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ON THE MERTENS CONJECTURE FOR FUNCTION FIELDS

PETER HUMPHRIES

Abstract. We study the natural analogue of the Mertens conjecture in the
setting of global function fields. Building on the work of Cha, we show that
most hyperelliptic curves do not satisfy the Mertens conjecture, but that if we
modify the Mertens conjecture to have a larger constant, then this modified
conjecture is satisfied by a positive proportion of hyperelliptic curves.

1. The Mertens Conjecture

Let µ(n) denote the Möbius function, so that for a positive integer n,

µ(n) =





1 if n = 1,

(−1)t if n is the product of t distinct primes,

0 if n is divisible by a perfect square,

and let

M(x) =
∑

n≤x

µ(n)

be the summatory function of the Möbius function. In 1897, Mertens [12] calculated
M(x) from x = 1 up to x = 10 000 and conjectured the following inequality.

The Mertens Conjecture. For all x ≥ 1, the summatory function of the Möbius

function satisfies the inequality

(1)
|M(x)|√

x
≤ 1.

The Mertens conjecture has several important consequences, the most notable
of which are that the Riemann hypothesis is true and that all the zeroes of the
Riemann zeta function, ζ(s), are simple; see [14, §2] for further details.

In this article, we study the natural analogue of this conjecture in the setting of
global function fields, that is, for nonsingular projective curves over finite fields. Let
C be a nonsingular projective curve of genus g over a finite field Fq of characteristic
p; we will assume throughout that p is odd. For each effective divisor N of C, we
define the Möbius function of C/Fq to be

µC/Fq
(N) =






1 if N is the zero divisor,

(−1)t if N is the sum of t distinct prime divisors of C,

0 if a prime divisor of C divides N with order at least 2,

so that the summatory function of the Möbius function of C/Fq is

MC/Fq
(X) =

∑

0≤deg(N)≤X−1

µC/Fq
(N),
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where X is a positive integer. Our goal is to determine the validity of the following
conjecture, the analogue of the Mertens conjecture in the function field setting.

The Mertens Conjecture for Function Fields. Let C be a nonsingular pro-

jective curve over Fq. The summatory function of the Möbius function of C/Fq

satisfies

lim sup
X→∞

∣∣MC/Fq
(X)

∣∣
qX/2

≤ 1.

While the classical Mertens conjecture states that the inequality (1) holds for all
x ≥ 1, the value 1 on the right-hand side of (1) is, in some sense, not particularly
special. Indeed, Stieltjes [17] claimed in 1885 to have a proof that

(2) M(x) = O
(√

x
)

without specifying an explicit constant, before later rescinding his claim, though
he did postulate that (1) was true. Similarly, von Sterneck [16] conjectured in 1912
that the stronger inequality

(3)
|M(x)|√

x
≤ 1

2

holds for all x ≥ 200, based on calculations of M(x) up to 5 000 000. So we may
also consider the following variant of the Mertens conjecture for function fields.

The β-Mertens Conjecture for Function Fields. Let C be a nonsingular pro-

jective curve over Fq, and let β > 0. The summatory function of the Möbius

function of C/Fq satisfies

lim sup
X→∞

∣∣MC/Fq
(X)

∣∣
qX/2

≤ β.

In spite of the numerical calculations of Mertens and von Sterneck, the inequal-
ities (1) and (3) are both now known to fail infinitely often. Odlyzko and te Riele
[14] disproved the Mertens conjecture in 1985, and showed that

lim sup
x→∞

M(x)√
x

> 1.06,

lim inf
x→∞

M(x)√
x

< −1.009.

These bounds have since been improved to 1.218 and −1.229 respectively by Kotnik
and te Riele [10], and most recently to 1.6383 and −1.6383 respectively by Best
and Trudgian [2]. Stieltjes’s claimed bound (2) has yet to be disproved, although
it seems likely that

lim sup
x→∞

M(x)√
x

= ∞,

lim inf
x→∞

M(x)√
x

= −∞.

Indeed, Ingham [8] showed much earlier in 1942 that this follows from the as-
sumption of the Riemann hypothesis and the linear independence over the rational
numbers of the imaginary parts of the zeroes of ζ(s) in the upper half-plane. The
latter hypothesis is known as the Linear Independence hypothesis; while there is
as yet a lack of strong theoretical evidence for the falsity of the existence of any
rational linear dependence between these imaginary parts, some limited numerical
calculations have failed to find any such linear relations [1], [2]. Most recently,
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Ingham’s result has been refined conditionally by Ng [13], who has shown that the
logarithmic density

δ (Pβ) = lim
X→∞

1

logX

∫

Pβ∩[1,X]

dx

x

of the set

Pβ =
{
x ∈ [1,∞) : |M(x)| ≤ β

√
x
}

exists and satisfies the bound

δ (Pβ) < 1

for all β > 0, and also that for all sufficiently large β,

δ (Pβ) > 0,

all under the assumption of the Riemann hypothesis, the Linear Independence
hypothesis, and that

J−1(T ) =
∑

0<γ≤T

|ζ′ (1/2 + iγ)|−2 ≪ T,

where the sum is over the nontrivial zeroes of ζ(s). Numerical calculations of Amir
Akbary and Nathan Ng (personal communication) suggest that

δ (P1) > 0.99999993366,

so that the set of counterexamples of the Mertens conjecture, despite condition-
ally having strictly positive logarithmic density, is nevertheless extremely sparsely
distributed in [1,∞).

