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Summary  

 

The two basic processes underlying perceptual decisions – how neural responses encode 

stimuli, and how they inform behavioral choices – have mainly been studied separately. 

Thus, although many spatiotemporal features of neural population activity, or “neural codes,” 

have been shown to carry sensory information, it is often unknown whether the brain uses 

these features for perception. To address this issue, we propose a new framework centered on 

redefining the neural code as the neural features that carry sensory information used by the 

animal to drive appropriate behavior; that is, the features that have an intersection between 

sensory and choice information. We show how this framework leads to a new statistical 

analysis of neural activity recorded during behavior that can identify such neural codes, and 

we discuss how to combine intersection-based analysis of neural recordings with intervention 

on neural activity to determine definitively whether specific neural activity features are 

involved in a task. 
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Introduction  

To survive, organisms must both accurately represent stimuli in the outside world, and use 

that representation to generate beneficial behavioral actions. Historically, these two processes 

– the mapping from stimuli to neural responses, and the mapping from neural activity to 

behavior – have mainly been treated separately. Of the two, the former has received the most 

attention. Often referred to as the “neural coding problem,” its goal is to determine what 

features of neural activity carry information about external stimuli. This approach has led to 

many empirical and theoretical proposals about the spatial and temporal features of neural 

population activity, or “neural codes,” that represent sensory information (Buonomano and 

Maass, 2009; Harvey et al., 2012; Harvey et al., 2013; Kayser et al., 2009; Luczak et al., 

2015; Panzeri et al., 2010; Shamir, 2014). However, there is still no consensus about the 

neural code for most sensory stimuli in most areas of the nervous system. 

 

The lack of consensus arises in part because, while it is established that certain features of 

neural population responses carry information about specific stimuli, it is unclear whether the 

brain uses the information in these features to perform sensory perception (Engineer et al., 

2008; Jacobs et al., 2009; Luna et al., 2005; Victor and Nirenberg, 2008). In principle, the 

link between sensory information that is present and sensory information that is read out to 

inform choices can be probed using the animal’s behavioral report of sensory stimuli. In 

addition, improvements in techniques to perturb activity of neural populations during 

behavior (Boyden et al., 2005; Deisseroth and Schnitzer, 2013; Emiliani et al., 2015; 

Tehovnik et al., 2006) now make it possible to test causally hypotheses about the neural code, 

by “writing” on the neural tissue putative information, and then measuring the behavior 

elicited by this manipulation. However, progress in cracking the neural code has been limited 

by the lack of a conceptual framework that fully integrates the advantages offered by 

behavioral, neurophysiological, statistical, and interventional techniques.  

 

Here we elaborate such a conceptual framework, which at its core is based on a change in 

how a neural code should be defined. We propose that a neural code should be defined as the 

set of neural response features carrying sensory information that, crucially, is used by the 

animal to drive appropriate behavior; that is, the set of neural response features that have an 

intersection between sensory and choice information. In the following we discuss this 

framework and its implications for designing and interpreting experiments aimed at cracking 

the neural code, as well as some theoretical and experimental challenges that arise from it.  

 

 

What it takes to crack the neural code underlying a sensory percept 
To illustrate our new framework, we consider a perceptual discrimination task in which an 

animal has to extract information present in the sensory environment and, based on that 

information, choose an appropriate action. For definiteness, we assume (Fig. 1A) a two-

alternatives forced-choice discrimination task: the animal has to extract color information 

from a visual stimulus (that is decide whether a green (s=1) or a blue (s=2) stimulus was 

presented) and decide whether to choose to move left (choice c=1) or right (c=2), with the 

correct choice resulting in a reward (we numbered choices so that c=1 is the correct rewarded 

choice for s=1 and c=2 is the correct choice for s=2). We suppose that an experimenter is 

recording the activity of a population of sensory neurons (visual neurons in this example) 

while the animal performs the task. We would like to determine whether the activity of these 

neurons contributes causally to the animal’s perception and behavioral choice.  
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The neural code in tasks such as this one involves two crucial stages in the information 

processing chain (Fig. 1A). The first stage is sensory coding: the mapping, on each trial, of 

the sensory stimulus to neural population activity. The second stage is information readout: 

the mapping from neural population activity to behavioral choice. 

 

An important observation is that sensory coding and information readout can be based on 

distinct features: some features of neural activity used to encode sensory information may be 

ignored when information is read out, and vice versa. For example, suppose that, as is often 

found (Panzeri et al., 2010; Shriki et al., 2012; Shusterman et al., 2011; Victor, 2000; Zuo et 

al., 2015), the precise timing of spikes and the spike rate are both informative about the 

stimulus. Although there is information in spike timing, the downstream neural circuit may 

be sensitive only to the rate, and thus unable to use information contained in spike timing. Or, 

the downstream circuit may be sensitive to spike timing, but if extracting spike timing 

information requires an independent knowledge of the stimulus presentation time to which 

the downstream circuit does not have access, the readout will not be able to use spike timing 

information. In a less extreme case, the same features of neural activity may be used for both 

sensory coding and information readout, but they may be weighted differently by different 

sets of neurons. For example, the timing of spikes may carry more information about the 

stimulus than the number of spikes, but the spike rate may weigh more than spike timing in 

reaching a behavioral choice.    

 

Although characterizing separately the features of neural activity used for sensory coding and 

for information readout can provide insight into neural information transmission, we argue 

that to crack the neural code it is essential to consider the intersection between sensory 

coding and information readout (Fig. 1A), defined as the set of neural features carrying 

sensory information that is read out to inform a behavioral choice. The only information that 

matters for task performance is the information at this intersection. In fact, only features that 

lie at this intersection can be used to convert sensory perception into appropriate behavioral 

actions and can help the animal perform a perceptual discrimination task. We therefore define 

the neural code that allows the animal to do the task to be the “intersection” features of neural 

activity carrying sensory information that is read out for behavioral choice. 

 

In the following, we propose a framework for identifying the information at the intersection 

of sensory coding and information readout. We propose a combination of statistical 

approaches, behavior, and interventional manipulations (Fig. 1B). Statistical approaches can 

be used on single trials to identify the neural activity features that covary with the sensory 

stimuli and behavioral choices; they are, therefore, critical for forming hypotheses about the 

features of the neural activity that both contain sensory information and are used by the 

information readout. These hypotheses can be tested using experiments in which sensory 

stimuli are replaced with (or accompanied by) direct manipulation of neural population 

activity (Fig. 1B). The manipulation of the specific features of neural population activity that 

take part in sensory coding and the examination of how these manipulations affect the 

animal’s behavioral choices probe causally the intersection between sensory information and 

readout.  

 

 

Examples of candidate neural codes 
 

Before detailing the concepts behind this proposed framework, we first provide examples to 

illustrate the types of neural codes and questions that could be addressed. In all these 
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examples, we suppose that we record (either from the same brain location or from multiple 

locations) neural population activity. That activity consists of n neural features, denoted r1,.. 

,rn. We would like to determine which of these features, either individually or jointly, carry 

sensory information that is essential for performing the perceptual discrimination task. For 

simplicity, hereafter we focus on two features, r1 and r2, but our framework is general enough 

to deal with an arbitrary number of features (see Supplemental Information).  

 

A common example of studies of population coding (Fig. 2A) considers as candidate neural 

codes two features, r1 and r2, defined respectively as the total spike count of two populations 

of neurons. This has been the focus of many recent studies designed to test whether activity 

in specific neural populations is essential for accurate performance in sensory discrimination 

tasks (Chen et al., 2011; Guo et al., 2014; Hernandez et al., 2010; Peng et al., 2015). Those 

spike counts could be from spatially separated populations in two different brain regions, as 

shown in Fig. 2A, or they could be from different genetically or functionally defined cell 

classes in the same brain region (Baden et al., 2016; Chen et al., 2013; Li et al., 2015; Wilson 

et al., 2012). More sophisticated examples of features of neural population activity may 

involve low-dimensional projections of the activity of large neuronal populations 

(Cunningham and Yu, 2014). These could be, for example, the first two principal components 

of neural population activity, and would consist of weighted sums of spike counts of the 

recorded population (Fig. 2B). Major open questions that follow from these studies are 

(Otchy et al., 2015): which populations are instructive for the task (provide sensory 

information used for perceptual discrimination), which populations are permissive for the 

task (modulate task performance without directly contributing any specific sensory 

information), and which populations have no causal role in the sensory discrimination task 

despite having sensory information? The neural code is expected to be present in instructive 

populations. In contrast, permissive areas could provide task-relevant modulation that is not 

related to the sensory stimuli, such as attention or saliency signals. Populations with no 

causal role may still contain task-related information if it is inherited from instructive 

regions.  

