
Bringing SDN to the Mobile Edge
Konstantinos Poularakis‡, Qiaofeng Qin‡, Erich Nahum�, Miguel Rio∗, Leandros Tassiulas‡

‡Department of Electrical Engineering and Institute for Network Science, Yale University, USA
�IBM T. J. Watson Research Center, USA

∗Department of Electrical and Electronic Engineering, University College London, UK

Abstract—Nowadays, Software Defined Network (SDN) ar-
chitectures and applications are revolutionizing the way wired
networks are built and operate. However, little is known about
the potential of this disruptive technology in wireless mobile
networks. In fact, SDN is based on a centralized network
control principle, while existing mobile network protocols give
emphasis on the distribution of network resources and their
management. Therefore, it is challenging to apply SDN ideas
in the context of mobile networks. In this paper, we propose
methods to overcome these challenges and make SDN more
suitable for the mobile environment. Our main idea is to combine
centralized SDN and distributed control in a hybrid design that
takes the best of the two paradigms; (i) global network view and
control programmability of SDN and (ii) robustness of distributed
protocols. We discuss the pros and cons of each method and
highlight them in an SDN prototype implementation built using
off-the-shelf mobile devices.

I. INTRODUCTION

A. Motivation

Software Defined Network (SDN) technology promises to
advance communication networks to a whole new level of
programmability, which will allow to manage network re-
sources on demand and at a granular level, and offer more
flexible services to users [1]. The main concept of SDN is to
separate network control functions (control plane) from data
forwarding devices (data plane) and shift them to a logically
centralized and programmable network entity, the controller.
Up to date, the vast majority of SDN studies refer to wired
infrastructures, i.e., data center and ISP networks [2], [3].
Little is known today about the potential of this disruptive
technology in wireless mobile networks.

A major challenge that holds back the SDN penetration
in mobile networks is their high level of volatility and the
difficulty in establishing reliable communication between the
control and data planes. For example, if the SDN controller
loses connectivity to the mobile nodes, it will be impossible
to reconfigure them, resulting in outdated (and clearly sub-
optimal) routing policies. Even if the controller is reachable,
frequent network updates in the mobile network can take a
long time and overload the controller.

The aforementioned problems are mainly because of the
centralization of all the network control functions into the
SDN controller. This centralized approach works well in
wired networks which are relatively static and, therefore, the
communication between the controller and the data plane
nodes is much more stable and reliable than in the mobile

counterpart. However, this approach can be problematic in the
context of highly mobile networks.

At the same time, traditional (non-SDN) distributed routing
protocols, such as AODV and OLSR [4], have been shown
to work well in mobile networks. These protocols can be
used for network discovery and routing in presence of network
failures and mobility, providing a robust network architecture.
Their main limitation compared to SDN is their lack of
global network view and programmability to realize end-to-
end network policies. All the above mean that it would be
beneficial to design a network architecture that combines the
benefits of the two paradigms; (i) global network view and
programmability of SDN and (ii) robustness of distributed
routing protocols.

B. Methodology

Motivated by the above discussion, we propose to revisit
the strict separation between control and data planes of SDN.
Namely, we put forward a hybrid control design in which
network control is split between the SDN controller and the
mobile devices (data plane). That is, we allow the mobile
devices to make their own data forwarding decisions in a
distributed manner, without involving the SDN controller.
Some previous works have explored the issue of hybrid control
to offload a central SDN controller, e.g., see [5], [6], [7], but
not in the context of mobile networks.

We need to emphasize that the co-existence of two different
control planes in the same network (e.g., a centralized SDN
and a distributed IP) poses risks for fault-free routing, such
as forwarding loops and blackholes [8]. Therefore, we need
to combine the two control planes in a way that ensures that
the packets will reach their destinations in reasonable time
and without faults. In this paper, we propose three alternative
ways or methods to combine centralized SDN and distributed
control planes.

