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Abstract The results of a search for new heavy W ′ bosons
decaying to an electron or muon and a neutrino using
proton–proton collision data at a centre-of-mass energy of√
s = 13 TeV are presented. The dataset was collected

in 2015 and 2016 by the ATLAS experiment at the Large
Hadron Collider and corresponds to an integrated luminos-
ity of 36.1 fb−1. As no excess of events above the Standard
Model prediction is observed, the results are used to set upper
limits on the W ′ boson cross-section times branching ratio
to an electron or muon and a neutrino as a function of the
W ′ mass. Assuming a W ′ boson with the same couplings as
the Standard Model W boson, W ′ masses below 5.1 TeV are
excluded at the 95% confidence level.

1 Introduction

Extensions to the Standard Model (SM) may include heavy
gauge bosons that could be discovered at the Large Hadron
Collider (LHC) [1]. For example, heavy gauge bosons are
predicted in left-right symmetric models [2,3] or in the little
Higgs model [4]. Conceptually, these particles are heavier
versions of the SM W and Z bosons and are generically
referred to as W ′ and Z ′ bosons. The Sequential Standard
Model (SSM) [5] posits a W ′

SSM boson with couplings to
fermions that are identical to those of the SM W boson. This
model represents a good benchmark as the results can be
interpreted in the context of other models of new physics,
and is useful for comparing the sensitivity of different exper-
iments.

This paper presents a search for a W ′ boson conducted
in the W ′ → �ν channel. In the following, the term lepton
(�) is used to refer to an electron or a muon. The analysis uses

� e-mail: atlas.publications@cern.ch

events with a high transverse momentum1 (pT) lepton and
significant missing transverse momentum Emiss

T , that is used
to infer the presence of the neutrino in the event as it
escapes direct detection. It is based on 36.1 fb−1 of pp
collision data collected with the ATLAS detector in 2015
and 2016 at a centre-of-mass energy of

√
s = 13 TeV. The

results are interpreted in the context of the SSM. The sig-
nal discriminant is the transverse mass, which is defined as
mT =

√
2pTEmiss

T (1 − cos φ�ν), where φ�ν is the azimuthal
angle between the directions of the lepton pT and the Emiss

T
in the transverse plane.

The most stringent limits on the mass of a W ′
SSM boson to

date come from the searches in the W ′ → eν and W ′ → μν

channels by the ATLAS and CMS collaborations using data
taken at

√
s = 13 TeV in 2015. The ATLAS analysis was

based on data corresponding to an integrated luminosity of
3.2 fb−1 and sets a 95% confidence level (CL) lower limit on
theW ′

SSM mass of 4.07 TeV [6]. The CMS Collaboration used
2.4 fb−1 of data and excludes W ′

SSM masses below 4.1 TeV
at 95% CL [7]. The sensitivity of the search presented here
is significantly improved compared to these earlier searches
due to the larger dataset.

2 ATLAS detector

The ATLAS experiment [8] at the LHC is a multipurpose
particle detector with a forward-backward symmetric cylin-
drical geometry and a near 4π coverage in solid angle. It con-

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
along the beam pipe. The x-axis points from the IP to the centre of the
LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ)

are used in the transverse plane, φ being the azimuthal angle around
the z-axis. The pseudorapidity is defined in terms of the polar angle θ

as η = − ln tan(θ/2). Transverse momentum (pT) is defined relative
to the beam axis and is calculated as pT = p sin(θ) where p is the
momentum.
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sists of an inner detector (ID) for tracking surrounded by a
thin superconducting solenoid providing a 2 T axial magnetic
field, electromagnetic (EM) and hadronic calorimeters, and a
muon spectrometer (MS). The ID covers the pseudorapidity
range |η| < 2.5. It consists of a silicon pixel detector includ-
ing an additional inner layer located at a radius of 3.2 cm since
2015 [9], followed by silicon microstrip and transition radi-
ation tracking detectors. Lead/liquid-argon (LAr) sampling
calorimeters provide EM energy measurements with high
granularity. A hadronic (steel/scintillator-tile) calorimeter
covers the central pseudorapidity range (|η| < 1.7). The end-
cap and forward regions are instrumented with LAr calorime-
ters for both the EM and hadronic energy measurements up
to |η| = 4.9. The muon spectrometer surrounds the calorime-
ters and is based on three large air-core toroidal supercon-
ducting magnets with eight coils each. The field integral
experienced by tracks in the toroidal field ranges between
2.0 and 6.0 T m for most pseudorapidities. The MS includes
a system of precision tracking chambers, over |η| < 2.7,
and fast detectors for triggering, over |η| < 2.4. A two-level
trigger system is used to select events [10]. The first-level
trigger is implemented in hardware and uses a subset of the
detector information. This is followed by a software-based
trigger system that reduces the accepted event rate to less
than 1 kHz.

3 Analysis strategy and modelling of signal and
background processes

A W ′ signal would appear as an excess of events above the
SM background at high mT. The SM background mainly
arises from processes with at least one prompt final-state lep-
ton, with the largest source being the charged-current Drell–
Yan (DY) W boson production, where the W boson decays
into an electron or muon and a neutrino. The second largest
source is top-quark pair (t t̄) and single-top-quark production,
denoted in the following as “top-quark background”. Other
non-negligible contributions are from the neutral-current DY
(Z/γ ∗) process, diboson production, as well as from events
in which one final-state jet or photon satisfies the lepton selec-
tion criteria. This last component of the background, referred
to in the following as the multijet background, receives con-
tributions from multijet, heavy-flavour quark and γ + jet pro-
duction. The multijet background is determined using a data-
driven method, while the other backgrounds are modelled by
Monte Carlo (MC) simulations.

