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Abstract	

The purpose of this study was to measure and model the diffusion time dependence of apparent 

diffusion coefficient (ADC) and fractional anisotropy (FA) derived from conventional prostate 

DWI methods as used in recommended mpMRI protocols. Diffusion tensor imaging was 

performed at 9.4 Tesla with three radical prostatectomy specimens, with diffusion times in the 

range 10—120 ms and b-values 0—3000 s/mm2. ADC and FA were calculated from DTI 

measurements at b-values of 800 and 1600 s/mm2. Independently, a two component model 

(restricted isotropic plus Gaussian anisotropic) was used to synthesize DTI data from which 

ADC and FA were predicted and compared with the measured values. Measured ADC and FA 

exhibited a diffusion time dependence which was closely predicted by the two component model.  

ADC decreased by ~0.10-0.15 µm2/ms as diffusion time increased from 10 to 120 ms. FA 

increased with diffusion time at b-values of 800 and 1600 s/mm2 but was predicted to be 

independent of diffusion time at b = 3000 s/mm2. Both ADC and FA exhibited diffusion time 

dependence which could be modeled as two unmixed water pools – one having isotropic 

restricted dynamics, and the other unrestricted anisotropic dynamics. These results highlight the 

importance of considering and reporting diffusion times in conventional ADC and FA 

calculations and protocol recommendations, and inform the development of improved diffusion 

methods for prostate cancer imaging. 
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Introduction	

Diffusion-weighted imaging (DWI) is an important component of the multiparametric MRI 

(mpMRI) scan for prostate cancer (1,2).  DWI provides a more reliable estimate of cancer grade 

and volume than T2 and DCE (dynamic contrast enhancement) (3-5), and an apparent diffusion 

coefficient (ADC) derived from the DWI signal attenuation correlates moderately with cancer 

Gleason grade (6,7). 

Apparent diffusion coefficient (ADC) 

DWI contrast variations reflect intra-voxel water mobility. The water displacement sensitivity of 

the DWI scan method is typically described by the ‘b-value’, a term that combines the diffusion 

encoding gradient strength and the effective diffusion time.  For a conventional pulsed gradient 

DWI method having two gradient lobes of strength G, lobe duration δ, and lobe separation Δ−δ, 

the b-value is defined as: 

𝑏 =  𝛾!𝐺!𝛿! ∆−  𝛿 3   [1] 

where γ is the 1H magnetogyric ratio (8).  Clearly, any specific b-value can be generated by an 

infinite number of combinations of G, δ, and Δ. In practice the implemented values vary from 

scanner to scanner and may depend on available gradient strength (Gmax), the range of b-values 

selected, and the manufacturer’s software. When Gmax is limited, high b-values are achieved by 

increasing Δ. The effective diffusion time, Δ – δ/3, is an important parameter as it determines the 

spatial scale of the microstructural interactions affecting the average water displacement. 

Unfortunately, most clinical scanner software does not display the implemented δ and Δ values 

which are automatically selected by the software, and they are rarely reported in clinical DWI 

studies.  Diffusion time considerations have also been neglected in the mpMRI method 

consensus statements (1,2).   

In the majority of clinical studies ADC is derived from a monoexponential model of the DWI 

signal attenuation: 
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𝐴𝐷𝐶 =  −𝑙𝑛 𝑆 𝑆! /𝑏 [2] 

where S is the signal at diffusion weighting b, and S0 the signal in the absence of diffusion 

weighting (b = 0).  A major limitation of this method is that the monoexponential model assumes 

a Gaussian water displacement probability that is now well-known to be invalid in prostate tissue 

(9).  The diffusion properties of prostate tissue are microscopically heterogeneous (10,11), and 

demonstrate a diffusion-time dependence that can be modeled as a restricted diffusion 

component both in vivo (12) and ex vivo (13). The presence of a significant restricted pool of 

spins would be expected to lead to a diffusion time-dependence of calculated ADC, however, 

although this result is implicit in some multicomponent models of the prostate DWI signals (eg. 