Method 1: Dynamic migration of control protocol. In
this method, a part of the nodes in the SDN network can
dynamically migrate to a distributed IP protocol (e.g., AODV
or OLSR) forgoing the SDN forwarding rules. For example,
the nodes in a certain region in which frequent network
changes happen can be selected to act this way. By its nature,
the distributed protocol will adapt to these changes faster than
the remote SDN controller would do. However, deciding which
specific part of the network to migrate and when, as well as
how the nodes that run a distributed protocol will interact with

ar
X

iv
:1

70
6.

06
00

1v
1

 [
cs

.N
I]

 1
9

Ju
n

20
17

their neighbors that run an SDN protocol are non-trivial open
problems.

Method 2: Cluster-based hierarchical control. In the
second method, we propose to partition the mobile network
into several clusters and run a distributed IP protocol for each
cluster independently from the rest. The distributed protocols
will manage the traffic routing within the clusters (level 1
of the hierarchy), while the centralized SDN controller will
be responsible for the traffic routing in the overlay network
formed by the clusters (level 2 of the hierarchy). This way,
many of the network changes will be handled by the distributed
protocols, without involving the SDN controller. The latter
will only need to coordinate the distributed protocols when
the routing path spans more than one cluster. An important
challenge here is to design the clustering, i.e., how many and
how big the clusters should be.

Method 3: Distribution of backup SDN rules. In this
method, we proactively distribute “backup” SDN forwarding
rules to the mobile nodes to specify how they should alter
their forwarding behavior if network conditions change. For
example, we may store a backup rule to a node advising it to
forward packets to a different next-hop node if a certain link
fails. The mobile node can use its local control logic to decide
to follow the backup rule over the primary rules depending
on its observation of the network conditions. It may also
communicate with other nodes to synchronize its view of the
network and coordinate its decisions with them. A challenge
in realizing this scheme is that the storage, bandwidth and
computing resources of the mobile nodes are typically limited,
and therefore it may not be possible to support all possible
network failure scenarios.

All the above methods require us to relax the main SDN
concept of completely “dumb” data plane nodes which only
follow the controller instructions. Instead, we need to push to
mobile nodes some level of control logic. With this power at
hand, the mobile nodes can decide to run distributed protocols
independently (method 1) or in coordination (method 2) with
the central SDN controller. They may even pre-store and
dynamically activate backup forwarding rules so as to deviate
from controller instructions in response to rapid network
changes (method 3).

To highlight the benefits of the proposed approach, we
implement an SDN prototype of a hybrid control architec-
ture and execute experiments measuring the performance and
limitations. Our prototype implementation consists of com-
mon smartphone and laptop devices which are set up with
OpenVSwitch (OvS) OpenFlow datapath [9]. We find that by
pushing a certain level of control logic to the mobile devices
we can provide a multi-fold reduction in failure reaction time
compared to the “pure” (fully-centralized) OpenFlow system
where the controller responds to all failures. The gains highly
depend on the quality of the wireless channel between the
controller and the mobile devices.

The contributions of this work are summarized as follows:
• Hybrid SDN Control. We revisit the separation between

the control and data planes of SDN architecture to make

it more suitable for the mobile network environment. By
pushing a level of control logic to the mobile nodes, we
make the SDN architecture more robust and adaptive to
network changes.

• Centralized and distributed control combination. We pro-
pose three specific methods to combine centralized SDN
and distributed control planes. We describe the interaction
between the two planes and discuss the key challenges in
realizing them.

• Proof-of-Concept Prototype Implementation. We imple-
ment a hybrid SDN prototype and execute experiments
measuring the performance and limitations. We find that
the hybrid SDN system can provide a multi-fold reduction
in failure reaction time compared to the “pure” (fully-
centralized) OpenFlow system for a range of experiments.
The gains depend on the quality of the wireless channel
between the controller and the mobile devices.

The rest of the paper is organized as follows. After present-
ing some background on SDN in Section II, we describe the
proposed hybrid SDN control methods in Section III. Section
IV presents the prototype implementation and experimental
results. We conclude our work in Section V.

II. BACKGROUND

In this section, we present a brief background on SDN
in wireless mobile networks. We then discuss some existing
works targeting to improve the robustness of the SDN archi-
tecture.