 

Other questions relevant for population coding regard which neurons are required for sensory 

information coding and perception (Houweling and Brecht, 2008; Huber et al., 2008; Reich et 

al., 2001). For example, often only a relatively small fraction of neurons in a population have 

sharp tuning profiles to the stimuli, whereas the majority of neurons have weak and/or mixed 

tuning to many different variables (Meister et al., 2013; Rigotti et al., 2013). Information 

about stimuli can be decoded from both types of neurons, but it remains a major open 

question whether only the sharply tuned neurons or other neurons as well can contribute to 

behavioral discrimination (Morcos and Harvey, 2016). A related question is: how many 

neurons are required for sensory perception? This question can be investigated by 

determining the smallest subpopulation of neurons that carries all information used for 

perception. 

 

Another set of questions considers the role of spike timing in sensory coding and perception 

(Fig. 2C-D). Spike timing could be measured with respect to the stimulus presentation time,  

an internal brain rhythm (Kayser et al., 2009; O'Keefe and Recce, 1993), or a rhythmic active 

sampling process such as sniffing (Shusterman et al., 2011). In many cases both spike timing 

and spike count carry sensory information (in the example of Fig. 2C stimulus s=1 elicits 

responses with fewer and earlier spikes than does s=2). Although it is accepted that spike 

timing carries sensory information, whether or not timing is used for behavior has been 

vigorously debated (Engineer et al., 2008; Harvey et al., 2013; Jacobs et al., 2009; Luna et 
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al., 2005; Zuo et al., 2015). For example, it is still debated whether the sensory information 

carried by millisecond-scale spike timing is redundant with that provided by the total spike 

count in a longer response window of hundreds of milliseconds, whether the information in 

spike timing measured with respect to stimulus onset can be accessed by a downstream 

neural decoder, and whether recurrent circuits in higher cortical areas can extract 

millisecond-scale information.  

 

Also of interest is whether the complex aspects of the temporal structure of spike trains could 

be part of the neural code. One possibility is that the regularity of spike timing of single 

neurons or the coordination of spike timing across cells carries information about the 

stimulus (as in the example of Fig. 2D, where stimulus 1 elicits more regular spike trains than 

stimulus 2). The regularity or temporal coordination across cells may also have a large effect 

on the readout (Doron et al., 2014; Jia et al., 2013; Nikolic et al., 2013): for example, spikes 

closer in time may elicit a larger post-synaptic response and so may have a crucial impact on 

task performance. However, some studies have suggested that temporal coordination does not 

have a behavioral effect, but instead all spikes are weighted the same by the readout (Histed 

and Maunsell, 2014). 

 

In what follows we will consider, for simplicity, two features, and we will generically refer to 

these features as r1 and r2. These features could refer to spike timing and spike counts, the 

mean firing rate in two different brain regions, the activity of two different cell types, and so 

on.   

 

Determining the single-trial intersection between sensory information 

coding and information readout using statistical analysis of neural 

recordings 
 

We now consider how to identify, using statistical measures applied to recordings of neural 

activity during behavior experiments, three conceptually important domains of interest in the 

neural information space (Fig. 1A): the “sensory information” domain (the features of neural 

population activity that carry stimulus information), the “readout” domain (the features that 

influence the computation of choice), and the “intersection” between the two domains (the 

features that carry sensory information used to compute choice).  

 

Throughout this article, to illustrate neural coding and stimulus and choice domains, we use 

scatterplots of simulated responses characterized by two features; each dot in the two-

dimensional feature plane (r1,r2) represents a single-trial response color-coded for that trial’s 

stimulus (s=1: green; s=2, blue) (see also Fig. 2A, right panel for a schematization of this 

representation). Each dot therefore shows the simulated neural response of feature r1 and r2 

on each individual trial. 

 

A simple way to visualize how neural response features encode sensory stimuli is to compute 

a sensory decoding boundary (Quian Quiroga and Panzeri, 2009) – shortened to “sensory 

boundary” hereafter – that best separates trials by stimulus (i.e., that best separates the blue 

and green dots in the plots in Fig. 3). This boundary (black dashed line in the r1,r2 plane in 

Fig. 3A1,B1,C1) can be used as a rule to decide which stimulus most likely caused a given 

single-trial neural response. Similarly, we can visualize how neural response features are 

used to produce a choice with a "decision boundary" (Haefner et al., 2013), visualized as red 

dashed line in Fig. 3A1,B1,C1.  In these figures, this decision boundary coincides with the line 

that best separates trials by choice. Responses that lead to correct choices are shown as filled 
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dots; those leading to incorrect choice are shown as open circles. The orientation of the 

boundaries determines the relative importance of each feature in sensory coding or choice: a 

diagonal boundary gives weight to both features, whereas a horizontal or vertical line gives 

weight only to r2 or only to r1, respectively. 

 

To quantify how well each feature or set of features carries information about stimulus or 

choice, we use the fraction correct. In terms of the illustrations of Fig. 3, the fraction of 

correctly decoded stimuli is the fraction of green or blue dots that fall on the correct side of 

the sensory boundary (below or above the sensory boundary for the green, s=1, and blue, 

s=2, stimulus, respectively). Other measures, such as those based on signal detection theory 

(Britten et al., 1996; Shadlen et al., 1996) or information theory (Quian Quiroga and Panzeri, 

2009) can be used instead, and are discussed in Supplemental Information. We use fraction 

correct primarily because it is simple and intuitive, but we could use any of the other 

measures without changing the basic framework. To emphasize the generality of our 

reasoning, hereafter we often refer to fraction correct as “information”. If the fraction correct 

refers to the decoded stimulus we call it “sensory information” or “stimulus information”; if 

it refers to decoded choice we call it “choice information”.  

 

We say that a neural response feature, ri, carries sensory or choice information if the value of 

the presented stimulus or the animal’s choice can be predicted from the single-trial values of 

this feature. Stimulus information and sensory boundaries are typically computed presenting 

two or more different stimuli, and quantifying how well the stimulus-specific distributions of 

neural response features are separated by sensory boundaries (Quian Quiroga and Panzeri, 

2009). Choice information has been typically computed separately from stimulus information 

(Britten et al., 1996), by evaluating decision boundaries from distributions of responses with 

no sensory signal or at fixed sensory stimulus (to eliminate spurious choice variations of 

neural response arising from their stimulus-related variations).  

 

To understand the neural code associated with a particular task, it is relatively obvious that 

we need to consider both stimulus and choice information. If a response feature carries 

stimulus but not choice information, then the sensory information it carries isn’t used for the 

task. If a response feature carries choice but not stimulus information, then although it may 

contribute to choice, or relay or execute the result of the decision making, it still cannot be 

used per se to increase task performance because it does not carry information about the 

sensory variable to be discriminated (Koulakov et al., 2005). However, a fact that has been 

underappreciated so far is that a neural feature can carry both sensory and choice information, 

but still not contribute to task performance. This could happen, for example, when features 

carry both stimulus and choice information, but the rule used to encode sensory information 

is incompatible with the rule used to read them out. 

 

We illustrate this in Fig. 3A. Suppose that in this figure, r1 and r2 are the times of the first 

spike of two different neurons. These features are signal-correlated (Averbeck et al., 2006); 

that is, both neurons spike earlier (corresponding to smaller values of both r1 and r2 in the 

scatterplot in Fig. 3A) to the green stimulus (s=1) and later (corresponding to larger values of 

r1 and r2 in the scatterplot) to the blue stimulus (s=2), with no “noise” correlations (Averbeck 

et al., 2006) between the activity of these neurons at fixed stimulus. For this encoding 

scheme, higher values of r1+r2 indicate that the blue stimulus is more likely, and so the 

sensory boundary is anti-diagonal: it is the line r1+r2 = constant. Suppose, though, that the 

readout does not have access to the stimulus time. In such a case, the only information the 

readout can use is the relative time of firing between the two neurons. This is the difference, 
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r1-r2, and so the decision boundary is r1-r2 = constant. In this case the responses carry 

information about both stimulus and the choice, but the responses cannot be used to perform 

the task – the orthogonal sensory and decision boundaries mean the animal’s choice is 

unrelated to the stimulus.  

 

The case illustrated in Fig. 3A could happen also in studying neural population coding rather 

than spike timing. For example, r1 and r2 could be weighted sums of activity of neurons 

within a large population (as in Fig. 2B), with stimulus encoded by the sum of the two neural 

features and choice by the most active of the two features (which feature is most active is 

revealed by the sign of r1-r2). Also in this “population” interpretation of Fig. 3A, none of the 

stimulus information in population activity could be used to perform the task.  

