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A B S T R A C T

Perceptual constancy strongly relies on adaptive gain control mechanisms, which shift perception as a function
of recent sensory history. Here we examined the extent to which individual differences in magnitude of adap-
tation aftereffects for social and non-social directional cues are related to autistic traits and sensory sensitivity in
healthy participants (Experiment 1); and also whether adaptation for social and non-social directional cues is
differentially impacted in adults with Autism Spectrum Disorder (ASD) relative to neurotypical (NT) controls
(Experiment 2). In Experiment 1, individuals with lower susceptibility to adaptation aftereffects, i.e. more
‘veridical’ perception, showed higher levels of autistic traits across social and non-social stimuli. Furthermore,
adaptation aftereffects were predictive of sensory sensitivity. In Experiment 2, only adaptation to eye-gaze was
diminished in adults with ASD, and this was related to difficulties categorizing eye-gaze direction at baseline.
Autism Diagnostic Observation Schedule (ADOS) scores negatively predicted lower adaptation for social (head
and eye-gaze direction) but not non-social (chair) stimuli. These results suggest that the relationship between
adaptation and the broad socio-cognitive processing style captured by ‘autistic traits’ may be relatively domain-
general, but in adults with ASD diminished adaptation is only apparent where processing is most severely im-
pacted, such as the perception of social attention cues.

1. Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition
characterised by social-communication difficulties and rigid or re-
petitive behaviour and restricted interests (American Psychiatric
Association, 2013). There are a wide range of clinical phenotypes in
ASD and it has been proposed that a wider continuum of individual
differences in social-cognitive ability extends into the typical popula-
tion and can be indexed by inter-individual differences in measures of
autistic traits (Baron-Cohen et al., 2001a; Baron-Cohen et al., 2001b;
Frith, 1991). Beyond the profound social-communication problems that
are often characteristic of ASD the condition is also associated with a
range of non-social symptoms such as hypersensitivity and hyposensi-
tivity to perceptual stimuli, which now form part of the diagnostic
criteria (American Psychiatric Association, 2013). Accordingly there is
great interest in how social stimuli, such as eye-gaze, are processed in
ASD (Nation and Penny, 2008), but there is also a growing body of
work examining basic non-social visual processing (Simmons et al.,
2009). However, perception of both social and non-social visual cues is
influenced by mechanisms that produce experience-dependent

modulation of visual sensitivity; known as adaptation (Webster, 2011).
This mechanism warrants further study if we wish to understand
commonalities, and differences, between basic sensory and social as-
pects of visual processing in ASD.

Adaptation is a central characteristic of neural systems, and can be
defined as the short-term reduction in the responsiveness or sensitivity
of neurons following prolonged exposure to a specific stimulus (or at-
tribute) to which they are sensitive. The effects of adaptation can be
measured invasively with electrophysiological recordings (Heeger,
1992), non-invasively with neuroimaging (Grill-Spector et al., 2006)
and also behaviourally, in the form of perceptual aftereffects (Webster,
2011). Most commonly, adaptation aftereffects take the form of a per-
ceptual bias towards an image or property of the opposite type. While it
may seem counterintuitive to think of non-veridical perceptual biases as
advantageous, adaptation is largely regarded as a beneficial neural gain
control mechanism that aids perception (Kohn, 2007). For example,
light adaptation in the retina allows us to discriminate small luminance
changes, even though light intensity varies over many orders of mag-
nitude, by altering the sensitivity of cells in the retina to the prevailing
sensory conditions (Purpura et al., 1990). Problems with the adaptive
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ability to use recent sensory context to inform current perception may
provide a mechanistic explanation for the sensory difficulties reported
in ASD and, crucially, offers a mechanism that impacts on the percep-
tion of both social and non-social stimuli.

The appealing idea that the sensory and social symptoms of autism
could be related to a common neural mechanism has gained attention in
recent years. There are reports of reduced adaptation to facial identity,
biological motion and eye-gaze in children with ASD (Ewing et al.,
2013a; Pellicano et al., 2007, 2013; van Boxtel et al., 2016) and also
reports of reduced adaptation to non-social stimuli such as numerosity
(Turi et al., 2015). However, only one study has compared adaptation
to social and non-social stimuli in the same group of participants and,
for children with autism, reduced identity aftereffects were only seen
for upright faces whereas preserved adaptation was seen for inverted
faces and cars (Ewing et al., 2013b). This suggests that diminished
aftereffects may be more apparent for social, relative to non-social,
stimuli.

In adults with ASD, two recent studies suggest that adaptation to
non-social auditory stimuli is diminished (Lawson et al., 2015a; Turi
et al., 2016). In contrast, adaptive processing may be intact for some
social cues, specifically facial identity (Cook et al., 2014) and expres-
sion (Rutherford et al., 2012). Preserved adaptation in adults with ASD
may indicate that previous reports of diminished adaptation in autistic
children reflect delayed or atypical developmental trajectories for these
visual processes (Cook et al., 2014) and as far as we are aware, no
studies have examined adaptation to social and non-social stimuli in the
same group of adult participants. Therefore, it is far from clear whether
adaptive coding of social and non-social cues is diminished in ASD.

One classic visual aftereffect is the tilt aftereffect – where a vertical
grating appears tilted more to the left (or right) following prolonged
(prior) exposure to a rightward (or leftward) grating (Gibson and
Radner, 1937). Manifestations of directional aftereffects in high-level
vision have also been demonstrated for the directional features of
complex non-social visual stimuli such as horizontally rotated car or-
ientation (Fang and He, 2005) but also for social attention cues like eye-
gaze, head and body direction (Jenkins et al., 2006; Lawson et al.,
2009, 2011; Lawson and Calder, 2015). From the initial processing of
these social attention cues we perceive where other people are at-
tending, allowing us to make theory of mind judgements about the
intentions, desires, and dispositions of others (Langton et al., 2000).
Problems with the adaptive coding of directional cues may then have
profound impacts on metalizing abilities, one of the core cognitive
difficulties seen in ASD (Chung et al., 2014; Frith, 2001). Thus, ‘di-
rection’ (or ‘orientation’) is an ideal stimulus attribute, common to both
social and non-social stimuli and requiring similar processing demands,
to test adaptation of social and non-social cues so that the interaction
between stimulus category and group can be tested.

