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Răzvan V. Marinescu1, Arman Eshaghi1,2, Marco Lorenzi1,4, Alexandra L.
Young1, Neil P. Oxtoby1, Sara Garbarino1, Timothy J. Shakespeare3,

Sebastian J. Crutch3, and Daniel C. Alexander1, for the Alzheimers Disease
Neuroimaging Initiative?

1 Centre for Medical Image Computing, Computer Science Department, University
College London, UK

2 Queen Square MS Centre, UCL Institute of Neurology, London
3 Dementia Research Centre, UCL Institute of Neurology, University College

London, UK
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Abstract. We present a disease progression model with single vertex
resolution that we apply to cortical thickness data. Our model works
by clustering together vertices on the cortex that have similar tempo-
ral dynamics and building a common trajectory for vertices in the same
cluster. The model estimates optimal stages and progression speeds for
every subject. Simulated data show that it is able to accurately recover
the vertex clusters and the underlying parameters. Moreover, our clus-
tering model finds similar patterns of atrophy for typical Alzheimer’s
disease (tAD) subjects on two independent datasets: the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and a cohort from the Demen-
tia Research Centre (DRC), UK. Using a separate set of subjects with
Posterior Cortical Atrophy (PCA) from the DRC dataset, we also show
that the model finds different patterns of atrophy in PCA compared to
tAD. Finally, our model also provides a novel way to parcellate the brain
based on disease dynamics.
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1 Introduction

During the progression of Alzheimer’s disease, many biomarkers based on Mag-
netic Resonance Imaging (MRI) such as cortical thickness become abnormal at

? Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the inves-
tigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf



different points in the progression. Finding out the precise temporal evolution of
these biomarkers facilitates patient staging in clinical trials. However, the analy-
sis of disease progression is limited by several factors: short number of follow-up
visits available, different disease onset and progression speed for every subject
and cohort heterogeneity.

A hypothetical model of disease progression has been proposed by [1], de-
scribing the trajectory of key biomarkers along the progression of Alzheimer’s
disease. The model suggests that amyloid-beta and tau biomarkers become ab-
normal long before symptoms appear, followed by brain atrophy measures and
cognitive decline. Motivated by this idea, several models such as [2] or [3] have
been proposed that reconstruct biomarker trajectories and can be used to stage
subjects. However, these models make use of a priori clinical categories, which
are noisy, biased and can limit the temporal resolution of the model. This mo-
tivates the use of fully data-driven approaches that do not use a priori clinical
stages.

Various data-driven disease progression modelling techniques have been pro-
posed in recent years. One such model is the Event-Based Model [4], which
models the progression of disease as a sequence of discrete events, represent-
ing underlying biomarkers switching from a normal to abnormal state. Other
models such as the Disease Progression Score (DPS) [5] or self-modelling re-
gression approaches [6] have been developed, that build continuous trajectories
by ”stitching” together short-term follow-up data. Models estimating linear or
logistic trajectories by means of Riemannian manifold techniques have also been
recently shown [7].

The main limitation of these data-driven models is that they use a small set
of biomarkers that are obtained by averaging MRI or PET measures across all
voxels or vertices in a Region of Interest (ROI). This can be problematic, espe-
cially if different parts of the ROI, say the hippocampus, are affected at different
speeds or timepoints in the disease process. Therefore, moving to a voxel-wise
approach would allow one to estimate the fine-grained spatial distribution of
atrophy, which could give new insights into the disease process and potentially
enable more precise staging. A voxel-wise disease progression model [8] has been
recently proposed to mitigate this problem, that uses amyloid measures in each
voxel as its input data. However, the model by [8] has two limitations: (1) the
biomarker trajectories are assumed to be linear, so cannot capture the plateau
effect observed in amyloid-beta or tau and (2) the model uses a spatial corre-
lation function for modelling correlation between voxels; while this is necessary,
due to the nature of the imaging data, it has been shown that in different types
of dementia atrophy patterns match functional networks, which are not spatially
connected [9].

