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Patterns and Biases of Climate Change Threats in the IUCN Red List 

Abstract 

The IUCN Red List of Threatened Species assesses species’ extinction risk to catalyse 

conservation action. Assessments rely on published data and expert inputs; it has been 

suggested that biases can be introduced where underlying definitions and concepts are 

ambiguous. Consideration of climate change threat is no exception to this, and recently 

climate change-specific assessments using numerous different approaches have been 

developed (see Foden and Young 2016 for background and a review). We explored global 

Red List assessments for amphibians and birds to examine whether species with/without an 

acknowledged climate change threat display patterns in terms of (a) the habitat types they 

occupy, and (b) additional non-climatic threats they face. We compared these Red List data to 

a published dataset of biological and ecological traits believed to infer high vulnerability to 

climate change, and asked whether (a) distributions of climate change-threatened species on 

the Red List concur with those of climate change-vulnerable species identified using this 

trait-based approach, and (b) species possessing these traits are more likely to have climate 

change threat listed on the Red List. We found that a number of habitats (e.g. grassland, 

shrubland) and threats (e.g. invasive and problematic species) were associated with an 

increased likelihood of having climate change as a listed threat. Geographical patterns of 

climate change-threatened amphibian and bird species on the Red List are incongruent with 

those of global species richness and with patterns identified using trait-based approaches. 

Certain traits are linked to an increase or decrease in the likelihood of a species being climate 

change-threatened. Broad temperature tolerance consistently related to an increased 

likelihood of climate change threat, indicating the presence of starkly counterintuitive 

relationships between IUCN assessments. We examine these findings and make 
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recommendations to improve the robustness of species assessments of the vulnerability or 

extinction risk associated with climate change.  

 

Introduction 

The IUCN Red List of Threatened Species (hereafter 'IUCN Red List') is regarded as the 

most comprehensive index of global species extinction risks. It provides assessments of the 

status and trends of species to catalyse conservation action. Assessments of species rely on 

published data and expert input on factors relating to each species’ extinction risk (e.g. 

distribution, population status, ecology, threats). Given the role of expert inputs, it has been 

suggested that bias is introduced into assessments where underlying definitions and concepts 

are ambiguous (Hayward et al. 2015); however, most assessments are facilitated in working 

groups where best available data are used to estimate quantitative extinction risk thresholds, 

thus minimising bias through unstructured expert opinion (Collen et al. 2016).   

Assessment of predominant threat processes affecting species is likely to be more 

complicated, due to a lack of direct evidence on the interactions between different threats 

(Brook et al. 2008). Specifically, it has been suggested that the IUCN Red List protocol does 

not adequately reflect the risk posed to species by slow-acting threats such as climate change 

(Thomas et al. 2004; Keith et al. 2014). Although it has been shown that IUCN Red List 

Criteria effectively account for climate change in threatened species (Akçakaya et al. 2014; 

Pearson et al. 2014), climate change is stated as the sole threat for 939 (1.18%) of the total 

79,837 assessed species, and 6.3% of amphibians and 10.2% of birds (IUCN 2016b), despite 

being an emerging threat to a large number of species (Foden et al. 2013). Most often, 

climate change threat on the IUCN Red List occurs in combination with other threats. 

Overall, the IUCN Red List identifies climate change as a threat for 2,560 (11%) of the 
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23,250 species listed as threatened (categories of Vulnerable, Endangered or Critically 

Endangered; (IUCN 2016b)). Compared to Thomas et al.’s (2004) earlier estimates of 18-

35% of species ‘committed to extinction’ by 2050, the IUCN Red List apparently understates 

climate change as a threat to species.     

This may be because IUCN Red List assessments generally focus on assessing extinction risk 

over relatively short time-scales (three generations or 10 years, whichever is longer (IUCN 

Standards and Petitions Subcommittee 2016)). Climate change impacts can develop over long 

time scales, and can be hard to differentiate from natural phenomena (Akçakaya et al. 2006). 

Furthermore, there remains significant uncertainty around the mechanisms by which climate 

change will affect species, particularly when considering changes to interspecific interactions 

(Bellard et al. 2012). Resultantly, other threats may be easier observed and quantified, and 

thus understood and recorded, resulting in underestimations of the importance of climate 

change on the IUCN Red List (Hof et al. 2011).  

Although IUCN encourages the consideration of climate change impacts, they simultaneously 

acknowledge the difficulties of doing so (IUCN Standards and Petitions Subcommittee 2016). 

Consequently, assessors may use a process of judgement or anticipation when recording a 

species’ climate change-related threat, and it is likely that some biases or inconsistencies will 

be introduced at this stage; for example, assessors may be more inclined to recognise or 

acknowledge the threat of climate change to species occurring in particular habitats or 

geographic areas, or for species with certain biological or life-history traits.  

To complement existing processes of estimating extinction risk, climate change-specific 

assessments have been developed using a number of different approaches, ranging from 

mechanistic models to trait-based assessments (Pacifici et al. 2015). Trait-based climate 

change vulnerability assessments (CCVA) have been advocated by the IUCN (Foden et al. 
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2013; Carr et al. 2014), and use species-specific trait data to infer high or low vulnerability to 

climate change. Traits used in these analyses generally pertain to climate change sensitivity 

and low adaptability of species, and are coupled with measures of climate change exposure 

(Foden et al. 2013).  

