such as neocortex. The strength of this approach includes the fact that 

both sample types contain the same DNA (reducing the risk of intersubject variability 

caused by gene-gene or gene-environment interactions) and that both samples were 

obtained and processed in the same way. This approach also avoids the difficulties 

associated with comparing TLE-HS tissue removed during epilepsy surgery with PMC-HS 

tissue possibly affected by an agonal state and post-mortem changes (Preece et al. 2003; 

Tomita 2004; Teichgrӓber et al., 2009; Rocha et al. 2015).  
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In this study, the expression of mature GABAB receptor proteins was investigated for the 

first time in TLE-HS, and both types of potential “control” tissues, surgically resected non-

spiking TLE-STG and PMC specimens.  

 

CONCLUSIONS 

In agreement with older studies, we found the overall expression of GABAB increased in 

TLE-HS versus PMC. If correct, this finding suggests that the previously reported reduction 

in slow IPSPs in TLE-HS cannot be explained by a decreased protein expression of the 

GABAB receptor subunit. Instead this neurophysiological observation could be due to other 

causes including post-translational modification of the GABAB protein. On the other hand, 

this study shows a lower expression of GABAB2 in TLE-HS samples than in non-

epileptogenic TLE-STG from the same patients. Considering that the PMC values were 

affected by agonal or post-mortem changes (or due to undetected differences in clinical or 

demographic factors between TLE-HS and PMC subjects) the TLE-STG samples may 

represent a more appropriate “control” tissue. If so, the downregulation of GABAB2 

transcription and GABAB2 mature protein subunit in TLE-HS could represent one of the 

reasons for the impaired GABAergic inhibition reported in epileptogenic hippocampal tissue 

in the literature.  

 

LIST OF ABBREVIATIONS 

CA   cornu ammonis 

GABA   -Aminobutyric acid 

GABAB   -Aminobutyric acid receptor B 

DG   dentate gyrus 

HS   hippocampal sclerosis 

IHC   immunohistochemistry 

IR   immunoreactivity 
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PMC   post-mortem control 

PMI   post-mortem interval 

TLE   temporal lobe epilepsy 

DG   dentate gyrus 

ROD   relative optical density 

STG   superior temporal gyrus 
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FIGURE LEGENDS 

Figure 1 Graphical representation of linear regression  

(A) shows the correlation between mRNA from PMC samples and age; (B) illustrates the 

correlation between mRNA from PMC samples and PMI. 

 

Figure 2 Quantitative real time PCR of GABAB mRNA receptor subunits. 

qRT-PCR mRNA expression of GABAB1 and GABAB2 in 26 TLE-HS, 11 TLE-STG and 10 

PM control using TaqMan gene expression Assays and Comparative delta Ct analysis (2-

∆CT) method. Statistical analysis: Kruskal-Wallis with Conover-Inman post hoc analysis test 

was used to identify significant differences between (* P ≤ 0.05, ** P < 0.01, *** P< 0.001). 

Data presented as Mean ± S.D. 

 

Figure 3 Qualitative and quantitative Western blot 

(A) Qualitative WB of GABAB1a, GABAB1b, GABAB2 and β-Actin, revealed by double 

labelling with IRDye 680 and IRDye 800 secondary antibodies. (B) Quantitative 

expression of GABAB1a, GABAB1b and GABAB2 relative to β-Actin. Bands quantification 

was done on Odyssey infrared imaging system and Image Studio lite 4.0 software. 

Statistical analysis: Kruskal-Wallis with Conover-Inman post hoc analysis test was used to 

identify significant differences between (* P ≤ 0.05, ** P < 0.01, *** P< 0.001). Data 

presented as Mean ± S.D. 

 

Figure 4 Qualitative immunohistochemistry 

Distribution of GABAB1a, GABAB1b and GABAB2 in PMC and TLE-HS hippocampi. 

Photomicrographs showing GABAB1a (A, D), GABAB1b (B, E) and GABAB2 (C, F) IR in 

three adjacent sections from a post-mortem control and TLE-HS specimen. GABAB2 show 

the highest immunosignal, GABAB1a demonstrated a lower immunoreactivity and GABAB1b 

displays the lowest immunopositivity. Scale bars represent 4mm in A, B, C and 8 mm in 

D, E, F (magnification 5X). 
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Figure 5 Quantitative immunohistochemistry 

(A) Neuronal densities obtained by adjacent section of both TLE-HS (n=6-11) and PMC 

(n=5) stained with Cresyl Violet/Luxol Fast blue and. (B, C) graphs illustrate the 

percentage of GABAB positive pyramidal and granular neurons respectively compared to 

PMC. (D, E) graphs show semi-quantitative expression in pyramidal and granular cells of 

GABAB subunits in 6 TLE-HS and 2 PMC. Semi-quantitative analysis obtained is 

expression of GABA subunits in ROD per neurones. Data presented as Mean ± S.D. 

The statistical test used was Kruskal-Wallis: for pairwise comparisons (Conover-Inman). 

 

Figure 6 Brightfield photomicrograph displaying immunoreactivity in PMC and TLE-

HS CA1 and CA2 

Photomicrographs showing the distribution of GABAB1a, GABAB1b, and GABAB2 in human 

PMC and TLE-HS patients in the pyramidal cells of the CA1 (panel A); CA2 (panel B); red 

harrows show glial cells. Scale bars: 120 µm.  

 

Figure 7 Brightfield photomicrograph displaying immunoreactivity in PMC and TLE-

HS CA3 and DG 

Photomicrographs showing the distribution of GABAB1a, GABAB1b, and GABAB2 in human 

PMC and TLE-HS patients in the pyramidal cells of the CA3 (panel A); DG (panel B); red 

harrows show glial cells. Scale bars: 120 µm.  