The backgrounds from W → �ν, Z/γ ∗ → ��, W → τν,
and Z/γ ∗ → ττ were simulated using the Powheg-
Box v2 [11] matrix-element calculation up to next-to-
leading order (NLO) in perturbative quantum chromody-
namics (pQCD), interfaced to the Pythia 8.186 [12] parton
shower model and using the CT10 parton distribution func-

tion (PDF) set [13]. The final-state photon radiation (QED
FSR) was modelled by the Photos [14] MC simulation. The
samples are normalised as a function of the boson invari-
ant mass to a next-to-next-to-leading order (NNLO) pQCD
calculation using the numerical programme VRAP which
is based on Ref. [15] and the CT14NNLO PDF set [16].
Compared to the NLO prediction using CT10, the NNLO
prediction using CT14 gives a higher cross-section by about
5% at a boson invariant mass of 1 TeV and 10% at 5 TeV. In
addition to the modelling of QED FSR, a fixed-order elec-
troweak (EW) correction to NLO is calculated as a function
of the boson mass with the Mcsanc [17,18] event genera-
tor at leading order (LO) in pQCD. This correction is added
to the NNLO QCD cross-section prediction in the so-called
additive approach (see Sect. 6.2) because of a lack of calcu-
lations of mixed QCD and EW terms, and lowers the pre-
dicted cross-section by an increasing amount as function of
the mass, reaching about 10% at 1 TeV and 20% at 5 TeV.
TheW → �ν and Z/γ ∗ → �� events were simulated as mul-
tiple samples covering different ranges of the boson invariant
mass. This ensures that a large number of MC events is avail-
able across the entire mT region probed in this analysis.

The background from t t̄ production was generated using
Powheg-Box v2, with parton showering and hadronisation
modelled by Pythia 6.428 [19], using the CT10 PDF set.
The t t̄ cross-section is normalised to σt t̄ = 832 pb as calcu-
lated with the Top++2.0 program at NNLO in pQCD, includ-
ing soft-gluon resummation to next-to-next-to-leading loga-
rithmic accuracy (see Ref. [20] and references therein). The
top-quark mass is set to 172.5 GeV. The single-top-quark
production in the Wt channel and EW t-channel was simu-
lated using the same event generators and PDF sets as for the
t t̄ process, with the exception that the Powheg-Box v1 pro-
gram was used for producing events in the t-channel. Diboson
events were simulated with the Sherpa 2.1.1 [21] event gen-
erator using the CT10 PDF set. As the simulated top-quark
and diboson samples are statistically limited at large mT, the
expected number of events from each of these backgrounds
is extrapolated into the high-mT region. This is achieved by
fitting the lower part of the mT distributions to functions of
the form F(x) = a xb+c log x and F(x) = d/(x + e)g , where
x = mT/

√
s, and using the fitted function to predict the

background at higher mT. Various fit ranges are used, which
typically start between 140 and 360 GeV and extend up to
500–1300 GeV. The fits with the best χ2/d.o.f. are used for
the extrapolation and the results of these fits are used in the
high-mT tail.

The multijet background is estimated from data using
the same data-driven matrix method as used in the previ-
ous ATLAS analysis [6]. The first step of the matrix method
is to calculate the fraction f of lepton candidates that pass
the nominal lepton identification and isolation requirements
(tight), with respect to a sample of loose lepton candidates in
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a background-enriched sample. These loosely selected can-
didates satisfy only a subset of the nominal criteria, which is
stricter than the trigger requirements imposed. Potential con-
tamination of prompt final-state leptons in the background-
enriched sample is accounted for using MC simulation. In
addition, the fraction r of real leptons in the sample of loose
candidates satisfying the nominal requirements is used. This
fraction is computed from MC simulation. The number of
jets and photons misidentified as leptons (Nmultijet

T ) in the
total number of candidates passing the signal selection (NT)
is

Nmultijet
T = f NF = f

r − f
( r (NL + NT) − NT) , (1)

where NF is the number of fake leptons and NL corresponds
to leptons that pass the loose requirements but fail the nomi-
nal requirements. As this background estimate is statistically
limited at large mT, the expected number of events is extrap-
olated into the high-mT region using a method similar to that
for the diboson and top-quark backgrounds.

The SSM signal W ′ → eν and W ′ → μν samples were
generated at LO in QCD using the Pythia 8.183 event gen-
erator and the NNPDF2.3 LO PDF set [22]. As assumed in
the SSM, the couplings to fermions are equal to those of the
SM W boson. The W ′ boson is assumed not to couple to the
SM W and Z bosons and interference between the W ′ and
the SM W boson production amplitudes is neglected. The
decay W ′ → τν, where the τ subsequently decays leptoni-
cally, is not treated as part of the signal as this contribution
was quantified previously and found to give a negligible con-
tribution to the sensitivity [23]. Mass-dependent correction
factors are applied to normalise the samples to the same mass-
dependent NNLO pQCD calculation as used for the W back-
ground. Compared to the LO prediction using NNPDF2.3
LO, the corrections increase the cross-section by about 40%
around a boson invariant mass of 1–2 TeV, and by about
10% at 5 TeV. Further EW corrections beyond QED FSR are
not considered for the signal. The resulting cross-sections
times branching ratio for W ′

SSM masses of 3, 4 and 5 TeV
are 15.3, 2.25 and 0.51 fb, respectively. For these W ′ masses
the branching ratio to each lepton generation from Pythia
is 8.2%.