Here we present the results of two studies. In Experiment 1 we first
we examine whether autistic traits negatively predict adaptation mag-
nitude for two different types of social attention cue (eye-gaze direc-
tion, head direction) and a non-social directional cue signalled by a
similarly complex visual stimuli (chair direction). We hypothesised that
if the diminished aftereffects seen in children for social (Ewing et al.,
2013a; Pellicano et al., 2007, 2013) and non-social (Turi et al., 2015)
stimuli extend to the broad autism spectrum in the wider population,
then there would be a negative correlation between autistic traits and
adaptation magnitude. We also tested whether adaptation magnitude
for social and non-social stimuli is related to individual differences in
sensory sensitivity. We hypothesised that if sensory sensitivity, or
‘sensory overload’ (Ben-Sasson et al., 2009; Crane et al., 2009), is due to
compromised adaptive processes in perceptual domains, then greater
self-reported sensory sensitivity in the general population should be
predictive of reduced adaptation magnitude. However, since previous
studies comparing social and non-social adaptation in autistic children
indicate that aftereffects for social-stimuli are diminished to a greater
extent (Ewing et al., 2013b), we hypothesise that the negative

relationship between adaptation magnitude and symptom severity will
be stronger for social relative to non-social cues.

In Experiment 2, we examine adaptation to these same three di-
rectional cues (eye-gaze, heads and chairs) in adults with ASD and
matched neurotypical (NT) control participants. The primary aim was
to assess whether adaptation for social and non-social directional cues
is diminished in adults with ASD and, if so, whether social and non-
social stimuli are affected to the same extent. We also tested whether
adaptation magnitude was negatively predictive of sensory/social
symptoms.

Although many studies investigating adaptation to directional sti-
muli are concerned with direction-specific effects (e.g. adapting to
leftward stimuli shifts perception away from left whereas adapting to
rightward stimuli shifts perception away from right) adapting to left
and right oriented stimuli simultaneously produces the net effect of
increasing the number of “direct” responses to subsequently seen left
and right facing stimuli. Models of pooled cell responses and empirical
data support such effects of adaptation (Calder et al., 2008; Lawson
et al., 2009, 2011). So called “simultaneous adaptation”, has previously
been demonstrated for a range of complex visual stimuli such as eye-
gaze, body direction and head direction (Calder et al., 2008; Lawson
et al., 2009, 2011). As we do not wish to test the direction-specific
effects of adaptation, but rather, differences in net adaptation magni-
tude across tasks (and between groups), we opted for a “simultaneous
adaption” paradigm in both experiments reported in this manuscript.

2. Methods

2.1. Participants

In Experiment 1, twenty-eight healthy adult volunteers (16 male;
aged 18–35 years; mean age 24.43; SD 3.52) with normal or corrected-
to-normal vision took part. Subjects underwent screening for psychia-
tric and neurological disorders, and neither subjects nor their first de-
gree relatives had previously received a clinical diagnosis of ASD in line
with DSM-IV criteria (American Psychiatric Association, 2000). All
subjects received monetary compensation for their time and travel ex-
penses. Ethical approval was obtained from the Division of Psychology
and Language Sciences/Institute of Cognitive Neuroscience Ethics
Committee for Non-invasive Research on healthy adults (project iden-
tification number: JR/PWB/14-2-12a).

In Experiment 2, twenty participants with ASD were recruited via
the Developmental and Executive Function database held at the UCL
Institute of Cognitive Neuroscience. Participants had previously been
diagnosed by an independent clinician, according to the DSM-IV
(American Psychiatric Association, 2000) criteria. The Autism Diag-
nostic Observation Schedule (2nd edition) assessment (Lord et al.,
2000) was completed by a qualified administrator to assess symptom
severity in the ASD participants. Twenty NT participants with no pre-
vious or current psychiatric diagnosis served as controls. Two adults
with ASD were excluded as they did not complete all three adaptation
tasks. One additional ASD participant and one NT participant were
removed due to incorrect button presses being logged throughout. This
left nineteen NT participants and seventeen ASD participants in the
final analysis [15 Asperger’s, 1 Autism Spectrum Disorder, 1 High
Functioning Autism]. Demographic information can be found in
Table 1. The Wechsler Adult Intelligence Scale (WAIS 3rd edition) had
previously been administered to assess IQ. The ASD group were well
matched with the NT group on both age, sex, and IQ (Table 1). Un-
fortunately, ADOS scores were not available for 4/17 of the ASD par-
ticipants. All subjects received monetary compensation for their time
and travel expenses. Ethical approval was provided by UCL Graduate
School Ethics committee (4357/001).
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2.2. Materials

The computer based tasks were run using Matlab 7.7.0471
(R2008b) (http://www.mathworks.co.uk/) and Cogent 2000 (http://
www.vislab.ucl.ac.uk/cogent_2000).

Tasks were executed on a Dell Precision M4500 Laptop and pre-
sented on a 39.6 cm (15.6“) HD UltraSharp LED Display (1366 × 768
resolution). Participants viewed the stimuli at a distance of 57 cm with
their head positioned in a chin rest to ensure that the images subtended
the same visual angle in all participants, and direct eye-gaze fell at the
level of the screen centre.