 

Investigating whether neural stimulus information is usefully read out for task performance 

requires quantifying whether neural discrimination predicts behavioral discrimination. This 

has traditionally been addressed by evaluating the similarity between neurometric functions 

(quantifying the trial-averaged performance in discriminating various pairs of stimuli using 

one or more neural response features) and psychometric functions (quantifying the animal’s 

trial-averaged performance in discriminating the same set of pairs of stimuli). If a set of 

response features contributes to task performance, psychometric and neurometric functions 

should be similar (stimulus pairs discriminations that are easier for the animal should also be 

easier for the considered response features, and so on). This approach has provided numerous 

insights in sensory coding across several modalities (Engineer et al., 2008; Newsome et al., 

1989; Romo and Salinas, 2003). For example, it was used to study the role of spike rates and 

spike times of somatosensory neurons for tactile perception of low-frequency (8-16 Hz) skin 

vibrations (Romo and Salinas, 2003). Although most such neurons encoded vibration 

frequency by spike rate, some neurons encoded it by spike times fired in phase with skin 

deflections. However, the neurometric performance of spike rates correlated better to the 

psychometric one than that of spike times, suggesting that spike rates produce this sensation 

(Romo and Salinas, 2003). A similar approach applied to high frequency vibrations (>100 

Hz) suggested that discriminating high frequency vibrations relies on both spike times and 

rates (Harvey et al., 2013). 

 

A potential problem with comparing neurometric and psychometric functions is that these 

functions may be similar even when the sensory and choice information do not intersect at 

all. The reason why this may happen is that it is based on comparing trial-averaged quantities, 

rather than comparing sensory information and animal’s choice in single trials. To understand 

the possible problems of only comparing neurometric and psychometric functions, consider a 

new scenario (Fig. S1A). The scenario is in part similar to that of Fig. 3A: r1 ,r2 are again the 

first spike times of two different neurons, and they are tuned to the stimuli and contribute to 

choice; and, as in Fig 3A, in this new example of Fig S1A both neurons spike earlier to the 

green stimulus (s=1) and later to the blue one (s=2), leading to an anti-diagonal sensory 

boundary (line r1+r2 = constant), and the readout uses the relative time of firing r1-r2 between 

the two neurons (the decision boundary projected on the r1,r2 plane is r1-r2 = constant). 

However, suppose that in the example of Fig. S1A the actual choice (unlike in Fig. 3A) 

depends also on a third neural feature, r3, which we’ll take to be the sum of the firing rate of 

the two neurons. Assume also that, crucially, the stimulus dependence of the firing rate r3 is 

similar to that of both r1 and r2, so that stimulus s=1 elicits both earlier spike and lower rates 

than stimulus s=2 does. Suppose finally that the experimenter now tunes the task difficulty 

by varying some “stimulus signal intensity” parameter whose effect on neural firing is to 

change the separation between the clouds of the s=1 (green) and s=2 (blue) stimulus-specific 
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responses (Supplementary Fig. S1A2). As the task becomes more difficult the animal’s 

psychometric performance decreases, as does the decoding neurometric performance 

(because the blue and green stimulus-specific distributions of points get closer). We can plot 

neurometric and psychometric performance as a function of signal intensity, and they will 

have similar shape: both will be near chance when signal intensity is small and the stimulus-

specific distributions of r1,r2 largely overlap (Fig S1A3), and will be nearly perfect when 

signal intensity is high and the stimulus-specific distributions of r1,r2 are far apart (Fig. 

S1A5). Thus, in this example (Fig S1A), statistical analysis will show that spike timing 

features r1,r2 have sensory information (because r1+r2 is stimulus-dependent), have choice 

information (even at fixed stimulus, reflecting that r1-r2 impacts on choice), and the 

neurometric function of r1,r2 is similar to the psychometric function (because the stimulus 

dependence of both r1 and r2 is similar to that of the firing rate r3 which is the only 

contributor to task performance). Yet r1,r2 do not contribute to task performance because 

none of the sensory information they carry is read due to the orthogonality of the sensory and 

decision boundaries. That r1,r2 do not contribute to task performance can only be discovered 

observing that the trial-to-trial fluctuations of the accuracy of sensory information in r1,r2, 

encoded only by r1+r2, does not influence at all behavior, as the decision depends on r1-r2. 

For example, in trials when r1+r2 indicates the presence of a stimulus different from that 

presented, behavior is not less (or more) likely to be correct because of this stimulus coding 

error (Fig. S1A3-5).  

 

These examples illustrate a general fact: it is not possible to determine if sensory information 

is transmitted to the readout using the trial-averaged stimulus and choice information, either 

separately or in combination. It is, instead, necessary to investigate the effect of sensory 

coding on information readout within a single trial. We therefore propose the use of a 

measure we call intersection information, denoted II. Conceptually, intersection information 

is large only if the neural features carry a large amount of information about the stimulus, and 

that information is used to inform choice – so that, based on these features, the animal is 

correct most of the time.  

 

A quantitative description of II was derived in (Zuo et al., 2015). The authors reasoned that, 

if feature ri contributes to task performance, there should be an association on each trial 

between the accuracy of sensory information provided through that feature and behavioral 

choice. In other words, on trials in which ri provides accurate sensory evidence (stimulus is 

decoded correctly from ri), then the likelihood of correct choice should increase. Thus, the 

simplest operational definition of the intersection information, II, for a particular feature is 

the probability that on a single trial the stimulus is decoded correctly from ri and the animal 

makes the correct choice (see Supplemental Information for additional details, in particular 

Eq. (S7)).  

 

Intersection information can be used to rank features according to their potential importance 

for task performance. Importantly, it is high if there is a large amount of stimulus information 

and readout is near-optimal. It is low, on the other hand, if a neural response feature has only 

sensory information but very little choice information, or vice versa, or if the rule used for 

sensory coding is incompatible with the rule used by the readout.  

 

We illustrate intersection information using three examples (Figs. 3A1, 3B1, and 3C1), with 

null (chance-level), intermediate and high values of intersection information, respectively. In 

these plots, we divide the r1,r2 feature space into four possible areas based on the sensory and 

decision boundaries: ŝ  =1, c=1; ŝ  =1, c=2; ŝ  =2, c=1; ŝ  =2, c=2 ( ŝ  is the decoded 
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stimulus, which can be different from the stimulus, s, presented to the animal). The 

intersection information is the fraction of trials that are decoded correctly and result in a 

correct behavioral choice; these trials correspond to the filled dots, indicating a trial with 

correct choice, shown in the regions in Figs. 3A2, B2,C2 colored with the decoded stimulus 

color code. The larger are the colored areas, the larger is the intersection information. Chance 

level for the intersection measure is when there is no relationship between the stimulus 

decoded by neural activity and the choice taken by the animal at fixed stimulus (the chance 

level of intersection equals the product of the probability of a correct behavioral choice and 

the probability of correctly decoding the stimulus; see Supplemental Information for details). 

This is the case in Fig. 3A, where the sensory and decision boundaries are orthogonal. 

Because trials that provide faithful stimulus information are just as likely to result in correct 

as incorrect choices, there is chance-level intersection information (see Fig S1D for the 

intersection information values in these examples).  

 

Intersection information is intermediate when only some of the features of neural activity 

carrying sensory information are read out while the information of other is lost before the 

readout stage. This is the case in Fig. 3B, when both r1 and r2 carry sensory information but 

only r2 is read out. This may correspond, for example, to a case when both spike rate r1 and 

spike timing r2 of a neuron carry information, but only rate r1 is used for behavior (similarly 

to the case of (O'Connor et al., 2013)), for example because the readout mechanism is not 

sensitive enough to precise spike timing. 

 

Intersection information is largest when the optimal sensory boundary and the decision 

boundary coincide, as in Fig. 3C, so that all sensory information is optimally used to perform 

the task. This is the case when all measured features of neural activity that carry sensory 

information directly contribute to the animal’s choice. In this example (Fig. 3C), trials that 

lead to correct stimulus decoding from the joint features, r1 and r2 (those below the diagonal 

for the green stimulus, s=1, and those above the diagonal for the blue stimulus, s=2), always 

lead to correct behavioral choices. Trials leading to incorrect stimulus decoding from r1 and 

r2 (above the diagonal for s=1 and below it for s=2) always lead to incorrect behavioral 

choices. This situation is reminiscent of texture encoding by somatosensory cortical neurons 

(Zuo et al., 2015), in which both spike rate and timing seem to carry sensory information that 

is used for behavioral discrimination.  

