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Abstract

We show that the G protein-coupled receptor GPR37-like 1 (GPR37L1) is expressed in most astro-
cytes and some oligodendrocyte precursors in the mouse central nervous system. This contrasts
with GPR37, which is mainly in mature oligodendrocytes. Comparison of wild type and Gpr37/1~/~
mice showed that loss of GPR37L1 did not affect the input resistance or resting potential of astro-
cytes or neurons in the hippocampus. However, GPR37L1-mediated signalling inhibited astrocyte
glutamate transporters and - surprisingly, given its lack of expression in neurons - reduced neuro-
nal NMDA receptor (NMDAR) activity during prolonged activation of the receptors as occurs in
ischemia. This effect on NMDAR signalling was not mediated by a change in the release of D-
serine or TNF-«, two astrocyte-derived agents known to modulate NMDAR function. After middle
cerebral artery occlusion, Gpr37I1 expression was increased around the lesion. Neuronal death
was increased by ~40% in Gpr3711~ brain compared to wild type in an in vitro model of ische-
mia. Thus, GPR37L1 protects neurons during ischemia, presumably by modulating extracellular

glutamate concentration and NMDAR activation.
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We identified GPR37L1 as a potential astrocyte-specific receptor

during a visual screen of the Allen Brain Atlas gene expression database

Activation of receptors on astrocytes is increasingly thought to modu-
late the activity and function of neurons. Release of astrocyte-derived
“gliotransmitters” such as glutamate and D-serine, triggered by activa-
tion of receptors on astrocytes by signals from neurons or other cells,
can alter synaptic transmitter release and the excitability of neurons
(Bazargani and Attwell, 2016). However, the functions of most glial
receptors are poorly understood. Here, we examine the function of
one such glial-restricted receptor, the G protein-coupled receptor
GPR37-like 1 (GPR37L1).
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(N.P.P. unpublished). GPR37L1 belongs to the Class A rhodopsin-like
receptor subfamily of GPCRs. The Gpr37/1 coding sequence was first
identified by sequence similarity to the endothelin type B receptor
gene, but GPR37L1 is unable to bind endothelin or related peptides
(Leng, Gu, Simerly, & Spindel, 1999; Valdenaire et al., 1998). It is highly
expressed in the central nervous system (CNS), heart and gastrointesti-
nal tract (Freeman, 2010; Ito et al., 2009; Min et al., 2010; Valdenaire
et al,, 1998). GPR37L1 shares >40% amino acid sequence similarity
with its close relative GPR37, which is also expressed in the CNS.
Transcriptome studies suggest that Gpr37I1 is expressed mainly in
astrocytes, oligodendrocyte precursors (OPs) and newly formed oligo-

dendrocytes (OLs) in humans and mice (web.stanford.edu/group/
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barres_lab/cgi-bin/geneSearch.py?geneNameln = gpr3711), while
Gpr37 is mainly in newly formed and myelinating OLs (web.stanford.
edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameln = gpr37)
(Imai et al., 2001; Zhang et al., 2014). GPR37 is a substrate of Parkin,
an E3 ubiquitin ligase that might regulate the dopaminergic system
(Imai et al., 2001). It also regulates OL differentiation and myelination
(Yang, Vainshtein, Maik-Rachline, & Peles, 2016). In contrast, little is
known about the function of GPR37L1 in the CNS, except that it might
modulate development of the cerebellum by regulating sonic hedgehog
signalling (Marazziti et al., 2013). Recently, the polypeptide “prosapo-
sin” (also known as PSAP) was identified as a potential ligand for both
GPR37 and GPR37L1 (Meyer, Giddens, Schaefer, & Hall, 2013). Prosa-
posin can be secreted into the extracellular space and this is enhanced
following conditions of cellular stress such as ischemia (Costain et al.,
2010; Hiraiwa et al., 2003; Yokota, Uchijima, Nishizawa, Namba, &
Koide, 2001). Prosaposin and prosaptide (an active fragment of prosa-
posin) have neuroprotective and glioprotective properties (Meyer, Gid-
dens, Coleman, & Hall, 2014; Morita et al., 2001; Sano et al., 1994) by
acting on GPR37 and GPR37L1. However, a separate study has sug-
gested that GPR37L1 is constitutively active and that its activity is
regulated by proteolytic cleavage near the N-terminus (Coleman et al.,
2016). It is therefore unclear whether GPR37L1 activation is triggered
by binding of an extracellular ligand (like prosaposin) or by post-
translational modification or cleavage.