Extensive datasets are available containing climate change-relevant trait data of species, from 

which to assess whether certain species and their traits are more likely to be associated with 

climate change threat on the IUCN Red List. Here, we focus on traits and factors related to 

CCVA of species (Foden et al. 2013) to evaluate whether any of these traits and factors 

coincide with the reporting of climate change as a threat on the IUCN Red List. Specifically, 

we hypothesize that a) geographical distributions of climate change threat on the IUCN Red 

List concur with climate change vulnerability from CCVAs; b) species in climate change-

affected habitats (e.g. dry/arid habitats or freshwaters) are more likely to be associated with 

climate change threat on the Red List; c) the presence of other threats makes a climate change 

threatened listing more likely; and d) species with CCVA traits indicating vulnerability of a 

species are more likely to have climate change listed as a threat on the IUCN Red List. In 

conducting these analyses, we acknowledge that both of the underlying datasets are likely 

approximations of the truth, and that it remains unclear which one (if either) is the more 

correct presentation of climate change threat. Nevertheless, we believe that by identifying 

areas of (dis)agreement between the two datasets, we can indicate areas of greater certainty in 

terms of climate change threat assessment, as well as areas where further research is 

recommended.   

Methods 

Data sources  
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We used two datasets for our analysis: 1) IUCN Red List data and associated species 

distribution polygons (representing each species’ estimated global range) for 6,375 

amphibians and 10,280 birds (www.iucnredlist.org; exported January 2015), including all 

taxonomic, geographic, habitat and threat information; 2) a CCVA dataset of species traits of 

the world’s birds and amphibians, collated by Foden et al. (2013) for 6,204 amphibians and 

9,856 bird species (see Supporting Information). Using this CCVA data, we focused on traits 

pertaining to sensitivity (six variables for amphibians; eight for birds) and adaptability (three 

variables for amphibians; five for birds) to climate change (see Supporting Information). 

These traits are used to classify a species as having high sensitivity or low adaptability to 

climate change, respectively (see Foden et al. 2013).  

 

Data processing 

IUCN Red List assessments use a threat classification scheme of 99 threat types under 12 

broad classifications (referred to as Level 1 threat classifications hereafter) and a number of 

finer-scale sub-categories (Level 2 and Level 3 threat classifications), based on Salafsky et al. 

(2008) (see Supporting Information). Based on this, we assigned each species to one of two 

categories: (i) those with climate change as a recorded threat on the IUCN Red List (hereafter 

‘climate change-threatened species’, irrespective of the species’ Red List category; 395 

amphibians and 1,038 birds) and (ii) those without a climate change threat listed (5,979 

amphibians and 9,242 birds). Additionally, we used Level 1 and 2 threat classifications to 

assess associations of climate change-threatened species with other threat types on the IUCN 

Red List. 

Similarly, we derived habitat associations based on the IUCN Red List habitat classification 

scheme, comprising 103 habitat types under 18 broad classifications (Level 1 habitat 
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classifications) and again a number of finer-scale sub-categories (Level 2 and Level 3 habitat 

classifications; (IUCN 2016a); see Supporting Information). We analysed Level 1 and Level 

2 habitat classifications separately, to assess broad-scale (Level 1) habitat associations of 

climate change-threatened species followed by more in-depth analyses of specific (Level 2) 

habitat types.                                                                                                                                                      

Species richness maps 

In ArcGIS 10.2 (ESRI 2011), we produced global species richness maps for all bird and 

amphibian species on the IUCN Red List, and additional maps showing climate change-

threatened species only. For each, we overlaid a 10 arc-minute hexagonal grid with global 

coverage onto the stacked species’ distribution polygons obtained from the IUCN Red List 

and calculated the number of species per grid cell using the IUCN Species Mapping Tool for 

ArcGIS (http://www.iucnredlist.org/technical-documents/red-list-

training/iucnspatialresources). We also calculated and mapped the proportion (of the total 

present) of species classified as climate change-threatened per grid cell. 

Statistical analyses 

We removed Data Deficient species and species in extinct categories from all analyses. We 

tested associations of climate change-threatened species with habitat type and threats using 

binomial logistic regression (LR) analyses. Climate change-threatened status of a species was 

the binary response variable (1 or 0 = climate change threat recorded or not recorded, 

respectively). Habitat type and threat type were the predictor variables (themselves binomial, 

e.g. 1/0 = present/not present in forest habitat, and so on), though in separate analyses. To 

avoid small sample sizes for threats and habitat types affecting our analyses, we excluded 

predictor variables which contributed less than 1% of the total number of species in the 

dataset. Following analysis of Level 1 habitat and threat classifications, analyses using Level 

http://www.iucnredlist.org/technical-documents/red-list-training/iucnspatialresources
http://www.iucnredlist.org/technical-documents/red-list-training/iucnspatialresources
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2 habitat and threat classifications as predictor variables were limited to those for which the 

corresponding Level 1 predictor variables were significant (p<0.05). 

All LR analyses used a log-log link function to account for unequal response variable group 

sizes due to fewer species with a reported climate change threat than without. Subsequent to 

collinearity checks, a stepwise reduction method was used to produce minimum adequate 

models (MAMs). Following the approach by Burnham and Anderson (2002), we used a 

delta-AIC less than two to account for uncertainty in model selection. We calculated odds 

ratios for all analyses as a measure of association between predictor variables and species' 

climate change-threatened statuses.                 