 

The above simple reasoning can be extended to provide more refined measurements of the 

relationship between sensory information in neural activity and behavioral choice. For 

example, one could also measure (Zuo et al., 2015) what we call the fraction of intersection 

information fII, defined as the fraction of trials with correct stimulus decoding that have 

correct behavior. Unlike II, fII is not sensitive to the amount of sensory information (the 

fraction of trials the stimulus is decoded correctly from neural feature r), but only to the 

proportion of these correctly decoded trials that lead to correct behavior. Thus, fII is an 

indicator of the optimality of the readout – in the linear case, the alignment between the 

sensory and decision boundaries – rather than the total impact of the code on task 

performance. Measuring both II and fII could be useful to determine whether a moderate 

amount of intersection information, II, is because the feature has a moderate amount of 

information but is efficiently read or because the feature has high information but not read 

out very efficiently. Moreover, given that if a feature ri  contributes to task performance, 

then, in trials when ri provides inaccurate evidence (stimulus is decoded incorrectly), the 

likelihood of correct choice should decrease, an additional separate quantification of the 
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agreement of stimulus information and behavioral choice in incorrect trials would 

complement intersection measures (see (Zuo et al., 2015) and Supplemental Information). 

 

The purely statistical approach to measure intersection information is most straightforward if 

all response features are statistically independent, because in that case the intersection 

information approach applied to set of features would unambiguously identify the 

contribution of those features to task performance. However, often features are not 

independent. For example, if the features are the activity of neurons in different brain regions, 

these features might be partly correlated if there are connections between the two regions. 

Alternatively, if the features are spike timing and spike count, both involve the same spikes 

and so may be dependent. The presence of dependencies among features complicates the 

interpretation of intersection information. In particular, it raises two critical questions: First, 

does a set of features with intersection information contribute to task performance, or instead 

reflect only a correlation with other features that truly contributes to task performance? 

Second, does each neural response feature provide unique intersection information that is not 

provided by other features?  

 

To illustrate the complications induced by correlations among features, we also consider the 

intersection information from one feature rather than two. We return to Fig. 3, for which 

responses are signal-correlated in all panels (that is, responses to s=1 are on average lower 

than those to s=2 for both features (Averbeck et al., 2006)). We first consider a case (as in 

Fig. 3B) for which both features carry information about the stimulus and are partly 

correlated (because of signal correlations) but only feature r1 is read out. Suppose that we 

apply our statistical analysis to feature r2; that is, we decode the stimulus using only r2, which 

can be done optimally by decoding responses in the lower and upper half of the r1,r2 space as 

ŝ  =1 and ŝ  =2 respectively. We will find higher-than-chance intersection and choice 

information (as shown by the fact that lower values of r2 are found in trials with choice c=1 

than in trials with c=2, see Fig. S1B) even though r2 is not read out. That’s only because r2 is 

correlated with r1, which is the feature that is truly read out. 

 

If we record from both features, we can differentiate, just from statistical analyses of neural 

recordings, between the case when only one feature is read out (Fig. 3B) and the case when 

both are read out (Fig. 3C). If, as in Fig. 3C, r1 and r2 carry complementary sensory 

information (the diagonal sensory boundary implies that both features should be used for 

optimal decoding) and if the readout uses both features (the decision boundary is also 

diagonal), then intersection information obtained when decoding the stimulus using two 

features will be larger than the intersection information obtained when decoding the stimulus 

with either feature alone. This is because decoding the stimulus with only one feature will 

lose the complementary task information present in the other feature and so the task 

performance will suffer (Fig. S1C-D). Thus, a statistical signature that task performance 

benefits from both features is that using both feature increases the intersection information 

(Fig. S1D). However, if we cannot record both features (and, more generally, all features that 

carry intersection information), the only way to fully prove which features contribute to task 

performance is to use interventional methods. That’s the subject of the next section. 

 

Causal interventional testing of the neural code 
 

Why do we need intervention?  
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The statistical methods described above for determining sensory, choice and intersection 

information are useful for identifying potential neural coding mechanisms, and for forming 

hypotheses about information coding and transmission. However, as just discussed, because 

response features are often correlated and because we do not usually have experimental 

access to all of them, whether a neural feature carries information in the intersection between 

sensory coding and readout can ultimately only be proved with intervention. Before 

discussing how to design interventional experiments that test intersection information, it is 

useful to consider why interventional manipulations of neural activity are so crucial to prove 

hypotheses. (In the following, we refer to “statistical” information measures as shorthand for 

measures of information obtained from recorded natural unperturbed neural activity, and 

“interventional” information measures to indicate information estimates from neural activity 

imposed by intervention).  

 

Suppose that statistical measures like those described in the previous section found that a 

neural feature, r1, carries stimulus, choice and intersection information. An interpretation of 

this result is that r1 provides essential stimulus information to the decision readout (this is 

indicated in Fig. 4A by the arrow from r1 to the choice, c). However, another interpretation 

(sketched in Fig. 4B), one that is still compatible with these statistical measures, is that r1 

does not transmit information to c (not even indirectly). Instead, it only receives a copy of the 

information that other neural features (such as r2 in Fig. 4B) do transmit to the choice. In this 

case, the sensory information in r1 is not causally involved in the decision (as indicated by the 

lack of arrow from r1 to c in Fig. 4B), but r1 correlates with the decision because it correlates 

with r2, the decision’s cause.  

 

Intervention can disambiguate these two scenarios by imposing a chosen value on r1, one that 

is decided by the experimenter and so is independent of r2. By doing that, we break any 

possible effect of r2, or of any other possible variable, on r1 (Fig. 4E). In this case, any 

observed relationship between r1 and choice must be due to the causal effect of r1 on choice 

(Pearl, 2009).  

 

In the following we discuss how to design a causal intervention experiment that tests if neural 

features carry intersection information. We are interested in an intervention design that can 

tell whether r1 transmits stimulus information used for decision (as in Fig. 4F, indicated by 

the arrow between r1 and choice c being colored like a stimulus) or r1 informs c but does not 

transmit stimulus information contributing to task performance (as in Fig. 4E, indicated by 

the arrow between r1 and c not being colored).   

 

 

Intervention on neural activity and intersection between sensory information and 

readout 

 

Here we examine cases in which we can both record and manipulate (in the same animal, but 

not necessarily at the same time) neural features r1 and r2 during a perceptual discrimination 

task.  

 

Let us first consider a causal intervention on the neural features. Suppose that we impose a 

number of different values of r1, r2 in a series of intervention trials (“lightning bolt” symbols 

in Fig. 5, colored by the behavioral choice they elicit) and we measure the choice taken by 

the animal. In our examples, choice is determined by the red dashed decision boundary in the 

r1, r2 space. Observing the correspondence between the value imposed on r1, r2 and the 
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animal’s choice would easily determine the orientation of the decision boundary (Fig 5A-C). 

From this interventionally determined decision boundary, choice information can be obtained 

exactly as in the statistical case.  

 

Applying the same reasoning used for the statistical case, an interventional measure of 

intersection information is the fraction of trials on which the animal’s choice reports the 

stimulus that would be decoded (using the sensory boundary acquired with statistical analysis 

of neural responses) from the imposed neural activity pattern (as above, this can be assessed 

against chance level). Application of this interventional measure of intersection information 

to our examples in Fig. 5 shows that interventional intersection information captures the 

alignment of the sensory and decision boundary. It is high when, as in Fig. 5C, the animal 

choice (c=1, pink; c=2, dark red) always corresponds to the stimulus decoded from neural 

activity (in Fig. 5C, the case of maximal intersection, all patterns in the =1 “green” 

decoding region lead to c=1, and the same applies to the =2,c=2 region); it is null (chance-

level) when sensory and decision boundaries are mismatched (as in Fig. 5A, where half of 

imposed patterns in either stimulus decoding region lead to choice c=1 and half to c=2).  

 

A critical observation is that the intersection information computed via intervention may be 

different from that computed using purely statistical analysis. That can happen, as discussed 

above, if the neural features are correlated with variables that did carry intersection 

information, but did not themselves provide any information about choice. For example, if a 

statistically determined non-null choice or intersection information in one feature just reflects 

a top down choice signal and not a causal contribution of the feature to choice, this feature 

will show null (chance-level) intersection information with intervention. Thus, of particular 

interest are cases in which the decision boundary is orthogonal to the sensory boundary under 

intervention, but not in trials without an intervention (O'Connor et al., 2013). When that’s the 

case, the neural features under investigation carry no intersection information and the 

intersection or choice information determined statistically mean that the considered features 

only correlate with the true factors that are instructive for task performance. 

