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Human Navigation: Occipital Place Area Detects Potential Paths in a Scene 
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Navigation — determining how to get from where you are to somewhere else — has obvious 

importance for the survival of motile animals. A new neuroimaging study has revealed that, 

in the human brain, the occipital place area detects the number of possible paths in a vista. 

 

Henri Poincaré proposed that space is best understood in terms of how we interact and move 

within it [1]. This idea was formalized by Gibson with his theory of affordances — 

characterising the actions that can be taken in a given environment, based on what we 

perceive, as well as our knowledge of what we expect [2]. For example, when we first move 

to a new neighborhood, we may stick to the larger, more direct roads to go in to work, but as 

we explore the environment, we find alternative routes and the available options expand. 

Over time, when we step out from our house, the scene in front of us has transformed in 

terms of how we may interact with it, yet its sensory properties are unchanged. The physical 

structure of most visual scenes is generally invariant, and does not change radically over 

time, leading to statistically predictable regularities of contexts which help in guiding object 

and scene identification [3]. Most research on scene perception has focused on how attention 

is directed to various aspects of the scene, based on both bottom-up features, such as visual 

saliency [4] or spatial arrangement [5], and top-down sources such as semantic categories [6] 

or memories [7]. To date, little has been done to merge what we know about scene perception 

and navigation. In a recent study, Bonner and Epstein [8] tackle the question of how 



prospective movement options in the environment are represented in the brain, paving the 

way for furter studies exploring the interaction between externally imposed boundaries for 

locomotion and goal-directed navigation.  

 Using an elegant and highly controlled design, Bonner and Epstein [8] first asked 

whether any previously identified scene-selective brain areas — the parahippocampal place 

area(PPA), retrosplenial complex (RSC) or occipital place area (OPA) [9] —respond to 

available options for actions (navigational affordances), such as pathways leading out of a 

room. In the first experiment, artificial scenes were created, with three walls and up to three 

potential visible exits (doors), the number of which was varied across scenes. Additionally, to 

control for low-level visual differences in scenes with and without exits, there were stimuli in 

which the potential exits were blocked by a painting, thus looking visually similar, but 

offered reduced navigational possibilities. Importantly, the task performed by participants 

was unrelated to navigation or the properties of the scenes’ affordances. Using 

representational similarity analysis (RSA), a method for quantifying functional magnetic 

resonance imaging (fMRI) activation patterns in the brain, the authors identified areas that 

responded more similarly when the direction and number of exits amongst various scenes 

overlapped.  

Bonner and Epstein [8] found that only activity in the OPA showed a significant 

correlation between scenes with similar navigational affordances (Figure 1); the PPA and 

RSC, areas that respond to scenes in general, did not distinguish navigational affordances. 

This effect was replicated in a second experiment in which more complex natural scenes 

were used (though here, the PPA also significantly coded affordances). Furthermore, a 

univariate analysis examining overall neural activity (as opposed to activity patterns) in the 

OPA showed an increase with the number of doorways, but this effect disappeared when 

looking at scenes with equivalent visual complexity but reduced navigational affordances 



(those with paintings blocking exits). These results indicate that the OPA distinguishes 

between scenes that differ on the amount and direction of visible exits, and is independent of 

general low-level saliency and gist-based features, which might be expected if the OPA were 

coding simpler, non-navigationally specific features of the scene. 

 An impressive aspect of the new study [8] was the use of an encoding model to 

reconstruct navigational affordances in a new set of scenes, based on the neural activity 

patterns elicited from an independent training set. Briefly, brain activity patterns for a single 

scene image from all subjects were combined across each region-of-interest, then principal 

components were extracted representing the shared variance across subjects for that scene. 

Navigational affordance maps were created for each image, based on paths drawn by an 

independent group of participants. A linear decoder was trained on one half of the scenes 

[10], using the pixel-wise affordance information in the scene and resulting voxelwise 

activity in the principal components. The reconstruction model was then run on the remaining 

unseen set of images to predict a two-dimensional heatmap of navigational affordances of the 

image based on brain activity. The signal in the OPA was used to reliably reconstruct the 

veridical paths in the scenes, indicating selective coding of navigational aspects of scenes, 

independently of their semantic content and other navigationally irrelevant visual properties. 

This implies that based on the OPA fMRI data alone, the researchers would be able to predict 

the navigational affordances of a scene just viewed, an exciting prospect for artificial 

intelligence applications that need to predict human behavior in an environment. 

 The results seemingly unseat the king of scene selective areas, the PPA, a much more 

established region implicated in navigation [11]. However, Bonner and Epstein [8] point to 

recent results implicating the PPA in landmark identity [12], which may increase the 

specificity with which the PPA encodes affordances, making it less flexible to changes in 

overall scene identity (this fits in with analyses showing that changes in textures, a proxy for 



identity, in the artificial scenes reduced the similarity representation in PPA for equivalent 

affordances). Moreover, the OPA is well placed in the dorsal visual stream to be involved in 

visuospatial perception and visuomotor processing [13], and has recently been implicated as 

necessary for processing boundaries in visual scenes [14,15]. Boundaries are a central tenet to 

navigational behavior [16], and processing potential pathways may be intricately linked to 

those borders.  

 The next steps are to explore how these brain patterns relating to navigational 

affordances are modulated by actual goal-directed navigation. We know that long-term 

memories bias perception and attention to certain locations in scenes [17], so how might 

these affordances change with learning or exposure to the environment? Additionally, 

topological aspects of the environment are coded in the hippocampus and frontal cortex [18], 

but it is unclear how that information may be immediately available to the OPA without 

learning. This raises the issue as to whether the OPA is a simple detector of movement 

options in a scene, which is relayed to downstream areas in the medial temporal lobe, or 

whether its activity is modulated by known, but currently invisible aspects of the 

environment. Over a hundred years after the original proposal, this study has opened up the 

path for studying navigation in terms of ecological affordances and understanding the 

involvement of the visual system in this fundamental ability.   
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Figure 1. The OPA codes for the number and direction of navigational affordances in a scene, 

independently of visual complexity.  

The stairs in Park Guell (A) and the Cornfield in Alabama (C) both contain two paths, 

whereas the Tunnel in Budapest (B) offers only one direction of movement: although image 

B is more complex than either A or C, it has lower navigational affordance. The graph (D) 

shows how the patterns of activity in the OPA [8] are more similar for image A and C than 

for any other pairing. 

 

In Brief: 



Navigation — determining how to get from where you are to somewhere else — has obvious 

importance for the survival of motile animals. A new neuroimaging study has revealed that, 

in the human brain, the occipital place area detects the number of possible paths in a vista. 

 