The MC samples were processed through a simula-
tion of the detector geometry and response [24] using the
Geant4 [25] framework. The software used for the recon-
struction is the same for both simulated and real data. The
average number of pile-up interactions (additional pp colli-
sions in the same or a nearby bunch crossing) observed in
the data is about 23. The effect of pile-up is modelled by
overlaying simulated inelastic pp collision events selected
using very loose trigger requirements (“minimum bias”). All
MC samples are reweighted so that the distribution of the

number of collisions per bunch crossing matches the data.
Correction factors to account for differences observed in the
detector response between data and simulation are applied to
the lepton trigger, reconstruction, identification [26,27] and
isolation efficiencies as well as the lepton energy/momentum
resolutions and scales [27,28].

4 Event reconstruction

The analysis makes use of electrons, muons, and missing
transverse momentum, whose reconstruction and identifica-
tion are explained in the following.

Electrons are reconstructed from ID tracks that are
matched to energy clusters in the electromagnetic calorime-
ter obtained using a sliding-window algorithm in the range
|η| < 2.47. Candidates in the transition region between
different electromagnetic calorimeter components, 1.37 <

|η| < 1.52, are rejected. Electrons must satisfy identifica-
tion criteria based on measurements of shower shapes in the
calorimeter and measurements of track properties from the
ID combined in a likelihood discriminant. Depending on the
desired level of background rejection, loose, medium and
tight working points are defined. Full details of the electron
reconstruction, identification and selection working points
can be found in Ref. [26].

Muon candidates are identified from MS tracks that match
tracks in the ID, with |η| < 2.5 [27]. These muons are
required to pass a track quality selection based on the num-
ber of hits in the ID. They are rejected if the absolute value
of the difference between their charge-to-momentum ratios
measured in the ID and MS divided by the sum in quadrature
of the corresponding uncertainties is large. To ensure opti-
mal muon resolution at high pT, additional requirements are
imposed on the quality of the MS track. The track is required
to have at least three hits in each of the three separate layers of
MS chambers. Furthermore, to avoid pT mismeasurements,
muons are removed if they cross either poorly aligned MS
chambers, or regions in which the ID and the MS are not well
aligned relative to one another.

The ID tracks associated with electron and muon can-
didates are required to be consistent with originating from
the primary interaction vertex, which is defined as the ver-
tex whose constituent tracks have the highest sum of p2

T.
The transverse impact parameter with respect to the beam
line, d0, divided by its estimated uncertainty must satisfy
|d0|/σ(d0) < 5 (3) for electrons (muons). For muons, the
longitudinal impact parameter, which is the distance between
the z-position of the point of closest approach of the muon
track in the ID to the beamline and the z-coordinate of the
primary vertex, must fulfil |z0| × sin θ < 0.5 mm. Both
the electrons and muons are required to be isolated with
respect to other particles in the event. The sum of the pT
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of tracks that fall inside an isolation cone around the lepton
(excluding the track of the lepton itself) divided by the lepton
pT has to be below a pT-dependent threshold. The isolation
cone size R = √

(η)2 + (φ)2 is defined as 10 GeV
divided by the lepton pT and the cone has a maximum size
of R = 0.3 for muons and R = 0.2 for electrons. For
electrons, calorimeter-based isolation is also required. The
sum of the calorimeter transverse energy deposits in an iso-
lation cone of fixed size R = 0.2 (excluding the energy
deposits of the electron itself) divided by the electron pT

is used as the discriminating variable. The calorimeter- and
track-based isolation criteria depend on pT and η, and are
optimised for an overall efficiency of 98% (99%) for elec-
trons (muons).

The missing transverse momentum is reconstructed as the
negative vectorial sum of the calibrated momenta of elec-
trons, muons and jets, where the electrons and muons are
required to satisfy the selection criteria described above [29].
The jets used in the calculation are reconstructed in the region
|η| < 4.9 from topological clusters [30] in the calorime-
ter using the anti-kt algorithm [31] with a radius parameter
of 0.4. They are calibrated using the method described in
Ref. [32] and are required to have pT > 20 GeV. The com-
putation of Emiss

T also includes tracks associated with the
primary vertex from activity not associated with electrons,
muons or jets.

5 Event selection and background estimation

Events in the muon channel were recorded by a trigger requir-
ing that at least one muon with pT > 50 GeV is found. These
muons must be reconstructed in both the MS and the ID.
In the electron channel during the 2015 (2016) data-taking
period, events were recorded by a trigger requiring at least
one electron with pT > 24 (60) GeV which satisfied the
medium identification criteria, or at least one electron with
pT > 120 (140) GeV which satisfied the loose identifica-
tion criteria. The identification criteria for electrons at trig-
ger level are similar to those used in the offline reconstruc-
tion [26].

Events recorded by the trigger are further selected by
requiring that they contain exactly one lepton. In the muon
channel, the magnitude of Emiss

T must exceed 55 GeV and
the muon has to fulfil the tight requirements for high-pT

muons detailed in Sect. 4 and have pT > 55 GeV. In the
electron channel, the electron must satisfy the tight identi-
fication criteria, and the electron pT and the magnitude of
Emiss

T must both exceed 65 GeV. Events in both channels
are vetoed if they contain additional leptons satisfying loos-
ened selection criteria, namely electrons with pT > 20 GeV
satisfying the medium identification criteria or muons with
pT > 20 GeV passing the muon selection without the strin-

gent requirements on the MS track quality. In addition, the
transverse mass is required to exceed 110 (130) GeV in the
muon (electron) channel. The acceptance times efficiency,
defined as the fraction of simulated signal events that pass
the event selection described above, is 50% (47%) for the
muon channel and 81% (77%) for the electron channel for a
W ′ mass of 2 TeV (4 TeV). The difference in lepton sensi-
tivity results from lower muon trigger efficiency and, due to
the very strict muon selection criteria applied, a lower muon
identification efficiency.