 

The values of the interventionally-evoked neural features in an experiment are arbitrarily 

determined by the experimenter. The chosen evoked neural features may be designed to drive 

behavior robustly, but may occur very rarely during perception in natural conditions. This 

may lead to an over-estimation of their importance for task performance. To correct for this 

problem, when computing interventional intersection information, we should weigh 

intervention results with the probability distribution over stimuli and responses that occur 

under natural conditions (see Supplemental Information). Thus, evaluating the causal impact 

of a neural code with intervention experiments ultimately demands a statistical analysis of the 

probability of naturally occurring patterns during the presentation of each stimulus while 

performing the task.  

 

By analogy to what we proposed for the statistical measures, we can design intervention 

experiments that address whether two neural response features, r1, r2, that are correlated 

during measures of natural neural activity both contribute causally to choice and to task 

performance. Suppose that (as in in Fig. 5B,C) we recorded two correlated features in 

unperturbed (i.e., no intervention) conditions and that we would like to determine 

interventionally if the readout uses both such sources of sensory information to perform the 

task. Designing such experiment requires manipulating both features at the same time, and 

then comparing interventional intersection information of the joint features and of the 

individual ones. If the experimenter designs a set of intervention patterns that generate 

ŝ

ŝ
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uncorrelated feature values, then only the features that carry sensory information and are read 

out will show higher-than-chance intersection information. If the experimental design cannot 

fully decorrelate the features evoked by intervention, then a complementary contribution to 

task performance of the two features will still be revealed interventionally when finding that 

adding a feature increases the interventional intersection information, exactly as in the 

statistical analysis case.  

 

Above we argued that statistical analysis is not sufficient to determine whether there is 

intersection information in a set of neural features. In the following, we argue that causal 

manipulations of neural activity alone are also not sufficient to determine whether there is 

intersection information in a set of neural features. Experiments are frequently designed such 

that an animal is trained to discriminate neural activity patterns that are created artificially 

using interventional approaches, such as microstimulation or optogenetics, without direct 

regard to how these patterns may encode sensory stimuli. This approach is extremely 

powerful for testing the capabilities of the readout. For example, this approach has been used 

to test the sensitivity of the readout to precisely timed neural activity (Doron et al., 2014; 

Yang et al., 2008; Yang and Zador, 2012) and also to test the minimal number of neurons or 

spikes to which a readout could be sensitive (Houweling and Brecht, 2008; Huber et al., 

2008). Thus this approach can be used to infer intersection information indirectly (by 

comparing the features that carry sensory information with those that can be detected by the 

readout). However, this approach is insufficient to determine directly if a given neural feature 

is used for performing specific sensory discrimination tasks, and to evaluate how much this 

feature contributes to sensory discrimination.  

 

Because both statistical and interventional approaches by themselves are not sufficient to test 

neural codes, we propose a scheme in which statistical analyses must be used to generate 

hypotheses about neural codes, and interventional experiments must be used to test them. 

 

 

Neurophysiological examples of the potential advantages of application of 

the statistical and interventional concept of intersection 
 

The foundations underlying intersection between sensory information and readout can be 

traced back to the work of Newsome and colleagues on visual motion perception in primates 

(Britten et al., 1996; Newsome et al., 1989). These studies showed that visual area MT 

encoded visual motion information in its firing rate: higher firing rates indicate motion along 

the neuron’s preferred direction. They established a statistical relationship between the 

animal’s choice in a visual motion discrimination task and the firing rate of MT neurons in 

the same trial (Britten et al., 1996). The causal role of the firing rate of MT neurons in motion 

perception was interventionally demonstrated showing that microstimulation of this region 

biases perception of motion direction (Newsome et al., 1989). Such studies continue today, 

taking also advantage of modern genetic, optogenetic and recording techniques. One example 

is the study of the neural coding of sweet and bitter taste in mice. The authors first 

established that anatomically separate populations of neurons responded to sweet and bitter 

taste, and thus carried stimulus information (Chen et al., 2011). An optogenetic intervention 

was then used to activate the spatially separated ‘sweet’ and ‘bitter’ populations (Peng et al., 

2015). These intervention experiments elicited behavioral responses as expected for a 

mouse’s response to sweet and bitter tastes. These studies therefore reveal intersection 

information in neural codes as spatially segregated response patterns using a combination of 

stimulus information, statistical analysis, and intervention. 
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These studies investigated simple properties of an individual neural feature (firing rate of 

classes of neurons) and followed implicitly part of the logic of the framework proposed here, 

although they did not measure a single-trial statistical intersection that we propose. 

Measuring the intersection information becomes, however, crucial in more complex scenarios 

in which (unlike the cases considered above) either a clear hypothesis about the neural code 

does not exist a priori (as may happen when analyzing coding of complex natural stimuli, 

rather than simpler laboratory stimuli) or when there are multiple, perhaps partly correlated, 

candidate features for the neural code that all seem, statistically, to contribute to choice or 

stimulus. In these cases, it is necessary to evaluate quantitatively the contribution of each 

feature to behavior. Below we discuss how the full or partial application of the ideas of our 

intersection framework in these more complex scenarios could provide further insight into 

the neural code.  

 

The statistical intersection information framework has been applied to investigate whether 

millisecond-scale spike timing of somatosensory cortical neurons provides information that is 

used for performing a whisker-based texture discrimination task (Fig. 6A-B), over and above 

that already carried by spike counts over time scales of tens of milliseconds (Zuo et al., 

2015). The authors computed a spike-timing feature by projecting the single-trial spike train 

onto a timing template (constructed for optimal sensory discrimination) whose shape 

indicated the weight assigned to each spike depending on its timing (Fig. 6C). Computed 

spike counts corresponded to weighting the spikes with a flat template which assigns the 

same weight to spikes independent of their time. This provided timing and count features that 

had negligible correlation (the temporal distribution of spikes was largely independent from 

their total number). Both timing and count carried significant sensory (Fig. 6D), choice (Fig. 

6E) and intersection (Fig. 6F) information, with timing carrying more information than count 

for all these types of information. The joint information was for all types of information 

larger than the one carried by either feature alone. These results indicate that in this task 

sensory information was complementarily multiplexed in spike counts and timing, and was 

also complementarily combined to perform the task. Of the two features, however timing 

carried both more sensory information and had a greater influence on the animal’s choice. 

Thus, the statistical intersection framework helped form a very precise hypothesis that 

multiplexing spike timing and spike count information is the key neural code used to solve 

the task. A further application of the interventional intersection framework, not yet applied to 

this experiment, would strongly prove or disprove this multiplexing hypothesis for texture 

coding. 

This example illustrates that the statistical analysis of information intersection may be critical 

to correctly interpret the results of an interventional experiment and to refine its design. In 

this case, profound texture-dependent spike timing differences were found even across 

nearby neurons (Zuo et al., 2015). The cellular-level and millisecond-scale temporal 

resolution of this information coding revealed by the statistical analysis strongly constrains 

the interventional experimental design, as it indicates that finely spatially patterned and 

temporally precise intervention must be used to test whether spike timing is part of the neural 

code. Also, this example shows how statistical intersection results are essential to interpret 

successes and failures of interventions. For example, in the presence of such profound 

neuron-to-neuron differences in spike timing responses to textures, a causal effect of spike 

timing on behavior would not have been detected using a wide-field optogenetic intervention 

that activated all neurons simultaneously (see also section “Considerations of interventional 

experimental design”). Statistical analysis would be essential to reveal that this failure would 

not have been because spike timing was not part of the neural code used to perform the task, 
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but because the optogenetically induced activity did not preserve the natural texture-

dependent timing differences across neurons.  

 

A study (O'Connor et al., 2013) that implemented an approach close in spirit to the 

intersection information framework both at the statistical-analysis and interventional level is 

a recent investigation of the role of spike timing and spike rate coding in whisker-based 

detection task of object location (Fig. 7A). The authors found, based on statistical measures, 

that both timing and rate carried both stimulus and choice information (Fig. 7B). The authors 

then probed the role of timing and rate by replacing the somatosensory object with 

optogenetic manipulation of layer 4 somatosensory neurons (Fig. 7C,D). The authors found 

that using optogenetics to induce neural activity with information in rate caused the animal to 

report the sensation of a “virtual pole” (Fig. 7C), whereas adding to this optogenetic 

manipulation information in spike timing relative to whisking did not elicit additional 

behavioral performance in virtual sensation (Fig. 7D). When interpreted within our 

framework, these results suggest that spike rates, but not timing, carry intersection 

information. An additional application of the statistical intersection framework to these 

neurophysiological recordings – not performed in that study – would allow a more precise 

evaluation of the impact of timing and rate codes on task performance (see previous section), 

and could provide an important independent confirmation of this hypothesis based on 

naturally evoked neural activity only.   

