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IMPORTANCE Recent genome-wide association studies (GWAS) and pathway analyses
supported long-standing observations of an association between immune-mediated diseases
and Parkinson disease (PD). The post-GWAS era provides an opportunity for cross-phenotype
analyses between different complex phenotypes.

OBJECTIVES To test the hypothesis that there are common genetic risk variants conveying
risk of both PD and autoimmune diseases (ie, pleiotropy) and to identify new shared genetic
variants and their pathways by applying a novel statistical framework in a genome-wide
approach.

DESIGN, SETTING, AND PARTICIPANTS Using the conjunction false discovery rate method, this
study analyzed GWAS data from a selection of archetypal autoimmune diseases among
138 511 individuals of European ancestry and systemically investigated pleiotropy between PD
and type 1 diabetes, Crohn disease, ulcerative colitis, rheumatoid arthritis, celiac disease,
psoriasis, and multiple sclerosis. NeuroX data (6927 PD cases and 6108 controls) were used
for replication. The study investigated the biological correlation between the top loci through
protein-protein interaction and changes in the gene expression and methylation levels. The
dates of the analysis were June 10, 2015, to March 4, 2017.

MAIN OUTCOMES AND MEASURES The primary outcome was a list of novel loci and their
pathways involved in PD and autoimmune diseases.

RESULTS Genome-wide conjunctional analysis identified 17 novel loci at false discovery rate
less than 0.05 with overlap between PD and autoimmune diseases, including known PD loci
adjacent to GAK, HLA-DRB5, LRRK2, and MAPT for rheumatoid arthritis, ulcerative colitis and
Crohn disease. Replication confirmed the involvement of HLA, LRRK2, MAPT, TRIM10, and
SETD1A in PD. Among the novel genes discovered, WNT3, KANSL1, CRHR1, BOLA2, and
GUCY1A3 are within a protein-protein interaction network with known PD genes. A subset of
novel loci was significantly associated with changes in methylation or expression levels of
adjacent genes.

CONCLUSIONS AND RELEVANCE The study findings provide novel mechanistic insights into PD
and autoimmune diseases and identify a common genetic pathway between these
phenotypes. The results may have implications for future therapeutic trials involving
anti-inflammatory agents.
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Emerging evidence suggests a substantial genetic com-
ponent underlying Parkinson disease (PD).1,2 Linkage
analysis and genome-wide association studies (GWAS)

confirmed the role of genes involved in familial and sporadic
forms of PD.3,4 Genome-wide association studies are able to
identify variants with strong genetic effects; however, true
polygenic risk alleles with weaker evidence for association may
be overlooked.5,6 The estimated heritability in PD GWAS sub-
stantially increases when weak effect loci are also considered,2

further emphasizing the involvement of a large proportion of
genetic risk variants below standard genome-wide signifi-
cance thresholds. Moreover, these studies2,5 nominate novel
loci that have not been implicated in disease pathogenesis.

The association between inflammation and neurodegen-
erative diseases has long been observed in Alzheimer disease
(AD),7,8 amyotrophic lateral sclerosis, and, highlighted in this
work, PD.9-11 In an epidemiological study12 in Sweden, 6 of 33
studied types of autoimmune disorders were identified with an
increased risk of developing PD, including amyotrophic lateral
sclerosis, hyperthyroidism, hypothyroidism, multiple sclero-
sis, pernicious anemia, and polymyalgia rheumatica, al-
though this finding was not observed in a population-based case-
control study13 from Denmark. The association between PD and
MS has been confirmed in other studies.14-16 Furthermore, in
clinical studies,17,18 regular users of nonsteroidal anti-
inflammatory drugs were found to have lowered risk of PD. It
is still not clear whether immune dysfunction has an impor-
tant role in early stages of PD or is simply the end product of a
neuronal degeneration process.19