In the function field setting, on the other hand, the situation is markedly differ-
ent: if the zeroes of the zeta function ZC/Fq

(u) of C/Fq are not too poorly behaved,
in the sense that ZC/Fq

(u) has only simple zeroes, then Cha [3, Corollary 2.3] has
shown that

lim sup
X→∞

∣∣MC/Fq
(X)

∣∣
qX/2

is bounded. Here ZC/Fq
(u) is defined initially for a complex variable u in the open

disc |u| < q−1 via the absolutely convergent series

ZC/Fq
(u) = exp

(
∞∑

n=1

#C (Fqn)
un

n

)
.

where #C (Fqn) denotes the number of points of C in the field extension Fqn of Fq.
This function extends meromorphically to the whole complex plane; indeed,

(4) ZC/Fq
(u) =

PC/Fq
(u)

(1− u)(1− qu)
,

where PC/Fq
(u) is a polynomial of degree 2g with integer coefficients that factorises

as

PC/Fq
(u) =

g∏

j=1

(1− γju) (1− γju)

for some γj =
√
qeiθ(γj) with θ (γj) ∈ [0, π]; here g is the genus of the curve C. The

fact that each γj satisfies |γj | =
√
q is known as the Riemann hypothesis for function

fields, and was proved by Weil in 1940 [19]; as it is already known that the Riemann
hypothesis for the Riemann zeta function is intimately connected to the growth of
M(x), we can immediately see the benefit of the function field setting. Furthermore,
there are only finitely many zeroes of ZC/Fq

(u), so it is actually possible to confirm,
given the zeta function of a curve C/Fq, the following function field analogue of the
Linear Independence hypothesis.
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Definition 1.1. We say that C satisfies the Linear Independence hypothesis, which
we abbreviate to LI, if the collection

π, θ (γ1) , . . . , θ (γg)

is linearly independent over the rational numbers.

See [11, §6] for examples of computationally determining whether a particular
curve satisfies LI. Note also that the zeta function of a curve satisfying LI must
only have simple zeroes.

In [3], Cha proves the following result about the maximal order of growth of
MC/Fq

(X).

Theorem 1.2 (Cha [3, Theorem 2.5]). Suppose that C is a nonsingular projective

curve of genus g ≥ 1 that satisfies LI. Then

(5) lim sup
X→∞

∣∣MC/Fq
(X)

∣∣
qX/2

= 2

g∑

j=1

∣∣∣∣∣
1

ZC/Fq

′
(
γ−1
j

) γj
γj − 1

∣∣∣∣∣ < ∞.

Cha also shows [3, page 5] that the case g = 0 is trivial, where C = P
1 is the

projective line, so that C/Fq is simply the rational function field Fq(t), for then

MFq(t)(X) =





1 if X = 1,

−q if X = 2,

0 if X ≥ 3.

Note that in this case

ZFq(t)(u) =
1

(1− u)(1− qu)

is the completed zeta function of the zeta function

ZFq[t](u) =
1

1− qu

of the ring Fq[t]. One can define the Möbius function of a polynomial in Fq[t] in
the same fashion as for a global function field C/Fq and show similarly that

MFq[t](X) =

{
1 if X = 1,

−q + 1 if X ≥ 2;

see [15, Chapter 2].
So if a curve C of genus g ≥ 1 satisfies LI, then we need only determine the

right-hand side of (5) in order to see whether C/Fq satisfies the Mertens conjecture.
Unlike in the classical case, however, where we expect the Riemann zeta function
to satisfy LI, there do exist curves C that do not satisfy LI; furthermore, in the
particular case when ZC/Fq

(u) has zeroes of multiple order, then the work of Cha
[3, Proposition 2.2] indicates that

lim sup
X→∞

∣∣MC/Fq
(X)

∣∣
qX/2

= ∞.

Nevertheless, we can ensure that such curves are extremely rare by restricting
to certain families of curves, namely hyperelliptic curves. With this family, we
also have the added bonus of a framework for certain equidistribution results and
connections to random matrix theory via the work of Katz and Sarnak [9].

We define this family of curves as follows: for Fqn a finite field of odd character-
istic, and for g ≥ 1, let f be a monic polynomial of degree 2g + 1 with coefficients
in Fqn whose discriminant is nonzero; equivalently, let f be a squarefree monic
polynomial in Fqn [x] of degree 2g + 1. Each such polynomial f thereby defines a
hyperelliptic curve Cf of genus g over Fqn via the affine model y2 = f(x). So we
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let H2g+1,qn denote the set of these hyperelliptic curves C = Cf over Fqn . We
are interested in properties of such curves C shared by “most” C ∈ H2g+1,qn . To
define this notion, we consider H2g+1,qn as a probability space with the uniform
probability measure, so that for a propertyD of a hyperelliptic curve C ∈ H2g+1,qn ,

ProbH2g+1,qn
(C satisfies D) =

# {C ∈ H2g+1,qn : C satisfies D}
#H2g+1,qn

.

Definition 1.3. We say that most hyperelliptic curves C ∈ H2g+1,qn have the
property D = {Dn}∞n=1 as n tends to infinity if

lim
n→∞

ProbH2g+1,qn
(C satisfies Dn) = 1.

We are now able to state the main result of this article.

Theorem 1.4. Let q and g ≥ 1 be fixed. Then we have that

lim
n→∞

ProbH2g+1,qn
(C satisfies the β-Mertens conjecture) = 0

for 0 < β ≤ 1, whereas when β > 1,

0 < lim
n→∞

ProbH2g+1,qn
(C satisfies the β-Mertens conjecture) < 1.

That is, as n tends to infinity, most hyperelliptic curves C ∈ H2g+1,qn do not satisfy

the Mertens conjecture, but for any β > 1, a positive proportion of hyperelliptic

curves satisfy the β-Mertens conjecture.

