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A B S T R A C T

Urban green infrastructure, GI (e.g., parks, gardens, green roofs) are potentially important biodiversity habitats,
however their full ecological capacity is poorly understood, in part due to the difficulties of monitoring urban
wildlife populations. Ecoacoustic surveying is a useful way of monitoring habitats, where acoustic indices (AIs)
are used to measure biodiversity by summarising the activity or diversity of biotic sounds. However, the biases
introduced to AIs in acoustically complex urban habitats dominated by anthropogenic noise are not well un-
derstood. Here we measure the level of activity and diversity of the low (0–12 kHz, l) and high (12–96 kHz, h)
frequency biotic, anthropogenic, and geophonic components of 2452 h of acoustic recordings from 15 sites
across Greater London, UK from June to October 2013 based on acoustic and visual analysis of recordings. We
used mixed-effects models to compare these measures to those from four commonly used AIs: Acoustic
Complexity Index (ACI), Acoustic Diversity Index (ADI), Bioacoustic Index (BI), and Normalised Difference
Soundscape Index (NDSI). We found that three AIs (ACIl, BIl, NDSIl) were significantly positively correlated with
our measures of bioticl activity and diversity. However, all three were also correlated with anthropogenicl ac-
tivity, and BIl and NDSIl were correlated with anthropogenicl diversity. All low frequency AIs were correlated
with the presence of geophonicl sound. Regarding the high frequency recordings, only one AI (ACIh) was po-
sitively correlated with measured biotich activity, but was also positively correlated with anthropogenich ac-
tivity, and no index was correlated with biotich diversity. The AIs tested here are therefore not suitable for
monitoring biodiversity acoustically in anthropogenically dominated habitats without the prior removal of
biasing sounds from recordings. However, with further methodological research to overcome some of the lim-
itations identified here, ecoacoustics has enormous potential to facilitate urban biodiversity and ecosystem
monitoring at the scales necessary to manage cities in the future.

1. Introduction

With over half of the world’s human population now living in urban
areas (UN-DESA 2016), the global challenge is to design sustainable and
liveable cities (Elmqvist et al., 2013). A large body of evidence now
exists for the multiple human benefits of biodiversity in urban areas
through the provision of ecosystem services such as air filtration, pest
regulation, storm water management and food provision (Gómez-
Baggethun et al., 2013). In urban environments, the local provision of
these services can reduce human reliance on external ecosystems and
can be highly valuable both economically and socially (Gómez-
Baggethun and Barton, 2013). There is also an increasing amount of

research showing that cities can support high biodiversity, including
native endemic species (Aronson et al., 2014).

Urban green infrastructure (GI), the natural and semi-natural fea-
tures and green spaces in cities (European Commission 2012), provides
opportunities for biodiversity and ecosystems (Sadler et al., 2011;
Murphy et al., 2013). GI features and spaces vary widely and include,
but are not limited to, parks, gardens, biodiverse roofs and walls, street
trees, and sustainable urban drainage systems (Cvejić et al., 2015).
Some cities have turned to increasing GI as a means of improving urban
environmental quality, while being cheaper than traditional engineered
solutions to urban environmental problems (e.g. Seattle's GI flood
management strategy, Stenning 2008). However, the suitability of this
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wide variety of urban GI to support biodiversity and ecosystems is often
not well quantified (Pataki et al., 2011; European Commission, 2012).

To understand how sustainable and liveable cities can be designed it
is crucial to understand how biodiversity responds to different types of
urban GI. Greater efforts must be put into monitoring the biodiversity
and ecosystems supported by urban GI (Kremer et al., 2016) so that
urban planning decisions can be informed by a strong evidence base.
The use of ecoacoustics as a method of quantifying ecological com-
munities and their habitats has received increasing attention (Towsey
et al., 2014a; Merchant et al., 2015; Sueur and Farina 2015). Due to
recent advances in passive acoustic recording technology, large vo-
lumes of acoustic data can be collected with relative ease (Blumstein
et al., 2011; Towsey et al., 2014a). However, the extraction of mean-
ingful information from these large datasets is very challenging. Spe-
cies-specific acoustic monitoring efforts have focussed on the develop-
ment of classification algorithms to automatically identify the sounds
emitted by organisms (Walters et al., 2012; Aide et al., 2013; Stowell
and Plumbley, 2014) but they are limited to a small number of species
and do not provide information on the wider environment. Acoustic
indices (AIs) are novel methods that attempt to overcome these chal-
lenges of quantifying the biotic and anthropogenic sounds (Sueur et al.,
2014) in the large volumes of data generated by ecoacoustic mon-
itoring.

