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Abstract 

Antimicrobial resistance genes are harboured by bacteria in the human oral cavity and 

ruminant faeces and they are shed in particularly high abundances in calf faeces. 

Furthermore, bacteriocin (antimicrobial peptide) producing bacteria have been isolated 

from these environments. In recent times bacteriocins have received much attention as 

potential alternatives to antibiotics. 

Human saliva and calf faeces harbour ‘yet-to-be cultured bacteria’ that can only be studied 

by analysing their DNA. To this end, two metagenomic libraries were created from human 

saliva and calf faeces metagenomic DNA with the aim of identifying novel antimicrobial 

resistance and bacteriocin genes. Screening these libraries for tetracycline resistance 

identified two tetracycline resistant clones.  

Clone PS9 was also tigecycline resistant and contained a 7,765 bp insert that encoded two 

half-ABC transporter genes; subcloning of these genes showed that they were responsible 

for the observed resistance phenotype. As the ABC transporter conferred resistance only to 

tetracyclines and its putative amino acid sequence showed <80 % identity to known 

tetracycline resistance proteins, it was named TetAB(60). 

Clone TT31 contained a 14,226 bp insert. 7, 216 bp of the insert had 97 % nucleotide 

identity to Tn916 and contained part of tet(M) and a full length tet(L) gene. This gene 

organisation has not been described in Tn916-like elements and it may represent a novel 

Tn916-like element.  
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The human saliva library was also screened for antiseptic resistance revealing a CTAB 

resistant clone. Random transposon mutagenesis of the 19.1 Kb insert and subcloning of a 

UDP-glucose 4-epimerase revealed it to be solely required for the observed resistance. 

This study identified novel tetracycline, tigecycline and CTAB resistance genes from the 

human saliva metagenome, demonstrating the importance of this environment as a source 

of resistance genes that may compromise the effectiveness of these antibiotics and 

antimicrobials. Additionally, this work highlights the relevance of house-keeping genes to 

the development of antimicrobial resistance. 
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1.1 Antibiotics: Discovery  

1.1.1 Pre-Antibiotic Era 

 

The time before antibiotics were discovered and brought into large scale use is often 

referred to as the ‘pre-antibiotic era’. By the beginning of the First World War it was widely 

accepted that microorganisms caused infection but even with this knowledge treatment 

options were limited. Wound infections were treated with saline, antiseptics such as iodine 

and in some cases corrosive compounds including H2O2 (Runcie, 2015). As a result of these 

treatment limitations infections were associated with high mortality rates. In fact, a 

retrospective epidemiological study of the Third Ottoman Army (March 1915 – February 

1916) revealed that typhus and dysentery were the cause of 48 % of all recorded deaths 

during this time (Erdem et al., 2011). 

High mortality rates due to infection were not isolated to the frontline; civilian infection 

cases had equally high mortality rates, and in 1890 the death rate due to infection is 

believed to have been 797 per 100,000 people (Walsh and Wright, 2005). In fact, it has been 

estimated that one third of all deaths were a result of just three infections: pneumonia, 

tuberculosis (TB) and infections that caused diarrhoea (Department of Commerce and 

Labor, 1906).  
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1.1.2 Discovery and Introduction of Antibiotics 

 

Some antimicrobials were used (with mixed success) during the ‘pre-antibiotic era’. For 

instance, Emmerich and Low used a Pseudomonas aeruginosa extract called pyocyanase as 

an antimicrobial therapy. However, due to instabilities in the extract and its toxic nature, 

development of this treatment ceased (Hays et al., 1945). Later, in 1909 Paul Ehrlich 

identified an arsenic-containing molecule with activity against Treponema pallidium, the 

causative agent of syphilis. The drug was marketed as Salvarsan and was successfully used in 

treating this infection for over 30 years (Ehrlich, 1910). 

Following the discovery of Emmerich’s and Ehrlich’s compounds came the famous discovery 

of penicillin by Alexander Fleming who in 1928 identified contaminating moulds producing 

zones of clearance in Staphylococcus aureus growing on agar plates (Fleming, 1929). 

Penicillin was the first in a series of antibiotic discoveries during a time referred to as the 

‘golden age’ of antibiotic discovery (Lewis, 2013). It was followed by prontosil, the first 

sulfadrug identified in 1932, which was actually marketed before penicillin, while the 1940s 

saw the discovery of five classes of antibiotics, the chloramphenicols, tetracyclines, 

aminoglycosides, macrolides and fidaxomicin, Table 1.1. 
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Table 1.1 Timeline of Antibiotic Discovery. 

Antibiotic Class Year of Discovery Year Introduced Mechanism of Action 

Sulfadrugs; prontosil 1932 1936 Dihydropteroate 

synthetase inhibition 

β-lactams; penicillin 1928 1938 Cell wall synthesis 

inhibition 

Aminoglycosides 1943 1946 Binds 30S ribosomal 

subunit 

Chloramphenicols 1946 1948 Binds 50S ribosomal 

subunit 

Macrolides 1948 1951 Binds 50S ribosomal 

subunit 

Tetracyclines 1944 1948 Binds 30S ribosomal 

subunit 

Rifamycins 1957 1958 Binds RNA polymerase 

β-subunit 

Glycopeptides 1953 1958 Cell wall synthesis 

inhibition 

Quinolones 1961 1968 Inhibitor of DNA 

Synthesis 

Oxazolidinones 1955 2000 Binds 50S ribosomal 

subunit 

Amended from Lewis et al. (Lewis, 2013). 

 

The introduction of antibiotics marked a dramatic change in medicine and paved a path for 

the development of modern medical practices. Not only did the use of antibiotics allow for 

the treatment of infectious diseases but also for the development of more invasive life-

saving surgeries and cancer treatments when used prophylactically. 

 

 



 32 

1.1.2.1 Tetracyclines 

1.1.2.1.1 Discovery and Structure 

 

In 1948 the antibiotic aureomycin, isolated from Streptomyces aureofaciens, was first 

described in the literature and in the same year received Food and Drug Administration 

(FDA) approval (Duggar, 2011). A semi-synthetic derivative with increased solubility and 

antimicrobial activity called tetracycline was created from this, Figure 1.1(b) (Conover et al., 

1953).   

The structure of tetracycline was determined following its introduction to clinical use and 

was found to have a characteristic napthacene core which is composed of four linearly 

arranged 6-membered rings, Figure 1.1 (a) (Stephens et al., 1954). The elucidation of the 

structure of tetracyclines allowed for further development of semisynthetic derivatives of 

this core structure resulting in the synthesis of the second-generation doxycycline (lacks the 

6-hydroxy group) and through modification of this, minocycline (contains a 7-dimethyl 

group) (Stephens et al., 1963; Martell and Boothe, 1967). More recently the third-

generation tigecycline containing a 7-dimethylamine and a 9-dimethylglycylamido side chain 

was developed and brought to market, Figure 1.1 (c) (Zhanel et al., 2004). 
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Figure 1.1 

(a) 

 

(b)      (c) 

         

       

Figure 1.1 Structure of Tetracyclines. (a) A depiction of the naphtacene core of the tetracycline class with the 

carbon atoms numbered (1, 1a, 2, 2a…). (http://patentimages.storage.googleapis.com) (b) Shows the structure 

of tetracycline, figure reproduced from Jameson et al. (Jameson et al., 2012). (c) Illustrates the structure of 

tigecycline, the 7-dimethylamine and the 9-dimethylglycylamido side chains are circled in blue and red 

respectively. This figure was reproduced from Olson et al. (Olson et al., 2006).  

 

1.1.2.1.2 Mode of Action 

 

Tetracycline is a broad-spectrum bacteriostatic antibiotic (as it stalls the growth of the 

bacterial cell rather than killing it) with activity against Gram-positive and Gram-negative 

pathogens. It elicits its bacteriostatic effect by interfering with the cell’s ability to synthesise 

proteins (Chopra and Roberts, 2001). 

http://patentimages.storage.googleapis.com/
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Tetracycline is an ionophore as it can coordinate dicationic metals including Ca2+ and Mg2+ 

via  ketone and hydroxyl structures at carbon 11 and 12, and by the ketone, carboxamide 

and hydroxyl groups at positions, 1, 2 and 3 respectively, Figure 1.1 (a-c), Figure 1.2 and 

Figure 1.2 (a-b) (Chopra et al., 1992; Nelson, 1998). 

Tetracycline, as a dicationic metal complex, can enter Gram-negative cells through the 

OmpF and OmpC outer membrane porins (OMPs) (Mortimer and Piddock, 1993; Thanassi et 

al., 1995). In fact, mutants exhibiting a loss of or reduced ompF expression showed reduced 

tetracycline susceptibility as they accumulated less of the antibiotic (Cohen et al., 1988; 

Thanassi et al., 1995). Once in the periplasm it is believed that tetracycline is neutralised 

before it diffuses through the lipid bilayer of the inner membrane (IM) (Sigler et al., 2000). 

Similarly, the neutral form of tetracycline is able to traverse the Gram-positive 

peptidoglycan cell wall and diffuse across its cell membrane to enter the cytoplasm (Nikaido 

and Thanassi, 1993). 

Once in the cytoplasm tetracycline chelates Mg2+ and in this form, targets the 30S ribosomal 

subunit. Crystal structures of the 30S ribosomal subunit of Thermus thermophilus in complex 

with tetracycline were obtained independently by Brodersen et al. (2000) and Pioletti et al 

(2001). These structures revealed six binding sites for tetracycline on the 30S subunit. The 

so-called primary or Tet-1 binding site is positioned above the tRNA binding site. When the 

tetracycline-Mg2+ complex enters the site, it interacts with the phosphate backbone of 16S 

rRNA forming salt bridges. This blocks entry of charged tRNA molecules in the A site of the 

ribosome, stalling peptide chain extension. Four of the remaining tetracycline binding sites 

are located on the 16S rRNA with the final site found in a hydrophobic pocket on the 

ribosome peptide. Tetracycline binding at these sites are believed to act in synergy with 
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binding at the primary site to halt protein translation (Brodersen et al., 2000; Pioletti et al., 

2001). The recently published x-ray crystallography structure of tigecycline binding the 30S 

ribosomal subunit of Thermus thermophilus revealed a similar pattern of binding by these 

two antibiotics, although the bulky 9-dimethylglycylamido side chain was observed to 

interact with the A-site and 16S rRNA likely creating further steric interference for the 

incoming tRNA molecules and preventing conformational changes required for the 

extension of the peptide chain, Figure 1.2(b) (Schedlbauer et al., 2015). These observations 

are in agreement with in vitro translation and competition assays that showed tigecycline to 

be able to bind the ribosome with 100-fold greater affinity and inhibit translation with 20-

fold greater efficiency than tetracycline (Olson et al., 2006).  It has been posited that the 

selective inhibition of prokaryotic protein synthesis by tetracyclines is a result of eukaryotic 

ribosomes being protected in the nucleus. In this cell organelle there is less Mg2+ available 

for chelation by tetracycline and so the antibiotic’s affinity for the eukaryotic ribosome is 

reduced compared with the prokaryotic ribosome (Chukwudi et al., 2016). 
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Figure 1.2  

(a)  

 

(b) 

 

Figure 1.2 Ribosomal Binding Sites of Tetracycline and Tigecycline. (a) The interactions between Mg2+ 

chelating tetracycline (black) and the 16S rRNA backbone in the 30S ribosome (blue), the shaded area is the 

region of the napthacene core that can be modified without reducing the antibiotic’s activity, reproduced from 

Hlavka and Booth (Hlavka and Booth, 1985). (b) tigecycline molecule (black) chelating two Mg2+ ions and 

binding the 16S rRNA molecule (blue and pink). The shaded region indicates the 9-dimethylglycylamido that 

also interacts with the 16S rRNA molecule, reproduced from Schedlbauer et al. (Schedlbauer et al., 2015). 
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1.1.2.1.3 Clinical Uses of Tetracyclines  

 

Although the rise of antimicrobial resistance has resulted in reduced reliance on this group 

of antibiotics they are still used to treat some human infections including those caused by 

Chlamydia, acne and some eye infections such as trachoma (Hu et al., 2010; Dukers-Muijrers 

et al., 2015; Zaenglein et al., 2016). 

Tigecycline is administered intravenously to treat skin and abdominal infections as well as 

some cases of community acquired pneumonia (Rubinstein and Vaughan, 2005; Shen et al., 

2015; Van Berkel et al., 2016). Additionally, the novel tetracycline derivatives omadacycline 

and eravacycline are currently in phase 3 trials and show promise as novel therapeutics as 

discussed in 1.1.2.1.5. 

 

1.1.2.1.4 Agricultural Uses of Tetracyclines 

 

Tetracyclines were among the first classes of antibiotics to be identified as having growth 

promoting properties in feed animals, as fermentation waste containing traces of 

aureomycin were shown to increase the growth of pigs (Jukes et al., 1950). Though 

antibiotics are now banned as growth promoters in the EU [European Parliament and 

Council Regulation (EC) No. 1831/2003] they are still used in this capacity in the USA. In the 

UK tetracyclines are also the most purchased antibiotic for agricultural use representing 40 

% of total sales in 2014 (Veterinary Medicines Directorate, 2015).  



 38 

Tetracyclines are also used therapeutically in livestock. Oxytetracycline for example is one of 

the antibiotics of choice for treating bovine pneumonia and is also used in the treatment of 

swine dysentery and enteritis when Escherichia coli or Clostridium perfringens is the 

causative agent (Dunlop et al., 1998; Constable et al., 2009). 

 

1.1.2.1.5 Novel Tetracycline Derivatives 

 

Omadacycline is a tetracycline derivative and the first of the class aminomethylcyclines. The 

antibiotic has activity against S. aureus and Haemophilus influenza as well as Streptococcus 

spp. and Legionella spp. It has also been demonstrated to overcome the activity of efflux 

and ribosomal protection protein (RPP) mechanisms of resistance as a result of a 

dimethylamine and a 2,2-(dimethylpropyl) aminomethyl modification on the seventh and 

ninth carbon respectively, Figure 1.3 (Macone, 2014; Draper et al., 2014). It had minimum 

inhibitory concentrations (MIC) of 0.125 µg/ml and 0.25 µg/ml against S. aureus strains 

expressing tet(M) (encodes an RPP) or tet(K) (an MFS transporter) respectively, which 

represents a greater than 128-fold difference compared with tetracycline (Draper et al., 

2014). Paratek Pharmaceuticals, Inc. are currently conducting phase 3 trials for the 

intravenous and oral use of omadacycline in treating skin infections and phase 3 trials for its 

use in treating community-acquired bacterial pneumonia are also planned (Paratek, 2016; 

Sun et al., 2016).   

 

 



 39 

Figure 1.3 

 

 

    

Figure 1.3 Omadacycline Structure. A diagram of the structure of omadacycline with the 7-

dimethylamine and 2,2-(dimethylpropyl) aminomethyl side chain highlighted by a blue and red circle 

respectively, reproduced from Draper et al. (Draper et al., 2014). 

 

Eravacycline is a fully synthetic tetracycline also currently being evaluated and is of the 

fluorocycline family, Figure 1.4. It exhibits a broad spectrum of activity being able to inhibit 

methicillin-susceptible and methicillin-resistant S. aureus (MIC90 of 0.13-0.25 µg/ml), E. coli 

(MIC90 of ≤0.5 µg/ml), K. pneumoniae (MIC90 of 2 µg/ml) and anaerobic pathogens including 

Clostridium difficile (MIC90 of 0.13 µg/ml). It has also been demonstrated to be more 

efficacious (MIC90 values were ≥2-fold lower) than tigecycline against a range of pathogens 

including E. coli, S. aureus and various Bacteroides spp. (Sutcliffe et al., 2013). Tetraphase 

Pharmaceuticals, INC are planning phase 3 clinical trials for the intravenous use of 

eravacycline in the treatment of complicated intra-abdominal infections (cIAI) and 

complicated urinary tract infections (cUTI) (Tetraphase, 2016; Solomkin et al., 2016).  
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Figure 1.4 

 

  

Figure 1.4 Eravacycline Structure. The eravacycline structure with the fluoride and 2-(pyrrolidin-1-yl) 

ethanamide side chains highlighted in blue and red circles respectively (Sutcliffe et al., 2013). 

 

1.1.2.2 β-lactams 

1.1.2.2.1 Structure and Diversity 

 

Penicillins contain a 5-membered thiazolidine ring fused to a 4-membered β-lactam ring to 

which a variable acyl side chain is attached, Figure 1.5 (a): It is alterations in this side chain 

that produce different penicillin antibiotics. Following the discovery of penicillin, more 

classes of β-lactams were discovered. The cephalosporins and cephamycins were discovered 

in the 1950s and 1970s respectively, and both contained the typical β-lactam ring fused to a 

6-membered dihydrothiazine ring, Figure 1.5(b) (Newton and Abraham, 1955). The first 

carbapenem was isolated from Streptomyces cattleya, and like the penicillins contains a β-

lactam ring fused to a 5-membered ring, although this ring contains no sulfur atom and is 

unsaturated, Figure 1.5(c) (Kahan et al., 1979). The monobactams are the most recently 

identified β-lactams to be used clinically. They are typified by the presence of a β-lactam 

ring that is not fused to another ring structure, Figure 1.5(d) (Sykes et al., 1981). 
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Figure 1.5 

(a)      (b) 

  

(c)      (d) 

   

Figure 1.5 Structure of β-lactam Antibiotics. The molecular structure of (a) the penicillins, (b) the 

cephalosporins/cephamycins, (c) the carbapenems and (d) the monobactams. The ‘R’ in each structure 

represents the variable side chains of each antibiotic. Figures reproduced from Lee et al. (Lee et al., 2016). 

 

Modifications to the side groups present on the core structure of the β-lactam antibiotics 

have resulted in the development of over 50 approved semi-synthetic derivatives with 

extended antimicrobial activity and with activity in the presence of resistance mechanisms 

to earlier generation β-lactams (Wright et al., 2014). 
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1.1.2.2.2 Mode of Action 

 

β-lactam antibiotics are broad-spectrum, target cell wall synthesis and are bactericidal at 

high concentrations. The first suggestions that penicillin targeted the cell wall came from 

microscopic studies that showed altered cell division and cell surface morphology (Duguid, 

1946). It was subsequently observed that a build-up of cell wall precursors (uridine 

peptides) occurred in S. aureus cells exposed to penicillin (Park and Strominger, 1957). 

The cell wall of Gram-positive and Gram-negative bacteria contains peptidoglycan 

composed of polymers of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid 

(MurNAc) with peptide side chains cross-linked by pentaglycine bridges. The formation of 

this pentaglycine bridge is mediated by a transpeptidase enzyme that recognises the D-

alanine-D-alanine residue of the amino acid side chain, Figure 1.6 (a) (Typas et al., 2011). 

Penicillin was shown to inhibit the transpeptidase reaction between E. coli GlcNAc and 

MurNAc pentapeptide in vitro (Izaki et al., 1968). As the CO-N configuration of the penicillin 

β-lactam amide bond is highly similar to that found in the D-alanine-D-alanine structure, it 

can act as substrate for the transpeptidase enzyme (Tipper and Strominger, 1965). It is now 

known that the β-lactam is bound by the D-alanine-D-alanine transpeptidase, also referred 

to as a penicillin binding protein (PBP), and an ester bond is formed between the carbonyl 

group of the β-lactam ring and the active site serine of the enzyme Figure 1.6 (b). An ester 

bond is also formed between the D-alanine-D-alanine transpeptidase and the D-alanine-D-

alanine carbonyl, however the ester bond between the β-lactam and the enzyme is 

hydrolysed far more slowly and so effectively prevents the D-alanine-D-alanine 
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transpeptidase from taking part in further reactions, resulting in a loss of cell wall cross-

linking and ultimately bacterial cell lysis (Zapun et al., 2008). 

 

Figure 1.6  

(a)      (b) 

   

Figure 1.6 Illustration of Peptidoglycan Transpeptidation. (a) A diagram of the structure of two 

peptidoglycan molecules of S. aureus including the GlcNAc, MurNAc and peptide side chain. The pentaglycine 

bridge crosslinking the molecules between the L-lysine and D-alanine residues is highlighted in blue and 

purple. Figure reproduced from Zhou et al. (Zhou and Cegelski, 2012). (b) A diagram illustrating the formation 

of an ester bond between the carbonyl group (highlighted by a blue ring) of a β-lactam (benzylpenicillin) and 

the serine residue of the D,D-transpeptidase active site, reproduced from 

http://watcut.uwaterloo.ca/webnotes/Pharmacology/microbesBacterialCellWall.html.  

 

1.1.2.2.3 Clinical Uses of β-lactams 

 

Although resistance has arisen to penicillin G in most pathogens it is still a first-line drug for 

the treatment of syphilis caused by Treponema pallidum, and still shows use for the 

treatment of penicillin-susceptible Streptococcus spp. infections (Holman and Hook, 2013). 

http://watcut.uwaterloo.ca/webnotes/Pharmacology/microbesBacterialCellWall.html
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According to the European Centre for Disease Control (ECDC), penicillins are the most 

frequently used class of antibiotic in European countries representing 22-66 % of 

prescriptions (European Centre for Disease Prevention and Control (ECDC), 2012). 

The cephalosporins are characterised into generations (from first to fifth) based on when 

they were developed, and are typified by a general increase in activity against Gram-

negative organisms with decreasing activity against Gram-positive bacteria. The third-

generation ceftriaxone is used to treat Neisseria gonorrhoeae infections, and as it can cross 

the blood-brain barrier it is used to treat meningitis infections (Llarrull et al., 2010; 

Molyneux et al., 2011). The cephalosporins and carbapenems are used in treating 

pneumonia and cIAIs (Wilson, 1988; Flanders et al., 2006; Breilh et al., 2013).  

Aztreonam is currently the only monobactam available for clinical use and is used in the 

treatment of P. aeruginosa infections including lung infections in cystic fibrosis patients 

(Assael, 2011). 

 

1.1.2.2.4 Agricultural Uses of β-lactams 

 

In the UK β-lactams represented 21 % of total sales of antibiotics for use in agriculture in 

2014 (Veterinary Medicines Directorate, 2015). Ceftiofur and cefquinome are third and 

fourth-generation cephalosporins respectively that along with amoxicillins are used in the 

treatment of bovine uterine and mastitis infections, as well as bovine and porcine 

respiratory disorders (De Briyne et al., 2014; Veterinary Medicines Directorate, 2015). 
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1.1.2.2.5 Novel β-lactam Therapies  

 

Theravance Inc. currently have a glycopeptide-cephalosporin conjugate formula (TD-1792) 

in phase 3 clinical trials for complicated skin and soft tissues infections (cSSTIs) caused by 

Gram-positive bacteria (Theravance Biopharma: Programs infectious diseases, 2016). Early 

studies showed that one of their vancomycin-cephalosporin conjugates was more effective 

in treating MRSA (methicillin resistant S. aureus) than vancomycin in a mouse thigh model, 

with median effective doses (ED50) of 0.5 mg/kg and 9 mg/kg respectively (Fatheree et al., 

2011).  

 

1.2 Antimicrobial Activity of Metals and Cationic Antiseptics 

1.2.1 Metals 

1.2.1.1 History of Metals as Antimicrobials 

 

The antimicrobial activity of metals was being utilised long before the discovery of 

microorganisms; for example, silver and copper were used by ancient Greeks to make 

vessels for storing water as they kept the water fresh. The first description of copper and 

silver being used in medicine dates back to between 2600 and 2200 BC when it was used to 

sterilise wounds (Dollwet, 1985; Alexander, 2009).  

Later in the 19th and early 20th century silver found multiple uses in medicines, as silver 

nitrate was used in eye drops to treat gonorrheal ophthalmia and showed usefulness in 
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cleaning burn wounds. Silver arsphenamine was also used to treat neurosyphilis by injection 

into the spine (Hobman and Crossman, 2015). At this time inorganic and organic copper 

formulations were used in the treatment of syphilis, cholera, impetigo and other maladies 

(Dollwet et al., 1985).  

 

1.2.1.2 Mode of Action of Copper and Silver Antimicrobial Activities 

 

The antimicrobial activity of copper is multifaceted. The redox potential of Cu2+ ions in the 

cell act as oxidising agents to deplete cellular thiol-containing biomolecules including 

cysteine and glutathione.  The resulting Cu+ ions then mediate the synthesis of H2O2 from 

the generated H+ creating reactive oxygen species (ROS) that can oxidise protein and lipids 

in the cell, Figure 1.7 (Prudent and Girault, 2009). 

 

Figure 1.7 

(a)           2 Cu2+ + 2 RSH   2 Cu+ + 2 RSSR + 2 H+ 

(b)           2 Cu+ + 2 H+ + O2  2 Cu2+ + H2O2   

(c)              Cu+ + H2O2  Cu2+ + OH- + OH•  

Figure 1.7 Redox Activity of Copper. (a) The oxidation of thiol groups by Cu2+, where R represents the 

molecule with a thiol group. (b) The reduction of O2 to H2O2 mediated by Cu+. (c) The Cu+ mediated reduction 

of H2O2 to form hydroxide radicals. 
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Silver ions have also been demonstrated to interfere with thiol-containing biomolecules, 

and Liau et al. (1997) found that exogenous thiol-containing compounds including cysteine 

were able to protect P. aeruginosa from the activity of silver nitrate (Liau et al., 1997). 

Furthermore, silver ions can induce ROS; Park et al. (2009) demonstrated that incubation 

with 1 mg/ml silver nitrate induced a 1.2- and 1.7-fold greater log inactivation of S. aureus 

and E. coli respectively, under aerobic conditions compared with anaerobic conditions (Park 

et al., 2009). 

Copper ions may also directly damage protein function by competing with coordinated iron 

in enzymes resulting in a loss of function. For example, Macomber and Imlay (2009) showed 

that the addition of Cu+ resulted in a loss of iron from the purified fumarase A enzyme in 

vitro (Macomber and Imlay, 2009). 

Additionally, accumulation of copper and copper-mediated membrane damage has been 

reported in E. coli and Bacillus subtilis while the metal has been shown to disrupt 

Enterococcus spp. DNA in another study (Warnes et al. 2010; Santo et al. 2011). Similarly, 

silver ions have been demonstrated (biochemically and microscopically) to be able to 

destabilise the OM of E. coli as well as induce DNA damage in E. coli and S. aureus cells (Feng 

et al., 2000; Dibrov et al., 2002). Furthermore, silver can disrupt ATP generation in E. coli as 

Lok et al. (2006) demonstrated that following treatment with AgNO3, the cell membrane 

potential fell with a concomitant drop in cellular ATP concentration (Lok et al., 2006). 
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1.2.1.3 Uses of Silver and Copper 

 

Silver and copper are present in cosmetics, dental amalgams used to fill tooth cavities 

(caries) and because of their antimicrobial activity they are also made use of in medicine 

(Ferracane, 2001; Borkow and Gabbay, 2009; Mijnendonckx et al., 2013). Copper surfaces 

induce rapid killing of both Gram-positive and Gram-negative bacteria and as such they may 

be of use in the control of spread of pathogens. A number of clinical trials have 

demonstrated the use of copper alloy surfaces in controlling bioburden and healthcare-

associated infections in hospital environments (Casey et al., 2010; Salgado et al., 2013). 

Silver is used as an antimicrobial coating on instruments such as catheters and intubation 

apparatus, as well as in wound dressings, to prevent infection (Fernandez et al., 2012). 

In agriculture, copper sulfate is approved by the EU for use as a growth promoter in feed 

animals and is also used to control diarrhoea in piglets and calves, following weaning 

(Verstegen and Williams, 2002). Copper sulfate is also used as an antimicrobial to protect 

growing crops and seeds (Russell, 2005).  

 

1.2.2 Cationic Antiseptics 

1.2.2.1 Chlorhexidine 

 

The antimicrobial activity of chlorhexidine (CHX) was first reported by Davies et al. in the 

1950s (Davies et al., 1954). CHX is a bisbiguanide 1,1'-hexamethylenebis[5-p-chlorophenyl) 

biguanide], consisting of a rigid hexamethylene chain connecting two cationic 
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chlorophenylbiguanide groups, Figure 1.8. It exhibits bactericidal activity against Gram-

positive and Gram-negative bacteria and yeasts as well as antibiofilm activity (Jones, 1997; 

Hope and Wilson, 2004).  

At physiological pH the positively charged biguanide groups interact with the negatively 

charged surface components of the cell surface including lipopolysaccharides (LPS) and 

phospholipids. The rigid nature of the hexamethylene chain prevents its insertion in the cell 

membrane and instead it acts as an inflexible bridge between the negatively charged cell 

surface components resulting in reduced membrane fluidity, and potassium and phosphate 

ion leakage; this effect is bacteriostatic (Gilbert and Moore, 2005). 

 At high enough concentrations membrane integrity is compromised and CHX can enter the 

cell and form complexes with cytoplasmic proteins and DNA resulting in their precipitation. 

These complexes have been observed by scanning electron microscopy in both Gram-

positive and Gram-negative cells and their formation results in cell death (Jones, 1997; 

Cheung et al., 2012). 
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Figure 1.8 

       

  

Figure 1.8 Chlorhexidine Structure. The structure of chlorhexidine with the two positively charged biguanide 

groups circled in blue; amended from Carrijo-Carvalho et al. (Carrijo-Carvalho et al., 2016). 

 

1.2.2.2 Quaternary Ammonium Compounds 

 

Quaternary ammonium compounds (QACs) are amphiphilic cationic detergents with a broad 

range of targets inhibiting Gram-positive, Gram-negative bacteria and yeasts (Jimenez and 

Chiang, 2006).. The cationic nature of these compounds is derived from the presence of a 

nitrogen atom surrounded by hydrophobic carbon chains of various lengths. The structure 

of two QACs, cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) 

are shown in Figure 1.9 (a) and (b), respectively.  

Like CHX, the cationic nature of QACs allows them to interact with negatively charged 

components of the cell surface. However, unlike CHX the hydrophobic carbon chains of 

QACs can insert into the cell membrane with their charged head group facing out from the 

cell, resulting in a decrease in membrane hydrophobicity (Gilbert and Moore, 2005). At 
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bacteriostatic concentrations QACs disrupt the membrane structure inducing leakage of K+ 

and H+ ( Ferreira et al., 2011; Inacio et al., 2016). As concentrations of QACs increase, 

membrane structure and membrane protein functionality are disrupted affecting cellular 

respiration and ion transport across the membrane, which has been demonstrated by 

decreased cellular ATP concentrations in E. coli following treatment with QACs (Inacio et al., 

2016). At concentrations used in product formulations QACs form micelles that can dissolve 

cell membranes which has been demonstrated for S. aureus and E. coli cells (Ioannou et al., 

2007 Inacio et al., 2016). 

Different QACs have slightly different mechanisms of actions as determined by their 

differing binding affinities and bactericidal activity. Indeed, Ahlstrӧm et al. (1990) showed 

that CTAB (C16 carbon chain length) more effectively bound to S. enterica serovar 

Typhimurium than QACs with C14 and C12 chains (Ahlstrӧm et al., 1999). In a later study, 

Ioannou et al. (2007) demonstrated that a QAC containing didecyldimethyl chains exhibited 

greater killing of S. aureus than QACs with alkyldimethyl chains (Ioannou et al., 2007). 

 

Figure 1.9 

(a)      (b) 

  

Figure 1.9 Structure of Cetyltrimethylammonium Bromide (CTAB) and Cetylpyridinium Chloride (CPC). (a) 

CTAB, reproduced from Bhardwaj et al. (Bhardwaj et al., 2014) and (b) CPC, reproduced from Zarei et al. (Zarei 

et al., 2013). 
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1.2.2.3 Uses of Cationic Antiseptics 

 

Due to their antimicrobial activity CHX, CTAB and CPC are included in antimicrobial hand 

washes and as preservatives in many cosmetic products (Buffet-Bataillon et al., 2012; 

Silvestri and McEnery-Stonelake, 2013). Chlorhexidine is also used as an oral rinse in the 

treatment of gingivitis and periodontitis and is also found in over-the-counter 

mouthwashes, typically at concentrations between 0.1% and 0.2% (Eberhard et al., 2008; 

Najafi et al., 2012). CPC also exhibits efficacy in mouthwashes (Rao et al., 2011). 

Additionally, QACs and chlorhexidine are also used as topical antiseptics for the sterilisation 

of surgical sites as well as wounds (McDonnell and Russell, 1999; Darouiche et al., 2010). 

 

1.3 Antimicrobial Resistance 

1.3.1 The Increasing Threat of Antibiotic Resistance 

 

Soon after Fleming discovered  penicillin, he observed resistance to it as the producing 

mould was unable to inhibit some Gram-negative organisms including E. coli and K. 

pneumoniae isolates (Abraham and Chain, 1988). Following this first observation of 

resistance, the clinical introduction of every antibiotic has been followed, or even preceded, 

by the development of resistance to it in human pathogens, Table 1.2 (Lewis, 2013).  
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 Table 1.2 Timeline of Clinical Antibiotic Resistance Development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amended from Lewis et al. (Lewis, 2013). 

 

Today infections caused by antimicrobial-resistant pathogens continue to rise and it has 

been estimated that 25,000 deaths and a loss of €1.5 billion in lost productivity result from 

infections caused by these antimicrobial resistant pathogens in Europe alone, each year 

(European Centre for Disease Prevention and Control (ECDC), 2009).  

In Europe, multidrug resistance (MDR) Enterobacteriaceae are a growing concern and the 

European Antimicrobial Resistance Surveillance Network (EARS-Net) has reported that 

between 2012 and 2015 E. coli and K. pneumoniae isolates with combined resistance to 

fluorquinolones, aminoglycosides and third-generation cephalosporins increased by 0.4 % 

(to 5.3 %) and 0.8 % (to 18.6 %) respectively. Additionally, although still at low levels 

carbapenem resistant K. pneumoniae isolates rose to 8.2 % with most of isolates exhibiting 

combined resistance to the three previously mentioned antibiotics. In such cases only 

Antibiotic Class Year Introduced as a 

Therapeutic 

Year Clinical Resistance 

First Observed 

Sulfadrugs; prontosil 1936 1942 

Β-lactams; penicillin 1938 1940 

Aminoglycosides 1946 1946 

Chloramphenicols 1948 1950 

Macrolides 1951 1955 

Tetracyclines 1948 1953 

Rifamycins 1958 1962 

Glycopeptides 1958 1988 

Quinolones 1968 1968 

Oxazolidinones 2000 2001 
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colistin treatment remains (European Centre for Disease Prevention and Control (ECDC), 

2012). This is particularly worrying given the identification and dissemination of the plasmid-

borne mcr-1 (colistin resistance) gene which has been found in E. coli strains susceptible 

only to tigecycline and doxycycline (Yao et al., 2016). 

Such is the threat surrounding antibiotic-resistant bacteria that the UK government 

commissioned a major review on the problem. Lord Jim O’Neill’s (2014) subsequent report 

estimated that by 2050 infections caused by antimicrobial resistant pathogens will cause 10 

million deaths per year (O’Neill, 2014). The report also highlighted the increased risk 

associated with procedures such as chemotherapy and invasive surgeries when no viable 

antimicrobials are available. These procedures require prophylactic antibiotic use to prevent 

infection that may result due to the suppression of the patients’ immune system and / or 

the massive microbial load introduced into the body. The report estimates that globally 

between now and 2050, a loss of $210 trillion globally will result from the rise of antibiotic 

resistance (O’Neill, 2014).  

However, de Kraker et al. (2016) have more recently cast doubt on the report. In their essay, 

they highlight the inaccuracies associated with using non-population based EARS-Net data, 

questionably validated infection mortality rates and unsubstantiated increases in antibiotic-

resistant pathogens to estimate future mortality rates (De Kraker et al., 2016). 

Nonetheless, the rise of antibiotic resistance has resulted from the overuse and misuse of 

these therapeutic agents such as not finishing a course of antibiotics which results in 

sublethal concentrations of the antibiotic in the patient. This will result in bacteria that have 

obtained resistance genes or mutations surviving the treatment and spreading while the 

more susceptible strains die.  Additionally, global antibiotic use is increasing, Van Boeckel et 
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al. (2014) determined that between 2000 and 2010 antibiotic consumption increased by 36 

% from 54 billion to 74 billion standard units (where a standard unit is equal to a single 

dose) (Van Boeckel et al., 2014). Worryingly, the use of antibiotics in agriculture greatly 

outweighs their use in human therapy. In the USA, where antibiotics are used for growth 

promotion, it has been estimated that over 70 % of antibiotics are used in feed animals, and 

the Food and Drug Administration (FDA) estimated that over 15 million Kg of antibiotics 

were sold for use in food-producing and non-food-producing animals (FDA, 2015).  

 

1.3.2 Intrinsic Resistance 

 

Intrinsic resistance is typically conserved in members of a species and is independent of 

antibiotic selection in its native host. Intrinsic resistance generally relies on the absence of a 

target or reduced permeability and/or increased efflux of the antimicrobial. 

In Gram-negative bacteria, the outer membrane contains LPS the saturated fatty acid chains 

of which insert into the OM decreasing its fluidity, and thus reducing the ability of 

antibiotics to cross it. The presence of porins in the OM are responsible for the uptake of 

nutrients required for cell growth, but also act to restrict the movement of antibiotics based 

on size limits, charge and hydrophobicity incompatibility (Nikaido et al., 1983; Decad and 

Nikaido, 1976). Further to this, loss of expression of porins can result in decreased 

susceptibility to antibiotics including carbapenems, as has been demonstrated for clinical P. 

aeruginosa oprD mutants (Sakyo et al., 2006).  
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Intrinsic resistance may also be provided by the production of efflux mechanisms that have 

functions other than antibiotic efflux. For example, P. aeruginosa encodes a tripartite 

resistance nodule division (RND) efflux pump; deletion of which has been demonstrated to 

result in a loss of resistance to β-lactams, chloramphenicol and nalidixic acid (Morita et al., 

2001). This transporter plays other roles in the cell including inter-cell communication and 

virulence (Hirakata et al., 2002; Evans et al., 1998). 

More recently, the screening of transposon mutant libraries for hyper-susceptible mutants 

has revealed that genes involved in cell metabolism are also involved in intrinsic resistance 

in bacterial species, which highlights the role that the metabolic state of the cell can have on 

its response to antibiotics. For example, insertions in the histidine and arginine synthesis 

genes, hisF and argH, in Acinetobacter baylyi resulted in an 8-fold increase in susceptibility 

to ampicillin, while insertion in riboflavin synthesis genes in S. aureus resulted in increased 

susceptibility to daptomycin (Gomez and Neyfakh, 2006; Blake and O’Neill, 2013). 

 

1.3.3 Acquired Resistance 

 

Acquired antimicrobial resistance refers to the development of resistance in a bacterial cell 

that was previously susceptible. Acquired resistance can occur following the acquisition of 

DNA containing resistance genes, through horizontal gene transfer (HGT), or from mutations 

that alter the cells susceptibility to an antibiotic. 
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1.3.3.1 Mutation Contributes to Antimicrobial Resistance 

 

Decreased susceptibility to antibiotics can result from the acquisition of mutations in the 

antibiotic’s target or from mutations that alter the regulation of genes involved in 

resistance. In some species mutations are the sole cause of antimicrobial resistance. For 

example, isoniazid and rifampin resistance in Mycobacteria tuberculosis has resulted solely 

from the acquisition of mutations (Ahmed et al., 2016).  

In clinical E. coli isolates, quinolone resistance occurs through the acquisition of mutations in 

gyrA that encodes one of the gyrase monomers that is the target of this group of antibiotics. 

These mutations are typically found in the ‘quinolone resistance determinant region’ of gyrA 

that corresponds to amino acids between 67 and 101 (Yoshida et al., 1990). Single 

mutations generally result in resistance to nalidixic acid while multiple mutations are 

typically required for fluoroquinolone resistance (Cambau et al., 1993; Ruiz et al., 2002).  

AmpC is an inducible β-lactamase (an enzyme that hydrolyses the β-lactam ring; that will be 

dicussed in more detail later in this chapter) produced by Enterobacteriaceae and P. 

aeruginosa. Transcription of ampC is induced by the presence of β-lactams including 

carbapenems due to an increase in 1,6-anhydromuropeptide peptidoglycan precursors as 

cell wall synthesis is inhibited (Jacobs et al., 1994). AmpD negatively regulates ampC 

transcription by processing these precursors (Lee et al., 2009). Mutations in the ampD gene 

can result in a loss of β-lactam controlled ampC transcription. Clinical P. aeruginosa strains 

with AmpC hyperproduction had between 8- and >256-fold greater ceftazidime resistance 

compared with P. aeruginosa PAO1 (Juan et al., 2005).  
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1.3.3.2 Horizontal Gene Transfer and Antimicrobial Resistance 

 

HGT was first demonstrated in 1947 by Tatum and Lederberg when they observed their 

mutant E. coli strains had been complemented without the acquisition of further mutations 

(Tatum and Lederberg, 1947). The extent to which HGT has influenced bacterial genomes 

has been highlighted by the increasing amount of genome sequences available which allows 

for the identification of genes present or absent in different species. As nucleotide 

composition and codon usage differs between transferred and host DNA, these differences 

can also be used to determine the contribution of HGT to the genome (Langille et al., 2010). 

Using such approaches, HGT-obtained genes have been shown to account for up to 40 % of 

the coding sequences in bacteria. For example, in E. coli HGT contributes between 10 and 40 

% of coding sequences while in P. aeruginosa and B. subtilis HGT accounts for 20 % and 

14.47 % of coding sequences respectively (Lawrence and Ochman, 1998; Garcia-Vallve et al., 

2000; Pohl et al., 2014). 

 

1.3.3.2.1 Mechanisms of Horizontal Gene Transfer 

1.3.3.2.1.1 Conjugation 

 

Conjugation involves the transfer of DNA, a mobile genetic element (MGE), from a donor to 

a recipient through cell-to-cell contact via pilus or adhesion interactions, Figure 1.10 (Furuya 

and Lowy, 2006). Conjugative transposons (DNA that can excise and insert into different 

chromosomal location; CTns) or conjugative plasmids (circular DNA molecules that can 
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replicate independently of the host genome) that encode the conjugation machinery as well 

as accessory genes (including antimicrobial resistance genes; ARGs) are transferred in this 

way, Figure 1.10 (van Hoek et al., 2011). 

 

Figure 1.10 

 

 

Figure 1.10 Illustration of the HGT Mechanism, Conjugation. Reproduced from Furuya et al. (Furuya and 

Lowy, 2006). 

 

Transposition and conjugation of a CTn first involves its excision from the donor cells 

chromosome forming a double-stranded DNA (dsDNA) circular intermediate. Following the 

formation of the circular intermediate, the mechanism of transfer for conjugative plasmids 

and CTns are similar (Grohmann et al., 2003; Johnson and Grossman, 2015). A relaxase, 

encoded by the conjugative MGE, creates a single strand (ss) nick at the origin of transfer 

(oriT) on the circular structure and binds to the 5’ end of the ssDNA. The helicase activity of 

the relaxase protein then unwinds the ssDNA and it is transferred to a type IV secretion 

system (T4SS) via an ATPase-type coupling protein. The T4SS interacts with the recipient cell 

and transports the ssDNA conjugative MGE from the donor to the recipient cell. Once in the 

cytoplasm of the recipient cell, the second strand of the ssDNA MGE is synthesised resulting 
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in the complete conjugative plasmid or a circular intermediate CTn that can insert into the 

host chromosome (Grohmann et al., 2003; Johnson and Grossman, 2015). 

Conjugation is likely to have the greatest impact on the dissemination of ARGs as 

conjugative MGEs have a broader host range than bacteriophages (viruses that infect 

bacteria cells), and the transferred DNA is less prone to degradation than DNA free in the 

environment (Furuya and Lowy, 2006). Tn916-like CTns are discussed in more detail in 

chapter 6.   

 

1.3.3.2.1.1.1 Mobilisation of Non-Conjugative Elements 

 

Conjugative MGEs may also mediate the transfer of non-conjugative MGEs to recipient cells. 

This can be mediated in trans as some non-conjugative MGEs can use the conjugation 

machinery encoded by a conjugative MGE to transfer to a new host. For example, the 

pWBG749 family of S. aureus conjugative plasmids can mobilise non-conugative plasmids 

that carry its oriT (O’Brien et al., 2015). Alternatively, the insertion of a non-conjugative 

MGE into or adjacent to a conjugative MGE may result in the formation of a co-integrate 

whereby both MGEs can be transferred to a recipient host as one. For example, Tn5253 is a 

composite conjugative CTn as it contains two distinct elements, Tn5251 and Ωcat(pC194) 

(Iannelli et al., 2014).  

Integrons are non-conjugative elements composed of an integrase gene, intI, 

an attI recombination site and a promoter (Gillings, 2014). IntI mediates the capture of gene 

cassettes via site-specific recombination allowing these MGEs to capture gene cassettes 
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including those encoding resistance genes; this can result in multidrug resistance encoding 

elements (Krauland et al., 2009). Further to this, integrons may be associated with 

conjugative MGEs, thus expanding their dissemination (Mazel, 2006).  

Insertion sequence (IS) elements are small transposable elements (700-2,500 bp) composed 

of a transposase-encoding gene, flanked by two inverted repeats that are substrates of the 

transposase (Chandler and Mahillon, 2002). When two identical IS elements flank a genomic 

region, they can mediate its transposition which can result in the deletion, inversion or 

duplication of genes (Wei et al., 2003; Kothapalli et al., 2005; Iguchi et al., 2006). For 

example, blaSHV, encoding a β-lactamase is associated with IS26 on composite transposons 

and conjugative transposons in K. pneumoniae and Enterobacter cloacae (Chen et al., 2015). 

 

1.3.3.2.1.2 Transformation 

 

Transformation is a process by which bacterial cells take in DNA from their environment, 

including ARGs, Figure 1.11. In 1951, Hothchkiss first demonstrated the acquisition of ARGs 

in this way when penicillin and streptomycin-sensitive Streptococcus pneumoniae strains 

were shown to become resistant following incubation with DNA from other resistant strains 

(Hotchkiss, 1951). 
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Figure 1.11 

 

 

Figure 1.11 Illustration of the HGT Mechanism, Transformation. Reproduced from Furuya et al. (Furuya and 

Lowy, 2006). 

 

In order for cells to be able to take up DNA they must be competent and although some 

cells are inherently so, for example Neisseria spp., in other cells it must be induced (Sparling, 

1966). Induction can result from the production of peptides that stimulate competence 

when cells reach a certain density or in response to stress. For example, S. pneumoniae 

secretes competence stimulating protein (CSP) into its environment which at a certain 

threshold concentration activates the com genes required for inducing competence. The 

com genes in S. pneumoniae can also be induced by stress, including antibiotic-induced 

stress. Prudhomme et al. (2006) used a luciferase transcription fusion assay to demonstrate 

that sublethal concentrations of fluorquinolones and aminoglycosides induced com gene 

expression and the uptake of extrachromosomal DNA (eDNA) (Prudhomme et al., 2006). 

In a recent analysis of the Haihe River basin in China, Mao et al. (2014) developed a method 

to isolate eDNA separately from bacterial chromosomal DNA and found that the former was 

more abundant in sediment samples. Additionally, this eDNA contained higher abundances 
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of ARGs including tetracycline resistance genes, indicating the potential importance of eDNA 

and transformation in the dissemination of antimicrobial resistance (Mao et al., 2014).  

 

1.3.3.2.1.3 Transduction 

 

Transduction is the process by which DNA is transmitted from one cell to another by a virus; 

in the case of bacterial DNA transmission, the transfer is mediated by bacteriophages, Figure 

1.12. 

 

Figure 1.12 

 

Figure 1.12 Illustration of the HGT Mechanism, Transduction. Reproduced from Furuya et al. (Furuya and 

Lowy, 2006). 

 

Transduction can be described as being either generalised, whereby only non-bacteriophage 

DNA is transferred, or specialised, when bacteriophage DNA bound by bacterial DNA is 

transferred. 
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Bacteriophages are the most abundant biological entity on the planet with estimates putting 

their numbers at between 1030 and 1032, and as these virus particles are vehicles for the 

transport of genetic material between cells, they represent an important avenue for the 

spread of ARGs. Studies using quantitative PCR (qPCR) have demonstrated the carriage of 

ARGs in bacteriophages from numerous environments including wastewater samples and 

human and feed animal faeces (Colomer-Lluch et al. 2011; Quiros et al. 2014; Marti et al. 

2014). Indeed, a study conducted by Shousha et al. (2015) found a statistically significant 

relationship between the presence of kanamycin-resistant E. coli and kanamycin resistance 

gene-carrying bacteriophages in chicken meat samples indicating their importance in the 

dissemination of resistance genes (Shousha et al., 2015). 

 

1.3.4 Dissemination of Antimicrobial Resistance 

 

Two recent studies focusing on the uncultivable resistome (the collection of all antibiotic 

resistance genes in an environment) of different environments demonstrated that clustering 

of resistance genes occurred based on environment. For example, Gibson et al. (2015) found 

that the resistome of soil and the human gut clustered separately and were dictated greatly 

by the presence of tetracycline and β-lactam resistance genes in these environments 

(Gibson et al., 2015). Similarly, Munck et al. (2015) found little overlap between the 

resistome of a waste water treatment plant and ARGs found in the National Centre for 

Biotechnology Information (NCBI) database (which primarily contains sequence information 

from pathogenic bacteria), with less than 10 % of their identified ARGs exhibiting greater 
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than 95 % nucleotide identity to ARGs in the database (Munck et al., 2015). These results 

suggest that there is limited dissemination between the environments tested.  

Although the studies discussed above suggest otherwise, there is also evidence that 

dissemination of ARGs from the environment to clinical pathogens has occured. Forsberg et 

al. (2012) identified and annotated 110 functional ARGs from a Proteobacteria-enriched soil 

sample. Of these ARGs, 16 had 100 % nucleotide identity with ARGs from known pathogens, 

with some also exhibiting synteny (the genomic location of a gene) suggesting that recent 

HGT events had occurred (Forsberg et al., 2012).  

Environmental bacteria may represent the origin of a number of ARGs. For example, many 

Kluyvera spp. encode chromosomal ESBLs (extended spectrum β-lactamases) and transfer of 

the blaCTX-M-2 gene from Kluyvera ascorbata to a recipient E. coli host has been 

demonstrated in vitro (Lartigue et al., 2006). Similarly, the quinolone resistance gene, qnrA, 

and the blaOXA-48 may have environmental origins having both been identified in Shewanella 

algae (Poirel et al., 2005; Poirel et al., 2012). 

There is also evidence that human processes further contribute the abundance of ARGs in 

the environment through the release of active antibiotics, ARGs and antimicrobial resistant 

bacteria. For example, it has been estimated that following oral administration of 

oxytetracycline to sheep, 21 % of the dose is excreted in its active form, while young bulls 

will excrete up to 75 % of the active chlortetracycline they receive as treatment. As manure 

from farm animals is used as a fertilizer, the presence of excreted antibiotics will select for 

the maintenance of ARGs in the faecal microbiota that will then contaminate the soil and 

adjacent water systems (Boxall et al., 2004). In a study on the effect of manure spreading on 

the abundance of ARGs in soil, Hong et al. (2013) used a qPCR to show that tetracycline 
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ARGs were at least 6-fold more abundant following spreading and that they remained at 

elevated levels for at least 16 months (Hong et al., 2013). In another study, Enterococcus 

spp. in ground water and surface water down-gradient of a swine feeding operation were 

found to be more abundant and have MIC90 values between 1.5- and 64-fold greater than 

those isolated up-gradient (Sapkota et al., 2007). 

Humans can be exposed to these ARGs and resistant bacteria through the food chain via 

contaminated crops and meats, or through bathing in or drinking contaminated water. Once 

ingested these microorganisms can transfer their ARGs to pathogens within the human 

gastrointestinal (GI) tract, or if pathogenic themselves, can cause infections that are 

recalcitrant to treatment (Chang et al., 2015). 

 

1.3.5 Selection of Antimicrobial Resistance 

 

Natural antimicrobials have existed for billions of years, giving their producer a selective 

benefit by inhibiting neighbouring sensitive cells that would otherwise compete with them 

for resources (Aminov, 2009). Just as antibiotic production is an ancient attribute of 

microorganisms, so is antimicrobial-resistance, as microorganisms that could survive in the 

presence of antimicrobials would be selected for over their sensitive counterparts (Perron et 

al., 2015).  

Although ARGs preceded the introduction of antibiotic use in the clinic and agriculture, it is 

now accepted that their increased use and misuse has contributed to the dissemination of 

ARGs and the rise of antimicrobial resistance in bacteria (Austin et al., 1999; Fleming-Dutra 
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et al., 2016). For example, in a Serbian tertiary care unit an increased administration of 

ceftriaxone (measured as defined daily dose/1,000 patient days) over a 9 year period was 

associated with an increase in the isolation of ceftriaxone resistant E. coli from patients 

(Velickovic-Radovanovic et al., 2015).  

The relationship between antimicrobial use and antimicrobial resistance is particularly 

exemplified by their use and subsequent withdrawal from use on European farms. Following 

a ban on the use of avoparcin (a glycopeptide) as a growth promoter in Denmark (1996) and 

the Netherlands (1997) there was a reduction in the prevalence and abundance of 

vancomycin-resistant Enterococcus (VRE) from pig faeces (van den Bogaard et al., 2000). 

More recently a voluntary ban on the use of cephalosporins in pig production was 

introduced in Denmark. This reduction in the use of cephalosporins has resulted in a 

decrease in the isolation of ESBL-producing E. coli from caecal samples at slaughter, Figure 

1.13 (Agersø and Aarestrup, 2013). 
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Figure 1.13 

            

Figure 1.13 Cephalosporin use on Danish Pig Farms and Pig Caecal ESBL E. coli Isolates. The above graph 

shows the relationship between the amount of cephalsporins registered for use in pig production (orange line) 

and the percentage of pig caecal samples at slaughter positive for ESBL E. coli (blue bars). This graph was 

reproduced from data taken from Agersø et al. (Agersø and Aarestrup, 2013). 

 

Similarly, reductions in the isolation of antimicrobial resistant isolates following changes in 

the use of antimicrobials has been noted in human medicine. For example, Chung et al. 

(2007) found that Haemophilus spp. with increased ampicillin resistance (3-fold mean 

increase) were found in throat swabs in children who were prescribed the antibiotic 

compared with the control group who had not received treatment. This change was 

transient however, as after 12 weeks the mean MIC for Haemophilus spp. isolates returned 

to control group levels (Chung et al., 2007).  In an earlier study, Seppälä et al. (1997) 

identified a statistically significant association between the reduction of use of erythromycin 
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and a reduction in the frequency of erythromycin resistant group A Streptococci being 

present in patient throat and pus swabs (Seppälä et al., 1997). 

 

1.3.6 Resistance Can Persist in the Absence of Antibiotic Selection 

 

The previously described examples indicate that following the withdrawal of antimicrobial 

use there is a decrease in the prevalence of antimicrobial resistant isolates. This is a result of 

the fitness costs associated with the maintenance of horizontally acquired ARGs or 

mutations in antimicrobial targets that are vital for cell survival such as cell wall synthesis, 

translation components and DNA replication. 

Some ARGs however may have a neutral or positive fitness effect on the cell without 

antibiotic pressure, or compensatory mutations may arise that compensate for reduced 

fitness which could result in their maintenance in the absence of antimicrobials (Nagaev et 

al., 2001). In growth competition assays conducted by Baker et al. (2013), fluoroquinolone 

resistant Salmonella enterica serovar Typhi strains with clinically relevant double mutations 

in gyrA and/or parC were shown to have greater fitness than their parent strains (Baker et 

al., 2013). In another study, carriage of blaCTX-M-14 (β-lactam resistance) on a pCT plasmid 

conferred no fitness cost to their E. coli or Salmonella spp. host compared with the empty 

pCT plasmid (Cottell et al., 2012). 
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1.3.7 Co-selection of Antibiotic Resistance Genes 

 

Co-selection of ARGs occurs when one antimicrobial can select for ARGs conferring 

resistance to another unrelated antimicrobial. Thus, withdrawal of use of one antimicrobial 

may not result in a decrease in frequency of ARGs if its replacement can co-select for it.  

Co-selection can occur due to the genetic linkage of ARGs on an MGE. For example, 

tetracycline-resistance genes have been identified on a number of CTns together with 

macrolide, lincosamide and streptogramin ARGs (Del Grosso et al. 2004; Cochetti et al. 

2008). As a result, the use of tetracyclines is associated with cross-resistance to these 

antibiotic classes and vice versa (Chaffanel et al., 2015). 

Additionally, plasmids and CTns harbouring metal- and antiseptic-resistance genes as well as 

ARGs have been identified indicating that the ARGs can be selected for in the presence of 

these antimicrobials (Davis et al., 2005; Soge et al., 2008; Ciric et al., 2011). Cross resistance 

between metals, antiseptics and antibiotics may also result from the expression of MDR 

efflux pumps (Blanco et al., 2016). As discussed above, metals and antiseptics are used in 

various consumer products and in this context they are creating a selection pressure for the 

maintenance of ARGs (Wales and Davies, 2015). 
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1.3.8 Specific Mechanisms of Resistance 

1.3.8.1 Tetracycline Resistance 

 

Since their discovery tetracyclines have seen wide clinical, veterinary and agricultural use 

because of their broad spectrum of activity and their activity as growth promoters; this has 

resulted in the dissemination of resistance to these antibiotics. Tetracycline-specific 

resistance genes were originally designated tet followed by a letter. However, due to the 

high number of tetracycline-specific resistance genes identified to date they are now 

designated tet followed by a number, and if the mechanism is encoded by two genes they 

are denoted ‘AB’. A new tet gene is designated as such if it encodes a protein that has less 

than 80 % amino acid similarity to another tetracycline resistance protein (Levy et al., 1999). 

Tetracycline resistance is typically mediated by ribosomal protection, efflux of the antibiotic 

or enzymatic activity, Table 1.3. tet(U) encodes a tetracycline-resistance protein with a 

currently unknown mechanism, although its ability to confer resistance is in question 

(Ridenhour et al., 1996; Caryl et al., 2012). In addition to these protein-mediated 

tetracycline resistance phenotypes, mutations in the rRNA of the 30S ribosome subunit can 

also confer resistance to tetracycline, Table 1.3 (Nguyen et al., 2014). 
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Table 1.3 Genes and Mutations Conferring Tetracycline Resistance. 