2.3. Procedure

For all participants three separate adaptation tasks (eye-gaze di-
rection, head direction and chair direction) were administered in a
counter-balanced order. The procedure for each task was identical;
accordingly, the general procedure will first be described, followed by
specific details of the stimuli used in each task (Fig. 1A). Each adap-
tation task comprised two key phases: a pre-adaptation baseline phase
(including practice), an adaptation phase which comprised two sections
(Fig. 1B).

Pre-adaptation baseline phase: This comprised two identical blocks
(practice and baseline) each showing probe stimuli across five or-
ientations (40 stimuli in total). Each trial consisted of a probe image for
200 ms, and then a 1800 ms ISI. Participants categorised each probe
image as facing ‘left’, “direct” or “right” with a button press.
Presentation order was randomised.

Adaptation phase: The adaptation phase comprised two sections.
Section 1, ‘adaptation’: comprised a series of alternating left and

right facing adaptor images presented for 4000 ms each (40 images in
total). Adjacent adaptors never showed the same identity and a 200 ms

ISI further served to eliminate any ‘apparent’ motion. Participants
performed a dot detection task, which occurred on 10% of trials, to
ensure attention throughout.

Section 2, ‘top-up’: contained the same probe images as the baseline
block with exactly the same presentation times (200 ms each with a
1800 ms ISI for response logging). Again, participants categorised the
direction as “left”, “direct”, or “right” however, preceding every probe
images were six alternating left/right ‘top-up adaptors’ to maintain
adaptation. Top-up images were presented for 1000 ms each, followed
by a 200 ms ISI. In each trial top-up adaptors were always a different
size and identity to the following probe stimuli.

Additionally a post-adaptation baseline phase took place after
adaptation. This was identical to the pre-adaptation phase and provided
a minimum standardised amount of time and intervening visual stimuli
to allow the effects of adaptation to dissipate before the next adaptation
task began. Previous studies in healthy volunteers indicate that the
effects of eye-gaze adaptation are measurable on the discrimination of
stimuli> 300 s after adaptation has taken place (Kloth and
Schweinberger, 2008). Measurements made in the post adaptation test
phase are not used in the subsequent analysis.

2.4. Stimuli

Experimental stimuli were gray-scale computer generated images of
faces and chairs created using DAZ 3D software (Daz productions,
http://www.daz3d.com/). Examples of all three stimulus types can be
seen in Fig. 1A.

Eye-gaze stimuli: Each probe eye-gaze image measured 10 cm
(horizontally) by 6 cm (vertically) subtending a visual angle of 10° x 6°.
Stimuli included five male and five female facial identities in which the
eye-gaze was directed in one of five different orientations: 10° left, 5°
left, 0° direct, 5° right and 10° right. These angles and image sizes have

Table 1
Participant demographics. The participants were matched on both age, sex, and IQ. ASQ, adult sensory questionnaire; ADOS, autism diagnostic observation schedule; C, communication;
SI, social interaction; IQ, intelligence quotient.

Group ASD NT

mean(sd) range mean(sd) range t df P

Age(years) 42.9(11.8) 29–60 39.3(11.1) 23–60 0.934 34 0.357
Full Scale IQ 115.4(16.4) 80–136 111.7(13.2) 82–127 0.743 34 0.463
ASQ 13.9(4.4) 7–19 7.7(3.7) 2–14 4.469 34 <0.001
ADOS-total 9.0(2.9) 4–17
ADOS-C 3.2(1.2) 1–6
ADOS-SI 5.7(1.9) 3–11

Count Count Chi-Sq df P
Sex 13 males 10 males 2.21 1 0.137

Fig. 1. Sample stimuli, trial format, and procedure for the different
adaptation tasks. (A) Examples of the social (eye-gaze, head direction) and
non-social (chair orientation) stimuli used in the three tasks. (B) All three
tasks had the same format comprising (i) a pre-adaptation baseline phase
and (ii) an adaptation phase. An additional post-adaptation baseline phase
also takes place but these data are not analysed. In the baseline phases
participants categorised the direction (left, direct, or right) of probe
images (green border) oriented in one of five directions. The adaptation
phase consisted of two sections. In the adaptation section participants
adapted to an alternating series of 20° left and 20° right oriented adaptors
and in Section 2 the baseline phase was repeated with every probe image
preceded by six top-up adaptor images. The primary outcome measure of
adaptation magnitude is the change in the percentage of ‘direct’ responses
made to the averted probe images in the adaptation phase relative to the
pre-adaptation baseline. Participants completed these three phases three
times, once for each stimulus type (eye-gaze, heads, and chairs) in a
counterbalanced order for both experiments.
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previously demonstrated significant eye-gaze adaptation aftereffects in
a similar paradigm (Jenkins et al., 2006).

Head direction stimuli: Each probe head image measured 3.7 cm
(horizontally) by 2.5 cm (vertically) subtending a visual angle of
3.7° × 2.5°. Stimuli included five male and female identities in which
eyes were closed, and were presented at angles of either 8° left, 4° left,
0° direct, 4° right and 8° right. These angles and image sizes have
previously demonstrated significant eye-gaze adaptation aftereffects in
a similar paradigm (Lawson et al., 2011; Lawson and Calder, 2015).

Chair direction stimuli: Each probe chair image measured 3.1 cm
(horizontally) and 4.7 cm (vertically) and subtended a visual angle of
3.1° x 4.7°. Ten different chair identities were used which were pre-
sented at angles of either 10° left, 5° left, 0° direct, 5° right and 10° right.
These angles and image sizes have previously demonstrated significant
chair direction adaptation aftereffects in a similar paradigm (Lawson
and Calder, 2015).

Adaptor images: In each task adaptor images depicted 20° left and
20° facing exemplars of the task relevant stimuli (eye-gaze, head di-
rection and chair direction accordingly). In all tasks these images were
25% larger than the corresponding probe images in order to rule out the
possibility of adaptation effects being attributed to low level stimulus
features.