(12,13)), such dependence has not been specifically investigated.  

Fractional anisotropy (FA) 

Diffusion tensor imaging (DTI) extends the monoexponential ADC model to account for 

diffusion anisotropy, but does not account for diffusion restriction. A summary parameter, 

fractional anisotropy (FA), describes the degree of diffusion anisotropy but has not yet been 

demonstrated to have any clinical value in prostate disease assessment. Despite high microscopic 

anisotropy in the fibromuscular stroma (11), ex vivo whole organ studies show generally low 

anisotropy at clinical voxel volumes and wide FA differences between prostates (14).  It has been 

argued that the relatively low signal-to-noise ratio (SNR) of clinical DWI measurements leads to 

artifactually high FA estimates (15,16). 

Aims 

Notwithstanding the significant current clinical value of DWI and ADC for assessment of 

prostate cancer, it is possible that unreported and unrecognized diffusion time differences 

between published studies have contributed to inconsistencies in results for both ADC and FA. A 

recent clinical study reported that both ADC and FA showed diffusion time dependence (17). 

The aim of the study reported here was to directly assess the effects of diffusion time and noise 

on ADC and FA measurements in radical prostatectomy specimens. A secondary aim was to 

model the diffusion time effects as a simple combination of an isotropic restricted component 

and an anisotropic unrestricted component.  
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Methods	

Three radical prostatectomy specimens were collected immediately after surgery with 

institutional ethics approval and written informed consent from patients (Specimen 1: 50 g, 62 

yo, PSA 8.3 ng/mL. Specimen 2: 44 g, 62 yo, PSA 5.0 ng/mL. Specimen 3:, 89 g, PSA 6.5 

ng/mL, 60 yo). Specimens were fixed overnight in 10% neutral buffered formalin and then 

immersed in 1L 0.5% (w/v) saline overnight to remove formalin prior to imaging (14). The 

prostate was imaged suspended on a 5-mm saline-filled NMR tube inserted through the urethra 

and mounted in brackets in a plastic casing that maintained the tube axis parallel to and 

approximately 5 mm above the magnet z-axis. The prostate was wrapped in parafilm to minimize 

dehydration during imaging. After imaging the prostate was returned to the pathology 

department for routine processing.  The distribution of cancer is illustrated for a single central 

slice of each prostate in Fig. 3, however, it should be noted that due to the small number of 

samples and imprecise alignment of DWI and histology slices no attempt was made to correlate 

results with prostate pathology. 

Imaging was performed at room temperature (22˚C) on a 9.4T Bruker (Karlsruhe, Germany) 

BioSpec Avance III 94/20 system equipped with a 72-mm internal diameter quadrature 

radiofrequency coil and BGA-12S HP gradients with maximum strength 660 mT/m and slew rate 

4570 T/m/s. Imaging was performed transaxial to the urethra with the imaging planes oriented 

orthogonal to the 5-mm NMR tube with 2-mm slice thickness and a 2 mm gap between slices. 

FOV = 60 × 60 mm. Matrix = 64 × 64. DWI measurements were performed using a PGSE 

sequence preceded by the acquisition of two reference ‘b = 0’ images. To investigate the effect 

of diffusion time on ADC and FA, DTI acquisitions used a six-direction scheme with nominal b-

values 800 and 1600 s/mm2 and a wide range of diffusion times (10--120 ms). Three-direction 

DWI data acquired with eight b-values (100-3000 s/mm2) and four diffusion times (Δ = 10, 20, 

40, 80 ms) were combined with the Δ = 20 ms DTI measurements to fit a two component 

‘Zeppelin-sphere’ model (13).   