We report that GPR37 and GPR37L1 are expressed in the postnatal
CNS in non-overlapping cell populations. While GPR37 is expressed
mainly in differentiated OLs, GPR37L1 is expressed in astrocytes and
OPs. We found that (1) GPR37L1 expression does not change the basic
membrane properties of hippocampal astrocytes or neurons, (2)
GPR37L1 mRNA expression is upregulated in ischemia in vivo, (3)
GPR37L1 expression and signalling activated by its ligand prosaptide are
neuroprotective in ischemic brain slices, and (4) prosaptide-evoked
GPR37L1-signalling inhibits glutamate transporters in astrocytes and
reduces neuronal NMDAR activity. We suggest that the latter two
effects combine to confer neuroprotection during ischemia.

2 | MATERIALS AND METHODS

2.1 | Mice

Mouse husbandry and experimentation conformed with UK Home
Office regulations, UCL Ethics Committee guidelines and the UK Animals
(Scientific Procedures) Act 1986 and its Amendment Regulations (2012).

Gpr3711 knock-out (KO) mice were from the NIH Mutant Mouse
Resource and Research Centers (B6;12955-Gpr3711'™e/Mmucd).
They have a LacZ-neo® cassette inserted by homologous recombination
into the first exon of the Gpr37I1 gene, causing a deletion and loss of
function of the gene. Mice were maintained on a mixed genetic back-
ground (C57BL/6, 129S5) and genotyped using PCR

(primers: neo5-gpr : 5-CGTGATATTGCTGAAGAGCTTG;

gpr—wt5: 5 —CATCTTTAGGTGGGC ATAGAGC;

TABLE 1 List of primary antibodies

Target Host species  Dilution Company

GFAP Mouse 1/500 Sigma

OLIG2 Rabbit 1/500 Millipore

SOX10 Guinea pig 1/2000 gift from M. Wegner
PDGFRA Rabbit 1/500 Cell Signalling
B-galactosidase  Rabbit 1/500 Cappel

S1008 Mouse 1/500 Sigma

cc1 Mouse 1/200 Calbiochem

NEUN Mouse 1/200 Millipore

GFP Rat 1/2000 Nacalai Tesque Inc
IBA1 Rabbit 1/500 WAKO

vGLUT2 Guinea pig 1/500 Chemicon

PSD95 Rabbit 1/500 Abcam

VGAT Guinea pig 1/500 Synaptic Systems

gpr—ko—3: 5 —CAGATCTTTGCAGACACTGGAG).

Gpr3711-GFP transgenic mice were generated by inserting a lox.
GFP.STOP.lox-DTA-frt.Km'".frt cassette immediately downstream of the
Gpr37I1 initiation codon in a bacterial artificial chromosome (BAC
RP23-28702, Source Bioscience, Nottingham, UK). STOP is a series of
four simian virus 40 poly-A addition sites and DTA is the diphtheria
toxin A-chain coding sequence. The frt.Km".frt element was removed
by expressing Flp recombinase in the bacterial host. The modified BAC
was linearized with Notl before gel purification and pronuclear injec-
tion into C57BL/6, CBA F1 generation oocytes. Genotyping was by

PCR using the following primers:
gprF: 5-GTTGCAGTGATTGGAGCAGGTC

gfpR: 5'-ACTTGAAGAAGTCGTGCTGCT.

2.2 | Immunohistochemistry

Anesthetized mice were transcardially perfused with 0.1 M phosphate
buffer (20 mL), pH 7.4 (PBS) followed by 4% (w/v) paraformaldehyde
(PFA; Sigma, 50 mL) in PBS. Brains were post-fixed in 4% PFA over-
night at 4°C, cryoprotected in 20% (w/v) sucrose (Sigma), kept over-
night at 4°C and frozen in Tissue-Tek O.C.T. (Sakura Finetek). Coronal
brain cryo-sections (25 pm thick) were blocked with PBS containing
10% (v/v) fetal bovine serum (FBS) and 0.1% (v/v) Triton-X100 for 1 hr
at 20-25°C, and then incubated with primary antibody (Table 1) in PBS
with 5% FBS and 0.1% Triton-X100 at 4°C overnight. The next day,
sections were incubated with secondary antibodies (Alexa Fluor-488,
—568 or —647; Thermo Fisher) for 2 hr at 20-25°C. Nuclei were coun-
terstained with Hoechst 33258 (Sigma) and sections were mounted in
DAKO fluorescence medium. Anti-PDGFRA antibody detection
employed a goat anti-rabbit antibody conjugated to biotin (1:200,
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Jackson ImmunoResearch). For signal amplification, the Vectastain ABC
kit (Vector) with Fluorescein (1:100, Perkin Elmer) was used.