The occurrence of PD in patients with autoimmune dis-
eases, or vice versa, could reflect genetically determined fac-
tors influencing both lipid metabolism and immune disor-
ders that cannot be elucidated by epidemiological and clinical
studies alone.19 Genome-wide–based pathway analyses in PD
supported the association between PD and autoimmune
diseases.5 Early independent studies showed that at least one
gene, LRRK2, is statistically significant in both PD20 and Crohn
disease.21 The results of a recently published study22 sug-
gested that, along with known PD loci USP25, HLA-DRA, and
LRRK2, additional genetic factors are present that contribute
to genetic comorbidity shared by PD and CD. A systematic study
is needed to decipher whether shared polygenetic risk vari-
ants (ie, genetic pleiotropy) exist between PD and autoim-
mune diseases and whether particular molecular biological
pathways are involved.

An approach combining GWAS data from 2 disorders with
shared pathways can significantly increase the power to dis-
cover novel loci and partly reveal the missing heritability in
GWAS. Our group recently developed a novel statistical frame-
work to identify single-nucleotide polymorphisms (SNPs) ex-
hibiting genetic pleiotropy between multiple phenotypes and
applied it to identify pleiotropy between AD and autoimmune
diseases.23 This approach also identified novel loci between
schizophrenia and cardiovascular diseases,24 psychiatric
disorders,25 and neurological diseases.26

Herein, we applied this approach to investigate the poten-
tially shared genetic basis for PD and autoimmune diseases.
Autoimmune diseases were selected based on available large

GWAS, including PD, type 1 diabetes, CD, ulcerative colitis,
rheumatoid arthritis celiac disease, psoriasis, and multiple
sclerosis.27-33 We used conditional and conjunction false dis-
covery rate analyses to define SNPs associated with both groups
of phenotypes (pleiotropic SNPs).

Methods
Participant Samples
Using the conjunction false discovery rate method, this study
analyzed GWAS data from a selection of archetypal autoim-
mune diseases among 138 511 individuals of European ances-
try and systemically investigated pleiotropy between PD and
type 1 diabetes, Crohn disease, ulcerative colitis, RA, celiac dis-
ease, psoriasis, and multiple sclerosis. Genome-wide associa-
tion studies summary statistic P values and z scores were ob-
tained from the studies of PD,4 CD,27 ulcerative colitis,28 RA,29

type 1 diabetes,30 celiac disease,31 psoriasis,32 and multiple
sclerosis33 (eTable 1 in the Supplement). Details of the inclu-
sion criteria and phenotype characteristics of the GWAS are
described in the original publications. The relevant institu-
tional review boards or ethics committees approved the re-
search protocol of the individual GWAS used in the present
analysis, and all participants gave written informed consent.
The dates of the analysis were June 10, 2015, to March 4, 2017.
All P values were corrected for inflation using a genomic con-
trol procedure.24,25

Statistical Analysis
Conditional Quantile-Quantile Plots
The quantitative estimates of true associations and statistical
enrichment were calculated from the distributions of sum-
mary statistics.34,35 We plotted conditional quantile-quantile
(Q-Q) plots for a primary phenotype by filtering SNPs based
on their level of association with a secondary phenotype. Pleio-
tropic enrichment between PD and an autoimmune disorder
was evident if the degree of deflection of PD P values from the
expected null line produced successive leftward deflection
when conditioned on an autoimmune disease.24,25,36 To con-
trol for linkage disequilibrium (LD), we performed a random
pruning procedure.37

Key Points
Question Are there genome-wide genetic risk factors for
Parkinson disease that are shared with pathways of autoimmune
diseases?

Findings In this study of combined genome-wide association data
with control replication, we identified 17 novel genetic loci shared
between Parkinson disease and type 1 diabetes, Crohn disease,
ulcerative colitis, rheumatoid arthritis, celiac disease, psoriasis, and
multiple sclerosis.