To analyse whether species with CCVA traits used to infer climate change vulnerability are 

already associated with the IUCN Red List threat of climate change, we first matched the 

taxonomy of the two datasets to produce matching species lists. The removal of species not 

present in both datasets resulted in a final dataset of 4,429 amphibian and 9,129 bird species, 

both with available IUCN Red List and CCVA trait data.  

Separation of climate change-threatened/unthreatened species resulted in lists of 332 and 934 

affected, and 4,097 and 8,195 unaffected, birds and amphibians, respectively. We conducted 

stepwise binomial logistic regressions using the binary response variable of climate change-

threatened species status with CCVA traits as the predictor variables (mixture of continuous 

and categorical variables, see Supporting Information for full details). To account for 

complete separation in our bird data, we conducted a Firth’s bias reduced logistic regression 

using the ‘logistf’ package (Heinze et al. 2013). We constructed MAMs for both taxonomic 

groups, and calculated odds ratios for all significant variables to measure the strength of the 

association of climate change-threatened status with CCVA traits. We then repeated our 

analysis on subsets representing the most speciose taxa in both the amphibian and the bird 
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data [amphibians: order Anura (N = 3,887), family Hylidae (N = 643); birds: order 

Passeriformes (N = 5,725) and family Tyrannidae (N = 407)] to assess the influence of the 

most speciose groups on our overall results. 

Lastly, we constructed full MAMs of climate change-threatened status of species, using all 

significant explanatory variables (combining habitat, threats and CCVA traits) from the 

previous models as explanatory variables for birds and amphibians using a stepwise reduction 

method. All statistical analyses were carried out in R version 3.2.0 (R Core Team 2015). 

Results 

Richness of climate change-threatened species  

Amphibian richness is greatest in the Amazon region, and to a lesser degree in the African 

(e.g. Cameroon and Gabon) and Southeast Asian tropics (e.g. Thailand, Malaysia and 

Indonesia) (Fig. 1A). Distribution of climate change-vulnerable amphibians roughly 

corresponds to overall species richness, though total numbers are much smaller (Fig. 1B). 

Overall richness and proportions of climate change-threatened amphibians did not follow the 

same distribution; instead high richness of climate change-threatened amphibians was found 

in eastern China and Korea (Fig. 1C), with high proportions of climate change-threatened 

amphibians extending from China and Korea northward into Russian Siberia (Fig. 1E). Areas 

containing high proportions of climate change-threatened amphibians were typically low in 

overall richness and arid in nature, and include regions of the Sahel and Sahara Deserts in 

Africa, the Gobi Desert in China, and the Taklamakan Desert in China and Turkmenistan.  

Bird species richness was highest in the Amazon region, and across much of sub-Saharan 

Africa and parts of Southeast Asia (Fig. 2A). Richness of climate change vulnerable birds 

reflected overall bird species richness within the Amazon region, but not elsewhere (Fig. 2B). 
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Richness of climate change-threatened birds was highest in areas of south-eastern Australia 

and the southern tip of South Africa, and generally low in tropical Africa and Southeast Asia 

(Fig. 2C). Alaska, Canada, northern Scandinavia and Russia also contained relatively high 

numbers of climate change-threatened bird species. Proportions of climate change-threatened 

birds increased towards polar regions (Fig. 2E). 

Habitat associations of climate change-threatened species 

Amphibians 

Using Level 1 habitat classifications, occurrence in grassland and shrubland was significantly 

associated with climate change-threat (Table 1). Using Level 2 habitat classifications, 

significant associations of subtropical and tropical grasslands and dry shrublands with climate 

change-threatened amphibians persisted. However, amphibians associated with seasonally 

wet or flooded lowland grasslands or moist shrublands in tropical or subtropical regions were 

significantly less likely to be climate change-threatened.  

Amphibians associated with artificial terrestrial habitats (e.g. heavily degraded former forest 

in tropical or subtropical regions) or savanna habitats (e.g. moist savanna) were significantly 

less likely to be climate change-threatened. Amphibians associated with arable land were 

significantly more likely to be climate change-threatened.  

The same Level 1 habitat associations held true for Anurans, while for Hylidae, there were no 

significant habitat associations recorded (Table S7). 

Birds 

Species associated with the broad-scale habitats of grassland, marine intertidal or marine 

neritic were significantly more likely to be climate change-threatened (Table 1). No finer-

scale associations were significant predictors of climate change-threatened birds.  
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Species associated with artificial terrestrial, forest or savanna habitats were significantly less 

likely to be climate change-threatened. Within these broad-scale habitat categories, species 

associated with: arable land; heavily degraded former forest in tropical and subtropical 

regions; dry, moist lowland, moist montane or swamp forests of the tropics or subtropics; or 

dry savanna were significantly less likely to be climate change-threatened. 

Level 1 habitat associations were different when only considering the largest bird order, the 

Passeriformes: of the marine habitats, only marine intertidal remained significant. In addition 

to artificial-terrestrial, forest and savanna habitats which reflected the patterns seen across all 

birds, shrubland habitats were associated with a likelihood of being associated with climate 

change threat, while wetlands and deserts were not associated with climate change threat on 

the IUCN Red List (Table S8). For Tyrannidae, there were no significant habitat associations 

with climate change threat. 

Threat associations of climate change-threatened species 

Amphibians 

Species were significantly more likely to be climate change-threatened if they were also 

reported to be affected by the Level 1 threats of: human intrusions and disturbance; invasive 

and other problematic species; natural system modifications; or pollution (Table 2). The same 

Level 1 threat associations were found in both the Anuran and Hylidae datasets, with the 

exception of human intrusion and disturbance, which was no longer significant (Table S7). 