For synaptic staining, mice were perfused with 40 mL of PBS and
their brains were removed and post-fixed by immersion in 4% PFA for
1 hr at 20-25°C. Brain cryo-sections were blocked with PBS containing
20% FBS. Primary and secondary antibodies were incubated in PBS
with 10% FBS and 0.3% Triton-X100. Stacks of 10 images (z-
step = 0.36 um) were made with a Perkin Elmer spinning disk confocal
microscope (63X objective). Numbers of PSD95/vGLUT2 double-
positive puncta and VGAT positive puncta per NEUN* cell were

counted using Volocity software (3 slices/mouse, 3 images/slice).

2.3 | In situ hybridization

Our in situ hybridization (ISH) procedure has been described (Jolly,
Richardson, & Li, 2016; http://www.ucl.ac.uk/
~ucbzwdr/In%20Situ%20Protocol.pdf). Briefly, coronal brain slices

Fudge, Pringle,

15 um thick were collected on glass slides and incubated with digoxige-
nin (DIG)-labelled RNA probes. The DIG signal was visualized with alka-
line phosphatase (AP)-conjugated anti-DIG Fab fragment and Fast Red
fluorescence system (Roche). For double ISH, fluorescein (FITC)- and
DIG-labelled probes were applied simultaneously. DIG and FITC were
detected on consecutive days with horseradish peroxidase (POD)-con-
jugated anti-DIG and anti-FITC, blocking POD activity with H,O,
before adding anti-FITC. The signal was developed by incubating with
TSA Plus Fluorescence kits (fluorescein or tyramide cyanine5) (Perkin
Elmer).

The plasmids for riboprobe synthesis were IMAGE clone IRAK-
p961i05207Q (Source Bioscience) for Gpr37/1 (linearized with EcoR1,
transcribed with SP6 RNA polymerase) and IMAGE clone
IMAGpP998D0613991Q (Source Bioscience) for Gpr37 (linearized with

Sall, transcribed with T7 polymerase).

2.4 | Electrophysiology

Electrophysiological recordings from wild type and knockout mice
were performed with the experimenter being blind to the mouse
genotype.

2.5 | Slice Preparation

Hippocampal slices (270 um thick) were prepared from Gpr37117/~
mice and Gpr37I11*/" littermates at postnatal days 14-16 (P14-P16).
Mice were killed by cervical dislocation, followed by decapitation. The
head was immersed in ice-cold slicing solution containing 87 mM NaCl,
25 mM NaHCO3;, 25 mM glucose, 75 mM sucrose, 2.5 mM KCl,
1.25 mM NaH,PQy4, 0.5 mM CaCl,, 7 mM MgCl,, 1 mM kynurenic acid
(to block glutamate receptors during slicing), pH 7.2-7.4 (gassed with
95% 0,/5% CO,), osmolarity 330-340 mOsm L. Hippocampal dis-
section employed the “magic cut” (Bischofberger, Engel, Li, Geiger, &
Jonas, 2006) to make slices (on a Vibratome), which were transferred
to a heated chamber at 30°C for 40 minutes, then removed and

allowed to reach 20-25°C for 20 min prior to recording.
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2.6 | Whole-cell patch-clamp recording

Neurons and astrocytes were selected visually for patch-clamping, and
their identities were confirmed from their morphology after diffusion
of Alexa Fluor 488 into neurons, or Alexa Fluor 488/594 into astro-
cytes. When voltage steps were applied, observing a large voltage-
gated sodium current, or a passive current-voltage relation of low
resistance, confirmed that cells were pyramidal neurons, or astrocytes,
respectively. Data for the drug responses presented were sampled at
1 kHz and filtered at <500 Hz.

2.7 | Extracellular solutions

When recording, slices were superfused with artificial cerebrospinal
fluid (aCSF, via a gravity-driven system using 60 mL syringes connected
to tubes which merged into a single outlet) containing 140 mM NaCl,
10 mM HEPES, 10 mM glucose, 2.5 mM KCI, 2 mM CaCl,, 1 mM
NaH,PO4, 1 mM MgCl,, pH 7.4 set with NaOH, osmolarity 300
mOsm L~ (gassed with 100% O,). The flow rate was 3-4 mL min~ 2.
Electrophysiology experiments were at 20-25°C.