Meaning Our findings identify a common genetic pathway
between Parkinson disease and autoimmune diseases and suggest
that the immune system influences Parkinson disease
pathogenesis.
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Conditional and Conjunction False Discovery Rate
We defined conditional false discovery rate, denoted by
FDRtrait1|trait2, as the posterior probability that a given SNP is
null for the first trait given that the P values in both traits are
smaller than their observed P values.24,25 We defined conjunc-
tion false discovery rate, denoted by FDRtrait1&trait2, as the pos-
terior probability that a given SNP is null for both phenotypes
simultaneously given that the P values for both traits are as
small or smaller than the observed P values. We obtained a con-
servative estimate of conjunction false discovery rate by tak-
ing the minimum of FDRtrait1|trait2 and FDRtrait2|trait1. To con-
trol for LD, we applied a random pruning procedure.37 Detailed
information on the methods can be found in prior studies.24,25

NeuroX Data
We replicated the top conjunction false discovery rate loci,
highly associated with both PD and autoimmune disorders, in
a second independent PD data set. The data set was gener-
ated with the NeuroX exome array,3,38 including 6927 PD cases
and 6108 controls. Variants passing standard quality control
(Hardy-Weinberg equilibrium P > 1 × 10−6 and maximum miss-
ingness rate of 5%) were tested for association with PD with a
logistic model correcting for the first 4 multidimensional scal-
ing components and sex.

Gene Expression and Methylation Changes
We determined the regional methylation and expression pat-
terns within ±1 megabases of 103 SNPs of interest. We inves-
tigated frontal cortex and cerebellum microarray data from the
North American Brain Expression Consortium (NABEC)39 and
the United Kingdom Brain Expression Consortium (UKBEC)40

of 396 European samples without neuropathological evi-
dence of disease. We also accessed a second expression quan-

titative trait loci (eQTL) data set based on cap analysis gene ex-
pression profiling technique of the frontal cortex of 119 NABEC
samples.41 A total of 98 variants (3 not testable) and 83 vari-
ants (20 not testable) were studied for the microarray-based
and cap analysis gene expression–based data sets, respec-
tively. For details of these procedures, see the eMethods in the
Supplement.

Genetic Correlations Among Implicated Loci
To investigate the genetic relatedness among implicated SNPs,
we performed protein-protein interaction analyses using
STRING version 10.42 The input consisted of novel loci as iden-
tified in pleiotropic analyses. We considered total scores above
0.400 (medium confidence) that correspond to the combina-
tion of the following 4 different scores: coexpression, experi-
mental, knowledge, and text mining.

Results
Significant Genetic Overlap Between PD
and Autoimmune Diseases
Conditional Q-Q plots for PD conditioned on association P val-
ues of autoimmune diseases showed strong enrichment for
Crohn disease (Figure 1). Successive leftward shifts for de-
creasing nominal PD P values indicated that the proportion of
non-null SNPs in PD increased considerably with higher lev-
els of association with an autoimmune phenotype. For ex-
ample, when conditioned on CD, the proportion of SNPs reach-
ing a significance of PD P < 10−5 in the category Crohn disease
P < 10−3 is 20 times greater than when all SNPs were exam-
ined (Figure 1 and eFigure 1 in the Supplement). Similar en-
richment was found with ulcerative colitis and RA, and weaker

Figure 1. Pleiotropic Enrichment of Parkinson Disease (PD) Conditioned on Association P Values
of Autoimmune Diseases