Efflux RPP Enzymatic Other Mechanisms 

MFS Non-MFS - - Unknown rRNA 

Mutations 

tet(A) 

tet(B) 

tet(C) 

tet(D) 

tet(D) 

tet(E) 

tet(G) 

tet(H) 

tet(J) 

tet(K) 

tet(L) 

tetA(P) 

tet(V) 

tet(Y) 

tet(Z) 

tet(30) 

tet(31) 

tet(33) 

tet(38) 

tet(39) 

tet(40) 

tet(41) 

tet(42) 

tet(43) 

tet(45) 

tet(57) 

tet(58) 

tet(59) 

tcr 

otr(B) 

otr(C) 

tetAB(46) 

tet(35) 

tet(M) 

tet(O)  

tet(Q) 

tet(S) 

tet(T) 

tet(W) 

tet(32) 

tet(36) 

tet(44) 

tet 

tetB(P)b 

otr(A) 

 

tet(X) 

tet(34) 

tet(37) 

tet(47) 

tet(48) 

tet(49) 

tet(50) 

tet(51) 

tet(52) 

tet(53) 

tet(54) 

tet(55) 

tet(56) 

tet(U) G1058C 

A926T 

G927T 

A928C 

ΔG942 

Table 1.3 This table is modified version of the tables found in Nguyen et al. and 

https://faculty.washington.edu/marilynr/tetweb1.pdf [Accessed December 1, 2016] (Nguyen et al., 2014). 

 

 

 

 

 

https://faculty.washington.edu/marilynr/tetweb1.pdf
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1.3.8.1.1 Ribosomal Protection 

 

Ribosomal protection proteins (RPPs) are paralogs of the elongation factors (EFs), EF-G and 

EF-Tu. These three proteins have highest amino acid identity in their conserved N-terminal 

GTPase domains which are vital for their functionality (Sanchez-Pescador et al., 1988; 

Margus et al., 2007). Both EFs are involved in protein translation; EF-G functions in the 

translocation of mRNA through the ribosome, and EF-Tu introduces charged aminoacyl-

tRNA (aa-tRNA) molecules to the ribosomal A site (Margus et al., 2007). 

Of the RPPs identified, Tet(M) and Tet(O) are the most common and the most studied 

(Chopra and Roberts, 2001). RPPs bind to the 70S ribosome within the 30S and 50S subunits 

resulting in the dislodgement of tetracycline from the ribosome, which allows the entrance 

of charged aa-tRNA complexes into the ribosome, Figure 1.14 (a) (Connell et al., 2003).  The 

primary binding site for Tet(O) is located on the 16S rRNA molecule at helix 34A while a 

model created by Li et al. (2013) showed that Tet(O) also binds to the 16S RNA between 

nucleotides 966 and 1196, forming a tunnel through which tetracycline dissociates following 

conformational changes in the nucleotide structure, Figure 1.14(b) (Li et al., 2013; Arenz et 

al., 2015).  
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Figure 1.14 

(a)      (b) 

   

Figure 1.14 Tet(O) Ribosomal Binding Sites. (a) A depiction of the binding site of Tet(O) (red) within the 30S 

(yellow) and 50S (blue) subunits of the ribosome. (b) Shows the interaction of Tet(O) (red) with the 16S rRNA 

nucleotides (yellow) that form the channel through which tetracycline (blue) dissociates through following 

ribosomal protection protein (RPP) binding. The direction of dissociation of the antibiotic is depicted by a blue 

arrow. These figures were reproduced from Li et al. (Li et al., 2013). 

 

The GTPase activity of the RPP is not required for displacement of tetracycline from the 

ribosome as Tet(O) has been shown to dislodge the antibiotic when complexed with non-

hydrolysable GTP analogues (Trieber et al., 1998). However, it is required for the release of 

the RPP, allowing for the entry of charged EF-Tu-aa-tRNA complexes into the ribosome and 

recycling the RPP (Connell et al., 2003). Conformational changes within the 16S nucleotide, 

at position C1054 for example, remain following dissociation of the RPP preventing 

rebinding of tetracycline following hydrolysis of GTP (Arenz et al., 2015). 
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Tigecycline is able to prevent rescue of the ribosome by RPPs as Jenner et al. (2013) used X-

ray crystallography to demonstrate that the 9-dimethylglycylamido side chain of the 

antibiotic prevents docking of Tet(M) to the ribosome (Jenner et al., 2013). 

 

1.3.8.1.2 Tetracycline Efflux 

 

Tetracycline efflux was first identified in E. coli (McMurry et al., 1980). The transporter 

responsible is a major facilitator superfamily (MFS) efflux protein and at least 32 further 

have been discovered since (McMurry et al. 1980; ARDB-Antibiotic Resistance Genes 

Database). MFS transporters are secondary transporters as they utilise the energy of solutes 

(such as a proton) moving along their electrochemical gradients to fuel substrate transport 

(Quistgaard et al., 2016). Tetracycline resistance MFS transporters are antiporters, as the 

proton and the antibiotic move across the membrane in opposite directions (Yamaguchi et 

al., 1990, Quistgaard et al., 2016). MFS transporters contain a transmembrane domain 

(TMD) that is made up of either 12 or 14 transmembrane helices with the N- and C-domains 

contributing an equal number of helices (Hassan et al., 2006).  

Structural and biochemical analysis have shown the MFS transporter substrate binding site 

to be located between the N- and C-termini; residues in helices 1, 4, 7 and 10 have been 

identified as important for substrate co-ordination (Hassan et al., 2006). The substrate 

recognised by tetracycline exporters is the tetracycline-Mg2+ complex (Yamaguchi et al., 

1990). Following substrate binding, conformational changes cause the MFS to close access 
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to the cytoplasm and open to the surface of the periplasm/extracellular space in a rocker-

switch type movement (Hirai and Subramaniam, 2004; Yin et al., 2006). 

Protons may induce substrate recognition by the MFS and thus drive conformational change 

as LacY, a lactose permease, is unable to bind its galactoside substrate without protonation 

at a glutamine residue in helix 10 (Kaback, 2015).  

Tetracycline efflux mediated by ATP binding cassette (ABC) transporters have also been 

identified. For example, TetAB(46) was identified from an oral Streptococcus australis strain 

and was found to confer tetracycline resistance to the cell (Warburton et al., 2013). These 

transporters hydrolyse ATP to power transport of substrates across membranes and their 

structure and function are discussed in more detail in chapter 5. 

 

1.3.8.1.3 Enzymes and Tetracycline Resistance 

 

TetX is an NADPH-dependent monooxygenase that was first identified on the transposable 

elements Tn4351 and Tn4400 from Bacteroides fragilis (Speer et al., 1991). As B. fragilis is 

anaerobic the enzyme does not function in this host, however it functions in aerobically 

grown E. coli and has since been identified in clinical isolates able to grow aerobically, 

including K. pneumoniae and Pseudomonas spp. (Speer et al., 1991; Leski et al., 2013). The 

enzyme inactivates even the third-generation tigecycline as it hydroxylates the molecule at 

carbon 11a, reducing its ability to chelate Mg2+ and bind the ribosome, Figure 1.15 ( Moore 

et al., 2005; Volkers et al., 2011). 
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Figure 1.15 

 

 

Figure 1.15 Hydroxylation of Tetracycline by Tet(X). The hydroxylation reaction catalysed by Tet(X) inactivates 

the tetracycline. The hydroxylated 11a carbon is indicated in red. This figure was reproduced from Nguyen et 

al. (Nguyen et al., 2014). 

 

A gene encoding an enzyme that also inactivated tetracycline in an NADPH and oxygen-

dependent manner, tet(37), was identified from the human oral cavity, however the enzyme 

had limited amino acid sequence identity to Tet(X) (Diaz-Torres et al., 2003). 

Tet(34) was identified in Vibrio sp. no. 6 as it conferred resistance to oxytetracycline in an 

Mg2+-dependent manner. As the enzyme had 80 % amino acid identity to xanthine-guanine 

phosphoribosyltransferase, which is involved in guanine nucleotide synthesis, the authors 

hypothesised that Tet(34) conferred resistance by producing excess GTP which accelerated 

binding of the charged EF-Tu-aa-tRNA to the ribosome (Nonaka and Suzuki, 2002). 

 

1.3.8.1.4 Further Mechanisms of Resistance 

 

tet(U) was identified on the plasmid pKQ10 in Enterococcus faecium and was determined by 

Ridenhour et al. (1996) to confer low-level resistance in this host and E. coli. The mechanism 
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of resistance of Tet(U) is unclear as it only has limited amino acid identity (21 %) to the C-

terminal of Tet(M) (Ridenhour et al., 1996). More recently, Caryl et al. (2012) have 

demonstrated that tet(U) does not confer resistance in E. coli and stated that it is not a 

resistance gene (Caryl et al., 2012). 

Mutations in the 16S rRNA of the ribosome also result in resistance to tetracyclines. For 

example, a G1058C substitution was found to be associated with resistance to tetracycline 

in Propionibacterium acnes and overexpression of this 16S rRNA operon in E. coli resulted in 

an 8-fold increase in resistance to tetracycline and tigecycline (Ross et al., 1998; Bauer et al., 

2004). 

 

1.3.8.2 β-lactam Resistance 

 

As with the tetracycline family of antibiotics, the broad use of β-lactams has resulted in the 

spread of resistance to them in the clinic, community and veterinary practices. Resistance to 

β-lactams can arise from impermeability of the cell membrane which has been described in 

Acinetobacter spp. or from efflux of the antibiotic from the cell. For example, the MDR 

transporter MexAB-OprM contributes to carbapenem resistance in P. aeruginosa ( Sato and 

Nakae, 1991; Choudhury et al., 2015). However, it is the expression of β-lactamases and 

PBPs (penicillin binding proteins) that have proven to be the most problematic in preventing 

infection treatment (Qin et al., 2008; Carrel et al., 2015). 

 

 



 79 

1.3.8.2.1 β-lactamases 

1.3.8.2.1.1 Classification of β-lactamases 

 

β-lactamases are enzymes that are able to hydrolyse the amide bond of the β-lactam ring 

resulting in inactivation of the antibiotic. These β-lactamases can be organised by the 

Ambler classification system that groups these enzymes based on their amino acid sequence 

homology (Hall and Barlow, 2005). Groups A, C and D contain the serine β-lactamases 

(SBLs); they have a serine residue in their active site and are structurally similar around their 

active sites to each other and to transpeptidases, suggesting a common ancestry between 

them (Wilke et al., 2005; Fisher et al., 2005). The metallo-β-lactamases (MBLs) require 

coordination of one or two zinc ions at their active site to function; they are members of the 

zinc-dependent metallohydrolases and have arisen from a distinct evolutionary path to the 

SBLs (Daiyasu et al., 2001; Bebrone, 2007).  

β-lactamases from each group have members with extended spectrum (ESBLs) and activity 

against third and fourth-generation cephalosporins, monobactams. In fact, all but the class C 

β-lactamases have members with carbapenemase activity, Table 1.4 (Al-Bayssari et al., 

2015). 
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Table 1.4 Classes of β-lactamase Enzymes. 

Ambler Class Active Site Enzyme Type Host Organisms Substrates 

A Serine TEM, SHV 

ESBL (TEM, SHV, CTX-M) 

 

 

 

Carbapenemase (KPC, 

GES, SME) 

Enterobacteriaceae  Penicillins, 

cephalothin, third-

generation 

cephalosporins 

 

All β-lactams 

B Zinc Carbapenemase (VIM, 

IMP, NDM) 

Enterobacteriaceae All β-lactams 

C Serine AmpC 

 

 

 

CMY, DHA, MOX, FOX, 

ACC 

Enterobacter spp. 

and Citrobacter 

spp. 

 

Enterobacteriaceae 

 

Cephamycins, 

third-generation 

cephalosporins 

D Serine OXA 

 

 

 

ESBL (OXA-10, -11, -14, -

16) 

 

 

Carbapenemase (OXA-

58, 143, -162, -163) 

Enterobacteriaceae 

 

 

 

Enterobacteriaceae 

 

 

 

Enterobacteriaceae 

Penicillins, 

oxacillin, 

cephalothin.  

 

third-generation 

cephalosporins, 

aztreonam 

 

β-lactams 

*This table is modified version of the tables found in Kanj et al. (Al-Bayssari et al., 2015; Kanj and Kanafani, 

2016). 
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1.3.8.2.1.2 β-lactamase Mechanism of Hydrolysis 

 

The mechanism of β-lactam hydrolysis by SBLs and MBLs differ, although both involve the 

nucleophilic attack of the carbonyl group of the β-lactam ring. SBLs attack the amide bond 

of the β-lactam ring via the serine residue of their active site. A covalent bond forms 

between the hydroxyl oxygen of the serine residue and the β-lactam ring carbon, creating a 

high-energy transition molecule. The amide bond is then broken as the β-lactam nitrogen is 

simultaneously protonated resulting in the formation of an acyl-enzyme intermediate. 

Attack of this intermediate by a catalytic water molecule activates the serine residue 

covalently bound to the β-lactam carbon creating another transition molecule. The serine 

oxygen-β-lactam carbon bond is then hydrolysed and the enzyme is released, Figure 1.16(a) 

(Drawz and Bonomo, 2010). 
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Figure 1.16 

(a)

 

(b) 

 

Figure 1.16 β-lactam Hydrolysis by β-lactamases. (a) A depiction of the serine β-lactamase-mediated 

hydrolysis of the β-lactam ring amide bond. Ser70 represents the active serine residue, curved arrows indicate 

the movement of electrons, TS stands for transition state. (b) A depiction of the metallo-β-lactamase mediated 

hydrolysis of the β-lactam ring amide bond of a cephalosporin type β-lactam. Zn1 is on the left, Zn2 is on the 

right. Curved arrows represent the movement of electrons. Figures reproduced from Meini et al. (Meini et al., 

2015). 
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For di-zinc MBLs, Zn1 interacts with the carbonyl carbon while Zn2 interacts with the 

carboxyl group of the 5- or 6-membered ring, Figure 1.16(b). Instead of an activated serine 

residue, a hydroxide ion acts as a nucleophile, attacking the carbonyl carbon. The formation 

of an anionic intermediate containing a negatively charged β-lactam nitrogen atom results 

from this with the nitrogen atom being subsequently protonated (Palzkill, 2013; Meini et al., 

2015). Meini et al. (2015) have proposed that the proton donor for this reaction is likely a 

water molecule that bridges the two Zn ions in the MBL (Meini et al., 2015). Hydrolysis of 

the bond between Zn1 and the β-lactam carbonyl carbon regenerates the enzyme, Figure 

1.16(b). 

 

1.3.8.2.2 Penicillin Binding Protein Affinity 

 

β-lactam resistance can result from the expression of PBPs that have reduced affinity for the 

antibiotic. Thus, cell wall crosslinking can still occur even in the presence of the antibiotic 

that can’t bind the enzyme. For example, MRSA encode 4 endogenous PBPs as well as a fifth 

low-affinity PBP, PBP 2a. PBP 2a is encoded by the mecA gene and is present on an MGE 

called the staphylococcal cassette chromosome mec (SCCmec) (Garcia-Castellanos et al., 

2004). Expression of PBP 2a confers resistance to nearly all β-lactams except the fifth-

generation cephalosporins, ceftaroline and ceftobiprole (Chambers 1997; Lovering et al. 

2012; Otero et al. 2013).  

X-ray crystallography revealed the active site serine of PBP 2a to be too poorly positioned to 

interact with the amide bond of the β-lactam ring, explaining why acylation of penicillin G by 

PBP 2a is between 1 and 3 orders of magnitude slower than by the endogenous PBPs  
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(Graves-Woodward and Pratt, 1998; Lu et al., 1999; Lim and Strynadka 2002). 

Conformational changes within the active site allow the active site serine to catalyse cell 

wall cross linking. Fuda et al. (2005) demonstrated that binding of synthetic peptidoglycan 

fragments at a second ‘allosteric’ binding site on PBP 2a induced these conformational 

changes and resulted in an increase in acylation of the PBP (Fuda et al., 2005). 

More recently X-ray crystallographic analysis of PBP 2a bound to ceftaroline have shown 

that a ceftaroline molecule is bound at both the ‘allosteric’ site and the active site which 

explains this antibiotic’s ability to inactive this PBP (Otero et al., 2013). 

PBPs with low affinity for β-lactams have been implicated in β-lactam resistance in a number 

of other bacterial species. For example, intrinsic resistance to β-lactams in Enterococcus spp. 

is associated with the expression of the low affinity PBP 5 (Fontana et al., 1983). Loss of 

expression of PBP 5 can result in hyper-susceptibility, while over expression of PBP 5 with 

mutations that further decrease its affinity for β-lactams further increases resistance to 

ampicillin (Fontana et al., 1985; Fontana et al., 1994). 

PBPs with lower affinities for β-lactams have also been identified in resistant strains of S. 

pneumoniae, Neisseria spp, and Streptomyces spp. among others (Bowler et al., 1994; 

Hakenbeck et al., 2012; Ogawara, 2015). 
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1.3.8.3 Metal Resistance 

 

Metal resistance, including silver and copper resistance, has been described in a number of 

bacterial species and is most frequently associated with metal efflux. For example, Gupta et 

al. (1999) described a plasmid from a Salmonella spp. isolate from a burns ward as 

harbouring silCBA that encoded a tripartite RND type transporter; such transporters 

function as cationic antiporters (Gupta et al., 1999). In a later study, Randall et al. (2015) 

showed that these genes conferred silver resistance; with an MIC greater than 256 µg/ml in 

E. coli (Randall et al., 2015). Deletion of any of these genes resulted in a reduction in the 

MIC to between 4-8 µg/ml. Also, found on this plasmid was a gene, silE, that encoded a 

periplasmic silver binding protein. The purified SilE protein was shown to specifically bind 

silver and deletion of silE from the E. coli host resulted in increased susceptibility to silver 

(Gupta et al., 1999; Randall et al., 2015). 

In vitro studies have shown that successive culturing of E. coli in sub-inhibitory 

concentrations of silver can select for mutants with decreased silver susceptibility. This is 

due to down regulation of outer membrane porins, OmpF and OmpC and loss of repression 

control of cusCFBA, where CusA is a cytoplasmic RND transporter, CusB is a membrane 

fusion protein, CusC is an outer membrane factor and CusF is a metal chaperone that 

delivers the metal to the transporter (Li et al., 1997; Lok et al., 2008). However, no such 

mutations have been observed outside of laboratory conditions (Randall et al., 2015). 

Expression of cusCFBA is also involved the copper resistance in E. coli, Figure 1.17 (Franke et 

al., 2003). Increased transcription of cusA has been demonstrated in Shewanella oneidensis 
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following copper stress, and has also been shown to play a role in copper resistance in 

Acidithiobacillus ferrooxidans (Toes et al., 2008; Navarro et al., 2009). 

P-type ATPases such as that encoded by copA are also involved in copper efflux from the cell 

as they hydrolyse ATP to transporter Cu+ into the periplasm, Figure 1.17 (Rensing et al., 

2000). However, once in the periplasm the Cu+ is still toxic to the cell. Expression of the 

multicopper oxidase allows the cell to oxidise Cu+ to the less toxic Cu2+ ion, Figure 1.17. 

CueO is a multicopper oxidase involved in copper resistance. Crystal structures of E. coli 

CueO identified four copper atoms within its structure that mediate the oxidation Cu+ 

through four individual electron transfer events (Roberts et al., 2002; Djoko et al., 2010; 

Singh et al., 2011).  

Binding and sequestering of free copper in the cell may also contribute to the copper 

resistance of some cells. CopT is a copper binding protein required for resistance in 

Sulfolobus solfataricus and CopG and Cot are examples of periplasmic copper binding 

proteins expressed by Vibrio cholera although their full functionality has yet-to-be 

determined (Villafane et al., 2009; Marrero et al., 2012). 

 

 

 

 

 

 



 87 

Figure 1.17 

 

 

Figure 1.17 Mechanisms of Copper Resistance. A depiction of the cell envelope of a Gram-negative cell: CM is 

the cytoplasmic membrane, PS is the periplasmic space and the OM is the outer membrane. In the top right 

corner of the cell is an illustration of the CusCBA transporter that transports Cu+ from the cell following 

delivery of the ion by the CusF chaperone. Towards the bottom middle of the cell is a diagram of a P-type 

ATPase such as CopA that hydrolysis ATP to transport Cu+ from the cytoplasm into the periplasmic space. At 

the very bottom of the cell is a representation of the oxidation of Cu+ to the less toxic Cu2+ by multicopper 

oxidases such as CueO following its transport into the periplasm. This figure was reproduced from Bondarczuk 

et al. (Bondarczuk and Piotrowska-Seget, 2013). 
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1.3.8.4 Reduced Susceptibility to Cationic Antiseptics 

 

Resistance is typically described as an increase in the MIC of a compound. However, as 

cationic antiseptics are typically used in concentrations far greater than their MIC, increases 

in MICs for these compounds do not typically result in a loss of effectiveness of the products 

containing them. As such the term ‘reduced susceptibility’ is used rather than resistance for 

increased cationic antiseptic MICs (Maillard et al., 2013). 

As with resistance to metals, reduced susceptibility to cationic antiseptics is frequently 

associated with the expression of efflux pumps. The RND transporter AcrAB-TolC has been 

implicated in conferring resistance to QACs in clinical E. coli strains (Buffet-Bataillon et al., 

2012). Indeed, the use of cationic antiseptics can select for mutations in MDR efflux 

transporters resulting in reduced susceptibilities. For example, Maseda et al. (2009) cultured 

Serratia marcescens in increasing concentrations of CPC and identified S. marcescens 

mutants with reduced susceptibility to CPC, chlorhexidine and other QACs. Using transposon 

mutagenesis, they demonstrated that mutations in the outer membrane protein HasF which 

associates with the SdeAB RND transporter were responsible for the observed reduced 

susceptibility (Maseda et al., 2009). 

Transporters of the MFS as well as the multidrug and toxic compound extrusion (MATE) and 

small multidrug resistance (SMR) superfamilies which are all proton dependent antiporters 

are involved in cationic antiseptic resistance, Table 1.5 (Poole, 2005). 
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Table 1.5 Transporter Families Involved in Reduced Quaternary Ammonium Compound or 

Chlorhexidine Susceptibility. 

Transporter Family Transporters Antiseptic 

substrate 

Organism 

Resistance Nodulation Division (RND) AcrAB-TolC QAC* E. coli, S. enterica serovar 

Typhimurium 

 MexAB-OprM CHX, QAC* P. aeruginosa 

 CmeABC QAC* Campylobacter jejuni 

 OqxAB CHX, QAC* E. coli, 

Major Facilitator Superfamily (MFS) QacA CHX, QAC* S. aureus 

 QacB QAC* S. aureus 

 NorA CHX, QAC* S. aureus 

 NorB QAC* S. aureus 

 MdeA QAC* S. aureus 

 EmeA QAC* E. faecalis 

 MdfA QAC*, CHX E. coli 

Multidrug and toxic compound 

extrusion (MATE) 

MepA CHX, QAC* S. aureus 

 NorM QAC* Neisseria spp. 

 PmpM CHX P. aeruginosa 

Small multidrug resistance (SMR) QacE  K. pneumoniae,  

P. aeruginosa 

 QacEΔ1 QAC* Pseudomonas sp., E. coli,   

K. pneumoniae,  

S. enterica serovar 

Typhimurium,  

S. marcescens, Vibrio spp.,  
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Campylobacter spp.,  

E. cloacae,  

S. aureus, E. faecalis 

 QacF QAC* Enterobacter spp. 

 QacG QAC* P. aeruginosa, S. aureus 

 QacH QAC* S. aureus 

 QacJ QAC* Staphylococcus spp. 

 Smr (QacC) QAC* S. aureus 

 SugE QAC* E. cloacae, E. coli 

Amended from Poole et al. (Poole, 2005). 

*Resistance to CTAB and/or CPC 

 

Alterations in the cell envelope can also result in reduced susceptibility to cationic 

antiseptics and have been described in E. coli, Serratia spp. and Pseudomonas spp. 

(Lannigan and Bryan, 1985; Ishikawa et al., 2002). For example, Ishikawa et al. (2002) 

isolated an E. coli mutant with reduced susceptibility to CTAB by growing the cells on 

stepwise increasing concentrations of the antiseptic. They showed that the mutant had a 

different LPS pattern to its parent strain when viewed by SDS-PAGE and that introduction of 

the mutant LPS into the parent strain could confer the reduced susceptibility phenotype 

(Ishikawa et al., 2002). In an earlier study, Tattawasart et al. (2000) similarly showed that 

alterations in the LPS profile between CPC and CHX resistant Pseudomonas stutzeri mutants 

and their parent strains were responsible for the resistance phenotypes in these mutants 

(Tattawasart et al., 2000). 
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1.3.9 The Importance of Antimicrobial Resistance Research 

 

As novel antimicrobials are discovered it is important that we understand how resistance to 

them may arise and know what environments may act as reservoirs for such resistance 

genes. Thus, studies such as those discussed in this text are important in developing our 

understanding of how and where antibiotic resistance may arise and may give us the 

opportunity to prolong the life of our current antibiotics and those in development. 

 

1.4 Bacteriocins as Alternatives to Antibiotics 

 

In addition to understanding how and where resistance can arise to our currently used 

antibiotics, novel compounds must also be discovered and developed continuously to 

ensure we always have a viable treatment option for infection; this is currently not the case. 

In this respect, bacteriocins may offer a novel treatment option. Bacteriocins are 

ribosomally synthesised peptides produced by bacteria that inhibit the growth of closely 

related bacteria species, although some have broader spectra of activity (Cotter et al., 

2005). In this sense, they differ from antibiotics which themselves are secondary 

metabolites. 

Genes involved in bacteriocin biosynthesis have been identified in nearly every bacteria 

species studied to date, however the main focus of bacteriocin research has been those 

produced by the lactic acid-producing bacteria (LAB) (Cotter et al., 2005). This is due to LAB 

having generally regarded as safe (GRAS) status, meaning that these bacteria and their 
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metabolites, including bacteriocins, can be used in food and pharmaceutical products to 

prevent spoilage by inhibiting bacterial growth. For example, the bacteriocin nisin A 

produced by Lactococcus lactis was first discovered in 1928 and following its first use as a 

food preservative in 1969 is now used as such in over 50 countries (Delves-Broughton et al., 

1996; Hansen, 1994; Rogers and Whittier, 1928). Bacteriocins are now beginning to receive 

attention as potential clinical treatments, as will be discussed in this section. 

 

1.4.1 Classification of Bacteriocins 

 

Bacteriocins can be characterised based on whether they possess post translational 

modifications (PTMs) or not, as well as their size and whether they have enzymatic activity 

or not. Class I bacteriocins have modifications, and class II contain no modifications; both 

are less than 10 kDa and heat stable. The class III bacteriocins are larger than 10 kDa and are 

heat labile; their classification as bacteriocins is debated (Cotter et al., 2005). Class I 

bacteriocins were originally referred to as the lantibiotics as they contained the amino acid 

residues lanthionine and β-methyl lanthionine (Guder et al., 2000). However, as bacteriocins 

with PTMs other than those resulting in the synthesis of these residues have been described 

the class has broadened to account for them, Table 1.6 (Claesen and Bibb, 2010; Freeman et 

al., 2012; Knappe et al., 2010; Li and Kelly, 2010; Melby et al., 2011; Murphy et al., 2011; 

Sivonen et al., 2010). 

Similarly, class II bacteriocins are also subdivided into classes IIa-e and class III bacteriocins 

can be divided into lytic and non-lytic subgroups, detailed in Table 1.6.  
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Table 1.6 Classification of Bacteriocins. 

Bacteriocin 

Class 

Characteristics Example Producing Organism Targets 

Class I     

Lasso peptides Have a lasso structure MccJ25 E. coli E. coli, Salmonella 

spp. 

Lantibiotics Lanthionine and β-

methyl lanthionine 

Residues 

Nisin 

Mutacin 

 

Mersacidin 

Lactococcus spp. 

Streptococcus 

mutans 

B. subtilis 

Streptococcus spp., 

MRSA, VRE, Bacillus 

spp. 

Linaridins Dehydrated amino 

acids 

Cypemycin Streptomyces spp. Micrococcus luteus 

Sactibiotics Sulfur-α-carbon 

linkages 

Thuricin CD Bacillus thuringiensis C. difficile 

Thiopeptides Central pyridine, 

dihydropyridine or 

piperidine ring 

Thiostrepton Streptomyces spp. MRSA, VRE, Bacillus 

spp. 

Bottromycins Macrocyclic amidine, 

decarboxylated C-

terminal thiazole and 

methylated residues 

Bottromycin A2 Streptomyces spp. MRSA, VRE 

Glycocins S-linked glycopeptides Sublancin 168 B. subtilis B. subtilis, S. aureus 

Class II     

IIa (Pediocin) Conserved a YGNGV 

motif  

Pediocin PA-1 

 

Pediococcus 

acidilactici 

Listeria 

monocytogenes,  

IIb Two peptides are 

required for activity 

Lactacin F Lactobacillus 

acidophilus 

Lactobacillus spp. 

IIc Cyclic peptides Enterocin AS-48 E. faecalis  

IId Unmodified, linear, 

non-pediocin, single 

peptide 

Microcin V 

Lactococcin A 

E. coli 

L. lactis 

L. monocytogenes, 

Bacillus spp., 

Staphylococcus spp., 

E. coli 

IIe Serine rich carboxy 

terminal with a 

siderophore type 

modification 

Microcin M E. coli E. coli 

Class III     

Lytic Cell wall degrading Enterolysin A E. faecalis L. lactis, 

Enterococcus spp. 

Staphylococcus spp. 

Non-lytic Non-cell wall 

degrading 

Helveticin J Lactobacillus 

helveticus 

Lactobacillus spp. 

 

This table was amended from Cotter et al. (Cotter et al., 2013). 
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1.4.2 Molecular Biology of Bacteriocins 

 

Bacteriocins are typically expressed as pre-peptides that contain an N-terminal leader 

sequence making them inactive in the producing cell. These pre-peptide genes are found in 

gene clusters that contain other genes required for their expression (Jack et al., 1995).  

Bacteriocin gene clusters are present on the chromosome but many have been found on 

MGEs. The class II pediocin bacteriocin clusters are found on plasmids in LAB and the nisin 

gene cluster is carried on the CTn, Tn5276 (Cui et al., 2012; Lubelski et al., 2008).  

The composition of the bacteriocin gene clusters depends on the bacteriocin type and some 

are more complex than others. For example, in Carnobacterium divergen the divergicin A 

pre-preptide gene is found in an operon with only one other gene encoding an immunity 

protein and likely represents the simplest bacteriocin operon structure. The larger nisin 

gene cluster contains 11 genes in four transcriptional operons. (Lubelski et al., 2008; 

Worobo et al., 1995). Figure 1.18 provides an illustration of the diversity in the size and 

genes present on a select number of bacteriocin gene clusters. 
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Figure 1.18  

 

 

Figure 1.18 Bacteriocin Gene Cluster Organisation. Diagram of the genetic organisation of four bacteriocin 

gene clusters indicating the diversity in their structure; with a kilobase (kb) scale for each illustration on the 

right-hand side. (a) The gene organisation in the divergicin A operon. (b) Gene cluster based on that for 

pediocin PA-1 AcH, identifying its dedicated ABC transporter gene. (c) Gene cluster of carnobacteriocin B2 

containing in addition to the equivalent genes for (b) above: the pre-induction peptide (IF); and the regulatory 

proteins HK (histidine kinase) and RR (response regulator); Bcn is the pre-peptide. (d) Genes required for the 

production of the lantibiotic, nisin A. nisA is the prepeptide, nisBC are PMT enzymes, nisT is the ABC 

transporter, nisP is the leader peptide protease, nisRK is involved in expression regulation, and nisIFEG are 

required for nisin immunity. Figure reproduced from van Belkum and Stiles (van Belkum and Stiles, 2000) 

 

Bacteriocin gene clusters typically encode their own dedicated ABC transporters which in 

many cases also serve to cleave the leader peptide sequence via an N-terminal cysteine 

protease (Havarstein et al., 1995). This has been demonstrated to be the case for class II 

bacteriocins such as pediocin PA-1 AcH, whereby the genes papC and papD encode an ABC 

transporter that cleaves the double-glycine type leader peptide sequence of the pre-peptide 
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bacteriocin. For lantibiotics, leader sequence cleavage may occur following export of the 

prepeptide; NisT transports the L. lactis  nisin pre-peptide which is then cleaved by the NisP 

protease (van der Meer et al., 1993). 

The production of immunity proteins protects the cell from being effected by their own 

bacteriocins. In some cases immunity proteins are ABC transporters as is the case for the 

class IIc enterocin AS-48 as well as some lantibiotics (Diaz et al., 2003).  

Immunity proteins may also function to bind and sequester the bacteriocin. B. subtilis, for 

example, partly gains immunity to the subtilin lantibiotic it produces through the production 

of a surface-expressed lipoprotein, SpaI, which has been shown to bind the bacteriocin in 

vitro (Stein et al., 2005).  

Gene clusters may control their own expression by encoding two-component regulatory 

systems composed of a histidine kinase receptor and a regulator protein. Genes in 

lantibiotic operons for example are upregulated when their LanK receptors recognise a 

specific extracellular lantibiotic and activates its cognate regulator; this has been 

demonstrated for nisin and subtilin (Kleerebezem, 2004). Thus, any cell expressing the two-

component system and encoding the lantibiotic immunity gene will survive in the presence 

of the bacteriocin. For some class II bacteriocins the receptor kinase recognises an induction 

factor that is co-transcribed with the bacteriocin; the binding of this molecule ultimately 

induces bacteriocin expression. This model of regulation has been described for enterocin A, 

Figure 1.19. 
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Figure 1.19 

 

 

Figure 1.19 Regulation of Bacteriocin Gene Cluster Transcription. Shows the induction of enterocin A through 

the recognition of the induction factor enterocin F. Both enterocin A and enterocin F genes are co-transcribed 

and their products exported from the cell via the ABC transporter (EntA) and the accessory protein, EntD. The 

EntK histidine kinase recognises enterocin F, causing it to autophosphorylate and ultimately activate the 

regulator EntR that induces expression of the enterocin A and enterocin F genes. Lantibiotic autoinduction 

follows a similar mechanism, though the bacteriocin itself is recognised rather than an induction factor. This 

figure was reproduced from Cotter et al. (Cotter et al., 2005). 

 

Due to the presence of PTMs in their structure, class I bacteriocins are often found in larger 

operons than those that encode class II bacteriocins, as they also encode the enzymes 

required for these modifications. Lantibiotic operons for example encode the enzymes 

required to synthesise the non-proteinogenic amino acids present in their structure. In the 

nisin operon two enzymes, nisB and nisC, encode a dehydratase and cyclase respectively. 

Both enzymes are required for the conversion of serine and threonine residues to 
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lanthionine and β-methyl lanthionine in two steps (Lubelski et al., 2008). In other lantibiotic 

operons a single bifunctional enzyme, lanM, is encoded to accomplish these conversions, as 

is the case for lacticin 481 (Xie et al., 2004). 

 

1.4.3 Mode of Action of Bacteriocins 

 

As illustrated in the previous sections, the structure, genetic organisation, regulation and 

export of bacteriocins is varied and subsequently so are their mechanisms of inhibition. 

 

1.4.3.1 Inhibition by Lipid II Binding 

 

Lantibiotics are surface-active antimicrobials that target Gram-positive bacteria. Linear 

lantibiotics, such as nisin and the mutacins, are able to bind to the phosphate moiety of the 

peptidoglycan precursor lipid II via their positively charged N-terminal A and B rings, Figure 

1.20(a) (Bierbaum and Sahl, 2009; Smith et al., 2008). This sequestering of lipid II inhibits cell 

wall synthesis. Nisin is also able to form pores in the target cell in a lipid II-dependent 

manner, and using a pyrene labelled lipid II model Bierbaum and Sahl (2009) deduced that 

the pores contain 4 lipid II molecules and 8 nisin molecules (Bierbaum and Sahl, 2009). The 

formation of these pores results in the loss of cell contents and ultimately cell death 

(AlKhatib et al., 2014), Figure 1.20(b). 
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Figure 1.20 

(a)      

 

(b) 

 

Figure 1.20 Structure and Mode of Action of Lipid II Binding Bacteriocins. (a) The structure of the lantibiotics 

mutacin 1140 and nisin highlighting their A and B rings involved in lipid II binding, reproduced from Escano et 

al. (Escano et al., 2015). (b) A depiction of the mode of action of the lantibiotics with nisin as an example. The 

diagram illustrates the binding of lipid II that abrogates cell wall synthesis. The pores formed by the lipid II-

nisin complexes that results in cell death is also illustrated above. This figure was reproduced from Cotter et al. 

(Cotter et al., 2005). 
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The globular lantibiotics, such as mersacidin which is produced by S. aureus, also interact 

with lipid II to inhibit cell wall synthesis, although they do not form pores (Brotz et al., 1995). 

Additionally, mersacidin is not positively charged and binds to the glucose residue of the 

precursor rather than the phosphate moieties (Brötz et al., 1998). 

 

1.4.3.2 Pore-Forming Bacteriocins 

 

Class II bacteriocins are known to act through the formation of pores, permeabilising the 

target cell membrane. However, the mechanism of pore formation differs between 

bacteriocins. 

The class IIa bacteriocin, lactococcin A, binds to mannose phosphotransferase (MPTs) 

proteins in the cell membrane before inserting itself into the cell membrane, Figure 1.21. 

The deletion of the genes required for MPTs synthesis in a sensitive L. lactis strains resulted 

in resistance to lactococcin A (Diep et al., 2007).  
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Figure 1.21 

 

Figure 1.21 Mode of Action of Class IIa Bacteriocins. An illustration of the interaction of the class IIa, 

lactococcin A with cell membrane bound mannose phosphotransferase (Man-PTS) followed by its insertion 

into the cell membrane. This figure was reproduced from Cotter et al. (Cotter et al., 2005). 

The  class IIe bacteriocin microcin E492, has been shown to recognise the E. coli siderophore 

receptors via its C-terminal, and following transport through the outer membrane in a TonB 

dependent manner, depolarises the cytoplasmic membrane (Destoumieux-Garzon et al., 

2006).  

The class IIb and the class IIc bacteriocins form pores in an oligomeric manner. The two class 

IIb lactococcin G bacteriocin components contain conserved GxxxG-motifs. Nuclear 

magnetic resonance (NMR) analysis of wild-type and mutant forms of this bacteriocin has 

indicated that these motifs are present on transmembrane helices on each subunit that 

stabilise the transmembrane form (Rogne et al., 2008).  The circular bacteriocin AS-48 has 

been shown to oligomerise above pH 5, and NMR analysis of the AS-48 dimer indicate that 
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following membrane binding, hydrophobic residues become exposed allowing it to insert 

into the membrane (Abriouel et al., 2001; Sanchez-Barrena et al., 2003). 

 

1.4.3.3 Enzymatic Bacteriocins 

 

The antimicrobial activity of some bacteriocins is mediated through enzymatic activity, 

typically targeting cell wall components or cell nucleic acids.  

For example, the enterolysin A contains an N-terminal metalloprotease domain with 

homology to the Staphylococcus spp. lysostaphins. Purified enterolysin has been 

demonstrated to rapidly lyse L. lactis cells and to be able to digest purified L. lactis 

peptidoglycan (Nilsen et al., 2003).  

 

1.4.3.4 Bacteriocins Targeting DNA, RNA and Protein Synthesis 

 

A number of class I bacteriocins can also inhibit gene expression through the inhibition of 

translation. Bottromycin and the thiopeptide thiostrepton, both from Streptomyces spp., 

bind to the ribosomal 50S subunit preventing charged aminocyl-tRNA molecules from 

entering the translation complex (Bagley et al., 2005; Kobayashi et al., 2010). The microcin 

MccB17 targets DNA gyrase stabilising it in a complex with cleaved DNA; this results in DNA 

breakage and cell death (Thompson et al., 2014). Microcin J25 (MccJ25) on the other hand 

can bind to RNA polymerase, preventing nucleotide triphosphates from accessing the active 
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site and being added to the growing mRNA polymer, inhibiting transcription (Vincent and 

Morero, 2009).  

 

1.4.4 Clinical Applications of Bacteriocins 

 

The diversity of antimicrobial activities of bacteriocins make them attractive alternatives to 

antibiotics and they offer a number of advantages in this regard. Most bacteriocins are 

generally non-toxic to humans which is evident from the fact that humans have been 

ingesting them from fermented food for millennia. The only lantibiotic that has 

demonstrated toxicity towards human cells is the Enterococcus spp. cytolysin (Coburn and 

Gilmore, 2003).  

The majority of bacteriocins exhibit broad-spectrum inhibition; MccB17 for example inhibits 

Escherichia spp., Citrobacter spp, Klebsiella spp, Salmonella spp, Shigella spp 

and Pseudomonas spp; although some exhibit more targeted inhibition (Baquero and 

Moreno, 1984). In a human colon model the sactibiotic, thuricin CD, was demonstrated to 

have comparable activity to vancomycin against C. difficile. However, thurcin CD did not 

significantly disrupt the commensal microbiota as is observed in vancomycin treatment that 

leads to C. difficile-associated diarrhoea (Rea et al., 2011). 

As most bacteriocins do not share cell targets with currently used antibiotics they have 

activity against a number of antibiotic-resistant pathogens. Lantibiotics and the thiopeptide 

bottromycin can inhibit the growth of VRE, and further to this a number of lantibiotics are 

currently in pre-clinical trials (Kobayashi et al., 2010; Piper et al., 2009). Oragenics Inc. 
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currently have two mutacin derivatives, MU1140-S and OG716, in or entering into pre-

clincal trials for the treatment of MRSA and C. difficile infections (BusinessWire, 2016). A 

second lantibiotic derivative, Deoxyactagardine B, has completed clinical trials for C. difficile 

treatment (Sandiford, 2015). 

Bacteriocins and bacteriocin-producing strains are now found in a number of products: S. 

salivarius K12-producing salivaricins A and B has been included in mouth spray to treat 

throat infections and nisin is used in teat disinfection wipes (BLIS Technologies Ltd)(Wipe 

Out Immucell). 

 

1.4.5 Resistance to Bacteriocins 

 

Although bacteriocins show promise as alternative and adjunctive treatments for antibiotic-

resistant pathogens, bacteriocin resistance could arise. With regard to nisin, some strains of 

L. lactis that do not produce nisin have been shown to produce proteolytic enzymes 

conferring resistance to it (Sun et al., 2009). There is also the potential for susceptible 

strains to acquire the bacteriocin immunity gene from producer strains. In a recent study, 

Draper et al. (2012) demonstrated that the heterologous expression of the spiFEG immunity 

locus in Streptococcus infantarius increased its survival in subinhibitroy conecntrations of 

nisin U (Draper et al., 2012). However, in nisin’s 40 years of being used as a food 

preservative no, significant resistance to it has been found outside of lab conditions. 

As previously mentioned, resistance to class IIa bacteriocins has been demonstrated in the 

lab for L. lactis strains producing MPTs (Diep et al., 2007). It may be that clinical strains with 
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reduced expression of MPTs exhibit reduced susceptibility to class IIA bacteriocins. 

Spontaneous mutations in L. monocytogenes resulting in decreased expression of MPTs 

have been shown to exhibit resistance to pediocin PA-1 (Gravesen et al., 2002). 

 

1.4.6 The Importance of Identifying Novel Bacteriocins 

 

As discussed above, the bacteriocins represent a diverse group of antimicrobial proteins 

with different modes of action to our current arsenal of antibiotics and as such have activity 

against many antibiotic resistance pathogens. If bacteriocins are to find clinical use it is 

important that we continue to identify novel members that have activity against clinically 

important pathogens that can be developed as therapies. As every bacterial species studied 

to date has been found to encode at least one bacteriocin, the bacterial species that have 

yet-to-be cultured are likely to produce novel variants. 
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1.5 Metagenomics 

1.5.1 The Beginning of Metagenomics 

 

Microbiology as a science has its foundations in the observation of microorganisms, either 

through a lens or growing in a petri dish. However, it was noted that the cells under the 

microscope far outnumbered the colonies growing on agar. This discrepancy has since been 

coined the ‘great plate count anomaly’ (Staley and Konopka, 1985).  

Estimates put the number of microbial cells on the planet at between 9.2 X 1029 and 3.17 X 

1030 (Kallmeyer et al., 2012). However, as approximately 95-99 % of these microorganisms 

have yet-to-be cultured there is a vast pool of untapped diversity and potentially useful 

biomolecules to be discovered (Ekkers et al., 2012; Schloss and Handelsman, 2004; Torsvik 

and Ovreas, 2002). 

The term metagenomics was first used by Handelsman et al. in 2004 to describe the field of 

study that utilises culture-independent approaches to analyse this uncultivable majority 

(Handelsman., 2004). Such studies negate the need to culture bacteria, instead analysing 

their genetic material using various genetic tools as will be discussed (Thomas et al., 2012). 

 

1.5.2 Approaches to Metagenomic Studies 

 

Metagenomic studies can be defined as either sequence-based or functional. The analysis of 

the 16S rRNA gene to determine the composition of the microbiota in an environment is a 
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sequence-based approach; however, it provides no phenotypes for the microorganisms 

identified (Tringe and Hugenholtz, 2008). Gene functions can be inferred from sequence 

data by comparing with sequences of functionally characterised gene sequences. 

Alternatively, functional activity of gene products can be directly observed by shotgun 

cloning DNA into a cultivable host, observing a change in the phenotype of interest of this 

host and subsequently sequencing its insert. 

 

1.5.2.1 Sequence-Based Metagenomic Approaches 

1.5.2.1.1 16S rRNA Gene as a Taxonomic Marker 

 

The 16S rRNA gene is frequently used as a marker for determining the phylogenetic diversity 

in an environmental sample. It has been chosen as a gene marker for several reasons. 

Firstly, it is universally distributed across bacteria and archaea; secondly it is functionally 

homologous across microorganisms allowing for meaningful comparisons to be made; and 

thirdly its primary sequence is relatively stable over time and contains both conserved and 

highly variable regions which allows for taxonomic relationships to be made (Chroneos, 

2010; Tringe and Hugenholtz, 2008), Figure 1.22. 
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Figure 1.22 

 

Figure 1.22 Structure of 16S rRNA. The above diagram illustrates the transcribed 16S rRNA structure. The 9 

variable regions that can be used to characterise taxa are labelled V1-V9. Figure reproduced from Case et al 

(Case et al., 2007). 

 

16S rRNA gene analyses originally relied on the amplification of full length, 1.5 Kb, rRNA 

genes from a metagenomic sample followed by cloning of these amplicons into a cultivable 

host. The clones in the resulting 16S rRNA library are then Sanger sequenced and analysed. 

Such surveys are laborious and sequencing depth is limited by the number of clones 

analysed which may result in the omission of rare taxa (Elshahed et al., 2008). 

The use of next-generation sequencing such as the Illumina Miseq and Roche 454 platforms 

have offered access to these rare taxa. Although these systems can sequence only short 
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read lengths (250 bp in the case of Illumina Miseq; less than the full length 16S rRNA gene) 

they can generate millions of these reads in a single run giving a much greater coverage 

than full length 16S rRNA clone libraries. These studies have demonstrated that between 10 

% and 74 % of sequence reads may correspond to unclassified taxa (Bartram et al., 2011; 

Youssef et al., 2015). 

16S rRNA gene sequencing studies have greatly expanded our knowledge of the global 

diversity of bacteria. Genbank contains over 5 million full-length 16S rRNA gene sequences, 

and as of August 2014, 100 bacterial phyla were included in the curated 16S rRNA 

databases, GreenGenes and Silva. Of these phyla, only 30 are cultivable and 18 of these 

were originally identified by 16S rRNA sequencing (McDonald et al., 2012; Quast et al., 

2013; Youssef et al., 2015).  

 

1.5.2.1.2 Gene Identification from Metagenomes 

 

In addition to assessing metagenomes for their taxonomic composition, they can also be 

mined to identify novel genes of interest. Such studies can take a sequence-based 

approached whereby novel genes are identified based on their homology to already 

genetically and functionally characterised genes. Some of the techniques used in this regard 

are outlined in Table 1.7 (Culligan et al., 2014).  
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Table 1.7 Techniques Used to Identify Genes from Metagenomic Samples and Data. 

Technique Requirements Uses Application Example Reference 

PCR/Metagene 

Analysis 

Design of 

degenerate primers 

to amplify genes of 

interest from 

metagenomic 

sample. 

Identification of 

novel members of 

known gene 

families. 

Identification of 

novel putative 

antibiotic synthesis 

gene clusters from 

soil metagenomes. 

 

(Courtois et 

al., 2003; 

Owen et al., 

2013) 

Shotgun 

Metagenomic 

Sequencing 

Sequencing and 

subsequent 

assembly of non-

targeted 

metagenomic DNA. 

Identification of 

novel members of 

known gene 

families. 

Identification of 

pederin type toxin 

gene clusters from 

lichen metagenome. 

 

(Kampa et 

al., 2013) 

Data Mining Identification of 

genes of interest by 

mining existing 

metagenomic 

sequence data. 

Identification of 

novel members of 

known gene 

families. 

Identification of 

novel methyl halide 

transferase genes. 

 

 

(Bayer et al., 

2009) 

TRACA (Transposon-

aided capture) 

Tn5 transposon 

insertion into 

plasmid DNA from 

metagenomic 

samples and 

subsequent cloning 

into E. coli host. 

Identification of 

plasmids from 

metagenomic 

samples and the 

genes they encode 

following 

sequencing from 

Tn5. 

Plasmid encoded 

toxin-antitoxin 

genes from human 

plaque samples 

 

 

 

 

(Warburton 

et al., 2011) 

Integron Capture PCR amplification of 

integron captured 

gene cassettes using 

primers targeting 

conserved repeats in 

their sequence 

Identification of 

gene cassettes that 

can identify novel 

genes without prior 

sequence 

information. 

Identification of 

numerous toxin-

antitoxin gene 

cassettes from 

human saliva 

integrons 

(Tansirichaiya 

et al., 2016) 

Solution Hybrid 

Selection 

Multiple 

‘explorative’ and 

variant probes are 

designed and 

hybridized with 

metagenomic DNA 

fragments. 

To enrich 

metagenomic DNA 

samples with 

fragments 

containing genes of 

interest that can 

then be sequenced. 

Carbohydrate active 

and protease 

enzymes from soil. 

(Manoharan 

et al., 2015) 

 

Table amended from Culligan et al. (Culligan et al., 2014). 
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Sequenced-based approaches to identify genes from metagenomic samples have been 

aided in recent times by the development of online annotation tools that identify genes of 

interest based on primary sequence homology, gene cluster structure and predicted protein 

structure, Table 1.8. 

 

Table 1.8 Tools Used to Identify Genes of Interest from Metagenomic Sequence Data. 

Online Tool Website Application 

BRENDA http://www.brenda- 

enzymes.org/ 

To find the comprehensive 

enzyme information system in 

the metagenomic library 

IMG/M  http://img.jgi.doe.gov/m Provides comparative data 

analysis tools extended to handle 

metagenome data, together with 

metagenome-specific analysis 

tool 

Megx.net  http://www.megx.net/ To predict gene functions of 

metagenome sequences 

MetaBioME  http://metasystems.riken.jp/ 

metabiome/ 

To find novel homologs for known 

commercially useful enzymes in 

metagenomic datasets and 

completed bacterial genomes 

MG-RAST http://metagenomics.nmpdr.org/ Provides a new paradigm for the 

annotation and analysis of 

metagenomes 

EnGenIUS http://engenius.software.in 

former.com/ 

Provides a comprehensive 

metagenome research toolset 

BAGEL http://bagel.molgenrug.nl/ To identify bacteriocin gene 

clusters from sequence data 

*This table was amended from Krishnan et al. (Krishnan et al., 2014). 
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1.5.2.2 Functional Metagenomics 

 

Functional metagenomics, in contrast to sequence-based gene identification approaches, 

does not require any prior sequence information to identify genes of interest. Instead this 

approach requires the shotgun cloning of metagenomic DNA fragments using a suitable 

vector and cultivable host strain to create metagenomic libraries (Ekkers et al., 2012). These 

metagenomic libraries can then be screened to identify clones with phenotypes of interest 

such as pigmentation, reduced antimicrobial susceptibility, antimicrobial production etc. 

Sequencing of these clones in conjunction with mutagenesis and subcloning allows for the 

identification of the genes involved in the altered phenotype (Arivaradarajan et al., 2015; 

Craig et al., 2010).  

Although functional metagenomic studies do not suffer from PCR biases the cell lysis and 

DNA fragmentation protocols can introduce biases as they determine the diversity, 

composition and fragment size of the metagenomic DNA (Tanveer et al., 2016). Additionally, 

the choice of host and vector will affect the outcome of functional metagenomic surveys as 

will be discussed (Ekkers et al., 2012). 

 

1.5.2.2.1 Design of Functional Metagenomic Surveys 

 

As functional metagenomics requires the identification of a change in phenotype of the host 

to identify genes of interest, the cloned genes must be expressed in the host. Successful 

expression requires host transcription and translation factors to recognise signals in the 
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cloned DNA. Additionally, the host must use the same codons, produce the correct co-

factors, provide conditions for proper folding, secrete the protein if necessary and not be 

inhibited by the gene products. Thus, it is not surprising that functional metagenomic 

surveys frequently have low hit rates, <2 from 10,000 screened clones (Vester et al., 2015b).  

 

1.5.2.2.1.1 Expression Vectors 

 

When creating a metagenomic library, the desired insert size is an important consideration 

when choosing a vector. Plasmids are used to maintain small inserts (≤15 Kb) while larger 

inserts can be obtained using fosmids and cosmids (≤40 Kb) and bacterial artificial 

chromosomes (BACs; up to 200 Kb) (Ekkers et al., 2012; Leis et al., 2013). The choice of 

insert size greatly determines the outcome of a functional metagenomic screen. 

Small inserts contain only a few genes which can be overexpressed by inducible promoters 

on multicopy plasmids increasing the chance of their identification. However, these small 

inserts will not contain full biosynthetic gene clusters and will also lack the genetic context 

which helps to identify the likely source of cloned DNA libraries (Taupp et al., 2011). 

Additionally, more clones must be screened in order to achieve comparable coverage to 

larger insert libraries. 

Larger inserts can contain full biosynthetic gene clusters and their greater genetic context 

may provide more confidence on the source of the cloned DNA as well if genes of interest 

are located on MGEs. However, the genes present on large inserts likely rely on their native 

promoter sequences for transcription as the promoters on the vectors will not be able to 
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drive expression of all genes on the insert due to differences in gene orientation and the 

presence of premature transcription stop signals (Liebl et al., 2014).  

Vectors and cassettes utilising T7 RNA polymerase (RNAP)-promoter systems, anti-

termination proteins and convergent promoters have been developed to increase the 

expression of genes in large inserts (Liebl et al., 2014; Terrón-González et al., 2013). 

Additionally, the use of shuttle vectors that replicate in more than one host have been 

developed and used to increase the hit rate of functional metagenomic screens (Liebl et al., 

2014).  

Table 1.9 is a non-exhaustive list of vectors that have been used in metagenomic studies or 

show promise as tools for functional metagenomic studies. 
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Table 1.9 Vectors and Cassettes as Tools for Functional Metagenomic Studies. 

Vector/Cassette Hosts Traits Reference/

Company 

pCC1BAC™ E. coli Single Copy, Inducible to multicopy, 

≤200 Kb, T7 promoter*. 

 

Epicentre® 

pCC1FOS™ E. coli Single Copy, Inducible to multicopy, ≤40 

Kb, transfection, T7 promoter*. 

 

Epicentre® 

pWEB™ Cosmid E. coli Single Copy, Inducible to multicopy, ≤40 

Kb, transfection, T7 promoters*. 

 

Epicentre® 

pMPO579 E. coli pCC1FOS™ based shuttle vector, T7 

promoter, oriT for conjugative transfer, 

nutL site for phage transcription anti-

termination protein N assembly. 

Promoterless gfp for substrate induced 

gene expressions (SIGEX). 

 

(Terrón-

González et 

al., 2013) 

pJOE930 E. coli Convergent inducible lac promoters 

flanking cloning site. 

 

(Lämmle et 

al., 2007) 

pHT01 E. coli, B. subtilis ColE1 replicon, inducible groE promoter MoBiTec 

GmbH 

pRS44 E. coli,  
Pseudomonas 
fluorescens, 
Xanthomonas 
campestris 
 

pCC1FOS™ based shuttle vector, oriT for 

conjugative transfer, parDE stabilising 

elements 

(Aakvik et 

al., 2009) 

pCT3FK E. coli, Thermus 
thermophilus 

pCC1FOS™ based shuttle vector, 

contains pyrF and hyp genes of T. 

thermophilus for chromosomal 

integration  

(Leis et al., 

2015) 

pJWC1 Agrobacterium 
tumefaciens, 
Burkholderia 
graminis, 
Caulobacter 
vibrioides, E. coli, 
Pseudomonas putida, 
Ralstonia 
metalliduran 
 

RK2 replicon, pTR101 derived cosmid (Craig et al., 

2010) 

Transfer and Expression 

of biosynthetic pathways 

(TREX) 

E. coli 
P. putida 
Rhodobacter 
capsulatus 

Two cassette system that labels and 

mediates conjugative transfer of gene 

clusters to non-E. coli hosts. Convergent 

T7 promoters. 

(Loeschcke 

et al., 2013) 

* These vectors and E. coli EPI300 T1R strains do not encode the T7 RNA polymerase. 



 116 

1.5.2.2.1.2 Metagenomic Library Hosts 

 

E. coli is the most utilised host for creating metagenomic libraries as it is well characterised 

and amenable to genetic manipulation. However, using a single host will not allow for the 

expression of every cloned gene. Indeed, Gabor et al. (2004) estimated that from the genes 

of 32 different genera, E. coli would be able to express only 40 % of them (Gabor et al., 

2004). This figure is likely to be an overestimate as the authors only looked at expression 

signals and did not account for differing cofactors, chaperones etc.  