So although the Mertens conjecture is false for most hyperelliptic curves, the
value β = 1 is critical, in that it is the greatest value of β for which the β-Mertens
conjecture is not satisfied for most hyperelliptic curves.

Results of this form were found by the author [7] in the low-genus case g = 1,
so that C is an elliptic curve: the author used a classification due to Waterhouse
[18] of isogeny classes of elliptic curves over finite fields in terms of their Frobenius
angles in order to determine explicitly the isogeny classes for which the Mertens
conjecture holds, in the form of the following result.

Theorem 1.5 (Humphries [7, Theorem 2.1]). Let E be an elliptic curve over a finite

field Fq of characteristic p. Then the Mertens conjecture for E/Fq is true if and

only if the order of the finite field q and the trace aE of the Frobenius endomorphism

acting on E over Fq satisfy precisely one of the following conditions:

(1) q = pm with aE = 2, where either m is arbitrary and p 6= 2, or m = 1 and

p = 2,
(2) q = pm with aE =

√
q, where m is even and p 6≡ 1 (mod 3),

(3) q = pm with aE = 0, where either m is even and p 6≡ 1 (mod 4), or m is

odd.

In all these cases, we have that

lim sup
X→∞

∣∣ME/Fq
(X)

∣∣
qX/2

= 1.

While recent work of Howe, Nart, and Ritzenthaler [5] classifies the isogeny
classes of curves of genus two, there is as yet no such classification for curves of
genus g ≥ 3, so this method does not generalise to curves of large genus; indeed, a
classification of isogeny classes of curves of a given genus g would involve explicitly
solving the (open) Schottky problem, namely giving an explicit description of all
principally polarised abelian varieties that are Jacobian varieties of curves.

Instead, the methods for proving Theorem 1.4 involve relating the average

lim
n→∞

ProbH2g+1,qn
(C satisfies the β-Mertens conjecture)
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to the Haar measure on a certain compact group of random matrices, then analysing
the behaviour of the resulting probability value. These methods are closely related
to the work of Cha [3], from which many of the results in this paper originate; in [3],
Cha introduces the summatory function MC/Fq

(X) and studies a truncated form

of the average of
∣∣MC/Fq

(X)
∣∣ /qX/2 over function fields,

lim
n→∞

1

#H2g+1,qn

∑

C∈H2g+1,qn

(
lim sup
X→∞

∣∣MC/Fq
(X)

∣∣
qX/2

)
.

Using random matrix methods, Cha is led to conjecture that this truncated average,
after taking the limit as n tends to infinity, is asymptotic to cg1/4 in the limit as g
tends to infinity, where c is a specific given constant.

2. Preliminary Results

We begin by converting this problem to a related problem for a certain family
of random matrices. Our first step is to express the quantity

B (C/Fq) = lim sup
X→∞

∣∣MC/Fq
(X)

∣∣
qX/2

in the language of unitary symplectic matrices. Recall that the space of unitary
symplectic matrices USp(2g) consists of 2g × 2g matrices U with complex entries
satisfying U †U = I and UTJU = J , where

J =

(
0 Ig

−Ig 0

)

and Ig denotes the g × g identity matrix. The eigenvalues of U lie on the unit
circle and come in complex conjugate pairs, so that we may order the eigen-
values eiθ1 , . . . , eiθ2g such that θj+g = −θj with 0 ≤ θj ≤ π for 1 ≤ j ≤ g.
Conversely, given (θ1, . . . , θg) ∈ [0, π]g, the diagonal matrix with diagonal entries
eiθ1 , . . . , eiθg , e−iθ1 , . . . , e−iθg lies in USp(2g). Thus the set of conjugacy classes
USp(2g)# of USp(2g) corresponds to [0, π]g.

Definition 2.1. For each U ∈ USp(2g), we define the characteristic polynomial

ZU (θ) for real θ by

ZU (θ) = det
(
I − Ue−iθ

)
.

Equivalently,

(6) ZU (θ) =

2g∏

j=1

(
1− ei(θj−θ)

)
= 2g

g∏

j=1

eiθ (cos θ − cos θj).

For a nonsingular projective curve C over Fq of genus g ≥ 1, there exists a
conjugacy class ϑ (C/Fq) in USp(2g)#, called the unitarised Frobenius conjugacy
class attached to C/Fq, satisfying

(7) Zϑ(C/Fq)(θ) = PC/Fq

(
e−iθ

√
q

)
=

g∏

j=1

(
1− ei(θ(γj)−θ)

)(
1− e−i(θ(γj)+θ)

)
.

That is, the eigenangles (θ1, . . . , θg) corresponding to the unitarised Frobenius con-
jugacy class ϑ (C/Fq) are precisely (θ (γ1) , . . . , θ (γg)), the angles of the inverse

zeroes γj =
√
qeiθ(γj), 1 ≤ j ≤ g, of ZC/Fq

(u).
We require an expression for B (C/Fq) in terms of Zϑ(C/Fq)(θ) in the large q

limit. For U ∈ USp(2g), we define the function ϕ(U) by

ϕ(U) = 2

g∑

j=1

1∣∣ZU
′ (θj)

∣∣ ,
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where eiθ1 , . . . , eiθg , e−iθ1 , . . . , eiθg are the eigenvalues of U , with 0 ≤ θj ≤ π for
1 ≤ j ≤ g. We observe that ϕ depends only on the conjugacy class (θ1, . . . , θg) of U ,
and that ϕ is always nonnegative, though it blows up if U has a repeated eigenvalue.
Note, however, that the set of matrices in USp(2g) with repeated eigenvalues has
measure zero with respect to the normalised Haar measure on USp(2g).