In this work, we present a new disease progression model with single vertex
resolution that avoids assumptions on spatial correlation. We combine unsuper-
vised learning and disease progression modelling to identify clusters of vertices
on the cortical surface, with no spatial constraints, that show a similar trajectory
of atrophy over a particular patient cohort. This formulation enables us to gain



new insights into the spatial structure of atrophy in different diseases and also
provides a novel parcellation of the brain based on temporal change. Moreover,
each cluster of vertices has a corresponding sigmoidal trajectory, which avoids
the limitation of linear trajectories in [8].

We first show using simulated data that our model is able to recover known
underlying clusters, trajectory parameters and subject stages. We then apply
our model to cortical thickness vertex-wise measures using ADNI and the DRC
dataset and highlight the new insights the model can give. Finally, we validate
our model using cross-validation and by correlating the subject stages with cog-
nitive measures.

2 Methods

2.1 Model

We seek to identify groups of image vertices that show a common trajectory
during the disease course, while simultaneously placing each visit from each
subject within that disease course. In a similar way to [5,6,7], we estimate a
time shift and speed (or rate) of progression for each subject. We relate these
time shifts and progression speeds by assigning each subject a disease stage which
we will refer to as the Disease Progression Score (DPS). In contrast to [5,6,7],
which model temporal trajectories for a small set of biomarker measures based
on a priori defined ROIs, we model temporal trajectories for each vertex on the
cortical surface. Each trajectory is a function of the disease progression score (i.e.
disease stage) of a subject. We estimate each subjects’ time shift, progression
speed and trajectory parameters from the data. The disease progression score
sij for subject i at visit j is defined as a linear transformation of age tij :

sij = αitij + βi (1)

where αi and βi represent the speed of progression and time shift (i.e. disease
onset) of subject i.

Our model assumes that the cortical thickness at each vertex on the cortical
surface follows a sigmoidal trajectory f(s) given the disease progression score
s. We also assume that vertices are grouped into K clusters and we model
a unique trajectory for each cluster k ∈ [1, . . . ,K], which will be referred to
as cluster trajectories. The sigmoidal function for cluster k is parametrised as
θk = [ak, bk, ck, dk] where

f(s; θk) =
ak

1 + exp(−bk(s− ck))
+ dk (2)

For a given subject i at visit j, the value V ijl of its cortical thickness at
vertex l is a random variable that has an associated discrete latent variable
Zl ∈ [1, . . . ,K] denoting the cluster it was generated from. The value of V ijl
given that it was generated from cluster Zl can be modelled as:



p(V ijl |αi, βi, θZl
, σZl

, Zl) = N(V ijl |f(αitij + βi|θZl
), σZl

) (3)

where N(V ijl |f(αitij +βi|θZl
), σZl

) represents the pdf of the normal distribution
that models the measurement noise along the sigmoidal trajectory of cluster Zl,
having variance σZl

. Next, we assume the measurements from different subjects
are independent, while the measurements from the same subject i at different
visits j are linked using the disease progression score from equation 1, because
we estimate only two parameters (αi and βi) using the data from all visits j.
Moreover, we also assume a uniform prior on Zl. This gives the following model:

p(Vl, Zl|α, β, θ, σ) =
∏

(i,j)∈I

N(V ijl |f(αitij + βi|θZl
), σZl

) (4)

where I = (i, j) represents the set of all the subjects i and their corresponding
visits j. Furthermore, Vl = [V ijl |(i, j) ∈ I] is the 1D array of all the values for
vertex l across every subject and corresponding visit. Vectors α = [α1, . . . , αS ]
and β = [β1, . . . , βS ], where S is the number of subjects, denote the stacked
parameters for the subject shifts. Vectors θ = [θ1, . . . , θK ] and σ = [σ1, . . . , σK ],
with K being the number of clusters, represent the stacked parameters for the
sigmoidal trajectories and measurement noise specific to each cluster.