A. SDN in wireless mobile networks

The majority of SDN works target wired networks such
as ISP networks and data centers [1]. Few recent works
have attempted to apply these ideas to wireless networks.
For example, [10] proposed to exploit SDN and shift control
functions from core gateways to middleboxes. This can elim-
inate management bottlenecks by decentralizing the network
operation. On the other hand, [11] suggested the deployment
of software defined radio access networks (RAN). The idea is
to assign the management of multiple base stations to a global
controller and with this unified control improve performance.
An interesting point is the suggestion for splitting the control
decisions to those requiring full information (hence assigned
to the global controller) and to those that need fast response
(assigned to the radio elements). By allowing the dynamic split
of the above decisions depending on the network conditions,
adaptive and flexible control in the RAN can be achieved [12].
Going a step further to the data plane, [13] proposed to turn
the base stations to fully programmable nodes facilitating this
way the virtualization of network resources.

The above developments manifest that small, yet solid steps
have been made towards designing software defined wireless
networks. Interestingly, recently there have been efforts to
deploy SDN soft switches even to handheld mobile devices,
see [14]–[16]. By doing so, programmatic control of the
traffic between the mobile devices can be achieved. These

works manifest the actual potential for deploying SDN-enabled
mobile networks.

B. Robustness of SDN architecture

Conventional SDN protocols such as OpenFlow fully rely
on the controller to reconfigure the data plane nodes. This fully
centralized approach can be problematic in mobile networks
due to their volatile nature and the lack of reliable communi-
cation between the controller and data plane nodes. A rather
straightforward method to increase controller availability is
to deploy multiple (logically centralized but physically dis-
tributed) controllers throughout the network [17]. However,
this approach incurs high deployment cost and cannot cover
all cases. In contrast, we believe that the robustness problem
is inherent to the centralized nature of SDN, and hence the
solution lies on revisiting the strict separation between the
control and data planes. Some previous works have explored
the issue of hybrid control to offload a central SDN controller,
e.g., see [5], [6], [7], but not in the context of mobile networks.

III. COMBINING CENTRALIZED & DISTRIBUTED CONTROL

In this section, we propose three methods that can be
used to combine centralized and distributed control to make
SDN architecture more robust, and hence more suitable to the
mobile network context.

A. Migration to a distributed protocol

A natural method to increase robustness in a mobile SDN
network is to use a distributed routing protocol “as a backup”.
That is, instead of relying on the remote controller to update
network policies at all times, the mobile nodes can dynam-
ically migrate from SDN to a distributed routing protocol
(e.g., OLSR). Consider for example the mobile network in
Figure 1. The nodes in the the circle may temporarily lose
connectivity to the SDN controller due to mobility and poor
channel quality. To maintain connectivity to their neighbors
and establish routing paths, these nodes can run a neighbor
discovery process in a distributed manner. When conditions
change, e.g., the connectivity to the controller becomes more
stable, the nodes can be configured again by the controller and
migrate back to SDN.

A drawback of this approach is that neighbor discovery
and routing path computation processes typically take time to
execute and hence they may result in slow network updates.
A way to expedite network updates is to make mobile nodes
execute the distributed protocols long before the migration
takes place. Therefore, upon the migration time, the list
of neighbor nodes and the respective routing paths will be
already known and available to use by the distributed protocol.
Although this approach would reduce delay, it would also
induce significant overheads since it would flood the network
with discovery messages. Hence, there is a tradeoff between
delay and bandwidth consumption which can be tuned by the
way distributed control execution is scheduled.

SDN Controller

Neighbor

 discovery

Interaction

between the

two planes

Fig. 1: Example of migration from SDN to distributed control.

Another challenge in this context is to ensure the proper
interaction between the nodes that run the SDN and distributed
control protocols. It is well known in the literature that the co-
existence of two different control planes in the same network
(e.g., a centralized SDN and a distributed IP) poses risks for
fault-free routing, such as forwarding loops [8]. For example,
two neighbor nodes that run different protocols could “ping-
pong” the same packet forever. The SDN controller needs to
identify and heal such routing anomalies, by appropriately
configuring the SDN nodes that are adjacent to the nodes
running the distributed protocol.