Lemma 2.2 (Cha [3, Equation (26)]). Suppose that C satisfies LI. Then we have

that (
1− 1√

q

)
ϕ (ϑ (C/Fq)) ≤ B (C/Fq) ≤

(
1 +

1√
q

)
ϕ (ϑ (C/Fq)) .

Of course, we cannot say which individual curves satisfy LI without studying
their zeroes. Nevertheless, we have the following remarkable result for the family
of hyperelliptic curves.

Theorem 2.3 (Cha–Chavdarov–Kowalski [3, Theorem 3.1], [4], [11]). Let q and

g ≥ 1 be fixed. Then

lim
n→∞

ProbH2g+1,qn
(C satisfies LI) = 1.

That is, as n tends to infinity, most hyperelliptic curves C ∈ H2g+1,qn satisfy LI.

This result is our reason for restricting ourselves to the family of hyperelliptic
curves, as well as the usefulness of the following equidistribution theorem.

Theorem 2.4 (Deligne’s Equidistribution Theorem [9, Theorem 10.8.2]). Let f be

a continuous function on USp(2g) that is central, so that f is dependent only on

the conjugacy class (θ1, . . . , θg) of each matrix U ∈ USp(2g). Let q and g ≥ 1 be

fixed. Then

lim
n→∞

1

#H2g+1,qn

∑

C∈H2g+1,qn

f (ϑ (C/Fqn)) =

∫

USp(2g)

f(U) dµHaar(U),

where µHaar is the normalised Haar measure on USp(2g).

Equivalently, consider the sequence of probability measures

ProbH2g+1,qn
=

1

#H2g+1,qn

∑

C∈H2g+1,qn

δϑ(C/Fqn)

on USp(2g), where δU# is a point mass at a conjugacy class U# ∈ USp(2g)#. Then
Deligne’s equidistribution theorem merely states that the sequence of probability
measures ProbH2g+1,qn

converges weakly to the probability measure

ProbUSp(2g) = µHaar

as n tends to infinity. By applying the Portmanteau theorem to the sequence
of probability measures ProbH2g+1,qn

, we obtain an equivalent reformulation of
Deligne’s equidistribution theorem.

Corollary 2.5. For fixed g ≥ 1,

lim
n→∞

ProbH2g+1,qn
(ϑ (C/Fqn) ∈ A) = ProbUSp(2g) (U ∈ A)

for any Borel set A ⊂ USp(2g) whose boundary has Haar measure zero.

Remark 2.6. In fact, Deligne’s equidistribution theorem holds not only for fixed
q in the limit as n tends to infinity, but rather for any sequence of prime powers
q tending to infinity, with H2g+1,q in place of H2g+1,qn . However, Theorem 2.3
requires the restriction that q be fixed, which is why we have this condition in
Theorem 1.4. It would be of interest to determine whether this restriction could
be removed, so that Theorem 1.4 would hold for any sequence of prime powers q
tending to infinity.
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One can calculate the Haar measure for USp(2g) precisely by using the following
formula to convert it into an integral over [0, π]g.

Proposition 2.7 (Weyl Integration Formula [9, §5.0.4]). Let f be a bounded, Borel-

measurable complex-valued central function on USp(2g). Then

∫

USp(2g)

f(U) dµHaar(U) =

∫ π

0

· · ·
∫ π

0

f (θ1, . . . , θg) dµUSp (θ1, . . . , θg) ,

where

(8) dµUSp (θ1, . . . , θg) =
2g

2

g!πg

∏

1≤j<k≤g

(cos θk − cos θj)
2

g∏

ℓ=1

sin2 θℓ dθ1 · · · dθg.

To make use of Corollary 2.5, we need to ensure that the boundaries of the sets
with which we work have Haar measure zero.

Lemma 2.8. Let A be an interval in R. Then the boundary of the set

{U ∈ USp(2g) : ϕ(U) ∈ A}

has Haar measure zero.

Proof. By differentiating (6), we have that

(9) ϕ(U) = ϕ (θ1, . . . , θg) =
1

2g−1

g∑

j=1

cosec θj

g∏

k=1
k 6=j

1

|cos θk − cos θj |
.

So by the Weyl integration formula, we must show that for any interval A, the
boundary of the set

{(θ1, . . . , θg) ∈ [0, π]g : ϕ (θ1, . . . , θg) ∈ A}

has µUSp-measure zero. Observe that µUSp is absolutely continuous with respect
to the Lebesgue measure on [0, π]g, and hence the sets

{(θ1, . . . , θg) ∈ [0, π]g : θj = θk for some 1 ≤ j < k ≤ g}

and

{(θ1, . . . , θg) ∈ [0, π]g : θj ∈ {0, π} for some 1 ≤ j ≤ g}

have µUSp-measure zero; furthermore, for each permutation σ of {1, . . . , g}, the
function ϕ is continuous on the set

{
(θ1, . . . , θg) ∈ [0, π]g : 0 < θσ(1) < . . . < θσ(g) < π

}
.

It therefore suffices to show that for each a ∈ R and for each σ ∈ Sg, the set

{
(θ1, . . . , θg) ∈ [0, π]g : ϕ (θ1, . . . , θg) = a, 0 < θσ(1) < . . . < θσ(g) < π

}

has µUSp-measure zero. But in the region where 0 < θσ(1) < . . . < θσ(g) < π, the
expression (9) shows that the function ϕ (θ1, . . . , θg) is not only continuous but real
analytic and non-uniformly constant. As the zero set of a non-uniformly zero real
analytic function has Lebesgue measure zero, and µUSp is absolutely continuous
with respect to the Lebesgue measure, we obtain the result. �



ON THE MERTENS CONJECTURE FOR FUNCTION FIELDS 9

3. Proof of Theorem 1.4

We have now developed the necessary machinery needed in order to study the
limit as n tends to infinity of the average

ProbH2g+1,qn
(C satisfies the β-Mertens conjecture) .