For glutamate receptor currents from CA1 pyramidal neurons,
voltage-clamp recordings were made at —29 mV (including the —14
mV junction potential for internal solution containing K-gluconate), in
order to remove Mg?"-block of NMDARs. Voltage-clamp recordings
from CA1 neurons were performed in tetrodotoxin (TTX, 400 nM, Toc-
ris) to block action potentials and picrotoxin (100 uM, Sigma) to block
GABA, receptors. For Figure 6a-c, kainate (3 M, Sigma) was added to
activate AMPA receptors (AMPARs) and kainate receptors (KARs), in
D-AP5 (50 pM, Tocris) to block NMDARs. Experiments measuring
responses to N-methyl-D-aspartate (NMDA, 5 uM, Tocris), to activate
NMDARs, were in the presence (Figure 6a-c) or absence (Figures 6d-f
and 7) of NBQX (10 uM, Sigma) to block AMPA/KARs. In some experi-
ments prosaptide TX 14(a) (10 uM, a GPR37L1 agonist, AnaSpec), D-
serine (50 pM, an NMDAR co-agonist, Tocris) or TNF-a (10 ng mL™%, R
& D) were used.

To record the glutamate uptake current (Figure 5), astrocytes were
voltage-clamped near their resting potential (~-90 mV). Pharmacologi-
cal blockers were present which increased the cell's membrane resist-
ance and reduced currents that might be evoked by changes of [K*],
occurring in response to a rise of extracellular glutamate concentration:
TTX (150 nM, Tocris), the GABA4 receptor blocker bicuculline (10 uM,
Sigma), NMDAR blockers (D-AP5, 50 uM, Tocris; (+)MK-801, 10 uM,
Sigma; 5,7-dichlorokynurenate, 10 upM, Sigma), the AMPAR/KAR
blocker (disodium NBQX, 10 uM, Sigma) and the inwardly-rectifying
potassium channel blocker (BaCl,, 200 uM, Sigma). p-aspartate (200
uM, Sigma) was added to evoke a glutamate transporter current in
astrocytes (Gundersen, Shupliakov, Brodin, Ottersen, & Storm-
Mathisen, 1995). A non-transported glial glutamate transporter blocker
TFB-TBOA (10 uM, Tocris) was used to block this.

2.8 | Intracellular solutions

Neurons were patch-clamped using 130 mM Cs-gluconate, 4 mM
NaCl, 10 mM HEPES, 0.1 mM CaCl,, 1 mM EGTA, 2 mM MgATP and
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0.5 mM Na,GTP (pH 7.1-7.2 adjusted with CsOH, osmolarity ~285
mOsm L™%). Alexa Fluor-488 (40 uM) was added on the day of the
experiment. For astrocytes, the electrode solution was 130 mM K-
gluconate, 4 mM NaCl, 10 mM HEPES, 1 mM CaCl,, 10 mM EGTA,
2 mM MgATP, 0.5 mM Na,GTP (pH 7.1-7.2 adjusted with KOH,
osmolarity ~285 mOsm L™ 1). Alexa Fluor-488 or —594 (20 uM) was
added on the day of the experiment.

2.9 | Field excitatory postsynaptic current recordings

Thick-walled glass electrodes, filled with HEPES-based aCSF, were con-
nected to a stimulator, and stimuli (in 20 V steps from 0-100 V) were
applied with the electrode tip close to the CA3 pyramidal axon initial
segments in hippocampal slices, to evoke field excitatory postsynaptic
currents (fEPSCs, recorded in voltage-clamp mode) that were recorded
using an aCSF-filled pipette near the apical dendrites of the CA1l

pyramidal neurons.

2.10 | Image analysis

Sections were examined in a LEICA SPE confocal microscope and
micrographs were analyzed with ImageJ software (NIH), unless other-

wise stated.

2.11 | RNA purification and quantitative real-time
PCR

Total RNA was extracted from hippocampus with Trizol (Invitrogen),
treated with RQ1 DNase (Promega) and complementary DNA was
synthesized from 0.5 pg RNA with the High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems). Target cDNA levels were deter-
mined by RT-PCR with the RealPlex unit (Eppendorf) using SYBR
Green (Takyon No Rox SYBR MasterMix blue dTTP). Amplification
assays were performed in 20 pL reaction mixtures containing Takyon
No Rox SYBR MasterMix, 200 nM forward and reverse primers and
cDNA. PCR was conducted over 35 cycles of 95°C for 15 s, 60°C for
60 s, preceded by an initial denaturation cycle at 95°C for 10 min. Actin
cDNA levels were used to normalize the amount of cDNA. Quantifica-
tion employed the comparative A-ACt method (Pfaffl, 2001). Forward
and reverse PCR primers were, respectively:

(Actin) 5'—=TCCACACCCGCCACCAG and 5 —TGACCCATTCCCACCATCACA,;
(Glast) 5'—~CCAAACACAAAGGAGGGCTC and 5'—ACAGGATCGTTTGCCACCTA;

(GLT1) 5'~TTGCTGGCATATTCCAAGCC and 5 —TTAATGGTTGCTCCGACTGG.