B. Cluster-based hierarchical control

Another method which has been shown to be quite effective
in improving scalability and robustness of distributed routing
protocols is clustering [18], [19]. The main idea here is to
allow nodes with close proximity to work together as a cluster
and determine routes independently from other nodes. The
same concept has been successfully applied to ISP networks
with the OSPF and BGP protocols [20]. Indeed, as these
networks get big, they start using hierarchy to manage size
and complexity. While part of that split has to do with
administrative ownership, it also has to do with size (e.g., an
ISP can have multiple autonomous systems).

Inspired by these schemes, we propose to partition the
mobile network into multiple clusters as it is depicted in Figure
2. Here, each cluster runs its own distributed protocol which is
responsible to route traffic inside the cluster, or to the border
nodes of neighbor clusters. The role of the SDN controller is
to “guide” the distributed protocols in routing traffic from one
cluster to another.

To realize the above hybrid control scheme, the controller
can compute and disseminate to the nodes the sequence of
clusters through which the packets must pass to reach their
destination. This information can be encoded and stored in
tags attached to the packets. In fact, the OpenFlow protocol
supports such kind of function by using VLAN tags or MPLS
tags. Reading the tag’s first entry helps the distributed protocol
decide which neighbor cluster the packet should be sent to.

SDN Controller

Distributed

Protocol 1

Distributed

Protocol 2

Distributed

Protocol 3

Distributed

Protocol 4

Fig. 2: Example of clustering for hybrid SDN control.

After that, the tag is updated by removing the first entry, and
so on, until the destination node is reached.

If there is only one cluster (the entire mobile network), then
this corresponds to the traditional “pure” distributed protocol.
In the other extreme case that each cluster consists of a single
node, this corresponds to the “pure” SDN protocol. Intuitively,
the larger the cluster sizes are the more network changes can
be handled locally by the distributed protocols. However, the
central SDN controller can only influence the traffic routing
across multiple clusters. Hence, there is a tradeoff between
controllability and robustness.

The number and shape of clusters can be decided in a
proactive manner, i.e., ahead of the network changes. These
decisions will have significant impact on the robustness of
the SDN architecture. Periodically, the clustering solution can
be refined to adapt to the new network environment (semi-
proactive scheme). Therefore, the critical questions are the
following:

1) In how many and how large clusters should the network
be partitioned?

2) How often and under what conditions should the clus-
tering solution be updated?

C. Distribution of backup SDN rules

A third method to increase robustness of SDN architecture
is by storing “backup” forwarding rules to the mobile nodes.
These rules will tell the nodes how they should change
their forwarding behavior in response to network changes
such as link or node failures. Having stored such rules, the
mobile nodes can instantaneously and autonomously alter their
behavior without asking the remote SDN controller. Similar
schemes have been proposed in wired networks for handling
a limited number of link failures [21], but the issue becomes
more challenging in highly dynamic mobile networks.

Let us consider the example in Figure 3. The SDN controller
pro-actively computes and stores a backup forwarding rule at
node 1 advising how to overcome the failure of the link to
node 2. In fact, recently developed extensions of OpenFlow
support such functions. Namely, OpenState [22] allows data
plane nodes to run state machines, which can use to keep
information about the state of the network links and match

Backup path

SDN Controller

1

2

4

3

Link1-2 is down Forward to 3

State Action

Backup rule of node 1

Fig. 3: Example of backup rule storage.

packets against both their headers and the current state values.
Hence, this method is inline with current technology standards.

We need to stress that the number of possible link failures
and backup routing paths increase exponentially with the size
of the network. Therefore, we may need to store a very large
number of backup rules to support all the failures. At the
same time, the memory size of the mobile nodes is limited
and hence it may be insufficient to store all the rules. On the
positive side, there exist methods that compress the routing
tables using wildcard rules and hence they can reduce the
number of backup rules [23].

The mobile nodes can exchange messages to synchronize
their local state information and make more efficient routing
decisions. This way, for example, a node can learn that a link
failure happened several hops away. However, such message
exchange should be scheduled with caution to avoid flooding
the network with messages and consuming the limited band-
width resources of the mobile nodes. Therefore, the critical
questions are the following:

1) How many and which backup rules should be stored at
each node to support which failures?