For brevity’s sake, we write this average as

ProbH2g+1,qn
(B (C/Fqn) ≤ β) .

We also write C ∈ LI if C satisfies LI, and conversely if C does not satisfy LI, we
write C /∈ LI.

Proposition 3.1. For β > 0, we have that

(10) lim
n→∞

ProbH2g+1,qn
(B (C/Fqn) ≤ β) = ProbUSp(2g) (ϕ(U) ≤ β) .

Note that (10) is equivalent to

(11) lim
n→∞

ProbH2g+1,qn
(B (C/Fqn) > β) = ProbUSp(2g) (ϕ(U) > β) .

for β > 0. If we let
BT (C/Fq) = min {B (C/Fq) , T }

for T > 0, then by integrating (11) with respect to β from 0 to T and taking the
limit as T tends to infinity, we find via the dominated convergence theorem and
Fubini’s theorem that

lim
T→∞

lim
n→∞

1

#H2g+1,qn

∑

C∈H2g+1,qn

BT (C/Fqn) =

∫

USp(2g)

ϕ(U) dµHaar(U),

thereby obtaining a slightly modified version of a result of Cha [3, Theorem 3.3].

Proof. For any ε > 0 with ε < β, let

A = {C ∈ H2g+1,qn : B (C/Fqn) ≤ β, ϕ (ϑ (C/Fqn)) ≤ β, C ∈ LI} ,
A1 = {C ∈ H2g+1,qn : B (C/Fqn) ≤ β} ,
A2 = {C ∈ H2g+1,qn : B (C/Fqn) ≤ β, C /∈ LI} ,
A3 = {C ∈ H2g+1,qn : B (C/Fqn) ≤ β, β < ϕ (ϑ (C/Fqn)) ≤ β + ε, C ∈ LI} ,
A4 = {C ∈ H2g+1,qn : B (C/Fqn) ≤ β, ϕ (ϑ (C/Fqn)) > β + ε, C ∈ LI} ,
A1′ = {C ∈ H2g+1,qn : ϕ (ϑ (C/Fqn)) ≤ β} ,
A2′ = {C ∈ H2g+1,qn : ϕ (ϑ (C/Fqn)) ≤ β, C /∈ LI} ,
A3′ = {C ∈ H2g+1,qn : B (C/Fqn) > β, β − ε ≤ ϕ (ϑ (C/Fqn)) ≤ β, C ∈ LI} ,
A4′ = {C ∈ H2g+1,qn : B (C/Fqn) > β, ϕ (ϑ (C/Fqn)) < β − ε, C ∈ LI} .

Then we have that

A1 = A ⊔ A2 ⊔ A3 ⊔ A4,

A1′ = A ⊔ A2′ ⊔A3′ ⊔ A4′ ,

where the unions are all disjoint, and consequently

#A1 = #A1′ +#A2 −#A2′ +#A3 −#A3′ +#A4 −#A4′ .

By Deligne’s equidistribution theorem and Lemma 2.8,

lim
n→∞

#A1′

#H2g+1,qn
= ProbUSp(2g) (ϕ(U) ≤ β) ,

while Theorem 2.3 implies that

lim
n→∞

#A2

#H2g+1,qn
= lim

n→∞

#A2′

#H2g+1,qn
= 0.
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Next, we note that

A3 ⊔ A3′ ⊂ {C ∈ H2g+1,qn : β − ε ≤ ϕ (ϑ (C/Fqn)) ≤ β + ε} ,
and hence

lim sup
n→∞

|#A3 −#A3′ |
#H2g+1,qn

≤ ProbUSp(2g) (β − ε ≤ ϕ(U) ≤ β + ε) .

by Deligne’s equidistribution theorem and Lemma 2.8. Finally, Lemma 2.2 implies
that

A4 ⊂
{
C ∈ H2g+1,qn : β + ε < ϕ (ϑ (C/Fqn)) ≤

1

1− q−n/2
β, C ∈ LI

}
,

which is empty for all n ≥ 2 logq(β/ε+ 1), and similarly that

A4′ ⊂
{
C ∈ H2g+1,qn :

1

1 + q−n/2
β < ϕ (ϑ (C/Fqn)) < β − ε, C ∈ LI

}
,

which is empty for all n ≥ 2 logq(β/ε− 1). So

lim
n→∞

#A4

#H2g+1,qn
= lim

n→∞

#A4′

#H2g+1,qn
= 0.

So we have shown that for any ε > 0 with ε < β,

lim sup
n→∞

∣∣ProbH2g+1,qn
(B (C/Fqn) ≤ β)− ProbUSp(2g) (ϕ(U) ≤ β)

∣∣

≤ ProbUSp(2g) (β − ε ≤ ϕ(U) ≤ β + ε) .

As ε > 0 was arbitrary, and

lim
ε→0

ProbUSp(2g) (β − ε ≤ ϕ(U) ≤ β + ε) = ProbUSp(2g) (ϕ(U) = β) = 0

by Lemma 2.8, we obtain the result. �

So in order to prove Theorem 1.4, we must show that for each fixed g ≥ 1,

ProbUSp(2g) (ϕ(U) ≤ β) = 0

for 0 < β ≤ 1, whereas for any β > 1,

0 < ProbUSp(2g) (ϕ(U) ≤ β) < 1.

This follows from the following result, which we prove in Section 5 in a more general
form.