2.12 | Western Blots

Hippocampi were lysed in RIPA buffer with 1X complete protease
inhibitors (cOmplete, EDTA-free Protease Inhibitor Cocktail, Roche).
Protein levels were assessed with a Bradford assay with bovine serum
albumin as the standard.

About 20 pg of denatured proteins in Laemmli buffer were sepa-

rated by 8% SDS-polyacrylamide gel electrophoresis and blotted onto

PVDF membranes (GE Healthcare). Nonspecific binding was blocked
with PBS-0.1% Tween-20 (PBST) with 3% (w/v) non-fat dried milk
(Sigma), for 1 hr at 20-25°C. Membranes were incubated overnight at
4°C in PBST with 3% milk and primary antibodies: anti-GLT1 (1/500,
Millipore AB1783), mouse anti-p-Actin (1:5000, Sigma A1978). Mem-
branes were then incubated at 20-25°C for 1 hr in PBST/3% milk with
POD-conjugated recombinant protein-A (Invitrogen). Protein bands
were detected by enhanced chemiluminescence (GE Healthcare) and
quantified by densitometry with Imagel. Protein levels were normal-

ized to those of -actin controls.

2.13 | Chemical Ischemia

Hippocampal slices (270 pm) from P14-P16 Gpr37I11™/* or Gpr37I117/~
littermates were allowed to recover for 40 min before being incubated
for 30 min at 37°C in (1) control solution containing 124 mM NaCl,
26 mM NaHCO3, 10 mM glucose, 2.5 mM KCl, 2 mM CaCl,, 1 mM
NaH,PO,4, 1 mM MgCl,, pH 7.2-7.4, gassed with 95% O,/5% CO,, or
(2) ischemic solution with the glucose replaced by 7 mM sucrose,
gassed with 95% N,/5% CO,, and with 2 mM iodoacetate and 25 uM
antimycin added to block glycolysis and oxidative phosphorylation,
respectively. Propidium iodide (PI, 7.5 pM) was added to label dead
cells by binding to DNA/RNA. Slices were then fixed for 1 hr in 4%
PFA and immunohistochemistry for NEUN and GFAP was performed.
Two slices per condition were analyzed. Four z-stacks were generated
per slice and Pl-labelled cells were counted in the stratum radiatum
and pyramidal cell layer, with experimenters blind to the mouse geno-
type. Images were 275 um square and the z-stack depth was 25 um (z-
step = 0.5 um). Gain and offset settings were identical for all slices in

each experiment.

2.14 | Middle cerebral artery occlusion

Brains from mice that had experienced middle cerebral artery occlusion
(MCAO) were kindly donated by Kaylene Young. The ISH signal for
Gpr3711 was quantified using ImageJ (Figure 8).

2.15 | Mouse behaviour

Mice were handled daily for 1 week to habituate them prior to behav-
ioural tests. They were left in their home cages in the behaviour room
for 30 min before initiating tests. Trials were recorded using a top-view
video camera and white noise (50 dB) was played during the tests.

2.16 | Open-field test

Mice were allowed to explore a 30 cm? arena for 30 min and tracked
with ActualTrack software. Total distance travelled and time spent in
the centre was calculated.

2.17 | Novel-object recognition

Mice were placed in the arena for 5 min before being familiarized for
10 min with two identical objects. After a 10-min delay, mice were
tested for 10 min by placing them in the arena with one of the original
objects replaced by a novel object (NOR). 24 hr later mice were tested
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again for 10 min with one familiar and one new object (NOR + 24).
The times spent inspecting the novel and familiar objects were
assessed with the ActualTrack software. The discrimination index (DI)
was calculated as: DI = {(time spent with novel object) minus (time
spent with familiar object)}/(total time spent with both objects).

2.18 | Rotarod

About 2-3 months or 6-month-old mice were familiarized with the
rotarod for three trials at a constant speed of 4 rpm. They were then
tested for 3 days, with three trials/day, at an accelerating speed from 4
to 40 rpm for up to 5 min. The latency to fall was recorded.

2.19 | Statistics

Statistical significance was determined with GraphPad Prism (GraphPad
Software, CA, USA) and OriginPro software. Data normality was
assessed using Kolmogorov-Smirnov tests. Data are presented as
mean = SEM. Data were corrected for multiple comparisons using a
procedure equivalent to Holm-Bonferroni (for N comparisons, the most
significant p value is multiplied by N, the 2nd most significant by N-1,
the 3rd most significant by N-2, etc.; corrected p values are regarded
as significant if they are <0.05).