We further assume all vertex measurements to be spatially independent, giv-
ing the complete data likelihood:

p(V,Z|α, β, θ, σ) =

L∏
l

∏
(i,j)∈I

N(V ijl |f(αitij + βi|θZl
), σZl

) (5)

where V = [V1, . . . , VL], Z = [Z1, . . . , ZL], L being the total number of vertices
on the cortical surface. We recall that we don’t want to enforce spatial correlation
between vertices as we are interested to see if vertices from distinct areas of the
brain are grouped together in the same cluster. Our assumption is also justified
by the fact that we smoothed the cortical thickness images in the preprocessing
steps. We get the final model log likelihood for incomplete data by marginalising
over the latent variables Z:

p(V |α, β, θ, σ) =

L∏
l=1

K∑
k=1

p(Zl = k)
∏

(i,j)∈I

N(V ijl |f(αitij + βi|θk), σk) (6)

Therefore, the parameters that need to be estimated are Θ = [α, β, θ, σ] where α
and β are the subject specific shifting parameters while θ and σ are the cluster
specific trajectory and noise parameters.

2.2 Fitting the Model using EM

Due to the summing over the latent variables Z, it is not possible to find a
closed form solution to the maximum likelihood. Therefore, we fit our model
using Expectation-Maximisation, which is suitable given the large number of
data points and parameters that need to be estimated.



E-step In the Expectation step we seek to estimate which cluster has gener-
ated each of the L vertices, given the current estimates of the cluster parameters
θoldk , σoldk as well as the subject specific shift parameters αoldi , βoldi . More for-

mally, we seek to find p(Z|V,Θold) =
∏L
l p(Zl|Vl, Θold), given our independence

assumption between vertices. Let us denote by zlk = p(Zl = k|Vl, Θold). We then
have:

zlk =

∏
(i,j)∈I N(V ijl |f(αoldi tij + βoldi |θoldk ), σoldk )∑K

m=1

∏
i,j∈I N(V ijl |f(αoldi tij + βoldi |θoldm ), σoldm )

(7)

Ignoring the normalisation factor, we perform a log transformation and expand
the pdfs of the normal distributions. This results in the following update equation
for the E-step:

log zlk ∝ −
1

2
log (2π

(
σoldk

)2
)|I| − 1

2
(
σoldk

)2 ∑
(i,j)∈I

(V ijl − f(αoldi tij + βoldi |θoldk ))2

(8)
The original probabilities can be easily recovered by exponentiating them and
then normalising with respect to their sum.

M-step In the Maximisation step we try to find Θ = (α, β, θ, σ) that maximise
EZ|V,Θold [log p(V,Z|Θ)]. Since there is no closed-form solution, we perform suc-
cessive refinements of θk for each cluster k and αi, βi for each subject i until
convergence.

In order to get the update rule for the trajectory parameters θk corresponding
to cluster k we need to maximise the expected log likelihood with respect to θk.
We get the following simplified optimisation problem:

θk = arg min
θk

 L∑
l=1

zlk
∑

(i,j)∈I

(V ijl − f(αitij + βi|θk))2

− log p(θk) (9)

A similar equation is also obtained for σk. After estimating θ and σ for every
cluster, we use the new values to estimate the subject specific parameters α and
β. Let S be the number of subjects and αi, βi be the rate and shift for subject
i ∈ S. We again maximise the expected log likelihood with respect to αi, βi
independently, and after simplifications we obtain the following problem:

αi, βi = arg min
αi,βi

 L∑
l=1

K∑
k=1

zlk
1

2σ2
k

∑
j∈Ii

(V ijl − f(αitij + βi|θk))2

− log p(αi, βi)
(10)

In summary, at every single M-step, we iterate between solving for θ, σ and
solving for α, β using numerical optimisation until convergence. Due to the use



of numerical optimisation, we are not guaranteed to find the global maxima for
the expected log likelihood, but EM still works if we only find an increase in the
log-likelihood. This approach that involves a partial M-step is called Generalised
EM.