Although AIs may provide a useful method to measure biodiversity,
their sources of bias in acoustically complex urban habitats dominated
by anthropogenic noise is not well understood. Verification of the
measures of biotic sound captured by AIs has tended to focus on less
disturbed environments than cities, with the exception of Joo et al.
(2011) where a positive relationship was reported between avian di-
versity and AI values along an urban-rural gradient. A range of sounds
have been found to bias AIs including road traffic (Fuller et al., 2015),
human speech (Pieretti et al., 2011), rain and wind (Depraetere et al.,
2012; Towsey et al., 2014b). However, formal testing of the bias caused
by non-biotic sounds has tended to group non-biotic sounds as ‘back-
ground noise’ rather than examine the effect of individual sound
sources (Towsey et al., 2014b; Gasc et al., 2015), and the response of
AIs to the full spectrum of sounds typical of the urban environment
remains to be tested. Additionally, the application of AIs has been
limited to the audible (20 Hz–20 kHz) spectrum, and testing has tended
to focus on the bird ecoacoustic community using data from ornitho-
logical surveys (Boelman et al., 2007; Pieretti et al., 2011) or from
identifications of bird vocalisations within recordings (Farina et al.,
2011; Depraetere et al., 2012; Kasten et al., 2012). However there are a
number of taxonomic groups common in cities, including bats and in-
vertebrates, which use the ultrasonic spectrum ( > 20 kHz). Limiting
the application of AIs to the lower frequency spectrum excludes entire
taxonomic groups.

Here, we evaluate four AIs on their ability to measure biotic sound
captured using low (0–12 kHz, l) and high (12–96 kHz, h) frequency
sound recordings from 15 sites across Greater London, UK and in-
vestigate which non-biotic sounds are responsible for any bias in the
AIs. The AIs tested include: Acoustic Complexity Index (ACI) (Pieretti
et al., 2011), Acoustic Diversity Index (ADI) (Villanueva-Rivera et al.,
2011), Bioacoustic Index (BI) (Boelman et al., 2007), and Normalised
Difference Soundscape Index (NDSI) (Kasten et al., 2012). Of the mul-
titude of AIs that exist (Sueur et al., 2014), we test these four as they are
designed to be robust to anthropogenic noise based on assumptions
regarding the characteristics of biotic and anthropogenic sound (Fig. 1).
Commonly used indices that have already been shown to be sensitive to
‘background noise’ were not tested here (Sueur et al., 2014; Gasc et al.,
2015). There have been varying definitions of the different sounds that
constitute a soundscape. Following Pijanowski et al. (2011), we define
biotic as sounds generated by non-human biotic organisms, anthro-
pogenic as sounds associated with human activities, and geophonic as
non-biological ambient sounds e.g. wind and rain. We compare the
activity and diversity of the biotic and non-biotic (anthropogenic and

geophonic) components of our recordings to those values obtained by
AIs.

2. Materials and methods

2.1. Data collection

In order to maximise the variability in urban sounds with which to
test the performance of the AIs, we selected 15 recording sites in ha-
bitats within and around Greater London, UK ranging from 995 to
14248 m2 (Fig. 2, Table S1), and used a sampling protocol to capture
the seasonal variability in the soundscape. In this analysis, we did not
aim to test the effect of different habitats or environmental conditions
on the performance of the AIs. GI selection was limited to churches and
churchyards as they are spatially evenly distributed due to their legal
protection in the UK (Disused Burial Grounds Act, 1884). They also
represent a wide range of urban environments that are similar to other
types of urban GI due to the heterogeneity of management regimes. For
example, some undergoing intensive maintenance similar to urban
parks, others have large areas often left alone making them more si-
milar to urban protected areas, and some sites that are managed by
congregations are often characterised by ornamental planting making
them quite similar to domestic gardens. Sites were classified using
Google Earth (Google Earth, 2012) into three size categories (including
the building footprint): (i) small (< 0.5 ha); (ii) medium (0.5-1.5 ha);
and (iii) large (> 1.5 ha); and three urban intensity categories based on
the predominant land cover surrounding sites within a 500 m radius: (i)
high (typically contiguous multi-storey buildings); (ii) medium (typi-
cally detached and semi-detached housing); and (iii) low (typically
fields and/or woodland) (Fig. 2, Table S1).