The expression of alternative sigma factors and chaperones in E. coli has been 

demonstrated to increase the expression of cloned genes. For example, the use of E. coli 

EPI300 T1R harbouring additional sigma factors from Clostridium and Streptomyces spp. had 

a 20 – 30 % increased hit rate in functional metagenomic screens to identify hydrolytic 

enzymes (Liebl et al., 2014). In addition to altered E. coli hosts, alternative hosts may also be 

used to create metagenomic libraries, Table 1.10. In fact, the use of alternative hosts may 

be required when screening for certain functions such as the identification of cold enzymes, 

as E. coli does not grow well at low temperature (Strocchi et al., 2006). 

 

 

 

 

 



 117 

Table 1.10 Alternative Hosts Used in Functional Metagenomic Surveys. 

Host Metagenome Novel Genes/Phenotypes References 

T. thermophilus Hotspring sediment 

and water 

Esterases (Leis et al., 

2015) 

B. subtilis Deciduous forest 

Soil 

Antimicrobial Production (Biver et al., 

2013) 

P. putida Wheat Soil 

 

Polyhydroxyalkanoate Synthases (Cheng and 

Charles, 

2016) 

S. lividans Alaskan Soil 

 

Sigma Factors and Haemolysans (McMahon 

et al., 2012) 

A. tumefaciens 

 

Pennsylvanian soil Pigementation (Craig et al., 

2010) 

Rhizobium leguminosarum 

 

Anaerobic Sludge Alcohol/Aldehyde Dehydrogenase (Wexler et 

al., 2005) 

B. graminis Pennsylvanian soil 

 

Antimicrobial Production (Craig et al., 

2010) 

R. metallidurans Pennsylvanian soil Pigementation, Antimicrobial 

Production 

(Craig et al., 

2010) 

 

1.5.2.2.1.3 Functional Screen 

 

Following the creation of a metagenomic library, appropriate functional screens to identify 

clones of interest must be designed. Functional screens can be grouped into three 

strategies: phenotypic insertion detection, modulated detection and reporter-based 

screens.  

Phenotypic insertion detection involves the observation of a phenotype of interest. These 

phenotypes may be direct such as altered colony morphology or pigmentation, or indirect 

by the interaction of a clone’s gene product(s) with a substrate or indicator organism. For 

example, protease activity can be detected by culturing metagenomic libraries on skimmed 

milk containing agar while antimicrobial producing clones can be identified by identifying 

halos in sensitive indicator organism overlays (Arivaradarajan et al., 2015; Waschkowitz et 



 118 

al., 2009). Such screens are typically low tech and not very sensitive as poorly expressed 

genes may be missed. However, the coupling of such screens with microfluidic approaches 

can increase throughput and sensitivity. Scanlon et al. (2014) developed an antimicrobial 

screen whereby a metagenomic clone and indicator organism are immobilised in a gel 

droplet. Staining of the droplets with a fluorescent dye to identify lysed cells allowed for the 

screening of > 5 million clones in one day (Scanlon et al., 2014). 

Modulated detection involves the identification of genes of interest based on their 

expression allowing the host cell to survive under certain conditions. For example, a cold-

sensitive E. coli mutant unable to grow at temperatures below 20°C has been used to 

identify DNA polymerases from a glacial ice metagenome that allowed the mutant to survive 

low temperatures (Simon et al., 2009). Similar functional screens have been designed to 

identify genes that allow their heterologous host to survive on exogenous lysine and to 

utilise ethanol (EtOH) as a carbon and energy source (Chen et al., 2009; Wexler et al., 2005). 

The addition of antimicrobials to a media also allows for the discovery of clones expressing 

antibiotic resistance genes (Card et al., 2014). 

Reporter-based screens utilise a reporter gene such as gfp (green fluorescent protein) 

coupled to the activity of a cloned gene promoter or to a cloned gene’s product. For 

example, SIGEX involves the cloning of genes upstream of a promoter-less gfp, linking their 

expression. Following induction by a substrate, induced genes can be identified by 

fluorescence associated cell sorting (FACS). SIGEX has been used to identify many genes 

including those induced by hydrocarbons (Meier et al., 2015). Similarly, product-induced 

gene expression (PIGEX) utilises a system whereby gfp transcription is under the control of a 
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promoter sensitive to a gene product of interest. PIGEX has been used to identify a novel 

amidase enzyme involved in benzoate synthesis (Uchiyama and Miyazaki, 2010). 

 

1.5.2.2.2 Bacterial Artificial Chromosomes 

 

The BAC vector was first developed in 1992 by Shizuya et al. (1992) to clone large human 

DNA fragments with the aim of creating a high-resolution map of the human genome. It was 

created through the modification of the mini-F plasmid pMB0131 (Shizuya et al., 1992). 

The ability of BACs to stably maintain their large inserts is due to their ability to regulate 

their own replication and copy number. The former is accomplished by the presence of an F-

factor replicon (repE and Ori2 in pCC1BAC) that mediates the unidirectional replication of 

the vector, while copy number is maintained by the expression of the par operon (parCBA in 

pCC1BAC) which prevents the maintenance of multiple plasmids in the cell, Figure 1.23 

(Easter et al., 1998; Ishiai et al., 1992; Wild et al., 2002). 

The cloning site of pCC1BAC is composed of bacteriophage A cosN and P1 loxP sites, three 

restriction sites (HindIII, BamHI and EcoRI) and flanking T7- and IPTG-inducible promoters. 

The vector also encodes a chloramphenicol resistance gene and a lacZ gene for blue/white 

screening, Figure 1.23 (Wild et al., 2002). 

In addition to Ori2, pCC1BAC encodes a second, high copy number origin of replication, 

OriV, which increases the vector’s copy number to approximately 25 copies per cell when 

induced by the trfA gene product from E. coli EPI300 T1R, Figure 1.23 (Wild et al., 2002). 
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Figure 1.23 

 

Figure 1.23 Map of the CopyControl™ pCC1BAC™ vector. Genes are indicated by black arrows, origin of 

replication sites and the cosN and loxP sites are indicated by black rectangles. Restriction sites at the 

multicloning site are highlighted in bold. This figure was reproduced from the Epicentre® CopyControl™ 

pCC1BAC™ Cloning kit manual. 

 

Although various expression systems have been developed and multiple hosts can now be 

used to create metagenomic libraries, E. coli is still the most widely used host and in recent 

years the BAC system has been used to create libraries from various metagenomes, Table 

1.11. 
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Table 1.11 Metagenomic Libraries Created Using BAC Vectors. 

Metagenome Novel 

Genes/Phenotypes/Compounds 

Reference 

Marine Bacteriorhodopsin 

 

(Beja et al., 2000) 

Silt Loam Soil Kanamycin resistance  

 

(Riesenfeld et al., 

2004) 

Soil Indirubis-like antimicrobial 

compound 

 

(MacNeil et al., 

2001) 

Soil Turbomycin A and B antimicrobials 

 

(Gillespie et al., 

2002) 

Ikaite columns Amylase 

 

(Vester et al., 

2015a) 

Ikaite columns Β-galactosidase 

 

(Vester et al., 

2014) 

Antarctic soil Cellulase 

 

(Berlemont et al., 

2009) 

Human Plaque and Saliva Antimicrobial Protein 

 

(Arivaradarajan et 

al., 2015) 

Mouse Large Intestine β-glucanases 

 

(Walter et al., 

2005) 

Yingtan Red Soil β-glucanases 

 

(Liu et al., 2011) 

Red Sea  Anti-Quorum Sensing Compounds 

 

(Yaniv et al., 

2017) 

Mouse Large Intestine Enhanced Adherence 

 

(Yoon et al., 

2013) 

Yak Rumen Cellulases, Xylanases, Esterases 

 

(Dai et al., 2012) 

Cattle Rumen Xylanase 

 

(Gong et al., 

2013) 

Gisburn Forest Soil Monooxygenase Operon 

 

(Dumont et al., 

2006) 

Soil Amylase, Lipase, Haemolysin, 

Antimicrobial, DNase 

 

(Rondon et al., 

2000) 

Cow Rumen Amylase, Xylanase (Zhao et al., 2010) 
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1.6 Aims of this Study 

 

The focus of the work described in this thesis was to identify ARGs and bacteriocin gene 

clusters from the human saliva and calf faecal metagenomes. We studied these 

environments because not only were samples easy to obtain (saliva was collected non-

invasively and calf faeces was collected from the floor of the animal’s holding at the APHA 

on-site farm) but they also harbour diverse populations of bacteria, the majority of which 

have yet-to-be cultured. Furthermore, these environments are known to harbour ARGs and 

bacteriocin producing bacteria. Thus, screening functional metagenomic libraries created 

from DNA extracted from these environments allows us to identify novel ARGs and 

bacteriocin producing genes from the yet-to-cultured bacteria from these environments. 

To identify genes of interest we aimed to create large insert functional metagenomic 

libraries from human saliva and calf faecal metagenomic DNA using the pCC1BAC vector.   

Following the creation of the human saliva and calf faecal metagenomic libraries we aimed 

to screen them for resistance to antibiotics (tetracycline and ampicillin), antimicrobials 

(CTAB, CPC and chlorhexidine), metals (copper and silver) and for antimicrobial activity 

against Bacillus subtilis CU2189 and Micrococcus luteus. 

If clones of interest were identified our aim would then be to determine what cloned genes 

were responsible for the observed phenotypes of interest. If the genes were novel or in a 

novel genetic context, such as a MGE, we would then characterise them using molecular 

genetic, biochemistry and in silico protocols.  
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Studies that focus on the functional screening of metagenomic libraries to identify novel 

ARGs have the potential to identify ARGs that may become clinically important. As such, 

these studies also provide us with information on what environments may act as points of 

dissemination of ARGs to clinically relevant pathogens. Furthermore, functional 

metagenomic library screening also gives us access to antimicrobial production genes of the 

yet-to-be cultured bacteria of an environment, thus expanding our pool of potential 

antimicrobial therapies. 
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Chapter 2 

Methods and Materials 

The methods detailed in this chapter are essential for the work that is described in each 

chapter. Specific methods and materials are included at the beginning of each chapter. 
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2.1 Bacterial strains and culture 

 

The bacterial strain used to create the human saliva and calf faecal metagenomic library as 

well as those used in the functional metagenomic screen to identify antimicrobial producing 

clones are indicated in Table 2.1. Further strain information is given at the beginning of each 

chapter.  

 

Table 2.1 Bacterial Strains Used in this Work. 

Strain Information Source 

TransforMax™ EPI300™-

T1R Electrocompetent E. coli 

Functional Metagenomic 

Library Host 

Epicentre® CopyControl™ 

E. coli α-Select Silver Subcloning of genes of 

interest 

Bioline© 

Bacillus subtilis CU2189 Antimicrobial Indicator 

Organism 

(Christie et al., 1987) 

Micrococcus luteus Antimicrobial Indicator 

Organism 
Provided by Dr. Jorge 

Gutierrez; University of 

Surrey, UK 

Streptococcus mutans UA159 Cariogenic oral isolate (Ajdić et al., 2002) 

 

The E. coli strains used in this study were grown on LB (Lennox L) agar (Life Technologies, 

Paisley, UK) or in LB broth (Oxoid Ltd, Basingstoke, UK). When required media was 

supplemented with tetracycline (5 µg/ml), chloramphenicol (12.5 µg/ml) or ampicillin (50 

µg/ml). When blue/white screening was required to identify E. coli clones harbouring 

plasmids with inserts LB agar was supplement with 0.1 mM Isopropyl β-D-1-

thiogalactopyranoside (IPTG) and 40 μg/ml of 5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside (X-gal). Bacillus subtilis CU2189 and Micrococcus luteus were grown on 

BHI (Brain Heart Infusion) agar and BHI broth (Sigma-Aldrich Company Ltd, Gillingham, UK). 
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Streptococcus mutans UA 159 was cultured in BHI agar and broth. BHI for S. mutans growth 

was supplemented with 5 μg/ml erythromycin when required.  

All strains except for S. mutans UA 159 were grown at 37 °C with aeration by shaking at 200 

RPM. S. mutans was grown at 37°C in 5% CO2. 

All antibiotics were sourced from Sigma-Aldrich Company Ltd. 

 

2.2 Stock Solution Preparations 

2.2.1 Antibiotic Stock Solutions 

 

All of the antibiotics used to make stock antibiotic solutions in this study were purchased 

from Sigma-Aldrich. Ampicillin sodium salt was dissolved in 70 % EtOH to a final 

concentration of 10 mg/ml. Tetracycline hydrochloride was dissolved in 70 % EtOH to make 

a stock solution of 10 mg/ml. Tigecycline hydrate was dissolved in 70 % EtOH to make a 

solution of 5 mg/ml. Erythromycin was dissolved in 70 % EtOH to a final stock concentration 

of 20 mg/ml. Kanamycine sulfate was dissolved in 70% EtOH to a final concentration of 50 

mg/ml. All stock solutions were sterilised by passing them through a 0.22 μm filters 

(Millipore, Watford, UK) and then stored at -20 °C. 

 

 

 

 



 127 

2.2.2 Antimicrobial Stock Solution 

 

All of the antimicrobials used to make stock antimicrobial solutions in this study were 

purchased from Sigma-Aldrich. Stock concentrations of copper sulphate, silver nitrate, CTAB, 

CPC and chlorhexidine digluconate were made using molecular grade water to final 

concentrations of 25 mg/ml, 20 mg.ml, 10 mg/ml, 20 mg/ml and 10 mg/ml respectively. All 

stock solutions were sterilised using 0.22 μm filters (Millipore) and stored at 4 °C. 

 

2.3 Molecular Techniques 

2.3.1 Polymerase Chain Reaction (PCR) 

 

For standard PCR amplification and adding A-overhangs onto PCR products, MyTaq ™Red 

Mix (Bioline, London, UK) was used. Reactions contained 25 µl of 2X MyTaq ™Red Mix and 

0.4 μM of primers (Sigma Aldrich).  PCR programmes had a 2 min initial denaturing step at 

98 °C, followed by 25-30 cycles of 30 second denaturing at 98 °C, 30 second annealing at a 

temperature specific to the primer pair and extension at 72 °C at 1 min per 1 Kb. The final 

step in the PCR reaction was a final extension step that was 1 min per 1 Kb plus 1 min. The 

reactions were then cooled to 4 °C. 

For PCR reactions where the product was required for cloning, the Q5® High-Fidelity DNA 

Polymerase (New England Biolabs; NEB, Hitchin, UK) was employed. PCR reactions were set 

up according to the manufacturer’s instructions containing 10 mM dNTP (NEB). PCR 

programmes were designed as they were for PCR reactions using MyTaq™Red Mix. 
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PCR products were run on 0.9% agarose gels at 100 mV for 45-80 min. Agarose gels 

contained 0.2 μg/ml ethidium bromide (Life Technologies). Gels were imaged under 

ultraviolet (UV) light using Alphaimager hardware (Alphalnnotech, San Leandeo, USA) with 

the Alphaview software (version 3.2.2.0). 

Primers used in this work are detailed at the beginning of each relevant chapter. 

 

2.3.2 Restriction Enzyme Digestion of DNA 

 

Unless stated otherwise, DNA was digested in 10 μl reactions using restriction enzymes 

sourced from NEB. Digestions were carried out for 1 h at 37 °C. These reactions contained 1 

µl of 10X buffer that was appropriate for the restriction enzyme used and 1 µl of restrictrion 

enzyme (10U). The reaction was then made up to 10 µl with the solution containing the DNA 

to be digested and molecular grade water (Sigma-Aldrich). For double restriction enzyme 

digestions, reactions were set up as described above with 1 µl of each restrictrion enzyme 

(10U) being used with a buffer that was appropriate for both enzymes. 
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2.3.3 Dephosphorylation of DNA Digests 

 

Unless otherwise stated, digested DNA was dephosphorylated using Calf Intestine Alkaline 

Phosphatase, CIAP (Promega Corporation, Southampton, UK) in 10 μl reaction by incubating 

at 37 °C for 1 h. These reactions contained 1 µl of 10X CIAP buffer and 1 µl of CIAP enzyme 

(10U). The reaction was then made up to 10 µl by the solution containing the DNA to be 

dephosphorylated and molecular grade water (Sigma-Aldrich). 

 

2.3.4 Purification of PCR and DNA Digest Products 

 

PCR and DNA digest products were purified using the QIAquick PCR Purification Kit (Qiagen) 

according to the manufacturer’s guidelines. 

 

2.3.5 Ligation Reactions 

 

PCR products with A-overhangs were ligated into pGEM®-T Easy (Promega Corporation) in a 

10 μl reaction using the 2X Rapid Ligation Buffer (Promega Corporation). 25 ng of pGEM®-T 

Easy was used in each reaction with a 3:1 molecular ratio of PCR product to plasmid being 

used, calculated using the following equation. 

Insert Mass in ng = [Insert Length in bp/Vector Length in bp] x Vector Mass in ng 

Reactions were then incubated overnight at 4 °C.  
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For the ligation of restriction enzyme-digested DNA fragments into pHSG396 (Clontech 

Laboratories, Inc; Takara, Paris, France) T4 DNA ligase from NEB was used. 25 ng of plasmid 

was used in a ligation reaction with a 3:1 molecular ratio of insert to plasmid. The reactions 

were then incubated overnight at 16 °C. The T4 DNA ligase was inactivated by incubating at 

70 °C for 15 min. 

 

2.3.6 Electroporation of TransforMax™ EPI300™T1R E. coli 

 

Prior to electroporation ligation reactions were desalted in agarose cones (molecular grade 

water, 1.8% (w/v) glucose, 1% (w/v) agarose) on ice for 1 h. 

The electrocompetent TransforMax™ EPI300™T1R E. coli (Epicentre; E. coli EPI300 T1R ) cells 

were thawed on ice and 50 μl was transferred to an ice-cold 0.1 cm electroporation cuvette. 

Between 1 μl and 5 μl of DNA solution was added to the cells. Electroporation was 

conducted at 1.7 kV, 200 Ω and 25 μF. Unless otherwise stated, after electroporation 950 μl 

of SOC (NEB) was added to the cells in the electroporation cuvette. The cell suspension was 

then transferred to a sterile 25 ml tube and incubated at 37 °C with shaking at 200 RPM for 

1 h. The cell suspension was then plated (100 μl per plate) on to LB agar containing the 

selective antibiotic. The plates were then incubated overnight at 37 °C. 
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2.3.7 Extraction of Plasmid from E. coli Strains 

 

Plasmids were extracted from E. coli EPI300 T1R and Alpha-Select Silver Efficiency (Bioline) 

using the QIAprep Spin Miniprep Kit (QIAGEN). For E. coli clones harbouring pHSG396 or 

pGEM®-T Easy 10 ml overnight cultures were centrifuged at 4200 g. Plasmids were extracted 

from the resulting cell pellet according to the manufacturer’s instructions. For clones 

harbouring pCC1BAC, 1 ml of an overnight was used to inoculate 9 ml fresh media 

containing 10,000X CopyControl™ Induction (1 μl in 10 ml). CopyControl™ Induction solution 

induces expression of trfA in E. coli EPI300 T1R, the product of which induces the pCC1BAC 

to replicate from the multicopy origin of replication, oriV. The CopyControl™ induced 

subculture was incubated horizontally for 4 h at 37 °C with shaking at 200 RPM. This culture 

was then used for plasmid extraction as described above. 

 

2.3.8 Sequencing of Plasmid Inserts and PCR Products 

 

Sequencing of PCR products and plasmid inserts was conducted using primer extension 

Sanger sequencing undertaken by Beckman Coulter Genomics Inc. PCR products were 

sequenced using their amplifying primers. Plasmid inserts were end sequenced using primer 

pairs that flanked the multi cloning site, M13 primers (pHSG396 and pGEM®-T Easy) and 

pCC1 primers (pCC1BAC). Primer walking was employed to sequence longer inserts with 

primers being designed from the obtained sequence data. 
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2.4 In Silico Analysis of Sequence Data 

2.4.1 Assembly of Contigs from Sanger Sequencing 

 

Contigs were assembled using SeqMan Pro (Lasergene software, DNASTAR, Madison, WI, 

USA) and sequence gaps were closed using PCR and Sanger sequencing. Sequences were 

analysed using the tools on NCBI (https://blast.ncbi.nlm.nih.gov/blast/Blast.cgi). 

 

2.4.2 Identification and Translation of Open Reading Frames (ORFs) 

 

The NCBI BLASTN and BLASTX tools were used to identify similarities between nucleotide 

sequences generated during this project and nucleotide and amino acids sequences in the 

NCBI database. The later was used to identify putative ORFs. The online Fgenesb tool from 

Softberry© and the NCBI ORF finder tool were also used to putatively translate ORFs; the 

resulting amino acid sequences were then compared with those in the NCBI database using 

BLASTP. 

 

2.5 Minimum Inhibitory Concentration / Antimicrobial Susceptibility 

2.5.1 Microdilution 

 

MIC determination using the broth microdilution method was completed according to 

European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines (EUCAST, 
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2015). 16 h cultures for each clone grown in LB broth were adjusted to an OD600 of 0.1. 10 μl 

of the adjusted cultures were used to inoculate 90 μl of LB broth containing varying 

concentrations of the antibiotic or antimicrobial in a round-bottom 96-well plate format 

(Corning® Costar®, Sigma-Aldrich). The plates were then incubated for 16 h at 37°C with 

shaking at 200 rpm. Growth was determined by spectrophotometry at OD600. MIC and 

susceptibility levels were determined as the lowest concentration of antibiotic or 

antimicrobial that inhibited growth. Assays were conducted in technical and biological 

triplicates. 

 

2.5.2 Agar Dilution 

 

16 h cultures of each clone grown in LB broth were adjusted to an OD600 of 0.1. 10 µl of 

these adjusted cultures were spotted onto the surface of LB agar containing varying 

concentrations of the antibiotic or antimicrobial and plates were incubated for 16 h at 37 °C. 

MICs and susceptibility levels were determined as the lowest concentration of the antibiotic 

or the antimicrobial that inhibited growth. Assays were conducted in technical and 

biological triplicates. 
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Chapter 3 

Creation and Analysis of Human Saliva and Calf Faecal Metagenomic Libraries 

and Preparations 
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3.1 Introduction 

3.1.1 The Human Oral Cavity 

3.1.1.1 Microbiology and the Human Oral Microbiome 

 

Microbiology was arguably born when Antonie van Leeuwenhoek first identified 

‘animalcules’ from his own dental plaque. Since this initial observation, developments have 

been made in our ability to culture the fastidious organisms of the human oral cavity 

through our increased understanding of their metabolism. For instance, the inclusion of 

vitamin K in growth media is required for growth of some Porphorymonas gingivalis while 

fatty acids are important for Treponema spp., both of which are cultured in anaerobic 

conditions (Wyss, 1992). More recently our understanding of the human oral microbiome 

has broadened using culture-independent techniques including next-generation sequencing 

and microarray analysis (Zaura, 2012; Duran-Pinedo and Frias-Lopez, 2015). According to 

the Human Oral Microbiome Database (www.homd.org), 732 species have been identified 

in the human oral cavity (Dewhirst et al., 2010; Chen et al., 2010). However, only two-thirds 

have been cultured with the remaining being identified through 16S rRNA sequence analysis 

(Wade et al., 2016).   

 

 

 

 

http://www.homd.org/
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3.1.1.2 Environments within the Human Oral Cavity 

 

The human oral cavity is a part of the GI tract, which is the most colonised part of the 

human body (Sommer and Backhed, 2013). The human oral cavity contains multiple 

environments that are distinct in pH, dissolved oxygen, surface composition, fluid 

movement and availability of nutrients. These environments include the saliva, keratinised 

and non-keratinised mucosal surfaces and the sub- and supra- gingival tooth plaque, Figure 

3.1. As a result of variations in the environmental conditions, these habitats harbour 

different bacterial communities that are adapted to the prevailing conditions in these niches 

(Mager et al., 2003). The oral cavity is open to external conditions, meaning the microbial 

populations in it are sensitive to changes in temperature, hygiene, smoking and diet, as well 

as to colonisation by exogenous microorganisms (Sheiham and Watt, 2000; Darout et al., 

2002; Crielaard et al., 2011; David, 2013; Wu et al., 2016) . Intrinsic factors such as the state 

of the host immune system and gastric reflux can also impact these environments (Yang et 

al., 2014; Scholz et al., 2014). Inter-individual differences in the composition of the oral 

microbiome exist and distinct oral microbiomes have been identified from individuals based 

on their geography and host ethnicity (Zaura et al., 2009).  
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Figure 3.1 

 

 

Figure 3.1 The Human Oral Cavity. A diagram showing the environments of the oral cavity that are colonised 

by microorganisms. The tooth surfaces are also colonised by bacteria including the sides of the tooth above 

and below the gingiva. This figure was reproduced from Tortora and Grabowski (Tortora and Grabowski, 2000) 

 

3.1.1.2.1 The Saliva 

 

Human saliva plays an important role in protecting the teeth and mucosa of the oral cavity 

and in maintaining the human oral microbiome. Saliva contains a number of inorganic 

components including Ca2+ and F- ions as well as phosphates and carbonates. These ions are 

important for mineralising tooth enamel, and the bicarbonates present in saliva allow it to 

act as a buffer preventing acidification of the oral environment following the production of 

acid by bacteria when they metabolise dietary sugars (Larsen and Pearce, 2003; Dodds et 

al., 2005).  
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Saliva also contains organic components including proteins involved in food digestion. For 

example, α-amylase and lingual lipase are two such enzymes that respectively convert 

starch to oligosaccharides and triglycerides to glycerides and free fatty acids that may be 

used by oral microbes (Hamosh and Scow, 1973; Kaczmarek and Rosenmund, 1977). A 

number of antimicrobial proteins are also present in the saliva, including cationic peptides 

such as histatins, statherin and lysozyme, IgA and IgG antibodies and chelating agents such 

as lactoferrin. These salivary components act to prevent harmful exogenous pathogens from 

colonising the oral cavity as well as controlling commensal microorganism populations 

(Rudney and Smith, 1985; De Sousa-Pereira et al., 2013; Brandtzaeg, 2013).  

Salivary components are the most important nutrient source for the majority of oral 

microbes, particularly in early plaque (polymicrobial dental biofilm) development (Marsh et 

al., 2016). Glycoproteins including mucins and IgA are a source of fermentable 

carbohydrates while amino acids and DNA are also utilised by some oral bacteria (Kilian et 

al., 1996; Wickstrom and Svensater, 2008; Palmer et al., 2012; Edlund et al., 2015). Saliva 

also contains serum components from the gingival crevicular fluid (GCF) that flows from the 

gingival margin (AlRowis et al., 2014).   

Analyses of the human saliva microbiome using 16S rRNA gene sequencing have been 

conducted to determine the diversity and stability of the human saliva microbiome. These 

studies have revealed that at the phylum level, Firmicutes typically dominate, followed by 

Bacteroidetes, Proteobacteria and Actinobacteria. Fusobacteria, TM7, Spirochaetes and the 

Synergistetes although prevalent are typically less abundant. At the genus level 

Streptococcus, Neisseria, Veillonella and Prevotella are often identified as being the most 

abundant, although inter-individual variations exist between healthy subjects (Segata et al., 
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2012; Dassi et al., 2014). A number of studies have also shown that there appears to be 

temporal stability over periods of weeks to years in the human saliva and the oral cavity in 

general (Costello et al., 2009; Cameron et al., 2015).  

The human saliva microbiome has also been shown to be stable following exposure to 

antibiotics. A recent study conducted by Zaura et al. (2015) showed the human saliva 

microbiome to exhibit stability following a single course of clindamycin, amoxicillin, 

minocycline or ciprofloxacin, as microbial shifts were identified 1 week after treatment 

compared with baseline results (no antibiotic treatment) but at no other time points over a 

12-month period. This indicated that the human saliva microbiome was able to rapidly 

return to its baseline composition following cessation of antibiotic use (Zaura et al., 2015). 

Although an earlier study conducted by Nasidze et al. (2009) showed no geographical 

clustering of saliva microbiomes, the survey used a 16S rRNA gene cloning and sequencing 

approach with relatively low sequencing depth (Nasidze et al., 2009). Later studies using 

next generation 16S rRNA gene sequencing with greater sequencing depth have provided 

evidence for the contrary. For example, Li et al. (2014) used 454 sequencing to demonstate 

clear geographic influence on the oral microbiota. They showed that the human saliva 

microbiota of Alaskan and German populations were more similar to each other (Firmicutes 

most dominant followed by Bacteroidetes and Proteobacteria) than African (Uganda, Sierra 

Leone and Democratic Republic of the Congo) populations (Proteobacteria most dominant 

followed by Firmicutes and Bacteroidetes) (Li et al., 2014). In another study by Takeshita et 

al. (2014) the saliva microbiome of South Koreans was shown to be less diverse than that of 

Japanese individuals, indicating geographic location and diet as having an influence on the 
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human saliva microbiome as people from both countries have been shown to have similar 

genotypes (Abdulla et al., 2009; Takeshita et al., 2014). 

 

3.1.1.2.2 The Teeth 

 

Teeth are the only exposed non-shedding surfaces in the human body. They are made of 

enamel and represent approximately 20 % of the surface area of the mouth (Collins and 

Dawes, 1987). They are coated with an acquired enamel pellicle (AEP) which is a layer of 

proteins and glycoproteins from saliva, plasma and the oral microbiota and mucosa. The 

AEP protects teeth from acid degradation and abrasion, as well as acting as a platform for 

early microbial colonisers to interact with during plaque formation (Hannig and Joiner, 

2006).  

Plaque can reside above the gum line (gingiva) on the occlusal surfaces (fissure plaque) and 

the surfaces on the side of the tooth (supragingival). Subgingival plaque is on or below the 

gingiva. Due to its location, fissure plaque mainly harbours bacteria that can survive in 

aerobic conditions with Streptococcus spp. dominating, although some anaerobes such as 

Veillonella spp. are present due to the presence of anaerobic microenvironments (Wilson, 

2005).  

Compared with other environments in the oral cavity, greater diversity is seen in the 

supragingival and subgingival plaques. Primary colonisers of teeth such as Streptococcus 

mitis, Streptococcus oralis, Neisseria mucosa, Veillonella parvum and Actinomyces spp. are 

able to interact with the AEP glycoproteins through lectin-like proteins on their surfaces (Lu 
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and Levin, 2002; Teixeira et al., 2006). Secondary colonisers interact with cells that are 

adhered directly to the AEP or with cells adhered to these primary colonisers. Later 

colonisers interact with the outer cell layers of the plaque and the extrapolymeric 

substances (EPS) that are produced by cells within the plaque, Figure 3.2 (Rosan and 

Lamont, 2000).  

 

Figure 3.2 

 

Figure 3.2 Dental Plaque Biofilm. A diagram showing the bacterial composition of dental plaque biofilms. The 

acquired enamel pellicle is bound by the primary Streptococcus spp. colonisers to which secondary colonisers 

interact. As the biofilm develops microenvironments are created including low oxygen zones (as oxygen is used 

by bacteria in the plaque or does not diffuse through the biofilm) that promote the growth of anaerobic 

bacteria including Fusobacterium spp. and Prevotella spp. This figure was reproduced from Kolenbrander et al. 

(Kolenbrander et al., 2002). 
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The interaction of cells within the biofilm is primarily mediated by lectin-carbohydrate 

interactions and is called co-aggregation (Rosen and Sela, 2006; Schuler et al., 2012). Co-

aggregation results from cells coming into close contact and the creation of metabolic 

communication networks. An example of such a metabolic communication network is P. 

gingivalis producing free glycines that Treponema denticola metabolises to produce lactate 

that is utilised by P. gingivalis (Lewis et al., 2009). Microenvironments also develop within 

the plaque where aerobes utilise oxygen creating zones of low oxygen and low redox 

potential allowing for the survival of anaerobes, Figure 3.2.  

As the supragingival plaque matures, secondary colonisers including species of 

Fusobacterium, Treponema, Prevotella and Corynebacterium are incorporated into the 

biofilm, and the relative abundance of N. mucosa and Streptococcus spp. declines (Aas et al., 

2005; Uzel et al., 2011; Segata et al., 2012; Teles et al., 2012). Compared with the saliva, 

Firmicutes are less dominant in the supragingival plaque although still abundant. As the 

subgingival plaque is in a more anaerobic environment than the supragingival plaque and 

receives its nutrients from the GCF, asaccharolytic anaerobic bacteria including species of 

Fusobacterium, Porphorymonas, Prevotella, Tannerella, Parvimonas and Treponema are 

more prevalent in this biofilm again at the expense of genera of Firmicutes (Aas et al., 2005; 

Segata et al., 2012; Ge et al., 2013; Y. Li et al., 2014).  

Bacteria present in these oral biofilms have the potential to enter the saliva during biofilm 

dispersal. For example, dispersin B genes (dspB; encodes a protein involved in biofilm 

dispersion) are encoded by oral Aggregatibacter spp. and S. mutans produces a protein 

(surface-protein-releasing-enzyme; SPRE) that mediates its release from biofilm at low pH 
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(Kaplan, 2010). Thus, it is important to understand the bacterial composition of dental 

plaque when studying the saliva microbiota.  

 

3.1.1.2.3 The Oral Mucosa 

 

The oral mucosa is the outermost layer of squamous epithelia in the mouth and is a 

shedding surface. It is contiguous with the epidermis but differs in composition. The oral 

mucosa is well lubricated by saliva and the excretion of mucins by the cell layer. Mucin 5B 

and mucin 7 are the dominant mucins in the oral cavity. These mucins along with IgA and 

cystatin S contribute to the formation of the mucosal pellicle. As with plaque formation, 

interaction with this pellicle is the initial stage in colonisation of the oral mucosa (Bradway 

et al., 1992; Gibbins et al., 2014).   

There are two compositionally different types of oral mucosa; keratinized and non-

keratinized. Keratinized mucosa includes the hard palate (HP), keratinised gingiva (KG) and 

the tongue dorsum (TD). The non-keratinized mucosa includes the buccal mucosa (BM), 

tonsils, labial and alveolar mucosa as well as the lateral and ventral mucosa of the tongue. 

Interestingly, based on 16S analysis, the microbiota of the keratinized and non-keratinized 

mucosa did not group together. Using data obtained from the Human Microbiome Project 

(HMP) Segata et al. (2012) showed that the microbiota of the TD was more similar to that of 

the saliva and tonsils. The BM, KG and HP had more similar microbial communities (Segata 

et al., 2012). Eren et al. (2014) conducted a higher-resolution study of the HMP data using 

oligotyping, which further indicated similarities between the BM and KG microbiota but 
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grouped the HP with saliva and the tonsils. At the phylum level, Firmicutes, particularly 

Streptococcus spp., are dominant across all oral mucosa sites particularly the BM, KG and 

HP. In the TD and tonsil communities Streptococcus spp. are less dominant while higher 

relative abundances of Veillonella spp. and Prevotella spp. 16S rRNA genes have been 

detected (Aas et al., 2005; Eren et al., 2014).  

 

3.1.1.3 Diseases and Dysbiosis of the Human Oral Cavity 

 

Imbalances or dysbioses in the oral microbiota have been associated with a number of 

conditions and in some cases, may be markers for disease. Bacteria of the oral microbiome 

or shifts in its composition have been associated with systemic diseases and conditions 

including cardiovascular infections, diabetes, pneumonia and irritable bowel disease (IBD) 

(Raghavendran et al., 2007; Leishman et al., 2010; Kampoo et al., 2014; Fourie et al., 2016). 

S. aureus and P. aeruginosa can be carried in the oral cavity and systemic infections caused 

by these pathogens may result from oral injury, surgery or during chronic periodontitis 

(McCormack et al., 2015; Rivas Caldas et al., 2015). In a recently published Japanese study 

454 16S rRNA pyrosequencing was used to assess the microbiome of the saliva of 35 

patients with Crohn’s disease (CD) and ulcerative colitis (UC). These patients were found to 

have a higher relative abundance of Bacteroidetes and a lower abundance of Proteobacteria 

compared with the 24 healthy controls (HC). At the genus level, CD and UC patients had a 

significantly increased relative abundance of Prevotella spp. (25 % versus 10 % in HC) while 

Streptococcus spp. abundance was relatively lower (25 % versus 35 % in HC) (Said et al., 

2014).  
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Dental caries refers to the formation of cavities in tooth enamel caused by the production of 

organic acids in the oral cavity. The production of these acids is attributed to the breakdown 

of dietary sugars, in particular sucrose, by acidogenic bacteria including S. mutans and 

Lactobacillus spp. As the pH reduces acidogenic and acid-tolerant bacteria proliferate 

exacerbating the condition (van Houte, 1994; Ma et al., 2015). Raner et al. (2014) used a 

DNA-DNA checker board technique to show that Prevotella intermedia and Fusobacterium 

nucleatum were more prevalent than Streptococcus spp. in the dental plaque of Thai tribes 

that had few incidences of caries. As these tribes had low sucrose diets and poor oral 

hygiene the authors hypothesised that the low caries rate was a result of increased dental 

plaque dominated by low acidogenic Prevotella spp. and Fusobacteria spp. that resulted 

from their poor oral hygiene while acidogenic Streptococcus spp. were less abundant as a 

result of their low sucrose intake (Raner et al., 2014).  

Gingivitis is a form of reversible periodontal disease that if left untreated can lead to 

periodontitis which may result in tooth loss and alveolar bone damage. Periodontitis is 

associated with dysbiosis in the oral bacterial microbiome (Darveau, 2010). Culture and 16S 

rRNA sequencing based studies have shown enrichment of P. gingivalis and Treponema 

denticola in the plaque of periodontitis patients (>10 %) compared with healthy individuals 

(<0.1 %) (Liu et al., 2012; Griffen et al., 2012; Tanner, 2015). However, discerning the health 

associated oral microbiota is difficult due to the presence of oral pathogens in the normal 

microbiota and inter-individual variations in their abundances in healthy individuals (Zaura 

et al., 2009). 

To conclude, intra-individual and inter-individual variation in the human oral cavity 

microbiome exists as a result of the varied environments of this part of the human digestive 
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tract as well as health status, diet and geography, making the core oral cavity microbiome of 

healthy individuals difficult to define. This gives justification to pooling saliva samples when 

making a functional metagenomic library as a single sample would be less representative of 

the saliva microbiome. 

 

3.1.2 The Calf Faecal Microbiome 

 

Although the faecal microbiota are frequently studied with the aim of determining the 

composition of the bovine gastrointestinal (GI) tract microbiome there are large differences 

between the compositions of the microbiota of the faeces and different parts of the bovine 

GI tract, Figure 3.3 (a,b) (Frey et al., 2010; Ross et al., 2012).  For instance, the rumen is an 

anaerobic environment suited to bacteria such as Fibrobacter spp. and Ruminococcus spp. 

that are less abundant in faeces. Additionally, following weaning Bacteroidetes abundance 

drops in the rumen but increases in the faecal microbiome, Figure 3.3 (a,b) (Dehority, 2003; 

Ross et al., 2012; Meale et al., 2016; Liu et al., 2016). Faecal matter, however has passed 

through the abomasum (the fourth and final stomach of ruminants) and intestines of the 

animal resulting in further fermentation and lysis of cells due to low pH conditions and the 

presence of lytic enzymes (Van Winden et al., 2002; Domínguez-Bello et al., 2004; Gilbert et 

al. 2015).  Further to this, compared with mature cows, the digestive tract of calves are 

underdeveloped and undergo a number of physiological and metabolic changes in the 

weeks and months following birth as its rumen develops, in response to microbial 

colonisation (Heinrichs, 2005; Uyeno et al., 2010).  
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Figure 3.3 

(a) 

 

(b) 

Figure 3.3 The Calf Gastrointestinal Tract and the Rumen and Faecal Microbiota. (a) A diagram depicting the 

rumen, omasum, reticulum and abomasum at the first week after birth and how it develops as the calf grows 

and its diet shifts from a mainly milk based to plant based diet. The pylorus continues on to the duodenum and 

the small and large intestines (Heinrichs and Jones, 2003). (b) Shows the relative abundance of the bacterial 

phyla present in the rumen and faeces of pre-weaned calves (36 days old) and weaned calved (54 days old). 

Bacteroidetes are indicated as dark blue on the graph and Firmicutes are shown in orange (Meale et al., 2016). 
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Calf faecal microbiomes are dominated by three phyla, Bacteroidetes, Firmicutes and 

Proteobacteria which typically make up >90 % of the bacterial population while lower 

abundances of Actinobacteria (2.0 %) and Fusobacteria (0.76 – 5.67 %) and Spirochaetes 

(2.6 %) are also present  (Ozutsumi et al., 2005; Uyeno et al., 2010; Oikonomou et al., 2013). 

The age of the animal has been demonstrated to affect the relative abundance of these 

phyla however. For example, 16S rRNA pyrosequencing analyses have shown that 

Firmicutes dominate in calf faeces, while in older cattle dominance of Bacteroidetes has 

been described, although inter-individual differences exist (Shanks et al., 2011; Jami and 

Mizrahi, 2012; Meale et al., 2016). Durso et al. (2010) conducted a study to identify the core 

microbiome of rectal faecal samples from 6 dairy cows that were housed and fed together. 

By amplifying, cloning and sequencing the 16S rRNA genes from these samples they found 

that only 24 identified taxa were shared between all individuals out of a total of 1906 taxa 

identified (Durso et al., 2010). Inter-individual differences may results from diet, for 

instance, a high starch diet has been associated with an increase in the relative abundance 

of Bacteroidetes genera including Prevotella spp. and the opposite trend for Lactobacillus 

spp. after weaning is observed (Shanks et al., 2011). This makes defining the core 

microbiome difficult.  

Additionally, the composition of the calf faecal microbiome changes dramatically within the 

first few weeks of the calf’s life as its rumen develops. Oikonomou et al. (2013) used 16S 

rRNA pyrosequencing to study the faecal microbiomes of 61 calves up until weaning at 7 

weeks. Firmicutes were shown to be dominant (64 – 82 % relative abundance) although 

levels of Lactobacillus spp. dropped after 4 weeks. This was observed for Bifidobacterium 

spp. also and is likely associated with a reduction in milk intake as the calves approach 

weaning age (Oikonomou et al., 2013). This has been observed in other studies including 
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one by Uyeno et al. (2010) who also noted that Ruminococcus spp. and Fibrobacter spp. 

reached detectable levels post weaning (week 7 – 12) as fermentation in the anaerobic 

environment of the rumen increases as plant based food increases over milk (Uyeno et al., 

2010). From studies analysing weaned calf faeces using next generation 16S rRNA 

sequencing platforms (454 and illumina platforms), Clostridium, Bacteroides, Prevotella, 

Ruminococcus and Succinivibrio spp. have been shown to increase in relative abundance 

after weaning (Dowd et al., 2008; Oikonomou et al., 2013; Meale et al., 2016).  

The method of collection of the bovine faeces sample can impact the microbiome. Freshly 

deposited or rectally collected calf faeces contain an abundance of anaerobic bacteria from 

the Clostridia and Bacteroidia classes. However, exposure to aerobic and drying conditions 

results in a community shift towards more aerobic members of the Alpha- and 

Betaproteobacteria, Bacilli and Actinobacteria classes (Wong et al., 2016).  
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3.2 Chapter Aims 

 

The aim of the work presented in this chapter was to extract representative metagenomic 

DNA from human saliva and calf faecal microbiota that was of high molecular weight and 

quality in order to create large insert functional metagenomic libraries. Once the functional 

metagenomic libraries were created we aimed to analyse the libraries to determine their 

size and if they represented the human saliva and calf faecal metagenomes prior to storing 

them for future screening. 
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3.3 Methods and Materials 

3.3.1 Human Saliva and Calf Faecal Sample Collection 

 

Saliva samples were collected from 11 healthy individuals from different geographic 

locations who had not taken antibiotics within the previous three months. Saliva was 

expectorated into sterile tubes (approximately 5 ml per individual) and samples were 

pooled. The pooled samples were then split into 1.5 ml aliquots beside a Bunsen burner. 

Ethical approval has been obtained to sample human saliva from volunteers and to use the 

saliva for this PhD project from the UCL Ethics committee, UCL Ethics Project ID Number 

5017/001. The ethics form is included as an appendix, Appendix I. 

Faeces were collected from a single weaned calf older than 7 weeks by collecting from the 

floor of its holding pen at the APHA on-site farm. Faeces was collected from a single calf 

only as high-quality DNA proved more difficult to reproducibly extract from this material. 

Faeces were stored in 5 g aliquots at -80 °C prior to extraction. 

Bovine faeces was collected by picking up the material after the animal had excreted it. As 

this method of collection does not require direct extraction from the animal no ethical 

approval is needed. 
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3.3.2 Metagenomic DNA Extraction 

 

Metagenomic DNA was extracted from bacterial cells using modified protocols for the 

Gentra Puregene Yeast Bact. Kit (Qiagen, Manchester, UK) as described below for human 

saliva and calf faeces (Seville et al., 2009; Card et al., 2014). 

 

3.3.2.1 DNA Extraction from Human Saliva 

 

The 1.5 ml saliva aliquots were centrifuged for 1 min at 15700 g. The resulting pellet was 

suspended in 1 ml of cell suspension solution (Qiagen) and 5 µl of lytic enzyme (contains 

lyticase at 4,000 U/ml; Qiagen) was added (Gentra Puregene). The suspension was 

incubated at 37°C for 45 mins. The supernatant was removed and the pellet was 

resuspended in 1 ml of cell lysis solution (Qiagen). The suspension was incubated for 20 

mins at 80°C. The suspension was cooled to room temperature (RT) before addition of 0.4 

mg proteinase K and incubating for 1 h at 55°C. The suspension was cooled to RT and 5 µl of 

RNase (Qiagen) was added before it was incubated at 37°C for 1 h. The suspension was 

cooled on ice and 500 µl of protein precipitation solution (high salt buffer; Qiagen) was 

added. It was incubated on ice for 30 min before centrifugation for 10 min at 15,700 g. The 

supernatant was removed and 10% (v/v) 3 M sodium acetate (NaOAc) and 600 µl of 100 % 

isopropanol was added. The supernatant was inverted 50 times and cooled on ice for 30 min 

before centrifugation for 10 min at 15,700 g. The resulting DNA pellet was washed with 700 

µl of 70% EtOH by centrifuging at 15,700 g for 10 min. The EtOH was removed and the DNA 
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pellet air dried for 5 min before being resuspended in 100 µl of molecular grade water. 

Human saliva metagenomic DNA solutions were stored at -20°C. 

 

3.3.2.2 DNA Extraction from Calf Faeces 

 

Calf faeces were thawed in 5 g aliquots from -80°C. The thawed faeces were washed 3 times 

with 35 ml PBS (0.1 M, pH 7.4) by vortexing vigorously, followed by centrifuging at 2,860 g 

for 2 min. Thus, for each 5 g calf faeces aliquot 3 X 35 ml of calf faeces washes were 

obtained. These washes were subsequently centrifuged at 4,200 g for 10 min to obtain 

bacterial pellets for metagenomic DNA extraction. The resulting three bacterial cell pellets 

were resuspended in 5 ml of cell suspension solution (Qiagen) and incubated with 5 μl of 

lytic enzyme (Qiagen) for 45 min at 37 °C. The 5 ml suspension was split into 4 X 1.25 ml 

aliquots which were then centrifuged for 1 min at 15,700 g. The supernatants were removed 

and the resulting pellets were processed in the same way as human saliva derived pellets up 

to the protein precipitation step (described in 3.3.2.1). However, following protein 

precipitation the calf faeces preparations were still visibly brown so a further CTAB and 

phenol clean was conducted prior to EtOH precipitation and DNA dissolving as follows. The 

supernatants obtained after protein precipitation were split into 500 μl aliquots and 100 μl 

of 5 M NaCl and 80 μl of extraction buffer (10% CTAB (V/V); 0.7 M NaCl) was added to each. 

These solutions were incubated at 65 °C for 10 min before adding 600 μl of 

phenol:chloroform:isoamylalcohol (25:24:1). The solutions were vortexed and then 

centrifuged for 10 min at 15,700 g. The resulting aqueous phases were transferred to new 

micro-centrifuge tubes and 600 μl of chloroform:isoamylalcohol (24:1) was added. The 
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samples were vortexed and centrifuged for 10 min at 15,700 g. The aqueous phases were 

transferred to clean tubes and 10% (v/v) 3 M sodium acetate (NaOAc) and 600 µl 100 % 

isopropanol were added.  EtOH precipitation of the DNA was carried out in the same 

manner as for human saliva metagenomic DNA (described 3.3.2.1). Calf faecal metagenomic 

DNA solutions were stored at -20°C. 

 

3.3.3 Analysis of Metagenomic DNA Preparations 

3.3.3.1 Molecular Analysis 

 

To determine the quantity and quality of the metagenomic DNA in the human saliva and calf 

faeces preparations the DNA solutions were analysed by spectrophotometry at 230 nm, 260 

nm and 280 nm (Nanodrop). Additionally, the DNA samples were digested with HindIII to 

determine their sensitivity to restriction and as such if they were suitable for cloning. 

Human saliva metagenomic DNA was digested with serial dilutions of HindIII (2 U – 0.03125 

U; 1 U will digest 1 μg of DNA in 1 h at 37 °C) by incubating 100 ng of DNA with 1 μl of HindIII 

in a 20 μl reaction at 37 °C for 1 h. Calf faecal DNA was also digested with serially diluted 

HindIII (2 U to 0.125 U) in the same way. 
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3.3.3.2 Phylogenetic Analysis  

3.3.3.2.1 Creation of 16S rRNA Dual-Indexed Illumina Libraries  

 

The V5-V7 hypervariable regions of the 16S rRNA genes which have been used in previous 

human oral microbiome profiling studies, were amplified from human saliva and calf faecal 

metagenomic DNA preparations using the 785F and 1175R primer pair  (Kraneveld et al., 

2012). These primers were modified so that adaptor and index sequences were introduced 

to the amplified products. Primer 785F introduced the i5 adaptor sequence (to immobilize it 

to the amplicon flow cell surface for sequencing) and primer 1175R introduced the i7 

adaptor sequence (for immobilization of the amplicon on the flow cell surface). The human 

saliva V5-V7 library was indexed with the FWD08 and REV12 sequences while the calf faecal 

V5-V7 library was indexed with the FWD07 and REV12 sequences. The primers used in the 

construction of these libraries are included in Table 3.1. 

PCRs were conducted using Moltaq 16S/18S DNA polymerase (VH Bio, Gateshead UK). PCR 

reactions contained 0.4 μM forward and reverse primers, 200 μM dNTPs, 2.5 μl 10 X Moltaq 

buffer (1.5mM MgCl2), 0.5 mM MgCl2, 0.625 U of Moltaq enzyme and Moltaq H2O to a 

volume of 25 μl. 

The PCR programme used included an initial 5 min denaturing step at 94 °C, followed by 30 

cycles of 30 s denaturing at 94 °C, 40 s annealing at 54°C and extension at 72 °C for 1 min. 

The final step in the PCR reaction was a 10 min extension at 72 °C. The reactions were then 

cooled to 4 °C. 
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3.3.3.2.2 Clean-up of 16S rRNA Dual-Indexed Libraries 

 

The Ampure XP beads kit (Beckman Coulter, Oakley UK) was used to clean up the 16S rRNA 

gene dual-indexed library PCR reactions following manufacturer’s instructions. First, the 

elution buffer (Qiagen) was added to the PCR reactions to bring their volumes to 500 μl. 

Then, 40 μl Ampure XP beads were added, mixed by pipetting, incubated for 5 min at RT and 

pelleted using a magnet. The supernatants were discarded and the beads washed with 200 

μl of 80% EtOH before settling for 30 s. The EtOH was removed and a further two EtOH 

washes were conducted. Residual EtOH was removed using a 10 μl pipette and the beads air 

dried for 5 min. The beads were removed from the magnet and washed thoroughly with 

elution buffer before incubating at RT for 2 min. Then, 40 μl of binding buffer (20% 

polyethylene glycol, 2.5M NaCl) was added and mixed by pipetting before incubating for 5 

min at RT. The supernatants were discarded, the beads pelleted for 2 min on a magnet 

followed by three EtOH washes as described above. The beads were then removed from the 

magnet and thoroughly washed with elution buffer. The beads were pelleted for 2 min on a 

magnet and the supernatants (containing cleaned library) were transferred to fresh tubes. 

 

3.3.3.2.3 Sequencing and Analysis of 16S Libraries by Illumina Miseq 

 

Paired end sequencing of the human saliva and calf faecal 16S rRNA dual-indexed libraries 

was conducted using Illumina MiSeq at the UCL Institute of Child Health. 
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De-multiplexed sequence data was obtained and subsequently processed using QIIME, 

Appendix II (Caporaso et al., 2010a). Forward and reverse reads were paired and sequences 

with a Phred score (base confidence score) of less than 20 were discarded. The resulting 

files were saved in fna file format and Operational Taxonomic Units (OTUs) were identified 

using the open reference method. This method included a closed reference step that 

identified OTUs by comparing the reads to sequences in the Greengenes core set, a 16S 

rRNA gene database (Caporaso et al., 2010a). OTUs identified by the closed method were 

aligned using PyNAST (Caporaso et al., 2010a). These aligned sequences were then quality 

filtered by lane masking and removal of chimeric sequences. The aligned and filtered OTUs 

were summarised and grouped based on taxonomy from phylum to genus level. The data 

was presented as a pie chart. The script used is shown in Appendix II (Caporaso et al., 

2010b).  
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Table 3.1 16S Amplification and pCC1BAC Sequencing Primers. 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.4 Creation of Metagenomic Libraries 

3.3.4.1 Preparation of Metagenomic DNA for Ligation 

 

For construction of both human saliva and calf faecal metagenomic libraries in pCC1BAC the 

insert DNA was partially digested using HindIII in a 40 μl reaction volume made up of 22 μl 

of metagenomic insert DNA (50ng/μl), 4μl of 10x restriction enzyme buffer, 1 μl of HindIII 

Name Sequence (5’-3’) Information Reference 

P5_FWD0

7 

 

AATGATACGGCGACCACCGAGATCTACACAAGGAGTAA
CGTACGTACGTGGATTAGATACCCBRGTAGTC 

V5-V7 

amplification 

from calf faecal 

metagenome  

(Kraneveld et 

al., 2012) 

P7_REV12 CAAGCAGAAGACGGCATACGAGATTCCTCTACAGTCAGT

CAGCCACGTCRTCCCCDCCTTCCTC 

V5-V7 

amplification 

from calf faecal 

metagenome 

(Kraneveld et 

al., 2012) 

P5_FWD0

8 

AATGATACGGCGACCACCGAGATCTACACCTAAGCCTAC

GTACGTACGTGGATTAGATACCCBRGTAGTC 

V5-V7 

amplification 

from human 

saliva 

metagenome 

(Kraneveld et 

al., 2012) 

P7_REV12 CAAGCAGAAGACGGCATACGAGATTCCTCTACAGTCAGT

CAGCCACGTCRTCCCCDCCTTCCTC 

V5-V7 

amplification 

from human 

saliva 

metagenome 

(Kraneveld et 

al., 2012) 

pCC1-F GGATGTGCTGCAAGGCGATTAAGTTGG End sequencing 

of pCC1BAC 

Epicentre® 

pCC1-R CTCGTATGTTGTGTGGAATTGTGAGC End Sequencing 

of pCC1BAC 

Epicentre® 
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(2U; NEB) and 13 μl of molecular grade water (Seville et al., 2009; Card et al., 2014). A flow 

diagram illustrating the general steps in the creation of a metagenomic library is depicted in 

Figure 3.4. The reaction was split into 2 x 20 μl reactions; one aliquot was incubated for 1 

min at 37°C and the other for 2 min. Immediately after digestion 2 μl of 3M NaOAc and 200 

μl of 100% EtOH was added to the reactions and they were cooled on ice for 30 min before 

centrifugation for 20 min at 15,700 g. The EtOH and NaOAc were removed and pellets 

washed with 70% EtOH. The pellets were air dried for approximately 10 min until visibly dry 

and re-suspended in a total of 50 μl of molecular grade water.  

 

Figure 3.4 

 

Figure 3.4 Functional Metagenomic Library Flow Diagram. A diagram showing the general steps involved in 

the creation of a functional metagenomic library. This diagram is amended from Daniel, 2005 (Daniel, 2005). 



 160 

3.3.4.2 Ligation of Digested Metagenomic DNA into pCC1BAC 

 

The pCC1BAC libraries were constructed following the Epicentre® CopyControl™ ligation kit 

protocol. First, 35 μl (30 ng/μl) of human saliva or 86 μl (50 ng/μl) of calf faeces HindIII 

digested insert DNA, 1 μl of pCC1BAC (25ng/μl, HindIII digested and ready for ligation from 

Epicentre) and molecular grade water to make the reaction volume up to 87 μl were 

incubated at 55°C for 10 min. The samples were cooled at RT and 10 μl of 10x Fast-Link 

ligase buffer (Epicentre), 1μl 10 mM ATP and 2 μl of Fast-Link ligase (4 U; Epicentre) were 

added making the final ligation reaction volume 100 μl. This was incubated overnight at 

16°C.  

 

3.3.4.3 Transformation of pCC1BAC Ligation Reactions 

 

The human saliva and calf faecal metagenomic DNA pCC1BAC ligation reactions were 

transformed into E. coli EPI300 T1R as described in 2.3.6. 

 

3.3.4.4 Storage of Human Saliva Metagenomic Library 

 

White colonies identified on LB agar plates supplemented with chloramphenicol (12.5 

µg/ml), IPTG (0.1mM) and X-gal (40 µg/ml) were picked (27,000 clones) using sterile 

toothpicks and inoculated into 100 μl of LB broth containing chloramphenicol (12.5 µg/ml) 
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cultured in 96-well plates for 16 h at 37 °C with shaking at 200 rpm. After 16 h, 100 μl of 

sterile 40% glycerol was added to each well and the plates were stored at -80 °C. 

 

3.3.5 Analysing the Metagenomic Libraries 

3.3.5.1 Calculation of Ligation and Transformation Efficiency 

 

The efficiency of the human saliva and calf faecal ligation reactions were estimated by 

calculating the percentage of colonies that were white on LB agar plates supplemented with 

chloramphenicol, IPTG (0.1 mM) and X-gal (40 µg/ml), following transformation of 2 µl or 5 

µl human saliva and calf faecal ligation reactions into E. coli EPI300 T1R. The following 

equation was used to determine the efficiency of the human saliva and calf faecal ligation 

reactions. 