All measurements employed the minimum available TE (~Δ + 8 ms) to maximize signal-to-noise 

ratio (SNR).  DWI parameters including SNR estimates are detailed in Tables 1 and 2. There 

were small differences in acquisition parameters between the three prostates according to 



NBM		Version:		20	March2017	

 	 Page	6	 	
	 	

available scan time. SNR = S/N of the measurements was estimated for each diffusion time in a 

large region of interest manually drawn inside single mid-organ slice of each prostate. The noise 

level (N) was defined as the standard deviation of the difference between the ROI voxel values in 

the two ‘b = 0’ reference images. The signal (S) was defined as the mean ROI voxel value taken 

over all three or six gradient orientations.  

Model fitting. Calculation of ADC and FA. 

Intraprostatic voxels were selected for analysis by manual definition of multi-slice masks that 

excluded the capsule, periprostatic fat, and the urethra and NMR tube. Masking resulted in the 

selection of 3957, 3510, and 4680 voxels from Prostates 1, 2, and 3 respectively. 

An overview of the signal analysis and modeling strategy is provided in Fig. 1. DTI and 

Zeppelin-sphere (18) models were fitted to the individual voxel data using the Levenberg-

Marquardt minimization algorithm in the open source Camino toolkit (19). To minimize any 

possible T2 effects resulting from the variable echo times, data acquired for each diffusion time 

were normalized to the ‘b = 0’ reference images for that diffusion time.  

In this study we treat the mean diffusivity of the calculated DTI tensor as the ADC that would be 

obtained from a conventional 3-direction clinical DWI scan.  The typically very low FA 

observed in prostate tissue at the voxel volumes used in this study indicate there would be very 

little orientation dependence of the ADC derived from a 3-direction DWI measurement (14). To 

estimate the effect of an isotropic restricted signal component on the ADC and FA at each 

measured diffusion time the Zeppelin-sphere model was fitted to the combined 3-direction data 

(Table 2) and Δ = 20 ms 6-direction data for each voxel. We used only the Δ = 20 ms DTI data to 

define the zeppelin parameters while maximizing the independence the measured and predicted 

ADC and FA data. The Zeppelin-sphere model has previously been demonstrated to have a 

consistently maximal information content for a multi-b, multi-Δ measurements in fixed prostate 

tissue when compared to isotropic models and models that do not account for diffusion 

restriction (13)). The model defines two water pools representing isotropic restricted diffusion in 

an impermeable spherical pore (the ‘sphere’), and unrestricted anisotropic Gaussian diffusion 

described by a rotationally symmetric tensor (the ‘zeppelin’). There is assumed to be no 

significant water exchange between the two pools during the measurement. Note that the closely 
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related but more highly parameterized ‘tensor-sphere’ model does not have any consistent 

information content superiority for prostate tissue (13).  The Zeppelin-sphere model has five free 

parameters which were fitted with constraints as described in Table 3. 

The fitted Zeppelin-sphere model parameters were used to synthesize zero-noise 6-direction DTI 

data at b = 800, 1600, and 3000 s/mm2 for each diffusion time.  The DTI model was then used to 

fit the synthetic data and calculate ADC (tensor mean diffusivity) and FA.  We include the b = 

3000 s/mm2 prediction in light of the recent strong interest in high b-value DWI. 

The quality of the fit of the Zeppelin sphere model to a representative sample of voxels from 

each prostate is illustrated in Supplementary Fig. S1. 

 

Results	

Fig. 2 shows variation of average measured ADC and FA at b = 800 and 1600 s/mm2, and the 

average predicted ADC and FA at b = 800, 1600, and 3000 s/mm2.  For reference, we also show 

b = 1600 s/mm2 FA data previously reported from measurements at larger voxel size (14). In all 

three prostates ADC and FA showed similar diffusion time dependence over the range Δ = 10 – 

80 ms. Above Δ = 80 ms measured ADC and FA increased markedly in the noisier data from 

Prostates 1 and 2. At b = 3000 s/mm2 the Zeppelin-sphere model predicts that average FA would 

be very low (< 0.2) and essentially independent of diffusion time. In contrast the model predicts 

a stronger diffusion time dependence of ADC at b = 3000 than at b = 800 and 1600 s/mm2. 