0

1

2

3

4

5

6

7

8

2 4 6

N
om

in
al

 −
lo

g 10

1

2

3

4

5

6

7

8

0
2 4 6

N
om

in
al

 −
lo

g 10

1

2

3

4

5

6

7

8

0
2 4 6

N
om

in
al

 −
lo

g 10

1

2

3

4

5

6

7

8

0
2 4 6

N
om

in
al

 −
lo

g 10

Empirical −log10 Empirical −log10 Empirical −log10 Empirical −log10

PD Given T1D PD Given CD PD Given UC PD Given RA

1

2

3

4

5

6

7

8

0
2 4 6

N
om

in
al

 −
lo

g 10

Empirical −log10

1

2

3

4

5

6

7

8

0
2 4 6

N
om

in
al

 −
lo

g 10

Empirical −log10

1

2

3

4

5

6

7

8

0
2

0 0 0 0

0 0 0 4 6

N
om

in
al

 −
lo

g 10

Empirical −log10

PD Given Celiac Disease PD Given Psoriasis PD Given MS

All SNPs
Immune P <10−1

Immune P <10−2

Immune P <10−3

Expected

Conditional quantile-quantile plots
(nominal vs empirical –log10 P values)
are calculated from single-nucleotide
polymorphism (SNP) populations of
varying degrees of association with
autoimmune diseases. Each
population is composed of SNPs that
pass certain significance of
association (type 1 diabetes [T1D],
Crohn disease [CD], ulcerative colitis
[UC], rheumatoid arthritis [RA], celiac
disease, psoriasis, and multiple
sclerosis [MS]) at P � 1 (All SNPs),
P < 10−1, P < 10−2, and P < 10−3. All P
values have been corrected for
genomic inflation. Dotted lines
indicate the expected line under the
null hypothesis, and leftward
deflection shows increasing degrees
of enrichment.

Research Original Investigation Genome-wide Pleiotropy Between Parkinson Disease and Autoimmune Diseases

782 JAMA Neurology July 2017 Volume 74, Number 7 (Reprinted) jamaneurology.com

© 2017 American Medical Association. All rights reserved.

Downloaded From: http://jamanetwork.com/ by a University College London User  on 07/20/2017

http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2017.0469&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2017.0469
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2017.0469&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2017.0469
http://www.jamaneurology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2017.0469


enrichment was found with celiac disease and multiple scle-
rosis. The enrichment remained after removing the major his-
tocompatibility complex and MAPT regions (eFigure 2 in the
Supplement).

Shared Susceptibility Loci for PD
and Autoimmune Disorders
We performed a conjunction false discovery rate analysis and
visualized the pleiotropic loci between PD and autoimmune dis-
eases in a Manhattan plot (Figure 2). Based on conjunction false
discovery rate less than 0.05, we detected 17 independent pleio-
tropic loci for the 7 autoimmune diseases (Table 1). Nine loci re-
mained after excluding the major histocompatibility complex
and MAPT regions (eTable 2 in the Supplement). Of the 17 loci,
the directions of PD effect given by z scores were mostly the same
with Crohn disease, ulcerative colitis, and celiac disease and op-
posite with rheumatoid arthritisand psoriasis (Table 1 and eTable
3 in the Supplement). The conjunction false discovery rate analy-
ses over multiple autoimmune phenotypes showed overlap-
ping susceptibility loci between Crohn disease and ulcerative
colitis and demonstrated some overlap between ulcerative coli-
tis, RA, celiac disease, and multiple sclerosis (eFigure 3 in the
Supplement). We were able to replicate 5 loci in our in-house
independent NeuroX data at P < .05 (Table 1). In addition to the
previously published HLA, LRRK2, and MAPT associations,4 we
also identified 2 new loci adjacently located to TRIM10 and
SETD1A.

Functional Interpretation of Shared Susceptibility Loci
A total of 103 associated variants resulting from conditional
false discovery rate less than 0.01 and conjunction false dis-
covery rate less than 0.05 were tested for being a methylation
QTL (methQTL) or an eQTL. Table 2 summarizes the signifi-
cant methQTL and eQTL in the brain in which the affected gene
is implied by the literature (see the Discussion section) to have

a function in the immune system. As expected, most hits are
for variants located in the HLA locus and MAPT locus, both of
which have been implicated in PD.3,37,43-45 Within the NABEC
data set, 31 of the 103 variants were shown to have a signifi-
cant effect on the methylation status of 16 genes (eTable 4 in
the Supplement). Likewise, 29 variants were significantly
associated with changes in expression of 14 genes in the
NABEC, UKBEC, or in-house eQTL data set (eTable 5 in the
Supplement).