(Number of White Clones / Total Number of Clones) x 100 = Ligation Efficiency 

Human Saliva 

Transformation of 5 µl of ligation reaction (363/413) x 100 = 88 % 

Transformation of 2 µl of ligation reaction (1180/1217) x 100 = 97 % 

Calf Faecal 

Transformation of 5 µl of ligation reaction (301/385) x 100 = 78 % 

Transformation of 2 µl of ligation reaction (240/263) x 100 = 91 % 
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Transformation efficiency was determined by calculating how many colony forming units 

(CFUs) were obtained per μg of DNA transformed. The following equation was used to 

determine the efficiency of transformation of the human saliva and calf faecal ligation 

reactions. 

Number of Colonies / μg of DNA transformed = Transformation Efficiency 

Human Saliva 

Transformation of 5 µl of ligation reaction 363/ 0.220 µg = 1.650 x 103 

Transformation of 2 µl of ligation reaction 1180/0.088 µg = 1.341 x 103 

Calf Faecal 

Transformation of 5 µl of ligation reaction 301/0.2 µg  = 1.505 x 103 

Transformation of 2 µl of ligation reaction 240/0.08 µg = 3.0 103 

 

3.3.5.2 Determining the Source of Cloned DNA 

 

To determine the source of the cloned DNA in the human saliva metagenomic library, and 

estimate what percentage was human and bacterial in origin, plasmids were extracted from 

96 random clones and end sequenced using PCC1F and PCC1R primers, and the sequences 

obtained were analysed using BLASTN (megaBLAST and discontiguous megaBLAST) and 

BLASTX, Table 3.1. This method was also used to determine the source of the DNA cloned in 

the calf faecal metagenomic library using 10 randomly selected clones. Insert DNA was 

deemed concatemeric if BLASTN or BLASTX identified the end sequences as coming from 
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organisms of different phyla. Any concatemers identified were assumed to contain an equal 

amount of DNA from both sources. 

 

3.3.5.3 Estimating the Size of the Metagenomic Libraries 

 

To determine the size of the human saliva metagenomic library, the 96 random pCC1BAC 

plasmid extracts were digested using HindIII and analysed by gel electrophoresis. The 1 Kb 

Extended Ladder (NEB) was used as a size marker. This method was also used to analyse the 

10 randomly extracted pCC1BAC vectors from the calf faecal metagenomic library.  

The average bacterial DNA insert size was estimated by determining the total insert size for 

the bacterial DNA containing clones identified in 3.3.5.2 and dividing by the number of 

bacterial DNA containing clones analysed; 

Average Bacterial DNA Insert Size = Total Bacterial DNA Insert Size / No. of clones with 

bacterial DNA 

Human Saliva  345.45 Kb / 41 = 8.42 Kb 

Calf Faecal  237 Kb / 10 = 23.7 Kb 

 

The average insert size for the bacterial DNA containing clones and the number of clones 

containing bacterial DNA identified in 3.3.5.2 were assumed to be conserved over the whole 

library and were used to estimate how much bacterial DNA was present in the 27,000-clone 

library using the following equation. 
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Total Bacterial DNA cloned = (Average Insert Size X Number of Clones in Library) X 

Proportion of Clones harbouring bacterial DNA 

Human Saliva 

From 96 clones 

40 - Bacterial, 39 - Human, 1 - Bacterial/Human, 16 - Empty 

41/96 contain bacterial DNA = 0.427 (Proportion of Clones harbouring bacterial DNA) 

(8.42 Kb) x (27,000) x (0.427) = 97,074 Kb 

 

Calf Faecal 

 Total Bacterial DNA cloned = Average Insert Size X Number of Clones in Library 

 (23.7 Kb) x (2,840) = 67,308 Kb 
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3.4 Results 

3.4.1 Molecular Analysis of Metagenomic DNA Preparations 

 

The modified Gentra Puregene Yeast Bact. Kit (Qiagen) protocol described in this chapter 

was used to obtain high concentration and high molecular weight DNA from the pooled 

human saliva and calf faeces, Figure 3.5 (a) and (b). The human saliva metagenomic DNA 

preparations showed some smearing when analysed by agarose gel electrophoresis 

indicating that smaller DNA fragments were also present. Nanodrop analysis showed that 

the human saliva and calf faecal metagenomic DNA had concentrations between 50 – 100 

ng/μl. The 260/280 nm ratios were typically around 1.8 (a ratio of 1.8 is accepted as pure 

DNA) and 260/230 nm ratios ranged from 0.7 – 1.8 (a ratio of 2.0 is accepted as pure for 

DNA). Digestion of the saliva metagenomic DNA preparation with serial dilutions of HindIII 

resulted in a shift from high molecular weight fragments to smaller fragments as the 

restriction enzyme concentration increased, Figure 3.5 (a). 

When viewed on agarose gels the calf faecal metagenomic DNA preparations showed high 

molecular weight with some smearing. The preparations were examined by Nanodrop which 

showed DNA concentrations between 75 - 450 ng/μl. The 260/280 nm and 260/230 nm 

ratios ranged from 1.75 – 2.0 and 0.9 – 1.9, respectively. A reduction in high molecular 

weight DNA bands was observed when the calf faecal metagenomic DNA was digested with 

serially diluted concentrations of HindIII, Figure 3.5 (b). 

As the DNA obtained from human saliva and calf faeces were of high molecular weight and 

amenable to HindIII digestion, metagenomic libraries could be created. 
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Figure 3.5 

(a)                                                                                                (b) 

  M    1     2   3    4     5    6     7    8                                1       2      3      4      5    6       M     

    

  HindIII        HindIII 

Figure 3.5 Partial HindIII Digest of Human Saliva and Calf Faecal Metagenomic DNA. In (a) and (b) M indicates 

Bioline Hyper Ladder I as a marker (a) Lane 1 contains the high molecular metagenomic DNA obtained from 

human saliva. Lanes 2 to 8 show the effect of digesting the human saliva metagenomic DNA with serially 

decreasing concentrations of HindIII (2U - 0.03125U). (b) Lane 5 contains the high molecular metagenomic 

DNA obtained from calf faeces. Lanes 1 to 5 show the results of digesting the calf faecal metagenomic DNA 

with decreasing concentrations of HindIII (2U – 0.125 U). The black triangles beneath each gel indicate the 

direction of increasing HindIII concentration. 
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3.4.2 Phylogenetic Analysis of Metagenomic DNA Samples 

3.4.2.1 Phylogenetic Analysis of Human Saliva Metagenomic DNA 

 

Illumina MiSeq next generation sequencing was used to identify the diversity of 

microorganisms present in the Human Saliva metagenomic DNA preparations by sequencing 

the V5-V7 hyper variable regions of the 16S rRNA gene present in the samples. 198,946 

reads were generated during the sequencing run of which 143,351 passed quality filtering. 

98.6 % of these reads (141,349) could be assigned to a phylum and 93.27 % (133,700) could 

be classified at the genus level. Two phyla were shown to dominate the human saliva 

metagenomic DNA sample, Bacteroidetes and Firmicutes representing 43.2 % and 42.1 % of 

the OTUs at this level. Proteobacteria was the third most abundant (9 %) while the 

remaining phyla (Actinobacteria, Unclassified phyla, Fusobacteria, Cyanobacteria, 

Tenericutes and Spirochaetes) represented less than 10 %, Figure 3.6 (a). 

At the level of genus two members, again, appeared to dominate, Prevotella and Veillonella 

with 38.6 % and 21.5 % of the OTUs identified at this level being assigned to these genera 

respectively. 8.9% of the OTUs were identified as being of Streptococcus, 6.8 % were 

designated other while another 6 % were unclassified. The remaining 19.2 % represented 13 

different genera including Neisseria and Propionispora, Figure 3.6 (b). 
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3.4.2.2 Phylogenetic Analysis of Calf Faecal Metagenomic DNA 

 

455,475 reads were generated during the Illumina MiSeq sequencing run with 63.1 % 

(287,568) passing the quality filter. 99.51 % of these reads (286,151) could be assigned to a 

phylum and 91.07 % (261,887) could be classified at the genus level. Proteobacteria 

dominated the calf faecal metagenomic DNA sample with 98.7 % of OTUs identified as being 

from this phylum. 0.5 % and 0.1 % were designated unclassified or other, respectively with 

the remaining 0.7 % comprising Firmcutes, Bacteroidetes and Chlorobi, Figure 3.6 (c). 

75.8 % of OTUs were designated as coming from Escherichia, 9.2 % from Enterobacter while 

8.1 % were unclassified and 0.9% were assigned as other. 14 different genera represented 

the remaining 6 % of OTUs, Figure 3.6 (d). 
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Figure 3.6  

(a)      (b) 

 

  

      (c)      (d) 

 

    

Figure 3.6 16S Composition of Human Saliva and Calf Faecal Metagenomic DNA Extractions. Pie charts were 

generated from the taxa identified from the Illumina pyrosequencing reads generated using the QIIME script 

described in Appendix II. (a) The relative abundances of the different phyla present in the human saliva 

metagenomic DNA. (b) The relative abundances of the different genera present in the human saliva 

metagenomic DNA (c) Pie chart depicting the respective relative abundances of the phyla Identified in the calf 

faecal metagenomic DNA (d) The relative abundances of the genera present in the calf faecal metagenomic 

DNA.  
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3.4.3 Analysis of Metagenomic Libraries 

3.4.3.1 Efficiency of Transformation and Ligations  

 

The transformation and ligation efficiencies of electroporating 2 – 5 µl of the human saliva – 

pCC1BAC and calf faecal – pCC1BAC ligation reactions into E. coli EPI300 T1R are detailed in 

Table 3.2. 

 

Table 3.2 Transformation and Ligation Efficiencies.  

Ligation 
Reaction 

Electroporation  Number of White 
Transformants 
(in 1000µl of 
recovered SOC)  

Ligation 
*Efficiency  

 Transformation 
Efficiency  
(cfu/µg)  

Human 
Saliva::pCC1BAC  

5 µl of ligation 
50µl EP1300  

363  88 %   1.65 X 103  

 
2 µl of ligation 
50µl EP1300  

1180  97 %   1.341 x 104  

Calf 
Faecal::pCC1BAC 

5 µl of ligation 
50µl EP1300 

301 78 %  1.505 x 103 

 
2 µl of ligation 
50µl EP1300 

240 91 %  3.0 X 103 

  

3.4.3.2 Determining the Size of the Metagenomic Libraries 

 

A human saliva metagenomic library consisting of 27,000 clones was created by 

transforming 46 µl of a 100 µl ligation reaction into E. coli EPI300 T1R. To estimate how 

much bacterial DNA was contained in the library 96 random clones were analysed by end 

sequencing using the pCC1 primers, Table 3.1. BLASTN and BLASTX analysis of the 96 

pCC1BAC vector sequences from clones of the human saliva metagenomic library, showed 
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that 16 (16.67 %) contained no inserts, 39 (40.63 %) contained DNA of human origin only 

and 40 (41.67 %) contained DNA of bacterial origin only. A single clone was found to have a 

concatemeric insert as it contained DNA originating from both human and bacteria, thus 41 

clones contained bacterial DNA (42.7 %) and 40 contained human DNA (41.67 %). The 41 

bacterial DNA containing clones contained a total 345.45 Kb of DNA which indicated the 

average bacterial insert size for the library was 8.42 Kb, Figure 3.7(a). This average was 

assumed to be consistent across the entire library. Thus, the total amount of bacterial DNA 

in the library was 97,074 Kb (8.42 Kb X 27,000 clones X 0.427). As only 46 µl of the 100 µl 

ligation reaction was transformed initially, more clones could be obtained from 

transforming more of the reaction.  
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Figure 3.7 

(a) 

  M         M 

 

(b)                                                                                                                        (c) 

  M 

     

 

Figure 3.7 Estimating the Size of the Human Saliva Metagenomic Library. (a) Lanes marked M in this two-

storied gel contain the NEB 1 Kb extended ladder. The remaining 36 lanes contain HindIII digested 

pCC1BAC::insert vectors from randomly selected clones from the human saliva metagenomic library. (b) Lane 

M contains the 1 Kb extended ladder. The remaining 10 lanes contain randomly selected HindIII digested 

vectors from the calf faecal metagenomic library. (c) An image showing the size of the DNA fragments in the 

NEB 1 KB extended ladder. 
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Ten clones from the calf faecal metagenomic library were picked and 3 contained inserts. 

The three inserts contained a combined 237 Kb of DNA, thus over the 10 clones the average 

insert size was 23.7 Kb, Figure 3.7(b). Approximately 2,840 clones from the calf faecal 

metagenomic library were screened. Thus, assuming this average is conserved across the 

library, a total of 67,308 Kb (23.7 Kb X 2,840) of DNA was screened. However, based on 

these results 70 % of clones were empty so the 67.308 Mb of DNA would have been 

maintained in only 852 (2,840 X 0.3) clones.   

 

3.4.3.3 Source of Cloned Bacterial DNA in the Metagenomic Libraries 

3.4.3.3.1 Human Saliva Metagenomic Library – Source of Cloned DNA 

 

In order to determine if our cloning protocol resulted in a loss of diversity in our 

metagenomic libraries compared with our metagenomic DNA extractions BLASTN and 

BLASTX analysis of 96 randomly selected human saliva metagenomic clones was conducted. 

Forty-one clones contained bacterial DNA; 18 contained DNA from the phylum 

Bacteroidetes only, 15 from Firmicutes only, 3 from Proteobacteria, 3 from Actinobacteria 

and 1 from an unclassified phylum, Figure 3.8 (a), Table 3.3. One clone contained DNA from 

the phyla Firmicutes and Bacteroidetes. At the genus level the majority of clones contained 

DNA from Prevotella spp. (17 clones), and Veillonella spp. and Streptococcus spp. were the 

second most abundant with six clones each, Table 3.3 and Figure 3.8 (b).  

Two of the bacterial DNA containing clones contained an insert that when end sequenced 

showed one side of the insert to be from a different organism to the other. One clone 
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contained DNA that had 84 % nucleotide identity (100 % cover) to Prevotella melaninogenic 

when sequenced with the PCC1F primer and 36 % nucleotide identity (73 % cover) to V. 

parvum when sequenced with the PCC1R primer, indicating the insert DNA was a 

concatemer. A second bacterial DNA containing clone was also identified as a concatemer as 

its insert contained Megasphaera spp. and human DNA.  

The bacterial composition of the human saliva metagenomic library was also determined by 

calculating how much DNA was cloned from each phylum identified. In the 41 clones that 

contained bacterial DNA, 188.9 Kb originated from Bacteroidetes, 112.85 Kb from 

Firmicutes, 11.2 Kb from Proteobacteria, 23 Kb from Actinobacteria and 9.5 Kb from an 

unclassified phylum (Candidatus), Figure 3.8 (c). The average insert sizes for Bacteoidetes, 

Firmicutes, Proteobacteria, Actinobacteria and the unclassified Phylum were 9.94 Kb, 7.52 

Kb, 3.7 Kb, 7.6 Kb and 9.5 Kb respectively. 
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Figure 3.8 

(a)            (b) 

 

 

(c) 

 

Figure 3.8 The Bacterial Composition of the Human Saliva Metagenomic Library. (a) Pie chart showing the 

relative abundance of each phyla in the human saliva metagenomic library based on clone number. (b) Pie 

chart depicting the relative abundance of each genus in the human saliva metagenomic library based on clone 

number. (c) Pie chart depicting the relative abundance of each phyla in the human saliva metagenomic library 

based on the amount of DNA cloned. 
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Table 3.3 BLAST Results for 41 Randomly Selected End Sequenced Human Saliva 

Metagenomic Clones. 

Clone Forward Reaction Reverse Reaction 

1 Prevotella melaninogenica 
99 % Cover, 78 % Identity 

Prevotella melaninogenica 
79 % Cover, 76 % Identity 

2  Prevotella melaninogenica 
99 % Cover, 94 % Identity 

Prevotella spp. Oral Taxon 299 
100 % Cover, 91 % Identity 

3 Prevotella melaninogenica 
87 % Cover, 84 % Identity 
 

Prevotella melaninogenica 
88 % Cover, 81 % Identity 

4 Prevotella melaninogenica 
100 % Cover, 99 % Identity 

No Sequence 

   
5 Prevotella melaninogenica 

99 % Cover, 85 % Identity 
Prevotella melaninogenica 
98 % Cover, 70 % Identity 

   
6 Uncultured Bacteria 

97 % Cover, 69 % Identity 
Prevotella melaninogenica 
99 % Cover, 84 % Identity 

   
7 No Result 

 
Prevotella melaninogenica 
41 % Cover, 83 % Identity 

8 Prevotella melaninogenica 
94 % Cover, 80 % Identity 

Prevotella melaninogenica 
52 % Cover, 76 % Identity 

9 Prevotella melaninogenica 
96 % Cover, 81 % Identity 

Prevotella melaninogenica 
78 % Cover, 91 % Identity 

10 Prevotella melaninogenica 
100 % Cover, 85 % Identity 

No Sequence 

11 Prevotella melaninogenica 
97 % Cover, 76 % Identity 

Prevotella melaninogenica 
32 % Cover, 71 % Identity 

12 Prevotella intermedia 
100 % Cover, 79 % Identity 

Prevotella melaninogenica 
99 % Cover, 78 % Identity 

13 Prevotella denticola 
100 % Cover, 87 % Identity 

Prevotella melaninogenica 
63 % Cover, 78 % Identity 

14 Prevotella melaninogenica 
99 % Cover, 76 % Identity 

Prevotella melaninogenica 
98 % Cover, 80 % Identity 

15 Prevotella melaninogenica 
100 % Cover, 86 % Identity 

Elizabethkinga spp. 
32 % Cover, 71 % Identity 

16 Prevotella melaninogenica 
99 % Cover, 72 % Identity 

No Result 

17 Prevotella denticola 
21 % Cover, 81 % Identity 

Prevotella melaninogenica 
99 % Cover, 90 % Identity 

18 Porphorymonas asaccharolytica 
44 % Cover, 87 % Identity 

Persicobacter spp.  
21 % Cover, 71 % Identity 

19 Veillonella parvum 
92 % Cover, 91 % Identity 

Veillonella parvum 
96 % Cover, 94 % Identity 

20 Veillonella parvum 
94 % Cover, 75 % Identity 

Veillonella parvum 
91 % Cover, 81 % Identity 

21 Veillonella parvum 
99 % Cover, 83 % Identity 

Veillonella parvum 
100 % Cover, 76 % Identity 

22 Veillonella parvum 
99 % Cover, 90 % Identity 

Veillonella parvum 
100 % Cover, 91 % Identity 

23 Veillonella parvum 
100 % Cover, 98 % Identity 

Veillonella parvum 
99 % Cover, 100 % Identity 
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24 Prevotella melaninogenica 
100 % Cover, 84 % Identity 

Veillonella parvum 
12 % Cover, 78 % Identity 

25 Paenibacillus spp. 
9 % Cover, 79 % Identity 

Streptococcus salivarius 
76 % Cover, 74 % Identity 

26 Streptococcus pneumoniae 
99 % Cover, 78 % Identity 

Streptococcus mitis 
99 % Cover, 87 % Identity 

27 Streptococcus pneumoniae 
100 % Cover, 84 % Identity 

Streptococcous spp. 
99 % Cover, 91 % Identity 

28 Streptococcus oralis 
99 % Cover, 100 % Identity 

Streptococcus oralis 
98 % Cover, 99 % Identity 

29 Streptococcus pneumoniae 
99 % Cover, 83 % Identity 

Streptococcus mitis 
99 % Cover, 100 % Identity 

30 Streptococcus mitis 
98 % Cover, 90 % Identity 

Streptococcus mitis 
100 % Cover, 93 % Identity 

31 Butyvibrio proteoclasticus 
79 % Cover, 71 % Identity 

Acetobacterium woodii 
52 % Cover, 72 % Identity 

32 Clostridium acetobutylicum 
55 % Cover, 70 % Identity 

No Result 

33 Megasphaera elsednii 
52 % Cover, 82 % Identity 

No Sequence 

34 Megasphaera micronuciformis 
100 % Cover, 99 % Identity 

Human DNA 

35 Actinobacillus succinogens 
99 % Cover, 65 % Identity 

Haemophilus parainfluenzae 
40 % Cover, 95 % Identity 

36 Haemophilus parainfluenzae No Sequence 
 98 % Cover, 95 % Identity  
37 Nesseria mucosa 

97 % Cover, 100 % Identity 
No Sequence 

38 Atopobium parvula Atopobium parvula 
 100 % Cover, 82 % Identity 100 % Cover, 81 % Identity 
39 Atopobium parvula Atopobium parvula 
 99 % Cover, 91 % Identity 99 % Cover, 91 % Identity 
40 Atopobium parvula Atopobium parvula 
 99 % Cover, 93 % Identity 99 % Cover, 91 % Identity 
41 Candidatus sacchari Candidatus sacchari 
 99 % Cover, 78 % Identity 99 % Cover, 79 % Identity 

 

 

3.4.3.3.2 Calf Faecal Metagenomic Library – Source of Cloned DNA 

 

The three calf faecal metagenomic library clones that contained an insert were end 

sequenced. One of the clones contained a potential concatemeric insert. The forward 

reaction sequence showed that the insert had low similarity to an Enterobacter species. 

When sequenced from the reverse end, sequence identity could only be achieved using 
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discontiguous megablast revealing similarity to a species of Paenibacillus, Table 3.4. The 

remaining clones had inserts with sequence similarity to genera of the class 

Enterobacteriaceae, Table 3.4 

 

Table 3.4 BLASTN Results for End Sequenced Calf Faecal Metagenomic Clones. 

Clone Forward Reaction Reverse Reaction 

Clone 1 Enterobacter spp 
33 % Cover, 82 % Identity 

Paenobacillus spp. 
14 % Cover, 85 % Identity 

Clone 2  Shigella spp. 
91 % Cover, 100 % Identity 

E. coli  
97 % Cover, 100 % Identity 

Clone 3 E. coli 
95 % Cover, 100 % Identity 

E. coli 
96 % Cover, 100 % Identity 
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3.5 Discussion 

 

The aim of the work described in this chapter was to create two metagenomic libraries using 

pCC1BAC; one from human saliva and the other from calf faeces. These environments are 

known to harbour antibiotic resistance genes and as the majority of bacteria species from 

these environments have yet-to-be cultured, novel resistance genes can be identified from 

screening these functional metagenomic libraries. To create a metagenomic library suitable 

for functional screening it is vital that the metagenomic DNA be of high concentration, high 

molecular weight and of high-enough quality for restriction enzyme digestion and 

subsequent ligation into a suitable vector. The modified Gentra Puregene Yeast/Bact. 

protocol proved sufficient in this regard as previously demonstrated by Seville et al. (Seville 

et al., 2009). This method relies on separating the cell content from the sample matrix 

(saliva components and calf faecal matter in our samples) prior to isolating the 

metagenomic DNA. This minimises contamination of the DNA extracts with metal ions, salts 

and carbohydrates  but may also introduce biases in the preparations as not all cells will be 

easily separated from the sample matrix (Delmont et al., 2011). Our human saliva and calf 

faecal metagenomic DNA preparations contained DNA of high molecular weight with 

fragments greater than 10Kb in size observable by agarose gel electrophoresis, although 

smearing indicated smaller fragments were also present. Furthermore, although the 

260/230 nm ratios were low for the human saliva and calf faecal metagenomic preparations 

(indicative of contamination with phenols or carbohydrates), the high molecular weight DNA 

was amenable to digestion by HindIII indicating that the DNA was of sufficient quality for 

cloning (ThermoScientific, 2011). 
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At the phylum and genus levels 16S rRNA analysis of the human saliva metagenomic 

preparation was in agreement with previous studies in that Bacteriodetes, Firmicutes, 

Proteobacteria and Actinobacteria (97.6 %) represented the four most abundant phyla and 

Prevotella, Veillonella, Streptococcus and Neisseria (72.3 %) were the dominant classified 

genera (Dassi et al., 2014; Segata et al., 2012). Our results showed Bacteroidetes to be the 

most abundant phylum and Prevotella to be the dominant genus in our metagenomic 

preparation. Although studies have demonstrated that Firmicutes are the dominant phyla in 

saliva, individuals with higher proportions of Bacteroidetes and lower relative abundances 

of Firmicutes and Proteobacteria have also been observed, exemplifying the diversity of this 

environment (Mager et al., 2003).  

The only prerequisite for individuals to be involved in this study was that they had not taken 

antibiotics in the previous three months and were not at the time taking medication. Thus, 

health status, diet, oral hygiene or ethnicity of the individuals providing saliva were not 

taken into account, but likely contributed to the diversity observed in our metagenomic 

preparation. For instance, increased relative abundances of Prevotella spp. have been 

associated with gingivitis, periodontitis and poor oral hygiene and this may explain the high 

relative abundances of Prevotella spp. in our human saliva metagenomic DNA (Darveau, 

2010; Liu et al., 2012). Differences in the core oral microbiomes may arise due to dietary or 

ethnic differences. For instance, Li et al. (2014) have shown that Alaskan and German oral 

microbiomes were dominated by Firmicutes while Proteobacteria were the most abundant 

in African oral cavities (Li et al 2014). The saliva samples used in this study originated from 

11 individuals from different geographic locations that may harbour higher proportions of 

Prevotella spp. in their oral cavities. The method by which individuals expectorated may also 

have contributed to the high relative abundances of the anaerobic genera. Some individuals 
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may have dislodged dental, tongue dorsum or tonsil plaque, which have higher proportions 

of Prevotella spp. and Veillonella spp., when generating saliva, which may have contributed 

to the 16S rRNA results observed.  

The abundance and proportion of each bacterial genera and species observed may also have 

be an artefact of the protocols used. Brooks et al. (2015) noted an increased abundance of 

Enterococcus spp. and lower Bacillus spp. and Pseudomonas spp. 16S rRNA levels when they 

used a Qiagen kit rather than the Powersoil Kit when analysing a mock community of 21 

archaeal and bacterial species (Brooks et al., 2015). Streptococcus represented 8.9 % of the 

genera present in our human saliva metagenomic DNA. Although comparable levels of 

Streptococcus spp. have been identified in the saliva of some individuals, it is possible that 

the lytic enzyme used in the extraction did not lyse Streptococcus spp. cells effectively 

resulting in an underrepresentation of this genus and potentially other genera in our sample 

(Segata et al., 2012). The lytic enzyme may have failed to lyse other Gram-positive bacteria 

in the saliva samples collected as only 15 % of the genera identified were Gram-positive. 

PCR has also been shown to introduce bias in 16S rRNA studies as a result of the polymerase 

and conditions used for amplification or from the choice of primers and hypervariable 

region amplified  (Ahn et al., 2012; Lee et al., 2012). For example, Kumar et al. (2011) 

showed by 454 sequencing that when using V1-V3 amplifying primers Prevotella spp. were 

the most abundant (28.1 %) in the subgingival plaque of smokers with periodontitis whilst 

Streptococcus spp. represented 8.3 % of total species. Whereas, using V4-V6 primers, they 

showed Streptococcus spp. to be the dominant species (25.2 %) compared with Prevotella 

spp. (8.2 %) (Kumar et al., 2011). 
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Although Bacteroidetes represented the most abundant phyla in our metagenomic DNA 

extraction, it was the least diverse, with Prevotella making up approximately 94 % of genera. 

Firmicutes was the most diverse phylum with five genera identified; Proteobacteria 

followed with fouridentified genera and Actinobacteria and Bacteroidetes each had three.  

Six percent of the 16S sequences could not be classified to the genus level. This may be 

because these sequences were not in the Greengenes dataset or that they are completely 

novel sequences representing unidentified bacterial genera. At the genus level, bacteria 

with a relative abundance of less than 0.5 % were grouped into the ‘other’ category and 

represented 6.8 % of the diversity at this level. This group may contain genera of the TM7 

and Synergistetes phyla that are also present in human saliva. Interestingly, Candidatus 

Blochmannia represented 0.5 % of the genera present in the sample; Candidatus 

Blochmannia is an endosymbiotic bacteria associated with carpenter ants (Sauer et al., 

2000).  

Transformation of the Human Saliva-pCC1BAC and Calf Faecal-pCC1BAC ligation reactions 

into E. coli EPI300 T1R had maximum efficiencies of 1.341 X 104 CFU/ml and 1.066 X 104 

CFU/ml, respectively. These were below the estimated transformation efficiency for E. coli 

EPI300 T1R by a factor of approximately 106. This is not surprising as the reported 

efficiencies were calculated using pUC19 which is smaller and likely more stable than the 

pCC1BAC vectors containing large DNA fragments from different host backgrounds that we 

cloned into  E. coli EPI300 T1R (Epicentre, 2011). The library transformations discussed here 

were conducted using ligation reactions containing plasmids of different sizes with different 

levels of supercoiling that likely also contained unligated DNA fragments from the 

metagenomic DNA extractions which can reduce transformation efficiency (Zhu and Dean, 
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1999). A higher transformation efficiency was observed for both HS-pCC1BAC and CF-

pCC1BAC when 2 µl of the ligation reactions were used rather than 5 µl. Plateauing and 

reductions of efficiency have previously been observed with increasing DNA concentrations 

(Chung et al., 1989; Dorella et al., 2006). Greater volumes of ligation reaction contain more 

DNA which can have a toxic effect on the competent cells. Higher volumes may also mean 

more impurities including salts and ligase in the ligation reaction which reduces efficiency of 

transformation (Wu et al., 2010; Brambach et al., 2013).  

A total of 27,000 clones were created from the transformation of 46 µl out of a 100 µl 

ligation reaction. If the total ligation reaction had been transformed an estimated 59,696 

clones would have been obtained, and more ligation reactions could be conducted and 

transformed to expand the human saliva library. Of the 96 clones selected, 16.67 % were 

empty and 41.67 % contained human DNA. Metagenomic preparations from human saliva 

are prone to contamination with human DNA as mucosa cells present in the samples lyse 

with the bacterial cells. For example, Seville et al. (2009) found that 61 % of their human 

saliva metagenomic library contained human DNA, which is a greater proportion than our 

library (Seville et al., 2009). The bacterial inserts present in the human saliva metagenomic 

library ranged from 100 bp to 31 Kb with an average insert size of 8.42 Kb. An average insert 

size of 8.42 Kb is small for pCC1BAC which can maintain inserts greater than 100 Kb. 

Functional metagenomic surveys of the human saliva metagenome conducted by Card et al. 

(2009) and Seville et al. (2014) using this vector obtained average insert sizes of 20 Kb and 

30 Kb, respectively (Seville et al., 2009; Card et al., 2014). Although small by BAC standards, 

8.42 Kb is large enough to contain antibiotic resistance genes and operons involved in 

bacteriocin production. For instance, Prevotella nigrescens encodes a bacteriocin and 
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immunity gene, nigAB, on a 4, 868 bp region of their chromosome, while mutacin II is 

encoded by an 8 - 9 Kb operon (Qi et al., 1999; Kaewsrichan et al., 2005).  

Minimal loss of diversity between the metagenomic DNA and the functional metagenomic 

library was observed as both had similar phylum and genus level profiles. End sequencing of 

96 random clones revealed 41 bacterial DNA containing clones that, as with the 16S rRNA 

sequencing data, contained inserts dominated by Bacteroidetes followed by Firmicutes, 

Protebacteria and Actinobacteria. At the genus level as with the 16S rRNA data, Prevotella, 

Veillonella and Streptococcus inserts were the most abundant. This suggests that digestion 

of the human saliva metagenomic DNA with the AT rich (5’-AAGCTT-3’) targeting HindIII 

enzyme did not introduce a strong bias in our library. To further assess any bias that may 

have been introduced into the library by HindIII, the contribution of each phylum to the 

library was determined based on insert size. Bacteroidetes represented 46.3 % of the clones 

analysed but accounted for 54.7 % of the cloned DNA. Whereas, 39 % of the clones 

contained DNA from Firmicutes and this phylum contributed to 32.7 % of the cloned DNA. 

This may suggest that HindIII introduced a bias towards larger Bacteroidetes inserts. For 

instance, Veillonella and Streptococcus spp. which made up the bulk of the Firmicutes have 

GC contents of approximately 37 % while Prevotella spp., which was the most abundant 

genus in the Bacteroidetes phyla are more GC rich with a GC content greater than 40 %. As 

the Streptococcus and Veillonella spp. genomic material is more AT rich than that of 

Prevotella spp. they may have had more HindIII sites that where cleaved to generate smaller 

fragments when compared with the Bacteroidetes fragments, and thus were easier to clone. 

In a recent paper, Lam and Charles (2015) determined that a reduction in abundance of 

Firmicutes was observed between their human faecal metagenomic preparations and the 

cosmid library they created. They determined that this was a result of instability and loss of 
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inserts containing Firmicutes DNA due to constitutive transcription from rpoD promoters 

that are typically more abundant in AT rich genomes (Lam and Charles, 2015). This may 

explain why Firmicutes is less abundant in our human saliva library library (32.7 %) 

compared with our 16S rRNA sequence data (42.1 %). It should be noted that these results 

come from only a small number of clones and unlike the 16S rRNA analysis phylogenetic 

annotation was conducted using non-comparable sequences of varying size. Additionally, 

for some cloned inserts MegaBLAST was used for annotation while discontiguous 

MegaBLAST or BLASTX were used for others. Thus, although these tools have been used 

previously to quantify diversity in metagenomic libraries the use of various tools to assign 

taxonomy make the data less robust (Manichanh et al., 2008; Seville et al., 2009). In 

conclusion, the extraction protocol used in this study to extract metagenomic DNA from 

human saliva gave a sample with a 16S rRNA profile that was in agreement with previous 

human saliva microbiome studies.  

16S rRNA analysis of the calf faecal metagenomic samples revealed it to be dominated by 

bacteria of the phylum Proteobacteria (98.7 %). The next most abundant phyla belonged to 

the unclassified phyla representing 0.6 % of all phyla followed by Firmicutes and 

Bacteroidetes at 0.3 %. Although previous phylogenetic studies have shown that these three 

phyla typically make up > 90 % of the calf faecal microbiome, Proteobacteria are over 

represented in our metagenomic preparation. Previous studies are in agreement that 

Firmicutes and Bacteroidetes are the two most abundant phyla in calf faeces with 

Proteobacteria representing between 1.4 and 9.75 % (Ozutsumi et al., 2005; Uyeno et al., 

2010; Oikonomou et al., 2013). A study conducted by Xu et al. (2104) found that even in 

faeces from super-shedder cattle (cattle that shed > 104 CFU of E. coli O157:H7 per gram of 

faeces) Proteobacteria accounted for approximately 1.7 % of the microbiome (Xu et al., 



 186 

2014). Escherichia and Enterobacter accounted for 75.8 % and 9.2 % of the genera 

respectively in our calf faecal metagenomic DNA which is much higher than previously 

observed levels. Meale et al. (2016) described E. coli as having a relative abundance of 1.2 % 

in weaned calf faeces while another study that used an rRNA based approach found that 

Enterobacteriaceae dropped below detectable levels following weaning (Uyeno et al., 2010; 

Meale et al., 2016). The high abundance of Proteobacteria may be a result of the handling 

and processing of the faeces. Prior to freezing at -80°C calf faeces was stored in a sterile 

closed pot at ambient temperature for approximately one hour. Exposure of faecal samples 

to an aerobic environment has been shown to result in a shift in community structure 

including an increase in gamma-proteobacteria. However, even under such conditions this 

class of bacteria still represented only about 8 % of the microbiota (Wong et al., 2016). 

Exposure to RT also alters the bacterial composition of faeces including a reduction in the 

abundance of Firmicutes including Ruminococcus spp. (Choo et al., 2015). Although our 16S 

rRNA results showed high abundance of Proteobacteria and low levels of Firmicutes, the 

above studies exposed their samples to RT or aeration for periods of days to weeks so it is 

unlikely that the short period our calf faeces was exposed to ambient temperature and 

aeration would have resulted in such a shift in the bacterial community profile. A loss of 

diversity may have occurred as bacterial cells were separated from the faecal matter prior 

to extraction. Although ex situ extraction protocols produce higher molecular weight and 

purer DNA compared with in situ methods, they do so at the expense of diversity as lower 

abundance members are often lost in the process (Delmont et al., 2011). Additionally, DNA 

released by lysis of bacterial cells during freezing may not have pelleted during cell 

separation resulting in a loss of this DNA from the metagenomic samples. As already 

discussed with regard to saliva extraction, our protocol may also have introduced bias by 
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preferentially lysing gram negative bacterial cells. However, as previous studies have used 

this protocol to achieve more representative extractions it is likely that contamination of the 

sample occurred (Seville et al., 2009). All reagents and tools used to process the faecal 

samples were sterilised, as was the case when processing the saliva samples. Likely 

contamination sources present during the faecal processing were the calves environment or 

from the CTAB reagent used to further clean the calf faecal metagenomic DNA. The latter 

was prepared, sterilised by autoclaving and kept at 60°C however, it may still have 

contained E. coli DNA that subsequently contaminated our sample resulting in our sample 

not representing the metagenome of calf faeces. 

Of the 10 clones analysed from the faecal metagenomic library 7 of the clones contained no 

insert although the colonies were white, which be a result of mutations in the host strain 

resulting in a loss of lacZ expression. The remaining 3 colonies contained large inserts 

resulting in a combined 237 Kb. Thus, the average insert size for these 3 clones was 79 Kb, 

large enough to maintain large gene clusters including bacteriocin producing operons. Two 

of the clones contained DNA with high similarity to Enterobacteriaceae while the third had 

low similarity to Enterobacter and Paenobacillus spp. These results are in agreement with 

the 16S rRNA data showing that Enterobacteriaceae make up bulk of the metagenomic DNA. 

However, the analysis of only three clones makes any meaningful conclusion impossible to 

make in this regard. No further clones were analysed from this library due to the high 

number of clones apparently containing no insert even when they were white. The high 

proportion of clones containing no insert may have resulted from contamination of the 

metagenomic DNA with phenol inhibiting the ligation reaction. Although phenol is used to 

remove proteinaceous material that may interfere with downstream molecular processing, 

it is also known to inhibit enzymes including ligase and restriction enzymes. Although HindIII 
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digestion and PCR were not inhibited, the phenol may have denatured the T4 DNA ligase 

resulting in the creation of few plasmid::insert constructs (Schrader et al., 2012).  

 To conclude, a library containing mostly empty clones was created using calf faecal 

metagenomic DNA. The high proportion of empty clones was likely a result of phenol 

contamination that inhibited the ligation reaction. A human saliva library of 27,000 clones 

with an average insert of 8.42 Kb, representing 97,074 Kb of bacterial DNA was also created. 

This library was suitable for functional screening to identify genes of interest as will be 

discussed in chapter 4. 
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Chapter 4 

Screening the Human Saliva and Calf Faecal Metagenomes 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 190 

4.1 Introduction 

4.1.1 Antimicrobial Resistance in the Human Oral Cavity 

4.1.1.1 Antibiotic Resistance in the Human Oral Cavity  

 

The ‘reservoir hypothesis’ posits that the commensal bacteria act as a reservoir of resistance 

genes (Salyers et al., 2004). There is contention over what constitutes a resistance gene and 

indeed a reservoir of resistance genes. Martínez et al. (2015) suggest that housekeeping 

genes identified as conferring antibiotic resistance to a host in a functional metagenomic 

screen should not be described as such. The term ‘reservoir’ is still used however and the 

human oral cavity microbiome is often referred to as such. Genes conferring resistance to 

tetracyclines and β-lactams are frequently identified from the oral cavity resistome (the 

collection of resistance genes present in both pathogenic and non-pathogenic bacteria) 

studies (Ready et al., 2003; Gaetti-Jardim et al., 2010; Kim et al., 2011; Moraes et al., 

2015;Martinez et al., 2015).  

The oral microbiota harbouring resistance genes have the potential to cause infections, as 

described in chapter 3.  These ARG-harbouring bacteria may also transfer their resistance 

genes via conjugation to other human pathogens that are transiently present in the oral 

cavity (Li et al., 2000; Lockhart et al., 2009). As such the human oral cavity has been the 

focus of studies that have aimed to identify and characterise the resistome of this 

environment (Lancaster et al., 2003; Seville et al., 2009; Card et al., 2014; Rashid et al., 

2015).  
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Antibiotics use can alter the oral microbiome resulting in an increased abundance of 

commensal bacteria harbouring ARGs. In a study conducted by Rashid et al. (2015), 

individuals that took a 10-day course of ciprofloxacin (500 mg dose) or clindamycin (150 mg 

dose) had proportionally more ciprofloxacin-resistant strains of Prevotella, Veillonella and 

Lactobacillus spp. or clindamycin resistant Prevotella spp. respectively in their saliva after 12 

months compared with individuals who took a placebo for 10 days (Rashid et al., 2015). In 

another survey, Zaura et al. (2015) used shotgun metagenomic sequencing to show that 

although antibiotic use didn’t increase the abundance of antibiotic resistance genes, 

minocycline and clindamycin use did select for multidrug efflux genes (Zaura et al., 2015).  

Additionally, even when antibiotics have not been taken, antibiotic resistance in the oral 

cavity has been described (Lancaster et al., 2005; Zaura et al., 2015). The acquisition of such 

genes may occur when they are passed down vertically from mother to child when the 

mother’s commensal bacteria and resistome are transferred during gestation and birth 

(Dominguez-Bello et al., 2010; Aagaard et al., 2014).  

 

4.1.1.2 Oral Biofilms and Antibiotic Resistance  

 

Intrinsic mechanisms of resistance also exist within the oral microbiota. For instance, cells 

growing in biofilms including plaque can be up to 1000-fold more resistant to antimicrobials 

than planktonically growing cells (Hoyle and Costerton, 1991; Moskowitz et al., 2004; 

Bjarnsholt et al., 2007). The EPS (extrapolymeric substance) produced by biofilm cells 

provides a barrier against antimicrobial diffusion resulting in lower concentrations of the 

inhibiting compound within the structure (Corbin et al., 2011).  
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4.1.1.3 Metabolic Activity Can Alter Antibiotic Susceptibility 

 

As discussed in chapter 3, there is a heterogeneity in biofilms, including dental plaque, in 

terms of nutrient and dissolved oxygen availability and distribution of signalling factors. This 

results in metabolic differences between different cells in the biofilm and in some cells 

being less metabolically active than their planktonic counterparts (Gilbert et al., 1990; 

Anderl et al., 2003). A loss of metabolic activity may induce a compositional change to the  

cell’s surface resulting in modified lipid and polysaccharide structures and altered surface 

protein expression (Sutherland, 1982; Chalabaev et al., 2014). For example, the OmpF porin 

involved in antimicrobial uptake is downregulated by the cells in an E. coli biofilm while 

OmpC expression increases (Simonet et al., 2000; Bredin et al., 2003; Freire et al., 2006). 

 

4.1.1.4 Tetracycline Resistance in the Human Oral Cavity 

 

A number of studies have been conducted to characterise the resistome of the cultivable 

and non-cultivable microorganisms of the oral cavity in order to define the oral tetracycline 

resistome and identify novel tetracycline resistance determinants. These studies have 

shown that tetracycline resistant genes are abundant and prevalent in this environment. 

Gaetti-Jardim et al. (2010) surveyed the cultivable microbiome of the oral cavity (saliva, 

mucosa, supragingival and subgingival plaque). Of the 304 isolates tested 101 (33.2%) were 

resistant to tetracycline (Gaetti-Jardim et al., 2010).   



 193 

The RPP gene, tet(M) is the most frequently identified and most abundant tetracycline 

resistant gene in the human oral cavity, typically followed by tet(Q), tet(W) and tet(O) 

(Villedieu et al., 2003; Lancaster et al., 2003; Lancaster et al., 2005; Seville et al., 2009; Kim 

et al., 2011) . In a survey of the oral cavity of 54 Greeks, tet(M) and tet(Q) were found in 

between 70 % and 82 % of all subjects, respectively, using PCR (Ioannidis et al., 2009). 

Functional screening of human saliva and plaque metagenomic libraries and microarray 

analyses have provided further evidence for RPP genes being prevalent in these 

environments (Diaz-Torres et al., 2003; Diaz-Torres et al., 2006; Seville et al., 2009). For 

instance, Diaz-Torres et al. (2006) found that tet(M), tet(Q), tet(w) and tet(O) expressing 

clones represented 37 % of the identified tetracycline-resistant clones and were present in 

all of their libraries (Diaz-Torres et al., 2006).   

The prevalence of RPP genes in the oral cavity is aided by their association with mobile 

genetic elements (MGEs) including conjugative plasmids and transposons (Ciric et al., 2011; 

Brenciani et al., 2014). Tn916 is the archetype of a family of broad host range conjugative 

transposons that carry tet(M), although in Tn916S a tet(S/M) mosaic is present  (Roberts and 

Mullany, 2011; Novais et al., 2012). Tn916-like elements have been identified in over 30 

genera including oral Streptococcus, Neisseria, Veillonella and Fusobacterium spp. from the 

oral cavity (McKay et al., 1995; Olsvik et al., 1995; Rossi-Fedele et al., 2006; Ready et al., 

2006; Ciric et al., 2012; Brenciani et al. 2014). tet(Q) is mainly associated with Gram-

negative organisms including Prevotella and Porphorymonas spp. and has been shown to be 

more prevalent in patients with periodontitis (Okamoto et al., 2001; Kim et al., 2011). The in 

vitro transfer of tet(Q) from these species to others has been demonstrated and it has been 

found to be associated with  non-conjugative IS21 transposable elements in Prevotella spp. 

(Chung et al., 1999; Tribble et al., 2010). 
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As well as RPP genes, tetracycline transporters of the MFS family have also been isolated 

from the human oral cavity, although less frequently than RPPs. Villedieu et al (2003) found 

that tet(L) was found in 2.8 % of the cultivable tetracycline resistant isolates in their study 

while tet(A) and tet(K) were encoded by 1 % of isolates (Villedieu et al., 2003). tet(A) and 

tet(B) have also been identified from the human oral cavity using functional metagenomic 

and microarray approaches (Diaz-Torres et al., 2006; Card et al., 2014).  

Novel tetracycline resistance determinants have also been identified from the human oral 

cavity including a novel ABC transporter, TetAB(46) from Streptococcus australis and a 

tetracycline degrading enzyme, Tet(37), identified from a functional metagenomic library 

(Diaz-Torres et al., 2003; Warburton et al., 2013). As tetracycline resistance genes are 

frequently isolated from the oral cavities of individuals, even in the absence of tetracycline 

use, and novel tetracycline resistance genes continue to be identified from this 

environment, screening of human saliva metagenomic libraries has the potential to identify 

more novel tetracycline resistance genes. 
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4.1.1.5 β-lactam Resistance in the Human Oral Cavity 

 

The human oral cavity is also a source of β-lactam resistance genes. In Gaetti-Jardim’s 2010 

study, 178 of 304 (58.6 %) oral isolates were resistant to at least a single β-lactam of which 

75.8 % were ampicillin resistant and 62.9 % were β-lactamase producers (Gaetti-Jardim et 

al., 2010).  In the oral cavity Ambler class A serine β-lactamases are the most abundant and 

as these genes are mainly found in Gram-negative bacteria, they are more prevalent in 

periodontitis patients (Gaetti-Jardim et al., 2010; Darveau, 2010; Card et al., 2014). In an 

oral biofilm study, Kim et al. (2011) used PCR to show that blaTEM was present in more than 

90 % of healthy individuals and in all periodontitis patients while a later survey conducted 

by Koukos et al. (2016), also employing a PCR approach, showed blaTEM to be more 

prevalent in tongue mucosa samples than plaque regardless of periodontal health status 

(Kim et al., 2011; Koukos et al., 2016). In the same study, Kim et al. (2011) found cfxA in 

approximately 70 % and 80 % of the subjects of the healthy and periodontal groups 

respectively (Kim et al., 2011).  β-lactamase genes that have been isolated from oral 

bacteria or from clinical isolates that are known oral inhabitants are listed in Table 4.1. 
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Table 4.1 β-lactamase genes Identified in Oral Bacteria. 

Β-lactamase gene Class Source Reference 

blaSHV Class A Enteric and Pseudomonas spp. isolates from the 
oral cavity 

(Ramos et 
al., 2009) 

blaTEM Class A E. coli from the oral cavity (Handal et 
al., 2005) 

  Eikennella corridens on a Tn3-like transposon (Lacroix and 
Walker, 
1992) 

  Neisseria spp. (Handal et 
al., 2005) 

  Capnocytophaga ochrace, plasmid encoded (Rosenau et 
al., 2000) 

blaCTX-M Class A Enteric species. isolates from the oral cavity (Ramos et 
al., 2009) 

cfiA Class B Clinical Bacteroides fragilis isolates (Love et al., 
1989; Roh et 
al., 2010) 

ampC Class C Citrobacter freundii from the oral cavity (Handal et 
al., 2005) 

  Oral Enterobacteriaceae (Leão-
Vasconcelos 
et al., 2015) 

blaOXA Class D Fusobacterium nucleatum (Voha et al., 
2006) 

 

Intrinsic mechanisms of β-lactam resistance are also present in the oral cavity including 

efflux mechanisms. For instance an ampicillin resistant clone harbouring acrRAB genes was 

isolated from a human saliva metagenomic library (Card et al., 2014). Commensal 

Streptococcus, Neisseria and transient Enterococcus spp. that may be found in the oral 

cavity can be intrinsically resistant to penicillin due to the production of penicillin binding 

proteins that have low affinities for penicillin (Rice et al., 2004; Wang et al., 2012; Jensen et 

al., 2015). Mutations of the PBP5 gene can result in resistance to ampicillin and some 

cephalosporins. β-lactam resistant Staphylococcal spp. including mecA positive S. aureus 

have been found in the oral cavity although they are not typically prevalent or highly 

abundant (Cuesta et al., 2011; Koukos et al., 2015). In a study of the saliva and oral mucosa 

from 37 healthy individuals and 46 cancer patients, 71 Staphylococcus spp. were isolated 
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from 28 individuals of which 9 were MRSA and 2 were oxacillin resistant coagulase negative 

Staphylococcus spp. (Yamashita et al., 2013). 

 

4.1.1.6 Decreased Susceptibility to Antiseptics and Metals in the Oral Cavity 

 

Although research has focused less on antiseptic resistance in the oral cavity compared with 

antibiotic resistance; antiseptic resistance genes have been described for some oral 

bacteria.  For instance, Wang et al. (2013) showed that mutation of the bacteriocin 

immunity genes immA and immB resulted in decreased chlorhexidine susceptibility in S. 

mutans and that their expression was increased following chlorhexidine treatment (Wang et 

al., 2013). In another study, P. gingivalis was shown to have reduced chlorhexidine 

susceptibility as a result of vesicle production and release. These vesicles were shown to 

protect other oral microbes including P. intermida, S. mutans and Capnocytophaga ochracea 

as they contained LPS that bound and sequestered the antiseptic, preventing it from 

targeting the bacterial cells (Grenier et al., 1995). Antiseptic resistance genes have also been 

found on MGEs in oral bacteria. Ciric et al. isolated a CTAB-resistant strain of S. oralis from 

the oral cavity and found it to be carrying a CTAB efflux gene of the SMR family on a novel 

Tn916-like conjugative transposon, Tn6087 (Ciric et al., 2011b).  

Antiseptics, including chlorhexidine and QACs such as CTAB and CPC, are used in oral 

hygiene products including mouthwashes and in the treatment of periodontitis and their 

use is creating a selection pressure for the maintenance of such resistance genes (Costa et 

al., 2015; Liu et al., 2016). Antiseptic use may also select for resistance mutations. For 
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instance, Kulik et al. (2015) showed that successive culturing of P. gingivalis in sub-MIC 

concentrations of chlorhexidine in vitro generated strains that were 2- to 4-fold more 

resistant to chlorhexidine than their parent strains, although no characterisation of the 

resistant isolates was carried out (Kulik et al., 2015).  

As mercury is commonly used in dental amalgams, studies on heavy metal resistance in the 

oral cavity have mainly focused on this metal (Bates, 2006). Cultivable mercury-resistant 

bacteria have been shown to be prevalent in the oral cavity and variants of the mercury 

reductase encoding merA gene have been identified in oral Gram-negative and 

Streptococcus spp. (Ojo et al., 2004; Stapleton et al., 2004). Efflux and mercury methylation 

mechanisms of resistance have also been observed  (Stapleton et al., 2004; Nygren et al., 

2014). 

Copper and silver resistance have received less attention, although bacteria resistant to 

these metals have been cultured from the human oral cavity. For instance, a copper 

regulated P-type ATPase gene, copA, has been identified in a strain of S. mutans (Vats and 

Lee, 2001). In another study, two silver-resistant Enterobacter cloacae strains were isolated 

from teeth and were shown to harbour the silE gene, encoding a periplasmic silver binding 

protein, on a 48.5 Kb plasmid (Gupta et al., 1999; Davis et al., 2005). 

Since these metals are used in dental amalgams and as potential oral disinfectant agents 

they put a selective pressure on oral bacteria to maintain metal resistance (Bharti et al., 

2010; Peng et al., 2012).   
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 4.1.2 Antagonism and Antimicrobial Production in the Oral Cavity 

 

Although co-aggregation of cells can lead to interspecies cooperation in the oral cavity, 

antagonistic relationships have also been described as species compete for nutrients and 

substrates. Competition has been well studied between different Streptococcus spp. as 

many of these species have similar nutritional requirements and occupy the same oral 

environments. For instance, S. gordonii, S. sanguinis and S. oligofermentans produce H2O2 

through the expression of pyruvate, lactate and L-amino acid oxidases (Tong et al., 2007; 

Kreth et al., 2008; Tong et al., 2008). The production of H2O2 by these Streptococcus spp. has 

been shown to inhibit the growth of S. mutans (Krzeminski and Raczynska, 1993; Kreth et 

al., 2005; Kreth et al., 2008; Bao et al., 2015). Clinical studies have shown that there is a 

negative correlation between the isolation of H2O2 producing Streptococcus spp. and S. 

mutans, with the former being more abundant in caries-free individuals (Becker et al., 2002; 

Giacaman et al., 2015). Periodontal pathogens including P. gingivalis and Prevotella 

intermedia are also inhibited by the production of H2O2 by Streptococcus spp. (Herrero et 

al., 2016).  

S. mutans and Lactobacillus species are known acidogenic and aciduric bacteria and have 

been shown to inhibit other oral bacteria including P. intermedia, Aggregatibacter 

actinomycetemcomitans and various Streptococcus spp. through the conversion of pyruvate 

to lactic acid (Loesche, 1986; Terai et al., 2015; Kozlovsky et al., 2015).  

As LAB (lactic acid-producing bacteria) species, much focus has been put on oral 

Streptococcus species with regards to bacteriocin production. For example, Streptococcus 

salivarius produces the lantibiotics, SalA and SalB (Upton et al., 2001; Barbour et al., 2016). 
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Mutacin I and IV produced by S. mutans are class I and IIb bacteriocins respectively with 

activity against S. gordonii and S. sanguinis (Hale et al., 2005; Kreth et al., 2005; Hossain and 

Biswas, 2011).  Streptococcal enzymatic bacteriocins have also been isolated from the oral 

cavity such as the S. mutans cell wall hydrolysing zoocin A (Simmonds et al., 1995).  

Bacteriocin-like inhibitory substances (BLIS) with activity against Streptococcus spp. and 

periopathogens including P. gingivalis and A. actinomycetemcomitans have also been 

purified from oral Lactobacillus species (Pangsomboon et al., 2006; Wannun et al., 2016).  

LAB microorganisms are not the only bacteriocin producers in the oral cavity. In fact a 

recent analysis of the HMP dataset revealed the human oral cavity to have a high 

abundance and diversity of bacteriocin class I, II and III genes and estimates from shotgun 

metagenomic data suggest that 35 % of enzymatic bacteriocin genes in the oral cavity are of 

Actinomyces and Prevotella origin (Zheng et al., 2015).  

BLIS have been identified, and/or purified from species of Prevotella nigrescens, 

Porphorymonas gingivalis, Eikenella corrodens and F. nucleatum (Teanpaisan et al., 1998; 

Kaewsrichan et al., 2004; Apolônio et al., 2007; Ribeiro-Ribas et al., 2009).  Genetic 

characterisation of these BLIS is lacking and further work is required to determine if these 

antimicrobial peptides are true bacteriocins. More recently a novel antimicrobial peptide 

with activity against Prevotella, Veillonella and Fusobacterium spp. was identified from a 

human plaque and saliva metagenomic library. The antimicrobial peptide had greater than 

90 % identity to a hypothetical protein of Neisseria subflava (Arivaradarajan et al., 2015).  
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Therefore, studies of the antibiotic resistome using culture based and metagenomic 

methods have provided information on its composition and they continue to reveal novel 

resistance determinants. Furthermore, this environment may harbour resistance genes to 

metals and antimicrobials commonly used in dental therapies and may reveal more novel 

antimicrobials. As most of the species from oral environments including the saliva have yet-

to-be cultured, taking a functional metagenomic approach we can identify genes from the 

uncultivable oral microbiome. 

 

4.1.3 Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes are Shed in Calf Faeces 

 

ARGs have been detected in faecal matter and in faecal isolates from calves and cattle 

(Durso et al., 2011; Thames et al., 2012). Additionally, age, health status and diet can affect 

the resistome of calf faeces. Studies have shown that antibiotic-resistant E. coli are shed in 

higher abundance from calves than from older cattle particularly from herds experiencing 

diarrhoea (Hoyle et al., 2004; Khachatryan et al., 2004; Khachatryan et al., 2006; de Verdier 

et al., 2012; Barlow et al., 2015). These antibiotic resistance genes may enter the 

environment and contaminate food products through the spreading of slurry and during 

slaughter (European Food Safety Authority and European Centre for Disease Prevention and 

Control, 2016; Graham et al., 2016).   