2.5. Adaptation magnitude

The percentage of ‘direct’ responses to averted probe stimuli (col-
lapsed across left and right) was calculated at baseline and at top-up
(i.e. before and during adaptation). The extreme orientations, 8° (for
heads) and 10° (for eyes and chairs) left and right, were included in this
study as an “anchor” for perception of leftness and rightness only.
Previous research (Calder et al., 2008; Jenkins et al., 2006; Lawson
et al., 2011) indicates that these extreme orientations were subject to
ceiling effects (i.e. rarely, or never, categorised incorrectly), and ac-
cordingly are not included in the analysis. The change in percentage of
‘direct’ responses to averted stimuli between the pre-adaptation base-
line phase and the top-up phase was the critical outcome measure, in-
dicating the overall magnitude of adaptation (i.e. adaptation magnitu-
de = responses at top-up – responses at baseline).

2.6. Questionnaires

The Autism Quotient (AQ) (Baron-Cohen et al., 2001a; Baron-Cohen
et al., 2001b) is a 50-item, self-report questionnaire designed in line
with the DSM-IV-TR (American Psychiatric Association, 2000) to
identify where an individual of normal intelligence lies on the autistic
continuum by measuring their level of autistic traits. A score of 1 is
attributed when a respondent rates an autistic-like behaviour as mild or
strong. A respondent can score up to 50, with a score of≥32 considered
high. The AQ was administered to all participants in Experiment 1 to
examine the relationship between adaptation magnitude and autistic
traits in the normal population of neurotypical (NT) participants.

The Adult Sensory Questionnaire (ASQ) (Kinnealey et al., 1995) is a
26-item self-report, true-false questionnaire designed to identify sen-
sory sensitivity in adults. True responses carry a point of 1 whereas false
responses carry a point of 0. A score of 6 is considered average within
healthy populations and a score of ≥10 is considered high. The ASQ
provides a total score reflecting overall sensory sensitivity, i.e. in-
appropriate and exaggerated response to a typically harmless sensory
stimuli. The ASQ was administered to all participants in Experiment 1
and Experiment 2 to measure sensory sensitivity.

2.7. Statistical analysis

Analysis was conducted using the Statistical Package for the Social
Sciences, version 22 (SPSS Inc., Chicago, IL, USA). For each task, the
main group effects of adaptation were analysed using repeated-

measures 2 × 3 analysis of variance (ANOVA) with factors of: phase
(baseline, top-up) and task (eye-gaze direction, head direction, chair
direction). In Experiment 2 a between-subjects factor of group (ASD,
NT) was added to the ANOVA. Independent samples t-tests were used to
compare differences in adaptation magnitude where a significant in-
teraction with group was identified in Experiment 2. All statistical tests
are reported at a 2-tailed level of significance unless otherwise stated.
Wherever the relationship between adaptation magnitudes was ex-
amined as an a priori hypothesised negative predictor of autistic traits/
sensory sensitivity (Experiment 1) or ASD symptoms/sensory sensitivity
(Experiment 2) bivariate correlations were conducted in line with our
hypotheses (1-tailed). Steiger’s Z-test for correlated correlations was
also used to investigate whether correlation coefficients for each task
were statistically significantly different to one another (Steiger, 1980).
Stieger’s Z test compares the equality of two correlation coefficients
that share one variable in common while accounting for the correlation
between the unshared variables.

3. Results

3.1. Experiment 1: adaptation and autistic traits

3.1.1. Attention during the adaptation phase
Overall performance on the dot-probe detection task during the

adaptation phase was ≥98.34% for all three tasks (Eye-gaze,
M = 99.88, SD = 0.42; Head, M = 99.94, SD = 0.31; Chair,
M = 99.94, SD = 0.31) suggesting that all participants were fixating
on the adaptation stimuli and paying attention as instructed. To com-
pare reaction time performance, the sample was median split into those
scoring high (≥21) or low (≤20) on the AQ with reaction times
compared via paired t-tests for each task. There was no significant
difference in RTs for the high and low AQ groups for either task (eye-
gaze t(13) = −0.460,P = 0.65, heads t(13) =−0.826, P = 0.42,
chair t(13) =−0.194, P = 0.85), indicating equal attentional en-
gagement for participants both low and high on the AQ for both social
and non-social stimulus types.

3.1.2. Effects of adaptation
First, to demonstrate that the three stimulus types were able to

produce the expected effects of adaptation (e.g. an increase in ‘direct’
responses to averted stimuli in the top-up phase relative to baseline) we
conducted a 2 × 3 repeated measures ANOVA comparing phase
(baseline, top-up) and stimulus type (eye-gaze, head, chair). This de-
monstrated a significant main effect of phase (F(1,27) = 81.25,
P< 0.001) indicating that exposure to adaptor images induced adap-
tation, a significant main effect of stimulus type (F(2,54) = 41.28,
P< 0.001) and a significant stimulus type*phase interaction (F(2,54)
= 14.25, P< 0.001) indicating that the effects of adaptation differed
across the three tasks.

Mean adaptation magnitude was 38.71% (SD = 24.01) for the eye-
gaze task, 18.50% (SD = 21.86) for the head direction task and 14.00%
(SD = 14.44) for the chair direction task. Echoing the main effect of
adaptation in the above ANOVA paired t-tests demonstrate a significant
increase in ‘direct’ responses to averted probes following adaptation for
all three tasks (eye-gaze t(27) = 8.53, P< 0.001); head t(27) = 4.47,
P< 0.001; chair t(27) = 5.12, P< 0.001; Fig. 2A–C).