Proposition 3.2. Let U ∈ USp(2g) be a unitary symplectic matrix with eigenvalues

eiθ1 , . . . , eiθg , e−iθ1 , . . . , eiθg , with 0 ≤ θj ≤ π for 1 ≤ j ≤ g. Then the global

minimum of

ϕ(U) = 2

g∑

j=1

1

|ZU
′(θj)|

occurs precisely at the set of points
(
θ̃σ(1), . . . , θ̃σ(g)

)
,

where σ is a permutation on {1, . . . , g}, and
(
θ̃1, . . . , θ̃g

)
=

(
π

2g
,
3π

2g
, . . . ,

(2g − 1)π

2g

)
.

Furthermore,

ϕ
(
θ̃σ(1), . . . , θ̃σ(g)

)
= 1.
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Proof of Theorem 1.4. As Proposition 3.2 implies that the set

{(θ1, . . . , θg) ∈ [0, π]g : ϕ (θ1, . . . , θg) ≤ 1}
is finite, we must have that

ProbUSp(2g) (ϕ(U) ≤ β) = 0

for all 0 < β ≤ 1 via the Weyl integration formula and the fact that the measure
µUSp is atomless, with µUSp as in (8). To prove that

0 < ProbUSp(2g) (ϕ(U) ≤ β) < 1

for β > 1, we note that from Proposition 3.2, the equality ϕ (θ1, . . . , θg) = 1 is
attained at the point

(
θ̃1, . . . , θ̃g

)
=

(
π

2g
,
3π

2g
, . . . ,

(2g − 1)π

2g

)
,

which lies in the region 0 < θ1 < . . . < θg < π. As ϕ is real analytic and
non-uniformly constant in this region, there must exist an open neighbourhood

of
(
θ̃1, . . . , θ̃g

)
in this region where 1 ≤ ϕ (θ1, . . . , θg) ≤ β. This open neighbour-

hood must have positive µUSp-measure, as dµUSp (θ1, . . . , θg) does not vanish on
open subsets of [0, π]g. Consequently,

ProbUSp(2g) (ϕ(U) ≤ β) > 0.

On the other hand, we must also have that

ProbUSp(2g) (ϕ(U) ≤ β) < 1,

as ϕ blows up when θj = θk for any j 6= k, and so for any such point there exists
some open neighbourhood with ϕ (θ1, . . . , θg) > β within this neighbourhood. �

It is worth noting that for β > 1, the quantity

ProbUSp(2g) (ϕ(U) ≤ β)

is in fact strictly increasing as a function of β; this follows from the argument above
together with the fact that there exists a point (θ1, . . . , θg) for which ϕ (θ1, . . . , θg) =
β, which follows from the mean value theorem.

4. Generalisations

The definition of the summatory function of the Möbius function of C/Fq studied
in this article involves a sum over all effective divisors N of C with 0 ≤ deg(N) ≤
X − 1, following the same definition as used previously in the literature in [3]
and [7] (though note that Cha in [3] defines this sum to be over all N with 0 ≤
deg(N) ≤ X , and then normalises B(C/Fq) by a factor of 1/

√
q to compensate for

this alteration). On the other hand, it is more common to define the summatory
functions of arithmetic functions of function fields as only involving a sum over
effective divisors N of a fixed degree, deg(N) = X ; for example, see [15, Chapter
17]. Here we shall observe that this distinction is moot: we will show that Theorem
1.4 remains valid after replacing the β-Mertens conjecture

lim sup
X→∞

∣∣MC/Fq
(X)

∣∣
qX/2

= lim sup
X→∞

1

qX/2

∣∣∣∣∣∣

∑

0≤deg(N)≤X−1

µC/Fq
(N)

∣∣∣∣∣∣
≤ β

by the “localised” β-Mertens conjecture

lim sup
X→∞

1

qX/2

∣∣∣∣∣∣

∑

deg(N)=X−1

µC/Fq
(N)

∣∣∣∣∣∣
≤ β.
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That is, we need not average over all effective divisors of degree at most X− 1, but
merely study the growth of the Möbius function of the effective divisors of degree
X−1. To prove this, we only require the following analogue of Lemma 2.2, for then
the associated analogue of Proposition 3.1 holds with only trivial modifications to
the proof.

Lemma 4.1 (cf. Lemma 2.2). Suppose that C satisfies LI. Then

lim sup
X→∞

1

qX/2

∣∣∣∣∣∣

∑

deg(N)=X−1

µC/Fq
(N)

∣∣∣∣∣∣
≥
(
1− 1√

q

)2

ϕ (ϑ (C/Fq)) ,

lim sup
X→∞

1

qX/2

∣∣∣∣∣∣

∑

deg(N)=X−1

µC/Fq
(N)

∣∣∣∣∣∣
≤
(
1 +

1√
q

)2

ϕ (ϑ (C/Fq)) ,

Proof. From the method of proof of [3, Proposition 2.2], if ZC/Fq
(u) has only simple

zeroes, then as X tends to infinity,

∑

deg(N)=X−1

µC/Fq
(N) = −2ℜ




g∑

j=1

γX
j

ZC/Fq

′
(
γ−1
j

)


+O(1),

and so if C satisfies LI, the Kronecker–Weyl theorem and the fact that γX
j =

qX/2eiXθ(γj) imply that

lim sup
X→∞

1

qX/2

∣∣∣∣∣∣

∑

deg(N)=X−1

µC/Fq
(N)

∣∣∣∣∣∣
= 2

g∑

j=1

1∣∣ZC/Fq

′
(
γ−1
j

)∣∣ .

By (4), (7), and the fact that γj =
√
qeiθ(γj), we have that

1

ZC/Fq

′
(
γ−1
j

) = i
q + 1− 2

√
q cos θ (γj)

qe2iθ(γj)

1

Zϑ(C/Fq)
′ (θ (γj))

.