Acoustic recordings were collected for 7 consecutive days at each
site to capture the daily variability in activity across a week. In order to
maximise the variability in the biotic sounds recorded, surveys were
conducted between June and October 2013 which sampled both the
avian breeding season (March-July) (Cramp 1994), and the peak in
activity and diversity of a range of other taxonomic groups including
bats (Kunz and Fenton, 2003) and invertebrates (Chinery 1993; Tolman
and Lewington 2009). Surveys were conducted in the summer when
ecological activity is highest in the UK, rather than in winter when the
variability of the soundscape is more limited to just anthropogenic and
geophonic sounds. At each location, a Song Meter SM2+ and a
SM2BAT+ digital audio field recorder (Wildlife Acoustics, Inc., Con-
cord, Massachusetts, USA) were deployed, recording sound within the
low (0–12 kHz, l) and high (12–96 kHz, h) frequency ranges. The AIs
tested were developed using a range of upper spectral thresholds, i.e.
8 kHz for BI (Boelmann et al., 2008) and NDSI (Kasten et al., 2012), and
11–12 kHz for ADI (Villanueva-Rivera and Pijanowski, 2014) and ACI
(Pierretti et al., 2011). For consistency, we tested all AIs using an upper
threshold of 12 kHz. We acknowledge that this would have included
frequencies above the thresholds of the BI and NDSI, but this is unlikely
to affect our results as few sounds occur between 8 and 12 kHz (Fig. 3).
Each recorder was equipped with a single omnidirectional microphone
(frequency response: −35 ± 4 dB) oriented horizontally at a height of
1 m. Files were saved in .wav format. SM2+ recordings were made in
manageable chunks of 29 min of every half hour leading to a total of
146,160 min of recording (9744 min for each of the 15 sites).
SM2BAT+ recordings were made using an internal trigger for> 12
kHz sounds and set to continue recording until no trigger was detected
for a 2.0 s period, leading to a total of 474 min of high frequency re-
cording (median 8.8, [5.4 and 24.8 the lower and upper 95% CI ob-
servations respectively] minutes per site).

Each 29-min low frequency recording was divided into 1-min audio
files using Slice Audio File Splitter (NCH Software Inc. 2014) and each
high frequency recording was reduced to 2-s audio files using Sound
eXchange (Bagwell, 2014). In order to maximise the variability of
sounds with which to test the AIs, twenty-five 1-min low frequency and
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25 2-s high frequency recordings were randomly selected from each site
resulting in a dataset of 375 min of low frequency and 12.5 min of high
frequency audio recordings. We used a random sample rather than
focussing on times of peak biotic activity, because anthropogenic sound
tends to be lower at these times of day (i.e. dawn and dusk), which
would have reduced the variability of anthropogenic sounds with which
to test the AIs. A wide range of sampling protocols has been used in
ecoacoustic studies to date. For example, Pieretti and Farina (2013)
used 4 1-min samples from 8 recording sites to investigate the effect of
traffic noise on the relationship between the ACI and avian singing
dynamics, while Towsey et al. (2014b) used 60-min per day for 5 days
from a single site to test the relationship between AIs and avian species
richness. Our sampling protocol is similar to that used by Fuller et al.
(2015) who also investigated the performance of a suite of AIs in an
anthropogenically-disturbed environment.

2.2. Acoustic analysis

To compare the measures of biotic and non-biotic (anthropogenic

and geophonic) components of our recordings to those values obtained
by AIs, we generated three measures of acoustic data for each audio
recording: acoustic activity (number of spectrogram pixels occupied by
sound), acoustic diversity (number of unique sound types), and dis-
turbance (ratio between biotic and anthropogenic acoustic activity). To
generate these measures, we manually annotated spectrograms of each
recording, computed as the log magnitude of a discrete Fourier trans-
form (non-overlapping Hamming window size = 720 sam-
ples = 10 ms), using a bespoke software programme AudioTagger
(available: https://github.com/groakat/AudioTagger). We then loca-
lised the time and frequency bands of discrete sounds by drawing
bounding boxes as tightly as visually possible within spectrograms
displayed on a Dell UltraSharp 61 cm LED monitor with a Nvidia
Quadro K600 graphics card. Types of sound, such as “invertebrate”,
“rain”, and “road traffic”, were identified by A.F. by looking for typical
patterns in spectrograms (Fig. 3), and by listening to the audio samples
represented in the annotated parts of the spectrogram. An urban
transport expert provided support in the identification of the complex
sounds produced by transport infrastructure. Electrical buzzes and

Fig. 1. Calculation of four Acoustic Indices (AIs) on example ecoacoustic
data. Data is represented in spectrograms (FFT non-overlapping Hamming
window size=1024) where blue to yellow corresponds to increasing
sound amplitude (dB). Spectrograms represent calculations of (A) Acoustic
Complexity Index (ACIl), (B) Acoustic Diversity Index (ADIl), (C)
Bioacoustic Index (BIl), and (D) Normalised Difference Soundscape Index
(NDSIl). Frequency or temporal bins are indicated in white (see Table S2
for specifications). ACIl sums the absolute difference in signal power
within frequency bins over time using a sliding window and defined
temporal steps (indicated by arrow). ADIl is calculated as the Shannon’s
diversity index for each recording based on the signal power occupancy of
each 1 kHz frequency band. BIl calculates the signal power within 2–8 kHz
frequency band of recordings. NDSIl calculates the ratio of signal power in
the frequency bands between 1 and 2 kHz and 2–8 kHz to measure the
level of anthropogenic disturbance on the landscape. (For interpretation of
the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 2. Locations and characteristics of 15 survey sites across
Greater London, UK. Dots and numbers indicate sites.
Relative site size indicated by dot size, urban intensity in-
dicated by dot colour (red: high, blue: medium, green: low).
Location of numbers along date scale indicates date of survey
at each site. Boundary data from the UK Census (http://www.
ons.gov.uk/, accessed 04/11/2014).
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crackles from the recording devices were classified as anthropogenic
sound, and this electrical self-noise will vary depending on the re-
cording devices used.