Using Level 2 threat classifications, species were significantly more likely to be climate 

change-threatened if they were affected by recreational activities; non-native invasive 

species; fire and fire suppression; or agricultural and forestry effluents. 

Birds 
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Species were significantly more likely to be climate change-threatened if they were also 

reported to be affected by the Level 1 threats of agriculture and aquaculture; human 

intrusions and disturbance; invasive and other problematic species or natural system 

modifications (Table 2). Within these broad-scale, Level 1 threat categories, species were 

significantly more likely to be climate change-threatened if they were reportedly affected by 

the Level 2 threats of annual and perennial non-timber crops; recreational activities; work and 

other non-specified activities causing disturbance; non-native invasive species; problematic 

native species; or fire and fire suppression. 

Among Passeriformes, agriculture/aquaculture, invasive or other problematic species and 

natural systems modifications retained their significant associations with climate change 

threat, while also including positive interactions with biological resource use in the MAM 

(Table S8). For Tyrannidae, only residential and commercial development was significantly 

associated with a likelihood of climate change threat on the IUCN Red List. 

Vulnerability traits as predictors of climate change threat on the IUCN Red List 

Amphibians 

Amphibians were significantly more likely to be listed as climate change-threatened on the 

IUCN Red List if they had a broad temperature tolerance or a narrow precipitation tolerance, 

were recorded as being susceptible to Chytrid fungus, or had extrinsic barriers to dispersal 

(e.g. mountain tops, ocean etc.) (Table 3). Conversely, species were significantly less likely 

to be listed as climate change-threatened if they were dependent on a specific microhabitat, 

while non-microhabitat-dependent species were more likely to be listed as climate change-

threatened. The same traits remained the most significant factors in the Anuran dataset; 

however, for Hylidae, only temperature tolerance remained significant, with a broad 
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temperature tolerance being associated with listing as climate change-threatened on the IUCN 

Red List. 

Birds 

Species with broad temperature tolerances, narrow precipitation tolerances, small population 

sizes, extrinsic barriers to dispersal, low genetic diversity, and slow turnover of generations 

were significantly more likely to be climate change-threatened (Table 3). Conversely, species 

with a low reproductive capacity or microhabitat-dependencies (on bamboo and rocky 

outcrops) were significantly less likely to be climate change-threatened. 

 

Full model results 

Amphibians 

Combining all significant factors from previous models, occurrence in grassland remained as 

the only significant habitat factor associated with a likelihood of being climate change-

threatened (Table 4). All threat factors from the previous analysis were retained in the full 

model, each being associated with a climate change-threatened status. Of the CCVA traits, all 

were retained except habitat specialism, which was no longer statistically significant. Again, 

microhabitat-dependence and a wide precipitation tolerance were associated with an absence 

of climate change threat. 

Birds 

Of all the previously significant habitats, only marine neritic was retained in the full model as 

significantly associated with climate change threat (Table 4). All CCVA traits were retained 

in the full model, showing the same relationships as the previous model. Of the threat factors, 
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human intrusion and disturbance became insignificant, while agriculture and aquaculture, 

natural system modification, and invasive and other problematic species retained their 

positive effect on climate change threat. 

 

Discussion  

Despite previous criticisms of the IUCN Red List to properly account for climate change as 

an emerging threat (Thomas et al. 2004; Keith et al. 2014), our analysis suggests that the 

IUCN Red List assessment process identifies climate change risk for species with certain 

habitats or traits that may increase climate change risk. Key associations with a climate 

change-threatened status on the IUCN Red List were the presence of dispersal barriers, 

occurrence in montane, grassland or intertidal habitats, narrow precipitation tolerance, small 

population sizes, low genetic diversity, long generation lengths, threats from fire and fire 

suppression, invasive species, and additional synergistic threats. 

 

Some of these factors are well documented in the published literature and are therefore 

relatively easy to assess within the current assessment frameworks. For example, distinct 

geographical barriers, especially those relevant to the CCVA process (mountaintops, islands, 

etc.; Foden et al. 2013) and species restricted to montane habitats are easily identified by 

assessors, explaining their tendency to account for climate change threat in these species 

during an IUCN Red List assessment. This is buoyed by extensive literature on shifting 

species ranges in response to climate change (Walther et al. 2002), where species which are 

incapable of shifting their ranges may undergo declines and even extinction (e.g. mountaintop 

extinctions; Colwell et al. 2008). 
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Traits that are often expected (and indeed used) to confer high vulnerability to climate, but 

were, in our analysis, shown to have negative relationships with the likelihood of a climate 

change threat classification on the IUCN Red List are of particular interest. These findings 

challenge the "ecological common sense" approach to designing vulnerability assessment 

protocols.  

 

Many grassland ecosystems rely on climate-driven processes such as fire (Boughton et al. 

2013) and/or flood regimes (Zelnik & Čarni 2013) to maintain their vegetation composition. 

Since natural fire/flooding regimes are expected to alter under climate change (Moriondo et 

al. 2006; Flannigan et al. 2009), species already threatened by or reliant on fire or flooding 

regimes could become increasingly threatened as climate change increases or disrupts the 

frequency and severity of these events. Dependence on the presence or absence of a specific 

fire or flooding regime is already incorporated into some CCVAs (Carr et al. 2014; Böhm et 

al. 2016), but only threat from altered fire cycles appears to be consistently associated with 

climate change-threat on the IUCN Red List. The omission of alteration of flooding regimes 

is somewhat compensated for, given that some dry or flood-reliant habitats were directly 

associated with climate change-threat on the IUCN Red List. While species in arid regions 

are adapted to withstand low levels of precipitation, many already operate at critical 

physiological levels of water (and temperature) requirements and are therefore under 

particular climate change threat (Vale & Brito 2015).  