3.1.3. Relationship between adaptation magnitude and autistic traits
Adaptation magnitude correlated negatively with AQ score for the

eye-gaze task (r(28) = −.44, P = 0.01; 1-tailed) and the chair or-
ientation task (r(28) = −.33, P = 0.04; 1-tailed) indicating less adap-
tation in those with higher autistic traits (Fig. 2A & C). Although the
correlation coefficient for the eye-gaze task and AQ score was nu-
merically greater (in absolute terms) than the correlation coefficient for
the chair task and AQ score, Steiger’s Z test revealed that these were not
significantly different (Z = −.56, P = 0.28).
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A negative correlation was also observed between adaptation
magnitude for head direction and AQ score, but this narrowly missed
statistical significance (r(28) = −.30, p = 0.064) although the direc-
tion of the relationship is consistent with the other two stimulus types
(Fig. 2B). Additionally, Steiger’s Z tests revealed that the correlation
coefficient between adaptation magnitude on the head direction task
and AQ score was not significantly smaller than the corresponding
correlation coefficients on either the eye-gaze (Z = −0.67, P = 0.24)
or chair tasks (z = −.13, P = 0.44).

3.1.4. Relationship between adaptation magnitude and sensory sensitivity
Adaptation magnitude for the eye-gaze task correlated negatively

with sensory sensitivity as measured by the ASQ (r(28) = −.409,
P = 0.015, 1-tailed; Fig. 2D), with a similar correlation that narrowly
missed significance for the chair orientation task (r(28) = −.278,
P = 0.076, 1-tailed; Fig. 2F). Adaptation magnitude for head direction
did not correlate with sensory sensitivity (r(28) = −.05, P=.40, 1-
tailed; Fig. 2E). The correlations between eye-gaze adaptation and ASQ,
and chair orientation adaptation and ASQ were not significantly dif-
ferent from one another (Z = −0.66, P = 0.26). The correlation be-
tween eye-gaze adaptation and ASQ was, however, significantly greater
than the correlation between head direction adaptation and ASQ
(Z = −1.65, P = 0.04). The difference between the correlations with
chair orientation and head direction adaptation narrowly missed sig-
nificance (Z = −1.35, P = 0.08).

3.1.5. Summary
Experiment 1 demonstrates that, at the group level, simultaneous

adaptation to left and right oriented exemplars of social and non-social
stimuli produce significant aftereffects (Fig. 2A–C). Additionally, we
demonstrate that a negative relationship exists between susceptibility
to adaptation aftereffects and autistic traits for both social and non-
social stimuli. As such, those people who adapt less, or have more
‘veridical’ perception, also possess the greatest level of autistic traits.
This finding is consistent with the idea that a continuum between
health and disorder in the general population extends to a basic sensory
feature of the autism spectrum. Furthermore, we demonstrate a nega-
tive relationship between magnitude of adaptation to direction of eye-
gaze stimuli and sensory sensitivity which suggests a link between the
sensory symptoms of ASD and adaptation of social stimuli. It remains to
be seen, however, whether adaptation magnitude for social and non-
social stimuli is actually diminished in ASD. We address this in Ex-
periment 2.

3.2. Experiment 2: adaptation in adults with autism

3.2.1. Attention during the adaptation phase
Across all participants performance on the dot-probe detection task

during the adaptation phase was ≥98.52% for all three tasks (Eye-gaze
ASD, M= 100%, SD = 2.02%; Eye-gaze NT, M = 97.36%, SD = 1.9%;
Head ASD, M= 97.05%, SD = 1.3%; Head NT, M= 100%,
SD = 1.3%; Chair ASD, M= 97.05%, SD = 2.01%; Chair NT,
M = 100%, SD = 1.9%) suggesting that all participants were fixating
on the adaptation stimuli and paying attention as instructed. An
ANOVA investigating task (eye-gaze, head, chair) with a between
subjects factor of group (ASD, NT) indicated no main effect of task (F
(2,68) = 0.005, P = 0.99), group (F(1,34) = 0.53, P = 0.45), or in-
teraction (F(2,68) = 1.59, P = 0.21).

An equivalent analysis conducted on RTs to detect the dots con-
firmed that there was no main effect of task (F(1.2,40.3) = 1.34,
P = 0.27), group (F(1,34) = 1.95, P = 0.17), or interaction (F(2,68)
= 1.98, P = 0.15), further indicating equal attentional engagement
during the adaptation phase for both ASD and NT participants.

3.2.2. Effects of adaptation
A 3 × 2× 2 repeated measures ANOVA with factors of stimulus

type (eye-gaze, head, chair), phase (baseline, top-up) and group (ASD,
NT) was conducted on the percentage of direct responses made to
averted stimuli. This revealed a main effect of stimulus type (F(2,68)
= 39.43, P< 0.001) suggesting that there was a general difference in
the percentage of direct responses made to each of the different sti-
mulus types and a significant main effect of phase (F(1,34) = 193.52,
P< 0.001) indicating that there was significant adaptation in general.
A significant stimulus type*phase interaction indicates that the mag-
nitude of adaptation differed significantly between the tasks (F(2,86)
= 16.53, P< 0.001). The group*phase interaction was not significant
(F(1, 34) = 0.08, P = 0.78) suggesting that adaptation magnitude did
not differ between the groups overall. Importantly, however, there was
a significant group*stimulus type*phase interaction (F(2,68) = 3.62,
P = 0.03) indicating that the degree of adaptation to the different sti-
mulus types differed between the groups.