2.2.1. Acoustic activity
Acoustic activity within recordings was measured by the number of

spectrogram pixels contained by the bounding boxes. This

Fig. 3. Examples of all sound types present in re-
cordings. Bird and bat sounds were identified fur-
ther to species with one example of each given
here. Unidentified sounds not shown due to wide
range of sound types within this group. Data is
represented in spectrograms (FFT non-overlapping
Hamming window size=1024) where blue to
yellow corresponds to sound amplitude (dB).
Frequency (kHz) and time (s) are represented on
the y- and x-axes, respectively. Spectrograms re-
present biotic (sounds generated by non-human
biotic organisms), anthropogenic (sounds asso-
ciated with human activities including human
speech) and geophonic sounds, where l and h de-
note low (< 12 kHz) and high (> 12 kHz) fre-
quency sound, respectively. (For interpretation of
the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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measurement was conducted by AudioTagger based on the x and y-
coordinates of the corners of the bounding boxes. Sound types (n = 68)
(Fig. 3) were grouped into four broad sound classes: (a) biotic (sounds
generated by non-human biotic organisms, e.g. blue tit, common pi-
pistrelle, n = 47 types); (b) anthropogenic (sounds associated with
human activities including human speech, n = 18); (c) geophonic (rain
and wind, n = 2); and (d) unidentifiable sounds (n = 1). The activity of
each sound class within recordings was calculated as the sum of activity
(number of spectrogram pixels contained by the bounding boxes) of all
sound types within each class.

2.2.2. Acoustic diversity
Acoustic diversity was measured by the number of unique sound

types associated with the relevant sound class identified in each re-
cording. For biotic diversity, sound types correspond directly to species
scientific names. Where species identification was not possible, e.g. in
the case of invertebrate sounds and harmonics of bird vocalisations in
the high frequency recordings, these sounds were identified to one of
two taxonomic groups: unidentified birds (3.2% of biotic sounds re-
corded) or unidentified invertebrates (0.3%). Low frequency bioticl
sounds were identified and verified by two independent ecological ex-
perts; high frequency biotich sounds were identified to species-level
using Sonobat v.3.1.6p (Szewczak, 2010) and iBatsID (Walters et al.,
2012) which uses ensembles of artificial neural networks to probabil-
istically classify European bat calls. To minimise error, taxonomic
classifications were manually validated using a classification prob-
ability threshold of> 70%. Anthropogenic and geophonic diversity
were calculated as the number of sound types associated with the an-
thropogenic and geophonic sound classes within each recording. Uni-
dentified sound diversity was treated as a presence/absence as we did
not differentiate between different types of unidentifiable sounds.

2.2.3. Disturbance
The NDSIl quantifies disturbance based on the ratio of biotic to

anthropogenic sound in recordings (Kasten et al., 2012, Fig. 1D). To test
the NDSIl with its intended measure we calculated our own measure of
disturbance (γ) using our observed activity measures as follows:

=
−

+

γ
β α
β α

where β and α are the total biotic and anthropogenic acoustic activity
in each recording, respectively. Observed geophonic and unidentified
acoustic activity were used as additional measures of disturbance.

2.2.4. Acoustic indices
Four AIs (ACIl, ADIl, BIl and NDSIl) were calculated for each low

frequency recording and two AIs for each high frequency recording
(ACIh and ADIh) in R v.3.1.2 (R Core Team 2014) using the ‘sounde-
cology’ package v.1.1.1 (Villanueva-Rivera and Pijanowski, 2014)
(Fig. 1, Table S2). We did not test the BI and NDSI with high frequency
data as this would require changing their biotic and anthropogenic
frequency thresholds. Such adaptation would require investigation of
the spectral characteristics of high frequency biotic and anthropogenic
sounds which is beyond the scope of this study.