Fig. 3 illustrates the typical variation in Zeppelin-sphere model parameters within the prostate. In 

all three prostates the anisotropic zeppelin component had a greater signal fraction and a higher 

diffusivity than the restricted sphere component. 

Fig. 4 shows the voxel-wise correlation between measured and predicted ADC and FA presented 

as 2D contour histograms based on voxel count.  There was generally a close agreement between 

measured and predicted ADC at diffusion times up to Δ = 80 ms. Measured and predicted FA 

showed a wider variance than ADC, with the measured FA generally being higher than predicted 

FA in the lower SNR long diffusion time data.  
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To illustrate the effect on apparent FA of the isotropic sphere ‘background’ signal Fig. 5 shows 

the relationship between DTI-measured FA and the FA of the fitted zeppelin component. As 

expected the zeppelin FA is generally higher than DTI-based FA, except in the relatively low 

SNR long diffusion time data from Prostates 1 and 2 where the high noise level generates an 

artificially high FA in the measurement data. 

 

Discussion	

Several previous studies of water diffusion dynamics in prostate tissue indicate the presence of 

two main spin pools having distinct diffusivities (13,20-23). Internally, each pool is 

heterogeneous and shows diffusion time dependence. In vivo prostate DWI studies also point to 

the presence of two main water pools distinct from the vasculature, one of which can be modeled 

as a restricted spherical pore (12,24). All of these results suggest there will be a diffusion time 

dependence of ADC, and possibly also of FA, as measured by a conventional monoexponential 

model. Indeed, such results have very recently been described for prostate DWI in vivo over a 

diffusion time range of 21-350 ms (17). In this study we have measured this diffusion time 

dependence ex vivo and shown that it can be modeled as an isotropic restricted water pool 

combined with an unrestricted anisotropic pool. 

The range of parameter values we observed for the Zeppelin-sphere model are biophysically 

plausible and in good agreement with a previous multi-component modeling study of four fixed 

prostate specimens (13), and also the 3-component VERDICT model of in vivo prostate DWI 

signals (12). The VERDICT model does not include an anisotropic signal component, but its 

‘extracellular extravascular’ and ‘sphere’ components clearly correspond to the zeppelin and 

sphere components of the model used here.  Our average sphere radius is smaller than the 

VERDICT sphere, which is probably a result of formalin fixation which is known to cause tissue 

shrinkage due to protein cross-linking (25). 

Effect of diffusion time on ADC  
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In all three prostates measured and predicted ADC decreased as diffusion time increased from 

Δ = 10 to 70 ms. This result is consistent with in vivo observations at b = 500 s/mm2 (17). In 

Prostates 1 and 2 measured ADC increased above Δ ~70 ms, especially at b = 800 s/mm2. The 

absence of a measured ADC increase above  Δ ~70 ms in the relatively high SNR Prostate 3 

data, and the absence of an increase in the predicted ADC for Prostates 1 and 2 suggest the 

increase in measured ADC above Δ ~70 ms is a noise artifact. The observation of lower ADC at 

b = 1600 than at 800 s/mm2 is likewise consistent with the presence of “slow” and “fast” 

diffusing water pools – at higher b-values the “slow” pool makes a greater contribution to the 

measured signal. 

The absolute ADC change with diffusion time was similar for all three prostates and was very 

similar at b = 800, 1600, and 3000 s/mm2. In the typical range of diffusion times employed in 

clinical imaging (~40 – 80 ms) ADC decreased ~0.05 µm2/ms.  While this change is smaller than 

the reported average ADC differences between cancer and normal tissue, it is similar to the 

differences between ADC of adjacent Gleason grades (6,7) and could contribute to an 

underestimate of the sensitivity and specificity of DWI for cancer detection and grading. 