The expected number of background events is calculated
as the sum of the data-driven and simulated background esti-
mates described in Sect. 3. Figure 1 displays the mT distri-
bution in the electron and muon channels. The expected and
observed number of events for some wider mT ranges are
shown also in Table 1. For all values ofmT, the background is
dominated by W → �ν production, which constitutes about
85% of the total background at mT > 1 TeV. As examples,
Fig. 1 also shows the expected signal distributions for three
assumed W ′

SSM boson masses on top of the SM prediction.
The effect of the momentum resolution is clearly visible when
comparing the shapes of the three reconstructed W ′

SSM sig-
nals in the electron and muon channels. The middle panels
of Fig. 1 show the ratio of the data to the SM predictions.
The data are systematically above the predicted background
at low mT, but still within the total systematic uncertainty,
which is dominated by the Emiss

T -related systematic uncer-
tainties in this region. The bottom panels of Fig. 1 show the
ratio of the data to the adjusted background that results from
a common fit to the electron and muon channels within the
statistical analysis described in Sect. 7. This ratio agrees well
with unity.

6 Systematic uncertainties

The systematic uncertainties arise from experimental and
theoretical sources. They are summarised in Table 2 and
described in the following subsections.

6.1 Uncertainties from the reconstruction of electrons,
muons, and Emiss

T

Experimental systematic uncertainties arise from the trig-
ger, reconstruction, identification and isolation efficiencies
for leptons [26,27], and the calculation of the missing trans-
verse momentum [29]. They include also the effects of the
energy and momentum scale and resolution uncertainties
[27,28,32].

The electron and muon offline reconstruction, identifica-
tion and isolation efficiencies, and their respective uncer-
tainties, are assessed up to pT ≈ 100 GeV using leptonic
decays of Z boson candidates found in data. The ratio of the
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Fig. 1 Transverse mass distributions for events satisfying all selec-
tion criteria in the a electron and b muon channels. The distributions
in data are compared to the stacked sum of all expected backgrounds.
As examples, expected signal distributions for three different SSM W ′
boson masses are shown on top of the SM prediction. The bin width
is constant in log(mT). The middle panels show the ratios of the data

to the expected background, with vertical bars representing both data
and MC statistical uncertainties. The lower panels show the ratios of
the data to the adjusted expected background (“post-fit”) that results
from the statistical analysis. The bands in the ratio plots indicate the
sum in quadrature of the systematic uncertainties discussed in Sect. 6,
including the uncertainty in the integrated luminosity

Table 1 The numbers of expected events from the total SM background
and SSM W ′ signal and the numbers of observed events in data in the
electron (top) and muon (bottom) channels in bins of mT. The uncer-

tainties given are the combined statistical and systematic uncertainties.
The systematic uncertainty includes all systematic uncertainties except
the one from the integrated luminosity (3.2%)

Electron channel

mT (GeV) 130–200 200–400 400–600 600–1000 1000–2000 2000–3000 3000–7000

Total SM 620,000 ± 70,000 168,000 ± 10,000 9700 ± 500 2010 ± 140 232 ± 24 5.9 ± 1.4 0.4 ± 0.4

W ′ (2 TeV) 24.3 ± 0.9 126 ± 3 199 ± 5 614 ± 14 3280 ± 50 330 ± 70 0.85 ± 0.04

W ′ (3 TeV) 3.83 ± 0.08 14.2 ± 0.2 16.1 ± 0.4 35.7 ± 0.4 122 ± 2 229 ± 4 24 ± 5

W ′ (4 TeV) 1.18 ± 0.02 4.06 ± 0.03 3.58 ± 0.03 5.92 ± 0.03 12.1 ± 0.1 13.5 ± 0.2 23.3 ± 0.2

W ′ (5 TeV) 0.476 ± 0.008 1.62 ± 0.01 1.35 ± 0.01 1.95 ± 0.01 2.64 ± 0.01 1.56 ± 0.01 3.72 ± 0.02

Data 671,128 169,338 9551 1931 246 4 0

Muon channel

mT (GeV) 110–200 200–400 400–600 600–1000 1000–2000 2000–3000 3000–7000

Total SM 1,640,000 ± 200,000 122,000 ± 8000 6460 ± 330 1320 ± 90 150 ± 13 4.7 ± 0.6 0.63 ± 0.13

W ′ (2 TeV) 25.0 ± 1.5 102 ± 6 143 ± 9 420 ± 22 1720 ± 90 369 ± 28 17 ± 4

W ′ (3 TeV) 3.98 ± 0.12 10.3 ± 0.3 10.7 ± 0.5 26.3 ± 1.5 84 ± 5 98 ± 6 39.3 ± 3.4

W ′ (4 TeV) 1.20 ± 0.03 2.80 ± 0.07 2.36 ± 0.09 4.07 ± 0.19 8.1 ± 0.5 8.8 ± 0.6 11.1 ± 0.9

W ′ (5 TeV) 0.485 ± 0.012 1.12 ± 0.03 0.88 ± 0.03 1.27 ± 0.05 1.7 ± 0.1 0.99 ± 0.07 1.7 ± 0.1

Data 1,862,326 128,155 6772 1392 177 3 3

123



 401 Page 6 of 23 Eur. Phys. J. C   (2018) 78:401 

Table 2 Systematic uncertainties in the expected number of events as
estimated for the total background and for signal with a W ′

SSM mass of
2 (4) TeV. The uncertainty is estimated with the binning shown in Fig. 1
atmT = 2 (4) TeV for the background and in a three-bin window around

mT = 2 (4) TeV for the signal. Uncertainties that are not applicable are
denoted “n/a”, and “negl.” means that the uncertainty is not included
in the statistical analysis. Sources of uncertainties not included in the
table are neglected in the statistical analysis

Source Electron channel Muon channel

Background Signal Background Signal

Trigger negl. (negl.) negl. (negl.) 2% (2%) 2% (2%)