2.3 Initialisation and Implementation

Before starting the fitting process, we need to initialise α, β and the clustering
probabilities zlk. We set αi and βi to be 1 and 0 respectively for each subject.
We initialise zlk using k-means clustering using vectors Vl having |I| number of
samples and L features. Furthermore, as already explained in [5], the scale of
the DPS is arbitrary so we standardise the scores at each EM iteration such that
the DPS of controls have a mean µN of zero and a standard deviation σN of 1.
This also requires a rescaling of the cluster parameters θk.

In our implementation, we run the main EM loop until convergence of the
clustering probabilities zlk. At each M-step we perform numerical optimisation
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm that makes use
of the first derivative of the objective function. In all datasets analysed, the
method converges after maximum 25 EM iterations.

3 Simulation Results

We first tested the model in a toy scenario using synthetic data, which we gen-
erated as follows: (1) sampled age and shift parameters from 300 subjects with 4
timepoints (each timepoint 1 year apart), with ti1 ∼ U(40, 80), αi ∼ N(1, 0.05),
βi ∼ N(0, 10) (2) generated three sigmoids with different center points and slopes
(Fig. 1a, red lines) (3) generated a random cluster assignment for L = 1, 000 ver-
tices, i.e. every vertex l was assigned to a cluster a[l] ∈ {1, 2, 3} (4) sampled a
set of L perturbed trajectories θl from each of the original trajectories, one for
each vertex (Fig. 1a, gray lines) and (5) sampled subject data for every vertex l
from its corresponding perturbed trajectory θl with σl = 0.5

To fit the data we used a uniform prior on the parameters θ and σ and an
informative prior on α and β, with p(αi) ∼ Γ (49, 70) and βi ∼ N(0, 1). We also
normalised age to have a mean of 0 and standard deviation of 1 and rescaled
the DPS and cluster trajectories accordingly. After convergence, we calculated
the agreement between the final clustering probabilities and the true clustering
assignments as A = 1

L

∑L
l=1 p(Zl = a[l]). The method also requires us to set the

number of clusters a priori, so we optimised the number of clusters using the
Bayesian Information Criterion (BIC).

The BIC analysis correctly predicted three clusters for this synthetic experi-
ment. Using three clusters, we also obtained a clustering agreement of A = 1.0.
Figure 1a shows the original trajectories and the recovered trajectories using our
model, plotted against the disease progression score on the x-axis and the vertex
value on the y-axis. Moreover, in Fig. 1b we plotted the recovered DPS of each
subject along with the true DPS.



The results show that the model accurately estimated which clusters gen-
erated each vertex. Moreover, the recovered trajectories are close to the true
trajectories, with some errors for the trajectories corresponding to clusters 1
and 2. The recovered DPS also shows good agreement with the true DPS, with
the exception of a few subjects with DPS greater than 2.5. This is explained by
the fact that there is not enough signal in that DPS range in terms of trajectory
dynamics (i.e. trajectories are mostly flat). The simulation confirms that our
model is able to recover the hidden clusters, trajectory parameters and the sub-
ject specific parameters. However, more realistic simulations with varying noise
levels and numbers of clusters are required to understand the limitations of the
model and find out when it fails to recover the true parameters.

(a) (b)

Fig. 1: (a) Reconstructed temporal trajectories (blue) from the synthetic data
along with the true trajectories (red). The data was generated from the per-
turbed trajectories, which in turn were generated from the true trajectories.
(b) Estimated subject-specific disease progression scores compared to the true
scores.

4 Experimental Results

4.1 Data Acquisition and Preprocessing

Data used in this work were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu) and from the Dementia Research
Centre, UK. For ADNI, we downloaded all T1 MRI images that have undergone
gradwarping, intensity correction and scaling for gradient drift. We included
subjects that had at least 4 scans, in order to ensure we get a robust estimate
of the subject specific parameters. This resulted in 328 subjects with an average
number of 4.95 scans each. The DRC dataset consisted of T1 MRI scans from
31 healthy controls, 32 PCA and 23 typical typical AD subjects with at least 3
scans each and an average of 5.26 scans per subject.