In this study we treated ADC as equivalent to the mean diffusivity (MD) of a diffusion tensor 

calculated from a 6-direction DTI measurement. In conventional prostate DWI it is more 

common to calculate ADC from a 3-direction measurement. If the voxel anisotropy is high then 

there may be discrepancies between 3-direction ADC and 6-direction MD according to the 

orientation of the 3-direction gradients relative to the voxel primary eigenvector.  In this study 

average FA was very low, as was the case in a previous study of seven prostates ex vivo (14), so 

we believe there are unlikely to be significant differences between our MD-based ADC results 

and what would be expected from a 3-direction measurement. 

Effect of diffusion time on FA 

In all three prostates measured and predicted average FA was low and increased as diffusion 

time increased at b = 800 and 1600 s/mm2, with a smaller increase at the higher b-value. Again, 

this results is consistent with in vivo measurements performed at b = 500 s/mm2 (17). The low 

average FA is consistent with earlier reports, including the marked voxel volume dependence of 

FA (14). The b = 1600 s/mm2 FA data cannot be directly compared with the previously reported 
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data from measurements at larger voxel size (14,17) but the current and earlier data together 

suggest that voxel size may also affect the diffusion time dependence. 

The Zeppelin-sphere model prediction suggested FA to be essentially independent of diffusion 

time at b = 3000 s/mm2. There was a very large increase in measured FA at long diffusion times 

(Δ > 70 ms) in Prostates 1 and 2, but not in Prostate 3. This FA increase mimics (with 

exaggeration) the measured ADC increase at long diffusion time and low SNR and is also most 

likely a noise artifact. In contrast to ADC (or MD), the calculation of FA does not average the 

signals acquired from multiple diffusion directions and is thus more strongly affected by noise 

(15). 

Average FA decreased as b-value increased – consistent with the anisotropic signal arising from 

a high diffusivity water pool (the zeppelin component of the zeppelin-sphere model). At high b-

values the high diffusivity water signal would be strongly attenuated and the measured signal 

would be dominated by the isotropic (sphere) component.  If we make the tentative hypothesis 

that the anisotropic high diffusivity signal is predominantly due to extracellular water in the 

stroma (the stroma makes up the largest volume fraction in normal prostate tissue (26)) then the 

increase of FA with diffusion time at low b-values (where the high diffusivity anisotropic signal 

dominates) can be interpreted as increasing lateral diffusion hindrance in the roughly parallel 

packing of stromal myocytes (11). 

Limitations 

The results of this study cannot be directly translated to clinical prostate imaging. We report 

results for just three prostates studied ex vivo. Possibly significant differences from in vivo 

clinical ADC and FA measurements include tissue perfusion, temperature, fixation, and available 

range of diffusion times. We used the minimum available TE to maximize the SNR of the 

measurements. It is possible that some of the variation in ADC and FA we observed could be due 

to the presence of multiple T2 components, however, variable TE and the dependence of TE on 

selected b-values is a confound that applies equally to conventional in vivo DWI methods.  

Possible T2 effects on single and multi-component DWI models are an important subject of 

further investigation. 
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The demonstrated diffusion time dependence of ADC and FA in these relatively simple and 

controlled tissue samples indicates the importance of considering diffusion time in clinical 

studies (17), and incorporating these effects in advanced DWI techniques. 

Clinical significance 

As noted in the Introduction, the possible dependence of reported ADC and FA values on 

diffusion time has not been widely discussed – particularly in relation to prostate DWI.  Our 

results in this study suggest that both ADC and FA measurements will show some diffusion time 

dependence, as has recently been observed (17).  Some of this time dependence can be attributed 

to the presence of a significant pool of water exhibiting isotropic restricted diffusion dynamics.  

In vivo, the success of the isotropic 3-component VERDICT model, which includes a restricted 

sphere component, also points to a likely diffusion time dependence of ADC measured in vivo.  

It is possible that unrecognized and unreported differences in diffusion time contribute to 

differences in reported ADC ranges for both cancer and normal tissue. Furthermore, the ability to 

discriminate cancer and normal tissue may be diffusion time dependent (17).  

Although DWI and ADC are the mainstay of the widely used multiparametric MRI assessment 

of prostate pathology, further development of the sensitivity and specificity of mpMRI-DWI is 

desirable and feasible -- especially given the biophysical oversimplification inherent in the 

monoexponential ADC model. 