Lepton reconstruction and identification negl. (negl.) negl. (negl.) 5% (6%) 5% (7%)

Lepton momentum scale and resolution 3% (3%) 4% (3%) 3% (9%) 1% (1%)

Emiss
T resolution and scale < 0.5% (< 0.5%) < 0.5% (< 0.5%) < 0.5% (1%) 1% (1%)

Jet energy resolution < 0.5% (< 0.5%) < 0.5% (< 0.5%) < 0.5% (< 0.5%) < 0.5% (< 0.5%)

Pile-up 1% (< 0.5%) 1% (< 0.5%) < 0.5% (1%) 1% (< 0.5%)

Multijet background 7% (70%) n/a (n/a) 1% (1%) n/a (n/a)

Top extrapolation 1% (1%) n/a (n/a) 4% (8%) n/a (n/a)

Diboson extrapolation 4% (20%) n/a (n/a) 4% (10%) n/a (n/a)

PDF choice for DY 1% (13%) n/a (n/a) < 0.5% (1%) n/a (n/a)

PDF variation for DY 8% (15%) n/a (n/a) 7% (11%) n/a (n/a)

EW corrections for DY 4% (7%) n/a (n/a) 4% (5%) n/a (n/a)

Luminosity 3% (3%) 3% (3%) 3% (3%) 3% (3%)

Total 13% (76%) 5% (5%) 12% (21%) 6% (8%)

efficiency measured in data to that of the MC simulation is
then used to correct the MC prediction [26,27]. For higher-
pT electrons, an additional uncertainty of 1.5% is estimated
for the tight identification working point. This uncertainty
is based on the differences observed in the electron shower
shapes in the EM calorimeters between data and MC simula-
tion around the Z → ee mass peak, which are propagated to
the high-ET electron sample. For the isolation efficiencies,
an uncertainty of 2 and 5% is estimated for 150 < pT < 500
GeV and above 500 GeV, respectively, using Z/γ ∗ can-
didates in data. For the identification of high-pT muons,
the uncertainty is determined conservatively from simula-
tion studies and amounts to 2–3% per TeV. For the isolation
criterion, the uncertainty associated with the extrapolation
to high-pT muons is estimated to be 1%. Systematic uncer-
tainties related to the electron trigger are negligible. For the
muon trigger the systematic uncertainty is estimated using
the same methodology as in Ref. [33], which results in an
overall uncertainty of about 2%.

The main systematic uncertainties in Emiss
T arise from

the jet energy resolution uncertainties [32] and the contri-
bution from tracks originating from the primary vertex and
arising from activity not associated with electrons, muons
or jets [29]. The uncertainties due to the jet energy and
Emiss

T resolutions are small at large mT, while they are the
dominant contributions to the total uncertainty at small mT.
The jet energy scale uncertainties are found to be negligi-
ble.

6.2 Theoretical uncertainties

Theoretical uncertainties are related to the production cross-
sections estimated from MC simulation. The effects when
propagated to the total background estimate are significant
for W and Z/γ ∗ production, but negligible for top-quark and
diboson production. No theoretical uncertainties are consid-
ered for the W ′ boson signal in the statistical analysis.

Theoretical uncertainties in the W and Z/γ ∗ background
prediction arise from the PDF uncertainties, the value of the
strong coupling constant αs, and higher-order corrections.
The dominant effect comes from the PDF uncertainty, which
is obtained from the 90% CL CT14NNLO PDF uncertainty
set using VRAP to calculate the NNLO cross-section as a
function of the boson mass. Rather than using the origi-
nal 28 CT14 uncertainty eigenvectors, a re-diagonalised set
of seven PDF eigenvectors, as provided by the authors of
the CT14 PDF using MP4LHC [34,35], is used. The cross-
section variation associated with each of these eigenvectors
has a characteristic mass dependence and the sum in quadra-
ture of these eigenvector variations matches the original
CT14NNLO uncertainty envelope well. This sum is shown
as “PDF variation” in Table 2. An additional uncertainty is
derived to account for the choice of the nominal PDF set used.
The central values of the CT14NNLO PDF set are compared
to the MMHT2014 [36] and NNPDF3.0 [37] PDF sets. A
comparison between these PDF sets shows that the central
value for NNPDF3.0 falls outside the “PDF variation” uncer-
tainty at large mT. Thus, an envelope of the “PDF variation”
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and the NNPDF3.0 central value is formed, where the for-
mer is subtracted in quadrature from this envelope, and the
remaining part, which is non-zero only when the NNPDF3.0
central value is outside the “PDF variation” uncertainty, is
quoted as “PDF choice”. The PDF uncertainties are the same
at the generator level for the electron and muon channels, but
result in different uncertainties at reconstruction level. The
uncertainty is larger in the electron channel due to the better
energy resolution: there is less migration of events with low
generator-level invariant mass, where the PDF uncertainty is
smaller, into the high-mT region in this channel.

Uncertainties in the electroweak corrections are deter-
mined as the difference between the additive approach (1 +
δEW + δQCD) and a factorised approach ((1 + δEW) × (1 +
δQCD)) for the EW corrections in the combination of higher-
order EW (δEW) and QCD (δQCD) effects. Uncertainties due
to higher-order QCD corrections on the Z/γ ∗ process are
estimated by varying the renormalisation and factorisation
scales simultaneously up or down by a factor of two. The
uncertainty due to αs is assessed by changing the value of αs

by as much as 0.003 from the nominal value αs(mZ ) = 0.118
used by the CT14NNLO PDF set. The uncertainties from the
scales and αs are both found to be negligible.