On both datasets, in order to extract reliable cortical thickness measures we
ran the Freesurfer longitudinal pipeline [10], which first registers the MRI images



to an unbiased within-subject template space using inverse-consistent registra-
tion. The longitudinally registered images were then registered to the average
Freesurfer template and smoothed at a full-width/half-max (FWHM) level of
zero. For each vertex we averaged the thickness levels from both hemispheres.
Finally, we standardised the data from each vertex with respect to the values of
that vertex in the control population. Each of the final images had a resolution
of 163,842 vertices on the cortical surface.

4.2 ADNI and DRC Results

Using ADNI and DRC datasets, we were interested to find out the spatial distri-
bution of cortical atrophy, as well as the rate and timing of this atrophy process.
In particular, we wanted to find out: (1) if we get similar results using our model
on two independent tAD datasets: ADNI and DRC and (2) if we get different
patterns of atrophy on distinct diseases (tAD and PCA) that match previous
studies.

BIC analysis predicted that the optimal number of clusters is two for the
ADNI cohort and three for both tAD and PCA subjects from the DRC cohort.
In order to make the results easily comparable across the different datasets, we
ran all experiments using 3 clusters. Fig. 2a shows the results of our model using
all ADNI subjects, where we coloured points on the cortical surface according
to the cluster they most likely belong to. We assigned a colour to each cluster
according to the slope of its corresponding trajectory, ranging from red (high
slope suggesting a fast rate of atrophy) to blue (low slope suggesting a slow
rate of atrophy). In Fig. 2d we also show the resulting cluster trajectories with
samples from the posterior distribution of each θk. We repeated the same analysis
on the DRC cohort, separately for the tAD subjects (Fig. 2b and 2e) and PCA
subjects (Fig. 2c and 2f).

We notice that in tAD subjects using both ADNI and DRC datasets (Fig.
2), there is widespread atrophy in most temporal, parietal and frontal areas (red
cluster), with the notable exception of the motor cortex and the occipital lobe.
These patterns of atrophy are similar across the two different datasets. Moreover,
the spatial distribution of cortical thinning found with our technique resembles
results from previous longitudinal studies such as [11]. However, in contrast to
these approaches, our model gives insight into the timing, rate and extent of
atrophy and is also able to stage subjects across the disease timecourse.

In the PCA subjects (Fig. 2c), we find that the atrophy is more focused on the
posterior part of the brain, mostly the posterior parietal and occipital, with more
limited spread in the superior temporal and inferior frontal. This is in contrast
with the tAD patterns in the other datasets, that lacks the focus on posterior
parietal and occipital regions. This posterior pattern of atrophy also matches
previous findings in the literature [12]. For all datasets, we find that the cluster
trajectories differ less in timing and more in the slope and minima/maxima
values at which they plateau (Fig. 2d, 2e, 2f). Our model therefore predicts that
regions on the cortical surface are all affected roughly at the same time, but the
rate and extent to which they are affected is different.



cluster 0 cluster 1 cluster 2

rapid atrophy slow atrophy

tAD - ADNI

(a)

tAD - DRC dataset

(b)

PCA - DRC dataset

(c)

(d) (e) (f)

Fig. 2: (a) Clustering results on the ADNI data using our model, where each
cluster is coloured according to the slope of its corresponding trajectory, from
red (high slope suggesting very affected areas) to blue (low slope suggesting
less affected areas). (d) The corresponding trajectories and samples from the
posterior distribution of the trajectory parameters for the three clusters in ADNI.
The same analysis is shown also for (b, e) tAD subjects from the DRC cohort
and (c, f) PCA subjects from the DRC cohort.