Three 2 × 2 repeated measures ANOVAs with factors, phase
(baseline, top-up) and group (ASD, NT) were conducted to investigate
the simple interaction of phase*group for each stimulus type. As ex-
pected, the main effect of phase was significant for chair and head tasks,
indicating that exposure to adaptor images caused adaptation (head: F
(1, 34) = 76.75, p< 0.001); chair: F(1, 34) = 25.60, P< 0.001). The
phase*group interaction was not significant for either task (chair: F
(1,34) = 0.01, P = 0.80; head: F(1, 34) = 1.46, P = 0.23)
(Fig. 3B & C), suggesting no group differences in adaptation magnitude

Fig. 2. Experiment 1 results. (A–C) Adaptation aftereffects (an increase in
‘direct’ responses to averted stimuli following adaptation relative to the
baseline phase) were measured for all three stimulus types (eye-gaze,
heads and chairs) and correlated negatively with autistic traits in each
case. (D–F) Adaptation magnitude only correlated negatively with sensory
sensitivity for the eye-gaze and chair direction tasks. *Denotes significance
at P < 0.05. Significant correlations are marked with a dotted red trend
line. Orange dotted line indicates trend significance.
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between the groups.
For the eye-gaze task, the main effect of phase was significant (F(1,

34) = 179.20, P< 0.001), again indicating successful adaptation.
Importantly a significant group*phase interaction was detected (F
(1,34) = 5.39, P = 0.026). This suggests that adults with autism have
reduced eye-gaze adaptation magnitude, as confirmed with direct
comparisons of adaptation magnitude (t(34) = −2.36, P = 0.024;
mean ASD magnitude = 37% (SD = 24.5), mean NT magni-
tude = 53% (SD = 16.6)). Post-hoc t-tests revealed that at baseline, the
ASD group was more likely to report averted gaze as direct (t(34)
= 2.24, P= 0.032). The groups did not differ at top-up (t(34) = 0.15,
P = 0.89). In other words, the ASD group was less accurate at cate-
gorising gaze direction at baseline, compared to the NT group, and
therefore showed less susceptibility to adaptation (Fig. 3A).

To determine whether group differences in eye-gaze adaptation
magnitude remained after accounting for general propensity to cate-
gorise stimuli as ‘direct’ we calculated an adaptation index (AI) as:
AI = (responses at top-up − responses at baseline)/(responses at top-
up + responses at baseline). Such an approach has been used pre-
viously in studies examining the relationship between fMRI adaptation
and autistic traits (Ewbank et al., 2014). The groups significantly dif-
fered on this measure (t(34) = 2.16, P = 0.038) suggesting that, over
and above general eye-gaze discrimination ability, adults with ASD
show reduced eye-gaze adaptation.

3.2.3. Relationship between adaptation magnitude and ADOS scores
In the ASD participants, eye-gaze adaptation magnitude was nega-

tively predictive of the social-communication symptoms indexed by the
ADOS (r(13) = −.515, P = 0.03, 1-tailed; Fig. 3D). When the outlier
with highest ADOS score (marked with a circle on Fig. 3D; defined
as> 1.5 x the interquartile range) is removed from this analysis the
correlation between eye-gaze adaptation and ADOS is slightly stronger
(r(12) = −.532, P = 0.037, 1-tailed). Head direction adaptation also
negatively correlated with ADOS scores, both with ((r(13) = −.598,
P = 0.015, 1-tailed) and without (r(12) = −.527, P = 0.039, 1-tailed)
the participant scoring highest on the ADOS included (Fig. 3E). There
was no relationship, however, between chair direction adaptation and
ADOS (r(13) = −.098, P = 0.375, 1-tailed; Fig. 3F). Steiger’s Z test
indicated that the correlation between non-social (chair) adaptation
magnitude and ADOS was lower than either of the corresponding cor-
relations for social stimuli, though these narrowly missed significance
(chairs vs. heads, Z =−1.63, P = 0.05; chairs vs. eye-gaze,
Z = −1.29, P = 0.09).

3.2.4. Relationship between adaptation magnitude and sensory sensitivity
A similar approach was taken to determine the relationship between

eye-gaze, head and chair adaptation magnitude and sensory sensitivity
as measured by the ASQ. Adaptation magnitude was not significantly
related to ASQ for any stimulus type in the ASD group eye-gaze, r(17)
=.32, P=.105; heads, r(17)=.073, P=.39; chairs, r(17) = −.04,
P=.44, all 1-tailed). For the NT group sensory sensitivity was nega-
tively correlated with non-social (chair) adaptation magnitude only (r
(19) = −.421, P = 0.036, 1-tailed). Head and eye-gaze adaptation
magnitude were not correlated with ASQ (head, r(19) = −.149,
P=.21; eye-gaze, r(19)=.22, P=.18).

3.2.5. Relationship between adaptation magnitude and AQ scores
In an exploratory analysis we examined the relationship between

autistic traits and adaptation magnitude in the ASD and NT groups.
Adaptation magnitude was not significantly related to autistic traits
(AQ) for eye-gaze or chair stimuli in the ASD group (eye-gaze, r(17)
=.27, P = 0.14, chairs, r(17) = −.05, P = 0.42, 1-tailed), but was
negatively correlated with head direction adaptation (r(17) = −4.8,
P = 0.026, 1-tailed). Adaptation magnitude was not significantly re-
lated to AQ for any stimulus type in the NT participants (eye-gaze, r(19)
=.14, P = 0.29; chairs, r(19)=.07, P = 0.39; heads, r(19) = −.02,
P = 0.47, all 1-tailed).

4. General discussion

4.1. Summary

We examined adaptation to both social and non-social visual cues in
the general population (Experiment 1) and adults with ASD relative to
NT participants (Experiment 2). We observed that autistic traits nega-
tively predict adaptation magnitude for social (eye-gaze, head direc-
tion) and non-social (chair) directional cues in the hypothesised nega-
tive direction; where higher autistic traits are associated with reduced
adaptation magnitude (Fig. 2A–C). However, only social eye-gaze
adaptation was negatively related to sensory sensitivity. Additionally
we report that adaptation magnitude is only diminished, at the group
level, for social eye-gaze stimuli in adults with ASD and this is related,
in part, to difficulties categorising eye-gaze direction at baseline
(Fig. 3A). Adaptation for head and chair direction, however, is intact in
ASD (Fig. 3B & C). Nonetheless, individual differences in social-com-
municative ability (ADOS scores) are negatively related to adaptation
magnitude for both social-stimulus categories (eye-gaze and heads) in

Fig. 3. Experiment 2 results. (A–C) Adaptation aftereffects (an increase in
‘direct’ responses to averted stimuli following adaptation relative to the
baseline phase) were measured for all three stimulus types (eye-gaze,
heads and chairs) but the magnitude of this effect was only diminished in
the ASD group for the eye-gaze stimuli. (D–F) In the ASD group, adapta-
tion magnitude only correlated negatively autistic symptoms for the eye-
gaze and head direction tasks. *Denotes significance at P < 0.05. ns, not
significant. Significant correlations are marked with a dotted red trend
line.
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the ASD participants (Fig. 3D & E), whereas sensory sensitivity is not
related to adaptation for any stimulus type.