Theoretical uncertainties are also considered for the top-
quark and diboson backgrounds. An uncertainty in the t t̄
cross-section of +20

−29 pb arises from the independent varia-
tion of the factorisation and renormalisation scales, while
an uncertainty of ±35 pb is associated with variations
in the PDF and αs, following the PDF4LHC prescription
(see Ref. [38] and references therein) with the MSTW2008
68% CL NNLO [39], CT10 NNLO [40] and NNPDF2.3
NNLO [22] PDF sets. As this background constitutes only a
small fraction of the overall background, these normalisation
uncertainties are negligible. Furthermore, the modelling of
the top-quark background is found to be adequate in a data
control region defined by requiring the presence of an addi-
tional muon (electron) in events passing the electron (muon)
selection. For the diboson background, the theoretical nor-
malisation uncertainty is conservatively taken to be 30%, and
this has a negligible effect due to the small contribution of
this background.

6.3 Background modelling uncertainties

The dominant systematic uncertainties in the multijet, top-
quark and diboson backgrounds at high mT are due to the
extrapolations. These uncertainties are evaluated by vary-
ing both the functional form of the fit functions and the fit
range as detailed in Sect. 3. The envelope of all variations
is assigned for the uncertainty. This results in the largest
source of background-related systematic uncertainty at large
mT values in this analysis.

The multijet background uncertainty in the electron
(muon) channel includes a 15% (100%) normalisation uncer-
tainty. This uncertainty is dominated by the dependence of
the factor f (see Sect. 3) on the selection requirements used
for the background-enriched sample definition.

For themT region below 700–800 GeV, for which there are
not many more MC events than data events, the MC statistical
uncertainty is accounted for in the analysis.

The modelling of the pile-up especially affects the calcu-
lation of Emiss

T . A pile-up modelling uncertainty is estimated
by varying the distribution of pile-up events in the reweight-
ing of the MC, as detailed in Sect. 3, to cover the uncertainty
on the ratio between the predicted and measured inelastic
cross-sections [41].

6.4 Luminosity

The uncertainty in the combined 2015 and 2016 integrated
luminosity is 3.2%. Following a methodology similar to that
detailed in Ref. [42], it is derived from a preliminary cali-
bration of the luminosity scale using x–y beam-separation
scans performed in August 2015 and May 2016.

7 Results

For the statistical analysis of the results presented in this
section, the same methodology is applied as in the previ-
ous ATLAS W ′ search [6] and is described briefly here.
The compatibility between the data and the predicted back-
ground is evaluated with a profile-likelihood ratio test quan-
tifying the probability that the background fluctuates to give
a signal-like excess equal to or larger than what is observed.
The likelihood functions in the ratio are products of Poisson
probabilities over all bins in the transverse mass distribu-
tion (as shown in Fig. 1) and log-normal constraints for the
variations in signal and background yields associated with
systematic uncertainties. In the denominator of the likeli-
hood ratio, the likelihood function is maximised assuming
the presence of a signal above the expected background, and
in the numerator assuming the background-only hypothesis.
To model the signal, W ′

SSM templates binned in mT are used
for a series of W ′

SSM masses in the search range 150 GeV ≤
mW ′ ≤ 6000 GeV. Figure 1 displays a few examples of these
templates. No significant excesses are observed in the data.
The most significant excess is at mW ′ = 350 GeV in the
electron channel, with a local significance of 2.0σ . In the
muon channel, the most significant excess is at high mass,
with a maximum local significance of 1.8σ at mW ′ ≈ 5 TeV.
These excesses correspond to a global significance of 0.1σ

in each channel when the look-elsewhere effect [43] is taken
into account.
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Fig. 2 Observed (solid black line) and expected (dashed black line)
upper limits on cross-section times branching ratio (σ ×BR) as a func-
tion of the SSMW ′ boson mass in thea electron,bmuon and c combined
electron and muon channels. The 1σ (green) and 2σ (yellow) expected
limit bands are also shown. The predicted σ × BR for SSM W ′ pro-
duction is shown as a red solid line. For illustration the uncertainties
in σ × BR from the PDF, αs and the renormalisation and factorisation
scales are also shown as red-dashed lines

Table 3 Expected and observed 95% CL lower limit on the W ′
SSM mass

in the electron and muon channels and their combination

Decay mW ′ lower limit (TeV)

Expected Observed

W ′ → eν 5.1 5.2

W ′ → μν 4.7 4.5

W ′ → �ν 5.2 5.1

Based on the above findings, upper limits on the cross-
section for producing a W ′

SSM boson times its branching ratio
to only one lepton generation (σ × BR) are computed at the
95% CL as a function of the W ′

SSM boson mass. The limits
are calculated in a Bayesian analysis [44] with a uniform pos-
itive prior probability distribution for σ × BR. The observed
upper limits are extracted by comparing data to the expected
background and signal using W ′

SSM templates for the same
range of signal masses as for the profile-likelihood ratio test.
The expected limits are derived from pseudo-experiments
obtained from the estimated background distributions. The
median of the distribution of the limits from the pseudo-
experiments is taken as the expected limit, and 1σ and 2σ

bands are defined as the ranges containing respectively 68 and
95% of the limits obtained with the pseudo-experiments.

The 95% CL upper limits on σ × BR as a function of
the W ′

SSM mass are shown in Fig. 2 separately for the elec-
tron and muon channels and for the combination of the two
channels. The theoretical uncertainties and the uncertainties
in Emiss

T , jet energy resolution and luminosity are treated as
correlated between the channels. The expected upper limit
on σ × BR is stronger in the electron channel. This results
from the larger acceptance times efficiency and the better
momentum resolution (see Sect. 5). Figure 2 also shows the
predicted σ × BR for the W ′

SSM boson as a function of its
mass as well as the uncertainties from the PDF, αs and the
factorisation and renormalisation scales derived using the
same prescription as used for the W boson production. The
observed (expected) lower mass limit for a W ′

SSM boson, as
summarised in Table 3, is 5.1 (5.2) TeV for the combination
of the electron and muon channels. This corresponds to an
improvement of approximately 1 TeV in mass reach com-
pared to the previous ATLAS analysis [6], which was based
on a subset of the data used in this analysis.