 

 

 

Considerations of interventional experimental design 

 
Interventional approaches may involve use of one or more experimental techniques such as 

optogenetic (Lerner et al., 2016) and chemogenetic (Sternson and Roth, 2014) manipulations, 

intra-parenchymal electrical stimulation (Tehovnik et al., 2006), transcranial direct current 

stimulation and transcranial magnetic stimulation (Woods et al., 2016), to name a few. Given 

its unique combination of high cell-type specificity and temporal resolution, below we focus 

mostly on optogenetics. 

 

There are at least two dimensions over which experimental design may be varied. One is how 

intervention is coupled with sensory stimuli; the other is how intervention is performed. In 

the following we consider how these possible experimental variations along these dimensions 

relate to the intersection framework.  

 

Virtual sensation interventional experiments vs experiments overriding or biasing 

natural sensory signals 

 

Our framework assumes that we test sensory encoding and information readout using a 

perceptual discrimination task. An important experimental design question is how to 

incorporate interventional approaches. Our focus is on understanding the codes that arise 

from natural sensory cues, and so we mainly consider cases in which interventional trials are 

interleaved with non-interventional ones.  

 

One practical question for experimental design is whether on intervention trials the sensory 

stimulus should also be presented, or if the intervention manipulation should be applied in 

isolation. One possibility is a “virtual sensation” experiment (Fig. 8A), in which patterns of 

neural activity are imposed by intervention in the absence of the sensory stimulus and the 
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animal is asked to report the perception of one of the two sensory stimuli. A classic example 

is the work of Romo and colleagues (Romo et al., 1998; Romo and Salinas, 2003) 

demonstrating that cortical microstimulation can entirely substitute for tactile stimulation in a 

frequency discrimination task. Another example of virtual sensation is the induction of an 

illusory sensation of pole touching during whisking using optogenetic stimulation of cortical 

primary somatosensory neurons, as discussed above (see Fig. 7 and (O'Connor et al., 2013)). 

The virtual sensation paradigm is very appealing because it can demonstrate the sufficiency 

of the considered neural code for creating sensation and for its direct relevance for the 

development of neural prosthetics.   

 

Another possibility is to impose patterns in the presence of a sensory stimulus. This approach 

tests whether the imposed pattern can “override” or “bias” (Fig. 8B) the signal from the 

sensory stimulus.  A classic example of this approach can be found in the work of Newsome 

and colleagues (Salzman et al., 1990) showing that MT microstimulation in a visual motion 

discrimination task can bias the animal’s perception toward the motion direction preferred by 

the neurons that were activated by microstimulation. A more recent example can be found in 

the study (also described above) examining the codes for sweet and bitter/salt taste sensation 

(Peng et al., 2015), where the authors showed that optogenetic activation of the sweet cortical 

field triggered fictive sweet sensation even in the presence of a salt stimulus. From the point 

of view of the formalism presented here, successfully overriding the signal from an opposite 

external stimulus is an appealing proof that the considered neural code provides information 

that is so crucial to the task that can even win over other contrasting sources of information, 

such as those that may come from different or parallel pathways conveying information from 

the sensory periphery that contradicts the one injected through intervention of neural activity. 

 

 

 

Considerations on how to perform intervention on neural activity, and the advantages 

of patterned optogenetics  

 

Imposing a pattern can be done in two conceptually distinct ways. In one, the experimenter 

mainly tries to “bias” (Guo et al., 2014; Li et al., 2015; O'Connor et al., 2013) the neural 

activity (Fig. 8B). This consists of shifting the endogenous activity in a certain direction (for 

example, lowering the firing rates of a neural population by imposing a slight 

hyperpolarization or by exciting a set of inhibitory neurons). This can be done, for example, 

using wide-field, single-photon optogenetic stimulation of a network of a number of opsin-

expressing neurons (this is illustrated in Fig. 8C, note that the number of neurons in that 

sketch is limited to 7 for presentation purposes only). A problem with this approach is that it 

does not completely remove correlations of the patterns evoked by intervention with other 

brain variables that are present in the endogenous component of the activity (because the 

evoked activity adds to the endogenous one). This means that this intervention may not 

entirely break the correlations among features or between features and non-observed 

endogenous brain activity that the causal manipulations aim to remove. This is a concern 

particularly when investigating if intersection information is complementarily carried by 

more than one feature, as an interventional bias may affect all features in a correlated way. 

For example, a general hyperpolarization of the population may both lower the spike rate and 

delay the latency of neural activity. Given the highly synchronous generation of 

photocurrents in opsin expressing cells, wide-field optogenetics may even induce artificial 

correlations (Fig. 8C). 
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The second interventional approach is to try to impose, or “write down” (Peron and Svoboda, 

2011) a target neural activity pattern on a neural population (Fig. 8D). This approach is, in 

principle, ideally suited to test hypotheses about the neural code, because it explicitly aims to 

overwrite endogenous activity, and so break down all sources of correlation. To crack a 

neural code, though, it needs to achieve high spatial and temporal precision. Recent optical 

developments (Bovetti and Fellin, 2015; Emiliani et al., 2015; Grosenick et al., 2015), termed 

patterned illumination, can deliver light to precise spatial locations (Fig. 8D, see also 

Supplemental Information). When combined with light-sensitive optogenetic actuators, 

patterned illumination can perturb electrical activity with near cellular resolution (Baker et 

al., 2016; Carrillo-Reid et al., 2016; Packer et al., 2015; Papagiakoumou et al., 2010; 

Rickgauer et al., 2014). 

 

Taking full advantage of the intersection framework will depend crucially on further 

development of improved optogenetics methods to ‘write’ neural activity patterns. Current 

technologies target simultaneously few dozen cells with a temporal resolution of few 

milliseconds (Emiliani et al., 2015). Major areas of future developments include scaling up of 

the number of stimulated neurons while maintaining single-cell resolution, improving 

temporal resolution, performing large-scale 3D stimulation, and precisely quantifying tissue 

photodamage during intervention. In addition, it will, ultimately, be important to implement 

these technologies with a closed-loop system (Grosenick et al., 2015), so that intervention 

can be tied to behavior. This will be useful, among other things, to predict and discount 

residual effects of endogenous activity (Ahmadian et al., 2011). In fact, both the number of 

responsive neurons and their functional responses to the sensory stimulus and to the 

intervention may vary as a function of behavioral variables such as arousal, attention, or 

locomotion that are reflected in brain states and ongoing neural activity (see also next section 

“Potential confounds”). Coupling functional imaging with optogenetic intervention allows 

tracking these changes and adapting patterned photostimulation to brain dynamics.  

Moreover, because patterned illumination requires knowing where the cells to stimulate are, 

and what pattern to stimulate them with, it will be necessary to combine imaging with 

patterned photostimulation. Finally, taking full advantage of the intersection approach will 

require multimodal recording techniques. While electrophysiological recordings have 

millisecond time resolution, they currently lack the ability to determine accurately where the 

recorded cells are. Ideally, the best approach is to perform statistical analysis using both 

electrophysiology and functional imaging in the same area; that way, both high temporal and 

high spatial resolution could be achieved.  

 

It is important to note that the framework of interventional intersectional information requires 

knowing precisely which values of the neural response features ri are elicited by intervention 

in each trial. This in turn requires measurement of the neural response (ri) on individual 

intervention trials. When this is not possible, confounds may arise. For example, in the 

absence of such measures it would be problematic to rule out a residual correlation between 

the interventionally-elicited neural response and other uncontrolled endogenous brain activity 

variables that would invalidate the rigor of the causal conclusions, or the elicited activity may 

be so un-natural (e.g. too synchronized with respect to natural activity patterns) that they may 

affect in an un-natural way downstream neural processes. When it is not possible to measure 

in each trial the elicited neural response, the study should be however accompanied by a 

rigorous quantification in separate trials or experiments of the precision of manipulated 

response under various conditions, that is adequate to allow extrapolation to individual trials 

during the behavioral task and that also characterizes the difference between manipulated and 

non-manipulated activity. 
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Potential confounds: when the framework may fail  

 

The result of the intersection framework (and of any experimental approach combining 

neural recordings and interventional techniques) are potentially confounded by many 

limitations and factors which must be considered carefully to avoid reaching to the wrong 

conclusions. We have already discussed some of those confounds; in the following we 

discuss additional ones.  