The clinical use of antibiotics and their presence in waste milk fed to calves has been shown 

to result in an increase in shedding of antibiotic-resistant E. coli, although these changes are 

typically transient (Kaneene et al., 2008; Thames et al., 2012; Aust et al., 2013). The use of 
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ceftiofur as a treatment (2.2 mg/Kg daily for five days) in calves and cattle can lead to a 

transient increase in the shedding of blaCMY-2 and blaCTX-M positive E. coli and blaCMY-2 positive 

E. faecium (Jiang et al., 2006; Boyer and Singer, 2012; Kanwar et al., 2014). It is worrying 

that following antibiotic use, selection for resistance to related and unrelated antibiotic 

classes has been demonstrated (Berge et al., 2006). For instance, Bosman et al. (2014) found 

that the administration of tetracyclines, as well as the dose administered (measured as the 

animal daily dose per production cycle) was associated with increased amoxicillin and 

tetracycline resistant E. coli being identified in veal calf faecal samples (Bosman et al., 2014). 

Furthermore, reports have shown that treatment of cattle with ceftiofur can result in an 

increased abundance of E. coli harbouring blaCMY-2 and blaCTX-M and tet(A) genes (Mann et 

al., 2011; Kanwar et al., 2013).  

Tetracycline resistance genes and resistant E. coli are frequently identified from calf and 

cattle faeces with efflux proteins encoded by tet(A) and tet(B) are most commonly 

associated with these (Kanwar et al., 2013; Kanwar et al., 2014; Shin et al., 2015). RPP and 

enzymatic mechanisms of tetracycline resistance have also been identified in calf faeces 

(Thames et al., 2012). Using PCR, Santamaría et al (2011) found that tet(Q) and tet(O) were 

the most prevalent tetracycline resistance genes in DNA isolated from the faeces of 

Colombian Andes grass fed cows (Santamaría et al., 2011).  

The mobile nature of tetracycline resistance in bovine faeces has been demonstrated 

phenotypically and genotypically. MDR faecal E. coli isolates with reduced susceptibility to 

tetracycline, sulphonamides and ampicillin/amoxicillin are commonly identified in bovine 

faeces suggesting a genetic association between these genes (Bosman et al., 2014; Duse et 

al., 2015). Tetracycline efflux genes have also been found on conjugative plasmids. tet(Y) 
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was identified from cow faeces using an exogenous plasmid isolation method and tet(A) and 

tet(B) have been identified in faecal E. coli isolates (Shin et al., 2015; Kyselkova et al., 2016). 

In a study conducted by Shin et al. (2015), of 146 tetracycline resistant E. coli isolates 

studied, 121 were able to transfer their resistance gene to another E. coli strain, most 

frequently via incFIB plasmids (Shin et al., 2015). 

Other than blaCYM-2, the study of β-lactam resistance in bovine faeces has mainly focused on 

the blaCTX-M genes and blaCTX-M positive E. coli due to their association with food products 

and infection (Ahren et al., 2010; Overdevest et al., 2011; Calbo et al., 2011; Egervarn et al., 

2014). CTX-M positive E. coli are prevalent among dairy and beef cattle farms in many 

countries and blaCTX-M is the predominant genes in food animals in Europe (Horton et al., 

2011; Liebana et al., 2013; Diab et al., 2016). For instance, Schmid et al. (2015) found that of 

the 45 farms in their study CTX-M positive E. coli could be found in 39. This study also 

showed that shedding of CTX-M positive E. coli was more prevalent in calves which was in 

agreement with earlier studies (Schmid et al., 2013; Hordijk et al., 2013).  

The association of CTX-M genes with various conjugative plasmids including IncN, IncI1 and 

IncF types likely contributes to their prevalence (Zheng et al., 2012; Cottell et al., 2013). 

blaCTX-M has also been isolated from bacteriophages present in cattle faeces, as has the 

mecA gene, suggesting that these vectors play a role in HGT of β-lactam resistance genes 

(Colomer-Lluch et al., 2011). Other β-lactamase genes including blaTEM, blaSHV and blaOXA 

have been observed in bovine faeces and are found in Gram-negative pathogens including E. 

coli and Salmonella species that may be present in faeces (Ahmed et al., 2009; Ibrahim et 

al., 2016).  
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Although studies of antibiotic resistance in bovine faeces typically focus on antibiotic 

resistance of E. coli it is likely that this approach does not tell the full story. Kanwar et al. 

(2013) showed that a single dose of ceftiofur administered to cattle resulted in an increase 

in ceftiofur-resistant E. coli shed in the faeces. This study also revealed that ceftiofur 

resistance gene, blaCMY-2, is co-selected with tetracycline resistance in E. coli, via tetA 

expression, as tetracycline resistant E. coli strains were also more abundant following 

ceftiofur administration (Kanwar et al., 2013). In fact, subsequent treatment with 

chlortetracycline was able to maintain this increased abundance of ceftiofur-resistant E. coli. 

However, in a later study using quantitative PCR to monitor tetA and tetB genes in the 

faeces of calves receiving ceftiofur a reduction in their abundance was observed, likely as a 

result of non-E. coli bacteria harbouring tetA and tetB being ceftiofur susceptible (Kanwar et 

al., 2014). This example shows the importance of looking at the total faecal microbiome 

when conducting these resistance studies.  

As well as identifying novel resistance genes and generating information on resistance from 

the uncultivable microbiome, metagenomics can give an insight into how antimicrobial use 

can select for antibiotic resistance genes. A recent metagenomic survey conducted by 

Chambers et al. (2015) showed that following a single ceftiofur injection, dairy cow faeces 

contained a higher number of gene sequences related to HGT including phages, plasmids 

and transposable elements (Chambers et al., 2015). This increase is a result of a selection for 

bacteria harbouring antibiotic resistance genes, including those on mobile elements, and it 

indicates the importance of such mobile elements in the transmission of antibiotic 

resistance genes in calf faeces. 
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4.2 Chapter Aims 

 

The aim of the work presented in this chapter was to screen the human saliva metagenomic 

library for antibiotic and antiseptic resistance, and antimicrobial production, as well as to 

screen the calf faecal metagenomic library for antibiotic resistance.  
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4.3 Methods and Materials 

4.3.1 Minimum Inhibitory Concentration Determination 

4.3.1.1 Antibiotic MICs for E. coli EPI300 T1R::pCC1BAC 

 

The susceptibility of E. coli EPI300 T1R::pCC1BAC to tetracycline and ampicillin was 

determined by broth microdilution as described in 2.5.1. The concentrations of tetracycline 

and ampicillin tested were 0.25 – 32 μg/ml and 2 – 64 μg/ml respectively.  

 

4.3.1.2 Susceptibility of E. coli EPI300 T1R::pCC1BAC to Antimicrobials 

 

The susceptibility of E. coli EPI300 T1R::pCC1BAC to copper, silver, CTAB, CPC and 

chlorhexidine was determined using the broth microdilution as described in 2.5.1. The 

concentration ranges tested for copper, silver, CTAB, CPC and chlorhexidine were 0.28 – 

2.25 mg/ml, 3.6 – 36 μg/ml, 0.365 – 14.58 μg/ml, 0.45 – 9 μg/ml and 0.1125 – 9 μg/ml 

respectively. Copper sulfate and silver nitrate salts were used to make stock solutions, 

however the concentrations listed above refer to the metal ion concentration and not the 

concentration of the metal salt. 
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4.3.2 Functional Screening of the Metagenomic Libraries 

4.3.2.1 Human Saliva Metagenomic Library Antibiotic Resistance Screen 

 

To screen the human saliva metagenomic library for tetracycline- and ampicillin-resistant 

clones, the library was cultured on LB agar supplemented with 12.5 µg/ml chloramphenicol 

and either 5 μg/ml tetracycline or 50 μg/ml ampicillin. These antibiotic concentrations 

represented 2.5 times the MIC of tetracycline (2 µg/ml) and ampicillin (20 µg/ml) for E. coli 

EPI300 T1R::pCC1BAC. Clones from this library were gridded, 96 at a time, from the wells of a 

96-well plate onto the surface of the agar (in 140 mm diameter petri dishes) using a 96-pin 

replica plater, which was sterilised with 70% EtOH between 96-well plates. The clones were 

incubated for 16 h at 37 °C. Plates were then checked for any clones that may have grown. If 

any clones exhibited a resistance phenotype they were subcultured in LB broth and agar 

containing chloramphenicol with and without the selecting antibiotic to determine if the 

clone was indeed showing a resistance phenotype.  The plates containing 96 gridded clones 

were incubated for a further 24 h at 37 °C and analysed the following day in case the clones 

harboured large inserts or produced components that slowed the growth of the clone. 

 

4.3.2.2 Human Saliva Metagenomic Library Antimicrobial Resistance Screen 

 

A small fraction of the human saliva metagenomic library (1,248 clones) was screened for 

clones that were resistant to a number of antimicrobials. Clones were picked from 96-well 

plates using a 96-pin hedgehog, inoculated in 100 μl LB broth supplemented with 
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chloramphenicol and incubated for 16 h at 37 °C with shaking at 200 RPM. Ten μl of each 16 

h culture was then used to inoculate 90 μl of LB broth supplemented with chloramphenicol 

(12.5 µg/ml) and copper, silver, CTAB, CPC or chlorhexidine at final concentrations of 1.72 

mg/ml, 18 μg/ml, 3.7 μg/ml, 3.6 μg/ml and 1.8 μg/ml, respectively. The plates were then 

incubated for 16 h at 37°C with shaking at 200 RPM. Growth was determined by 

spectrophotometry by measuring the OD600. 

 

4.3.2.3 Human Saliva Metagenomic Library Antimicrobial Production Screen 

 

The human saliva metagenomic library was screened for the presence of clones that could 

inhibit the growth of Bacillus subtilis CU2189 using a method described previously by 

Arivaradarajan et al. (Arivaradarajan et al., 2015). The human saliva library was gridded onto 

LB agar containing chloramphenicol (12.5 µg/ml) and incubated overnight at 37 °C for 16 h. 

The clones were then incubated for a further 48 h at RT. Ten µl of a B. subtilis CU2189 16 h 

culture was sub-cultured in 10 ml of fresh BHI and incubated at 37 °C with shaking at 200 

RPM until an OD600 of 0.3 was reached. This subculture was diluted 1 in 10 using 0.75% BHI 

agar and poured over the gridded library. The plates were incubated for 16 h at 37 °C 

followed by 48 h at RT in the dark. The plates were examined daily for zones of inhibition in 

the B. subtilis overlay. 

The library was also screened for clones producing antimicrobials against a sensitive strain 

of Micrococcus luteus. An overnight culture of M. luteus was diluted to an OD600 of 0.15 or 

0.24 in sterile PBS (0.1M, pH 7.4) and spread on to the surface of BHI agar using a sterile 
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swab. Clones from the human saliva metagenomic library were then gridded onto the agar 

and the plates were incubated for 16 h at 37 °C followed by two days at RT. The plates were 

checked daily for any zones of inhibition in the M. luteus lawn. 

 

4.3.2.4 Screening of the Calf Faecal Library 

 

After electroporation of the calf faecal metagenomic DNA pCC1BAC ligation reaction into E. 

coli EPI300 T1R cells were recovered in 2.95 ml of SOC (NEB) by incubating at 37 °C with 

shaking at 200 RPM for 3 h. The recovered cells were then plated as follows; 10 X 100 μl on 

LB agar supplemented with chloramphenicol, IPTG (0.1 mM) and X-gal (40 µg/ml); 10 X 100 

μl on LB agar supplemented with chloramphenicol and tetracycline (5 μg/ml); and 10 X 100 

μl on LB agar supplemented with chloramphenicol and ampicillin (20 μg/ml). Plates were 

incubated for 16 h at 37 °C. Following incubation any clones found to be growing on 

tetracycline or ampicillin containing plates were noted and the plates were incubated for a 

further 24 h at 37 °C before checking them again. 

 

4.3.3 PCR Screen to Identify β-lactam Resistance Genes from the Human Saliva and Calf 

Faecal Metagenomes 

 

The human saliva and calf faecal metagenomic DNA were used as templates for PCR 

reactions to identify if ampicillin resistance genes were present in these preparations. PCRs 

to amplify blaTEM (using RH605/606 primers), blaROB, blaOXA, blaSHV and blaCTX-M were 
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performed using MyTaq ™Red Mix as described in 2.3.1. Primer information is included in 

Table 4.2. 

 

Table 4.2 Primers for Clone Sequencing and Amplification of β-lactamase Genes. 

Name Sequence (5’-3’) Purpose Source/Reference 

pCC1-F GGATGTGCTGCAAGGCGATTAAGTTGG End sequencing of pCC1BAC Epicentre® 

pCC1-R CTCGTATGTTGTGTGGAATTGTGAGC End Sequencing of pCC1BAC Epicentre® 

RH605 TTTCGTGTCGCCCTTATTCC 692 bp amplicon from blaTEM  (Bailey et al., 

2010) 

RH606 CCGGCTCCAGATTTATCAGC 692 bp amplicon from blaTEM  (Bailey et al., 

2010) 

Bla_ROBF ATCAGCCACACAAGCCACCT 692 bp amplicon from blaROB (Tenover et al., 

1994) 

Bla_ROBR GTTTGCGATTTGGTATGCGA 692 bp amplicon from blaROB (Tenover et al., 

1994) 

Bla_OXAF TTCAAGCCAAAGGCACGATAG 702 bp amplicon from blaOXA  (Briñas et al., 

2002) 

Bla_OXAR TCCGAGTTGACTGCCGGGTTG 702 bp amplicon from blaOXA (Briñas et al., 

2002) 

Bla_SHVF CACTCAAGGATGTATTGTG 885 bp amplicon from blaSHV (Briñas et al., 

2002) 

Bla_SHVR TTAGCGTTGCCAGTGCTCG 885 bp amplicon from blaSHV (Briñas et al., 

2002) 

Core CTX-

MF 

AACCGTCACGCTGTTGTTAG 766 bp amplicon from blaCTX-M (Chen et al., 2004) 

Core CTX-

MF 

TTGAGGCGTGGTGAAGTAAG 766 bp amplicon from blaCTX-M (Chen et al., 2004) 
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4.4 Results 

4.4.1 Minimum Inhibitory Concentrations for Functional Screens 

 

In order to design appropriate functional screens to identify antibiotic-resistant clones and 

clones with reduced susceptibility to antimicrobials from the metagenomic libraries, MIC 

and susceptibility assays were conducted to determine the sensitivity of E. coli EPI300 T1R 

and E. coli EPI300 T1R::pCC1BAC to a number of antibiotics and antimicrobials. The MICs of 

the antibiotics, metals and antimicrobials tested against E. coli EPI300 T1R::pCC1BAC are 

listed in Table 4.3. 

 

Table 4.3 MICs of Antibiotic and Antimicrobials for E. coli EPI300 T1R::pCC1BAC. 

Antibiotic/Antiseptic/ 
Metal 

Concentration 
(µg/ml) 

Tetracycline 2 µg/ml 

Ampicillin 20 µg/ml 

Silver* 18 µg/ml 

Copper* 1.7 µg/ml 

CTAB 3.7 µg/ml 

CPC 3.6 µg/ml 

Chlorhexidine 1.8 µg/ml 

* Values refer to the metal concentration only and not to the concentration of the salt of the metal. 

Having shown that E. coli EPI300 T1R and E. coli EPI300 T1R::pCC1BAC were susceptible to 

the above antimicrobials, functional screens could be devised and carried out. 
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4.4.2 Results of Functional Screening 

4.4.2.1 Screening of Human Saliva Metagenomic Library 

 

Two tetracycline resistant clones were identified when the 27,000 clones from the human 

saliva metagenomic library were screened. No ampicillin resistant clones were identified 

from the screening of the library. 1,248 clones from the library were also screened for 

susceptibility to CTAB, CPC, chlorhexidine, copper and silver, and a single clone with 

decreased susceptibility to CTAB in comparison to EPI300 T1R::pCC1BAC was identified. No 

clones were isolated that could inhibit growth of B. subtilis CU2189 or M. luteus. The clones 

of interest identified from the screening of the human saliva metagenomic library are 

included in Table 4.4. 

 

Table 4.4 Clones Identified from the Human Saliva Metagenomic Library 

Clone Phenotype Discussed in Chapter 

PS9 Tetracycline Resistance 5 

TT31 Tetracycline Resistance 6 

A10(F2) Reduced CTAB Susceptibility 7 
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4.4.2.2 Screening of Calf Faecal Metagenomic Library 

 

None of the 2,840 clones from the calf faecal metagenomic library screened for resistance 

to tetracycline and ampicillin were found to be resistant. 

 

4.4.3 PCR Screen to Identify β-lactamase genes 

 

As no ampicillin resistant clones were identified from the human saliva or calf faeces 

metagenomic libraries we next used PCR to determine if β-lactam resistance genes were 

present in our metagenomic DNA preparations. PCR products were obtained from both the 

human saliva and calf faecal metagenomic DNA samples using the RH605/606 primers. 

These primers amplified a 692 bp region of blaTEM as expected. Figure 4.1(a). The core CTX-

M primer pair amplifies a 766 bp region of blaCTX-M. However, using these primers resulted in 

the amplification of 500 bp products from both the human saliva and calf faecal 

metagenomic samples, Figure 4.1(b) 
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Figure 4.1 

                (a)                              (b)   

                   M       s    f            M          s    f 

                                             

               (c)                 

                             

               

 

Figure 4.1 blaTEM and blaCTX-M Amplicons in Human Saliva and Calf Faecal Metagenomic DNA Extractions. The 

lanes marked M contain Hyper Ladder I; the lanes marked ‘s’ indicate that human saliva metagenomic DNA 

was used as a template and lanes marked ‘f’ indicate calf faecal metagenomic DNA was used as a template. (a) 

Amplicons of the expected size were detected from both the saliva and faecal preps using the blaTEM 

amplifying RH605/606 primers. (b) A smaller than expected PCR product was obtained from both samples 

using the blaCTX-M primer pairs. (c) An image depicting the Bioline Hyper Ladder I with size labels. 
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Sequencing and subsequent BLASTN analysis of the 596 bp and 602 bp of the RH605/606 

amplicons from saliva and faeces, respectively, revealed them to be identical to blaTEM genes 

from a number of bacterial species, Table 4.5.  

Sequencing of the human saliva blaCTX-M PCR product resulted in two non-overlapping 

sequences (166 bp and 177 bp) that had 81-82 % identity to human DNA. Sequencing of the 

calf faecal blaCTX-M amplicon also resulted in two non-overlapping sequences (167 bp and 

174 bp) that had no sequence similarity to anything in the NCBI data base according to 

BLASTN. BLASTX, however, indicated that the putative product of the 174 bp sequence had 

58 – 78 % identity to CTX-M proteins, Table 4.5. A number of conditions were used in an 

attempt to amplify PCR products from the human saliva and calf faecal metagenomic DNA 

preparations using the blaROB, blaOXA and blaSHV primer pairs; however, the various 

conditions used resulted in no products, multiple products or products of the incorrect size. 
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 Table 4.5 BLASTN and BLASTX Hits for β-lactamase PCR Amplicons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*E. coli, Enterobacter spp. and Klebsiella sppp ** E. coli and Klebsiella spp. and KPC from Serratia marcescens 
***S. marcescens, E. coli, Burkholderia, Pseudomonas, Klebsiella and Citrobacter spp.  

 

 

 

 

 

 

 

Sample Primer Length of 
Amplicon 
Sequenced 

BLASTN BLASTX 

Saliva RH605/606 596 bp 
sequence 

Multiple* blaTEM hits 
(100 % cover/ID) 

Multiple** β-lactamases 
TEM-1 and KPC Hits (99 
% cover/ 100 % ID) 

 Bla_CTX-MF 
 

166 bp 
sequence 

Homo sapiens (82 % 
cover / 95 % ID) 

No Hits 

 Bla_CTX-MR  
 

177 bp 
sequence 

Homo sapiens (81 % 
cover / 99 % ID) 

No Hits 

Faeces RH605/606 
 

602 bp 
sequence 

E. coli blaTEM and 
multiple plasmids (100 % 
cover/ ID) 

Multiple*** β-lactamase 
TEM-1 Hits (99 % cover / 
100 % ID) 

 Bla_CTX-MF 
 

167 bp 
sequence 

No Hit No Hit 

 Bla_CTX-MR 
 

174 bp 
sequence 

No Hit CTX-M E. coli (55 % 
cover/ 78 % ID) and CTX-
M uncultured bacterium 
(77 % cover/ 58 % ID) 
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4.5 Discussion 

 

Using the EUCAST clinical breakpoints, E. coli EPI300 T1R::pCC1BAC was sensitive to both 

tetracycline and ampicillin as their MICs were found to be 2 μg/ml and 20 μg/ml respectively 

(EUCAST, 2015). Since the strain was sensitive to both antibiotics it could be used as a host 

strain to identify cloned, functional tetracycline and ampicillin resistance genes in a 

functional metagenomic screen. In order to identify genes from the human saliva and calf 

faecal metagenomes conferring high-level resistance to tetracycline and ampicillin, 

screening concentrations of 5 µg/ml and 50 µg/ml, respectively were used. These 

concentrations have been used in previous functional screening projects to identify 

tetracycline and ampicillin resistance clones from metagenomic libraries (Diaz-Torres et al., 

2003; Fouhy et al., 2014). Screening of the human saliva metagenomic library resulted in the 

identification of two tetracycline-resistant clones. No ampicillin resistant clones were 

identified. Screening of a subset of the library (1,248 clones) identified a clone with reduced 

susceptibility to CTAB and no clones resistant to CPC, chlorhexidine, silver or copper. No 

clones producing antimicrobials against B. subtilis or M. luteus were identified.  

As described in chapter 3, the high number of clones containing either human DNA or no 

insert may partly explain why only a small number of clones were identified from the 

screening of the human saliva metagenomic library. It is possible that more genes of interest 

were cloned and thus present in the library but that they were not expressed during 

screening, indeed successful heterologous expression is one of the biggest hurdles of a 

functional metagenomic screen. Expression of genes within the screened clones was 

controlled by their native promoters, as IPTG induction was not employed in any of the 
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screening protocols. Thus, culturing on the nutrient-rich conditions of LB or BHI, under pH 

neutral conditions at 37 °C, may not provide the optimum conditions for the expression of 

all antimicrobial resistance and production genes. Conditions of stress including nutrient 

availability and pH have been shown to alter resistance phenotypes. For example, Kubicek-

Sutherland et al. (2015) showed that MICs for colisitin and ciprofloxacin where increased by 

more than 256- and 8-fold respectively in S. enterica serovar Typhimurium when it was 

cultured in low phosphate media at pH 5.5 compared with when it was grown in non-

limiting phosphate conditions at pH 7.2 (Kubicek-Sutherland et al., 2015).  

Furthermore, differences in promoter site recognition and codon usage, the presence of 

transcription terminators as well as differing translational and post translational processing 

and export pathways between the host and source organism may effect gene expression 

and thus the success of the screen (Gabor et al., 2004; Kudla et al., 2009; Terrón-González et 

al., 2013). Biver et al. (2013) screened a forest soil metagenomic library, created using a 

shuttle vector capable of replicating in an E. coli and B. subtilis host. A B. subtilis clone with 

antimicrobial activity was identified, however when its plasmid was cloned into E. coli no 

activity was observed (Biver et al., 2013). Other hosts including Streptomyces lividans, 

Burkholderia graminis and Pseduomonas putida have also been used to create metagenomic 

libraries (Martinez et al., 2004; Craig et al., 2010; McMahon et al., 2012). The bacteriocin 

exporter gene is not always located adjacent to the structural gene as is the case with 

mutacins where a single transporter, NlmTE, is responsible for exporting all mutacins 

produced by S. mutans (Hale et al., 2005). Thus, it is possible no bacteriocin producers were 

found from this library because a structural bacteriocin gene was cloned without its 

transporter. In fact, bacteriocin genes such as those involved in salivaricin A production have 

been identified in isolates of Streptococcus pyogenes that do not or cannot express them 
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(Wescombe et al., 2006). The expression of some antimicrobials from oral bacteria species is 

controlled by different environmental conditions. For instance, the production of 

bacteriocins such as the mutacins is controlled by aeration and cell density (Kreth et al., 

2007). The production of hydrogen peroxide by mitis group Streptococcus spp. is also 

increased by aeration (Herrero et al., 2016).  

Additionally, Kreth et al. (2005) demonstrated that the sequence of inoculation can alter the 

outcome of an antimicrobial screen as S. sanguinis was shown to inhibit S. mutans only 

when it was inoculated first (Kreth et al., 2005). In our anti-B. subtilis screen, clones were 

cultured on agar for 64 h before overlaying with B. subtilis while our anti-M. luteus screen 

involved inoculating the clones on a plate swabbed with this indicator strain; culturing them 

at the same time. These differences in methods may have had an effect on the outcome of 

our functional screens. The choice of indicator strain and host can also impact on the results 

of a metagenomic functional screen. For instance, an antimicrobial may be produced and 

secreted by a clone but the indicator strain is not sensitive and so the clone is not identified. 

On the other hand, if after cloning the host strain is sensitive to an antimicrobial it now 

produces it won’t survive and so won’t be screened. Thus, a single functional screen will not 

accommodate every condition necessary for the identification of every antimicrobial 

producing clone in a metagenomic library. As we have stored the human saliva 

metagenomic library, future screening using different media, growth conditions and 

indicator organisms can be conducted. In fact, following my departure from the Eastman 

Dental Institute, further functional screening of the human saliva metagenomic library 

identified four clones with alpha haemolytic activity. This demonstrates that clones capable 

of causing cell lysis are present in the library. These clones were shown to contain genes 

encoding pyruvate oxidases that produce hydrogen peroxide. As discussed above, hydrogen 
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peroxide can also inhibit bacterial cells, although our screen failed to identify these 

hydrogen peroxide-producing clones. It would be of interest to determine if our indicator 

strains have reduced susceptibility to hydrogen peroxide, by producing a catalase for 

example, or if using alternative screening protocols, such as those described by Kreth et al. 

(2005), with these indicator organisms would cause them to be inhibited by these alpha 

haemolytic clones (Baureder et al., 2012; Kreth et al., 2005). 

The higher-than-MIC concentrations of tetracycline and ampicillin used in these screens may 

have resulted in genes conferring lower level resistance to E. coli EPI300 T1R not being 

identified. This is unlikely to have been an issue during the antiseptic and metal functional 

screens as the lowest concentrations required for inhibition of E. coli EPI300 T1R were used. 

Culturing the library clones on minimum inhibitory concentrations of ampicillin or 

tetracycline may identify clones with lower levels of resistance that were missed in the 

initial screen. 

No clones of interest were identified from the calf faecal metagenomic library. As 

mentioned with regard to the human saliva metagenomic library, heterologous expression 

as well as conditions of the screen may have prevented the identification of genes of 

interest that were present in the library. However, the library was also limited by its size and 

diversity. In terms of the number of clones screened, the calf faecal metagenomic library 

was almost 10-fold smaller than the human saliva library (2, 840 vs 27, 000). Additionally, 

the library lacked diversity, as the source ‘metagenomic DNA’ was comprised mainly of E. 

coli DNA according to 16S analysis discussed in chapter 3, which likely contributed to the 

lack of clones of interest identified from this library. Although E. coli are often used to 

determine resistance levels in calf faeces, resistome studies have shown that they make up 
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only a small proportion of the faecal microbiota and not all isolates exhibit resistance to 

tetracycline and ampicillin (Uyeno et al., 2010; Meale et al., 2016).  

No ampicillin-resistant clones were identified from the screening of either library so the 

metagenomic DNA from both environments was screened using PCR to identify β-lactam 

resistance genes. blaTEM, blaCTX-M, blaSHV, blaROB and blaOXA primers were used because they 

have been associated with oral microbiota and they represent some of the most common 

ESBLs associated with Enterobacteriaceae including E. coli which made up the vast majority 

of the calf faecal ‘metagenomic’ DNA extractions (Voha et al., 2006; Ramos et al., 2009; 

Ahmed et al., 2009; Ibrahim et al., 2016). blaTEM genes were identified from both the human 

saliva and calf faecal metagenomic preps using both primer sets which is in accordance with 

previous studies. blaCTX-M PCR products were identified from both samples, although they 

were smaller than expected. The product identified from human saliva had low sequence 

identity to human DNA indicating that non-specific binding occurred with contaminating 

human DNA. The blaCTX-M PCR product was also smaller than expected and had no 

sequencing similarity to anything in the NCBI database at the nucleotide level; although the 

reverse PCR product had similarity to CTX-M proteins from E. coli and uncultured bacteria 

according to BLASTX. This primer pair has previously been used to identify blaCTX-M bacterial 

isolates and so it may that they are not suitable for identifying blaCTX-M genes from more 

complexed DNA extractions. Although multiple reaction conditions were used blaSHV, blaROB 

and blaOXA gave either no products or non-specific products. The inconclusive PCR results 

does not mean these genes were not present as these genes have been identified from 

commensal bacteria and DNA preparations from oral and faecal/GI environments. 
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Although screening of the calf faecal metagenomic library did not result in the identification 

of clones of interest, the calf faecal DNA preparation may harbour novel β-lactamase genes 

that we failed to clone or express in our functional screens. Screening of the human saliva 

metagenomic library resulted in the identification of novel tetracycline resistance genes. 

Additionally, the screening of a small fraction of this library for metal and antimicrobial 

resistance identified a CTAB resistant clone.  

Screening the remainder of the library as well as screening for different phenotypes may yet 

identify more novel genes from both the human saliva metagenome. Additionally, 

transformation of the remaining ligation reaction and conducting further ligation reactions 

would allow us to expand the human saliva metagenomic library and identify more clones of 

interest. However, as we identified three clones of interest from our functional screens we 

decided to characterise these clones further rather than continuing to screen the library. 
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Chapter 5 

A Novel Tetracycline and Tigecycline ABC Transporter is Encoded by PS9 

 

PS9 was identified when clones from the human saliva metagenomic library were grown on 

5 µg/ml tetracycline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 224 

5.1 Introduction 

5.1.1 ATP Binding Cassette Transporters   

 

ATP Binding Cassette (ABC) transporters are a large superfamily of conserved transporters 

that play a key role in cell metabolism in all kingdoms of life. As primary transporters, they 

utilise the hydrolysis of ATP to power the movement of a wide range of molecules including 

proteins, drugs, metals and ions across cell membranes (Davidson et al., 2008; Wilkens, 

2015). The importance of these proteins is illustrated by the fact that mutations in them can 

lead to disease in humans; adrenoleukodystrophy is caused by mutations in the ABCD1 

gene, and that cell death in bacteria can result from their deletion; the loss of MsbA results 

in a lethal build-up of lipid A in E. coli (Kemp et al., 2001; Wiesinger et al., 2015). ABC 

transporters are so important to E. coli that 5 % of its genome encodes for ABC transporter 

related components (Karow and Georgopoulos, 1993; Linton and Higgins, 1998). Examples 

of the various functions attributed to different ABC transporters is provided in Table 5.1. 
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Table 5.1 ABC Transporter Functions. 

Function ABC Transporter Reference 

Lipid Export (Flippase) MsbA (E. coli; Lipid A) 

ABCA1 (Human; cholesterol) 

(Oram, 2003; Doshi and van 

Veen, 2013) 

Ion Export CFTR (Human; Chloride ions) (Hwang and Kirk, 2013) 

Vitamin Import BtuCD (E. coli; Vitamin B12) (Borths et al., 2002) 

Nucleoside/Nucleotide Export MRP4 and MRP5 (Human) (Adema et al., 2014) 

Sugar Transport MalEFGK2 (E. coli; Maltose Import) 

ChvE-GguAB (A. tumefaciens; 

Glucose and Galactose import) 

(Kemner et al., 1997; 

Ehrmann et al., 1998) 

Amino acid Import HisQMP2 (E. coli; Histidine and 

Argenine Import) 

BusA (L. lactis; Proline and Glycine 

Import)  

(Obis et al., 1999; Caldara et 

al., 2007) 

Metal Export OmrA (Oenococcus oeni; Cadmium 

Export) 

ABCB8(Mouse Mitochondria; Iron 

Export) 

(Achard-Joris et al., 2005; 

Ichikawa et al., 2012) 

Iron (Siderophore and Haem) 

Uptake 

SirABC (S. aureus; staphyloferrin B 

import) 

IsdEF (S. aureus; Haem Transfer) 

(Cheung et al., 2009; Grigg et 

al., 2010) 

Bacteriocin Export SmbFT (Streptococcus spp.; Smb 

lantibiotic export) 

AnaRB (L. monocytogenes; nisin 

export) 

(Collins et al., 2010; Biswas 

and Biswas, 2013) 

Drug Export P-glycoprotein (Human) (Loo et al., 2003) 

 

5.1.2 Structure of ABC Transporters 

 

ABC transporters have two nucleotide binding domains (NBDs) and two transmembrane 

domain (TMDs) with each TMD being linked to one of the NBDs by a coupling helix, Figure 

5.1 (Rees et al., 2009; Wilkens 2015). The side of the membrane where the NBD resides is 

called the cis-side and the side of membrane where the TMD emerges is termed the trans-

side. ABC exporters move ligands from the cis-side of the membrane to the trans-side (Ter 

Beek et al., 2014). 
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Figure 5.1 

 

Figure 5.1 Diagram of an ABC Transporter. An illustration of the structure of an ATP Binding Cassette (ABC) 

transporter spanning the cytoplasmic membrane with the Trans- and Cis-sides of the cytoplasmic membrane 

highlighted. The transmembrane domains (TMDs) are highlighted in yellow and green with their coupling 

helices interacting with the nucleotide binding domains (NBDs) of the transporter, highlighted in pink and 

purple. Reproduced from Locher et al. (Locher, 2016). 

 

ABC transporters can be composed of a single peptide, two half transporters (identical or 

non-identical) or four peptides. Half transporter peptides may contain two TMDs, two NBDs 

or a single TMD and NBD. Homodimeric transporters are formed when the two identical half 

transporters interact. Heterodimeric transporters are composed of two non-identical half 

transporters (Linton and Higgins, 1998). 

 

 

Trans-side 

 

 

 

 

Cis-Side 
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5.1.2.1 Nucleotide Binding Domains 

 

Among ABC transporters the NBDs are highly conserved and their amino acid sequences can 

be used as identifying features (Linton, 2007; Davidson et al., 2008; Ter Beek et al., 2014). 

The NBD contains two domains; the RecA and helical domains, and seven conserved motifs, 

Figure 5.2. 

 

Figure 5.2 

 

Figure 5.2 The Motifs of the ABC Transporter NBD. An illustration of the seven motifs and their relative 

positions in the NBD of ABC transporters. The Walker A and Walker B motifs and the H-switch (H-loop) that 

make up the RecA fold are highlighted in purple, orange and green respectively. The ABC motif present in the 

helical domain of ABC transporter NBDs is highlighted in blue. This figure was reproduced from Ter Beek et al. 

(Ter Beek et al., 2014). 

 

RecA folds are ATP binding domains found in a number of proteins that utilise the hydrolysis 

of ATP to function, including ABC transporters (Smith et al., 2002). The RecA domain 

contains the Walker A and B motifs and the H-loop, Figure 5.3.  

Walker A motifs are ATP binding motifs and have the following sequence: GXXGXGKT/S 

(where X is any residue) (Ramakrishnan et al., 2002). X-ray crystallography studies have 
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shown that the backbone amino groups of the conserved lysine (K) residue positions ATP via 

hydrogen bonds with the oxygen atoms of the β and γ phosphates of ATP (Verdon et al., 

2003; Hohl et al., 2012), Figure 5.3. 

The Walker B motif has the amino acid sequence φφφφDE, where φ is a hydrophobic 

residue. It is involved in the coordination of a divalent magnesium cation via a conserved 

aspartate residue (Schneider and Hunke, 1998; Ter Beek et al., 2014). Magnesium 

coordinates the phosphate groups of ATP within the catalytic site (Frick et al., 2007). A 

conserved acidic residue, which is usually a glutamate, acts as a general base to polarise the 

water molecule that will take part in the ATP hydrolysis. Indeed, the crystal structure of the 

E. coli MalGFK transporter bound to 5’-(β, γ-imido) triphosphate (AMP-PNP), an ATP 

analogue, shows the Walker B glutamate forming a hydrogen bond with the catalytic water 

molecule (Sauna et al., 2002; Oldham and Chen, 2011), Figure 5.3.  

The H-loop is a conserved histidine residue that interacts with the acidic residue of the 

Walker B motif, the polarised water molecule, the magnesium cation and the γ-phosphate, 

contributing to their positioning within the catalytic site of the NBD (Zaitseva et al., 2005).  

Outside the RecA fold lies the A-, D- and Q-loops. The A-loop is an aromatic residue, often a 

tyrosine. The aromatic rings of this residue interact with the adenine ring of ATP via pi 

stacking and aid in the placement of it in the NBD (Kim et al., 2006), Figure 5.3.  
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Figure 5.3 

 

Figure 5.3 Structure of the MalK NBD Dimer of the MalEFGK2 ABC Transporter. The RecA domains are 

highlighted in light blue and the Signature motifs in green. The bound 5’-(β, γ-imido) triphosphate (AMP-PNP) 

molecules are indicated as sticks. The interactions of the A-loop (red), Walker A motif (purple), Walker B motif 

(orange), D-loop (Blue), H-loop (green), the ABC motif (cyan) and the Q-loop (yellow) of each NBD with AMP-

PNP are indicated. This figure was reproduced from Ter Beek et al. (Ter Beek et al., 2014). 

 

The D-loop, typically has a conserved SALD amino acid sequence, and when the NBDs are in 

a dimer formation run alongside each other contributing to the formation of the catalytic 

sites (Grossmann et al., 2014). 

The Q-loop is composed of 8 residues: an N-terminal glutamine residue acts as link between 

the RecA and helical domains of the NBD. Upon binding of Mg-ATP conformational changes 

within the NBD allow the Q-loop to contribute to the formation of the catalytic site. Crystal 
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structures of Sav1886 shows the Q-loop to interact with regions of the TMD indicating the 

motif’s role in transmitting conformational changes from the NBD to the TMD  

(Jones and George, 2002; Dawson and Locher, 2006; Ter Beek et al., 2014).  

The second domain, the helical domain, contains the signature motif (or C-loop) that is 

unique to ABC transporters. The signature motif has a sequence of LSGGQ and functions to 

direct the positively charged N-terminal helix of the domain toward the γ-phosphate of ATP, 

as has been observed from the crystal structures of a number of ABC transporters (Chen et 

al., 2003; Dawson and Locher, 2006). 

Crystal structures have shown that NBD dimers form in an asymmetrical head-to-tail 

manner, in which the signature motif of one monomer is opposed to the Walker A and B 

motifs and the H-loop of the other. These interactions form two composite ATP-binding 

sites, with two ATP molecules ‘sandwiched’ at the interface, Figure 5.4 (Jones and George, 

1999; Locher et al., 2002; Dawson and Locher, 2006). 
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Figure 5.4 

 

Figure 5.4 The ATP Binding Motif of TAP. An illustration of the two ATP binding sites of the human TAP ABC 

transporter with the RecA domain of one NBD subunit opposed to the signature motif (C-loop) of the other 

(Grossmann et al., 2014). 

 

5.1.2.2 Transmembrane Domains 

 

Unlike the NBDs of ABC transporters, there is little amino acid homology between the TMDs 

of ABC transporters, although they do exhibit tertiary structure homology. This is likely a 

consequence of the wide range of substrates ABC transporters can recognise and that some 

transporters act as importers and others as exporters (Rees et al., 2009). The TMD is 

composed of a number of hydrophobic α-helices that span the lipid bilayer. The α-helices 

from both TMD subunits align in such a way that they form a channel across the membrane 

that is open to either the cis or trans face of the cytoplasmic membrane to facilitate 

substrate transport, Figure 5.5(a-b) (Davidson et al., 2008; Ter Beek et al., 2014). The 

number of α-helices in ABC exporters is conserved at 12 with each subunit contributing 6 as 
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has been observed from the crystal structures of numerous transporters including the 

homodimeric ABC transporter Sav1886 of S. aureus and the P-glycoprotein ABC transporter, 

Figure 5.5(a-b) (Dawson et al., 2007; Jin et al., 2012).   

 

Figure 5.5 

(a)       (b) 

    

Figure 5.5 Structure of Sav1866 and P-glycoprotein. (a) Structure of the heterodimeric ABC transporter 

Sav1866 from S. aureus open to the trans-side of the cytoplasmic membrane. The six transmembrane helices 

of each subunit are highlighted (yellow and green) crossing the cytoplasmic membrane (shaded grey), 

reproduced from Hollenstein et al. (Hollenstein et al., 2007).  The two nucleotide-bound NBDs are illustrated 

also. (b) Structure of the Caenorhabditis elegans ABC transporterP-glycoprotein, open to the cis-side of the 

cytoplasmic membrane. The cytoplasmic membrane is indicated as two horizontal lines (Jin et al., 2012). 
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Crystal structures of bacterial ABC transporters have shown the coupling helices to extend 

from the TMD to interact with the Q-loops of the NBDs (Dawson et al., 2007). These 

coupling helices function to transmit conformational changes in the NBD, that occur during 

ATP binding and hydrolysis, to the TMD and dictate whether the channel is open to the cis 

or trans side of the membrane. In the TAP ABC transporter a single substitution in the 

coupling region R659N did not alter substrate binding or ATP hydrolysis, but did result in a 

loss of transport highlighting its importance in coupling (Chen et al., 1996; Saveanu et al., 

2001). 

 

5.1.3 Models for ABC Transporter Activity 

 

How ATP hydrolysis is coupled to substrate transport is still mechanistically unclear although 

a number of models have been proposed. 

The alternating access model, first drafted in the 1960s by Jardetzky et al., describes a 

substrate binding site within the channel formed by the TMD that has an altered substrate 

affinity depending on the transporters conformation (Jardetzky, 1966; Dawson et al., 2007). 

For instance, an exporter will have a substrate bind site that has a higher affinity when in 

the cis conformation and a lower affinity when in the trans conformation, thus dictating the 

direction of movement of the substrate. This model is supported by X-ray crystallography 

structures obtained for a number of ABC transporters which show ABC transporters in either 

cis or trans facing conformations. The crystal structure of purified Sav1886 bound to AMP-

PNP shows it facing the trans-side of the membrane, Figure 5.5(a) (Dawson and Locher, 
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2006; Dawson et al., 2007). The P-glycoprotein of C. elegans and the human ABCB10 ABC 

transporter crystal structures have only been crystallised in their cis-facing conformation, 

Figure 5.5(b) (Jin et al., 2012; Shintre et al., 2013).  

The ATP switch model for transport posits that substrate binding within the transmembrane 

channel initiates binding of ATP by the NBD which powers the transport of the substrate. 

Hydrolysis of the bound ATP followed by the release of ADP and Pi (inorganic phosphate) 

destabilised the dimer to reset the ABC transporter, Figure 5.6 (Higgins and Linton, 2004; 

Linton and Higgins, 2007). 

 

Figure 5.6 

 

Figure 5.6 The ATP Switch Model. The above illustration shows the transport cycle of an ABC transporter as 

explained by the ATP switch model. The ABC transporter is cis-facing with its substrate binding site in a high 

affinity conformation. Following substrate binding the two NBD bind sites bind ATP, forming a closed dimer 

which acts as the ‘powerstroke’ to change the transporter into a trans-facing conformation to release the 

substrate. Hydrolysis of the two ATP molecules followed by the release of ADP and inorganic phosphate (Pi) 

brings the transporter back to a cis-facing conformation. Figure reproduced from Linton et al. (Linton, 2007). 
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Early evidence for substrate binding initiating transport was provided by maltose and 

histidine permeases with mutations in their TMDs. These mutant transporters no longer 

required substrate binding and continued to hydrolyse ATP without substrate transport 

(Petronilli and Ames, 1991; Davidson et al., 1992). Further evidence for the switch model is 

provided by the crystal structures of various ABC transporters in nucleotide-free states 

revealing them to have separated NBDs (Jin et al., 2012).  The relevance of such nucleotide-

free crystal structures is debated; as the physiological concentration of ATP is 10-times 

greater than the Km (where Km is the substrate concentration required to reach half of the 

maximum rate of reaction) for ATP hydrolysis indicating the resolved structures may not 

exist in non-laboratory conditions (Gottesman et al., 2009). 

Somewhat at odds with the ATP switch model is the constant contact model. This model 

posits that after substrate transport, hydrolysis at a single site is enough to induce a 

conformational change that returns the ABC transporter to a cis conformation and that the 

NBDs are never fully disassociated. Evidence for such a mechanism of transport comes from 

observations of molecular dynamics simulations using Sav1886 and the MJ0796 transporter 

from Methanococcus jannaschii. These simulations show that when ATP is bound at one site 

and ADP at the other, the ADP bound site can open, releasing ADP and exchanging it for ATP 

(Jones and George, 2009; Oliveira et al. 2011). Additionally, the crystal structure of the 

TM287/288 ABC transporter of Thermotoga maritime shows it to have a dimeric ABC with 

its coupling helices separated enough to open the substrate bind site, supporting the 

constant contact model (Hohl et al., 2012). 

Further evidence that hydrolysis at a single site may facilitate substrate transport comes 

from the functional and sequence asymmetry of the NBDs of heterodimeric ABC 
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transporters. Heterodimeric ABC transporters have asymmetry in their NBDs, as they have a 

consensus and a so-called degenerate ATP binding site. The ATP binding and hydrolysis 

sequence motifs described above differ at these degenerate sites (Lubelski et al., 2006; Zutz 

et al., 2011; Hohl et al., 2012).  

TmrAB is a heterodimeric ABC transporter produced by T. thermophilus that has a 

consensus and a degenerate ATP bind site due to the presence of an aspartate residue in 

place of a canonical glutamate in the TmrB Walker B motif (Zutz et al., 2011). In vitro ATPase 

and vanadate trapping assays using [γ32-P]ATP and [α32-P]ATP showed that hydrolysis only 

occurred at the consensus ATP binding site and that substitutions to the consensus 

glutamate residue diminished ATP hydrolysis. Substitution of the degenerate aspartate 

residue for an asparagine did not impact the Km of TmrAB hydrolysis (Zutz et al., 2011).  

Similar results were obtained for LmrCD, a heterodimeric transporter produced by L. lactis, 

following substitution of its degenerate aspartate residue for an asparagine. Additionally, 

whole cell assays demonstrated that L. lactis cells expressing this mutant LmrCD could 

transport ethidium bromide as effectively as those producing the wild type transporter. 

Substitution at the consensus glutamate residue however resulted in a loss of ethidium 

efflux (Lubelski et al., 2006). 

 

5.1.4 ABC Transporters in Antibiotic Resistance 

 

Drug resistance in cells can result from the expression of efflux systems that work to 

decrease the cellular concentration of the toxic compound. In Eukaryotic cells, ABC 
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transporters are the main export proteins associated with drug resistance. The resistance of 

cancerous cells to chemotherapy has been attributed to the over-expression of ABC 

transporters including the P-glycoprotein, multidrug resistance protein 1 (MRP1) and the 

breast cancer resistance protein (ABCG2) (Cole, 2014; Callaghan et al., 2014; Mao and 

Unadkat, 2015).  

Although less reported than secondary efflux systems such as MFS and RND transporters, 

ABC transporters are also involved in drug resistance in bacteria (Li and Nikaido, 2004). In 

fact, mutations and increased expression of ABC transporter genes have been associated 

with extensive drug-resistance (XDR) in clinical isolates of Mycobacterium tuberculosis (Kuan 

et al., 2015). Due to the multifaceted nature of antibiotic resistance and the diversity of 

exporters produced by bacteria, it may be that ABC transporters contribute more to 

antibiotic resistance in bacteria than the literature would suggest. Table 5.2 is a list of 

antimicrobial ABC transporters. 
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Table 5.2 Bacterial Antimicrobial ABC Transporters. 

Host ABC 

Transporter 

Antibiotic Substrate Reference 

B. subtilis BmrCD Hoechst 33342, doxorubicin, mitoxantrone (Torres et al., 

2009) 

Bifidobacterium 

breve 

AbcAB Nisin, Polymyxin B (Margolles et al., 

2006) 

E. faecalis EfrAB Norfloxacin, Ciprofloxaxin, Doxycycline, 

Novobiocin, Arbekacin 

(Davis et al., 2001; 

Lee et al., 2003) 

 EfrCD Tetracycline, Rifampin, Ethidium Bromide, 

Hoechst 33342 

(Hürlimann et al., 

2016) 

 EfrEF Fluoroquinolones, Ethidium Bromide, 

Hoechst 33342 

(Hürlimann et al., 

2016) 

E. faecium MsrC Quinupristin, Macrolide (Singh et al., 2001; 

Reynolds and 

Cove, 2005) 

L. lactis LmrCD Ethidium Bromide, Hoechst 33342 (Lubelski et al., 

2006) 

Mycobacterium 

bovis 

Bcg0231 Vancomycin, Ampicillin, Chloramphenicol, 

Streptomycin 

(Danilchanka et 

al., 2008) 

M. tuberculosis Rv0194 Ampicillin, Erythromycin, Vancomycin, 

Novobiocin 

(Danilchanka et 

al., 2008) 

 Rv1258C Fluoroquinolones, Rifampin, Tetracyclines (Siddiqi et al., 

2004) 

 Rv2686c- 

Rv2687c- 

Rv2688c 

Fluoroquinolones (Pasca et al., 

2004) 

S. enterica serovar 

Typhimurium 

MacAB Erythromycin (Nishino et al., 

2006) 

S. marcescens SmdAB Norfloxacin, Tetracyclines (Matsuo et al., 

2008) 

S. aureus AbcA Penicillin G, Methicillin, Cefotaxime, 

Moenomycin, Ethidium Bromide 

(Truong-Bolduc 

and Hooper, 

2007; Villet et al., 

2014) 

 Sav1866 Ethidium Bromide, Hoechst 33342 (Velamakanni et 

al., 2008) 

S. australis TetAB(46) Tetracycline (Warburton et al., 

2013) 

S. pneumoniae PatAB Fluoroquinolones (Baylay and 

Piddock, 2015) 

 SP2073/SP2

075 

Ethidium Bromide, Novobiocin, 

Fluoroquinolone 

(Robertson et al., 

2005) 

 Spr0812/Sp

r0813 

Bacitracin (Becker et al., 

2009) 

V. cholerae VcaM Tetracycline, Ciprofloxacin, Norfloxacin, 

Ofloxacin 

(Huda et al., 2003) 
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5.2 Chapter Aims 

 

The aim of the work presented in this chapter was to determine the genes cloned in PS9 

required for the observed tetracycline resistance. Additionally, the level and spectrum of 

resistance conferred to E. coli EPI300 T1R::pCC1BAC by the gene(s) was also determinted as 

well as if the tetracycline resistance genes had an associated fitness cost. We aimed to clone 

the tetracycline resistance gene(s) into Streptococcus mutans UA159. Finally, RT-PCRs were 

conducted to determine if the tetracycline resistance gene(s) were transcribed in the E. coli 

hosts. 
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5.3 Methods and Materials  

5.3.1 Determining the Size of PS9 

 

The pCC1BAC insert from PS9 was extracted, digested using HindIII and analysed by agarose 

gel electrophoresis as described in 2.3.1. The 1 Kb extended ladder from NEB was used as a 

DNA fragment size reference. 

 

5.3.2 Sequencing of PS9 

 

The PS9 insert was sequenced using 454 sequencing and primer extension Sanger 

sequencing. The primers used to sequence PS9 using Sanger sequencing are included in 

Table 5.3. 

 

Table 5.3 Primers for Subcloning, Mutagenesis and RT-PCR.  

Name Sequence (5’-3’) Information Source 

pCC1-F GGATGTGCTGCAAGGCGATTAAGTTGG End sequencing of pCC1BAC Epicentre® 

pCC1-R CTCGTATGTTGTGTGGAATTGTGAGC End Sequencing of pCC1BAC Epicentre® 

M13-F GTTTTCCCAGTCACGAC End sequencing of inserts in 

pHSG396 

Beckman 

Coulter 

Genomics 

M13-R CAGGAAACAGCTATGAC End sequencing if inserts in 

pHSG396 

Beckman 

Coulter 

Genomics 

TetRseq1R CTTTTCTACGGTGGGTATC Sequencing of ABC transporter 

region of PS9 

This Study 
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TetRseq2R GATGCGAAACGGAAAGGG Sequencing of ABC transporter 

region of PS9 

This Study 

TetRseq3R GGCAGAGAACCGTTGGTACG Sequencing of ABC transporter 

region of PS9 

This Study 

TetRseq4R CTCAACAATGAATCGATTC Sequencing of ABC transporter 

region of PS9 

This Study 

TetRseq5R CAACTTGTCCGATAATACG Sequencing of ABC transporter 

region of PS9 

This Study 

TetRseq6R CCACAATTGCTCATGCTG Sequencing of ABC transporter 

region of PS9 

This Study 

ABC1FH GGTGGTAAGCTTGGTGAATGAAGTATAGC Amplification of ABC 

transporter genes introduced 

HindIII site underlined  

This Study 

ABC1FB GGTGGTGGATCCGGTGAATGAAGTATAGC Amplification of ABC 

transporter genes introduced 

BamHI site underlined 

This Study 

ABC1RB GGTGGTGGATCCCCTGCTTTGAAATCATGCG Amplification of ABC 

transporter genes introduced 

BamHI site underlined 

This Study 

ABC2FH GGTGGTAAGCTTGCAATTCGTCATGCGGATG Amplification of ABC 

transporter genes introduced 

HindIII site underlined 

This Study 

ABC2RB GGTGGTGGATCCCCTCAATCAGTTTCCTAC Amplification of ABC 

transporter genes introduced 

BamHI site underlined 

This Study 

ABC2FB GGTGGTGGATCCGGTGAATGAAGTATAGC Amplification of ABC 

transporter genes introduced 

BamHI site underlined 

This Study 

ABC1delF CCGTACCGAGGAGAGAAGCTG Deletion of Walker A motif 

from tetA(60) 

This Study 

ABC1delR CTCGCCTTTACGTAACG Deletion of Walker A motif 

from tetA(60) 

This Study 

ABC2delF CGCTTCTACGACCCAACG Deletion of Walker A motif 

from tetB(60) 

This Study 

ABC2delR CGTCTGTCCTGGTTCTAC Deletion of Walker A motif 

from tetB(60) 

This Study 

ABC1delseqF CAGCTTCTCTCCTCGGTACGG Amplifying tetA(60) Walker A 

motif 

This Study 
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ABC1delseqR CGTTACGTAAAGGCGAG Amplifying tetA(60) Walker A 

motif 

This Study 

ABC2delseqF CGTTGGGTCGTAGAAGCG Amplifying tetB(60) Walker A 

motif 

This Study 

ABC2delseqR GTAGAACCAGGACAGACG Amplifying tetB(60) Walker A 

motif 

This Study 

27f AGAGTTTGATCMTGGCTCAG (M= A or C) 16S gene Amplification (DJ, 1991) 

1492r TACCTTGTTACGACTT 16S gene Amplification (Levy et al., 

1999) 

 

5.3.3 Sequence Analysis of PS9 

 

PS9 sequences were assembled using DNASTAR and analysed using the in silico tools 

described in 2.4.1 and 2.4.2. Two ORFs encoding hypothetical ABC half transporter genes 

were named tetA(60) and tetB(60) by the Stuart B. Levy lab according to tetracycline 

resistance gene nomenclature guidelines as their putative protein products had less than 80 

% amino acid similarity to any other known tetracycline resistance protein (Levy et al., 

1999). 

 

5.3.4 ABC Transporter Amino Acid Alignments 

 

The putative amino acid sequences of TetA(60) and TetB(60) were compared with other 

phenotypically validated tetracycline and multidrug ABC transporter protein sequences from 

Gram-positive bacteria [TetAB(46), BmrCD, LmrCD, PatAB and EfrAB] by alignment using 

Clustal Omega at http://www.ebi.ac.uk/Tools/msa/clustalo/. 
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5.3.5 Subcloning into E. coli strains 

 

Regions of the PS9 metagenomic clone were amplified using primer pairs that introduced 

HindIII and BamHI sites that flanked the promoter regions and translation stop sites of 

genes of interest. tetA(60) was amplified using ABC1FH and ABC1RB primers, tetB(60) was 

amplified using ABC2FH and ABC2RB primers and tetAB(60) were amplified using ABC1FH 

and ABC2RB primers. The primers used for subcloning are listed in Table 5.3. The relative 

positions of these primer pairs are included in Figure 5.8.  

 

The amplicons and pHSG396 were double digested by HindIII and BamHI and 

dephosphorylated using CIAP as described in 2.3.2 and 2.3.3. The digestion reactions were 

cleaned using the QIAquick PCR Purification Kit. Following clean up, the digested amplicons 

were ligated into pHG396 using T4 DNA ligase (NEB) as described in 2.3.5.  

Amplicons were ligated into pGEM®-T Easy using the 2X Rapid Ligase Buffer (Promega) in a 

3:1 ratio of insert to plasmid as described in 2.3.5. Ligation reactions were inactivated by 

incubating at 70 °C for 15 min. 

 

Ligation reactions were transformed into E. coli Alpha-Select Silver Efficiency (Bioline). The 

cells were thawed on ice and transferred to a sterile centrifuge tube containing 5 μl of 

ligation reaction. The cells were kept on ice for 30 min before being heat shocked at 42 °C 

for 30 s and cooled on ice for 2 min. 950 μl of SOC media (NEB) was then added to the cells 

and they were incubated at 37 °C for 1 h with shaking at 200 RPM.  
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Ligation reactions were desalted before electroporating into E. coli EPI300 T1R, as described 

in chapter 2. Cells were plated onto LB agar containing ampicillin (100 µg/ml; for pGEM®-T 

Easy) or chloramphenicol (12.5 µg/ml; for pHSG396). The constructs and strains created are 

detailed in Table 5.4. 

Sequencing of the tetAB(60) E. coli subclones was conducted using the M13 primers and 

primers TetRseq1R - TetRseq4R, Table 5.3. 

 

Table 5.4 Vectors, Constructs and Strains. 

 Name Information Source 

 

Vectors pCC1BAC 8.1 Kb cloning vector that can maintain large 

inserts (>250 Kb). Low copy number 

inducible to high copy number. CmR. 

Epicentre® 

CopyControl™ 

 pHSG396 2.2 Kb cloning vector. High copy number. 

CmR 

Takara Bio© 

 pVA838 9.2 Kb E. coli – Streptococcus spp. shuttle 

vector. ErmR and CmR. 

ATCC® 

 pGEM®-T Easy 3 Kb cloning vector capable of ligating to 

polyadentylated PCR products. High copy 

number. AmpR. 