3 | RESULTS

3.1 | Gpr37I1 is expressed in astrocytes and some
oligodendrocyte precursors

We combined in situ hybridization (ISH) with immunolabelling to deter-
mine which cells express Gpr37/1 in different brain areas. Gpr37I1 is
widely expressed in the hippocampus (Figure 1a,c,e), cerebral cortex
(Figure 1b,d,f) and corpus callosum (Supporting Information Figure 1).
From our ISH and the Allen Brain Atlas, expression of Gpr37I1 in the
hippocampus is similar in CA1, CA3 and dentate gyrus (http://mouse.
brain-map.org/gene/show/82624). Double ISH detected Gpr37I1
mRNA in Fgfr3-positive astrocytes in both grey and white matter (Fig-
ure 1ab and Supporting Information Figure 1a). Gpr37I1 is also
expressed throughout the brain in OL-lineage cells immunolabelled for
OLIG2 (Figure 1c,d, Supporting Information Figure 1b) and in OPs
immunolabelled for PDGFRA (Figure 1e,f, Supporting Information Fig-
ure 1c). Approximately 95, 91, and 82% of Fgfr3" astrocytes were
Gpr3711" in the cortex, hippocampus and corpus callosum, respec-
tively, while ~23, ~30, and ~25% of PDGFRA™ cells in these regions
coexpressed Gpr3711. In the cortex, hippocampus and corpus callosum
the proportions of Gpr37/1* cells that co-expressed Fgfr3 were ~68,
~69, and ~68%, respectively, while the proportions of Gpr37I1" cells
that co-expressed PDGFRA were ~32, ~32, and ~31%. Thus, all
Gpr3711-expressing cells appear to be either Fgfr3" astrocytes or
PDGFRA* OPs. Most or all (>90%) grey matter astrocytes and a sub-
stantial fraction of white matter astrocytes (>80%) express Gpr37l1, as
well as a minority (~25%) of OPs in grey and white matter.

To confirm these results, we used Gpr37I1-LacZ heterozygous mice
in which a LacZ cassette was inserted into the first exon of the Gpr37/1
gene (inactivating the protein

product). Immunolabelling for
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FIGURE 1 Gpr37I1 is expressed in astrocytes and OPs. Cells
expressing Gpr3711 transcripts were distributed throughout all
regions of the adult forebrain including hippocampus (a, c, e), and
cortex (b, d, f). Confocal fluorescent double ISH showed expression
of Gpr37I1 in Fgfr3-positive astrocytes in hippocampus (a) and
cortex (b). ISH for Gpr37I1 followed by immunohistochemistry
demonstrated that Gpr37I1 expression co-localized with OLIG2 (c,
d) and PDGFRA (e, f). White arrows: double-positive cells; yellow
arrows: single OLIG2- or PDGFRA-positive cells. DG: dentate
gyrus, MC: motor cortex. Scale: 50 pm

B-galactosidase confirmed that Gpr37/1-LacZ was expressed in
PDGFRA-positive OPs in the cortex (Supporting Information Figure 2a)
but not in CC1" mature OLs, NEUN" neurons or IBA1" microglia
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FIGURE 2 Expression of Gpr37I1 is developmentally-regulated.
Expression of Gpr37I1 at different postnatal stages (P1, P8, adult)
using ISH followed by immunolabelling. At P1, Gpr3711 was not
expressed in the brain (a-c). Gpr37I1 expression in GFAP-labelled
astrocytes in the brain started at ~P8 in the hippocampus, cortex
and corpus callosum (d-f). In the adult (g-i), Gpr37I1 expression in
astrocytes was maintained. (j) Number of cells expressing Gpr37I11
in the cortex and the hippocampus of P1, P8 and adult mice. Scale
bars in (a-i): 50 um
(Supporting Information Figure 2b-d). In addition, Gpr37I1-LacZ was
expressed in the cerebellum in Bergman glia and in OL-lineage cells iden-
tified by SOX10 immunolabelling (Supporting Information Figure 2e,f).
Expression of Gpr3711 was developmentally regulated. At postnatal
day 1 (P1), Gpr37I1 mRNA was not detectable in any brain area exam-
ined (Figure 2a-c) but at P8 Gpr37I1 was strongly expressed in both
astrocytes (Figure 2d-f) and OPs (not shown). At P15 (not shown) and
during adulthood, Gpr37I1 expression in astrocytes (Figure 2g-i) and
OPs (not shown) remained at high levels. Thus, GPR37L1 might have a
functional role from the period of synaptogenesis and the onset of
myelination through to adulthood (Figure 2j).