As

(
√
q − 1)

2 ≤ |q + 1− 2
√
q cos θ (γj)| ≤ (

√
q + 1)

2
,

we can take absolute values and then sum from j = 1 to j = g, yielding the
result. �

We also note that we can prove a weaker form of Theorem 1.4 for families of
curves other than hyperelliptic curves. Indeed, let F = {Fq} be a family of curves
indexed by a set of prime powers q tending to infinity, such that each Fq consists
of a finite set of nonsingular projective curves over Fq; note that we do not require
that the sequence q consist only of powers of a single fixed prime, and also that
there is no restriction whatsoever on the genus of a curve in each Fq. For a property
D of a curve C ∈ Fq, we define the probability

ProbFq
(C satisfies D) =

# {C ∈ Fq : C satisfies D}
#Fq

.

Theorem 4.2. Suppose that

lim
q→∞

ProbFq
(C satisfies LI) = 1.

Then

(12) lim
q→∞

ProbFq
(B(C/Fq) < 1) = 0.
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Furthermore, there exists a family F for which C satisfies LI for all C ∈ F , but

with

(13) lim
q→∞

ProbFq
(B(C/Fq) = 1) = 1,

and similarly for every fixed b > a > 1 there exists a family F for which C satisfies

LI for all C ∈ F , but with

(14) lim
q→∞

ProbFq
(a < B(C/Fq) < b) = 1.

Proof. For (12), we copy the proof of Proposition 3.1 with Fq replacing H2g+1,qn ,
taking the limit as q tends to infinity as opposed to n tending to infinity, and
choosing β = 1 − δ for fixed 0 < δ < 1, so that 0 < ε < 1 − δ. We treat the sets
A2, A2′ , A4, A4′ using the same method as in Proposition 3.1, obtaining

lim
q→∞

#A2

#Fq
= lim

q→∞

#A2′

#Fq
= lim

q→∞

#A4

#Fq
= lim

q→∞

#A4′

#Fq
= 0.

For A3 and A′
3, we have that

A3 ⊔ A3′ ⊂ {C ∈ Fq : 1− δ − ε ≤ ϕ (ϑ (C/Fq)) ≤ 1− δ + ε} ,
and as 1− δ + ε < 1, Proposition 3.2 implies that this set is empty, so that

lim
q→∞

#A3

#Fq
= lim

q→∞

#A3′

#Fq
= 0.

Finally, for A1′ we write

A1′ = A2′ ⊔ A5′

with

A5′ = {C ∈ Fq : ϕ (ϑ (C/Fq)) ≤ 1− δ, C ∈ LI} .
Again,

lim
q→∞

#A2′

#Fq
= 0,

and Proposition 3.2 shows that A5′ is empty, so that

lim
q→∞

#A5′

#Fq
= 0

as well. Thus

ProbFq
(B(C/Fq) ≤ 1− δ) = lim

q→∞

#A1

#Fq
= 0,

and as δ > 0 was arbitrary, we obtain (12).
For (13), we take q to be any odd prime power and Fq to consist solely of

the elliptic curve E over Fq whose trace of the Frobenius is equal to 2; by the
proof of [18, Theorem 4.1], such an E exists and satisfies LI, and by Theorem 1.5,
B(E/Fq) = 1.

Finally, for (14), we take q = pm for some prime p and we take Fq to consist of
the set of elliptic curves E over Fq whose trace aE of the Frobenius is an integer
satisfying aE 6≡ 0 (mod p), |aE | < 2

√
q, and

2

b2

(
1−

√
(qb2 − 1)(b2 − 1)

)
< aE <

2

a2

(
1−

√
(qa2 − 1)(a2 − 1)

)
.

Note that for all sufficiently large q there exists such an integer aE for which this
inequality holds, and hence by the proof of [18, Theorem 4.1] there exists an elliptic
curve E over Fq satisfying LI with trace of the Frobenius equal to aE . It follows
that

a < 2

√
q + 1− aE
4q − a2E

< b
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and as it is shown in [7, §3] that

B(E/Fq) = 2

√
q + 1− aE
4q − a2E

,

the result follows. �

5. The Minimum of ϕ(U)

Let U(N) denote the space ofN×N unitary matrices, so that a matrix U ∈ U(N)
has eigenvalues eiθ1 , . . . , eiθN with −π ≤ θj ≤ π for all 1 ≤ j ≤ N . For real θ, the
characteristic polynomial ZU (θ) of U is defined to be

ZU (θ) = det
(
I − Ue−iθ

)
=

N∏

j=1

(
1− ei(θj−θ)

)
.

Let

(15) ϕ(U) =

N∑

j=1

1∣∣ZU
′ (θj)

∣∣ ,

so that

ϕ(U) = ϕ (θ1, . . . , θN ) =

N∑

j=1

N∏

k=1
k 6=j

1∣∣1− ei(θk−θj)
∣∣

=
1

2N−1

N∑

j=1

N∏

k=1
k 6=j

∣∣∣∣cosec
(
θk − θj

2

)∣∣∣∣.
(16)

We prove the following generalisation of Proposition 3.2.

Proposition 5.1. Let U ∈ U(N) be a unitary matrix with eigenvalues eiθ1 , . . . , eiθN ,
and let ϕ(U) = ϕ (θ1, . . . , θN ) be as in (15). Then the global minimum of ϕ occurs

precisely at the set of points
(
θ̃σ(1) + φ, . . . , θ̃σ(N) + φ

)
,

where σ ∈ SN , φ is a one-dimensional translation modulo 2π, and
(
θ̃1, . . . , θ̃N

)
=

(
− (N − 1)π

N
,− (N − 3)π

N
, . . . ,

(N − 1)π

N

)
.

