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Abstract: This commentary focuses on two related, open questions in Hulleman & Olivers’ proposal: (i) 

the nature of the parallel attentive process that determines target presence within, and thus presumably the 

size of, the functional visual field, and (ii) how the pre-attentive guidance mechanism must be conceived to 

also account for search performance in tasks that afford no reliable target-based guidance. 

 

Hulleman & Olivers (H&O) make an interesting case for an approach that takes eye fixations, rather than 

individual items, as its central unit. Within the fixational “functional field of view” (FFV), items are 

processed in parallel. The size of the FFV is adjusted according to search (target discrimination) difficulty, 

determining the number of fixations and thus RTs. While H&O’s, and previous (e.g., Zelinsky 2008), 

arguments that eye movements and the FFV play a role in realistic visual search are persuasive, their model 

leaves (i) the attentional process that detects targets and (ii) the pre-attentive process that guides fixations 

underspecified. Here, we discuss point (i) in relation to Humphreys and Müller’s (1993) “Search via 

Recursive Rejection” (SERR) model (discussed by H&O on pp. 9–10), which, arguably, anticipated some 

of the ideas advocated by H&O, and (ii) the need for a pre-attentive search-guidance mechanism in both 

SERR and H&O’s model. 

(i) Like H&O’s model, SERR deploys a sequence of parallel search steps to decide whether or not a 

target is present in the display. While H&O are silent about the process that determines whether 

the target is present in each FFV region (a process their model considers as error-free), SERR – a 

connectionist implementation of Duncan and Humphreys’ (1989) “Similarity Theory” – posits an 

error-prone mechanism. In SERR, items, the target and the distractors, within some FFV of 
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spatially parallel processing compete for activating their (higher-level) template representations. 

When there are multiple distractors of the same complex feature description in the FFV, they are 

likely to win the competition over the single target, whereupon they are top-down suppressed “as a 

group”. This process operates recursively until either (i) the target activates its template, triggering 

a target-present (TP) decision; or (ii) all items are “removed” from the FFV, leading to a target-

absent (TA) decision. This dynamics is influenced by target-distractor similarity: the more similar 

the target is to (some of) the distractors, the more likely it is to be rejected along with a distractor 

group, yielding increasing miss rates. To bring the rate of target misses down to acceptable levels 

(matching those exhibited by humans), SERR must make several rechecking “runs” at the items in 

the FFV, until the target is either detected or consistently not found. Importantly, SERR produces 

miss rates that accelerate positively with the number of items in the FFV (especially with multiple 

distractor groups), in which case the rechecking strategy can become prohibitively expensive. “A 

solution [discussed by Humphreys & Müller, (1993)] is to limit SERR’s functional field so that 

there is a balance between the first-pass miss rate and the time cost incurred by rechecking” (p. 

105) – providing an explicit, error-based “rule” for the FFV size adjustment. The adjusted FFV 

would then have to be deployed serially across the display (whether this involves covert or overt 

attention shifts). This resembles some of H&O’s central ideas concerning discriminability-

dependent FFV adjustments, which would be reflected in the number of attention shifts necessary 

to perform the task. – As an aside, H&O are not quite right in stating that “the … empirical work 

[associated with SERR] focused on relatively small slopes” (p. 11): Müller et al. (1994) present 

simulations of human slopes (with slope estimates derived from simulated mean RTs and RT 

distributions) ranging, for example, in their Experiment 1, from around 30 to well over 200 

ms/item. 

(ii) Given a need for overt or covert attention shifts, efficient search would require an element of pre-

attentive “guidance” for the FFV to be directed to (only) the most “promising” regions of the 

display. In principle, guidance can be provided by a combination of bottom-up and top-down 

mechanisms, for example, through the computation of local feature-contrast signals and their 

summation, across dimensions, on some search-guiding “overall-saliency” or “priority” map of the 

field. Note that this map is generally conceived as a pre-attentive representation, even though it is 

subject to top-down (feature- and dimension- as well as memory-based) biasing. Notions of 

guidance are at the heart of models from the Guided-Search (GS) family, including our 

“Competitive GS” model (e.g., Liesefeld et al. 2016; Moran et al. 2013; 2015), and well supported 

empirically. Although feature contrast computations themselves are not necessarily “item-based” 

(see, e.g., Itti & Koch 2001), much of what is known about their workings stems from item-based 

search experiments! Arguably, then, as acknowledged by H&O (on pp. 56–59), their model (and 

SERR!) would need to incorporate some notion of “guidance” to fully account for human search 



performance – which would bring it closer into line with “traditional”, two-stage models of visual 

search like GS. 

Note that H&O “buy in” guidance from models such as Zelinsky’s (2008) “Target Acquisition 

Model” or Pomplun et al.’s (2003) “Area Activation Model”. In these types of model, guidance is 

exclusively top-down: target- (template- or feature-) based. In fact, Zelinsky (2008) finds it 

“arguable whether a model that combines both top-down [target-template-based] and bottom-up 

[saliency] signals would be more successful than TAM in describing human behavior, at least in 

tasks in which the top-down target information [is] highly reliable” (p. 825). Such models, 

however, fail to address what determines target detection in search for (feature or feature 

conjunction) singleton targets, where there is no (reliable) target template to top-down guide the 

search (Müller et al. 1995; Weidner & Müller 2013); for example, is target “pop-out” based on a 

parallel attentive process operating over the whole display or a pre-attentive, salience-based 

process? One interesting possibility is that, on TP trials, detection decisions are triggered directly 

by the salience map – consistent with studies showing pop-out detection with no or minimal target 

identity processing (e.g., Müller et al. 2004; Töllner et al. 2012) and some process of parallel 

distractor rejection taking place on TA trials (e.g., Müller et al. 2007). On more difficult search 

trials, the pre-attentive guidance mechanism could direct the attentive process to sample an area 

that surrounds the location of the highest salience. Here models such as H&O’s may indeed add to 

the traditional item-based models. 
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