2.3. Statistical analysis

To investigate the measures of biotic sound captured by the AIs and
which non-biotic sounds are responsible for any bias, we fit generalised
linear (GLMER) or linear (LMER) mixed-effects models in R using the
‘lme4′ v.1.1-7 (Bates et al., 2014) and ‘glmmADMB’ v.0.8.0 (Skaug
et al., 2011) packages. To examine the measures of biotic sound cap-
tured by the AIs, models were fit with AIs as response variables,
acoustic measures from acoustic and visual analysis of recordings as
fixed effects, and site as a random effect. To investigate which non-
biotic sounds were responsible for any bias, we fit the same models as

above but with anthropogenic sound type as fixed effects. All variables
were standardised prior to analysis to make them comparable as the
measures of acoustic activity and diversity varied greatly across sound
classes/types (Schielzeth 2010). We used GLMERs to fit ADIl and ACIh
data with a Gaussian error structure and we applied a log link function
and a Lambert-W transformation (Goerg 2011) to the ACIl data to
normalise its heavy-tailed distribution. Due to the bounded nature of
the NDSIl (-1 to 1), the data was transformed according to the formula
(NDSIl + 1)/2 and fit with a beta error structure (Cribari-Neto and
Zeileis 2009). All other data were normally distributed and were fit
with LMERs. Full models were checked for assumption violation of
mixed-effect models of correlation of fixed-effects, collinearity, homo-
scedasticity, residual normality and influence of outliers using linear
regression and residual plots. In all multivariate analyses, the relative
importance of predictor variables was computed as the sum of the
Akaike weights (based on the Akaike information criterion, AIC) for the
variables included in the averaged models (Burnham and Anderson
2002). Parameter estimates were averaged across models with
ΔAIC< 4, and the corrected AIC was used to select and rank the most
parsimonious models using the ‘MuMIn’ package v.1.12.1 (Bartoń
2012).

3. Results

3.1. Urban soundscape composition

Most sites were dominated by both low and high frequency an-
thropogenic activity. Anthropogenic sound in our dataset was com-
posed of a large variety of sound types, predominantly road traffic
sounds, followed by human voices, electrical buzzes and crackles from
the recorders and the environment, and air traffic (56.5%, 5.7%, 4.0%
and 2.6% of total activity, respectively) (Fig. 4). Biotic sound was
mainly associated with birds and bats (9.3% and 2.3% of total activity,
respectively). Other less common biotic sounds were produced by in-
vertebrates, foxes (Vulpes vulpes) and grey squirrels (Sciurus car-
olinensis).

3.2. Acoustic activity

Three AIs (ACIl, BIl, and NDSIl) were significantly positively corre-
lated with bioticl activity (Table 1, Table S3), but two AIs (ACIl, BIl)
were also correlated positively with anthropogenicl activity. NDSIl was
significantly negatively correlated with anthropogenicl activity. All
except one AI (BIl) was correlated positively with geophonicl activity. In
the high frequency recordings, ACIh was significantly positively corre-
lated with both biotich and anthropogenich activity, while being un-
biased by geophonich activity. ADIh was not correlated with either
biotich or anthropogenich activity, and was positively correlated with
geophonich activity.

3.3. Acoustic diversity

Three AIs (ACIl, BIl, and NDSIl) were significantly positively corre-
lated with bioticl diversity (Table 1, Table S4). However, BIl was posi-
tively correlated with anthropogenicl diversity, while ADIl and NDSIl
were negatively correlated. All AIs were significantly positively corre-
lated with the diversity of geophonicl sound. ACIh was not correlated
with any of the acoustic diversity covariates, while ADIh was negatively
correlated with both biotich and anthropogenich diversity and positively
with the diversity of geophonich sound.

3.4. Disturbance

NDSIl was significantly positively correlated with both anthro-
pogenicl (γ) disturbance, and geophonicl activity (Table 1, Table S5).
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3.5. Acoustic sound bias

All AIs were significantly correlated with the presence of one or
more anthropogenic sounds in recordings (Table 2, Table S6). Human
speech was correlated with all four low frequency indices: positively
with ACIl and BIl and negatively with the ADIl and NDSIl. Braking ve-
hicles, road traffic and electrical sounds were negatively correlated
with the ACIl, ADIl and NDSIl. ACIh was significantly positively corre-
lated with electrical and braking vehicle sounds, and ADIh was nega-
tively correlated with the sound of braking vehicles.

4. Discussion

This is the first examination of the performance of a suite of AIs in
the urban environment. Our acoustic data indicates that the urban
environment is dominated by a much wider range of anthropogenic
sounds than has been dealt with by research into AIs to date. Our results
reveal that in terms of both biotic activity and diversity, this subset of
published AIs either do not measure biotic sound or are biased by non-
biotic sound in recordings. In only a few cases, could the AIs be used
reliably to measure biotic sound in the urban environment during

Fig. 4. Average sound activity and diversity per site
(n = 15) in Greater London for A) and B) each sound
class, and C) the most common anthropogenic and
biotic sound types. Acoustic activity reported as
number of pixels (px, total = 75858750) occupied
by each sound class/type in the spectrograms of the
25 l-min low and 25 2-s high frequency recordings
per site, where the x-axis is scaled to 106. Acoustic
diversity reported as the number of sound types,
where species are treated as unique sound types in
the case of birds and bats, within each sound class.
The bar indicates the median, the box indicates the
inequality range, the whiskers indicate the range,
and the points indicate the site data. ‘Anthro’ in-
dicates anthropogenic sounds and ‘Unident’ in-
dicated unidentifed sounds.