Promega 

Constructs pCC1BAC::PS9 pCC1BAC containing 7,765 bp metagenomic 

DNA insert. 

This Study 

 pHSG396::tetA(60) pHSG396::tetA(60) This Study 

 pHSG396::tetB(60) pHSG396::tetB(60) This Study 

 pHSG396::tetAB(60)   pHSG396::tetAB(60)   This Study 

 pHSG396::tetB(60)ΔtetA(60) pHSG396::tetB(60)ΔtetA(60) This Study 

 pHSG396::tetA(60)ΔtetB(60) pHSG396::tetA(60)ΔtetB(60) This Study 

 pGEM::tetAB(60) pGEM®-T Easy::tetAB(60) This Study 

 pVA838::tetAB(60)   pVA838::tetAB(60)   This Study 

Bacterial 

Strains 

E. coli EPI300 T1R Electrocompetent, inducible trfA gene for 

pCC1BAC copy number control. 

Epicentre® 

CopyControl™ 

 E. coli Alpha-Select Silver Efficiency Chemically competent E. coli K-12. Bioline Ltd 

 S. mutans UA159 Cariogenic oral isolate (Ajdić et al., 

2002) 
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 E. coli::pCC1BAC E. coli EPI300 T1R::pCC1BAC P. Warburton, 

Eastman 

Dental 

Institute 

 PS9 E. coli EPI300 T1R::[pCC1BAC::PS9] This Study 

 E. coli::pHSG396 E. coli EPI300 T1R::pHSG396 This Study 

 E. coli::pHSG396tetA(60) E. coli EPI300 T1R::[pHSG396::tetA(60)] This Study 

 E. coli::pHSG396tetB(60) E. coli EPI300 T1R::[pHSG396::tetB(60)] This Study 

 E. coli::pHSG396tetAB(60) E. coli EPI300 T1R::[pHSG396::tetAB(60)] This Study 

 E. coli::pHSG396tetB(60)ΔtetA(60) E. coli EPI300 

T1R::[pHSG396::tetB(60)ΔtetA(60)] 

This Study 

 E. coli::pHSG396tetA(60)ΔtetB(60) E. coli EPI300 

T1R::[pHSG396::tetA(60)ΔtetB(60)] 

This Study 

 S. mutans::pVA838tetAB(60) S. mutans UA159::[pVA838::tetAB(60)] This Study 

 E. coli::pGEM E. coli EPI300 T1R::pGEM®-T Easy This study 

 E. coli::pGEMtetAB(60) E. coli EPI300 T1R::[pGEM®-T 

Easy::tetAB(60)] 

This Study 

 DH5α::pHSG396 E. coli Alpha-Select Silver 

Efficiency::pHSG396 

 

 DH5α::pHSG396tetAB(60) E. coli Alpha-Select Silver 

Efficiency::[pHSG396::tetAB(60)] 

This Study 

 DH5α::pGEM E. coli Alpha-Select Silver Efficiency:: 

pGEM®-T Easy 

This Study 

 DH5α::pGEMtetAB(60) E. coli Alpha-Select Silver 

Efficiency::[pGem®-T Easy::tetAB(60)] 

This Study 

 

5.3.6 Subcloning into S. mutans UA159 Competent Cells 

5.3.6.1 S. mutans UA159 Competent Cell Preparation 

 

To make electrocompetent S. mutans cells, 800 μl of a 16 h culture, grown aerobically at 37 

°C with shaking at 200 RPM, was inoculated into 40 ml of fresh BHI. The suspension was 

incubated at 37 °C at 200 RPM until an OD600 of 0.4 was reached (approximately 4 h). The 

cell suspension was then centrifuged at 4200 g for 10 min at 4 °C. The resulting cell pellet 

was washed three times with 4 ml of 0.5 M sucrose containing 10 % glycerol by centrifuging 
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at 4200 g for 10 min at 4 °C. After the final wash the cell pellet was suspended in 0.5 M 

sucrose containing 10 % glycerol and stored at -80 °C. 

 

5.3.6.2 Transformation of S. mutans UA159 Competent cells 

 

A region of PS9 that contained tetAB(60) was amplified using the primers, ABC1FB and 

ABC2RB,  that introduced BamHI restriction sites that flanked the genes, Table 5.3. The 

resulting amplicon and pVA838 were digested with BamHI (NEB). The free ends of pVA838 

were then dephosphorylated with CIAP and the digestion reactions cleaned with the 

QIAquick PCR Purification Kit. Following clean-up of the PCR, the product was ligated into 

pVA838 using T4 DNA ligase (NEB). The ligation reaction was desalted in an agarose cone 

and 5 μl of the ligation reaction was added to a 0.1 cm electroporation containing 50 μl of 

electrocompetent S. mutans UA 159. Electroporation was conducted at 1.25 kV, 200 Ω and 

25 μF. 950 μl of SOC was immediately added to the cells and they were incubated at 37 °C 

with shaking at 200 rpm for 1 h. The cell suspensions were then plated onto BHI agar plates 

containing erythromycin (5 µg/ml) with or with tetracycline (5 µg/ml) and they were 

incubated for 16 h at 37 °C in 5% CO2. Construct and strain information from this subcloning 

are included in Table 5.4. Sequencing of the tetAB(60) S. mutans UA159 subclones was 

conducted using primers TetRseq1R – TetRseq6R, Table 5.3. 

 

5.3.7 Site Directed Mutagenesis 

 

To make in-frame deletions of the regions of the ABC transporter genes encoding the 

Walker-A motif, the Q5® Site Directed Mutagenesis Kit (NEB) was used. Two pairs of non-
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overlapping primers were designed to amplify the pHG396 plasmid containing the ABC 

transporter using the Q5® polymerase, Table 5.3. The first primer pair, ABC1delF and 

ABC1delR, amplified pHSG396::tetAB(60) without a 69 bp region containing the tetA(60) 

Walker-A motif, keeping tetB(60) full length. The second primer pair, ABC2delF and 

ABC2delR and ABC amplified pHSG396tetAB(60) without a 57 bp region containing the 

Walker-A motif of tetB(60) keeping tetA(60) intact. The resulting linear PCR products were 

phosphorylated by a kinase at their ends, circularised by a DNA ligase, and the plasmid that 

was the template for the PCR was digested by DpnI as follows: 5 μl of PCR reaction was 

incubated with 1 μl of 10X kinase, ligase, DpnI (KLD) enzyme mix (NEB) in a 10 μl for 15 min 

at RT. The reactions were then desalted using an agarose cone and electroporated into E. 

coli EPI300 T1R. Mutant constructs and strain information are detailed in Table 5.4. Mutant 

clones were sequenced and the Walker A motifs of tetA(60) and tetB(60) and their 

respective mutants were amplified to check the mutations; the primers used are detailed in 

Table 5.3. 

 

5.3.8 MIC of Tetracyclines 

 

The susceptibilities of E. coli EPI300 T1R, E. coli::pHSG396, E. coli::pHSG396tetAB(60), E. 

coli::pHSG396tetB(60)ΔtetA(60) and E. coli::pHSG396tetA(60)ΔtetB(60) to tetracycline, 

minocycline and tigecycline (Sigma-Aldrich Company Ltd) were determined using the broth 

microdilution method described in 2.5.1. The concentrations of tetracycline minocycline and 

tigecycline tested were 0.25 – 32 μg/ml, 0.25 – 10 μg/ml and 0.25 – 10 μg/ml respectively. 
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5.3.9 Antibiotic Disk Susceptibility Assay 

 

The susceptibilities of E. coli EPI300 T1R, E. coli::pHSG396 and E. coli::pHSG396tetAB(60) to 

various antibiotics were evaluated using the disk diffusion assay, Table 5.5. 16 h cultures of 

each clone were diluted 1 in 100 using sterile 0.1M PBS (pH 7.0) and the diluted suspensions 

were then swabbed onto the surface of MH agar. Antibiotic containing disks (Oxoid, Ltd) 

were then placed on the lawn, and the plates were incubated for 16 h at 37 °C. The zones of 

inhibition were measured in cm.   

 

Table 5.5 Antibiotic Disks. 

Antibiotic (Concentration) Concentration 

Cefotaxime  30 µg 

Metronidazole  50 µg 

Neomycin  10 µg 

Ciprofloxacin  1 µg 

Nalidixic Acid  30 µg 

Gentamicin  10 µg 

Amoxicillin/Clavulanate  20 µg/10 µg 

Trimetoprim/Sulfametoxazole 23.75 µg/1.25 µg 

Amikacin  30 µg 

Tetracycline  10 µg 

Ceftazidime 30 µg 

Erythromycin  5 µg 

  

5.3.10 Growth Curves 

 

16 h cultures of E. coli::pHSG396, E. coli::pHSG396tetAB(60), E. 

coli::pHSG396tetB(60)ΔtetA(60) and E. coli::pHSG396tetA(60)ΔtetB(60) grown in LB with 

chloramphenicol (12.5μg/ml) and tetracycline (5μg/ml; when required) were adjusted to an 

OD600 of 0.05 in LB and chloramphenicol (12.5μg/ml). Cell suspensions were grown at 37 °C 
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with shaking at 200 rpm for 7 h, and their cell density was measured every 30 min using 

spectrophotometry (OD600). E. coli::pHSG396tetAB(60) was also grown in LB and 

chloramphenicol (12.5μg/ml) with tetracycline (5 μg/ml). Growth rates were measured for 

each clone as the slope of the line between two time points on the growth curve. The 

equation, Nt = N0*(1 + r)t was used to calculate the maximum growth rate between 60 and 

240 min. Technical and biological triplicates were conducted for all growth curves and 

growth rate calculations. 

 

5.3.11 Determining Cellular ATP Concentration   

 

The concentration of ATP in E. coli::pHSG396, E. coli::pHSG396tetAB(60), E. 

coli::pHSG396tetB(60)ΔtetA(60) and E. coli::tetA(60)ΔtetB(60) was determined using the 

Abcam luciferase Luminescent ATP Detection Assay (Abcam plc, Cambridge, UK). This kit 

measures ATP concentrations using an ATP dependent luciferase and its substrate 

(luciferin). If ATP is present in a sample, the luciferase oxidises luciferine to produce 

oxyluciferin and light. ATP concentrations can then be determined by comparing sample 

luminescence to a standard ATP concentration/luminescence curve. 16 h cultures of these 

strains grown in LB and chloramphenicol (12.5 µg/ml) were subcultured in fresh LB and 

chloramphenicol (12.5 µg/ml) at 37 °C for 4 h.  

A 16 h culture of E. coli::pHSG396tetAB(60) in LB containing chloramphenicol (12.5 µg/ml) 

and tetracycline (5 µg/ml ) was also subcultured in fresh LB and chloramphenicol (12.5 

µg/ml) and tetracycline (5 µg/ml) as above.  

The subcultures were adjusted to an OD600 0.05. In a 96-well plate 100 µl of each adjusted 

culture and 50 µl of detergent solution (sodium hydroxide 0.1-1 % w/v; Abcam) were 
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incubated for 5 mins at RT to lyse cells and inhibit ATPase activity. To each well 50 µl of 

assay substrate (contains luciferase) was added and the samples were incubated for 5 min 

at RT in the dark. This assay was also conducted with fresh LB containing no antibiotic and 

known concentrations of ATP. The samples were left in the dark for 10 mins prior to 

measuring luminescence. To estimate the ATP concentration, the luminescence of each 

clone was compared with a (100 pM to 1 μM) log10 standard ATP curve (equation: y 

=118625ln(x) + 635449). Technical and biological triplicates were conducted for all ATP 

assays. 

 

5.3.12 Statistical Analysis 

 

Standard deviations were calculated for each clone using the data obtained from the growth 

curve and ATP assays, which included nine data points encompassing biological and 

technical replicates. Standard deviations were used as error bars in Figure 5.14 and Figure 

5.15 for comparison of the mean OD600 and ATP concentrations for each clone. Two tailed t-

tests with 95 % confidence intervals were used to determine the significance of differences 

between clones and the control (E. coli::pHSG396) in terms of OD600 at 420 min, growth 

kinetics and OD600 0.05 culture ATP concentrations. 

 

5.3.13 RNA Extraction 

 

RNA was extracted from pure cultures using the RNeasy Plus Mini Kit (Qiagen). 1 ml of 16 h 

cultures of DH5α::pGEM, DH5α::pGEMtetAB(60), E. coli::pGEM and E. coli::pGEM::tetAB(60) 

grown in LB supplemented with ampicillin (100 μg/ml) and DH5α::pHSG396, 
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DH5α::pHSG396tetAB(60), E. coli::pHSG396 and E. coli::pHSG396tetAB(60) grown in LB 

supplemented with chloramphenicol (12.5 μg/ml) were centrifuged at 15700 g for 1 min. 

The supernatants were removed and 400 μl RLT buffer containing β-mercaptoethanol (10 

μl/10 ml) was added and the cells were lysed by pipetting up and down and by vortexing for 

30 s. To remove genomic DNA from the samples, the suspensions were passed through a 

genomic DNA Eliminator column by centrifuging at 15700 g for 30 s. The flow-throughs were 

transferred to clean centrifuge tubes and 1 ml of 70% EtOH was added. The suspensions 

were then passed through RNeasy columns, 700 μl at a time by centrifuging at 15700 g for 

15 s. This was repeated twice, discarding the flow-throughs between washes. The columns 

were then washed with 700 μl of RW1 buffer by centrifuging at 15700 g for 15 s. The flow-

throughs were discarded and the columns washed twice with 500 μl of RPE buffer by 

centrifuging at 15700 g. The columns were then transferred to clean centrifuge tubes and 

RNA was eluted with 30 μl of molecular grade water by centrifuging at 15700 g for 1 min. 

The RNA preparations were then incubated with DNase I (Thermo Fisher Scientific, 

Loughborough). 25 μl of RNA, 3 μl of 10X reaction buffer, 1 μl DNase I and 1 μl of molecular 

grade water were incubated for 30 min at RT. The reaction was stopped by adding 3 μl of 

25mM EDTA (pH 8.0) followed by heating to 65 °C for 10 min. RNA samples were stored at -

20 °C.    

  

5.3.14 Reverse Transcription PCR 

 

RT-PCRs were conducted using the ABC1FH and ABC2RB primers, Table 5.3. For RT-PCRs the 

OneTaq® One-Step RT-PCR kit (NEB) was used. Reactions contained 25 μl of OneTaq® One-

Step Reaction Mix (2X), 2 μl OneTaq® One-Step Enzyme Mix (25X), 0.4 μM primers and 40 ng 
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of RNA. RT-PCR programmes began with a complimentary DNA (cDNA) synthesis step; a 15 

min incubation at 48 °C.  An initial denaturing step at 94 °C was then followed by 40 cycles 

of 15 s denaturing at 94 °C, 30 s of annealing at a temperature specific for the primer pair 

and extension at 68 °C for 1 min per Kb. A final extension step at 68 °C for 1 min per Kb plus 

1 min was then conducted. The reactions were then cooled at 4 °C.  As a control to ensure 

RNA samples were free of genomic DNA RT-PCR, reactions were set up but the cDNA 

synthesis step was omitted from the programme. RT-PCRs using the 16S primers, 27f and 

1492r, were also conducted as a positive control to show RNA was present in the RNA 

extractions. 
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5.4 Results 

5.4.1 Analysis of PS9 Insert 

 

The pCC1BAC::insert plasmid was extracted from PS9 and digested with HindIII revealing an 

insert size of approximately 8.25 Kb, Figure 5.7 (a).  

Figure 5.7 

(a)                           (b) 

  M 1            

                                                                                           

Figure 5.7 Agarose Gel Analysis of HindIII Digest PS9 Insert. The lane marked M contains the NEB 1Kb 
extended ladder and the lane Marked 1 contains the HindIII digested insert. (a) A 0.9 % agarose gel stained 
with gel red showing the HindIII digestion fragments of the PS9 insert. The gap in the gel is due to the removal 
of lanes not pertinent to the results being discussed. (b) An image depicting the NEB 1Kb extended ladder with 
size labels. 

 

Sequencing of the PS9 plasmid was conducted using 454 and Sanger sequencing which 

revealed it to contain a 7, 765 bp fragment (accession number KX887332). PS9 sequencing 

primers are listed in Table 5.3 and the full sequence is included in Appendix III. BLASTN 

analysis revealed the insert to have similarity along its entire length to Streptococcus sp. 

263_SSPC (accession: GCA_001071995.1, 98 % cover and 90 % identity) and Granulicatella 

adiacens ATCC 49175 (accession: NZ_ACKZ00000000, 94 % cover 92 % identity), Appendices 

          1 Kb 
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      48.5 Kb  
Linear 

pCC1BAC 

    3 Kb 

  2.5 Kb 

  1.5 Kb 

1.25 Kb 
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IV and V. The alignments between the PS9 insert and these two genomes also identified an 

inversion in PS9 between 1,600 bp and 1,789 bp relative to these Streptococcus spp. and 

Granulicatella spp. genomes (Appendix IV and Appendix V). BLASTX analysis of the sequence 

predicted the sequence to have 5 putative ORFs, three of which encoded a putative 

sulfurtransferase, UDP-galactopyranose and an amidohydrolase, Figure 5.8 and Table 5.6. 

The two remaining ORFs were predicted to encode half ABC transporters. These 

transporters were named TetA(60) and TetB(60), as their putative amino acid sequences 

had less than 80% similarity to other tetracycline resistance protein (Levy et al., 1999). The 

tetAB(60) nucleotide sequence has been submitted to Genbank (accession numbers 

KX000272.1 and KX000273.1) and is included in Appendix VI. 

 

Figure 5.8 

UDP-Galactopyranose     Sulfurtransferase          tetA(60)                 tetB(60)                    Amidohydrolase  

       ABC1FH/ABC1FB             ABC2FH       ABC1RB       ABC2RB  

  

  

      0 kb            1 kb                       2 kb             3 kb                   4 kb                    5 kb              6 kb                7 kb            8 kb      

Streptococcus sp. 263_SSPC (98 % Cover/90 % Identity) 

   Granulicatella adiacens ATCC49175 (94 % Cover/92 % Identity)    

    

Figure 5.8 PS9 Schematic Illustrating Subcloned tetAB(60) Region. The 5 ORFs identified in the PS9 clone are 

presented. The vertical dashed red lines indicate the sequence inversion. The primers used to amplify tetA(60) 

are represented by two black arrows. The primers used to amplify tetB(60) [highlighted in orange] are 

represented by two green arrows. The black arrow labelled ABC1FH/ABC1FB and the green arrow labelled 

ABC2RB indicate the primers used to amplify tetAB(60), Table 5.3. The closest nucleotide relatives are detailed 

as are the 5 ORFs present on the insert, according to BLASTX. 
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Table 5.6 Putative Open Reading Frames Identified in PS9 

Open Reading Frame Streptococcus sp.263_SSPC 

Accession Numbers 

Granulicatella adiacens ATCC 49175 

Accession Numbers 

Sulfurtransferase WP_048781756.1 WP_005607217.1 

UDP-galactopyranose WP_048781754.1 WP_005607219.1 

Amidohydrolase WP_048781763.1 WP_005607209.1 

TetA(60) Homolog WP_048781758.1 WP_005607214.1 

TetB(60) Homolog WP_048781760.1 WP_005607213.1 

 

5.4.2 Analysis of TetAB(60) Amino Acid Sequence 

 

Both TetA(60) and TetB(60) were predicted to be 579 amino acids and contain a predicted 

NBD and TMD. Additionally, there was a 4 bp overlap in the genes as the start codon of 

tetB(60) was present in tetA(60), although the genes were in different reading frames.  

ClustalΩ alignments of the putative amino acid sequences of TetA(60) and TetB(60) to 

characterised antimicrobial resistance heterodimeric ABC transporters showed that they 

were more closely related to TetA(46) and TetB(46) (39.27 % and 42.28 % identity 

respectively) and BmrC and BmrD (40.93 % and 46.61 % respectively) than they were to the 

MDR ABC transporters EfrAB, PatAB and LmrCD of E. faecalis, S. pneumonia and L. lactis, 

respectively (≤34.46 %), Table 5.7. 

 

 

 

 

https://www.ncbi.nlm.nih.gov/protein/881064656?report=genbank&log$=protalign&blast_rank=19&RID=8FCXY77P014
https://www.ncbi.nlm.nih.gov/protein/491800876?report=genbank&log$=protalign&blast_rank=24&RID=8FCXY77P014
https://www.ncbi.nlm.nih.gov/protein/881064654?report=genbank&log$=protalign&blast_rank=14&RID=8FCXY77P014
https://www.ncbi.nlm.nih.gov/protein/491800878?report=genbank&log$=protalign&blast_rank=15&RID=8FCXY77P014
https://www.ncbi.nlm.nih.gov/protein/881064663?report=genbank&log$=protalign&blast_rank=5&RID=8FDDV3S6014
https://www.ncbi.nlm.nih.gov/protein/491800867?report=genbank&log$=protalign&blast_rank=3&RID=8FDDV3S6014
https://www.ncbi.nlm.nih.gov/protein/881064658?report=genbank&log$=protalign&blast_rank=6&RID=8FCXY77P014
https://www.ncbi.nlm.nih.gov/protein/491800873?report=genbank&log$=protalign&blast_rank=8&RID=8FCXY77P014
https://www.ncbi.nlm.nih.gov/protein/881064660?report=genbank&log$=protalign&blast_rank=4&RID=8FCXY77P014
https://www.ncbi.nlm.nih.gov/protein/491800871?report=genbank&log$=protalign&blast_rank=2&RID=8FCXY77P014
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Table 5.7 Alignment of TetAB(60) to other Antibiotic Resistance ABC Transporters. 

 
Percentage Similarity   

ABC Half 

Transporter 

TetA(60) TetB(60) Accession 

Numbers 

References 

TetA(60) 100 % 24.69 % KX000272.1 This Study 

TetB(60) 24.69 % 100 % KX000273.1 This Study 

BmrC 40.93 % 27.11 %  BG13040 (Torres et al., 2009) 

BmrD 24 % 46.61 %  BG13041 (Torres et al., 2009) 

TetA(46) 39.27 % 24.16 % AET10444.1 (Warburton et al., 2013) 

TetB(46) 24.69 % 42.28 % AET10445.1 (Warburton et al., 2013) 

EfrA 28.62 % 27.37 % CDO61511 (Lee et al., 2003) 

EfrB 28.96 % 34.46 % CDO61515 (Lee et al., 2003) 

PatA 25.9 % 26.69 % ABJ55477 (Baylay and Piddock, 2015) 

PatB 23.77 % 29.68 % ABJ53826 (Baylay and Piddock, 2015) 

LmrC 27.69 % 26.5 % ABF66011 (Lubelski et al., 2004) 

LmrD 25.14 % 30.07 % ABF66027 (Lubelski et al., 2004) 

 

The NBDs of TetA(60) and TetB(60) were also non-identical. The Walker B motif of TetB(60) 

had the conserved glutamate residue needed for polarising the γ phosphate; however, 

TetA(60)  had an aspartate residue instead. The TetA(60) walker B motif also contained a 

polar cysteine residue where a hydrophobic residue would ideally be. The Walker A motif of 

TetA(60) and TetB(60) are non-identical, although both had consensus sequences. 

Additionally, there are amino acid substitutions between the signature motifs of TetA(60) 

and TetB(60), with the former following the consensus, Figure 5.9. This suggests that the 

Walker A and Walker B motifs of TetB(60) interact with the TetA(60) signature motif to form 

a consensus NBD. Following on from this the non-consensus TetB(60) Walker B motif and 

TetA(60) signature motif most likely form a degenerate ATP binding and hydrolysis site. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=BG13040%5baccn%5d
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=BG13041%5baccn%5d
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Figure 5.9 

 A-Loop Walker A  Q-Loop  Signature Motif          Walker B  D-Loop H-Loop 

TetA(60)     Y GKTGSGKT  QEHTLFSR  LSGGQ  CLILDD  SAVD H 

TetB(60)     Y GHTGSGKS  QDPYLFTG  FSSGE  ILILDE  SHID H 

TetA(46)     Y GRTGAGKT QEHILFSK  VSGGQ  LLLLDD  SAVD H 

TetB(46)     Y GHTGSGKS  QDPYLFTG  FSSGE  ILILDE  SHID H 

BmrC     Y GRTGAGKT QDPYLFSG  LSGGQ  ILILDD  SAVD H 

BmrD     Y GHTGSGKS  QHDLLFSR  LSSGE  ILILDE  AHID H 

Concensus     Y GXXGXGKT/S QXXXXXXX  LSSGQ  φ φ φ φ DE SALD H 

 

 
Figure 5.9 TetAB(60) NBD Motif Alignments. An alignment of the conserved motifs and loops of the NBDs of 

the ABC half transporters compared with the consensus; consensus amino acid residues are highlighted in red. 

The alignment shows that TetA(60), TetA(46) and BmrC have Walker B motifs that deviate from the consensus 

as they have an aspartate (D) residue in place of the consensus glutamate (E) residue that is needed for ATP 

hydrolysis. Their counterpart half transporters contain consensus Walker B motifs. Additionally, the signature 

motif of TetB(60) contains a number of mutations resulting in it differing from the consensus while TetA(60) 

does not. This is observed for TetB(46) and BmrD also. This suggests that the full TetAB(60) transporter 

contains both a consensus and degenerate NBD. The remaining motifs and loops appear to follow the 

consensus though there is some variation between their D-loops. 

 

 

5.4.3 Subcloning of tetAB(60) 

 

Having shown that tetAB(60) encoded a putative heterodimeric ABC transporter, tetA(60) 

and tetB(60) were amplified individually and together by PCR and cloned into E. coli EPI300 

T1R and E. coli Alpha-Select Silver Efficiency using the pHSG396 and pGEM®-T Easy vectors to 

determine if both were required for tetracycline resistance. Restriction enzyme digests of 

pHSG::tetAB60, pGEM::tetAB(60) are shown in Figure 5.10 (a-b). A schematic diagram of the 

subcloned tetAB(60) genes is included in Figure 5.11 (a). 
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Figure 5.10 

           (a)                                                     (b)                                             (c) 

M     1      M       2               M 3  

                  

(d) 

 

Figure 5.10 tetAB(60) Subclones. (a) Lane 1: HindIII/BamHI double digest of pGEM::tetAB(60). (b) Lane: 

HindIII/BamHI double digest of pHSG396::tetAB(60). (c) Lane 3: BamHI digest of pVA838::tetAB(60). Lanes 

marked M contain Hyper Ladder I. (d) Hyper Ladder I (Bioline) 

10 Kb 

4 Kb 

3 Kb 
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3.7 Kb 

4 Kb 

2 Kb 

10 Kb 
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10 Kb 

3.7 Kb 

pVA838 
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Figure 5.11 

(a) 

                              tetA(60)                                           tetB(60)                            

                                                      ΔtetA(60)    ΔtetB(60)     

  

           

  

       

 3 kb                       4 kb                                     5 kb                                           6 kb                  7 kb      

 

(b) 

 

Figure 5.11 tetAB(60) Deletion Mutants. (a) Diagram depicting the positions and orientations of tetAB(60) in 

the 3, 703 bp subclones as marked by the vertical dashed lines. The positions of the Walker A motifs that were 

deleted to make pHSG396::tetB(60)ΔtetA(60) and pHSG396::tetA(60)ΔtetB(60) are marked by vertical double 

headed blue arrows. (b) The nucleotide sequences of the deleted regions are given above with the Walker A 

motif of each gene highlighted in yellow and translated. The scale indicates the nucleotide positions relative to 

the full length PS9 clone. 

 

E. coli::pHSG396tetA(60), E. coli::pHSG396tetB(60), E. coli::pGEMtetAB(60), 

DH5α::pHSG396tetAB(60) and DH5α::pGEMtetAB(60) were unable to grow on LB 

supplemented with 5 µg/ml tetracycline. Only E. coli::pHSG396tetAB(60) was able to grow 

on LB supplemented with 5 µg/ml tetracycline which indicates that both tetA(60) and 

tetB(60) are required for the tetracycline resistance. 

tetBΔtetA(60) 

               Amino Acid N-T       L    G     I       V    G     K     T      G     S     G      K      T     T     L     L    M    Q     L     L     H    Q     F    -C  

 Nucleotide 5’-ACGCTTGGAATCGTTGGAAAAACGGGTTCTGGGAAGACGACGCTCTTGATGCAATTATTACATCAATTT-3’ (4220-4288)  

 

tetAΔtetB(60) 
Amino Acid N-V     A     F    V     G     H     T    G      S    G      K     S      S     I    M     N    L      L     F    -C 

Nucleotide 5’-GTTGCTTTTGTCGGACATACTGGTTCAGGGAAATCATCCATTATGAACTTACTGTTT-3’ (5974-6030) 
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The tetAB(60) genes were also cloned into S. mutans UA159 using pVA838. The resulting 

clone, S. mutans::pVA838tetAB(60), showed no increase in tetracycline resistance compared 

with S. mutans UA159::pVA838, Figure 5.10 (c). 

 

5.4.4 Mutagenesis of the tetAB(60) Walker A Motif 

 

Having shown that both tetA(60) and tetB(60) were required for tetracycline resistance in E. 

coli EPI300 T1R  we next set out to ascertain whether the gene products functioned as an 

ABC transporter that conferred resistance to tetracycline. In order to do this a 69 and 57 

base pair deletion was made to remove the Walker A motif of the nucleotide binding 

domain from either tetA(60) or tetB(60), respectively, Figure 5.11(a, b). PCR amplicons of 

the Walker A motifs from the wild type and mutant tetA(60) and tetB(60) are shown in 

Figure 5.12(a). Nucleotide alignments of the wild type and mutant Walker A motifs from 

tetA(60) and tetB(60) are shown in Figure 5.13(a,b). Both mutants, E. coli::pHSG396 

tetB(60)ΔtetA(60) and E. coli::pHSG396tetA(60)ΔtetB(60) were unable to grow on LB 

supplemented with tetracycline (5 µg/ml). Taken together these subcloning and 

mutatgenesis results confirmed that the ABC transporter activity of these gene products is 

responsible for the tetracycline resistance in PS9 and E. coli::pHSG396tetAB(60).  

 

 

 

 



 261 

Figure 5.12 

(a)         (b) 

     M     1         2           3             4  

    

 

Figure 5.12 Agarose Gel Showing Walker A Motif PCR Products. (a) The amplicons obtained from the 

amplification of the Walker A motif containing regions from tetA(60), ΔtetA(60), tetB(60) and ΔtetB(60). The 

lane marked M contains HyperLadder V (Bioline). These PCR products were amplified using the ABC1delseq 

and ABC2delseq primers, Table 5.3. The tetA(60) Walker A motif region is approximately 100 bp in size (Lane 1) 

whereas the Walker A motif region of ΔtetA(60) is approximately 40 bp in size (Lane 2), indicating that the 

Walker A motif has been deleted. The Walker A motif of tetB(60) is approximately 75 bp (Lane 3), while that of 

ΔtetB(60) is approximately <25 bp (Lane 4), suggesting that the Walker A motif of tetB(60) has been removed. 

(b) A diagram showing the size fragments of the HyperLadder V. 
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Figure 5.13 

(a) 

tetA(60)  TATCCAGGCGAAGAGGCACCATTATTAAAAGAGATTAACCTTACGTTACGTAAAGGCG 

          :::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

ΔtetA(60) TATCCAGGCGAAGAGGCACCATTATTAAAAGAGATTAACCTTACGTTACGTAAAGGCG 

 

                   

tetA(60)  AGACGCTTGGAATCGTTGGAAAAACGGGTTCTGGGAAGACGACGCTCTTGATGCAATTAT 

          ::                                                           

ΔtetA(60) AG---------------------------------------------------------- 

                                                                    

 

                 

tetA(60)  TACATCAATTTCCGTACCGAGGAGAGAAGCTGCTCATTAACGGAGAGCCATTGATTGATT 

                     ::::::::::::::::::::::::::::::::::::::::::::::::: 

ΔtetA(60) -----------CCGTACCGAGGAGAGAAGCTGCTCATTAACGGAGAGCCATTGATTGATT 

                              

 

tetA(60)  ACGACACTCAATCGGTGGCAGGGCATCTAGCCTATGTGCCACAAGAACACACCCTTTTCT 

          :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

ΔtetA(60) ACGACACTCAATCGGTGGCAGGGCATCTAGCCTATGTGCCACAAGAACACACCCTTTTCT 

               

 

tetA(60)  CACGCACGATTCGCGAGAATATGTTATTCGGAAAAGAGGATGCAACGGATGATGAAATTT 

          :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

ΔtetA(60) CACGCACGATTCGCGAGAATATGTTATTCGGAAAAGAGGATGCAACGGATGATGAAATTT 

          

 

tetA(60)  GGGAAGCGTTGACGCTAGCCTCTTTTGAAGGAGACGTGAAACGAATGCCAGACGAGCTCG 

          :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

ΔtetA(60) GGGAAGCGTTGACGCTAGCCTCTTTTGAAGGAGACGTGAAACGAATGCCAGACGAGCTCG 

              

 

tetA(60)  ATACGATGGTCGGAGAAAAAGGGGTATCGCTCAGTGGAGGTCAAAAACAACGCTTATCGA 

          :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

ΔtetA(60) ATACGATGGTCGGAGAAAAAGGGGTATCGCTCAGTGGAGGTCAAAAACAACGCTTATCGA 

           

 

tetA(60)  TTGCTCGTGCTTTCTTACGCAACCGTGAATGCTTAATTTTGGATGATGCGTTATCTGCAG 

          :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

ΔtetA(60) TTGCTCGTGCTTTCTTACGCAACCGTGAATGCTTAATTTTGGATGATGCGTTATCTGCAG 

             

 

tetA(60)  TTGATGCGAAAACGGAAAGGGAAATTATCTCGCACTTGCAACAAGAACGCGGAGGTTGTA 

          :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

ΔtetA(60) TTGATGCGAAAACGGAAAGGGAAATTATCTCGCACTTGCAACAAGAACGCGGAGGTTGTA 

              

  

tetA(60)  TGAATATCATTTCTGCGCACAGACTTTCTGCAATTCGTCAT 

          ::::::::::::::::::::::::::::::::::::::::: 

ΔtetA(60) TGAATATCATTTCTGCGCACAGACTTTCTGCAATTCGTCAT 
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(b) 

                   

tetB(60)  TACACAGCGGGAGTTCCTGTGTTGAAACACTTGAATTTCACGGTAGAACCAGGACAGACG 

          :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

ΔtetB(60) TACACAGCGGGAGTTCCTGTGTTGAAACACTTGAATTTCACGGTAGAACCAGGACAGACG 

                   

 

tetB(60)  GTTGCTTTTGTCGGACATACTGGTTCAGGGAAATCATCCATTATGAACTTACTGTTTCGC 

                                                            ::: 

ΔtetB(60) ---------------------------------------------------------CGC 

                                       

 

tetB(60)  TTCTACGACCCAACGAGTGGTGCTATCTTCATCGATGGCAAAAACACACGCGACTTTAAC 

          :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

ΔtetB(60) TTCTACGACCCAACGAGTGGTGCTATCTTCATCGATGGCAAAAACACACGCGACTTTAAC 

                      

 

tetB(60)  AGACGTAGTGTTCGAAGCGAGATGGGAATCGTTCTTCAAGATCCGTACCTCTTTACAGGA 

          :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

ΔtetB(60) AGACGTAGTGTTCGAAGCGAGATGGGAATCGTTCTTCAAGATCCGTACCTCTTTACAGGA 

                    

 

tetB(60)  ACGATTGCTTCAAACGTAGGGCTCAACAATGAATCGATTGAGCCTGAGACGATAAAAGAG 

          :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

ΔtetB(60) ACGATTGCTTCAAACGTAGGGCTCAACAATGAATCGATTGAGCCTGAGACGATAAAAGAG 

                     

 

tetB(60)  GCGATTATTAAAGTGGGTGGAGGACATCTACTTACGAAGAGTGACAAGGGCTTGGACTAC 

          :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

ΔtetB(60) GCGATTATTAAAGTGGGTGGAGGACATCTACTTACGAAGAGTGACAAGGGCTTGGACTAC 

                     

 

tetB(60)  GAGGTGAAAGAAAAAGGAATGGATTTCTCTTCAGGAGAACGCCAACTGATTTCATTTGCT 

          :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

ΔtetB(60) GAGGTGAAAGAAAAAGGAATGGATTTCTCTTCAGGAGAACGCCAACTGATTTCATTTGCT 

                    

 

tetB(60)  CGTGCGATCGTCTTTGACCCGAAAATCTTAATTTTAGACGAGGCAACTTCGCATATCGAT 

          :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

ΔtetB(60) CGTGCGATCGTCTTTGACCCGAAAATCTTAATTTTAGACGAGGCAACTTCGCATATCGAT 

                     

 

tetB(60)  ACCGAGACAGAAGAGATTATTCAGAATGCAATTAATGTCGTCAAAGAAGGGCGTACAACC 

          :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

ΔtetB(60) ACCGAGACAGAAGAGATTATTCAGAATGCAATTAATGTCGTCAAAGAAGGGCGTACAACC 

                     

 

tetB(60)  TTTATGATTGCTCAC 

          ::::::::::::::: 

ΔtetB(60) TTTATGATTGCTCAC 

      

 

Figure 5.13 Alignments of the NBDs of tetA(60) and tetB(60).  A-loops are highlighted in yellow, Walker A 

motifs in green, Q-loops in purple, signature motifs in red, Walker B motifs in grey, D-loops in dark blue and H-

loops in light blue. (a) A nucleotide alignment between the nucleotide binding domains of tetA(60) and 

ΔtetA(60). (b) A nucleotide alignment between the nucleotide binding domains of tetB(60) and ΔtetB(60).  
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5.4.5 Tigecycline and Minocycline as Substrates for TetAB(60) 

 

Using the broth dilution method, the MIC of tetracycline for E. coli EPI300 T1R, E. 

coli::pHSG396, E. coli::pHSG396tetAB(60), E. coli::pHSG396tetB(60)ΔtetA(60) and E. 

coli::pHSG396tetA(60)ΔtetB(60) was determined, Table 5.8. 

The MIC of tetracycline for E. coli::pHSG396tetAB(60) was found to be 32 μg/ml. The MICs 

for the mutants and the control strains were 16-fold lower at 2 μg/ml. To determine if 

tetAB(60) was able to confer resistance to later-generation tetracycline derivatives, MIC 

assays were conducted using minocycline and tigecycline. The MIC of minocycline for all 

strains and clones was 1 μg/ml. The MIC of tigecycline for E. coli::pHSG396tetAB(60) was 16-

fold higher than the control and mutant strains at 8 μg/ml, which was above the clinical 

break point for Enterobacteriaceae (0.5 µg/ml).  

 

Table 5.8 MICs of Tetracycline Antibiotics for E. coli::pHSG396tetAB(60) and Mutant Strains. 

Strain Tetracycline 

(μg/ml) 

Minocycline 

(μg/ml) 

Tigecycline 

(μg/ml) 

E. coli::pHSG396 2  1  0.5  

E. coli::pHSG396tetAB(60) 32  1  8  

E. coli::pHSG396tetB(60)ΔtetA(60) 2  1  0.5  

E. coli::pHSG396tetA(60)ΔtetB(60) 2  1  0.5  
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5.4.6 TetAB(60) Substrate Spectrum 

 

Disk diffusion assays were used to discern the spectrum of resistance for this transporter. E. 

coli::pHSG396tetAB(60) was less sensitive to tetracycline but equally sensitive to cefotaxime, 

ceftazidime, metronidazole, neomycin, ciprofloxacin, nalidixic acid, gentamicin, amikacin, 

amoxicillin/clavulanate and trimetoprim/sulfametoxazole as E. coli EPI300 T1R and E. 

coli::pHSG396, indicating that TetAB(60) is a tetracycline and tigecycline-specific ABC 

transporter. E. coli EPI300 T1R was intrinsically resistant to erythromycin, which has been 

described previously, and attributed to AcrAB-TolC mediated efflux and membrane 

impermeability (Chollet et al., 2004; Vaara, 1993). 

 

5.4.7 Impact of TetAB(60) on E. coli Growth 

 

When PS9 was first isolated, we noticed that it grew more slowly and formed smaller 

colonies than E. coli::pCC1BAC, even in the absence of tetracycline in the growth media. This 

phenotype was also observed for the E. coli::pHSG396tetAB(60) subclone. Furthermore, 

the E. coli::pHSG396tetB(60)ΔtetA(60) and E. coli::pHSG396tetA(60)ΔtetB(60) mutants did 

not have such a large growth defect.  

In order to determine the extent of this growth defect, growth curves were conducted. 

These growth curves revealed that although there were significant differences between E. 

coli::pHSG396 and E. coli::pHSG396tetA(60)ΔtetB(60) maximum growth rates (0.993 ± 0.05 

and 0.917 ± 0.05, respectively; p = 0.005) there was no significant difference in their OD600 of 
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cultures at 7 h (1.65 ± 0.08 and 1.565 ± 0.16; p = 0.1807) when grown in the absence of 

tetracycline, Figure 5.14. 

Figure 5.14 

 

Figure 5.14 Growth Curves of tetAB(60) Expressing E. coli EPI300 T1R Clones. E. coli::pHSG396, E. 

coli::pHSG396tetB(60)ΔtetA(60) and E. coli::pHSG396tetA(60)ΔtetB(60) were grown in LB and chloramphenicol 

for 7 h. This figure also shows the growth curve for E. coli::pHSG396tetAB(60) grown in LB and 

chloramphenicol (12.5 µg/ml) with and without tetracycline (5 µg/ml). P-values for OD600 at 7 h were 

calculated from biological triplicate OD600 measurements at 420 min for each clone compared with E. 

coli::pHSG396 are indicated beside each growth curve. P-values from biological triplicate ATP assays for each 

clone compared with E. coli::pHSG396 are shown. 

 

Compared with E. coli::pHSG396, E. coli::pHSG396tetB(60)ΔtetA(60) and E. 

coli::pHSG396tetAB(60) reached lower OD600 at 7 h, when they were grown in the absence 

of tetracycline (0.983 ± 0.03, 0.733 ± 0.01, respectively, p < 0.0001). Additionally, when 

grown in the presence of tetracycline, E. coli::pHSG396tetAB(60) reached an even lower 
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OD600 at 7 h (0.543 ± 0.04, p < 0.0001), Figure 5.14. Whilst the maximum growth rates of E. 

coli::pHSG396tetB(60)ΔtetA(60) grown without tetracycline and E. coli::pHSG396tetAB(60) 

grown without or with tetracycline were not significantly different from each other (0.702 ± 

0.06, 0.68 ± 0.03 and 0.692 ± 0.09, respectively; p = 0.435 to 0.879), they were 1.14-1.46-

fold lower than the maximum growth rate of E. coli::pHSG396 grown without tetracycline (p 

< 0.0001). This suggested that there was a fitness cost associated with the activity of 

TetAB(60) rather than the carriage of the plasmid itself, and that TetB(60) contributed more 

to this fitness cost than TetA(60). 

 

5.4.8 Effect of TetAB(60) on Cellular ATP Concentration 

 

Further to conducting growth curves we set out to determine if harbouring tetAB(60) or 

their mutant variants imposed a fitness cost on E. coli EPI300 T1R by affecting cellular ATP 

concentrations. ATP levels were estimated for cultures at OD600 of 0.05 using a luciferase 

assay and the results indicated that E. coli::pHSG396 and E. coli::pHSG396tetA(60)ΔtetB(60) 

had the lowest ATP concentrations that were not significantly different from each other 

(0.23 µM±0.01 and 0.23 µM±0.01 respectively, p=0.7378), Figure 5.15. A 1.2-fold increase in 

ATP concentration was observed for E. coli::pHSG396tetB(60)ΔtetA(60) compared with E. 

coli::pHSG396 (0.285 µM±0.008; p=0.00623). 

E. coli::pHSG396tetAB(60) exhibited the highest ATP concentrations at 1.4-, and 1.65- fold 

higher than the control when grown without (0.32µM±0.01; p=0.0006) and with tetracycline 

(0.385 µM±0.007; p=<0.0001) respectively. Taken together these results suggested that the 

activity of TetAB(60) was responsible for the observed fitness cost in E. 
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coli::pHSG396tetAB(60), and that the fitness cost was a result of the transporter altering cell 

ATP levels. 

 

Figure 5.15 

 

Figure 5.15 ATP Concentration of tetAB(60) Expressing E. coli EPI300 T1R. This bar graph displays the ATP 

concentration of 0.05 OD600 cell suspensions of E. coli::pHSG396, E. coli::pHSG396tetAB(60), E. 

coli::pHSG396tetB(60)ΔtetA(60) and E. coli::tetA(60)ΔtetB(60) in LB containing chloramphenicol (12.5 µg/ml). 

The ATP concentrations of OD600 0.05 cultures of E. coli::pHSG396tetAB(60) grown in LB with chloramphenicol 

(12.5 µg/ml) and tetracycline (5 µg/ml) is also represented.  P-values from biological triplicate ATP assays for 

each clone compared with E. coli::pHSG396 are shown. 
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5.4.9 tetAB(60) expression - Reverse Transcription PCR Results 

 

Using the primers ABC1FB and ABC2RB, Table 5.3, RT-PCRs were conducted to determine if 

the tetAB(60) genes were transcribed as a single transcript and if these genes were being 

transcribed in E. coli EPI300 T1R and E. coli Alpha-Select Silver Efficiency.  A product of 

approximately 3.7 kb was produced from the RT-PCR reaction from the RNA preparations of 

E. coli::pHSG396tetAB(60), indicating that two genes were transcribed as a single mRNA. 

Additionally, a 3.7 Kb amplicon was also obtained from DH5α::pGEMtetAB(60) and E. coli:: 

pGEMtetAB(60); this amplicon was not produced from DH5α::pHSG396tetAB(60), Figure 

5.16. The 16S rRNA PCR and RT-PCR controls are shown in Figure 5.17. Thus, tetAB(60) was 

transcribed in E. coli::pHSG396tetAB(60) but not in DH5α::pHSG396tetAB(60). 
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Figure 5.16 

(a) 

 M     1      2      3      4    5      6     7      8     9    M     10   11   12   13   14   15   16    17   18 

 

     M    19  20  21  22  23   24               (b) 

     

Figure 5.16 RT-PCR Results of tetAB(60) Expressing E. coli EPI300 T1R. (a) Agarose gel showing the results of 

RT-PCRs conducted using ABC1FH and ABC2RB primers. RNA was isolated from clones harbouring empty 

vectors or vectors containing tetAB(60). PCRs without the RT step, conducted using DNA and RNA isolated 

from the clones, to show that the primers amplify tetAB(60) and that there was no DNA in the RNA 

preparations respectively are also included. For each clone the reactions are ordered in the gel as PCR, RNA-

PCR and RT-PCR. Lanes marked M contain HyperLadder I (Bioline). Lanes 1, 2 and 3 show DH5α::pGEM, lanes 7, 

8 and 9 show DH5α::pHSG396, lanes 13, 14 and 15 show E. coli::pGEM and lanes 19, 20 and 21 show E. 

coli::pHSG396. tetAB(60) is not present or expressed in this clone. Lanes 4, 5 and 6 show that tetAB(60) is 

transcribed in DH5α::pGEMtetAB(60) as there is a positive RT-PCR reaction. Lanes 10, 11and 12 represent 

DH5α::pHSG396tetAB(60); showing tetAB(60) to be present but not transcribed as no 3.7 Kb amplicon was 

observed. Lanes 16, 17 and 18 show E. coli::pGEMtetAB(60) and show that tetAB(60) is present and 

transcribed. Similarly in lanes 22, 23 and 24 that contain E. coli::pHSG396tetAB(60) are being transcribed.  

(b)  A diagram showing the size fragments of the HyperLadder I. 
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Figure 5.17 

(a) 

M     1       2      3      4    5        6     7      8     9      M         10   11   12    

  

M     13     14   15    16    17    18   19    20     21        22   23   24        (b) 

     

 

Figure 5.17 16S RT-PCR. Agarose gel showing the results of RT-PCRs conducted using 16S primers (27f and 

1492r primers). RNA was isolated from clones harbouring empty vectors or vectors containing tetAB(60). PCRs 

without the RT step, conducted using DNA and RNA isolated from the clones, to show that the primers amplify 

tetAB(60) and that there was no DNA in the RNA preparations respectively are also included. For each clone 

the reactions are ordered in the gel as PCR, RNA-PCR and RT-PCR. Lanes marked M contain HyperLadder I 

(Bioline). Lanes 1, 2 and 3 contain DH5α::pGEM. Lanes 4, 5 and 6 contain DH5α::pGEMtetAB(60). Lanes 7, 8 

and 9 contain DH5α::pHSG396. Lanes 10, 11 and 12 contain DH5α::pHSG396tetAB(60). Lanes 13, 14 and 15 

contain E. coli::pGEM. Lanes 16, 17 and 18 contain E. coli::pGEMtetAB(60). Lanes 18, 19 and 20 contain E. 

coli::pHSG396. Lanes 22, 23 and 24 contain E. coli::pHSG396tetAB(60). In the DNA PCR and the RT-PCR reaction 

the 1.5 Kb 16S amplicon is observed. No amplicon is observed in the RNA extractions without the RT step. (b) A 

diagram showing the size fragments of HyperLadder I. 
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5.5 Discussion 

 

The work described in chapter 4 included the isolation of a clone, PS9, that exhibited 

decreased susceptibility to tetracycline, which was identified and sequenced. The insert 

contained in PS9 was 7, 765 bp and had 90 % and 92 % nucleotide identity to Streptococcus 

sp. 263_SSPC and G. adiacens ATCC 49175, respectively, indicating a Gram-positive origin 

for the insert. Streptococcus spp. are predominant in the oral cavity, although to the best of 

our knowledge Streptococcus sp. 263_SSPC has not been isolated from the oral cavity 

(Segata et al., 2012). Granulicatella spp. including G. adiacens are also abundant in the oral 

cavity, typically inhabiting the mucosa (Aas et al., 2005). Tetracycline resistance has been 

described in oral Streptococcus spp. which has been discussed in chapter 4. Tetracycline 

resistance has also been observed in Granulicatella spp., although minimal characterisation 

studies have been conducted (Zheng et al., 2004; De Luca et al., 2013). 

 

Analysis of the insert revealed it contained five ORFs, predicted to encode a putative UDP-

galactose mutase, a sulfurtransferase, an amidohydrolase and two ABC half transporters 

[TetAB(60)]. Each predicted protein had amino acid sequences with high similarity (>90% 

identity) to proteins from Streptococcus sp. 263_SSPC and G. adiacens ATCC 49175. 

Alignment of the putative amino acid sequences of TetAB(60) to other antibiotic resistance 

heterodimeric ABC transporters showed that they were most closely related to TetAB(46) 

and BmrCD, and less so to the MDR ABC transporters EfrAB, PatAB and LmrCD. As TetAB(46) 

has been shown to be most closely related to BmrCD, this suggested that TetAB(60) was also 

tetracycline specific (Warburton et al., 2013). 
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The alignments also revealed that some of the motifs in the NBDs of TetA(60), TetA(46) and 

BmrC did not conform to the consensus, Figure 5.9. The NBDs of TetB(60), TetB(46) and 

BmrD conformed to consensus, however their signature motifs deviated somewhat with the 

TetB(60) signature motif containing three amino acid changes relative to the consensus, 

Figure 5.9. This suggested that a heterodimeric transporter formed by TetAB(60) would 

contain a degenerate ATP binding site composed of the Walker B and Walker A motifs of 

TetA(60) and the signature motif of TetB(60) and a consensus site containing the Walker B 

and Walker A motifs of TetB(60) and the signature of TetA(60). This data suggests that 

TetAB(46) and BmrCD are also likely to form asymmetric ABC transporters. This is congruent 

with what has been discussed in the literature where it is understood that bacterial 

heterodimeric ABC transporters commonly have an asymmetric nature (Lubelski et al., 

2006; Zutz et al., 2011; Hohl et al., 2012).  

We showed that both tetA(60) and tetB(60) were required to confer tetracycline resistance 

in E. coli EPI300 T1R, suggesting that the product of these genes formed a heterodimeric ABC 

transporter with each gene product containing a TMD and NBD, as revealed by BLASTX 

(Dawson and Locher, 2006). Interestingly, transformation of tetAB(60) genes into E. coli 

Alpha-Select Silver Efficiency or S. mutans UA159 did not confer resistance to these strains. 

This suggests that in these hosts the tetAB(60) genes may not be transcribed or translated, 

or that their products were not properly folded or transported. 

Walker A motifs are found in many ATP-utilizing enzymes including ABC transporters and 

are required for binding and stabilizing ATP (Ramakrishnan et al., 2002; Hirakata et al., 2002; 

Verdon et al., 2003; Hohl et al., 2012). Deletion of these motifs from ATP transporters has 

been shown to result in a loss of function (Warburton et al., 2013). Individual in-frame 

deletions of these motifs from either tetA(60) or tetB(60) led to a loss of the tetracycline 
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and tigecycline resistance phenotype providing further evidence that the products of these 

genes form a heterodimeric ABC transporter. 

Compared with E. coli::pHSG396, E. coli::pHSG396tetAB(60) was 16-fold more resistant to 

tetracycline (MIC of 32 μg/ml) and tigecycline (MIC of 8 μg/ml). Although E. 

coli::pHSG396tetAB(60) showed levels of resistance to tetracycline and tigecycline beyond 

the EUCAST breakpoints, it was as susceptible to minocycline as E. coli::pHSG396, indicating 

that minocycline is not a substrate for this transporter (Olson et al., 2006; Ramos et al., 

2009). Efflux-mediated tigecycline resistance has been described previously in Pseudomonas 

aeruginosa and Klebsiella pneumoniae, being attributed to the activity of an ABC and an 

RND transporter, respectively (Dean et al., 2003; He et al., 2015; McDaniel et al., 2016).  

TetAB(60) appeared to be specific for tetracycline and tigecycline, as disk diffusion assays 

demonstrated E. coli::pHSG396 to be as susceptible as E. coli::pHSG396tetAB(60) to 

cefotaxime, ceftazidime, metronidazole, neomycin, ciprofloxacin, nalidixic acid, gentamicin, 

amikacin, amoxicillin/clavulanate and trimetoprim/sulfametoxazole and erythromycin. 

The observed fitness cost associated with tetAB(60) was not observed in either mutant as 

although E. coli::pHSG396tetA(60)ΔtetB(60) had a lower maximum growth rate than the 

control, it had a comparable final OD600 to E. coli::pHSG396, and E. 

coli::pHSG396tetB(60)ΔtetA(60) exhibited faster growth than E. coli::pHSG396tetAB(60). 

This indicated that the growth defect was a result of TetAB(60) activity rather than from 

maintenance of the plasmid. Additionally, E. coli::pHSG396tetB(60)ΔtetA(60) grew less well 

than E. coli::pHSG396tetA(60)ΔtetB(60) suggesting that TetB(60) produces a greater cost to 

the E. coli host than TetA(60). 
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ATP assays revealed a correlation between the growth phenotype and culture ATP 

concentration of the clones as the clones that reached the highest OD600 had the lowest ATP 

concentrations. 

For example, E. coli::pHSG396 and E. coli::pHSG396tetA(60)ΔtetB(60) reached the highest 

OD600 and both had the lowest ATP concentration (0.23 µM). E. 

coli::pHSG396tetA(60)ΔtetB(60) grew less well than these clones but had a higher ATP 

concentration (0.285 µM). This suggested that this clone produced an ABC transporter that 

could bind ATP at its non-mutated site and prevent it from taking part in cell metabolism. 

During the luciferase assay, this ATP was liberated from the transporter resulting in a higher 

ATP concentration being observed. The comparable ATP concentrations of E. coli::pHSG396 

and E. coli::pHSG396tetA(60)ΔtetB(60) suggested that the latter produced an ABC 

transporter that could not sequester ATP, explaining why it had no associated fitness cost. 

Further to this, E. coli::pHSG396tetAB(60) cultures grown without tetracycline had a higher 

ATP concentration (0.32 µM) than either mutant, likely a result of its two non-mutated ATP 

binding sites sequestering but not hydrolysing ATP, resulting in a greater fitness cost in this 

clone. 

When grown in tetracycline E. coli::pHSG396tetAB(60) cultures had higher ATP levels (0.385 

µM) than when grown without. This may be a result of TetAB(60) having a higher affinity for 

ATP when it binds its tetracycline which is in accordance with the ATP switch model 

mechanism of efflux. This higher ATP concentration observed in E. coli::pHSG396tetAB(60) 

may also be attributed to tetracycline getting into the cell and interfering with protein 

synthesis. A build-up of charged tRNAs could result in a downregulation of their synthesis by 

aminoacyl tRNA synthases, a process that is ATP dependent, resulting in an increase in ATP 
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concentration (Green et al., 2010; Pontes et al., 2015). Thus, it appears that when the 

TetAB(60) is expressed in E. coli EPI300 T1R it acts as a sink for ATP resulting in a growth 

defect. 

Together, the growth curve and ATP assays indicate that E. coli::pHSG396tetA(60)ΔtetB(60) 

produces an ATP transporter unable to bind and hoard ATP and so it has a similar growth 

phenotype to E. coli::pHSG396 that doesn’t express TetAB(60). In contrast, E. 

coli::pHSG396tetB(60)ΔtetA(60) expresses a mutated transporter thatcan bind some ATP 

and so it acts as an ATP sink. E. coli::pHSG396tetAB(60) even in the absence of tetracycline 

showed poor growth indicating that TetAB(60) may still bind ATP molecules, acting as an 

ATP sink in the absence of tetracycline resulting in a reduction of total ATP available for 

cellular metabolism.  

RT-PCRs showed that tetAB(60) was not transcribed in DH5α::pHSGtetAB(60) explaining why 

no tetracycline resistance was observed in this clone. In all tetAB(60) subclones the genes 

were cloned with their native promoters. It may be possible that secondary structures at the 

promoter binding site prevent recognition by E. coli Alpha-Select Silver σ-factors. It is 

unlikely to be a lack of promoter sequence recognition as tetAB(60) was transcribed in this 

host from pGEM®-T Easy.  