 

A key requirement for the intersection framework to succeed is that the animal uses the 

identified stimulus to make choices. This requirement can fail in two important ways. First, in 

some behaviors, there may be other sensory stimuli that co-vary with the stimuli of interest. 

In this case, it would be difficult to know which stimulus feature is being used by the animal 

to drive behavior, a problem exacerbated by the possibility that the stimulus features used by 

the animal might vary from trial to trial. Second, the animal might have fluctuations in 

attention, motivation, or arousal, or use non-stimulus features such as reward history, to drive 

choices. These factors may be present in the two alternatives forced-choice tasks that we 

discussed in this article, but are likely to be stronger in other task designs, such as go/no go 

tasks, where our framework could be in principle applied. In all these cases, factors other 

than the stimulus feature of interest would be involved in driving the animal’s choice; that 

would compromise the proposed framework, since it assumes that the stimulus of interest 

drives behavior. Such factors can be conceptually formalized by assuming that both the 

sensory coding and the decision mechanisms may vary across trials, and/or that non-recorded 

or non-manipulated neurons, may vary across intervention and non-intervention trials (such 

as r2 depicted in Fig. 4E,F when only intervening on feature r1).  

 

For these reasons, it is important to evaluate whether the variables describing behavior and 

the non-observed and non-manipulated endogenous variables are in a comparable state during 

intervention and non-intervention trials. In the presence of variations, a simple strategy could 

be to down-sample intervention and sensory-evoked trials so that only compatible brain or 

behavioral states are analyzed. A better solution, however, is to consider tasks in which it is 

known, based on high behavioral performance and good psychometric curves, that the 

stimulus feature of interest drives the animal’s choice with high reliability. Similarly, the 

stimulus should be designed so that co-varying stimulus features are avoided. This will 

probably be easier with simple stimulus sets than with natural stimuli. 

 

Variation of behavior and brain state variables across the experiment, on the other hand, offer 

an important opportunity to evaluate whether such variables have a “permissive” role on task 

performance. For example, in the virtual-pole sensation experiment of (O'Connor et al., 

2013), the fact that virtual pole perception worked only when the animal whisked suggests a 

permissive role of whisker movements for active sensation. A strategy that could take 

advantage of these variations in state and behavior could be to include (using e.g. simple 

modeling techniques such as generalized Linear Models (Park et al., 2014)) behavioral 

factors such as slow variation across blocks of trials of motivation or reward history or brain 

states explicitly into the experimenter’s sensory coding and decision boundary models. This 

could potentially lead to explaining the dynamic role of these factors in sensory coding. 

 

Another significant confound can arise for interventional approaches when investigating 

partly parallel pathways. For example, suppose a behavior is generated by two brain areas 

that operate in a partly parallel or complementary way, as for example in an “OR” function 
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(Li et al., 2016). In such a case, when inactivating only one area with intervention, one may 

find little causal effect on behavior. However, interpreting this result as evidence that the 

inactivated region does not causally contribute much to behavior could be misleading. One 

way to alleviate these confounds would be to compute both statistical and interventional 

information intersection. One may use these measures to disambiguate the case in which the 

two areas contribute complementarily to behavior and so offer complementary intersection 

information from the case when the two areas operate entirely redundantly and so intersection 

information from both areas equals intersection information from one area alone. However, 

accurate interpretation of these measures would require knowledge of the functional 

anatomy, which, for example, inform the experimenter about the presence or absence of 

parallel and potentially redundant pathways. Moreover, completeness of activity monitoring 

and perturbation of the regions involved is also paramount, as this would be, for instance, 

useful to rule out that a failure to affect behavior by inactivating a region is due to incomplete 

control of all relevant neurons. We thus anticipate that as approaches move toward 

understanding larger and larger populations of neurons (Keller and Ahrens, 2015; Sofroniew 

et al., 2016) and the interconnections between neurons (Lichtman and Denk, 2011), these 

joint statistical and interventional approaches will become easier to interpret. 

 

 

 

Determining the instructive vs permissive role of neural codes and neural 

circuit: from circuit dissection to circuit information flow  

 
The intersection information framework (both statistical and interventional) has direct 

application for the dissection of neural circuits underlying behavior. Much work in systems 

neuroscience has used neurophysiology to identify neural correlates, and, due to recent 

optogenetics approaches, a wave of new studies has sought to identify which brain regions, 

cell types, axonal projection pathways, and circuits are required for accurate performance of 

behavioral tasks (Guo et al., 2014; O'Connor et al., 2013; Peng et al., 2015). It is essential to 

emphasize that simply measuring the effect of an intervention on choice without regard to 

stimulus coding precludes understanding a neural circuit’s role in task performance. Here we 

propose that the use of intersection information is crucial to determine whether a neural 

circuit (or cell type or projection pathway) carries information that is instructive (Otchy et al., 

2015) for task performance (contributes essential information for the task performance that is 

not provided elsewhere) or if the circuit is permissive for task performance (is required for, or 

modulates, the behavior but does not provide essential information). 

 

Fig. 4A-D schematizes four cases of different neural circuit architectures in which two neural 

features, r1 and r2 (for example, the activity of neurons in two different brain areas, cell types, 

or projection pathways), may inform choice. In all four cases, feature r2 contributes essential 

information to choice and task performance (r2 is thus instructive), but the role of r1 varies. 

An interventional intersection framework would correctly identify these four circuit 

architectures. The case of “parallel” information flow (Fig. 4A), in which r1 and r2 both 

provide complementary instructive information, could be revealed by finding that the 

intersection information provided by r1 and r2 jointly is larger than that provided by r1 alone 

(that is, r1 and r2 provide complementary stimulus information to choice). The case of 

“serial” information flow (Fig. 4C), in which r1 provides instructive information to r2 and r2 

informs choice, could be discovered by finding that the intersection information provided by 

r1 and  r2 jointly equals that provided by r2 alone. The case in which r1 provides permissive – 

but not instructive – information (Fig. 4D), could be identified by finding that r1 carries 
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interventional choice information but not intersection information. Finally, the case when r1 

is not used for choice (Fig. 4B) corresponds to the absence of both choice and intersection 

information in r1. 

 

It is important to note that the framework we discussed here is general and can in principle be 

applied not only to determine how sensory information carried by different codes is used to 

produce behavior, but it can also be used to study how stimulus information flows across 

neural populations. For example, the same reasoning expressed above applies to considering 

a group of some brain regions r1,…,rn (whose activity we can record and manipulate, not 

necessarily at the same time) and a downstream area c (whose activity we assume we can 

record at the same time when we manipulate or record r1,…,rn). In this case the meaning of 

intersection information would be that of the amount of information about stimulus s carried 

by population r1,…,rn that is transmitted downstream to area c. In essence, we have replaced 

choice by activity in area c. We could therefore identify the neural response features that 

influence activity in downstream regions, leading to hypotheses about the mechanisms of 

information flow in neural circuits.  

 

Ideally, these statistical and causal measures of information flow should be integrated with 

information about anatomy, response timing, and information dynamics. For example, in the 

presence of a partly feedforward or hierarchical architecture, anatomy could be used to 

identify the earliest areas where sensory, choice and intersection information are developed 

(Koulakov et al., 2005), and thus better track the computations leading to task performance.  

Similarly, the timing of stimulus and choice information in neural activity could be used to 

infer whether, for example, choice signals reflect a neuron’s causal effect on behavioral 

choice or rather a top-down signal (Nienborg and Cumming, 2009).    

 

 

Concluding remarks 
 

  

We presented a new framework to crack the neural code underlying sensory perception. The 

framework emphasizes neural response features that both carry sensory information and lead 

to appropriate actions, with the emphasis on “appropriate”. These are the neural response 

features with a large intersection between sensory information and readout. Based on this 

framework, we provided a first attempt to formalize statistical ways to identify these features 

from recordings of neural activity, and to design interventional experiments that can causally 

test the degree of intersection information. This approach can resolve open debates about the 

nature of the neural code. Moreover, the ideas we proposed in this framework can guide 

researchers in the design of experiments, in the design of new statistical tools, and in the 

development of the new technology, that will lead us to crack the neural code. 
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Figure captions 

 
Figure 1: Intersection information helps combining statistics, neural recordings, 

behavior and intervention to crack the neural code for sensory perception.  