 

Intertidal species will likely face challenges associated with sea level rise, which will reduce 

the availability of these habitats (Galbraith et al. 2002), particularly where human 

developments prevent natural migration of coastal habitats inland. Similarly, projected 
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increases in the severity and frequency of adverse weather conditions, such as storms, are 

likely to cause increased damage to seabird breeding sites and increase chick mortality 

(Croxall et al. 2012; Bonter et al. 2014), while sea level rise is expected to worsen such 

impacts (Van De Pol et al. 2010). Habitat inundation due to climate change appears to be 

already considered by many assessors as a threat to species. 

Climate change-threatened species were comparatively absent from forest habitats (including 

montane and tropical forests), most notably the Amazon Basin – a region consistently 

harbouring the highest numbers of climate change-vulnerable species in global analyses 

(Foden et al. 2013; Böhm et al. 2016). Forest habitats may effectively buffer against negative 

impacts of climate change by providing temperature-stabilising microhabitats (e.g. under 

logs, within soil and leaf litter, epiphytes and tree holes) (Huey & Tewksbury 2009; Scheffers 

et al. 2014a; Scheffers et al. 2014b). Given the spatial incongruence of climate change-

vulnerable species versus climate change-threatened species, CCVAs may overestimate the 

vulnerability of tropical forest species. This may be specifically through the treatment of 

microhabitat specialists as climate change-sensitive (Foden et al. 2013), with both habitat and 

microhabitat specialisation of species potentially having a disproportionate influence on the 

outcome of vulnerability assessments, while also being difficult to assess objectively across 

species (Böhm et al. 2016). Red List assessors may instead consider the buffering effects of 

microhabitats for each species individually. Habitat specificity, measured as the number of 

habitats recorded in the IUCN Red List assessments, is more easily and objectively assessed, 

and generally also corresponds to a lower extinction risk (Böhm et al. 2016). ‘Generalist' life-

history and adaptability to environmental change provides species with the opportunity to 

relocate to refugia from harmful climate change, or to less affected habitats. Empirical 

research is required to fill trait data gaps and gather evidence of how traits affect climate 
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change vulnerability (Böhm et al. 2016) in order to improve CCVAs and allow adequate 

climate change representation in IUCN Red List assessments.  

 

Climate change is often described as acting synergistically with other, more immediate, 

threats, such as habitat loss/degradation, invasive species, pollution or overexploitation. We 

found many threats which significantly co-occurred with a climate change threat on the 

IUCN Red List. Interactions between pollution and climate change and the subsequent effects 

on the health of wildlife are becoming increasingly recognized (Noyes & Lema 2015), 

including the ability for one stressor to reduce a species’ resilience to the other.  

 

Interactions between climate change and invasive species (or inter-specific interactions in the 

case of CCVA) are well documented, specifically where species cause disease (e.g. 

amphibians and Chytrid fungus), or where the affected species is an island endemic (Szabo et 

al. 2012). Disease-related inter-specific interactions may be adequately reflected in Red List 

assessments of amphibians, especially since the interaction between Chytrid fungus and 

climate change has received much attention in recent years (Pounds et al. 2006; Lips et al. 

2008), despite sometimes tenuous evidence (Rohr et al. 2008; Rohr & Raffel 2010). It 

remains unclear from our analyses (although it is unlikely) whether Red List assessors are 

giving explicit consideration to interactions between threat types; it is more likely that 

assessors recognise the extreme vulnerability of species to a large number of different 

threatening processes. 
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Assessing broad-scale associations across global data sets comes with certain caveats which 

may cause spurious results. For example, many bird species known to use marine neritic 

habitats are noted as climate change-threatened, although the actual impact is likely occurring 

in other habitats, such as terrestrial breeding sites. Species with large global distributions may 

vary in their vulnerability to climate change across their range. Therefore, richness maps 

presented in this paper are only indicative of high numbers of climate change-threatened 

species, rather than where species will actually be impacted.  

 

Assessments of threat types may vary between assessors due to individual differences in 

attitudes to risk and perceptions of predominant threat processes affecting a species, and our 

current analysis does not account for this variability. Accounting for assessors as random 

effects in a mixed logistic model is unmanageable in reality, given the multitude of assessors 

and assessor combinations involved in the production of the 15,000+ assessments in our 

analysis. While assessor bias may result in inconsistent documentation of threats between 

IUCN Red List assessments, all assessments in our analysis are reviewed by one of two Red 

List authorities (BirdLife International and the IUCN SSC Amphibian Specialist Group), 

ensuring consistency within taxonomic groups undergoing comprehensive assessments 

(Collen et al. 2016). To overcome assessor bias, next steps should involve the use of machine 

learning techniques, such as random forests, to predict climate change threat from habitats, 

threats and CCVA traits. Such techniques have recently been used to predict extinction risk 

of Data Deficient species on the IUCN Red List (Bland et al. 2015). 