In addition to the exploration for methQTL and eQTL
within the described data sets, we compared a recent elabo-
rate eQTL study46 of multiple immune cell types (B cells,
CD4 T cells, CD8 T cells, monocytes, and neutrophils) in
patients with inflammatory bowel disease and healthy
controls. Our 103 candidate SNPs intersected with those
authors’ significant (false discovery rate <0.05) eQTL
results. eTable 6 in the Supplement lists significant eQTL for
10 variants influencing the expression of 8 genes, 5 of which
(DGKQ, IDUA, BST1, CD38, and SNCA) have previously been
discussed in the context of PD.4 These SNPs could contrib-
ute to PD risk through immune mechanisms by regulating
the gene expression of these PD-related genes in these
immune-specific cells. Six immune eQTL that regulate the
expression of 2 genes (DGKQ and DMPK) were also observed
in the brain eQTL and methQTL data, affirming the
immune-related involvement of these genes in PD.

Shared Biological Pathways Between Significant Risk Loci
Using functional gene networks and protein interaction
networks, the connectivity among the loci in the combined
network increased considerably compared with the net-
works represented by pleiotropic and PD loci (Figure 3). The
network analyses revealed interaction between the 17 loci
identified in our study with nodes defined by PD loci (eg,
GUCY1A3, KANSL1, CRHR1, WNT3, and BOLA2). This finding

Figure 2. Conjunctional False Discovery Rate Manhattan Plot of − log10 Values for the Associated
Autoimmune Phenotypes
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demonstrates biological relatedness between the pleiotropic
loci from the present analysis and PD loci from previous
reports.47

Discussion
Genetic comorbidities between PD and immune-related genes
have only been explored for high-risk PD loci.5,6,22 Our study
using a genome-wide unbiased statistical approach identified
17 shared loci between PD and 7 autoimmune diseases. This find-
ing strengthens the hypothesis that known PD risk genes might
contribute to PD through immune system defects (eg, LRRK2,
GAK, HLA, and MAPT),21,48 while suggesting that additional loci
with weaker associations also contribute to pleiotropy (Table 1).
TRIM10 is closely positioned to the HLA region, and, although
not extensively described, variants in SETD1A have also pre-
viously been associated with PD.49,50 While we found an over-
lap between genetic risk factors for autoimmune diseases and
PD, the specific loci involved for each trait differed. This re-
sult is consistent with the findings that some susceptibility loci
are associated with risk in multiple immune-mediated
diseases.51

Because our method considers joint P values, some
SNPs with strong association with PD might not pass the sig-
nificance threshold if they only had marginal association

with the autoimmune disease, and vice versa. For instance,
a locus in SNCA has one of the strongest associations in PD4

(PD P = 3.67 × 10−26), but it is not associated with autoim-
mune diseases (RA P = .6184). Taking the 2 P values
together, its conjunction false discovery rate is not signifi-
cant (PD and rheumatoid arthritisconjunction false discov-
ery rate of 0.9856). Among the 13 significant genes in our PD
data set,4 we did not find significant conjunction false dis-
covery rate loci among SYT11, ACMSD, STK39, MCCC1/
LAMP3, BST1, SNCA, and CCDC62/HIP1R owing to weak
association with autoimmune disorders (eTable 7 in the
Supplement). Likewise, some known risk loci for immune
diseases were not found in our results: one locus near
C A R D 1 5 / N O D 2 w a s s i g n i f i c a n t i n C r o h n d i s e a s e
(P = 1.21 × 10−58) but not in PD (P = .2163), and its conjunc-
tion false discovery rate of 0.8496 did not pass our thresh-
old. MC1R has been reported to be associated with PD and
immune-mediated diseases,52,53 but it had not been
reported in our data sets of PD (P = .2936) or Crohn disease
(P = .2936).