Table 1
Averaged mixed-effects models describing acoustic covariates of four Acoustic Indices (AIs), for sound class activity, diversity, and disturbance. ACI represents Acoustic Complexity Index,
ADI Acoustic Diversity Index, BI Bioacoustic Index, and NDSI Normalised Difference Soundscape Index, where l and h denotes low and high frequency versions, respectively. Models
represent best (ΔAICc< 4) models from full candidate sets (Tables S3-5 for full models). Bold type indicates 95% significant covariates. Values represent regression slope (standard error,
Z-value), relative importance of covariate across full candidate model set, and − represents covariates< 50% of importance which were omitted.

Acoustic Indices

Low frequency High frequency

Covariates ACIl ADIl BIl NDSIl ACIh ADIh

Activity
Intercept 1801.70 (1.76, 1022.5) 0.20 (0.09, 2.3) 9.91 (1.29, 7.7) −0.45 (0.17, 3.86) −0.03 (0.01, 5.1) 2.15 (0.25, 8.6)
Biotic 8.91 (0.78, 11.4), 1 – 2.11 (0.36, 5.9), 1 0.30 (0.04, 6.9), 1 0.04 (0.01, 15.2), 1 –
Anthropogenic 2.68 (1.25, 2.1), 0.69 −0.09 (0.05, 1.7), 0.61 3.52 (0.59, 5.9), 1 −0.23 (0.07, 3.1), 1 0.02 (0.01, 4.3), 1 –
Geophonic 7.18 (0.68, 10.5), 1 0.08 (0.01, 5.1), 1 – 0.19 (0.04, 5.2), 1 – 0.07 (0.04, 1.7), 0.63
Unidentified – −0.29 (0.14, 2.0), 1 – – – 0.14 (0.04, 3.4), 1

Diversity
Intercept 1800.56 (1.90, 945.0) 0.44 (0.08, 5.4) 11.14 (1.70, 6.6) −0.20 (0.13, 1.5) −0.01 (0.01, 0.7) 2.35 (0.27, 8.7)
Biotic 4.16 (0.43, 9.6), 1 – 0.95 (0.20, 4.8), 1 0.09 (0.02, 4.0), 1 – −0.26 (0.13, 2.1), 0.78
Anthropogenic 0.96 (0.65, 1.5), 0.51 −0.13 (0.02, 6.7), 1 0.71 (0.30, 2.3), 0.93 −0.20 (0.04, 5.6), 1 – −0.23 (0.12, 2.1), 0.74
Geophonic 26.25 (2.59, 10.1), 1 0.21 (0.05, 3.8), 1 2.45 (1.16, 2.1), 0.79 0.46 (0.13, 3.5), 1 – –
Unidentified 3.29 (1.87, 1.8), 0.62 −0.24 (0.06, 3.9), 1 – – – 0.38 (0.19, 2.0), 0.77

Disturbance
Intercept 0.02 (0.11, 0.1)
Disturbance 0.73 (0.07, 10.0), 1
Geophonic 0.14 (0.04, 3.8), 1
Unidentified –
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appropriate weather conditions: the ACIl could be used to measure low
frequency bioticl diversity while the NDSIl could be used to measure the
ratio of bioticl to anthropogenicl activity as a proxy for disturbance.

If AIs are to be used in the urban environment, they must be im-
proved to be robust to the high diversity of anthropogenic sounds in this
environment. Our recordings were dominated by road traffic sound and
also contained a large number of other anthropogenic sounds. The BIl
was biased by the fewest anthropogenic sound types being affected only
by human speech. However, we found several anthropogenic sounds
bias the other AIs tested here, this is in concordance with previous
studies (Pieretti and Farina 2013; Towsey et al., 2014b; Fuller et al.,
2015). Common methods for dealing with these sounds prior to analysis
using AIs include the use of filters to remove low frequency sound from
recordings (Sueur et al., 2008; Towsey et al., 2014b; Pieretti et al.,
2015) and the manual identification and removal of recordings con-
taining biasing sounds (Gasc et al., 2013; Rodriguez et al., 2014). The
former method is not suitable for the urban environment as many of the
anthropogenic sounds recorded here occupy the same frequencies as
biotic sound (Fig. 3). The latter is impractical when considering the
large volumes of data typically generated by ecoacoustic monitoring
(Towsey et al., 2014a). Our challenge is to find better ways of reducing
the bias caused by these sounds. Automated methods for identifying
multiple sound types, such as the machine-learning techniques used for
species identification (Walters et al., 2012; Stowell and Plumbley,
2014), could be used to identify and remove biasing sounds prior to the
application of AIs. For example, if the BIl was used in combination with
a detection algorithm for human speech it could be a suitable AI for use
in the urban environment. The identification of sounds from within the
large datasets typical of ecoacoustics is a valuable area of future re-
search.