 

We also did not consider any interactions between variables. For example, a species 

occurring in a particular habitat (e.g. freshwater pools) with an ongoing threat (e.g. 
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agricultural water abstraction) may be more susceptible to climate change impacts than a 

species occupying a similar habitat but unaffected by the compounding threat. This point is 

particularly topical, given the emerging acknowledgement that human responses to climate 

change are likely to exacerbate existing threats, and in some cases may be more significant 

than the direct threats typically associated with climate change (Watson 2014).  

 

Red List assessments can benefit from the findings of trait-based analyses to appropriately 

consider the impacts of climate change. Specific traits considered in CCVA should be used to 

assess whether climate change is, or may become, a threat to a species. Using a combination 

of comparable species’ intrinsic and spatial traits to predict the likelihood of climate change 

threat, Pacifici et al. (2017) further emphasize this requirement, identifying congruence with 

IUCN Red List assessments for selecting climate change as a threat in only 7% of mammals 

and 4% of birds. The consideration of specific traits used in CCVA has recently been 

incorporated into official guidance on IUCN Red List assessments (IUCN Standards and 

Petitions Subcommittee 2016). Such consideration of climate change impact mechanisms 

(e.g. through use of CCVAs) as part of Red List assessments does not mean more species 

would be classed as threatened, because assignment of extinction risk categories follows 

strict criteria, based on symptoms of extinction risk (declining populations, restricted range 

etc.) (Collen et al. 2016), rather than threat processes per se. However, it would help the 

documentation of climate change as a potential threat to species for which certain 

characteristics of high sensitivity and low adaptability overlap with high exposure scenarios 

in the future. Other factors related to climate change threat may already be included in IUCN 

Red List assessments through their direct impact on species’ extinction risk. For example, 

while it is unlikely that assessors specifically consider the role of population size in assessing 

climate change threat, the ready availability of these metrics suggests that simple guidelines 
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could be compiled to make assessors aware of these traits and how they may be used, in 

conjunction with threat maps of climate change exposure (Murray et al. 2014), to assess 

climate change-threat. Since the effects of climate change are often slow to develop, it is 

likely that assessors often consider climate change as a threat for species with longer 

generation lengths. 

 

As described earlier in this discussion, extra consideration should be given to traits that were 

consistently not associated with climate change threat on the Red List or were found to 

contradict CCVA hypotheses (e.g. habitat specialism, microhabitat-dependence, temperature 

tolerance, dependence on environmental triggers, low dispersal capacity, and low 

reproductive capacity) when assessing climate change threat for the IUCN Red List. 

However, discrepancies may result from the fact that for some traits, very little direct 

information exists in the published literature to 1) derive trait values for species or 2) link 

certain traits solidly to higher climate change impacts. The former may lead to CCVA trait 

values, e.g. temperature tolerance, being derived from indirect data sources, such as spatial 

environmental data layers overlaid onto species range maps (Foden et al. 2013). While 

temperature tolerance measures inferred from spatial data were positively correlated with 

both critical maximum temperature and critical temperature range in an analysis of 

temperature tolerance in reptiles (Böhm et al. 2016), indirectly derived trait values may not 

always adequately reflect a species’ biology. Assuming that Foden et al. (2013) adequately 

inferred species’ temperature tolerances, our results suggest that Red List assessors are giving 

less consideration to temperature requirements compared to other environmental factors, such 

as precipitation tolerance. It is possible, however, that the method used by Foden et al. (2013) 

is misleading the apparent positive relationship between temperature tolerance and climate 

change threat. To infer temperature tolerances, Foden et al. used minimum/maximum 
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observed temperatures across species’ ranges (using clipped range polygons). This approach 

fails to account for the fact that some species’ (and particularly widespread species) global 

ranges often comprise locally adapted sub-populations, which can differ in plasticity. 

Consequently, an apparent ability for a species to tolerate a wide range of conditions across 

its global range may not hold true when considerations are made using lower (e.g. sub-

population) spatial units. Valladeres et al. (2014) showed that forecasts of species range 

contractions were even more severe than those using conventional assumptions of 

consistently high plasticity across a species’ range when population differentiation is factored 

in and dispersal restricted. For most species, however, suitable population-level data are not 

available. Further research should therefore seek to determine trends of population 

differentiation in order to fill this gap.  

 

Further research should focus on identifying other logical avenues for research to guide 

efforts to accumulate much needed empirical evidence on the importance of our highlighted 

traits in a climate change vulnerability context.  This is of particular urgency as many of the 

less conspicuous or imminent climate change-associated threats may still be very real and 

severe, even if not within the timeframes used by the planning agency in question and/or the 

IUCN Red List itself. 
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Tables 

Table 1.  Logistic regression MAM outputs for amphibians and birds showing all significant 

Level 1 (bold) and corresponding Level 2 habitat classification categories (if any).  

  
IUCN habitat categorya β coeff 

St. err. 