3.2 | Gpr37I1 and Gpr37 are expressed in different
cells

GPR37L1 and its close relative GPR37 share 48% amino acid identity
in human (Valdenaire et al., 1998). ISH for Gpr37 mRNA showed that
Gpr37 was expressed in many cells in subcortical structures such as the

hypothalamus and thalamus as well as in the corpus callosum, and in

smaller numbers of cells in the cortex and hippocampus (Figure 3).
Gpr37 was mostly in OLIG2" oligodendrocyte (OL)-lineage cells (Figure
3a-c) but not in PDGFRA™ cells (Figure 3d-f), suggesting that mature
OLs but not OPs express Gpr37. We observed no expression of Gpr37
in GFAP* astrocytes (not shown). Occasionally, Gpr37 expression was
seen in some NEUN™ neurons but not in IBA1™ microglia (not shown).

In contrast to Gpr37, Gpr3711 is not expressed in CC1" mature OLs,
judging by immunolabelling of Gpr37I1-LacZ heterozygous mice for
B-galactosidase (Figure 3g-i; Supporting Information Figure 2b). Thus,
Gpr3711 and Gpr37 are expressed in complementary cell types, Gpr3711
being highly expressed in astrocytes and OPs whereas Gpr37 is
expressed in mature OLs and some neurons. Similarly, double ISH for
both Gpr3711 and Gpr37 revealed that Gpr37I1 and Gpr37 were
expressed in non-overlapping cell populations in the hippocampus (Figure
3j), cortex (Figure 3k) and corpus callosum (Figure 3l). In the following, we

focus on the functional significance of Gpr37I1 expression in astrocytes.

3.3 | Gpr37I1 KO has little effect on cell or synapse
number, or motor function

We assessed the phenotypic consequences of Gpr37I1 knockout (KO).
Deletion of Gpr37I1 did not trigger gliosis (assessed by screening for
increased expression of GFAP in astrocytes or IBA1 in microglia) in 1-
month-old mice (Supporting Information Figure 3a). Although Gpr37/1
is expressed in OPs, its deletion did not affect Mbp expression (Sup-
porting Information Figure 3b) or the number of PDGFRA* OPs in the
corpus callosum (Supporting Information Figure 3c, p = 0.38). Further-
more, Gpr37 expression was not changed in Gpr37/1~/~ mice (Support-
ing Information Figure 7), implying no compensation for the loss of
Gpr3711 by upregulation of Gpr37.

Previous reports claimed that knocking-out Gpr37I1 resulted in
precocious cerebellar development and enhanced motor skills (Maraz-
ziti et al., 2013). However, surprisingly, we found that locomotor activ-
ity and exploratory behaviour of our Gpr3711 knockouts were similar to
wild-type mice in the open-field test (3-month old mice, t test for total
distance travelled and time spent in the centre, p=0.96 and 047,
respectively), novel object recognition test (3-month-old mice, two-
way ANOVA, p =0.29) and rotarod (3- and 6-month-old mice; two-
way ANOVA, p = 0.77; Supporting Information Figure 3d-f). We there-
fore searched for more subtle functions of Gpr37/1 in physiology or
pathology.

Astrocytes regulate neuronal and synaptic development, and neu-
ronal activity (Allen, 2014). As expression of Gpr37I1 during develop-
ment (Figure 2) correlates with the time of synaptogenesis (Crain,
Cotman, Taylor, & Lynch, 1973), we assessed whether Gpr37/1 knock-
out affected hippocampal synapse formation. We found no difference
between Gpr3711~/~ and Gpr37/1"/* mice in the number of excitatory
synapses identified with PSD95 and vGLUT2 antibodies (PSD95/
vGLUT2 t test, p = 0.37, Supporting Information Figure 4a-d), or in the
number of inhibitory synapses identified with vGAT antibodies (t test,
p = 0.48, Supporting Information Figure 4e,f). There was also no differ-
ence in astrocyte morphology (from GFAP staining), the number of

GFAP-expressing astrocytes (p = 0.65), the area of each astrocyte in
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corpus callosum