A) Schematic showing two crucial stages in the information processing chain for sensory 

perception: sensory coding and information readout. In this example an animal must 

discriminate between two stimuli of different color (s=1, green and s=2, blue) and make an 

appropriate choice (c=1, pink and c=2, red). Sensory coding expresses how different stimuli 

are encoded by different neural activity patterns. Information readout is the process by which 

information is extracted from single-trial neural population activity to inform behavioral 

choice. The intersection between sensory coding and information readout is defined as the 

features of neuronal activity that carry sensory information that is read out to inform a 

behavioral choice. Note that, as explained in the main text, a neural feature may show both 

sensory information and choice information but have no intersection information; this is 

visualized here by plotting the intersection information domain in the space of neural features 

as smaller than the overlap between the sensory coding and information readout domains. B) 

Only information at the intersection between sensory coding and readout contributes to task 

performance. Neural population response features that belong to this intersection can be 

identified by statistical analysis of neural recordings during behavior. Interventional (e.g. 

optogenetics) manipulations of neural activity informed by statistical analysis of sensory 

information coding can then be used to causally probe the contribution of neural features to 

task performance at this intersection.  

 

Figure 2. Schematic of possible pairs of neural population features involved in sensory 

perception 

A) Features r1 and r2 are the pooled firing rates of two neuronal populations (yellow and 

cyan) that encode two different visual stimuli (s=1, green; and s=2, blue). Values of single-

trial responses of each population response feature can be represented as dots in the two-

dimensional plot of spike count variables in the r1,r2 space (rightmost panel in A). B)  

Features r1 and r2 are low-dimensional projections of large-population activity (computed for 

example with PCA as weighted sum of the rates of the neurons). C) Features r1 and r2 are 

spike timing and spike count of a neuron. D) Features r1 and r2 are the temporal regularity of 

the spike train of a neuron and spike count. 

 

Figure 3. Impact of response features on sensory coding, readout, and intersection 

information 

In the left panels A1,B1,C1 we illustrate stimulus and choice dependences of two hypothetical 

neural features, r1 and r2, with scatterplots of simulated neural responses to two stimuli, s=1 
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or s=2. The dots are color-coded: green if s=1 and blue if s=2. Dashed black and red lines 

represent the sensory and decision boundaries, respectively. The region below the sensory 

boundary corresponds to responses that are decoded correctly from features r1,r2 if the green 

stimulus is shown; the region above the sensory boundary corresponds to responses that are 

decoded correctly if the blue stimulus is shown. Filled circles correspond to correct 

behavioral choices; open circles to wrong choices. Panels A2,B2,C2 plot only the trials that 

contribute to the calculation of intersection information. Those are the behaviorally correct 

trials (filled circles) in the two regions of the r1, r2 plane regions in which the decoded 

stimulus ŝ  and the behavioral choice are both correct. Each region is color coded with the 

color of the stimulus color that contributes to it. White regions indicate portion of the r1,r2 

plane that cannot contribute to the intersection because for these responses either the decoded 

stimulus or choice is incorrect. The larger the colored areas and the number of dots included 

in panels A2,B2,C2 the larger the intersection information. Panels A3,B3,C3 plot a possible 

neural circuit diagram that could lead to the considered result. In these panels s indicates the 

sensory stimulus, ri indicate the neural features and c the readout neural system, and arrows 

indicate directed information transfer A1-3) No intersection information (the sensory and 

decision boundary are orthogonal). B1-3) Intermediate intersection information (the sensory 

and decision boundary are partly aligned). C1-3) Large intersection (the sensory and decision 

boundary are fully aligned). 

 

Figure 4. Causal manipulations to study the permissive and instructive roles in coding 

and information flow  

A-D) Interventional approaches can be used to disambiguate among different conditions: A) 

the neural feature r1 and r2 carry significant information about the stimulus, s, and provide 

essential stimulus information to the decision readout, c. B) r1 does not send information to c, 

but only receives a copy of the information via r2, which does send stimulus information to c. 

C) r1 provides instructive information about s to r2 and r2 informs c instructively; D) r1 

influences c but does not directly carry information about s. E-F) Interventional approaches 

can be used to reveal cases in which r1 informs c but does not send stimulus information that 

contributes to task performance (black arrow in E) from cases in which r1 sends stimulus 

information used for decisions (colored arrow in F).   

 

Fig 5: Schematic of an experimental design to probe intersection information with 

intervention 

Three examples of neural responses (quantified by features r1,r2) to two stimuli, with 

conventions as in Fig. 3. We assume that some patterns of neural activity are evoked by 

interventional manipulation in some other trials. The “lightning bolts” indicate activity 

patterns in r1,r2 space evoked by intervention: they are color-coded with the choice that  they 

elicited (as determined by the decision boundary – the dashed red line). Choice c=1 is color-

coded as pink, and c=2 as dark red. The choices evoked by the intervention can be used to 

determine, in a causal manner, the position of the decision boundary (as the line separating 

different choices). The correspondence between the stimulus that would be decoded from the 

neural responses to the intervention-induced choice can be used to compute interventional 

intersection information. A) A case with no interventional intersection information (the 

sensory and decision boundary are orthogonal). B) A case with intermediate intersection (the 

sensory and decision boundary are partly aligned). C) A case with large intersection (the 

sensory and decision boundary are fully aligned).  

 

Figure 6. Examples of statistical intersection measures in a texture discrimination task  
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This figure shows how spike timing and spike count in primary somatosensory cortex encode 

textures of objects, and how this information contributes to whisker-based texture 

discrimination. A-B) Schematic of the texture discrimination task. A) On each trial, the rat 

perched on the edge of the platform and extended to touch the texture with its whiskers. B) 

Once the animal identified the texture, it turned to the left or the right drinking spout, where it 

collected the water reward. C) Schematic of the computation of spike count and spike timing 

signals in single trials. D-F) The mean ± SEM (over n=459 units recorded in rat primary 

somatosensory cortex) of texture information (D), choice information (E), and fraction of 

intersection information fII (F).  Modified with permission from (Zuo et al., 2015). 

  

Figure 7. Examples of statistical and interventional intersection measures with sensory 

and illusory touches    

This figure shows results of the statistical and interventional test of the role of cortical spike 

timing and spike count in the neural code for whisker-based object location. The test involved 

closed-loop optogenetic stimulation causing illusory perception of object location. A) 

Schematic of the task: four trial types during a closed-loop optogenetic stimulation behavior 

session depending on pole location and optogenetic stimulation (cyan lightning bolts). A 

“virtual pole” (magenta) was located within the whisking range (gray area). Mice reported 

object location by licking or not licking. B) Decoding object location and behavioral choice 

from electrophysiologically recorded spikes in layer 4 of somatosensory cortex. Each dot 

corresponds to the decoding performance (fraction correct) of one neuron. C) 

Optogenetically-imposed spike rates evoked virtual pole sensation. Left:  Optogenetic 

stimulation (blue circles) coupled to whisker movement (gray, whisking angle θ) during 

object location discrimination. Asterisk, answer lick.  Middle:  Responses in the four trial 

types across one behavioral session. Green, yes responses; gold, no responses. Right: 

Optogenetic stimulation in NO trials (red), but not in YES trials (blue), in barrel cortex 

increases the fraction of yes responses. Lightning bolt and “no stim” labels indicate the 

presence and absence of optogenetic stimulation, respectively. Error bars, s.e.m. Each line 

represents an individual animal. D) Adding timing information in the optogenetically evoked 

activity did not improve virtual pole perception. Top: delayed optogenetic stimulation was 

triggered by whisker crossing with variable delays, t. Middle: whisker movements with 

whisker crossing (red circles) and corresponding optogenetic stimuli (cyan circles) for t=50 

ms. Bottom: fooling index (fraction of trials reporting sensing of a virtual pole) as function of 

t.  Modified with permission from (O'Connor et al., 2013).  

  

Figure 8. Experimental configurations for interventional optogenetic approaches. 

A) In a virtual sensation experiment, the animal behavior is tested applying the optogenetic 

intervention in the absence of the external sensory stimulus. B) Alternatively, optogenetic 

intervention can be paired with sensory stimulation with the aim to overriding or biasing 

neural activity evoked by the sensory stimulus. C) In the wide-field configuration for 

optogenetic manipulation, light is delivered with no spatial specificity within the illuminated 

area, resulting in the activation (red cells) of most opsin-positive neurons. Stimulation in this 

regime may lead to over-synchronous neural responses (right panel). The orange lightning 

bolts in the right panel indicate the time at which successive stimuli are applied. The neurons 

displayed in panels C-D are meant to represent a population of N neurons expressing the 

opsins and their number is here limited to 7 for presentation purposes only. D) Patterned 

illumination permits the delivery of photons precisely in space. When multiple and diverse 

light patterns are consecutively delivered (orange lightning bolts), optical activation of neural 

networks with complex spatial and temporal patterns becomes possible (right panel).  
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