(β) 

Wald's χ²b 

Odds 

ratioc 

  

A
m

p
h

ib
ia

n
s 

Artificial-Terrestrial -0.421 0.129       10.621** 0.656 

  Arable Land 0.515 0.188       7.469** 1.674 

  ST/T Heavily Degraded Former Forest -0.922 0.205   20.196*** 0.398 

Grassland 0.447 0.142 9.878** 1.564 

  ST/T High Altitude Grassland 0.709 0.159 20.017*** 2.032 

  ST/T Seasonally Wet/Flooded Lowland 

Grassland 

-1.332 0.519 6.600* 0.264 

Savanna -1.271 0.284 20.026*** 0.281 

  Moist Savanna -1.288 0.428 9.072** 0.276 

Shrubland 0.317 0.144 4.822* 1.373 

  ST/T Dry Shrubland 0.523 0.217 5.818* 1.687 

  ST/T Moist Shrubland -0.881 0.425 4.297* 0.414 

Constant -2.303 0.153 226.653*** 0.1 

  Constant -2.461 0.062 1575.852*** 0.085 

B
ir

d
s 

Artificial-Terrestrial -0.613 0.071 74.563*** 0.542 

  Arable Land -0.45 0.101 19.865*** 0.638 

  ST/T Heavily Degraded Former Forest -1.124 0.138 66.635*** 0.325 

Forest -0.256 0.08 10.330*** 0.774 
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  ST/T Dry Forest -0.234 0.099 5.603* 0.791 

  ST/T Moist Lowland Forest -0.741 0.071 108.347*** 0.476 

  ST/T Moist Montane Forest -0.283 0.07 16.201*** 0.753 

  ST/T Swamp Forest -1.149 0.241 22.829*** 0.317 

Grassland 0.4 0.078 26.677*** 1.493 

Marine Intertidal 0.315 0.113 7.823** 1.37 

Marine Neritic 0.987 0.105 89.095*** 2.682 

Savanna -0.609 0.107 32.456*** 0.544 

  Dry Savanna -0.787 0.111 50.396*** 0.455 

Constant -1.945 0.08 592.825*** 0.143 

  Constant -1.445 0.047 960.690*** 0.236 

aLevel 1 and level 2 habitat classification categories were analysed separately. For every 

category the df = 1. ST/T = Subtropical/Tropical.                                                                                                                                                                            
bLevels of significance are denoted with ‘*’ for P <0.05, ‘**’ for P <0.01, and ‘***’ for     P 

<0.001.                                                                                                                                                                                                         
cOdds ratios indicate the likelihood of a climate change threat classification on the Red List for 

each category. 
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Table 2.  Logistic regression MAM outputs for amphibians and birds showing all significant 

Level 1 (bold) and corresponding Level 2 threat classification categories (if any).  

  
IUCN threat categorya β coeff 

St. err. 

(β) 

Wald's χ²b 

Odds 

ratioc 
  

  Human Intrusions and Disturbance 0.689 0.175 11.546*** 1.992 

  
 A

m
p

h
ib

ia
n

s 

  Recreational Activities 0.821 0.183 20.205*** 2.273 

Invasive and Other Problematic Species, Genes 

and Diseases  
1.494 0.114 172.45*** 4.455 

  Invasive Non-Native/Alien Species/Diseases 1.555 0.111 196.22*** 4.735 

Natural System Modifications 0.905 0.113 63.936*** 2.472 

  Fire and Fire Suppression 1.107 0.12 84.953*** 3.025 

Pollution 0.687 0.114 36.518*** 1.988 

  Agricultural and Forestry Effluents 0.814 0.113 51.754*** 2.257 

Constant -3.776 0.121 971.82*** 0.023 

  Constant -3.612 0.095 1449.9*** 0.027 

  
 B

ir
d

s 

Agriculture and Aquaculture 1.123 0.096 137.55*** 3.074 

  Annual and Perennial Non-Timber Crops 1.157 0.089 170.04*** 3.18 

Human Intrusions and Disturbance 0.335 0.128 6.849** 1.398 

  Recreational Activities 0.589 0.166 12.603*** 1.802 

  Work and Other Activities 0.436 0.177 6.071* 1.547 

Invasive and Other Problematic Species, Genes 

and Diseases 

2.214 0.092 581*** 9.152 

  Invasive Non-Native/Alien Species/Diseases 2.277 0.899 641.3*** 9.747 
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  Problematic Native Species/Diseases 0.677 0.13 27.04*** 1.968 

Natural System Modifications 0.329 0.104 10.005** 1.39 

  Fire and Fire Suppression 0.575 0.117 24.138*** 1.777 

Constant -3.814 0.07 2942.52*** 0.022 

  Constant -3.733 0.067 3074.7*** 0.024 

aLevel 1 and level 2 threat classification categories were analysed separately. For every category the 

df = 1. ST/T = Subtropical/Tropical.                                                                                                                                                                                     
bLevels of significance are denoted with ‘*’ for P <0.05, ‘**’ for P <0.01, and ‘***’ for     P <0.001.                                                                                                                                                                                                             
cOdds ratios indicate the likelihood of a climate change threat classification on the Red List for each 

category. 
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Table 3.  Logistic regression MAM output for amphibians and birds showing all significant 

species’ sensitivity and adaptability traits used by the CCVA.   

 

CCVA traita β coeff 

St. err. 

(β) 

Wald's χ²b 

Odds 

ratioc 

Effect 

A
m

p
h

ib
ia

n
s 

Habitat generalist -0.038 0.018 4.397* 0.963 Species that occupy 

more habitats are more 

likely to be CC 

threatened. 

Microhabitat-

dependence 

-0.639 0.13 24.325*** 0.528 Microhabitat-dependent 

species are less likely to 

be CC threatened. 

Temperature tolerance 0.018 0.003 34.457*** 1.018 Species with a broader 

tolerance range are more 

likely to be CC 

threatened. 

Precipitation tolerance -0.006 0.002 10.093** 0.994 Species with a narrower 

tolerance are more 

likely to be CC 

threatened. 