Transcription of tetAB(60) was also observed in E. coli::pGEMtetAB(60), although both 

DH5α::pGEMtetAB(60) and E. coli::pGEMtetAB(60) were tetracycline-sensitive. The lack of 

tetracycline resistance in these clones may result from secondary structures in the mRNA 

preventing ribosomal binding and translation. Additionally, as discussed in chapter 1, 

improper folding, PTM or transport of the translated TetAB(60) peptides may be responsible 
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for the lack of tetracycline resistance in these clones. This is especially true for proteins with 

large hydrophobic regions such as ABC transporters that may aggregate in the more 

hydrophilic cytoplasm (Vabulas et al., 2010). A failure to traffic proteins correctly can also 

result in non-functional proteins as a result of incorrect positioning of the protein and also 

loss of further processing. For example, sulfide bridge formation, which is important for 

many ABC transporters, takes place mainly in the periplasm by Dsb oxidoreductases 

(Denoncin and Collet, 2013). 

tetAB(60) is transcribed in E. coli::pHSG396tetAB(60) and the clone is tetracycline resistant 

indicating that E. coli EPI300 T1R can translate the tetAB(60) mRNA from pHSG396  as well as 

correctly fold and traffic TetAB(60). Further work is necessary to determine why 

transcription of tetAB(60) does not occur in DH5α::pHSG396tetAB(60) and what post-

transcriptional step(s) fail in DH5α::pGEMtetAB(60) and E. coli::pGEMtetAB(60). 

To conclude, we have identified two novel genes from the human oral cavity that likely 

produce a heterodimeric ABC transporter, TetAB(60). TetAB(60) specifically exports 

tetracycline and tigecycline conferring high levels of resistance to these antibiotics in an E. 

coli host. A limitation of this work is that we do not know the prevalence of these genes in 

the human oral cavity. Further work should be undertaken to survey its prevalence in 

various niches, to determine how common these genes are, and their possible clinical 

relevance for treating bacterial infections with tetracycline derivatives. This work also shows 

that the human oral cavity harbours unknown tetracycline resistance determinants in the 

absence of any obvious selection pressure; although tetAB(60) has an associated fitness cost 

in E. coli EPI300 T1R it may not have this fitness cost in its native host. There is potential for 

these genes to be acquired by mobile genetic elements and transferred to bacterial 
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pathogens, which is particularly worrying given the recent identification of a carbapenem 

and colistin resistant strains of E. coli some of which could only be inhibited by doxycycline 

and tigecycline (Liu et al., 2015; Mediavilla et al., 2016; Yao et al., 2016). However, the 

associated fitness cost of tetAB(60) observed in E. coli may limit any possible fixation 

following dissemination of the genes from their native host to E. coli strains in the absence 

of a tetracycline or tigecycline selective pressure.  
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Chapter 6 

Analysis of a Novel Tn916-like Element from the Human Saliva Metagenomic Library 

 

TT31 was identified when the human saliva metagenomic library was cultured on 5 µg/ml 

tetracycline. 
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6.1 Introduction 

6.1.1 Conjugation 

 

As discussed in chapter 1, conjugation is a mechanism of HGT that involves the transfer of 

genetic material from a donor to a recipient cell through cell-to-cell contact. Conjugative 

transposons (CTns) are DNA that encode for the machinery required for their transfer 

between cells. The first conjugative element discovered was the F-plasmid (fertility plasmid) 

from E. coli (Lederberg et al., 1952). The first CTn, a mobile genetic element (MGE) that can 

integrate into the host chromosome through site-specific recombination, was discovered 

later when tetracycline resistance was observed to transfer to a susceptible strain of E. 

faecalis from a resistant strain in the absence of a plasmid and was called Tn916 (Franke and 

Clewell, 1981). Further discussion of conjugative elements will focus on CTns or integrative 

and conjugative elements (ICEs) of the Tn916 family. 

 

6.1.2 The Modular Nature of Tn916 

 

Tn916 is an 18 Kb CTn that contains 4 functional modules encoding genes involved in 

conjugation, regulation, recombination (excision and integration) and accessory functions, 

Figure 6.1 (Flannagan et al., 1994). 
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Figure 6.1  

 Left        Right 

 

Figure 6.1 Schematic of the Modular Nature of Tn916. The blue arrows on the left side of Tn916 indicate the 

ORFs involved in conjugation. On the right side of Tn916, the green arrows show genes of the regulation 

module while the grey arrow and the red arrows show the tet(M) and genes required for excision and 

integration respectively. This figure was reproduced from Roberts and Mullany (Roberts and Mullany, 2009).  

 

6.1.2.1 The Tn916 Recombination Module 

 

In Tn916-like elements the recombination module typically contains two genes encoding a 

tyrosine recombinase (int) and excisionase (xis), although numerous CTns encode a single 

serine recombinase (tndX), such as Tn5397 and Tn1116 from C. difficile and Streptococcus 

pyogenes respectively (Mullany et al., 1996; Brenciani et al., 2007). The tyrosine 

recombinase catalyses the integration and excision of Tn916 with the latter reaction being 

favoured in the presence of the excisionase (Rudy et al., 1997; Hinerfeld and Churchward, 

2001). The recombinase cleaves at sites at the end of the CTn producing staggered, non-

identical overhangs that form a heteroduplex at the joint of the circular intermediate CTn 

structure. During integration, the recombinase creates cuts in the circular transposon and 

the chromosome target site and mediates insertion of the CTn into the host chromosome. 

The heteroduplexes flanking the integrated CTn are then resolved during host cell 
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replication and mismatch repair (Scott and Churchward, 1995; Taylor and Churchward, 

1997). 

 

6.1.2.2 A Tn916 Module Regulates its Transposition and Conjugation 

 

In the regulation module of Tn916, orf12, orf9, orf7, orf8 and tet(M) play an important role 

in controlling excision of the CTn from the chromosome, through regulation of xis and int 

expression, and a transcription attenuation mechanism of regulation in response to 

tetracycline has been proposed by Su et al. (Su et al., 1992). During transcription, stem-loop 

terminator structures form in the orf12 mRNA transcript. As mRNA codons transcribed from 

this region encode for rare codons, the ribosome lags behind the RNA polymerase (RNAP) 

allowing the stem loop structure to form, disrupting the RNAP-DNA complex, halting 

transcription. When tetracycline is present, protein translation is greatly reduced and 

charged tRNAs build up in the cell. However, a small number of ribosomes are still active 

due to protection from basal levels of Tet(M). These protected ribosomes can transcribe 

orf12 and due to the increased abundance of charged tRNAs, the ribosome can translate the 

mRNA at a faster rate such that it doesn’t lag behind the RNAP. This prevents the stem loop 

structure from forming as its sequence is bound by the RNAP and ribosome and so the RNAP 

is able to continue transcribing into tet(M) and downstream regulation ORFs.  

Orf9 is a putative repressor of orf7 and orf8 transcription. It has been hypothesised that 

when tetracycline is present RNAP produces an antisense orf9 mRNA transcript, resulting in 

the down-regulation of this gene and subsequent de-repression of orf7 and orf8. Orf7 and 
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Orf8 then induce their own expression and the expression of the downstream xis and int 

genes and thus act as amplifiers of the tetracycline signal that triggers excision of the CTn 

(Celli and Trieu-Cuot, 1998; Roberts and Mullany, 2009). 

 

6.1.2.3 Accessory Functions of Tn916 

 

Following on from the initial discovery of Tn916, Tn916-like elements have been identified 

in more than 36 genera from 6 phyla (Roberts and Mullany, 2009). Identification of these 

CTns is based on nucleotide sequence identity as well as the conservation of their modular 

structure and the genes they encode. While early studies relied on Southern blotting 

techniques to identify Tn916-like elements in bacteria, including oral Streptococcus spp., the 

identification of conserved Tn916 genes, typically int and tet(M), by PCR or array analysis 

are frequently used to rapidly determine the presence of the element in a strain or 

metagenomic sample (Hartley et al., 1984; Procino et al., 1988; Bentorcha et al., 1992; 

Spigaglia et al., 2006; Seville et al., 2009; Guglielmini et al., 2011; Dong et al., 2014).  

With the introduction of low-cost genomic sequencing, putative Tn916-like elements have 

been identified in silico in a number of bacteria species including Listeria monocytogenes 

and Streptococcus spp. (Kuenne et al., 2013; Puymege et al., 2015). In a study of invasive 

macrolide resistant S. pneumoniae isolates, Chancey et al. (2015) identified Tn916-like 

elements in 53 of the 86 isolates they studied (Chancey et al., 2015). Functional 

metagenomic studies have also identified novel Tn916-like CTns, such as Tn6079 identified 

from a human infant faecal fosmid library (De Vries et al., 2011). 
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These works have led to the identification of Tn916-like elements encoding accessory genes 

in addition to or in place of tet(M) that alter the host cells phenotype. These include genes 

conferring resistance to biocides, heavy metals and antibiotics other than tetracycline. 

Schematics of some of the Tn916-like elements that have been identified are shown in 

Figure 6.2. 

 

Figure 6.2 

 

Figure 6.2 Illustration of Tn916-like Elements. A schematic of a selection of characterised Tn916-like elements 

detailing their conjugation, regulation and recombination modules as well as the different accessory genes and 

mobile elements they contain. This figure was reproduced from Ciric et al. (Ciric et al., 2011a). 



 285 

6.1.2.4 Tn916 Modifications by MGEs 

 

A number of the Tn916-like elements discussed in this introduction contain other smaller 

MGEs including plasmids, IS elements and introns, Figure 6.2. These interactions allow 

Tn916-like elements to acquire new accessory genes and influence the structure of the 

regulation, conjugation and recombination modules. 

Tn916 has itself been identified as part of a larger CTn, Tn5251. It is composed of a Tn5252-

like CTn, into which a Tn916-like element has inserted; Tn916 can also independently 

transpose from Tn5251 (Provvedi et al., 1996; Iannelli et al., 2014).  

 

6.1.3 The Effect of CTns on the Host Genome 

 

In addition to altering the host’s phenotype through expression of accessory genes, CTns 

may alter the host’s genome in a number of ways. For instance, a CTn may insert into one of 

the host organism’s genes, disrupting its expression. In fact, Tn916 is used as a mutagenesis 

tool to identify gene function (Lin and Johnson, 1991; Mullany, 2012). Alternatively, the 

insertion of a CTn into a gene may result in a fusion event giving rise to a novel protein. Full 

genome sequencing of the C. difficile strain 630 identified CTn5 inserted into a gene 

encoding for a putative surface protein (CD1844) resulting in a potential fusion protein 

between the CTn5 recombinase and the C-terminal end of CD1844 (Sebaihia et al., 2006). 

Fusion events have also been described within Tn916-like elements as a result of 

recombination. Croucher et al. (2011) analysed the genome sequences of 240 S. 
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pneumoniae isolates and identified such a recombination event that resulted in the loss of 

aphA-3 and concomitant creation of a fusion between a repressor gene and orf20 on a 

Tn916-like element (Croucher, 2011). 
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6.2 Chapter Aims 

 

The aim of the work presented in this chapter was to analyse the sequence of the TT31 

tetracycline-resistant clone, that was identified from the human saliva metagenomic library, 

to determine the likely source of the insert and what ORFs present on the insert may be 

responsible for the tetracycline resistance phenotype. 
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6.3 Methods 

6.3.1 Determining the Size of TT31 

 

The pCC1BAC insert from TT31 was extracted, digested using HindIII and analysed by 

agarose gel electrophoresis as described in 2.3.1.  

 

6.3.2 Sequencing TT31 

 

Primers used to sequence the TT31 insert by primer walking are detailed in Table 6.1. 

 

Table 6.1 Primers used to Sequence the TT31 Insert. 

Name Sequence (5’-3’) Purpose Source/Reference 

pCC1-F GGATGTGCTGCAAGGCGATTAAGTTGG End sequencing of pCC1BAC Epicentre® 

pCC1-R CTCGTATGTTGTGTGGAATTGTGAGC End Sequencing of pCC1BAC Epicentre® 

TT31_F1 GGTTGACTCAGTGCTTATCG Sequencing of TT31 This Study 

TT31_R1 GAGGTCAGTCTGAACTTTGCG Sequencing of TT31 This Study 

TT31_F2 GAAGATGGAAGTGATGGAG Sequencing of TT31 This Study 

TT31_R2 GCAAACGACTGTTGAACC Sequencing of TT31 This Study 

TT31_F3 CTATCGCGACTAACATGG Sequencing of TT31 This Study 

TT31_R3 CTGCTCGGTGTATTCAAG Sequencing of TT31 This Study 

TT31_F4 CGTAATGGTTGTAGTTGC Sequencing of TT31 This Study 

TT31_R4 CGATTGGTGGAATGATAGC Sequencing of TT31 This Study 

TT31_F5 GCTAAACCGAATAGAGCTC Sequencing of TT31 This Study 

TT31_R5 GCTTTCGTTCACCAAAACAG Sequencing of TT31 This Study 

TT31_F6 CGAAAGTTATCGGGACTG Sequencing of TT31 This Study 

TT31_R6 CTTTGCTGAGGTGGCAG Sequencing of TT31 This Study 

TT31_F7 GTTAGTATGGCCGCTTCAAG Sequencing of TT31 This Study 

TT31_R7 CCATCTTCTTTTCAGACC Sequencing of TT31 This Study 

TT31_F8 CGTTTAGCGATGAGTCGTG Sequencing of TT31 This Study 

TT31_R8 CTAACGAGCCATTGTTC Sequencing of TT31 This Study 

TT31_F9 GTAGGTTCTGTCGTATCG Sequencing of TT31 This Study 
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TT31_R9 GTCGTATCAGGGCTCTTTCC Sequencing of TT31 This Study 

TT31_F10 CTTACGATGGTAAACGAG Sequencing of TT31 This Study 

TT31_R10 CCGTACTAACAGGAGAACAG Sequencing of TT31 This Study 

TT31_R11 CGCTGAACTATTACGCACAC Sequencing of TT31 This Study 

 

6.3.3 Sequence Analysis of TT31 

 

The sequences obtained from primer walking were assembled to obtain the full TT31 

sequence, using DNASTAR, 2.4.1, Appendix VII. The full TT31 sequence was analysed and 

putative ORFs were identified using the in silico tools as described in chapter 2. 

 

6.3.4 Alignment of TT31 Sequence 

 

As regions of TT31 had highest identity to Tn916 (accession: U09422), this sequence was 

obtained from the NCBI database and aligned with TT31. Additionally, as TT31 encoded a 

putative tet(L) gene, the Tn6079 (accession: GU951538), sequence as well as the 

Lactobacillus johnsonii strain BS15 (accession: CP016400) genome sequence [both of which 

encode tet(L)] were also obtained from the NCBI database and aligned with the TT31 

sequence. Alignments were made using the ClustalΩ software.  

 

 

 

 

https://www.ncbi.nlm.nih.gov/nucleotide/1059943262?report=genbank&log$=nucltop&blast_rank=1&RID=8FJ057F8014
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6.4 Results 

6.4.1 Size of the TT31 Insert 

 

The pCC1BAC vector from TT31 was extracted and after digestion with HindIII and analysis 

by agarose gel electrophoresis showed it contained a 5 Kb insert, Figure 6.3 (a).  

When the insert was sequenced it was revealed to be 14,226 bp in size. Apart from the 

HindIII sites flanking the insert, there were a further four HindIII sites within the insert; 

positioned at 8,532bp, 9,095 bp, 9,793 bp and 14,071 bp from the flanking HindIII site 

adjacent to the pCC1R primer binding site. If these three sites were successfully targeted by 

HindIII it would result in 5 DNA fragments (8,532 bp, 563 bp, 698 bp, 4,278 bp and 155 bp) 

upon digestion. DNA fragments of these sizes were not observed, Figure 6.3(a). It may be 

that the expected 8, 532 bp fragment is obscured by the 8 Kb pCC1BAC fragment and that 

the smaller than 1 Kb fragments are too faint to see on the gel. This would leave only the 

approximately 5 Kb fragment visible on the gel. 
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Figure 6.3 

(a)                           (b) 

    M        1            

        

                                                  

Figure 6.3 Agarose gel containing HindIII Digested TT31.The lane marked M contains the NEB 1Kb extended 
ladder and the lane Marked 1 contains the HindIII digested insert. (a) A 0.9 % agarose gel stained with 
ethidium bromide showing the HindIII digestion fragments of the TT31 insert. The gap in the gel is due to the 
removal of lanes not pertinent to the results being discussed. (b) An image depicting the NEB 1Kb extended 
ladder with size labels. 

 

6.4.2 TT31 Sequence 

 

BLASTN analysis of the 14,226 bp insert showed that from 1 bp to 7,226 bp (the left side of 

Figure 6.4) had 97 % nucleotide identity to Tn916 from Enterococcus faecalis (74 % cover).  

A 1,853 bp region of the left side of the TT31 insert did not align with the Tn916 sequence, 

Figure 6.5. Nine ORFs were identified in this region of the TT31 insert including orf5, orf8, 

orf7 and orf10 found in Tn916-like elements. A truncated orf9 gene, orf9t was also present 

on TT31. The putative protein encoded by orf9t had 100 % amino acid identity to an E. 

faecalis T8 hypothetical protein (accession: EEU27120) that contains a DNA binding, helix-

          1 Kb 

          5 Kb 

      48.5 Kb  Linear 

pCC1BAC 

    5 Kb 

      8 Kb  
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turn-helix, motif. An excisionase and tyrosine integrase as well as tet(M) (also found on 

Tn916-like elements) were also encoded in this region of TT31. A tet(L) ORF with 99 % 

nucleotide identity to tet(L) from multiple species including Enterococcus spp. and 

Streptococcus spp. was also identified, Figure 6.4. 

The right side of TT31, from 7,214 bp to 14,226 bp, exhibited 95 % nucleotide identity to 

Gemella haemolysans ATCC 10379 (accession: NZ_ACDZ00000000). Analysis of the right end 

of the TT31 insert, from 7,227 bp – 14,226 bp, revealed this region of TT31 to encode two 

half-ABC transporters (ABC2; 112 bp – 1,851 bp and ABC1; 1,838 bp and 3,598 bp), a SIR2 

family protein deacetylase (3,599 bp – 4,345 bp) and a SecA translocase (4,428 bp – 6,998 

bp) all of which had high amino acid similarity to proteins from G. haemolysans ATCC 10379 

(>98 %), Figure 6.4. The full TT31 sequence is included in Appendix VII. No HindIII site was 

identified at the boundary between the left side of the TT31 insert (that had homology to 

Tn916) and the right side of the TT31 insert (that had homology to G. haemolysans ATCC 

10379). 
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Figure 6.4  

Left                 Right 

 

     tet(M)  tet(L)           9t    10    7   8          5   xis int         ABC 1          ABC 2  sir2 secA 

 

 

0 Kb    1 Kb         2 Kb        3 Kb         4 Kb        5 Kb         6 Kb        7 Kb          8 Kb        9 Kb       10 Kb        11 Kb       12 Kb      13 Kb      14 Kb     15 Kb         

  Enterococcus faecalis Tn916     Gemella haemolysans ATCC 10379  

  (97 % ID/74 % Cover)      (95 % ID/ 99 % Cover) 

Figure 6.4 Schematic of the ORFs identified from the TT31 Clone. ORFs are represented by blue arrows. The vertical black dashed lines indicate the ends of the sequence. 

The vertical dashed red line indicates the boundary between the regions of the sequence with nucleotide identity to Tn916 on the left and Gemella haemolysans ATCC 

10379 on the right. orf9t, orf10, orf7, orf8, and orf5 are indicated by 9t, 10, 7, 8 and 5 respectively. The excisionase and integrase genes are indicated by xis and int 

respectively. The closest nucleotide relatives are indicated. tet(L) is highlighted orange as it has no homologous region in Tn916.
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6.4.3 TT31 Alignment with Tn916  

 

An alignment between 1 bp - 7,226 bp of TT31 and a 5,844 bp region of Enterococcus 

faecalis Tn916 was conducted due to their high nucleotide identity. This region of E. faecalis 

Tn916 contained the regulatory genes, exision/insertion genes and tet(M) (Roberts and 

Mullany, 2009). The first 1,874 bp of TT31 aligned with the tet(M) encoding region of 

Enterococcus faecalis Tn916 (12,185 bp,– 14,058 bp; 96 % identity), although the first 62 bp 

of tet(M), including the start codon, were not present in TT31, Figure 6.5 and Figure 6.6. The 

sequence alignment between TT31 (1 – 7,226 bp) and Tn916 is included in Appendix VIII.
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Figure 6.5  

   0 Kb             1 Kb               2 Kb               3 Kb                4 Kb                5 Kb               6 Kb             7 Kb 

 

    tet(M)   tet(L)                9t   10        7   8                  5       xis int         

              TT31 

 

 

      tet(M)     6          9    10           7   8                   5   xis int 

              Tn916 E. faecalis 

12.185 Kb      13.185  Kb     14.185 Kb     15.185 Kb     16.185 Kb     17.185 Kb     18.185 Kb    

Figure 6.5 Schematic of TT31 Alignment with Tn916. An alignment between the left 7,226 bp of TT31 and the right 5,844 bp of Tn916. Regions of Tn916 and TT31 that 

aligned are indicated by the blue shaded areas. Each gene schematic is accompanied by its own scale. tet(M) is present in both as is the Tn916 regulation and 

recombination modules. TT31 however does not encode orf6 and Tn916 does not encode tet(L). Additionally, the TT31 orf9 is truncated (9t) compared with Tn916 orf9.
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Figure 6.6 

TT31_1_7226     -------------------------------------------------- 

Tn916           ATGAAAATTATTAATATTGGAGTTTTAGCTCATGTTGATGCAGGAAAAAC 

                                                                   

 

TT31_1_7226     ------------AAGCTTATTATATAACAGTGGAGCGATTACAGAATTAG 

Tn916           TACCTTAACAGAAAGCTTATTATATAACAGTGGAGCGATTACAGAATTAG 

                            ************************************** 

 

TT31_1_7226     GAAGCGTGGACAAAGGTACAACGAGGACGGATAATACGCTTTTAGAACGT 

Tn916           GAAGCGTGGACAAAGGTACAACGAGGACGGATAATACGCTTTTAGAACGT 

                ************************************************** 

 

TT31_1_7226     CAGAGAGGAATTACAATTCAGACAGGAATAACCTCTTTTCAGTGGGAAAA 

Tn916           CAGAGAGGAATTACAATTCAGACAGGAATAACCTCTTTTCAGTGGGAAAA 

                ************************************************** 

 

TT31_1_7226     TACGAAGGTGAACATCATAGACACGCCAGGACATATGGATTTCTTAGCAG 

Tn916           TACGAAGGTGAACATCATAGACACGCCAGGACATATGGATTTCTTAGCAG 

                ************************************************** 

 

TT31_1_7226     AAGTATATCGTTCATTATCAGTTTTAGATGGGGCAATTCTACTGATTTCT 

Tn916           AAGTATATCGTTCATTATCAGTTTTAGATGGGGCAATTCTACTGATTTCT 

                ************************************************** 

 

Figure 6.6 Alignment of tet(M) from TT31 and Tn916. A ClustalΩ alignment between the first 300 bp of tet(M) 

from Tn916 and nucleotide positions 1 bp to 238 bp of TT31; indicating that the first 62 bp of tet(M) were not 

cloned in TT31. The conserved HindIII site between both sequences is highlighted in blue and this represents 

the start of the TT31 insert. The Tn916 tet(M) start codon is highlighted in yellow. 

 

From 3,759 bp to 7,216 bp, TT31 had 97 % nucleotide identity to Enterococcus faecalis 

Tn916 (14,571 bp,– 18,032 bp), Figure 6.5. This region of TT31 encoded orf10, orf7, orf8, 

orf5, the xis and int genes and part of the orf9 gene which is found in Tn916, Figure 6.5 

(Roberts and Mullany, 2009). 1,875 bp – 3,759 bp of TT31 did not align with Tn916, this 

region encoded tet(L) which is not present in Tn916. Additionally, 14,058 bp – 14,570 bp of 

Tn916, that encoded orf6, did not align with TT31. 

Interestingly, TT31 orf9 appeared to be a truncated form, orf9t, of that found in Tn916. The 

first 172 nucleotides in orf9 showed >99 % nucleotide identity with TT31 orf9t, which was 84 

bp shorter at the 3’ - end compared with its Tn916 homolog (354 bp), Figure 6.7.  
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Figure 6.7 

TT31_1_7226      ATGCGTAAAAAAGAAGATAAATATGATTTTAGAGCCTTTGGTTTAGCCATTAAAGAAGCT 

Tn916            ATGCGTAAAAAAGAAGATAAATATGATTTTAGAGCCTTTGGTTTAGCCATTAAAGAAGCT 

L_johnsonii      ATGCGTAAAAAAGAAGATAAATATGATTTTAGAGCCTTTGGTTTAGCCATTAAAGAAGCT 

                 ************************************************************ 

 

TT31_1_7226      CGATTGAAACGAGGTTTAACTCGTGAACAAGTGGGAGCATTGATTGAAATTGACCCACGG 

Tn916            CGATTGCAACGAGGTTTAACTCGTGAACAAGTGGGAGCATTGATTGAAATTGACCCACGG 

L_johnsonii      CGATTGAAACGAGGTTTAACTCGTGAACAAGTGGGAGCATTGATTGAAATTGACCCACGG 

                 ******.***************************************************** 

 

TT31_1_7226      TACTTAACTAATATTGAAAATAAAGGGCAACACCCCAGCATACAAGTTCTTACCTTTAAG 

Tn916            TACTTAACTAATATTGAAAATAAAGGGCAACACCCCAGCATACAAGTTCTTT-----ATG 

L_johnsonii      TACTTAACTAATATTGAAAATAAAGGGCAACACCCCAGCATACAAGTTCTTT-----ATG 

                 ***************************************************:     *:* 

 

TT31_1_7226      ACCTTT--------CTTTTTTT-TACGAGAAAAAAGAAACAAAAAAACCTGCCCTCTGCC 

Tn916            ACCTTGTATCGTTACTTCATGTTTCCGTTGA---TGAATTTTTCTTACCTGCTAA----T 

L_johnsonii      ACCTTGTATCGTTACTTCATGTTTCCGTTGA---TGAATTTTTCTTACCTGCTAA----T 

                 *****         *** :* * *.**: .*   :***: :::.::****** .:      

 

TT31_1_7226      ACCTCAGCAAAGGGGGGTTTTGCTCTCGTG---CTCG---------------------TT 

Tn916            AACTT--------GGTAAAAAGCACCCGACGATTACAGATAGAGAAATACATGGATAGCT 

L_johnsonii      AACTT--------GGTAAAAAGCACCCGACGATTACAGATAGAGAAATACATGGATAGCT 

                 *.**         ** .::::**:* **:     :*.                      * 

 

TT31_1_7226      TAA--------------------------------------------------------- 

Tn916            TTACAGACAAAGAACTATCCTTAATGGAATCTTTAGCCAGCGGTATCAACGAAGCAAGAA 

L_johnsonii      TTACAGACAAAGAACTATCCTTAATGGAATCTTTAGCCAGCGGTATCAACGAAGCAAGAA 

                 *:*                                                          

 

TT31_1_7226      -------------- 

Tn916            ACATCGAAGACTAA 

L_johnsonii      ACATCGAAGACTAA 

 

Figure 6.7 Alignment of orf9 ORFs from TT31, Tn916 and L. johnsonii. A ClustalΩ alignment between the 354 

bp orf9 ORFS from Tn916 and L. johnsonii and the 270 bp orf9 from TT31. The start codons are highlighted in 

yellow and the stop codons in green. TT31 orf9 had 83.6 % and 84 % to its counterparts in Tn916 and L. 

johnsonii respectively. orf9 ORFs from Tn916 and L. johnsonii were 84 bp longer than that encoded by TT31. 

The nucleotides following those highlighted in light blue are the 3’-end nucleotides of the full length orf9 in 

Tn916 and L. johnsonii that are not present in TT31. The nucleotides following the nucleotide highlighted in 

purple are the 3’-end nucleotides of orf9t. These purple and blue highlighted nucleotides mark the point of 

divergence between orf9 and orf9t. The nucleotide regions following these purple and blue nicleotides are 

highlighted in grey; they are unrelated sequences that ClustalΩ has attempted to align. 
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6.4.4 TT31 Alignment with Tn6079 

 

An alignment of the left 7,226 bp of TT31 with the right 11,701 bp of Tn6079 revealed 99 % 

nucleotide identity (82 % cover) between these sequences. TT31, 1 bp - 3,758 bp, aligned 

with Tn6079 between 17,176 bp and 20,917 bp (99 % identity); this region contained tet(M), 

tet(L) and the 3’-end of orf9t identified in TT31. The sequences also aligned between 4,993 

bp and 7,226 bp on TT31 and 26,639 bp and 28,876 bp on Tn6079 (97 %), Figure 6.8. These 

regions contained orf5 and the xis and int genes. The region of TT31 containing orf8, orf7, 

orf10 and the 5’ – end of orf9t (3,759 bp – 4,993 bp) did not align with Tn6079. Additionally, 

the region of Tn6079 that encodes a plasmid recombination protein (pre/mob), a plasmid 

replication protein (rep) and erm(T) that is flanked by IS1216 sequences (20,918 bp – 26,639 

bp) did not align with TT31, Figure 6.8. The sequence alignment between TT31 (1 – 7,226 

bp) and Tn6079 is included in Appendix IX. 
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Figure 6.8  

   0 Kb          1 Kb           2 Kb            3 Kb            4 Kb             5 Kb            6 Kb           7 Kb 

         

              TTT31 

 

                  Tn6079 

  tet(M)                      tet(L)           3’-9(t) pre/mob                 rep      IS1216       erm(T)         IS1216        5   xis     int   

               

17.176 Kb   18.176  Kb     19.176 Kb     20.176 Kb     21.176 Kb     22.176 Kb     23.176 Kb       24.176 Kb        25.176 Kb      26.176 Kb       27.176 Kb     28.176 Kb       29.176 Kb    

Figure 6.8 Schematic of TT31 Alignment with Tn6079. An alignment between the right 7,226 bp of TT31 and the right 11,701 bp of Tn6079. Regions of Tn6079 and TT31 

that aligned are indicated by the blue shaded areas. Each gene schematic is accompanied by its own scale. tet(M) and tet(L) are present in both as are orf5, xis and int. 

Tn6079 however does not encode orf9, orf10, orf7 or orf8. Additionally, Tn6079 encodes pre/mob, rep and erm(T) genes (the latter of which is flanked by IS1216 

sequences) that are not present on TT31, highlighted in orange. 

tet(M)       tet(L)     9t    10      7      8            5   xis    int 



 300 

6.4.5 TT31 Alignment with Lactobacillus johnsonii strain BS15 

 

An alignment of the left 7,226 bp of TT31 with a 12,313 bp region of the L. johnsonii strain 

BS15 genome revealed the sequences to have high nucleotide identity (99 % cover/97 % ID). 

There appeared to be an insertion in L. johnsonii relative to TT31, in orf9t, between 

nucleotides 3, 758 bp and 3, 759 bp as they aligned to positions 41, 612 bp and 46, 612 bp 

respectively on the L. johnsonii genome, Figure 6.9. The intervening 4,999 bp region was 

analysed by BLASTX and found to contain 4 ORFs. These ORFs encoded pre/mob and rep 

genes, a transposase of the IS110 family and an orf6 homolog. The pre/mob and rep genes 

had >99 % nucleotide identity to those encoded by Tn6079.  

This insertion also contained 84 bp of the 3’ - end of orf9  that is found in Tn916 but not in 

TT31, Figure 6.9. This 3’ - end was in frame with the start codon containing 5’ - end of the 

orf9 and so L. johnsonii strain BS15 encoded the full length orf9, Figure 6.7. The 3’ - end of 

orf9t remained in the L. johnsonii genome, outside of the insertion, Figure 6.9. Additionally, 

a small region from 1,875 bp – 2002 bp on the TT31 insert did not align with the L. johnsonii 

strain BS15 genome between 1,975 bp - 2,085 bp. The sequence alignment between TT31 (1 

– 7,226 bp) and L. johnsonii strain BS15 is included in Appendix X.
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Figure 6.9  

   0 Kb          1 Kb           2 Kb            3 Kb            4 Kb             5 Kb            6 Kb           7 Kb 

 

    tet(M)      tet(L)             9(t)    10      7   8                5   xis  int         TT31 

           

                    

  tet(M)                      tet(L)           3’-9(t)      pre/mob            rep    IS110                              6           9     10      7   8              5   xis int  

               

37.772 Kb   38.772 Kb     39.772 Kb     40.772 Kb     41.772 Kb     42.772 Kb     43.772 Kb 44.772 Kb        45.772 Kb      46.772 Kb       47.772 Kb     48.772  Kb       49.772  Kb    

Figure 6.9 Schematic of TT31 Alignment with L. johnsonii strain BS15 Genome. An alignment between the right 7,226 bp of TT31 and a 12,313 bp region of the L. johnsonii 

strain BS15 genome. Regions of alignment between these sequences are indicated by the blue shaded areas. Each gene schematic is accompanied by its own scale. tet(M) 

and tet(L) are present in both as are orf10, orf7, orf8, orf5, xis and int. TT31 encodes orf9t. The L. johnsonii strain BS15 genome contains an insertion in its orf9t relative to 

TT31. This insertion encodes pre/mob, rep, IS110 transposase and orf6 genes; highlighted in orange. The insertion also contains the 84 bp 3’ - end of the full length orf9 

(highlighted in orange) in frame with the start codon of the 5’ end of orf9 that is found in all the sequences (highlighted in blue); thus L. johnsonii encodes the full length 

orf9. The 3’ - end of orf9t is still present in the L. johnsonii genome and is highlighted in green. 

L. johnsonii strain BS15 
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The E. faecalis Tn916 sequence was aligned to the L. johnsonii strain BS15 genome. The left 

14,132 bp of Tn916 aligned with the L. johnsonii genome at positions 25,590 bp – 39,719 bp 

(99% identity). An alignment with the L. johnsonii genome at positions 46,167 bp – 50,073 

bp was observed (99% identity), from 14,126 bp – 18,032 bp on Tn916. The region of the L. 

johnsonii strain BS15 genome that did not align with E. faecalis Tn916 contained tet(L) that 

was also identified in TT31, and the plasmid recombination and replication and transposase 

ORFs. Interestingly, although orf6 and the full length orf9 are not present on the TT31 insert 

they are present in both L. johnsonii strain BS15 and E. faecalis Tn916, Figure 6.10. This 

comparison indicated that L. johnsonii strain BS15 encoded a Tn916-like element. The 

sequence alignment between Tn916 and the L. johnsonii strain BS15 genome is included in 

Appendix XI. 
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Figure 6.10 

0Kb              5 KB           10 Kb                    15 Kb   20 Kb                       25 Kb 

    24 23   22      21           20         19   18     17       16  15            14       13   12   tet(M)     tet(L)          pre/mob       rep IS110   6     9  10 7   8    5     xis     int 

 

                            L. johnsonii 

    

   24 23   22      21           20         19   18   17       16  15            14       13   12   tet(M)                6     9  10 7   8    5     xis     int  Tn916 

 

0 Kb               5 Kb            10 Kb        15 Kb                 20 Kb 

Figure 6.10 Schematic of the Alignment of Tn916 and L. johnsonii strain BS15 Genome. Regions of alignment between these sequences are indicated by the blue shaded 

areas. Each gene schematic is accompanied by its own scale. This region of the L. johnsonii strain BS15 genome aligns with the conjugation module (blue arrows), regulation 

module (green arrows), recombination module (dark red arrows) and the tet(M) gene of Tn916. The tet(L), pre/mob, rep and IS110 transposase genes encoded by the L. 

johnsonii strain BS15 genome are not present on the Tn916-like element. These results indicate that L. johnsonii strain BS15 encodes a Tn916-like element.  

 

 



 304 

6.4.6 Potential Tetracycline Resistance Genes in TT31 

 

The partial tet(M) ORF in TT31 showed 96 % nucleotide identity across its length to the 

tet(M) gene in E. faecalis Tn916. However, TT31 tet(M) appeared to be lacking the first 62 

bp compared with Tn916 tet(M) as a result of cleavage at a HindIII site [conserved in Tn916 

tet(M)] leading to a loss of its start codon. Thus it is likely that tet(M) is not expressed in 

TT31, Figure 6.6. The putative products of the half-ABC transporter ORFs (ABC1 and ABC2) in 

TT31 showed high amino acid identity to two multidrug half-ABC transporters from the G. 

haemolysans ATCC 10379 (99 % cover, 99 % and 98 % identity respectively).  

TT31 also contained a MFS ORF with high nucleotide similarity to tet(L) from Enterococcus 

spp. and Staphylococcus spp. (100 % cover/99 % ID) as previously mentioned.  
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6.5 Discussion 

 

TT31 was identified when the human saliva metagenomic library was screened for 

tetracycline resistance. HindIII digestion of the TT31 insert revealed an apparent 5 Kb insert, 

although sequencing determined the insert to have a 14,226 bp insert. The insert sequence 

had 4 HindIII sites other than the flanking HindIII sites at positions 8, 532 bp, 9,095 bp, 9,793 

bp and 14,071 bp. Digestion of the insert at these sites would produce DNA fragments of 

8,532 bp, 563 bp, 698 bp, 4, 278 bp and 155 bp. Only a single fragment of approximately 5 

Kb was observed which may be represented by the approximately 5 Kb fragment identified 

by agarose gel electrophoresis. Additionally, the expected 8, 532 bp fragment may have 

been obscured by the pCC1BAC vector which is 8,128 bp in size. The smaller fragments may 

have been too faint to be seen on the gel. 

Sequencing of the 14,226 bp insert revealed it to be made up of a 7,226 bp region with 

≥97% nucleotide sequence identity to Tn916 and a region (7,000 bp) with 95% nucleotide 

identity with G. haemolysans ATCC 10379. As no HindIII site was found to divide the insert 

into these Tn916-like and G. haemolysans regions, the insert was not a concatemer. 

Four ORFs that potentially contributed to the observed tetracycline resistance phenotype 

were identified on the insert: tet(M), tet(L) and two genes encoding a putative MDR 

heterodimeric ABC transporter. Alignment of the TT31 tet(M) with its counterpart in Tn916 

revealed them to have >90% nucleotide identity. However, the first 62 bp (including the 

start codon) of the tet(M) gene present in Tn916 was not cloned into TT31 as a result of 

restriction at a conserved HindIII site at this location in the gene. Although there is an ATG 

codon on the pCC1BAC backbone, between the T7 promoter and the insert, it is not in frame 
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with the tet(M) ORF. Additionally, the T7 polymerase is not encoded by pCC1BAC or E. coli 

EPI300 T1R.  As such, although this tet(M) gene may play role in conferring resistance in its 

host cell, it is unlikely that it is expressed in TT31. Thus, the tetracycline resistance 

phenotype is likely a result of the expression of tet(L) and/or the heterodimeric ABC 

transporter, though further characterisation of these genes is required to confirm if this is 

the case. 

As TT31 had 95 % nucleotide identity (between 7,214 and 14,226 bp) with a region of the G. 

haemolysans ATCC 10379 genome, it indicated that the cloned insert contained a partial 

Tn916-like element in a Gemella spp. host. Gemella spp. are Firmicutes and are normal lactic 

acid-producing commensals of the oral cavity (Stackebrandt et al., 1982; Dewhirst et al., 

2010). tet(M) mediated tetracycline resistance has been described in Gemella spp. before; 

evidence for its association with the Tn916 int in this genus was generated when Cerdá 

Zolezzi et al. (2004) used PCR to identify these markers in nasopharyngeal Gemella spp. 

isolates (Olsvik et al., 1995; Cerda Zolezzi et al., 2004; Zolezzi et al., 2007). Apart from this 

study little evidence for the acquisition of tet(M) or other antibiotic resistance genes from 

Tn916-like elements by Gemella spp. has been generated, even though they are likely to 

interact with Streptococcus spp. in the oral cavity which are well studied as carriers of these 

CTns (Ciric et al., 2012). 

As a region of TT31 showed ≥97% nucleotide identity to the tet(M), regulation and 

conjugation modules of Tn916, it indicated that part of a Tn916-like CTn was present in the 

clone. Interestingly, although orf10, orf7, orf8, orf5, xis and int were conserved between 

TT31 and Tn916, there were substantial differences between TT31 and the Tn916 

sequences. For example, TT31 did not encode an orf6 homolog but did encode a truncated 

orf9 that was 84 bp shorter than its Tn916 counterpart. As the orf9 product is thought to be 

http://aac.asm.org/search?author1=Paula+Cerd%C3%A1+Zolezzi&sortspec=date&submit=Submit
http://aac.asm.org/search?author1=Paula+Cerd%C3%A1+Zolezzi&sortspec=date&submit=Submit
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responsible for repressing orf7 and orf8 expression and consequently excision of Tn916, it 

would be of interest to determine if the truncated orf9 product can function in regulating 

the transposition of a Tn916-like element. Indeed, the fact that the putative orf9t product 

has 100 % amino acid identity to a putative DNA binding protein encoded by E. faecalis T8 

provides further evidence for such a function of Orf9t. It is also thought that transcription 

through tet(M) results in the transcription of antisense orf9 mRNA. If orf9t is functional it 

would provide further evidence that the antisense orf9 transcript inhibits translation of the 

sense orf9 transcript, as the orf9t antisense transcript would still be able to inhibit 

translation (Roberts and Mullany, 2009).  

The most noticeable difference between TT31 and Tn916 is the presence of a 1,853 bp 

insert that contains tet(L). If this region of TT31 does represent the right end of a Tn916-like 

element it is unknown what selection advantage carrying two tetracycline resistance genes 

of different classes would give to the CTn or the host cell. As tet(L) is an antiporter it is 

possible that under certain environmental conditions, such as low pH, it confers a selection 

advantage in the presence of tetracycline. Alternatively, the transporter encoded by this 

tet(L) homolog may have different substrates that may result in its selection in the absence 

of tetracycline. 

To the best of our knowledge no other Tn916-like element has this genetic organisation. 

However, the initial BLAST analysis of the left 7,226 bp of TT31 revealed it to have 97% 

nucleotide identity to a 12,313 bp region of the L. johnsonii strain BS15 genome. Relative to 

TT31 however, the L. johnsonii strain BS15 genome contains a 4,999 bp insert in orf9t. This 

insert contains pre/mob, rep, transposase and orf6 ORFs. Interestingly, the insert also 

contains the 3’ - 84 bp section of the full length orf9 that is missing in TT31. This 84 bp 
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sequence is in frame with the start codon-containing 5’-end of orf9t such that L. johnsonii 

strain BS15 encodes the full length orf9 found in Tn916. Subsequent analysis of the L. 

johnsonnii strain BS15 genome shows that a Tn916-like conjugation module is present 

upstream of the region that aligns with the TT31 insert, and that the genome contains a 

Tn916-like element.  

This indicated that TT31 contains a region of an ‘ancestral’ Tn916 element and that a 

hypothetical series of events of acquisition and subsequent loss of genes by this ‘ancestral’ 

element resulted in the creation of Tn916 and that the L. johnsonii strain BS15 genome 

hosts a Tn916-like element that is an intermediate between the two. The series of events 

may have occurred as follows. A plasmid containing the pre/mob, rep, transposase and orf6 

ORFs as well as the 3’ - 84 bp of the full length orf9 gene may have inserted into orf9t of the 

TT31 Tn916-like element, resulting in the creation of the Tn916-like element identified in L. 

johnsonnii strain BS15. Following this, an imprecise excision or recombination event 

mediated by the transposase or the plasmid’s recombination protein, encoded by pre/mob, 

may have occurred whereby sites outside of the plasmid were recognised resulting in the 

excision of a region of the CTn containing tet(L) and the pre/mob, rep and transposase genes 

but leaving orf6 and the full length orf9 fusion behind, thus creating Tn916, Figure 6.11.  

Imprecise excision events have been observed previously. For example, Laverde Gomez et 

al. (2011) observed fragments of the pathogenicity island of E. faecalis strain UW3114 to 

remain in the chromosome following excision. The authors concluded this imprecise 

excision occurred due to the recognition of sequences flanking the element that had 

homology to internal sequences required for excision (Laverde Gomez et al., 2011).
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Figure 6.11  
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     tet(M)      tet(L)                9(t)    10      7   8            5   xis    int  

 

       

    tet(M)                      tet(L)            3’-9(t)      pre/mob            rep    IS110                       6              9     10      7     8              5   xis int 

                   

 

 

     tet(M)    6          9       10       7       8                 5   xis    int  

Figure 6.11 Illustration of the Relationship Between TT31 and Tn916. An illustration of the hypothetical events that may have led to the creation of Tn916. This 
hypothetical event assumes that the left 7,226 bp of TT31 are a part of a larger Tn916-like element. Gene schematics are not to scale. A plasmid containing pre/mob and 
rep genes, orf6, IS110 and the 3’ - end of orf9 (orange) inserts into the TT31 Tn916-like element between. This creates the Tn916-like that we described above as being 
encoded by the Lactobacillus johnsonii strain BS15 genome. This event disrupts the orf9t reading frame (green and blue) and in doing so creates the larger orf9 (orange and 
blue). This is followed by an imprecise excision event that results in the loss of the pre/mob, rep and IS110 as well as tet(L) and the 3’ - end of orf9t; creating Tn916. 
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Although Tn6079 encodes a tet(L) gene there are large differences in the structure of their 

respective regulation modules. The regulation module is absent from Tn6079 and instead, 

plasmid genes (pre/mob and rep) and erm(T) flanked by IS1216 elements are encoded 

between tet(L) and its recombination module. TT31 and Tn6079 shared 99% nucleotide 

identity outside of these regions and the latter’s pre/mob and rep genes were >99 % 

identical to those of found in L. johnsonii; additionally Tn6079 contained the 3’ – end of 

orf9t. Thus, it is possible to hypothesise a relationship between TT31 and Tn6079 whereby 

TT31 is a parent Tn916-like element to Tn6079 and the L. johnsonii Tn916 is an 

‘intermediate’. As described previously for the hypothetical evolution of Tn916, a plasmid 

encoding pre/mob, rep, transposase and orf6 ORFs as well as the 3’ - 84 bp of the full length 

orf9 inserts into orf9t of TT31, creating the L. johnsonii CTn element. A recombination event 

then occurs between two regions of this CTn which results in the deletion of orf10, orf7, 

orf8, orf6 and orf9. This is similar to the event hypothesised by Croucher et al. (2011) to 

have deleted aphA-3 in an S. pneumoniae Tn916-like element (Croucher, 2011). Following 

this, erm(T) flanked by two IS1216 elements inserts upstream of orf5 to give rise to Tn6079, 

Figure 6.12. It is also possible that a lone IS1216 element inserted up stream of orf5 

followed by the insertion of a transposable unit containing a second IS1216 element and 

erm(T). 
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Figure 6.12  
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tet(M)                      tet(L)       3’-9(t)      pre/mob      rep       5   xis  int 

 

          

          IS1216              erm(T)        IS1216  

 

         tet(M)               tet(L)          3’-9(t)      pre/mob             rep IS1216              erm(T)        IS1216      5  xis  int 

 

Figure 6.12 Illustration of the Relationship Between TT31 and Tn6079. An illustration of the hypothetical events that may have led to the creation of Tn6079. This 
hypothetical event assumes that the left 7,226 bp of TT31 are a part of a larger Tn916-like element. Following on from the generation of the Lactobacillus johnsonii strain 
BS15 Tn916-like element described in Figure 6.11, a recombination/deletion event results in the loss of orf6, orf9, orf10, orf7 and orf8; forming a hypothetical intermediate 
CTn. Following this deletion event, the insertion of erm(T) flanked by IS1216 elements (dark red) occurs creating Tn6079. For continuity with Figure 6.11, tet(M), orf5, xis 
and int are coloured blue, tet(L) and the 3’ – end of orf9(t) are green and the plasmid associated genes are orange.  
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Similar events resulted in the acquisition of galactose metabolism genes by lambda-

specialised transduction phages and have been described in prokaryotes also (Lundblad et 

al., 1984; Campbell, 2007; Rice et al., 2005). For example, Tn916 has been shown to mediate 

the excision of itself and an adjacent Tn5386, as well as the genomic material between them 

from its host cell, resulting in a deletion of 178 Kb from the genome (Rice et al., 2005).  

These hypotheses, if correct, point to a Tn916-like element with a gene organisation as 

described in TT31 as an ancestor of both Tn916 and Tn6079, and suggest that the Tn916-like 

element encoded by L. johnsonii strain BS15 may act as a point of evolutionary divergence 

between these two CTns. Much of this discussion relies on the assumption that the TT31 

sequence is a fragment of a larger Tn916-like element in a Gemella spp. host as determined 

from the sequence of this metagenomic clone and although this seems a reasonable 

assumption to make, it is just that. Further work is required to discern if a full length Tn916-

like CTn with a regulation, recombination and tet(M) module structure like the one 

identified in the TT31 clone exists in the human saliva metagenome. One way of 

accomplishing this would be to use a DNA hybridization capture protocol. This would involve 

the design of a biotinylated DNA probe that would hybridize only to the DNA fragments that 

are complementary to the sequences of the TT31 Tn916-like element. These DNA-probe 

duplexes can then be removed from the more complicated metagenomic sample using 

magnetic streptavidin beads and subsequently sequenced. It would also be of interest to 

determine whether this Tn916-like element is present in oral bacteria other than Gemella 

spp. and how common it is in the human oral cavity. 
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Chapter 7 

Analysis of the CTAB-Resistant Clone: A10(F2) 

 

A10(F2) was identified when a subset of the clones in the human saliva metagenomic library 

were cultured in 3.7 µg/ml CTAB. 
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7.1 Introduction 

7.1.1 GalE  

7.1.1.1 Molecular Mechanism of GalE Activity 

 

GalE is a UDP-glucose 4-epimerase encoded for by galE. GalE functions as a homodimeric 

epimerase that catalyzes the reversible reaction UDP-galactose to UDP-glucose, two 

nucleotide sugars that differ in the orientation of their 4-hydroxyl group on the sugar, Figure 

7.1 (Bengoechea et al., 2002; Pena et al., 2015; Thoden et al., 2001). GalE favours the 

production of UDP-glucose as the enzyme has a higher affinity for binding UDP-galactose. 

The Km of UDP-glucose (1000 µM) has been calculated at almost 10-fold greater than that of 

UDP-galactose (160 µM) for GalE (Rodríguez-Díaz and Yebra, 2011; Vorgias et al., 1991). X-

ray crystallographic analysis of GalE from E. coli has shown each GalE subunit to have an 

independent active site with the N-terminal mediating nicotinamide adenine dinucleotide 

(NAD) binding and the nucleotide sugar binding in the C-terminal (Bauer et al., 1992; Nayar 

and Bhattacharyya, 1997).  

In a series of publications Thoden et al. utilised functional assays in conjunction with 

mutagenesis and X-ray crystallography to characterise how GalE catalyzes this reaction. NAD 

is a cofactor in the interconversion of these nucleotide sugars. During the epimerase 

reaction NAD+ acts as an oxidising agent, receiving an electron from the 4’-hydroxyl group of 

either UDP-galactose or UDP-glucose. The resulting 4-ketopyranose intermediate rotates 

180° about this 4’-ketone group before NADH, acting as a reducing agent, transfers an 

electron to it to restore the 4’-hydroxyl group. The transfer of the electron between the 
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NAD cofactor and the nucleotide sugar is mediated by a conserved tyrosine residue in GalE 

(Liu et al., 1997; Thoden et al., 1997, 2000, 2002). GalE from S. sanguinis and B. subtilis have 

also been shown to be able to catalyse the interconversion of UDP-N-acetylgalactosamine 

(UDP-GalNAc) and UDP-N-acetylglucosamine (UDP-GlcNAc) (Soldo et al., 2003; Yang et al., 

2014a). 

 

Figure 7.1 

 

Figure 7.1 The Reaction Catalysed by GalE. A depiction of the reversible conversion of UDP-galactose to UDP-

glucose that is catalysed by GalE. The 4-hydroxyl group on both nucleotide sugars is highlighted in red as is the 

hydrogen that is transferred as NAD+ is reduced to NADH during the reaction. The blue arrow indicates the 

direction of the reaction that is favoured by GalE.   

This Figure was amended from http://www.chemistry.uoguelph.ca/educmat/chm452/lecture7.htm 

(Chem*4520 Metabolic Processes). 

 

 

 

 

http://www.chemistry.uoguelph.ca/educmat/chm452/lecture7.htm
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7.1.1.2 Genetic Locations of galE 

 

galE has been identified in numerous organisms including bacteria, plants and mammals 

(Dormann and Benning, 1998; Krispin and Allmansberger, 1998; Schulz et al., 2004). In E. 

coli, galE is found in the gal operon along with galT, galK and galM that encode a 

uridyltransferase, kinase and mutarotase respectively and are required for D-galactose 

metabolism (Wang et al., 2014). gal operon expression is regulated by the availability of 

glucose; when glucose levels are high, the GalR repressor binds to operator sequences 

flanking the galE promoter creating a loop structure that is stabilised by the HU protein 

which results in only basal level transcription of galE. When galactose is present and glucose 

is not available the former can bind GalR and disrupt the nucleoprotein complex, de-

repressing galE expression. Semsey et al. (2006) demonstrated this complex dissociation by 

showing that increasing concentrations of D-galactose resulted in a reduction in GalR 

crosslinking and an increase in in vitro transcription from these operators. (Lee et al., 2008; 

Semsey et al., 2006). The limited availability of glucose in such circumstances results in 

increased levels of cyclic adenosine monophosphate (cAMP) which triggers operon 

transcription when bound to the cAMP receptor protein (Busby and Ebright, 1999; Narang, 

2009).  

Interestingly, a second galE in an O-antigen biosynthesis locus of E. coli strain O113 has 

been identified. The O-antigen repeat region of this strain is galactose-rich and so the 

second galE may provide a source of UDP-galactose that is not catabolically repressed 

(Parolis and Parolis, 1995; Paton and Paton, 1999). In Streptococcus spp., galE may be 

located in a gal operon, though galE is typically the third gene in the operon rather than the 
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first and in S. pneumoniae galE is separate from the gal operon (Vaillancourt et al., 2002). As 

with E. coli O113, some oral Streptococcus spp. encode two galE genes. The ‘second’ gene is 

typically found in receptor polysaccharide synthesis operons important for coaggregation 

(Yang et al., 2014a).  

galE has been identified in loci outside of the typical gal operon. In Pasteurella haemolytica 

A1 for instance galE was not found with the galT and galK genes (Potter and Lo, 1996). 

Similarly, galE in Haemophilus influenza is not located in an operon with the other gal genes 

(Maskell et al., 1991, 1992). In Acidithiobacillus ferroxidans, galE has been identified in an 

iron regulated operon with luxA, galM, galK and pgM (Barreto et al., 2005). In Neisseria 

meningitidis Group B and Erwinia stewartii, galE  is found in capsule biosynthesis loci (Dolph 

et al., 1988; Hammerschmidt et al., 1994). The different loci of galE in different organisms 

likely reflects the different functions UDP-galactose plays in these cells.  

That galE has been found in different loci, and that some genomes encode multiple copies 

of the gene, suggests that they may been mobilised. For example, two near identical copies 

of galE have been identified in N.  meningitidis Group B (Jennings et al., 1993). Additionally, 

galE from P. haemolytica was found to be bound by 11-bp direct repeats which may be 

indicative of a transposition event and that may explain its separation from the other gal 

genes (Potter and Lo, 1996).  
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7.1.1.3 Functions of GalE 

 

GalE along with the previously mentioned GalT, GalK and GalM enzymes are involved in the 

Leloir pathway. In the Leloir pathway, UDP-galactose is formed when GalT transfers the UDP 

group of UDP-glucose to galactose-1-phosphate. During this reaction glucose-1-phosphate 

(G-1-P) is also generated which can be converted to glucose-6-phosphate and used in 

glycolysis. The epimerase activity of GalE can then regenerate UDP-glucose from UDP-

galactose (Holden et al., 2003), Figure 7.2. 
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Figure 7.2 

 

 

Figure 7.2 The Leloir Pathway. An Illustration of the roles the GalM, GalK, GalE and GalT enzymes play in the 

Leloir pathway, reproduced from Nishimoto and Kitaoka (Nishimoto and Kitaoka, 2007). 

 

UDP-galactose and UDP-glucose, the final products of the Leloir pathway, can act as donor 

molecules for the glycosylation of proteins, EPS components and LPS, as such GalE has been 

shown to be required for the synthesis of these biologically important structures, 

particularly when exogenous galactose is unavailable.  

UDP-Galactose and UDP-GalNAc that are produced by GalE are required for the synthesis of 

B. subtilis EPS (Chai et al., 2012). They are also important components of receptor 

polysaccharides (RPS) produced by Streptococcus spp that are involved in coaggregation. In 
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fact, Xu et al. (2003) showed that insertional inactivation of GalE2 in S. sanguinis resulted in 

a loss of RPS synthesis and coaggregation with Actinomyces naeslundii (Xu et al., 2003).  

In E. coli and Salmonella enterica serovar Typhimurium, GalE is required for synthesis of the 

galactose-containing EPS component colanic acid (Costa et al., 2003; Stevenson et al., 1996). 

As colanic acid plays a role in E. coli biofilm formation, GalE may play a role in the formation 

of E. coli biofilms (Danese et al., 2000). Furthermore, Chai et al. (2012) demonstrated that a 

loss of GalE activity in B. subtilis resulted in a loss of biofilm formation in the absence of 

exogenous galactose (Chai et al., 2012). Somewhat conversely to these previous 

observations, Nakao et al. (2006) demonstrated that P. gingivalis containing a galE 

interruption produced denser biofilms than their wild-type counterparts, to which the 

authors attributed the formation of truncated LPS due to a loss of galactose from this 

biopolymer (Nakao et al., 2006).  

GalE is also involved in capsule biosynthesis in some species including N. meningitidis 

serogroup B, E. stewartii and Erwinia amylovora (Dolph et al., 1988; Hammerschmidt et al., 

1994; Metzger et al., 1994). Thus, GalE can be viewed as a virulence factor. Additionally, in 

P. gingivalis, B. subtilis and E. coli, GalE has been shown to be important for UDP-galactose 

detoxification as this molecule is bacteriolytic at high concentrations (Chai et al., 2012; 

Csiszovszki et al., 2011; Krispin and Allmansberger, 1998). 