It is difficult to interpret the negative bias caused by road traffic in

our dataset as the actual amount of biotic sound in the environment
might be depressed due to an effect of traffic noise on species. For ex-
ample, signal-generating organisms have been shown to respond to
traffic noise in multiple ways, including changing the amplitude
(Pieretti and Farina, 2013) and pitch (Lampe et al., 2012) of acoustic
signals, to altering habitat use (McClure et al., 2013), and foraging
behaviour (Schaub et al., 2008). Simulation techniques such as those
employed by Gasc et al. (2015) that control the amount of biotic sound
in recordings while manipulating traffic noise may help to clarify
whether the bias of traffic sound is a methodological shortcoming of AIs
or a product of the ecological effects of traffic noise on biodiversity.

Geophonic sounds have been shown to bias AIs (Towsey et al.,
2014b; Gasc et al., 2015) and our results reveal that this rule holds in
the urban environment. However, the heterogeneity of the urban en-
vironment (Grimm et al., 2008) may greatly influence the strength of
this relationship across a city. For example, a green roof located on top
of a ten-storey building is more exposed to wind and rain events than an
urban park sheltered by buildings and mature trees. Therefore, the
suitability of using AIs in the urban environment may be highly site
specific. Commonly used methods for reducing the bias of geophonic
sounds are similar to those used for anthropogenic sounds including
low frequency filters (Sueur et al., 2008; Pieretti et al., 2015) and
manual identification and exclusion of recordings (Boelman et al.,
2007; Gasc et al., 2013; Rodriguez et al., 2014). However the same
issues that limit the use of these methods for anthropogenic sounds also
apply for geophonic sounds: spectral overlap with biotic sounds and
large volumes of recordings. Methods must be developed that are robust
to the characteristic broad frequency ranges and modulations of geo-
phonic sound.

In this study we did not test the effect of environmental factors on
the performance of the AIs, but such research is required to understand
what can be inferred about urban habitats from AIs. Research in non-
urban habitats has revealed that environmental factors do impact the
performance of AIs, for example in temperate woodlands the correla-
tion between biodiversity and AIs weakens with increasing anthro-
pogenic disturbance (Depraetere et al., 2012). However, the funda-
mental relationship between the acoustic and physical environments
requires further investigation. In spite of suggestions about how bio-
diversity may relate to spectral diversity (Krause and Farina, 2016), it
remains unclear what can be inferred about the physical environment
from the soundscape. In addition, species have highly variable acoustic
detection probabilities (Wiley and Richards, 1978), and it is not clear
what can be inferred about communities from measures that are de-
rived solely from the species which emit sound at sufficient volume (dB)
to be detected by acoustic sensors. Until these relationships are better
understood, ecoacoustic monitoring should be used whilst under-
standing the limitations of the approach.

Our study could be improved by including more than one type of
urban land use. Using church and churchyard green space will have
limited the sounds recorded to those of the biotic communities and
physical environments associated with these areas (Irvine et al., 2009).
However, our use of sites that represent a range of sizes and levels of
urban intensity spread widely across the city would have maximised the
range of potential soundscapes recorded on this type of GI. Our data
collection was also limited to a single city in a single country. Cities
may be characterised by unique acoustic profiles (Aiello et al., 2016)
due to factors such as industries present, modes of public transport and
spatial configurations of the built environment which impact the pro-
pagation of sound through the city (Piercy et al., 1977). Conducting our
study in a large and heterogeneous city such as London meant we were
able to record soundscapes that characterise a wide range of urban
environments. Due to the lack of automated tools for sound detection
and identification, we were unable to test the AIs on our entire dataset
as manual acoustic data processing is highly time-consuming. Our use
of 25 low and high frequency recordings per site was based on practi-
cality and is similar to previous work on AIs from disturbed

Table 2
Averaged mixed-effects models describing acoustic covariates of four Acoustic Indices
(AIs), for the presence of anthropogenic sound types. ACI represents Acoustic Complexity
Index, ADI Acoustic Diversity Index, BI Bioacoustic Index, and NDSI Normalised
Difference Soundscape Index, where l and h denotes low and high frequency versions,
respectively. Models represent best (ΔAICc< 4) models from full candidate sets (Table
S6 for full models). Bold type indicates 95% significant covariates. Values represent re-
gression slope (standard error, Z-value), relative importance of covariate across full
candidate model set, and − represents covariates< 50% of importance which were
omitted.