Our brain-based QTL analyses suggest immune
function–related genes for which the expression or methyla-
tion level is changed by of one of our identified susceptibil-
ity loci. Most of these genes are located in the HLA locus or
MAPT locus, and owing to the complex underlying LD struc-
tures, it is difficult to define the true causal genes. However,
our analyses implicate that, in addition to the PD-associated
HLA genes and MAPT in these loci, TRIM31, CRHR1,
PLEKHM1, and NSF might also be related to PD through
defective components of the immune system.54-56 For
example, methylation levels of TRIM31 seem to be affected
in the cerebellum by 2 susceptibility loci (rs9261531 and
rs9261535) in TRIM10. It is hypothesized that TRIM family
proteins are active in the innate immune response to intra-
cellular infectious agents.57,58 In addition to known PD loci,
there is one novel susceptibility locus that has an effect on
methylation levels. This variant (rs7515174) is located in the
third intron and affects the frontal cortex methylation state
of FCGR2A. This gene encodes a protein belonging to the
IgGFc receptor gene family in which the encoded proteins
are located on the surface of many immune response cells
and take part in clearing of immune complexes and
phagocytosis.59-61 Variants in FCGR2A have been associated
with inflammatory bowel disease, Crohn disease, and ulcer-
ative colitis,62 and variants in other genes from the same
family were associated with RA.63 Of further interest are the
8 identified genes in which the expression is regulated by 10
pleiotropic SNPs (from 5 loci) in several specific immune
cell types.46 Five of the 8 genes are located in 3 loci previ-
ously associated with PD.3 For example, SNCA expression is
regulated by a pleiotropic variant (rs2736990) in intron 2 of
SNCA in monocytes. This finding seems in line with a previ-
ous study64 describing an increase of monocytes in periph-
eral blood of patients with PD, implying an immune-related
manifestation of PD through monocytes. RNPS1, DMPK, and
DMWD (with the latter 2 genes involved in myotonic
dystrophy65) are 3 of the 8 immune-based eQTL that are
newly associated with PD in the present study. The biologi-

Figure 3. Functional Gene Network for Novel Pleiotropic Loci From the
Present Analysis and Previously Confirmed Parkinson Disease
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cal functions of these genes involve messenger RNA modifi-
cation and intracellular trafficking or are unknown.66,67

We used pathway analyses to discern the underlying
relevant pathways; however, functional studies are
pertinent to provide biological insight. Performing down-
stream pathogenetic analyses using cell-based models is
beyond the scope of the present work. Nevertheless, we
anticipate that the genetic loci highlighted in our study will
motivate the scientific community to pursue this line of
research.

The strong pleiotropic enrichment observed between
PD and Crohn disease suggests a common pathogenetic link
between these 2 phenotypes. Previous studies21,48 high-
lighted LRRK2 as a significant risk factor for both of these
phenotypes. LRRK2 has been identified as having 2 in-
dependent Crohn disease risk loci (rs11564258 and
rs3761863)68: only one of them is in high LD to our shared
susceptibility locus rs17467164 (r2 = 0.992 and r2 = 0.075,
respectively). The observed association between PD and
Crohn disease indicates that defects in cargo transport
mechanism might underline the disease pathogenesis in
both phenotypes.69 It is known that gastrointestinal tract
dysfunction is associated with PD, perhaps even preceding
the onset of central motor symptoms.70 Several of the iden-
tified overlapping genes (CCNY, LRRK2, MAPT, RSPH6A,
and SYMPK) are involved in basic cellular functions that
may be related to alterations in enteric neurotransmission
or intestinal motility disturbances.71 Furthermore, the
shared gene HLA-DQB1 has a central role in the immune sys-
tem by introducing peptides derived from extracellular pro-
teins, which implicate overlapping factors related to the
immune system (CD4 T cells).