2) How often and which nodes should exchange state
information?

D. Discussion of the methods

The three proposed methods combine SDN and distributed
control paradigms in different ways. Method 1 explores the
time dimension and dynamically migrates some nodes from
one protocol to another depending on the network conditions.
Method 2 explores the space dimension to split network con-
trol between the SDN controller and the distributed protocols
based on the geographical position of the nodes. Finally,
Method 3 explores the memory and processing resources of the
mobile nodes to proactively store and run backup forwarding
rules without the controller involvement.

The result of each method is a hybrid control protocol
operating between pure SDN and pure distributed control
paradigms (Figure 4). An open research question is how to
find the right operating point between the two paradigms to
take the best of them. Intuitively, the more time is spent on
running distributed protocols the closer to the pure distributed
point Method 1 is. Similarly, Method 2 is close to the pure

Pure

SDN

Pure

Distributed

Hybrid

ü Global network view ü Robustness

ü Adaptivityü Programmability

ü Expressivity

Dynamic migration

of control protocol

(Method 1)

Partition into clusters with

different control protocols

(Method 2) Pre-distribution of

backup SDN rules run

in a distributed manner

(Method 3)

Fig. 4: Operating point between SDN and distributed control.

distributed point when few clusters of large sizes are formed.
Finally, the more backup rules are stored at the mobile nodes,
the more scenarios they can manage in a distributed manner
ending up closer to the pure distributed point.

IV. PROOF-OF-CONCEPT PROTOTYPE IMPLEMENTATION

In order to verify the feasibility of methods we proposed,
we implement a prototype of a hybrid SDN system using
mobile devices. The implementation consists of three parts.
First, we design the architecture of a single mobile node,
where both SDN and distributed control logics are enabled.
Then, we set up a real mobile network with multi hops and
alternative routing paths among the nodes. Last but not the
least, we conduct measurements on the performance metrics
that are related to the hybrid control method.

A. Node Architecture

In order to be close to realistic cases, our testbed consists
of modern off-the-shelf mobile devices. Namely, we use the
Nexus 4 smartphone (quad-core 1.5 GHz processor, 2 GB of
RAM) with Android 4.2.1 system. The first necessary part
we install is Open vSwitch (OvS). With OvS, the smartphone
is turned into a virtual switch and can thus receive control
messages and forwarding rules from SDN controller. Another
significant part is a local software agent. In all the three
methods we propose, the mobile node should be able to modify
the forwarding table locally in order to take distributed actions.
Therefore, we design a local agent which can communicate
with the virtual switch in OpenFlow protocol. What is more,
the local agent should also have other functions. More specif-
ically, in the distributed protocol migration method and the
cluster-based control method, the local agent should maintain
a distributed protocol, which involves synchronizing network
states with other nodes, as well as calculating routing paths. In
the third method, the local agent should store a set of backup
forwarding rules and decide when to enable them. To verify
such functions, we program a simple application of local agent
for experimentation. It periodically sends "heartbeat" messages
to neighbor nodes to judge whether the link is up or down.

Open vSwitch

Local Agent

Network Applications

Mobile Node

Fig. 5: The network topology involving three smartphones and
the SDN controller installed on a laptop.

Once a link failure is detected, it will forward packets involved
to its another interface. Such an application can be a basic
operation in all of the three proposed methods.

B. Network Setup

We deploy smartphones to form a mobile network. The
network should contain multiple paths between a pair of nodes,
so that it becomes important to make routing decisions. In
most modern Android smartphones including Nexus 4, the
wireless ad hoc mode is no longer supported. However, due
to the multiple network interfaces a smartphone has (e.g. 3G,
Wi-Fi, Bluetooth), it is still common to have such networks.
In the scenario we concern, the network consists of three
Nexus 4 phones and one Macbook laptop. The laptop works
as the central SDN controller. We use POX [24] to build our
controller instance. For the network connections, first, one
smartphone works as a Wi-Fi access point (hotspot), and other
smartphones as well as the laptop connect to it. At the same
time, the last two smartphones enable WiFi direct protocol
between them and therefore have a second routing path as
well as a different set of IP and MAC addresses. The network
topology is shown in Figure 5. In a case such as one link
is down, the flow between the two nodes can be migrated to
another path by conducting network address translation under
the control of either the SDN controller or the local agent.