8 Conclusion

The results of a search for a new heavy gauge boson
decaying to final states with a high-pT electron or muon
and large missing transverse momentum are reported. The
analysis uses 36.1 fb−1 of

√
s = 13 TeV pp colli-

sion data recorded by the ATLAS detector at the Large
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Hadron Collider in 2015 and 2016. Examining the transverse
mass spectrum, no significant excess above the expected
Standard Model background is observed. Exclusion lim-
its at 95% CL are placed on the mass of benchmark
Sequential Standard Model W ′ bosons. Masses for W ′

SSM
bosons up to 5.1 TeV are excluded by the combina-
tion of the electron and muon channels. This exceeds
the previous limit from ATLAS, derived from a simi-
lar analysis based on 3.2 fb−1 of

√
s = 13 TeV data,

by 1 TeV.
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J. Machado Miguens124,128b, D. Madaffari170, R. Madar37, W. F. Mader47, A. Madsen45, J. Maeda70, S. Maeland15,
T. Maeno27, A. S. Maevskiy101, V. Magerl51, J. Mahlstedt109, C. Maiani119, C. Maidantchik26a, A. A. Maier103, T. Maier102,
A. Maio128a,128b,128d, O. Majersky146a, S. Majewski118, Y. Makida69, N. Makovec119, B. Malaescu83, Pa. Malecki42,
V. P. Maleev125, F. Malek58, U. Mallik66, D. Malon6, C. Malone30, S. Maltezos10, S. Malyukov32, J. Mamuzic170,
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L. Mijović49, G. Mikenberg175, M. Mikestikova129, M. Mikuž78, M. Milesi91, A. Milic161, D. W. Miller33, C. Mills49,