4.2. Effects of attention

Simmons et al. (2009) suggest that reduced adaptation aftereffects
reported in autistic children could be explained by reduced attention to
or fixation on the adaptor images in the ASD group. As in recent studies
(Ewing et al., 2013a) we addressed this explicitly in our design. Spe-
cifically we introduced short adaptation periods with emphasis on the
importance of fixating during the procedure. Additionally, the number
of ‘extreme’ (8°/10°) probe orientations included in each experiment
was reduced relative to previous research which indicates perception of
these non-ambiguous orientations, rarely changes following adaptation
(Calder et al., 2008; Jenkins et al., 2006; Lawson et al., 2011). In doing
so we reduced the overall length of each task to maintain attention.
Crucially, however, the dot detection task in the adaptation phase of
each task permitted us to implicitly measure attention to the adaptation
stimuli, and we were able to demonstrate equal attentional engagement
in the adaptation phase in both high and low-AQ participants in Ex-
periment 1, and adults with ASD relative to NT adults in Experiment 2.
Importantly, this suggests that reduced attention in the ASD group is
not responsible for the reduced magnitude of adaptation found for the
eye-gaze stimuli. It is interesting to note that considering we increased
attention to the eye-gaze stimuli in this task, in a real world setting
perhaps attenuated adaptation would be even more marked.

4.3. High vs. low-level adaptation

Adaptation is a canonical coding strategy echoed throughout the
brain at different levels and on different timescales. In this study of
high-level visual cues to direction, image identity and size changed
between adaptor and probe images, effectively ruling out contributions
from low-level retinotopic processes to these aftereffects. This is of re-
levance in light of previous studies in autistic adults showing intact
facial identity adaptation using two different paradigms with more and
less retinotopic dependence (Cook et al., 2014) and also one study in
autistic children that suggests that adaptation conditioned upon re-
tinotopic mechanisms is intact (Karaminis et al., 2015). Future studies
should address if adults and children with ASD present with diminished
or intact adaptation in low-level visual paradigms examining orienta-
tion (e.g. with gratings or gabor patches), though we predict that, at
least in adults, adaptation for these very low-level image features is
likely to be spared.

4.4. Adaptation in the non-clinical sample

Our findings in the non-clinical sample are consistent with reduced
social and non-social adaptation in children with ASD (Ewing et al.,
2013b; Pellicano et al., 2007, 2013; Turi et al., 2015) and also reduced
fMRI adaptation to social and non-social visual stimuli as a function of
autistic traits (Ewbank et al., 2014). However, the negative relationship
between adaptation and autistic traits is not stronger for social, relative
to non-social stimuli. This suggests that the association between adap-
tation and the broad socio-cognitive processing style indexed by the AQ
may be relatively domain-general in the broader non-clinical popula-
tion and underwrites the utility of the individual differences approach
in understanding perceptual ability itself as a spectrum (Kanai and
Rees, 2011). In Experiment 2 we do not observe this relationship be-
tween AQ and adaptation magnitude in the neurotypical sample,
however in Experiment 1 every effort was made to recruit participants
who scored over a wide range on the AQ questionnaire, increasing the
sensitivity to pick up any relationship between autistic traits and task
performance. This was not the case in Experiment 2 where we wished to
compare two diagnostically distinct groups.

4.5. Relationship to sensory sensitivity

A failure of adaptive coding mechanisms, then has been proposed to
offer a potential explanation for the sensory symptoms, known as sen-
sory ‘overload’, that are prevalent in autism (Pellicano et al., 2007;
Pellicano and Burr, 2012; Simmons et al., 2009). Somewhat consistent
with this hypothesis we show that eye-gaze and chair adaptation
magnitude, predicts trait measures of sensory sensitivity in our non-
clinical sample. Specifically, those individuals who avoid sensory sti-
mulation that other people would find innocuous (as measured by the
ASQ) show the lowest susceptibility to adaptation aftereffects (Fig. 2D).
Perhaps surprisingly, however, there was no relationship between
adaptation magnitude and sensory sensitivity in our participants with
ASD for any stimulus type. Since the stimuli employed here are all high-
level visual cues to direction, future studies should explicitly examine
the link between adaptation to low-level visual cues (e.g. light, dark,
luminance, tilt etc.) as these may be more predictive of basic sensory
sensitivity to lights, smells and touch. In support of this a recent study
examining habituation to the loudness of simple auditory stimuli found
that more complete adaptation was associated with reduced use of
sensory avoidance strategies in ASD (Lawson et al., 2015a).

4.6. Are eyes special?

In Experiment 2 only eye-gaze adaptation was diminished in ASD at
the group level (Fig. 3A), although reduced adaptation for both social
stimulus types (eye-gaze and head direction) was associated with
higher ADOS scores (Fig. 3D & E). Eye-gaze is a unique visual cue with a
special role in establishing joint attention and signalling the intentions
of other people (Emery, 2000), both abilities in which children and
adults with ASD can show profound impairments (Baron-Cohen et al.,
1985; Baron-Cohen et al., 2001a; Baron-Cohen et al., 2001b; Frith,
2001; Itier and Batty, 2009; Nation and Penny, 2008; Neumann et al.,
2006; Pelphrey et al., 2005; Ristic et al., 2005; Senju et al., 2005; Senju
and Johnson, 2009). Additionally, diminished adaptation aftereffects
for social attention cues have been reported in healthy volunteers who
do not believe the adaptor stimulus can “see” (Teufel et al., 2009),
suggesting that the diminished eye-gaze adaptation we measure in
adults with autism could be linked specifically to problems with re-
presenting the mental states of others (e.g. Theory of Mind (Baron-
Cohen et al., 1985; Frith, 2001)).