C. Measurements on Delay

Compared with wired networks, a mobile network has high
mobility that leads to a rapidly changing topology. The SDN
controller should react to these changes quickly. However,
links in mobile networks are generally less stable, making
delay a more significant factor. In methods we proposed, the
local agent should totally or partly take over the network con-
trol from the central controller at the proper time. Therefore, it
is important to compare the delay of the central control, which
is limited by the link capacity between the controller and the
mobile node, and the local control, whose bottleneck is the
limited calculating capacity of the mobile node (smartphone).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (s)

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

(C
D

F)

Pure SDN
Hybrid SDN

Fig. 6: CDF of delay values of pure and hybrid SDN control.

We simulate a link failure between smartphone 2 and 3, and
new forwarding rules are sent to OvS by the SDN controller
(in pure SDN solution) or the local agent (in hybrid SDN
solution). The delay is defined as the time interval from when
the failure is detected to when new rules are received and
set up by OvS. We measure this delay for 200 times, and
have a CDF plot of measured delay. Figure 6 shows that both
the average value and the variance of delay are smaller in the
hybrid SDN case. These results strongly support the feasibility
and advantages of the combination of centralized control and
distributed control.

V. CONCLUSION

In this paper we proposed methods to make SDN more
suitable to the mobile environment. Our key observation is
that many of the robustness problems of SDN are inherent
to its fully centralized nature. Therefore, we can benefit by
revisiting the strict separation between the control and data
planes and pushing some control logic to the mobile nodes in
a hybrid design. As a proof-of-concept, we programmed off-
the-shelf mobile devices so as to be capable of totally or partly
taking over the network control from the central controller at
the proper time.

An open research question is how to find the right operating
point between SDN and distributed control for each of the pro-
posed methods. This requires to solve challenging optimization
problems, such as clustering and forwarding rule storage, as
well as to design new protocols for the interaction between
the two control paradigms. Besides, extensive testbed-based
evaluations are necessary, similar to those presented, in order
to identify all possible trade-offs and performance limitations
of such systems.

ACKNOWLEDGEMENT

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-16-3-0001. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Army Research Laboratory,
the U.S. Government, the U.K. Ministry of Defence or the

U.K. Government. The U.S. and U.K. Governments are au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copy-right notation hereon.

REFERENCES

[1] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S.
Azodolmolky, S. Uhlig, “Software-Defined Networking: A Comprehen-
sive Survey”, in Proc. IEEE, vol. 103, no. 1, pp. 14-76, 2015.

[2] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S.
Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hlzle, S. Stuart, A.
Vahdat, “B4: Experience with a Globally-Deployed Software Defined
WAN”, in Proc. ACM Sigcomm, 2013.

[3] K. Poularakis, G. Iosifidis, G. Smaragdakis, L. Tassiulas, “One Step at
a Time: Optimizing SDN Upgrades in ISP Networks”, in Proc. IEEE
Infocom, 2017.

[4] L. Abusalah, A. Khokhar, M. Guizani, “A Survey of Secure Mobile Ad
Hoc Routing Protocols”, IEEE Communications Surveys & Tutorials,
vol. 19, no. 4, pp. 78-93, 2008.

[5] M. Yu, J. Rexford, M. J. Freedman, J. Wang, “Scalable Flow-based
Networking with DIFANE”, in Proc. ACM Sigcomm, 2010.

[6] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, S.
Banerjee, “Devoflow: Scaling Flow Management for High-performance
Networks”, in Proc. ACM Sigcomm, 2011.

[7] K. Zheng, L. Wang, B. Yang, Y. Sun, S. Uhlig, “LazyCtrl: A scalable
Hybrid Network Control Plane Design for Cloud Data Centers”, IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 1, pp.
115-127, 2017.