Conclusions 

Both ADC and FA exhibit diffusion time dependence in fixed prostate tissue. This diffusion time 

dependence can be modeled as two unmixed water pools – one having isotropic restricted 

dynamics and the other unrestricted anisotropic dynamics. These results highlight the importance 

of considering and reporting diffusion times in conventional ADC and FA calculations and 

protocol recommendations. 
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Tables	
 

Table	1.		6-direction	DTI	acquisition	parameters		

Prostate	 FOV	
(matrix)	

Voxel	size		
(mm)	

TR	
(ms)	

b-value	a	

(s/mm2)	
Δ	b	
(ms)	

TE	
(ms)	 AV	 SNR		

	b	=	0		

	
SNR		

b	=	800	

	
SNR		

	b	=1600	

1	
50×50	
mm	

(40×40)	
1.25×1.25×2	 2200	 800		

1600	

10	 18	 2	 190	 95	 62	
20	 28	 2	 137	 74	 50	
30	 38	 2	 119	 66	 45	
40	 48	 2	 105	 59	 40	
50	 58	 2	 55	 31	 21	
60	 68	 4	 89	 50	 35	
70	 78	 4	 47	 27	 19	
80	 88	 8	 57	 32	 22	
90	 98	 			8	 50	 28	 19	
100	 108	 8	 30	 16	 12	

2	

50×50	
mm	
	

(40×40)	

1.25×1.25×2	 2200	 800	
1600	

10	 18	 2	 311	 153	 97	
20	 28	 2	 211	 113	 75	
30	 38	 2	 173	 95	 64	
40	 48	 2	 103	 57	 39	
50	 58	 2	 78	 44	 30	
60	 68	 4	 105	 59	 41	
70	 78	 4	 75	 42	 29	
80	 88	 4	 63	 35	 25	
90	 98	 4	 38	 21	 15	
100	 108	 4	 28	 16	 11	
120	 128	 4	 18	 10	 7	

3	

60×60	
mm	
	

(40×40)	

1.5×1.5×2	 2600	 800		
1600	

10	 18	 2	 208	 95	 60	
20	 28	 2	 165	 82	 53	
30	 38	 2	 150	 76	 49	
40	 48	 2	 140	 71	 46	
50	 58	 2	 109	 55	 36	
60	 68	 4	 147	 74	 48	
70	 78	 4	 74	 37	 24	
80	 88	 8	 137	 68	 44	
90	 98	 8	 101	 50	 33	
100	 108	 8	 77	 37	 24	

a)	Nominal	b-value.	Effective	b-values	were	used	for	model	fitting.   
b)		δ	=	5	ms	for	all	measurements.	
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Table	2.		
3-direction	DWI	acquisition	parameters  

Prostate	
	

FOV	
(matrix)	

	
Voxel	size	
(mm)	

	
TR	
(ms)	

b-value	a 
(s/mm2)	

Δ	b 

(ms)	
TE 
(ms)	 AV	 SNR		

b	=	0	

1	
	

50×50	mm	
(40×40)	

	
1.25×1.25×2	 2000	

100,	311,	603,	
965,	1391,	
1873,	2411,	

3000	

10	 18	 1	 133	
20	 28	 1	 123	
40	 48	 1	 83	
80	 88	 2	 29	

2	
	

50×50	mm	
(64×64)	

	
0.78×0.78×2	 2200	

100,	311,	603,	
965,	1391,	
1873,	2411,	

3000	

10	 18	 4	 448	
20	 28	 4	 270	
40	 48	 4	 164	
80	 88	 4	 56	

3	
	

60×60	mm	
(40×40)	

	
1.5×1.5×2	 2600	

100,	311,	603,	
965,	1391,	
1873,	2411,	

3000	

10	 18	 1	 152	
20	 28	 1	 134	
40	 48	 1	 90	
80	 88	 1	 44	

a)		Nominal	b-value.	Effective	b-values	were	used	for	model	fitting.  	
b)		δ	=	5	ms	for	all	measurements.	