Furthermore,

(17) ϕ
(
θ̃σ(1) + φ, . . . , θ̃σ(N) + φ

)
= 1.

From this, we obtain the result for the subgroup of unitary symplectic matrices,
namely Proposition 3.2, by setting N = 2g and restricting our values of (θ1, . . . , θ2g)
to be such that θj+g = −θj with 0 ≤ θj ≤ π for each 1 ≤ j ≤ g; note that this
restriction means that we lose the one-dimensional translation invariance modulo
2π of the variables of ϕ.

One can interpret Proposition 5.1 via a geometric argument. If z1, . . . , zN are N
points on the unit circle in the complex plane, then we may consider the product
of the chord lengths of chords from a single point zj to the other N − 1 points. We
can then think of ϕ as the sum of the inverses of these products indexed by the
starting points zj. Intuitively, we would expect the product of chord lengths to be
largest when averaged over the starting points when the N -tuple of points on the
unit circle are evenly spaced; consequently, we would expect ϕ to be smallest at
this same N -tuple.
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Proof of Proposition 5.1. We first prove that (17) holds. It suffices to prove this
when σ is the identity and φ = 0, as ϕ is invariant under permutations and one-
dimensional translations of the variables. From (16), we have that

ϕ
(
θ̃1, . . . , θ̃N

)
=

N∑

j=1

N∏

k=1
k 6=j

1∣∣1− e2πi(k−j)/N
∣∣ ,

as θj = (2j − 1−N)π/N . We obtain (17) by noting that for any 1 ≤ j ≤ N ,

N∏

k=1
k 6=j

1∣∣1− e2πi(k−j)/N
∣∣ =

N−1∏

k=1

1∣∣1− e2πik/N
∣∣ =

1

N
,

where the last step follows by taking x = 1 in the identity

N−1∑

j=0

xj =

N−1∏

k=1

(
x− e2πik/N

)
.

To prove that ϕ (θ1, . . . , θN ) ≥ 1 for all (θ1, . . . , θN ) ∈ [−π, π]N , we first note
that we may assume without loss of generality that −π < θ1 < . . . < θN <
π and that θ1 = −(N − 1)π/N , as ϕ is invariant under permutations and one-
dimensional translations modulo 2π of the variables. By applying the arithmetic
mean–geometric mean inequality to (16), we have that

ϕ (θ1, . . . , θN ) ≥ N

2N−1

N∏

j,k=1
j 6=k

∣∣∣∣cosec
(
θk − θj

2

)∣∣∣∣
1/N

=
N

2N−1

N−1∏

j=1

N∏

k=1

(cosecωjk)
1/N ,

where ωjk = ωjk (θ1, . . . , θN ) ∈ (0, π) is given by

ωjk =





θj+k − θk
2

if j + k ≤ N ,

π − θk − θj+k−N

2
if j + k > N ,

and we have used the fact that | cosec θ| = cosec |θ| and that cosec (π − θ) = cosec θ
for −π < θ < π, θ 6= 0. As

N∏

k=1

(cosecωjk)
1/N = exp

(
1

N

N∑

k=1

log cosecωjk

)
,

and as the function f(θ) = log cosec θ is convex on the interval (0, π), Jensen’s
inequality implies that

ϕ (θ1, . . . , θN ) ≥ N

2N−1

N−1∏

j=1

cosec

(
1

N

N∑

k=1

ωjk

)
.

Now

(18)

N∑

k=1

ωjk = jπ,

as this is a telescoping sum, and consequently

ϕ (θ1, . . . , θN ) ≥ N

2N−1

N−1∏

j=1

cosec

(
jπ

N

)
= N

N−1∏

j=1

1∣∣1− e2πij/N
∣∣ = 1.
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Finally, the function f(θ) = log cosec θ is strictly convex on (0, π), so equality from
the use of Jensen’s inequality can only occur if for each fixed 1 ≤ j ≤ N ,

ωjk = ωjk′

for all 1 ≤ k, k′ ≤ N , which, together with (18), implies that

ωjk =
jπ

N

for all 1 ≤ j, k ≤ N . As we assumed that θ1 = −(N − 1)π/N , it follows that
equality can only hold when

(θ1, . . . , θN ) =
(
θ̃1, . . . , θ̃N

)
=

(
− (N − 1)π

N
,− (N − 3)π

N
, . . . ,

(N − 1)π

N

)
. �

It is worth noting that this method also works for the more general function

N∑

j=1

∣∣ZU
′ (θj)

∣∣2k

where k < 0, which was studied by Hughes, Keating, and O’Connell [6] for its
relation to discrete moments of the derivative of the Riemann zeta function. They
calculated the asymptotics for large N of the integral

∫

U(N)

N∑

j=1

∣∣ZU
′ (θj)

∣∣2k dµHaar(U),

where µHaar is the Haar measure on U(N), and used this to conjecture the growth
in the variable T of the sum

Jk(T ) =
∑

0<γ≤T

|ζ′ (1/2 + iγ)|2k,

where we are assuming the Riemann hypothesis and the simplicity of the zeroes
of ζ(s). The method of proof of Proposition 5.1 shows that for k < 0, the global
minimum of

N∑

j=1

∣∣ZU
′ (θj)

∣∣2k

is 22k+1, and occurs at the points
(
θ̃σ(1) + φ, . . . , θ̃σ(N) + φ

)
.
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[17] T. J. Stieltjes, Lettre à Hermite de 11 juillet 1885, Lettre #79, in Correspondance d’Hermite

et de Stieltjes, Tome 1, editors B. Baillaud and H. Bourget, Paris, Gauthier–Villars, 1905,
160–164.

[18] William C. Waterhouse, “Abelian Varieties over Finite Fields”, Annales Scientifiques de
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