We found moderate polygenic pleiotropic enrichment be-
tween PD and ulcerative colitis or RA, whereas genetic en-
richment with type 1 diabetes, celiac disease, psoriasis, and
multiple sclerosis was weak. In comparison, in a population-
based study,13 the risk for PD was observed to increase in a
subset of the cohort with autoimmune diseases and ulcer-
ative colitis and to decrease in those with a previous diagno-
sis of RA. The epidemiological data in that investigation are
in agreement with a recently published study22 in which ge-
netic comorbidities with PD were explored using top loci from
diverse phenotypes. The authors observed a decreased risk for
rheumatoid arthritisand psoriasis, but the findings were not
statistically significant because of the small sample size. It is
unlikely that patients with unrecognized immune-related dis-
orders were included in the PD study13 population in large
enough numbers to affect the results; however, some partici-
pants in the autoimmune disorders population13 could de-
velop PD over time.

Inflammation of microglia, the major resident immune
cells in the brain,72 has been involved in degeneration of do-
paminergic neurons affecting PD.19,73 The extent of genetic plei-
otropy observed between PD and autoimmune diseases will
help us to understand novel pathogenetic aspects of neuro-
degeneration in PD, a chronic immune activation of microg-
lia, which may cause or contribute to degeneration of neu-
rons. For example, it has been shown that aggregated

α-synuclein protein (by overexpression of SNCA) activates the
microglia, which increases nitration of α-synuclein and main-
tains the proinflammatory innate immune response in PD.74

In this context, the present findings of a polygenic link be-
tween PD and inflammatory biological function are likely to
be relevant. Furthermore, recent evidence suggests that im-
mune factors are also involved in other neurodegenerative dis-
eases, such as AD.23

Limitations and Strengths
Our pleiotropy-based statistical framework was limited to
GWAS with a high coverage of SNPs (>500 000); therefore,
autoimmune disorders selected for this study were based on
available GWAS data that fit these criteria. With more exten-
sive GWAS data, it would be worthwhile to study a larger set
of immune disorders associated with PD from epidemiologi-
cal or clinical studies (eg, thyroid disease).12 Our study is
also limited in distinguishing between immune-mediated
and autoimmune disease. It has been hypothesized that PD
itself is an autoimmune disease.75 Although we have shown
herein using GWAS of autoimmune disorders that PD has a
strong immune component, the conclusion of the hypoth-
esis that PD is an autoimmune disease should be investi-
gated through further cell-based functional studies.

This work has clinical implications. Our data suggest
more extensive clinical studies of patients with immune-
mediated disorders for PD signs to develop possible screen-
ing schemes for PD, and vice versa, for monitoring immune
and inflammatory status among individuals with an
increased risk for PD.76 According to our study, apparently
healthy individuals with a high load of these shared risk
genotypes, predisposing them to inflammation distur-
bances, could be at particularly increased risk for develop-
ing PD. Further prospective studies in these individuals may
clarify these issues. Our findings also suggest the need for
further investigation of the role of immune-modulating
agents in the treatment of PD. There is some evidence indi-
cating that anti-immune drugs could be a viable option for
therapeutic interventions in PD. A 2004 study76 showed
that candesartan cilexetil, a drug used for hypertension,
reduces the α-synuclein–induced microglia phenotype.
Therefore, data generated from our study may facilitate
novel treatment strategies by increasing our understanding
of the pathogenetic mechanisms influenced by pleiotropic
disease loci.

Conclusions
In summary, our study highlights the usefulness of cross-
phenotype analyses to identify genetic overlap (ie, pleiotro-
pic loci) between PD and a selection of autoimmune disor-
ders. Our results suggest that these PD-associated loci
contribute to PD through immune defects and that immune
dysfunction is not simply the end product of the neurodegen-
eration process. The findings strongly support the presence of
interaction between the immune system and neurodegenera-
tion in PD.
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