 

 

 

Table	3.		
Zeppelin-sphere	model	parameters	
	

Parameter	 Description	 Fitting	constraints	
Zeppelin	f	 Fraction	of	signal	due	to	zeppelin	

component	
0	--	1	

Zeppelin	D	||	 Diffusivity	parallel	to	the	zeppelin	
long	axis	

0	--	2.1	µm2/ms	

Zeppelin	D		 ̝	 Diffusivity	perpendicular	to	the	
zeppelin	long	axis	

0	--	2.1	µm2/ms	

Sphere	D	 Diffusivity	inside	the	sphere	 0	--	2.1	µm2/ms	
Sphere	R	 Sphere	radius	 0--	20	µm	

 

 

	
 	



NBM		Version:		20	March2017	

 	 Page	16	 	
	 	

Figure	Captions	
 

Figure 1.  Calculation of ADC and FA from DTI and DWI data using the open source 
CAMINO toolkit.  

To maximize the independence of the measured and predicted ADC and FA values the zeppelin-
sphere model fit used just one of the multi-Δ DTI measurements to define the orientation of the 
zeppelin component. 

 

Figure 2.  Effect of diffusion time on mean voxel ADC and FA.   

Data represent the average of 4837, 4838, and 6016 intraprostatic voxels in Prostates 1, 2, and 3 
respectively. Note that the SNR plots are based on the signal measured at b = 800 and 1600 
s/mm2, rather than the more conventional but less informative ‘b = 0’ signal. 

 

Fig. 3.  Parameter maps for Zeppelin-sphere model. 

Maps show a single mid-organ slice for each prostate. 

 

Figure 4.  Measured ADC and FA versus ADC and FA predicted by the ‘Zeppelin-sphere’ 
model.  

2D-histogram contours based on voxel count for b = 800 s/mm2 data. Very similar plots were 
obtained for b = 1600 s/mm2 (data not shown). 

 

Figure 5.  Correlation of measured FA and Zeppelin FA. 

2D histogram contour plot based on voxel count. Data for b = 800 s/mm2. 

 

Supporting Figure S1.  Examples of high quality of the fit of the ‘zeppelin-sphere’ model. 

Plots show the fit to 3-direction multi-b data combined with Δ = 20 ms DTI data. Representative 

selection of voxels from three prostates. 
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Figures 
 

 

 

 

Figure 1.  Calculation of ADC and FA from DTI and DWI data using the open source 
CAMINO toolkit.  

To maximize the independence of the measured and predicted ADC and FA values the zeppelin-
sphere model fit used just one of the multi-Δ DTI measurements to define the orientation of the 
zeppelin component. 
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Figure 2.  Effect of diffusion time on mean voxel ADC and FA.   

Data represent the average of 4837, 4838, and 6016 intraprostatic voxels in Prostates 1, 2, and 3 
respectively. Note that the SNR plots are based on the signal measured at b = 800 and 1600 
s/mm2, rather than the more conventional but less informative ‘b = 0’ signal. For reference, data 
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from previously reported measurements at larger voxel sizes (Bourne et al. DOI 
10.1002/mrm.25908) are shown in blue. 
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Fig. 3.  Parameter maps for Zeppelin-sphere model. 

Maps show a single mid-organ slice for each prostate. Approximately aligned pathology maps 
are shown for reference, with Gleason pattern 4 cancer coloured red. 
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Figure 4.  Measured ADC and FA versus ADC and FA predicted by the ‘Zeppelin-sphere’ 
model.  

2D-histogram contours based on voxel count for b = 800 s/mm2 data. Very similar plots were 
obtained for b = 1600 s/mm2 (data not shown). 
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Figure 5.  Correlation of measured FA and Zeppelin FA. 

2D histogram contour plot based on voxel count. Data for b = 800 s/mm2. 

 

 