123



Eur. Phys. J. C   (2018) 78:401 Page 15 of 23  401 

A. Milov175, D. A. Milstead148a,148b, A. A. Minaenko132, Y. Minami157, I. A. Minashvili68, A. I. Mincer112, B. Mindur41a,
M. Mineev68, Y. Minegishi157, Y. Ming176, L. M. Mir13, K. P. Mistry124, T. Mitani174, J. Mitrevski102, V. A. Mitsou170,
A. Miucci18, P. S. Miyagawa141, A. Mizukami69, J. U. Mjörnmark84, T. Mkrtchyan180, M. Mlynarikova131, T. Moa148a,148b,
K. Mochizuki97, P. Mogg51, S. Mohapatra38, S. Molander148a,148b, R. Moles-Valls23, R. Monden71, M. C. Mondragon93,
K. Mönig45, J. Monk39, E. Monnier88, A. Montalbano150, J. Montejo Berlingen32, F. Monticelli74, S. Monzani94a,94b,
R. W. Moore3, N. Morange119, D. Moreno21, M. Moreno Llácer32, P. Morettini53a, S. Morgenstern32, D. Mori144,
T. Mori157, M. Morii59, M. Morinaga157, V. Morisbak121, A. K. Morley32, G. Mornacchi32, J. D. Morris79, L. Morvaj150,
P. Moschovakos10, M. Mosidze54b, H. J. Moss141, J. Moss145,ak, K. Motohashi159, R. Mount145, E. Mountricha27,
E. J. W. Moyse89, S. Muanza88, F. Mueller103, J. Mueller127, R. S. P. Mueller102, D. Muenstermann75, P. Mullen56,
G. A. Mullier18, F. J. Munoz Sanchez87, W. J. Murray173,133, H. Musheghyan32, M. Muškinja78, A. G. Myagkov132,al,
M. Myska130, B. P. Nachman16, O. Nackenhorst52, K. Nagai122, R. Nagai69,ad, K. Nagano69, Y. Nagasaka61,
K. Nagata164, M. Nagel51, E. Nagy88, A. M. Nairz32, Y. Nakahama105, K. Nakamura69, T. Nakamura157, I. Nakano114,
R. F. Naranjo Garcia45, R. Narayan11, D. I. Narrias Villar60a, I. Naryshkin125, T. Naumann45, G. Navarro21, R. Nayyar7,
H. A. Neal92, P. Yu. Nechaeva98, T. J. Neep138, A. Negri123a,123b, M. Negrini22a, S. Nektarijevic108, C. Nellist119,
A. Nelson166, M. E. Nelson122, S. Nemecek129, P. Nemethy112, M. Nessi32,am, M. S. Neubauer169, M. Neumann178,
P. R. Newman19, T. Y. Ng62c, T. Nguyen Manh97, R. B. Nickerson122, R. Nicolaidou138, J. Nielsen139, V. Nikolaenko132,al,
I. Nikolic-Audit83, K. Nikolopoulos19, J. K. Nilsen121, P. Nilsson27, Y. Ninomiya157, A. Nisati134a, N. Nishu35c,
R. Nisius103, I. Nitsche46, T. Nitta174, T. Nobe157, Y. Noguchi71, M. Nomachi120, I. Nomidis31, M. A. Nomura27,
T. Nooney79, M. Nordberg32, N. Norjoharuddeen122, O. Novgorodova47, S. Nowak103, M. Nozaki69, L. Nozka117,
K. Ntekas166, E. Nurse81, F. Nuti91, K. O’connor25, D. C. O’Neil144, A. A. O’Rourke45, V. O’Shea56, F. G. Oakham31,d,
H. Oberlack103, T. Obermann23, J. Ocariz83, A. Ochi70, I. Ochoa38, J. P. Ochoa-Ricoux34a, S. Oda73, S. Odaka69,
A. Oh87, S. H. Oh48, C. C. Ohm16, H. Ohman168, H. Oide53a,53b, H. Okawa164, Y. Okumura157, T. Okuyama69,
A. Olariu28b, L. F. Oleiro Seabra128a, S. A. Olivares Pino49, D. Oliveira Damazio27, A. Olszewski42, J. Olszowska42,
A. Onofre128a,128e, K. Onogi105, P. U. E. Onyisi11,z, H. Oppen121, M. J. Oreglia33, Y. Oren155, D. Orestano136a,136b,
N. Orlando62b, R. S. Orr161, B. Osculati53a,53b,*, R. Ospanov36a, G. Otero y Garzon29, H. Otono73, M. Ouchrif137d,
F. Ould-Saada121, A. Ouraou138, K. P. Oussoren109, Q. Ouyang35a, M. Owen56, R. E. Owen19, V. E. Ozcan20a, N. Ozturk8,
K. Pachal144, A. Pacheco Pages13, L. Pacheco Rodriguez138, C. Padilla Aranda13, S. Pagan Griso16, M. Paganini179,
F. Paige27, G. Palacino64, S. Palazzo40a,40b, S. Palestini32, M. Palka41b, D. Pallin37, E. St. Panagiotopoulou10,
I. Panagoulias10, C. E. Pandini83, J. G. Panduro Vazquez80, P. Pani32, S. Panitkin27, D. Pantea28b, L. Paolozzi52,
Th. D. Papadopoulou10, K. Papageorgiou9,s, A. Paramonov6, D. Paredes Hernandez179, A. J. Parker75, M. A. Parker30,
K. A. Parker45, F. Parodi53a,53b, J. A. Parsons38, U. Parzefall51, V. R. Pascuzzi161, J. M. Pasner139, E. Pasqualucci134a,
S. Passaggio53a, Fr. Pastore80, S. Pataraia86, J. R. Pater87, T. Pauly32, B. Pearson103, S. Pedraza Lopez170, R. Pedro128a,128b,
S. V. Peleganchuk111,c, O. Penc129, C. Peng35a, H. Peng36a, J. Penwell64, B. S. Peralva26b, M. M. Perego138,
D. V. Perepelitsa27, F. Peri17, L. Perini94a,94b, H. Pernegger32, S. Perrella106a,106b, R. Peschke45, V. D. Peshekhonov68,*,
K. Peters45, R. F. Y. Peters87, B. A. Petersen32, T. C. Petersen39, E. Petit58, A. Petridis1, C. Petridou156, P. Petroff119,
E. Petrolo134a, M. Petrov122, F. Petrucci136a,136b, N. E. Pettersson89, A. Peyaud138, R. Pezoa34b, F. H. Phillips93,
P. W. Phillips133, G. Piacquadio150, E. Pianori173, A. Picazio89, E. Piccaro79, M. A. Pickering122, R. Piegaia29,
J. E. Pilcher33, A. D. Pilkington87, A. W. J. Pin87, M. Pinamonti135a,135b, J. L. Pinfold3, H. Pirumov45, M. Pitt175,
L. Plazak146a, M-A. Pleier27, V. Pleskot86, E. Plotnikova68, D. Pluth67, P. Podberezko111, R. Poettgen148a,148b,
R. Poggi123a,123b, L. Poggioli119, D. Pohl23, G. Polesello123a, A. Poley45, A. Policicchio40a,40b, R. Polifka32, A. Polini22a,
C. S. Pollard56, V. Polychronakos27, K. Pommès32, D. Ponomarenko100, L. Pontecorvo134a, G. A. Popeneciu28d,
A. Poppleton32, S. Pospisil130, K. Potamianos16, I. N. Potrap68, C. J. Potter30, G. Poulard32, T. Poulsen84, J. Poveda32,
M. E. Pozo Astigarraga32, P. Pralavorio88, A. Pranko16, S. Prell67, D. Price87, M. Primavera76a, S. Prince90, N. Proklova100,
K. Prokofiev62c, F. Prokoshin34b, S. Protopopescu27, J. Proudfoot6, M. Przybycien41a, A. Puri169, P. Puzo119,
J. Qian92, G. Qin56, Y. Qin87, A. Quadt57, M. Queitsch-Maitland45, D. Quilty56, S. Raddum121, V. Radeka27,
V. Radescu122, S. K. Radhakrishnan150, P. Radloff118, P. Rados91, F. Ragusa94a,94b, G. Rahal181, J. A. Raine87,
S. Rajagopalan27, C. Rangel-Smith168, T. Rashid119, S. Raspopov5, M. G. Ratti94a,94b, D. M. Rauch45, F. Rauscher102,
S. Rave86, I. Ravinovich175, J. H. Rawling87, M. Raymond32, A. L. Read121, N. P. Readioff58, M. Reale76a,76b,
D. M. Rebuzzi123a,123b, A. Redelbach177, G. Redlinger27, R. Reece139, R. G. Reed147c, K. Reeves44, L. Rehnisch17,
J. Reichert124, A. Reiss86, C. Rembser32, H. Ren35a, M. Rescigno134a, S. Resconi94a, E. D. Resseguie124, S. Rettie171,
E. Reynolds19, O. L. Rezanova111,c, P. Reznicek131, R. Rezvani97, R. Richter103, S. Richter81, E. Richter-Was41b,
O. Ricken23, M. Ridel83, P. Rieck103, C. J. Riegel178, J. Rieger57, O. Rifki115, M. Rijssenbeek150, A. Rimoldi123a,123b,
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