4.3 Model Validation

We tested robustness of the model by performing 10-fold cross validation (CV) on
ADNI. Our motivation was to test the following: (1) if similar spatial clustering
is estimated at each fold, as quantified by Dice score overlap, (2) if the stages
of the test subjects were consistent (i.e. were increasing for follow-up visits) and
(3) if the stages of test subjects are clinically meaningful, by correlating them
with cognitive tests such as Clinical Dementia Rating Scale - Sum of Boxes
(CDRSOB), Alzheimer’s Disease Assessment Scale - Cognitive (ADAS-COG),
Mini-Mental State Examination (MMSE) and Rey Auditory and Verbal Learning
Test (RAVLT).

Fig 3 shows the clusters that were estimated at each fold from the training
data only. Moreover, in Fig. 4 we plot the estimated DPS (i.e. disease stage) of
each subject from the test set against their age.

The results in Fig. 3 prove that the model is robust in cross-validation, as
the estimated clusters are all very similar across folds. The average Dice scores
we obtained across all pairs of folds were 0.89, 0.89 and 0.90 for clusters 0, 1
and 2 respectively. Furthermore, 84% of the subjects analysed show increased



stages across their follow-up visits, proving that the estimated stages are mostly
consistent. Finally, the stages of test subject correlate with clinical measures such
as CDRSOB (ρ = 0.41, p < 1e−66), ADAS-COG (ρ = 0.40, p < 1e−62), MMSE
(ρ = 0.39, p < 1e− 58) and RAVLT (ρ = 0.35, p < 1e− 46), demonstrating that
the stages have clinical validity.

Fig. 3: Clusters estimated for each of the 10 cross-validation folds in ADNI.
As before, each cluster is coloured according to the slope of its corresponding
trajectory, from red (high rate of atrophy) to blue (low rate of atrophy).

Fig. 4: The disease progression score for each subject from the ADNI dataset
estimated during 10-fold cross validation. Each line represents an individual i
with different visits j. Later visits generally have a higher corresponding stage.

5 Discussion

We presented a model of disease progression that clusters vertex-wise measures
of cortical thickness based on similar temporal dynamics. The model highlights,
for the first time, groups of cortical vertices that exhibit a similar temporal
trajectory over the population. This provides a new way to parcellate the brain
that is specific to the temporal trajectory of a particular disease. The model
also finds the optimal temporal shift and progression speed for every subject.
We applied the model to cortical thickness vertex-wise data from the ADNI and
DRC cohorts. Our model found similar patterns of atrophy dynamics in the tAD
subjects using the two independent datasets. Moreover, it also found different
patterns of atrophy dynamics on two distinct diseases: tAD and PCA.



The model has some limitations. First of all, we assumed that cluster trajec-
tories follow sigmoidal shapes, which might not be the case for many types of
biomarkers such as cortical thickness. Another limitation of the model is that it
assumes all subjects follow the same disease progression pattern, which might
not be the case in heterogeneous datasets such as ADNI or DRC. This can
be a concern, as there might be a pattern of atrophy that occurs in a small
set of subjects. Moreover, our cluster-based model might miss atrophy patterns
that occur is very small regions. Furthermore, the data we analysed has been
standardised with respect to controls, which assumes controls don’t show any
biomarker abnormalities.

There are several potential avenues of future research. While we only used
the model for studying cortical thickness, one can also apply it to other types
of data such as amyloid images or Jacobian compression maps. On the method-
ological side, the assumption of sigmoidal trajectories can be avoided using non-
parametric curves such as Gaussian Processes. Another extension is to model
different progression dynamics for distinct subgroups using unsupervised learn-
ing methods like the approach of [13], or incorporate subject-specific deviations
from the standard pattern of atrophy using a mixed-effects model.

Our approach can be used for accurately predicting and staging patients
across the progression timeline of neurodegenerative diseases. This is promising
for patient prognosis, as well as in clinical-trials for assessing efficacy of a putative
treatment for slowing down the degeneration process.
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