The fact that the diminished eye-gaze adaptation reported here is
related, in part, to poorer discrimination of eye-gaze at baseline sup-
ports the position that diminished adaptation emerges only for the most
impaired domains of processing in adults with ASD and is consistent
with the finding that eye-gaze adaptation in autistic children is also
related to problems with categorising gaze direction (Pellicano et al.,
2013). It is possible, then, that problems with adaptation may be more
pervasive in children with ASD, affecting both social and non-social
stimuli (Ewing et al., 2013a; Pellicano et al., 2007, 2013; Turi et al.,
2015), but following a delayed or atypical developmental trajectory
these difficulties resolve or improve for some domains of processing and
remain for those where impairments are most severe. For example, face
identity aftereffects may be intact (Cook et al., 2014), because adults
with autism often present with face memory problems rather than face
discrimination problems (Weigelt et al., 2012; Weigelt et al., 2013).
This suggests that atypical adaptation may not be an enduring domain-
general feature of ASD and should be considered in a broader devel-
opmental context as individuals with autism transition from children
into adulthood. Ideally, future studies would examine adaptation in
adults and children with ASD, using both social and non-social tasks.

4.7. Relationship to symptoms

Beyond the differences in adaptation reported at the group level it is
also worth noting that reduced adaptation magnitude for both social
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stimulus types (heads and eye-gaze) was predictive of individual dif-
ferences in social-communication symptoms in the ASD participants
(Fig. 3D & E). We caution that since the ADOS was not administered to
four of the ASD participants the sample size in these correlations is
reduced, though we demonstrate that they are not driven by the iden-
tified outlier (see results). Interestingly, the ADOS assessment measures
symptoms such as unusual eye-contact, poor social responses and lim-
ited reciprocal interaction (Lord et al., 2000); all of which would be
expected to suffer in real-world social situations if an individual had
problems updating representations of social attention cues (e.g. where
people are looking). The present results suggest that this relationship is
specific to the adaptation of social cues to direction, and not high level
directional cues in general as there was no relationship between ADOS
scores and chair adaptation magnitude. This is supported by recent
study employing these same stimuli in healthy volunteers and found no
cross-category adaptation for social and non-social directional cues
(Lawson and Calder, 2015). This suggests that these aftereffects do not
arise from abstract representations of ‘leftness’ or ‘rightness’ that affect
any kind of stimulus, but rather from representations specific to each
cue type.

4.8. Theoretical considerations

Computationally it has been proposed that adaptation can be
modelled exclusively, or as a combination of, divisive normalization,
gain control and using Bayesian generative models like predictive
coding (Schwartz et al., 2007). Theoretically, it has recently been
suggested that atypicalities in autistic perception could be explained
under a Bayesian framework (Pellicano and Burr, 2012) or its neural
instantiation, predictive coding (Friston et al., 2013; Lawson et al.,
2014, 2015b; Van de Cruys et al., 2014). For a comprehensive tutorial
and review of recent Bayesian treatments of autism see Palmer et al.,
2017. At the conceptual level, reduced aftereffects sit comfortably with
the idea of reduced reliance on prior beliefs (Pellicano and Burr, 2012).
However Bayesian computational models that allow the adaptor stimuli
to affect the prior directly predict that perception should be pulled
towards the adaptor and not away from it (Stocker and Simoncelli,
2006). Therefore, the link between adaptation and prior beliefs war-
rants further study and, at the level of explaining behavior, novel ap-
proaches may need to be considered. For example, it has recently been
suggested that priors may be coded in the channel selectivity structure
underlying the representation of different visual attributes, with
adaptation reflecting short term changes in channel sensitivity (Clifford
et al., 2015). In terms of eye gaze adaptation this has been captured
computationally as a form of divisive normalization (Palmer & Clifford,
2017).

Predictive coding is the neural instantiation of Bayesian inference
and predictive coding mechanisms have been shown to explain fMRI-
adaptation to high-level visual stimuli (Ewbank et al., 2011). Reduced
fMRI-adaptation to faces has been observed in ASD (Ewbank et al.,
2016; Kleinhans et al., 2009; Swartz et al., 2013) and schizophrenia
(Williams et al., 2013), suggesting a breakdown in predictive proces-
sing at the level of hierarchical neural computation. Furthermore,
consistent with the findings of Experiment 1, reduced neural adaptation
to faces, scenes and simple shapes has been shown in individuals high
on measures of autistic traits (Ewbank et al., 2014). We would therefore
hypothesize that fMRI adaptation studies investigating repetition sup-
pression of social attention cues in ASD would echo the reduced be-
havioral effects of adaptation found here, at least for eye-gaze stimuli.
These findings would be broadly consistent with the idea of a failure of
sensory attenuation, or high expected precision on sensory inputs, in
ASD (Friston et al., 2013; Lawson et al., 2014, 2015b; Palmer et al.,
2017).

4.9. Conclusions

These results advance our understanding of the links between the
social and sensory features of ASD by examining a processing me-
chanism that impacts on both social and non-social stimuli and speci-
fically addressing whether adaptation of these cues is differentially
impaired. These results suggest that the relationship between adapta-
tion and the broad socio-cognitive processing style encompassed by
‘autistic traits’ may be relatively domain-general similar to findings in
autistic children, but in adults with ASD diminished adaptation is only
apparent where processing is most severely impaired, such as per-
ceiving social attention cues.
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