Acoustic Indices

Low frequency

Covariates ACIl ADIl BIl NDSIl

Intercept 1814.02 (3.06,
591.5)

0.50 (0.09,
5.8)

10.32
(1.65, 7.9)

0.07 (0.14,
0.5)

Air Traffic – −0.20 (0.06,
3.2), 1

– −0.42 (0.11,
3.7), 1

Beep – – – –
Braking

vehicle
−3.23 (2.14,
1.5), 0.52

−0.15 (0.07,
2.1), 0.84

– −0.17 (0.10,
1.7), 0.61

Electrical −5.19 (2.03,
2.5), 0.92

−0.25 (0.05,
4.9), 1

– −0.17 (0.09,
1.8), 0.66

Road traffic −7.03 (2.32,
3.0), 1

−0.21 (0.05,
4.4), 1

– −0.48 (0.11,
4.5), 1

Human Speech 10.85 (2.24,
4.8), 1

−0.20 (0.06,
3.2), 1

3.19 (0.89,
3.6), 1

−0.31 (0.11,
2.9), 1

High frequency
ACIh ADIh

Intercept −0.01 (0.01,
0.4)

2.27 (0.22,
10.2)

Braking
vehicle

−0.03 (0.01,
2.3), 0.90

−0.76 (0.19,
1.0), 1

Electrical 0.04 (0.01,
2.4), 0.93

–

Metal – –
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environments (Fuller et al., 2015). Sites were not sampled system-
atically across the survey period in terms of urban intensity and size due
to site access restrictions, which resulted in a slight bias towards sam-
pling low urban intensity sites in spring, and no sampling over winter
periods. However, because we were testing the performance of AIs by
maximising variation in soundscapes recorded, rather than comparing
the AIs across sites, we do not believe that our sampling design would
have had an impact on the overall conclusions of the study. For ex-
ample, we found all AIs to be biased by non-biotic sound despite
sampling during the times when biotic sound would have been at its
highest, therefore this finding would have remained consistent if we
had also sampled during times such as winter when biotic sound is
lower and non-biotic sound dominates the urban environment. Our
recordings were randomly selected within sampling weeks between the
months of June-October so we were unable to investigate the effect of
seasonality or daily variation on the acoustic components investigated.
Due to power and storage constraints, our use of the SM2BAT+ trigger
to record high frequency sounds means that we were unable to test the
AIs on silent high frequency recordings. Finally our use of humans to
detect, classify and measure sounds in our recordings, would have in-
troduced error and bias into our data (Kershenbaum et al., 2014). For
example, using bounding boxes for detecting sounds presumes that the
extent of the sound can be accurately quantified, and the activity of
sounds that did not completely fill the shape of the box may have been
inflated. Development of machine-learnt algorithms for the detection
and classification of urban sounds in audio recordings (Salamon and
Bello 2015) could reduce the subjectivity of using humans to identify
and annotate sounds in the future.

4.1. Application

There is growing recognition from government, industry and the
environmental sector that urban GI is not currently monitored suffi-
ciently to fulfil one of its key roles of supporting urban biodiversity and
ecosystems (UK-GBC, 2009; European Commission, 2012; UK
Parliament, 2013). It is being increasingly recognised that there is a
positive link between human well-being and biodiversity in the urban
environment (HM Government, 2010; UNEP-WCMC, 2010; Dale et al.,
2011), and government, industry and the environmental sector are
hungry for new methods to make urban biodiversity monitoring easier
and more reliable. If AIs are to be used, biasing sounds must be removed
from recordings, prior to the calculation of AIs, such as has been done in
marine environments to remove anthropogenic seismic exploration
signals from recordings prior to the calculation of AIs (Parks et al.,
2014). With this pre-processing the AIs could be used to measure a
range of biotic factors in urban areas: activity could be monitored using
the ACIl, BIl, NDSIl, and ACIh, while diversity of organisms could be
monitored using the ACIl, BIl, NDSIl and ADIh. The NDSIl which was
designed to measure disturbance (Kasten et al., 2012) could be used to
monitor long-term trends in human disturbance at individual sites.
However, we do not recommend the use of AIs on recordings without
the prior removal of biasing sounds. The use of automated methods
such as machine-learnt algorithms to detect and identify biasing sounds
could make this pre-processing feasible with large ecoacoustic datasets.
The effect of this pre-processing on AI measures must be tested before
AIs can be used in the urban environment. As the global human foot-
print increases (UN-DESA, 2015), ecoacoustic scientists and practi-
tioners need to be increasingly aware of the range of anthropogenic
sounds that human activity generates such as those identified here, and
take steps to reduce their effect on ecoacoustic measures of biodiversity.

5. Conclusions

Ecoacoustics presents a promising tool to facilitate urban biodi-
versity monitoring by making it possible to collect and process the
volumes of data required to monitor cities at large spatial and temporal

scales. By testing the application of existing AIs to measure biotic sound
in this highly complex and anthropogenically disturbed environment,
we show that there is potential in this field but much area for im-
provement. With the development of better methods for measuring
urban biotic sound that are robust to the quantity and diversity of non-
biotic sounds in this environment, ecoacoustics could lead the way in
smart nature monitoring of our future cities.

6. Data accesibility

All acoustic data created by AudioTagger and all R code is available
at https://doi.org/10.6084/m9.figshare.c.3361488.v1.
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