The above studies indicate the importance of GalE as a source of UDP-galactose in 

biopolymer synthesis and ultimately cell function and survival. 
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7.1.2 LPS and GalE 

7.1.2.1 LPS Composition 

 

LPS is a major constituent of the Gram-negative bacteria cell envelope. It is a polymer 

composed of lipid A, an inner- and outer-core polysaccharide and a saccharide O-antigen, 

Figure 7.3(a). The highly conserved lipid A is a hexa-acylated disaccharide molecule 

synthesised from the acylation, dimerization and subsequent glycosylation (by two 3-deoxy-

D-manno-octulosonic acid [Kdo] molecules) of UDP-GlcNAc and is the minimal LPS 

component required for E. coli viability, Figure 7.3(a) (Klein et al., 2013; Meredith et al., 

2006).  The hydrophobic nature of the lipid A portion of LPS anchors the polymer to the 

outer membrane (OM) of the cell.  

The inner core is more conserved than the outer core and is composed of phosphorylated 

Kdo and L-glycero-α-D-manno-heptopyranose (hep) residues. It is directly linked to the lipid 

A moiety via Kdo (Klein et al., 2013; Yethon et al., 1998). 
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Figure 7.3 

(a)                                                                                 (b) 

   

Figure 7.3 LPS Structure and E. coli Glycosyltransferases. (a) An illustration the structure of an LPS molecules 

containing an O-antigen. Lipid A is embedded in the OM. The inner core oligosaccharide is composed of Kdo 

and Hep residues to which the outer core oligosaccharides are linked. The O-antigen is a polysaccharide chain 

that is linked to the LPS structure via the inner core oligosaccharide. This Figure was reproduced from 

Magalhães et al. (Magalhães et al., 2007) (b) A depiction of the glycosyltransferases involved in the synthesis 

of the 5 E. coli outer core oligosaccharide types. This diagram was reproduced from Amor et al. (Amor et al., 

2000). 

 

The outer core polysaccharide is attached to the inner core via the hep residue and is more 

variable than the inner core; 5 structural forms have been identified in E. coli. All of the 
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forms contain glucose and galactose residues, two contain GlcNAc (E. coli R3 and K-12) and 

one contains a heptose residue (E. coli K-12) (Amor et al., 2000). The construction of the 

core polysaccharide of LPS is achieved a series of glycosyltransferases that act at the 

cytoplasmic face of the inner membrane. These glycosyltransferases catalyse the transfer of 

a sugar molecule from a nucleotide sugar to an acceptor sugar molecule in the growing core 

polysaccharide through the formation of a glycosidic bond (Heinrichs et al., 1998; Wang and 

Quinn, 2010). In E. coli, waaT, waaX, waaB, waaI and waaW encode galactosyltransferases 

involved in LPS synthesis, Figure 7.3 (b) (Amor et al., 2000; Leipold et al., 2007; Qian et al., 

2014). For example, Qian et al. (2014) used an in vitro assay to show that WaaB could 

catalyse the addition of galactose but not glucose to a phosphate radiolabelled lipid A-core 

oligosaccharide acceptor molecule (measured using electrospray ionization mass 

spectrometry) (Qian et al., 2014). 

Rough LPS is composed of lipid A and the inner and outer core polysaccharides. Smooth LPS 

also contains the O-antigen polysaccharide that is linked to the outer core and represents 

the most outer region of the LPS. The O-antigen is extremely variable and more than 180 E. 

coli serogroups have been described (Orskov et al., 1977; Stenutz et al., 2006). The O-

antigen is synthesised on the membrane bound undecaprenyl carrier by a series of 

glycosyltransferases that are specific to the O-antigen (Raetz and Whitfield, 2002; Samuel 

and Reeves, 2003). The variability within the O-antigen is a result of differences in the sugar 

residues present and the level of branching within the structure that is mediated in part by 

differences in glycosyltransferases (Lerouge and Vanderleyden, 2002). Not all organisms 

produce an O-antigen and E. coli K-12 is known to produce rough LPS (Stevenson et al., 

1994). 
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7.1.2.2 GalE and its Effect on LPS Structure 

 

GalE has been shown to play a role in proper LPS and Lipooligosaccharide (LOS; lacking the 

O-antigen) synthesis in Gram-negative bacteria as it produces nucleotide sugars that act as 

donors in glycosyl transferase reactions. For example, a loss of galE or a reduction in GalE 

enzyme activity in Neisseria spp. can result in a truncated LOS that lacks galactose and 

lactose residues in the core polysaccharide (Jennings et al., 1993; Lee et al., 1995, 1999; 

Robertson et al., 1993). GalE is also important for the synthesis of the O-antigen in some 

species. Nakao et al. (2006) showed that a loss of galE in P. gingivalis led to the production 

of a truncated O-antigen structure and a rough phenotype (Nakao et al., 2006). An earlier 

study demonstrated that P. haemolytica galE could complement a rough phenotype in a 

ΔgalE S. enterica serovar Typhimurium mutant, reinstating a smooth phenotype (Potter and 

Lo, 1996). A galE mutant E. coli K-12 strain (that could produce O-antigen) was shown to be 

able to produce galactose containing core oligosaccharide and O-antigen structures when 

grown on LB. Subsequent loss of the galK and galT genes resulted in a loss of galactose 

incorporation, however, suggesting that in the absence of GalE activity, E. coli may still be 

able to use exogenous galactose to produce LPS (Pierson and Carlson, 1996; Schnaitman and 

Austin, 1990). 

 

 

 

 



 325 

7.1.2.3 Functions of LPS 

 

LPS is negatively charged as a result of phosphate groups on the lipid A and inner core 

structures and the presence of anionic Kdo sugar residues (Raetz and Whitfield, 2002). The 

negative charges are vital for OM integrity as they bind Mg2+ and Ca2+ causing a tight packing 

of the structure. LPS may play a role in biofilm formation in some species and the 

composition of the inner polysaccharide core has been shown to effect biofilm formation in 

E. coli. Nakao et al. (2012) showed that mutant E. coli strains expressing deep rough LPS 

(lacking much of the polysaccharide core) exhibited increased biofilm formation, while 

expression of an O-antigen had the opposite effect (Nakao et al., 2012). O-antigen 

interference in biofilm formation in other bacteria, including P. gingivalis and Vibrio 

vulnificus, has been described also (Lee et al., 2016b; Nakao et al., 2006).  

LPS is the target for a number of antimicrobial compounds including QACs such as CTAB and 

CPC that interact with the structure’s negative charges inducing cell lysis (Ding et al., 2003; 

Domingues et al., 2014; Gilbert et al., 2002; Maillard, 2002). The charged nature of the LPS 

outer structures and the hydrophobic nature of lipid A also prevent penetration of the OM 

by charged and hydrophobic molecules (Clifton et al., 2015; Walsh et al., 2000). Mutations 

resulting in modifications to the LPS have also been described in resistant bacterial strains, 

including a CTAB resistant E. coli mutant strain that exhibited reduced cell surface 

hydrophobicity (Ishikawa et al., 2002).  

The lipid A of E. coli growing in biofilms has been shown to undergo palmitoylation resulting 

in increased antimicrobial peptide resistance. Chalabaev et al. (2014) demonstrated that 

lipid A palmitoylation in E. coli biofilms conferred a 3-fold increase in survival against the 
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antimicrobial peptide protegrine-1 compared with biofilms formed by a pagP (palmitoyl 

transferase) mutant strain that could not modify its lipid A (Chalabaev et al., 2014).  

Resistance to cationic antimicrobial peptides and polymyxin (which binds to LPS) has been 

demonstrated to result from an offset or loss of the negative charge on LPS. For example, 

Vibrio cholerae O1 El Tor strain achieves this through the presence of glycine residues in its 

lipid A that increase its positive charge, and mutants lacking the genes required for this 

modification have been found to be 100-fold more sensitive to polymyxin (Hankins et al., 

2012). Other bacteria such as P. gingivalis have been shown to reduce the level of 

phosphorylation at their lipid A to reduce the negative charge of their LPS (Kumada et al., 

1995).  
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7.2 Chapter Aims 

 

The aim of the work presented in this chapter was to determine the gene(s) required for 

reduced CTAB susceptibility in the A10(F2) clone and to determine what level of resistance 

the gene(s) conferred to the E. coli EPI300 T1R host and if they altered the host LPS. 
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7.3 Methods and Materials  

7.3.1 Determining the Size of A10(F2) 

 

The pCC1BAC insert from A10(F2) was extracted, digested using HindIII and analysed by 

agarose gel electrophoresis as described 2.3.1. The 1 Kb extended ladder from NEB was 

used as a DNA fragment size reference. 

 

7.3.2 Sequencing of A10(F2) 

 

Inserts were sequenced using primer extension Sanger sequencing. The primers used to 

sequence A10(F2) are included in Table 7.1. 
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Table 7.1 Primers for Subcloning and ‘Entranceposon’ Sequencing  

Name Sequence (5’-3’) Information 

pCC1-F GGATGTGCTGCAAGGCGATTAAGTTGG End sequencing of pCC1BAC 

(Epicentre®) 

pCC1-R CTCGTATGTTGTGTGGAATTGTGAGC End sequencing of pCC1BAC 

(Epicentre®) 

CTAB_F2 GGATCTTGTTGAGAATAAGG Sequencing of A10F2 (This Study) 

CTAB_R2 CTGTTATTACCCCTAGTGC Sequencing of A10F2 (This Study) 

CTAB_F3 GGACAGTGCGGCGAGTG Sequencing of A10F2 (This Study) 

CTAB_R3 GTCGAACCATAAATTGAAC Sequencing of A10F2 (This Study) 

CTAB_F4 CAATTCCCATCACGGAGTTC Sequencing of A10F2 (This Study) 

CTAB_R4 CCTCTCTATTGGCATCTAAG Sequencing of A10F2 (This Study) 

CTAB_F5 CCTTCAGTACTTCTTTGTC Sequencing of A10F2 (This Study) 

CTAB_R5 GATGGTAGAACCTGACTTAG Sequencing of A10F2 (This Study) 

CTAB_F6 GCTTTGCCCACCTCAACAC Sequencing of A10F2 (This Study) 

CTAB_R6 CCACTGCATAAACAGACC Sequencing of A10F2 (This Study) 

CTAB_F7 CAACCACTTAAAGATAAGC Sequencing of A10F2 (This Study) 

CTAB_R7 CATTGGCATATCTAAAGC Sequencing of A10F2 (This Study) 

CTAB_R8 CCTGAGCCAACAGTATTAG Sequencing of A10F2 (This Study) 

SeqW GGTGGCTGGAGTTAGACATC Sequencing out from ‘Entranceposon’ 

(Green et al., 2012)  

SeqE CGACACACTCCAATCTTTCC Sequencing out from ‘Entranceposon’ 

(Green et al., 2012) 

Isomerase_F CGCGCGAAGCTTTTATGCAGTGGGGTTTGGTT 

 

Amplification of the Isomerase gene 

introducing a HindIII restriction site – 

This Study 

Isomerase_R CCCGCCGAATTCCCCCTTCAGGAATAGATTCT 

 

Amplification of the Isomerase gene 

introducing a EcoRI restriction site – This 

Study 

galE_F CGCGCGAAGCTTGCTCGTGCAAAGGATACACA Amplification of galE introducing a 

HindIII restriction site – This Study 

galE_R GCGGCGGAATTCCAAATCAAACCGATTCATGC Amplification of galE introducing a EcoRI 

restriction site – This Study 
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7.3.3 Sequence Analysis of A10(F2) 

 

The full A10(F2) sequence obtained was assembled and analysed using the in silico tools 

described in chapter 2. 

 

7.3.4 Susceptibility of A10(F2) to CTAB 

 

The susceptibility of E. coli EPI300 T1R::pCC1BAC and A10(F2) was determined using the 

broth microdilution method described in 2.5.1. The concentration range tested for CTAB 

was 2 – 128 µg/ml. The agar dilution method was also employed to determine the 

susceptibility of E. coli EPI300 T1R::pCC1BAC and A10(F2) to CTAB. 16 hour cultures of E. coli 

EPI300 T1R::pCC1BAC and A10(F2) were adjusted to an OD600 of 0.1. 10 µl of these 

suspensions were spotted on to the surface of LB agar containing CTAB (4 – 512 µg/ml) and 

plates were incubated for 16 hours at 37 °C. 

 

7.3.5 Random Transposon Mutagenesis 

 

To identify the gene(s) involved in CTAB resistance in A10(F2) using random transposon 

mutagenesis, the Template Generation System II Kit (Thermo Scientific; Paisley, UK) was 

used. This kit uses an ‘Entranceposon’ carrying a kanamycin resistance marker that is 

randomly inserted into the DNA sequence of interest. The sequence of the ‘Entranceposon’ 



 331 

is shown in Figure 7.4. 40 ng of A10(F2) pCC1BAC preparation was incubated with 1 µl of 

‘Entranceposon’, 4 µl of MuA transposase buffer and 1 µl of MuA transposase (added last) in 

a final volume of 20 µl for 1 hour at 30 °C. The reaction was then heat-inactivated at 75 °C 

for 10 min before being diluted 1 in 10 using molecular grade water. The diluted reaction 

was electroporated into E. coli EPI300 T1R, as described in 2.3.6, and after recovery the cells 

were incubated for 16 hours at 37 °C on LB agar (chloramphenicol 12.5 µg/ml, kanamycin 20 

µg/ml; 100 µl cells per plate). 

 

Figure 7.4 

 

TGAAGCGGCGCACGAAAAACGCGAAAGCGTTTCACGATAAATGCGAAAACGATGTCTAACTCCAGCCACCGTTTAAACG
GATCCTAGTAAGCCACGTTGTGTCTCAAAATCTCTGATGTTACATTGCACAAGATAAAAATATATCATCATGAACAATAAA
ACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGCCATATTCAACGGGAAACGTCTTGCTCGAGGCCGCGAT
TAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATCTAT
CGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGA
GATGGTCAGACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCATG
GTTACTCACCACTGCGATCCCCGGGAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGA
TGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTC
GCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGAGCGTAATGGCTGGCCTGTTGA
ACAAGTCTGGAAAGAAATGCATAAGCTTTTGCCATTCTCACCGGATTCAGTCGTCACTCATGGTGATTTCTCACTTGATAAC
CTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGGAATCGCAGACCGATACCAGGATCTTGC
CATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTGAT
ATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTAATCAGAATTGGTTAATTGGTTGTAACACTGGCAGAGC
ATTACGCTGACTTGACGGGACGGCGGCTTTGTTGAATAAATCGAACTTTATTCGGTCGAAAAGGATCCGCGGCCGCCGAC
ACACTCCAATCTTTCCGTTTTCGCATTTATCGTGAAACGCTTTCGCGTTTTTCGTGCGCCGCTTCA  

 

Figure 7.4 Entranceposon Sequence. The sequence of the ‘Entranceposon’ used in the creation of the A10(F2) 

transposon mutagenesis library is depicted here. The SeqW and SeqE primer binding sites used to sequence 

out from the transposon are highlighted in yellow and green respectively. 
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7.3.5.1 Screening of Random Transposon Mutagenesis Library 

 

The clones that resulted from the ‘Entranceposon’ mutagenesis were picked onto LB agar 

(chloramphenicol 12.5 µg/ml, kanamycin 20 µg/ml) in a 96-grid system marked plate and to 

the corresponding wells of a 96-well plate that contained LB (chloramphenicol 12.5 µg/ml, 

kanamycin 20 µg/ml, CTAB 3.7 µg/ml). The plates were then incubated for 16 hours at 37 °C. 

Clones that grew on the agar plates but not in the 96-wells were selected. Plasmids were 

extracted from these clones of interest and the location of the ‘Entranceposon’ within the 

plasmid was determined by sequencing using the SeqW and SeqE primers, Table 7.1. 

 

7.3.6 Subcloning of Epimerase and Isomerase Genes 

 

To amplify galE from A10(F2), galE_F and galE_R primers were used, the Isomerase gene 

was amplified using the Isomerase_F and Isomerase_R primers. Both galE and the 

Isomerase gene were amplified using Isomerase_F and galE_R primers. These primers also 

introduced HindIII and EcoRI sites that flanked the promoter regions and translation stop 

sites of the genes of interest. The primers used in subcloning are listed in Table 7.1. The 

amplicons and pCC1BAC were double-digested by HindIII and EcoRI as described in chapter 

2.3.2. After digestion, the free ends of pCC1BAC were dephosphorylated by CIAP as 

described in 2.3.3. The digestion reactions were purified using the QIAquick PCR Purification 

Kit. Following purification, the digested amplicons were ligated into pCC1BAC using T4 DNA 

ligase (NEB). Ligation reactions were desalted before electroporating into E. coli EPI300 T1R. 
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After electroporation, cells were recovered in SOC for 1 hour at 37 °C before plating (100 µl) 

on LB agar supplemented with chloramphenicol (12.5 µg/ml) with or without CTAB (32 

µg/ml). The constructs and strains created are detailed in Table 7.2. 

 

Table 7.2 Strains and Constructs. 

 Name Reference  Source 

Constructs pCC1BAC::A10(F2) pCC1BAC containing 
19.1 Kb metagenomic 
DNA insert 

This Study 

 pCC1BAC::galE pCC1BAC containing  
1, 054 bp galE amplicon 

This Study 

 pCC1BAC::Iso pCC1BAC containing  
1, 609 bp Isomerase 
amplicon 

This Study 

 pCC1BAC::galE-Iso pCC1BAC containing  
2, 592 bp galE and 
Isomerase amplicon 

This Study 

Strains A10(F2) E. coli EPI300 
T1R::[pCC1BAC::A10(F2) 
 

This Study 

 E. coli::pCC1galE E. coli EPI300 
T1R::[pCC1BAC::galE]  

This Study 

 E. coli::pCC1iso E. coli EPI300 
T1R::[pCC1BAC::Iso] 

This Study 

 E. coli::pCC1gal-iso E. coli EPI300 
T1R::[pCC1::galE-Iso] 

This Study 

 

7.3.7 LPS Extraction 

 

E. coli::pCC1BAC, A10(F2) and E. coli::pCC1galE were grown for 16 hours in 10 ml LB 

containing chloramphenicol (12.5 µg/ml) and CTAB (3.7 µg/ml) when required. These 

cultures were centrifuged at 10,000g for five min and the resulting cell pellets washed twice 

with PBS (0.15M) by centrifuging as above. The pellets were resuspended in 4 ml of PBS and 

sonicated on ice for 10 min. Proteinase K (100 µg/ml) was then added to the sample 

incubated for 1 h at 65°C. The sample was then treated with DNase (20 µg/ml) and RNase 
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(40 µg/ml) with 20 % MgSO4 (1 µl/ml) and chloroform (4 µl/ml) overnight at 37°C. The 

following day an equal volume of 90% phenol at 65°C was added to each sample and they 

were vigorously agitated at 65°C for 15 min before cooling on ice and centrifuging at 10,000 

g for 10 min. Supernatants were transferred to 15 ml tubes and 300 µl of molecular grade 

H2O was added to each to extract the LPS from the phenol phase. Sodium acetate at a final 

concentration of 0.5M and 10 volumes of 95% EtOH were added to the extracts and they 

were kept at -20°C overnight to allow LPS to precipitate. The samples were then centrifuged 

at 2000 g at 4°C for 10 min. The resulting pellets were dissolved in 1 ml molecular grade H2O 

and dialysed against molecular grade H2O using Pur-A-Lyzer™ 800 µl cassettes with 1kDa 

cut-offs (Sigma) to remove residual phenol. 

 

7.3.8 Mass Spectrometry Analysis of Extracted LPS 

 

The LPS extractions were analysed by LC-MS conducted by the UCL School of Pharmacy. The 

fragments identified by the mass spectrometry analyses were displayed as mass to charge 

ratios (m/z). 
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7.4 Results 

7.4.1 Analysis of the A10(F2) Sequence 

 

The A10(F2) insert was found to be approximately 19.1 Kb, Figure 7.5 (a). 

 

Figure 7.5 

(a)         (b)   

  M        1 

       

Figure 7.5 Agarose Gel Displaying HindIII Digested A10(F2). The lane marked M is the NEB 1Kb extended 

ladder, the lane Marked 1 contains the HindIII digested inserts.  (a) Digestion of the A10(F2) insert with HindIII 

results in 7 fragments when viewed on a 0.9 % agarose gel stained with ethidium bromide. (b) An image 

depicting the NEB 1Kb extended ladder with size labels. 

 

A total of 10,456 Kb of the insert was sequenced, 5,917 bp from the pCC1R primer binding 

side of the insert and 4,539 bp from the pCC1F primer binding side; the sequencing primers 

are listed in Table 7.1. The forward and reverse sequences obtained for A10(F2) are included 

in Appendix XII. BLASTN analysis of the 5,917 bp sequence revealed it to have similarity to 

4.1 Kb 

4 Kb 

Linear 

pCC1BAC 

3.9 Kb 

2.6 Kb 

1 Kb 

2.5 Kb 

1 Kb 

      48.5 Kb  

          3 Kb 

          1 Kb 
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Veillonella parvum DSM 2008 (accession: CP001920.1, 88 % cover, 85 % ID). BLASTX 

revealed that this region of the insert contained 7 putative ORFs, encoding two nucleoside 

phosphate epimerases, a glucose-6-phosphate isomerise, two RNaseH domain containing 

proteins, a YbaK family deacylase protein and a protein of unknown function, Figure 7.6. The 

remaining 4,539 Kb had nucleotide sequence similarity to P. melaninogenica (accession: 

CP002122.1, 47 % cover, 81 % ID) according to BLASTN and BLASTX analysis indicated that it 

contained 4 ORFs encoding two putative ABC half transporters, a permease and an EngA 

type GTPase, Figure 7.6. 

 

 

 

 

 

 

 

 

 

 

 

 



 337 

Figure 7.6 

    pCC1F                      pCC1R 

      GTPase HP ABC1  Permease            ABC2          ybaK   RNaseH     wcaG          HP       G6P-Isomerase galE  HP  

 

 

   0 Kb              1 Kb       2 Kb                 3 Kb              4 Kb         13.1 Kb 14.1 Kb            15.1 Kb        16.1 Kb     17.1 Kb       18.1 Kb       19.1 Kb 

 

Figure 7.6 Schematic of the A10(F2) Insert. Diagram depicting the ORFs present in the sequenced regions of pCC1BAC::A10(F2). The 4, 539 bp sequence adjacent to the 

pCC1F primer binding region is indicated on the left and the 5, 917 bp region adjacent to the pCC1R primer binding site is indicated on the right. The region bordered by the 

vertical red dashed lines indicates the regions of the insert that has not been sequenced. The black vertical dashed lines indicate that regions of these genes are not 

present in the clone. 

Prevotella melaninogenic (47 % cover/81 % ID)   Veillonella parvum (88 % cover/85 % ID) 
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7.4.2 A10(F2) CTAB Susceptibility 

 

The susceptibility of E. coli EPI300 T1R::pCC1BAC to CTAB was 4 µg/ml using the 

microdilution method and 16 µg/ml using the agar dilution method. Using the microdilution 

method, the susceptibility of A10(F2) to CTAB was 8 µg/ml (2-fold increase) and 64 µg/ml (4-

fold increase) using the agar dilution method. 

 

7.4.3 Random Transposon Mutagenesis Results 

 

In order to determine what genes were responsible for the observed reduced susceptibility 

to CTAB, random transposon mutagenesis was employed. Screening of the random 

transposon library revealed ten mutants that could repeatedly be shown to have lost their 

reduced susceptibility to CTAB phenotype. Sequencing of these ten mutants showed that 

the ‘Entranceposon’ had inserted into different locations in the A10(F2) insert, Figure 7.7. In 

one of the mutants, the transposon inserted into the glucose-6-phosphate (G-6-P) 

isomerase gene 324 bp from the stop codon of the gene. In the remaining 9 mutants, the 

transposon had inserted into different regions of galE; the relative positions of these 

insertions are shown in Figure 7.7. 
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Figure 7.7 

  HP         G6P-Isomerase     galE     HP   

 

 

       15.1 Kb              16.1 Kb    17.1 Kb                          18.1 Kb       19.1 Kb 

Figure 7.7 Schematic of A10(F2) 15.1 – 19.1 Kb. The red triangles indicate the insertion locations of the ‘Entranceposons’ that resulted in a loss of CTAB resistance in 

A10(F2). The vertical dashed orange lines indicate the sublconed region that contained the isomerase gene. The vertical dashed green lines indicate the subcloned region 

that contains galE. The sublconed region that contained both the isomerase and galE are represented by the vertical dashed orange and green lines that are furthest apart. 
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7.4.4 Subcloning of galE and Isomerase genes 

 

To further confirm that galE expression was required for the observed reduction in CTAB 

susceptibility in E. coli EPI300 T1R amplicons containing galE, the Isomerase gene and both galE and 

the Isomerase(gal-iso) were cloned into E. coli EPI300 T1R using pCC1BAC, Figure 7.7 and Figure 7.8. E. 

coli::pCC1galE and E. coli::pCC1gal-iso were able to grown on LB agar containing CTAB (32 µg/ml). E. 

coli::pCC1iso was unable to grow on LB agar containing CTAB (32 µg/ml), indicating that galE was 

required for reduced susceptibility to CTAB in A10(F2). 

 

Figure 7.8  

 

                             

Figure 7.8 Agarose gel of A10(F2) Subclones. Agarose gel image showing the inserts of the E. coli::pCC1galE, E. 

coli::pCC1iso and E. coli::pCC1gal-iso after HindIII and EcoRI double digestion. Lane 1 contains HyperLadder I. Lane 2 

shows the 1, 054 bp inserts of the E. coli::pCC1galE subclone. Lane 3 shows the 1, 609 bp insert of the E. coli::pCC1iso 

subclone. Lane 4 shows the 2, 592 bp insert of E. coli::pCC1gal-iso. The 8 Kb fragment in lanes 2, 3 and 4 is the pCC1BAC 

backbone. The white line indicates the removal of lanes not included in this figure. 

 

    1            2          3         4         

      8 Kb  

      2.5 Kb  

      1.5 Kb  

       1 Kb  
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7.4.5 Mass Spectrometry Results 

 

To gain an insight into the mechanism of reduced CTAB-susceptibility in A10(F2), LPS was extracted 

from E. coli::pCC1BAC, A10(F2) and E. coli::pCC1galE. All extractions contained fragments with mass 

to charge ratios between 490 and 650 m/z and a single peak at 1051 m/z, Figure 7.9(a-c). In the 

A10(F2) and E. coli::pCC1galE LPS extractions a peak at 1091 m/z was also present. Two fragments at 

781 and 927 m/z were present in A10(F2) but not in the other two fractions. A peak at 1405 m/z was 

present in the E. coli::pCC1galE LPS extractions but not in the other two. These differences in mass-

to-charge spectra between E. coli::pCC1BAC and both A10(F2) and E. coli::pCC1galE suggest that the 

latter two produce LPS with a different composition compared with E. coli::pCC1BAC. 
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Figure 7.9 

(a) 

  

(b) 

 

(c)  

 

Figure 7.9 Mass Spectrometry of LPS. Graphs depicting the mass to charge ratios of the fragments in the LPS extractions 

of (a) E. coli::pCC1BAC, (b) E. coli::pCC1galE and (c) A10(F2). The fragment with a mass to charge ratio of 1091 m/z 

present in E. coli::pCC1galE and A10(F2) but not in E. coli::pCC1BAC are highlighted by a blue circle. 

 

 

E. coli::pCC1BAC 

E. coli::pCC1galE 

A10(F2) 



 343 

7.5 Discussion 

A single clone with reduced susceptibility, A10(F2), was identified from the screening of a subset of 

the human saliva metagenomic library (1, 248 clones). To the best of our knowledge this is the first 

reporting of a CTAB-resistant clone identified from a functional metagenomic screen. The clone was 

likely a concatemer as sequencing revealed the insert to contain DNA from two different phyla, 

Firmicutes and Bacteroidetes. One side of the insert had similarity to Veillonella parvum (88 % cover, 

85 % ID) and the other similarity to P. melaninogenica (47 % cover, 81 % ID) with a HindIII site 

marking the border. The insert contained putative ABC transporter genes, on the P. histicola side, as 

well as genes that have been shown to be involved in LPS synthesis, on the V. parvum side. 

Mechanisms of CTAB resistance being mediated by efflux and LPS expression have been described 

before (Ishikawa et al., 2002; Ciric et al., 2012). 

Using the microdilution method, a 2-fold reduction in CTAB susceptibility was observed in A10(F2) 

compared with E. coli EPI300 T1R and a 4- fold reduction was observed when the agar dilution 

method was used. These levels of susceptibility for E. coli EPI300 T1R are in agreement with other 

studies (Ishikawa et al., 2002; Zhang et al., 2016).  The greater reduction in susceptibility to CTAB 

observed for both E. coli EPI300 T1R and A10(F2) when grown on agar compared with when they 

were grown in liquid culture (4-fold and 8-fold increase respectively) may be a result of the biofilm 

nature of their growth in colonies. Cells growing in biofilms are inherently more resistant to 

antimicrobials than are planktonically growing cells. That a greater reduction in susceptibility was 

observed for A10(F2) than for E. coli EPI300 T1R may be a result of the presence of galE that leads to 

the production of an LPS that results in greater biofilm formation and thus reduced susceptibility to 

CTAB (Chalabaev et al., 2014; Nakao et al., 2012).  
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 Transposon mutagenesis revealed a loss of CTAB resistance occurred when the ‘entranceposon’ 

inserted into either the G-6-P isomerase gene (A10(F2)-F8) or the galE (A10(F2)-G3) gene. As 

subsequent subcloning work revealed only that only galE was required for the CTAB resistance 

phenotype it is likely that insertion of the ‘entranceposon’ in the isomerase gene disrupted 

transcription of galE that is downstream of the G-6-P isomerase. Thus, although 4 transporter 

proteins were encoded on the side of the insert with highest nucleotide similarity to P. melaninogenic 

(47 % cover/81 % ID), none of these were required for CTAB resistance. 

Although this, to the best of our knowledge, is the first time that a CTAB resistant clone has been 

isolated from a functional metagenomic library, previous functional metagenomic assays have 

identified galE as a resistance gene. Mori et al. isolated a menadione-resistant clone from a 

wastewater fosmid library expressing a galE gene that they hypothesised reduced the permeability of 

the OM (Mori et al., 2008). In two separate functional metagenomic surveys of the human gut, galE 

expression was shown to be involved in salt tolerance and benzalkonium chloride resistance (Bülow, 

2015; Culligan et al., 2012). 

The galE gene in A10(F2) was flanked by two genes encoding hypothetical proteins and a glucose-6-

phosphate isomerase and wcaG (GDP-L-fucose synthase) on a fragment of DNA with highest 

similarity to Veillonella parvum (88 % cover/85 % ID). The latter gene has been shown to be involved 

in capsule synthesis in E. coli, Klebsiella pneumoniae and Campylobacter jejuni; however, it doesn’t 

play such a role in Veillonella spp. as they don’t produce a capsule (Mashima and Nakazawa, 2015; 

McCallum et al., 2011; Shu et al., 2009). As Veillonella spp. are also asaccharolytic these sugar-

metabolising ORFs are unlikely to be involved in ATP generation and are more likely to provide 

building blocks for the synthesis of LPS and EPS polymers (Vesth et al., 2013). However, as with all 

functional metagenomic surveys, taxonomic assignment is difficult and thus discussions on functions 

of genes in their native host is limited. 
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Although GalE in its native host may not function in reducing the cell’s susceptibility to CTAB, in the 

context of the E. coli EPI300 T1R host it does. Metabolic enzymes have been implicated in 

antimicrobial resistance before. FabI is an enoyl-acyl carrier protein reductase involved in fatty acid 

synthesis and is the target of the antimicrobial agent triclosan. In a study conducted by Heath et al. 

(2000), B. subtilis FabI was demonstrated to have a lower affinity for triclosan compared with E. coli 

FabI. They further showed that expression of B. subtilis fabI resulted in a 2-fold greater reduction in 

triclosan susceptibility compared with E. coli fabI expression in a fabI mutant E. coli strain (Heath et 

al., 2000). Following my departure from the Eastman Dental Institute, clones from the human saliva 

metagenomic library with reduced susceptibility to triclosan were identified, all of which encoded 

fabI on their insert. This further suggests the importance of the heterologous expression of metabolic 

enzymes in conferring resistance, particularly given the recent identification of fabI on a mobile 

genetic element (Ciusa et al., 2012). 

It is likely that the expression of the metagenomic galE enzyme results in increased levels of UDP-

galactose that can be incorporated into the LPS of A10(F2). LC-MS analysis of the LPS extractions from 

E. coli::pCC1BAC, A10(F2) and E. coli::pCC1galE revealed commonalities and differences between 

their mass-to-charge spectra. A10(F2) and E. coli::pCC1galE extractions each contained a peak at 

1091 m/z not present in E. coli::pCC1BAC indicating the galE expression altered the host cell’s LPS. 

The E. coli::pCC1galE spectrum also contained a fragment at 1405 m/z not found in the other 

extractions while A10(F2) showed to peaks at 781 m/z and 927 m/z that were not observed in the 

other spectra. The differences between the E. coli::pCC1galE and A10(F2) spectra may be a result of 

different LPS structures as A10(F2) carries the full 19.1 Kb insert that may encode genes for other 

enzymes capable of modifying the E. coli LPS without altering its CTAB susceptibility phenotype. 

Alternatively, these two peaks in A10(F2) may represent degraded fragments of a larger fragment 

indicated by the 1405 m/z peak in the E. coli::pCC1galE spectrum. 
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As we have shown that only galE of A10(F2) is required for the reduced CTAB susceptibility of A10(F2), 

the activity of endogenous glycosytransferases to construct the modified LPS from the increased UDP-

galactose pool must be required. For instance, WaaT, WaaB, WaaX, WaaW and WaaI are 

galactosyltransferases that are involved in the addition of galactose residues to the outer core 

polysaccharide of the 5 polysaccharide groups of E. coli (Amor et al., 2000; Leipold et al., 2007; Qian 

et al., 2014). Further work to discern if such transferases play a role in CTAB resistance in A10(F2) is 

required. It may also be worthwhile determining if growing E. coli EPI300 T1R on increasing galactose 

concentrations can reduce its susceptibility to CTAB. 

The modified LPS structure of A10(F2) that results from the additional source of UDP-galactose may 

have a different charge than the E. coli EPI300 T1R host resulting in a reduced affinity of CTAB for LPS. 

Additional galactose residues in the A10(F2) LPS may also produce structures that occlude the binding 

of CTAB. Interestingly, the A10(F2) clone was not identified when the library was screened for 

resistance to CPC, another QAC (quaternary ammonium compound), indicating that reduction in 

negative charge as well as structural alterations in the LPS may be responsible for the reduced CTAB 

susceptibility. Further work should be conducted to assess the susceptibility of other antimicrobials 

that target negative charges on the cell surface including colisitin and cationic antimicrobial peptides 

such as defensins and histatins (Gupta et al., 2009; Khurshid et al., 2015; Peschel et al., 1999).  

Cytochrome C colormetric titration assays could shed light on whether there is a cell surface charge 

difference between E. coli::pCC1AC and E. coli::pCC1galE. Cytochrome C is a positively charged 

protein that is able to interact with the negatively charged cell surface. When in an aqueous solution, 

it produces a red colour that becomes less intense when the cytochrome C comes out of solution and 

interacts with the cell surface. Thus, if E. coli::pCC1galE has a less negatively charged surface due to 

the production of an altered LPS more cytochrome C should remain in solution following incubation 

with these strains compared with E. coli::pCC1AC. Following my departure from the Eastman Dental 
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Institute this experiment was conducted by Mr. Supathep Tansirichaiya. Figure 7.10 shows that 

following incubation with cytochrome C, more of the protein bound to the surface of E. coli::pCC1AC 

than E. coli::pCC1galE indicating that the latter strain had a less negatively charged cell surface. 

 

Figure 7.10 

 

Figure 7.10 Cytochrome C Assay. The above graph depicts the results of a series of a cytochrome C surface charge assays 

indicating how much cytochrome C (µg/ml) is bound to the surface of E. coli:pCC1BAC (blue) and E. coli::pCC1galE (OD600 

0.1 – 7.0). At every OD600 tested E. coli:pCC1BAC was able to bind more cytochrome C than E. coli:pCC1galE indicating that 

E. coli:pCC1galE has a less negatively charged cell surface than E. coli:pCC1BAC. This diagram has been reproduced with 

permission from Mr. Supathep Tansirichaiya. 

To conclude, a galE gene cloned in A10(F2) was found to be solely required for the observed CTAB 

resistance phenotype likely through the production of increased levels of UDP-galactose that could 

be incorporated in the E. coli EPI300 T1R LPS altering it cell surface charge. Further work is required to 

determine how relevant this gene is to CTAB resistance in its host cell and in the oral cavity. 

 

 

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

7 6 5 4 3 2.5 2 1.5 1 0.5 0.25 0.1 0

C
yt

o
ch

ro
m

e
 C

 (
µ

g/
m

L)

Cyto C bind to cell (ug/ml)

pcc1BAC

UDP-4-glucose

* p < 0.05

** p <0.005

**

OD600 

** 

* 

* 

* 

* 

* 



 348 

Chapter 8 

Final Discussion 

 

The creation and screening of functional metagenomic libraries has the potential to identify novel 

genes from the yet-to-be cultured microorganisms of an environment. In this study two functional 

metagenomic libraries were created from human saliva and calf faeces, and subsequently screened 

for antimicrobial resistance and antimicrobial production. Both of these environments are known to 

harbour antimicrobial resistance genes and maintain dense populations of bacteria that interact with 

each outher via the production of various molecules including antimicrobials such as bacteriocins. By 

creating and screening metagenomic libraries using bacterial DNA extracted from these 

environments, novel antimicrobial resistance and bacteriocin production genes may be identified.  

The calf faecal metagenomic library was found to contain few clones harbouring inserts. Three clones 

from 10 contained inserts even though all 10 clones were white. For this reason, no further clones 

were analysed to determine if they contained inserts. Additionally, 16S analysis of the calf faecal 

metagenomic DNA extraction revealed it to contain mainly Proteobacteria (98.7 % of OTUs), with E. 

coli dominating (75.8 % OTUs). Although the library was not representative of the calf faecal 

microbiome and the majority of the clones contained no DNA, 2,840 clones were screened for 

ampicillin and tetracycline resistance. No clones of interest were identified. 

The human saliva metagenomic library that was created consisted of 27,000 clones representing 

97,074 Kb of bacterial DNA. The protocol used in this study to extract metagenomic DNA from human 

saliva resulted in a metagenomic DNA preparation consisting mainly of Prevotella spp., Streptococcus 

spp. and Veillonella spp. (according to Illumina 16S sequencing) which is in agreement with previous 
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phylotyping studies of human saliva (Dassi et al., 2014; Segata et al., 2012). Additionally, minimal loss 

of diversity was observed between the metagenomic extraction and the functional metagenomic 

library as both had similar profiles at the phylum and genus levels, indicating that our functional 

metagenomic library was representative of our metagenomic extraction.  

Screening of the human saliva metagenomic library resulted in the identification of two tetracycline 

resistant clones. One of these clones, PS9, encoded two ABC half-transporter genes, tetAB(60) which 

had >90 % nucleotide identity to putative ABC transporter genes from Streptococcus spp. and 

Granulicatella spp. We demonstrated that both genes were minimally sufficient for the observed 

tetracycline resistance in this clone. Further to this, deletion of the Walker A motif-encoding region of 

either tetA(60) or tetB(60) resulted in a loss of tetracycline resistance, suggesting that tetAB(60) 

encoded a functional heterodimeric ABC transporter. Subsequent analysis showed that tetAB(60) 

specifically conferred resistance to tetracycline and tigecycline, and not to minocycline or the other 

classes of antibiotics tested. Tetracycline-specific ABC transporters have been identified from human 

saliva previously, although none confer such a high level of resistance to tigecycline (Warburton et 

al., 2013). Growth curve assays showed that a fitness cost was associated with the expression of 

tetAB(60) in E. coli EPI300 T1R. The results of subsequent ATP assays and the observation that one of 

the Walker A motif mutants [E. coli::pHSG396tetA(60)ΔtetB(60)] did not have a fitness cost indicated 

that the fitness cost was a result of the function of the ABC transporter rather than maintenance or 

transcription of the tetAB(60) genes. The results of the characterisiation of this novel tetracycline and 

tigecycline ABC transporter have been recently published, Appendix XIII. 

Interestingly, the tetracycline resistance phenotype was only observed when tetAB(60) were 

expressed from either pCC1BAC or pHSG396 in E. coli EPI300 T1R. Tetracycline resistance was not 

observed when tetAB(60) were cloned using pGEM®-T Easy in E. coli EPI300 T1R, or when E. coli 

Alpha-Select Silver was the host. Tetracycline resistance was also not observed in S. mutans UA159 
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when tetAB(60) were cloned using pVA838. These results highlight how important the choice of both 

host and vector is when creating a functional metagenomic library, as tetAB(60) would not have been 

identified if, for example, pHSG396 and E. coli Alpha-Select Silver were used to create the library. 

The observed fitness cost associated with tetAB(60) in E. coli and the lack of their expression in the 

other hosts used in this study may suggest that their dissemination to human pathogens may be 

limited. However, the acquisition of compensatory mutations or genes that alleviate this fitness cost 

may aid their dissemination to human pathogens. Further work that is beyond the scope of this 

characterisation study is required to determine whether this is the case. 

The second tetracycline-resistant clone, TT31, contained a 14 Kb insert. The left 7,226 bp of TT31 had 

97 % nucleotide identity to the tet(M), regulation and recombination modules of Tn916 and the right 

7, 000 bp had 99 % identity to G. haemolysans. As no HindIII site was found to divide the insert into 

these Tn916-like and G. haemolysans regions the insert was not a concatemer. Tn916-like elements 

have been isolated from the oral cavity in numerous studies (Ciric et al., 2012; Brenciani et al. 2014). 

Although a previous study conducted by Cerdá Zolezzi et al. (2004) identified int and tet(M) in 

nasopharynx Gemella spp., to the best of our knowledge no Tn916-like elements from Gemella spp. 

have been fully characterised (Cerdá Zolezzi et al., 2004). 

The Tn916 region of the insert encoded tet(M) and tet(L) and two half ABC transporter genes were 

present on the G. haemolysans side of the insert. However, as the predicted start codon containing 62 

bp of tet(M) were not cloned in TT31, it is likely that tet(L) and/or the ABC transporter(s) encoded by 

G. haemolysans were responsible for this clone’s tetracycline resistant phenotype. The Tn916-like 

region of TT31 also had 99 % nucleotide identity to Tn6079, which encodes tet(L), and to a region of 

the L. johnsonii strain BS15 that encodes a putative Tn916-like element. Compared with the Tn916-like 

region of TT31, the L. johnsonii Tn916-like element contains a 4,999 bp insert that contains pre/mob 

http://aac.asm.org/search?author1=Paula+Cerd%C3%A1+Zolezzi&sortspec=date&submit=Submit
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and rep genes that have >99 % nucleotide identity to those encoded by Tn6079. This indicated to us 

that the Tn916-like element identified in TT31 may be an ancestral Tn916-like element and that L. 

johnsonii may be an ‘evolutionary intermediate’ between the TT31 Tn916-like element Tn916 and 

Tn6079.  

Additionally, a truncated orf9 gene, orf9t, was encoded by the Tn916-like region of the TT31. The first 

270 bp of orf9t had 83.6 % nucleotide identity to the full length orf9 found in Tn916. Interestingly, the 

4,999 bp insert in L. johnsonii was in the orf9t gene, and the insert was found to contain the 3’-end of 

the full length orf9 in frame with the 5’-end of orf9t; such that L. johnsonnii encoded the full length 

orf9. The 3’-end sequence of orf9t is still present. This suggested that TT31 Tn916-like element was an 

ancestor of Tn916 and that L. johnsonii encoded an evolutionary intermediate between the two. 

Further work is required to discern whether the Tn916-like region of TT31 is a part of a larger Tn916-

like element as no conjugation module was cloned in TT31. This is important to justify our hypothesis 

detailed in chapter 6 as without it, doubt could be cast on whether the TT31 Tn916-like element 

exists. 

Screening of a subset of the human saliva library (1,248 clones) also led to the identification of a 

clone, A10(F2), with reduced susceptibility to CTAB. The clone contained a 19.1 Kb insert of which 

10,456 Kb was sequenced. From the pCC1R primer side of the pCC1BAC cloning site, 5,917 Kb of the 

insert had 88 % nucleotide identity to V. parvum DSM 2008 and from the pCC1F primer side the 4,529 

Kb sequence had 99 % nucleotide identity to P. histicola F0411. Random transposon mutagenesis and 

subcloning revealed that a galE gene (encoding a UDP-glucose 4-epimerase) on the V. parvum side of 

the A10(F2) insert was responsible for the reduced CTAB susceptibility. As CTAB binds to the E. coli 

cell via its negatively charged LPS we hypothesised that the heterologous GalE produces additional 

galactose in the E. coli host which is then used to produce a modified and less negatively charged LPS. 
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Mass spectrometry of the LPS produced by galE expressing clones indicated that it had a different 

composition to the E. coli host harbouring only the empty vector. Additionally, following my 

departure from the Eastman Dental Institute, cytochrome C assays were conducted and the clones 

expressing galE were found to have more positively charged cell surfaces compared with E. coli 

harbouring only the empty vector. Whether galE contributes to reduced susceptibility in its native 

host is unclear. The results of this work have also been published recently, Appendix XIII. 

The genes identified as conferring tetracycline resistance [tetAB(60)] and reduced CTAB susceptibility 

(galE) in this study were characterised as such in a heterologous host (E. coli). It is, however, possible 

that TetAB(60) does not function to export tetracyclines in its native host and that GalE does not alter 

susceptibility to CTAB except when expressed in our E. coli EPI300 T1R host. Similarly, the MFS [tet(L)] 

and ABC transporters that likely play a role in tetracycline resistance in TT31 may have alternative 

substrates in their original host. This raises an important question; if a gene plays no role in 

antimicrobial resistance in its native host should it be called a resistance gene if it confers resistance 

when heterologously expressed in a different host? 

As discussed previously, an opinion piece by Martínez et al. (2015), suggested that housekeeping 

genes identified in metagenomic studies should not be described as resistance genes unless they are 

demonstrated to be transferable (Martínez et al., 2015).  Although this seems a logical statement to 

make, it may also be an excessive one. As any gene has the potential to be encorporated into a MGE, 

any gene identified as conferring resistance in a functional screen should be classified as a resistance 

gene. Indeed, in a correspondence to this article, Bengtsson-Palme and Larson (2015) comment, ’’In 

principle, resistance need only emerge once in a single cell in order for it to have potential to rise in 

frequency and be transferred’’ (Bengtsson-Palme and Larsson, 2015). In this respect, functional 

metagenomics allows us to conduct prospective studies on what genes (housekeeping or otherwise) 

in any environment could pose a threat to the success of antimicrobial use.  
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Looking at the recent identification of the plasmid-borne colisitin-resistance gene, mcr-1, in E. coli, it 

is possible that a functional metagenomic survey using a large insert vector such as pCC1BAC may 

have identified this gene in its plasmid context prior to identification in E. coli (Liu et al., 2015). 

Indeed, following the identification of this plasmid-borne mcr-1, subsequent studies have identified 

the gene in diverse phylotypes of food-producing animal E. coli isolates dating back to 2004. This 

indicates that the gene was spreading via HGT long before it was first described (El Garch et al., 2017; 

Skov and Monnet, 2016). Similarly, serine β-lactamases have been identified in Kluyvera spp. that 

typically reside in soil. In fact, it is likely that human pathogens have acquired β-lactamases genes 

from Kluyvera spp. This was not hypothesised until after these resistance genes had already 

disseminated to pathogens (Lartigue et al., 2006). It may be that the identification of tetAB(60) in our 

human saliva metagenomic library will be followed by its identification in a human pathogen, if there 

is a great enough selection for its maintainence.  

Conforming to Martínez’s definition, fabI which encodes a reductase involved in fatty acid synthesis 

has also been described as conferring reduced susceptibility to triclosan when heterologously 

expressed in certain hosts (Heath et al., 2000). Recently, fabI has been identified on a MGE in an S. 

aureus isolate that had reduced susceptibility to triclosan, indicating that there was a selective 

advantage for this isolate to maintain the acquired fabI. The authors concluded that as the S. aureus 

isolate had no mutations in its native fabI, the observed reduced susceptibility was a result of 

increased FabI production from the two genes. A similar scenario can be envisaged for galE, whereby 

a cell acquires galE via HGT allowing it to produce surplus UDP-galactose that can be encorporated 

into an LPS structure that has a reduced affinity for CTAB. Following my departure from the Eastman 

Dental Institute, clones with reduced triclosan susceptibility were also identified from the human 

saliva metagenomic library. As CTAB and triclosan are used in dental hygiene products and as oral 
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treatments there would be a selection pressure for cells heterologoulsy expressing these genes to 

maintain them, if they had these resistant or reduced susceptibility phenotypes. 

The acquisition of heterologous housekeeping genes may contribute to the stepwise evolution of 

antimicrobial resistance in some strains as they may confer small, incremental changes in 

susceptibility. It is possible that the expression of galE in a heterologous host may allow it to persist 

in low CTAB concentrations making it more likely to acquire additional genes or mutations that would 

result in a further decreased susceptibility which would not be seen without the previously acquired 

housekeeping gene. These acquired genes or mutations may have an epistatic relationship with galE 

that allows the cell to survive in higher CTAB concentrations. The stepwise evolution of resistance to 

some antibiotics has been demonstrated. For example, Toprak et al. demonstrated, in vitro, that 

resistance to trimethoprim developed in a stepwise manner in E. coli due to the slow acquisition of 

mutations in the gene encoding the antibiotics target, dihydrofolate reductase. The successive 

acquisition of mutations in this gene allowed the cell to survive in higher concentrations of 

trimethoprim, thus making it more likely to obtain additional mutations that would further increase 

its resistance (Toprak, 2011). 

To conclude, classifying a gene as a resistance gene should depend on the context of its expression. If 

expression of such a gene confers resistance or reduced susceptibility in a heterologous host but not 

in its native host it should be referred to as a resistance gene in the former but not the latter. This 

distinction is particularly important considering that, theoretically, any gene has the potential to be 

mobilised, transferred and expressed in multiple hosts. 
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Appendix I Ethics Form for Human Saliva Collection 
 
 
 
UCL RESEARCH ETHICS COMMITTEE 
GRADUATE SCHOOL OFFICE 
 
 
 
 
 
 
 
 
 
 
 
Professor Dave Spratt 
Eastman Dental Institute 
256 Gray’s Inn Road 
UCL 
 
 
9 September 2013 
 
 
Dear Professor Spratt 
 
Notification of Ethical Approval 
Project ID: 5017/001: Understanding oral microbial ecology 
 
I am pleased to confirm that in my capacity as Chair of the UCL Research Ethics Committee I have 
approved your study for the duration of the project i.e. until September 2018. 
 
Approval is subject to the following conditions: 
 
1. You must seek Chair’s approval for proposed amendments to the research for which this approval has been 

given. Ethical approval is specific to this project and must not be treated as applicable to research of a similar 
nature. Each research project is reviewed separately and if there are significant changes to the research 
protocol you should seek confirmation of continued ethical approval by completing the 
‘Amendment Approval Request Form’. 

 
The form identified above can be accessed by logging on to the ethics website homepage: 
http://www.grad.ucl.ac.uk/ethics/ and clicking on the button marked ‘Key Responsibilities of the Researcher 
Following Approval’. 
 
2. It is your responsibility to report to the Committee any unanticipated problems or adverse events involving 

risks to participants or others. Both non-serious and serious adverse events must be reported. 

 

Reporting Non-Serious Adverse Events  
For non-serious adverse events you will need to inform Helen Dougal, Ethics Committee Administrator 
(ethics@ucl.ac.uk), within ten days of an adverse incident occurring and provide a full written report that 
should include any amendments to the participant information sheet and study protocol. The Chair or Vice-
Chair of the Ethics Committee will confirm that the incident is non-serious and report to the Committee at the 
next meeting. The final view of the Committee will be communicated to you. 

 

Reporting Serious Adverse Events  
The Ethics Committee should be notified of all serious adverse events via the Ethics Committee Administrator 
immediately the incident occurs. Where the adverse incident is unexpected and serious, the Chair or Vice-
Chair will decide whether the study should be terminated pending the opinion of an independent expert. The 

mailto:ethics@ucl.ac.uk
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adverse event will be considered at the next Committee meeting and a decision will be made on the need to 
change the information leaflet and/or study protocol. 

 

 
On completion of the research you must submit a brief report (a maximum of two sides of A4) of your 
findings/concluding comments to the Committee, which includes in particular issues relating to the ethical 
implications of the research. 
 
With best wishes for the research. 
 
 
Yours sincerely  
 

Professor John Foreman  
Chair of the UCL Research Ethics Committee 
 
Cc: 
Adam Roberts, Applicant 
Professor Stephen Porter, Director, Eastman Dental Institute 
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Appendix II QIIME Script 
 
 # To pair-end forward and reverse reads in the FASTQ files. 

 
 
join_paired_ends.py-f LIAM1_S78_L001_R1_001.fastq.gz -r LIAM1_S78_L001_R2_001.fastq.gz -
o LIAM1 
join_paired_ends.py-f LIAM2_S79_L001_R1_001.fastq.gz -r LIAM2_S79_L001_R2_001.fastq.gz -
o LIAM2 
 
# To rename the files following pairing to sample_name_paired.fastq and copy them to the 
working directory (Desktop/QIIME/Run1) 
 
cp ~/Desktop/QIIME/Liam/LIAM1/fastqjoin.join.fastq LIAM1_paired.fastq 
cp ~/Desktop/QIIME/Liam/LIAM2/fastqjoin.join.fastq LIAM2_paired.fastq 

 # To quality trim sequences  with low base confidence scores (Phred count <20) 
 
split_libraries_fastq.py -i LIAM1_paired.fastq --sample_ids LIAM1 -o 
quality_filtered_q20_LIAM1/ -q 19 --barcode_type ‘not-barcoded’ 
split_libraries_fastq.py -i LIAM2_paired.fastq --sample_ids LIAM2 -o 
quality_filtered_q20_LIAM2/ -q 19 --barcode_type ‘not-barcoded’ 
 
#To copy the resultant files into the working directory and rename them as 
seqs_quality_filtered.fna 
 
cp ~/Desktop/QIIME/Liam/quality_filtered_q20_LIAM1/seqs.fna seqs_quality_filtered_1.fna 
cp ~/Desktop/QIIME/Liam/quality_filtered_q20_LIAM2/seqs.fna seqs_quality_filtered_2.fna 
 
#To pick OTUs using the open reference method and save the resulting files in 
Desktop/QIIME/Run2/otu_picking_stage. Read sequences are compared with the green genes 
coreset (closed reference method). Unidentified reads are compared with each other and those 
that match are deemed an OTU. Only OTUs identified by the closed reference methods are 
aligned by PyNAST. 
 
 
pick_open_reference_otus.py -i seqs_quality_filtered_1.fna -o otu_picking_stage_1/ 
pick_open_reference_otus.py -i seqs_quality_filtered_2.fna -o otu_picking_stage_2/ 
 

# To summarise the taxa present in the samples and store results in a new table 
 

 summarize_taxa.py-i 
otu_picking_stage_1/otu_table_mc2_w_tax_no_pynast_failures.biom -o  
summarised_taxa1 
summarize_taxa.py-i 
otu_picking_stage_2/otu_table_mc2_w_tax_no_pynast_failures.biom -o  
summarised_taxa2 
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# Move the appropriate file across from the folder into the working directory and group the 
aligned reads based on taxa from phylum to genus 
 
Cp 
~/Desktop/QIIME/Liam/summarised_taxa1/otu_table_mc2_w_tax_no_pynast_failures_L2.txt 
phylum1.txt 
cp  
~/Desktop/QIIME/Liam/summarised_taxa2/otu_table_mc2_w_tax_no_pynast_failures_L2.txt 
phylum2.txt 
cp  
~/Desktop/QIIME/Liam/summarised_taxa1/otu_table_mc2_w_tax_no_pynast_failures_L3.txt 
class1.txt 
cp  
~/Desktop/QIIME/Liam/summarised_taxa2/otu_table_mc2_w_tax_no_pynast_failures_L3.txt 
class2.txt 
Cp 
~/Desktop/QIIME/Liam/summarised_taxa1/otu_table_mc2_w_tax_no_pynast_failures_L4.txt 
order1.txt 
cp  
~/Desktop/QIIME/Liam/summarised_taxa2/otu_table_mc2_w_tax_no_pynast_failures_L4.txt 
order2.txt 
Cp 
~/Desktop/QIIME/Liam/summarised_taxa1/otu_table_mc2_w_tax_no_pynast_failures_L5.txt 
family1.txt 
Cp 
~/Desktop/QIIME/Liam/summarised_taxa2/otu_table_mc2_w_tax_no_pynast_failures_L5.txt 
family2.txt 
Cp 
 ~/Desktop/QIIME/Liam/summarised_taxa1/otu_table_mc2_w_tax_no_pynast_failures_L6.txt 
genus1.txt 
Cp 
~/Desktop/QIIME/Liam/summarised_taxa2/otu_table_mc2_w_tax_no_pynast_failures_L6.txt 
genus2.txt 
 
## To create pie charts showing the taxonomic break down of the samples at various levels 
 
plot_taxa_summary.py-i 
phylum1.txt,phylum2.txt,class1.txt,class2.txt,order1.txt,order2.txt,family1.txt,family2.txt,genus
1.txt,genus2.txt -l Phylum,Phylum,Class,Class,Order,Order,Family,Family,Genus,Genus -c pie -o 
charts/ 

 

Appendix II. This script details how the demultiplexed FASTQ data obtained from Illumina Miseq sequencing of the V5-V7 

region of the 16S gene was processed using QIIME. Lines preceded by a # are descriptions of the script that follows. 

Sample name LIAM1 refers to the calf faecal metagenomic preparation and LIAM2 refers to the human saliva 

metagenomic preparation. 
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