[8] S. Vissicchio, L. Cittadini, O. Bonaventure, G. G. Xie, L. Vanberer,
“On the Co-Existence of Distributed and Centralized Routing Control-
Planes”, in Proc. IEEE Infocom, 2015.

[9] Open vSwitch, http://openvswitch.org
[10] X. Jin, L. Erran Li, L. Vanbever, J. Rexford, “SoftCell: Taking Control

of Cellular Core Networks”, in Proc. ACM CoNEXT, 2013.
[11] A. Gudipati, D. Perry, L.E. Li, S. Katti, “SoftRAN: Software Defined

Radio Access Network”, in Proc. ACM HotSDN, 2013.
[12] X. Foukas, N. Nikaein, M. Kassem, M. Marina, K. Kontovasilis,

“FlexRAN: A Flexible and Programmable Platform for Software Defined
Radio Access Networks”, in Proc. ACM CoNEXT, 2017.

[13] M. Bansal, J. Mehlman, S. Katti, P. Levis, “Openradio: A Programmable
Wireless Dataplane”, in Proc. ACM HotSDN, 2012.

[14] K.K. Yap, T.H. Huang, M. Kobayashi, Y. Yiakoumis, N. McKeown, S.
Katti, G. Parulkar, “Making Use of All the Networks Around Us: A
Case Study in Android”, in Proc. ACM CellNet, 2012.

[15] J. Lee, M. Uddin, J. Tourrilhes, S. Sen, S. Banerjee, M. Arndt, K.H.
Kim, and T. Nadeem, “meSDN: Mobile Extension of SDN”, in Proc.
ACM MCS, 2014.

[16] D. Syrivelis, G. Iosifidis, D. Delimpasis, K. Chounos, T. Korakis, L.
Tassiulas, “Bits & Coins: Supporting Collaborative Consumption of
Mobile Internet”, in Proc. IEEE Infocom, 2015.

[17] F.J. Ros, P.M. Ruiz, “On Reliable Controller Placements in Software
Defined Networks”, Computer Communications, vol. 77, no. C, pp. 41-
51, 2016.

[18] S. Banerjee, S. Khuller, “A Clustering Scheme for Hierarchical Control
in multi-hop Wireless Networks”, in Proc. IEEE Infocom, 2001.

[19] X. Niu, Z. Tao, G. Wu, C. Huang, L. Cui, “Hybrid Cluster Routing:
An Efficient Routing Protocol for Mobile Ad Hoc Networks”, in Proc.
ICC, 2006.

[20] B. Quoitin, C. Pelsser, L. Swinnen, O. Bonaventure, S. Uhlig, “Interdo-
main Traffic Engineering with BGP”, IEEE Communications Magazine,
vol. 41, no. 5, pp. 122-128, 2003.

[21] A. Capone, C. Cascone, A.Q.T. Nguyen, B. Sansò, “Detour Planning for
Fast and Reliable Failure Recovery in SDN with OpenState”, in Proc.
DRCN, 2015.

[22] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState: Pro-
gramming Platform-independent Stateful OpenFlow Applications Inside
the Switch”, ACM Sigcomm Computer Communication Review, vol. 44,
no. 2, pp. 44-51, 2014.

[23] X.N. Nguyen, D. Saucez, C. Barakat, T. Turletti, “Rules Placement
Problem in OpenFlow Networks: A Survey”, IEEE Communications
Surveys & Tutorials, vol. 18, no. 2, pp. 1273-1286, 2016.

[24] POX, https://github.com/noxrepo/pox

http://openvswitch.org
https://github.com/noxrepo/pox

	I Introduction
	I-A Motivation
	I-B Methodology

	II Background
	II-A SDN in wireless mobile networks
	II-B Robustness of SDN architecture

	III Combining centralized & distributed control
	III-A Migration to a distributed protocol
	III-B Cluster-based hierarchical control
	III-C Distribution of backup SDN rules
	III-D Discussion of the methods

	IV Proof-of-concept prototype implementation
	IV-A Node Architecture
	IV-B Network Setup
	IV-C Measurements on Delay

	V Conclusion
	References