Inter-specific 

interactions 

1.495 0.12 156.3*** 4.513 Species with known 

susceptibility to Chytrid 

fungus are more likely 

to be CC threatened. 

Extrinsic barriers to 0.663 0.137 23.532*** 1.941 Species with an 
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dispersal extrinsic dispersal 

barrier are more likely 

to be CC threatened. 

  

Constant -2.754 0.204 182.277*** 0.064   

B
ir

d
s 

Microhabitat-

dependence 

-0.945 0.297 12.686*** 0.389 Microhabitat-dependent 

species are less likely to 

be CC threatened. 

Temperature tolerance 0.012 0.002 39.431*** 1.012 Species with a broader 

tolerance range are more 

likely to be CC 

threatened. 

Precipitation tolerance -0.008 0.002 20.055*** 0.992 Species with a narrower 

tolerance range are more 

likely to be CC 

threatened. 

Small population size 1.566 0.144 Inf.*** 4.787 Species with a small 

population size are more 

likely to be CC 

threatened. 

Extrinsic barriers to 

dispersal 

8.269 0.438 Inf.*** 3901.05 Species with barriers to 

dispersal are more likely 

to be CC threatened. 

Low genetic diversity 1.109 0.37 8.198** 3.031 Species with low 

genetic diversity are 

more likely to be CC 
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threatened. 

Generation length 0.126 0.013 Inf.*** 1.134 Species with longer 

generation lengths are 

more likely to be CC 

threatened. 

Reproductive capacity 0.086 0.029 8.303** 1.09 Species with higher 

reproductive capacity 

are more likely to be CC 

threatened.  

  

Constant -4.463 0.171 Inf.*** 0.012   

aFor every category the df = 1. 
bLevels of significance are denoted with ‘*’ for P <0.05, ‘**’ for P <0.01, and ‘***’ for     P <0.001. 
cOdds ratios indicate the likelihood of a climate change threat classification on the Red List for each 

category.    
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Table 4.  Logistic regression MAM output for amphibians and birds showing all significant 

Level 1 habitat and threat classification categories, and species’ CCVA sensitivity and 

adaptability traits (divided by dashed lines).  

  
Independent variablesa β coeff 

St. err. 

(β) 

Wald's χ²b 

Odds 

ratioc 

A
m

p
h

ib
ia

n
s 

Grassland 0.436 0.135 10.375** 1.547 

Human Intrusions and Disturbance 0.553 0.181 9.364** 1.738 

Natural System Modifications 0.831 0.117 50.098*** 2.296 

Invasive and Other Problematic Species, 

Genes and Diseases 

1.167 0.133 76.913*** 3.212 

Pollution 0.672 0.123 29.888*** 1.958 

Microhabitat-dependence -0.803 0.127 40.12*** 0.448 

Temperature tolerance 0.009 0.003 7.601** 1.009 

Precipitation tolerance -0.004 0.002 4.796* 0.996 

Inter-specific interactions 0.752 0.135 31.259*** 2.121 

Extrinsic barriers to dispersal 0.483 0.143 11.438*** 1.621 

  Constant -3.326 0.218 233.784*** 0.036 

B
ir

d
s 

Marine Neritic 1.32 0.219 33.373*** 3.743 

Agriculture and Aquaculture 0.983 0.171 32.131*** 2.672 

Natural System Modifications 0.699 0.175 15.289*** 2.012 

Invasive and Other Problematic Species, 

Genes and Diseases 

1.351 0.162 66.597*** 3.861 

Microhabitat-dependence -0.699 0.3 6.319* 0.497 

Temperature tolerance 0.01 0.002 22.677*** 1.01 
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Precipitation tolerance -0.008 0.002 16.861*** 0.992 

Small population size 0.453 0.17 6.942** 1.573 

Extrinsic barriers to dispersal 8.345 0.439 Inf.*** 4209.08 

Low genetic diversity 0.912 0.388 5.283** 2.489 

Generation length 0.047 0.016 8.106** 1.048 

Reproductive capacity 0.076 0.029 6.309* 1.079 

  Constant -4.454 0.185 Inf.*** 0.012 

aFor every category the df = 1. 
bLevels of significance are denoted with ‘*’ for P <0.05, ‘**’ for P <0.01, and ‘***’ for     P 

<0.001.                                                                                                                                                                                                                                               
cOdds ratios indicate the likelihood of a climate change threat classification on the Red List for 

each category.    
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Figure legends 

Figure 1. Equal-area projections of global species richness of amphibians (A); total numbers 

of amphibian species assessed as climate change-vulnerable during CCVA (Foden et al. 

2013) (B); total numbers of amphibian species with climate change threat listed on the IUCN 

Red List (IUCN 2014) (C); percentage (of the total species present) of amphibians assessed 

as climate change-vulnerable during CCVA (Foden et al. 2013) (D); and percentage (of total 

species present) of amphibians possessing climate change as a listed threat on the IUCN Red 

List (IUCN 2014) (E). 

 

Figure 2. Equal area-projections of global species richness of birds (A); total numbers of bird 

species assessed as climate change-vulnerable during CCVA (Foden et al. 2013) (B); total 

numbers of bird species with climate change threat listed on the IUCN Red List (IUCN 2014) 

(C); percentage (of the total species present) of birds assessed as climate change-vulnerable 

during CCVA (Foden et al. 2013) (D); and percentage (of total species present) of birds 

possessing climate change as a listed threat on the IUCN Red List (IUCN 2014) (E). 
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Figure 1. 
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Figure 2. 

 