FIGURE 3 Gpr37I1 and Gpr37 are expressed in mutually exclusive cell populations. Cells expressing Gpr37 transcripts were mostly found
in subcortical areas (hypothalamus and thalamus) and in corpus callosum; fewer Gpr37™" cells were present in cortex and hippocampus.
Fluorescent ISH revealed expression of Gpr37 in OLIG2™ OL lineage cells (a-c), but not in OPs expressing PDGFRA (d-f). Conversely,
immunolabelling of Gpr37I/1-LacZ heterozygous mice for 3-galactosidase showed that Gpr37I1 is not expressed in CC1-positive mature OLs
(g-i). Fluorescent double-ISH demonstrates that Gpr3711 and Gpr37 are expressed in different cells in hippocampus (j), cortex (k) and corpus
callosum (L). Dotted lines: boundary between cortical grey matter and corpus callosum (cc). Scale: 50 um

maximum intensity projections (p = 0.69), or the mean GFAP intensity
(p = 0.29) (Supporting Information Figure 5a-e).

3.4 | Gpr37I1 KO does not alter the input resistance
of astrocytes or neurons or neuronal excitability

GPR37L1 can protect astrocytes against oxidative stress (Meyer et al.,
2013), and we show below that it also protects neurons in ischemia.
This suggests that the membrane properties or response to glutamate
of neurons and astrocytes might be modulated by GPR37L1.
Hippocampal astrocytes expressing or lacking Gpr3711 expression,
as defined by fluorescent detection of GFP in Gpr37I1-GFP mice, did not
differ in input resistance (Figure 4a, p = 0.9) or resting potential (Figure
4b, p=0.9). Similarly, hippocampal astrocytes in Gpr37I1*/* and
Gpr37117'~ mice exhibited no difference in input resistance (Figure 4c,

p = 0.7) or resting potential (Figure 4b, p = 0.2). CA3 and CA1 pyramidal
neurons in Gpr3711*/* and Gpr3711~'~ slices also had similar membrane
resistance (Figure 4e,g, p = 0.39 and p = 0.99, respectively) and the rest-
ing potential of CA3 neurons was also unaffected by Gpr37I1 knock-out
(Figure 4f, p = 0.93) (resting potentials of CA1 cells were not measured
as they were patch-clamped with a Cs*-containing internal solution), as
was the capacitance of CA1 neurons (Figure 4h, p = 0.37).

We assessed the excitability of CA3 pyramidal neurons using
whole-cell current-clamp recordings in slices from Gpr3711~~ and
Gpr37I"" mice. We found no difference between the Gpr37/1~/~ and
Gpr371™" cells for the latency to the first action potential evoked by
depolarizing current injected at the soma (one-way ANOVA, p =0.97,
Figure 4i), nor was there a difference in the firing probability as a func-
tion of injected current (Kolmogorov-Smirnov test p = 0.28, Figure 4j).
Furthermore, when recording stimulation-evoked field excitatory
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FIGURE 4 Resting electrical properties of astrocytes and neurons are not affected by Gpr37I1 expression. (a, b) Astrocytes expressing or
lacking GFP in hippocampal slices from the Gfp37/1-GFP mouse have similar (a) membrane resistance, and (b) resting potential (number of
cells on bars). Astrocytes in hippocampal slices from wild type and Gpr37I1 knock-out mice have similar (c) membrane resistance and (d)
resting potential. (e, f) CA3 pyramidal cells in hippocampal slices from wild type and Gpr37I/1 knock-out mice have similar (€) membrane
resistance and (f) resting potential. (g, h) CA1 pyramidal cells in hippocampal slices from wild type and Gpr37/1 knock-out mice have similar
(g) membrane resistance and (h) capacitance (used to normalise drug-evoked currents in Figure 5; resting potential was not studied as the
internal solution contained Cs™). (i, j) Excitability of CA3 neurons in slices from wild type and Gpr37I1 knock-out mice. (i) Latency to first
action potential as a function of current injected into CA3 pyramidal neurons (Gpr37I1*/* n=15, Gpr3711~/~ n = 15). (j) Percentage of
responses in (i) that showed action potentials as a function of injected current. (k) Field EPSCs evoked in area CA1 by applying stimuli to
the Schaffer collaterals of CA3 axons, in 20 V steps from O to 100 V. Amplitudes of field EPSCs were normalized to the maximal response

(at 100 V) for each slice (Gpr3711*/* n=8, Gpr37117/~ n=19)

postsynaptic currents (FEPSCs) generated in CA1 in response to Schaffer
collateral stimulation, the dependence of fEPSC amplitude on stimulus
magnitude was similar in Gpr37/1~/~ and Gpr3711*'™ slices (Figure 4k,
Kolmogorov-Smirnov test p = 0.27, n = 8 for Gpr3711*/* and n=9 for
Gpr371177). Thus, there is no difference in the excitability of CA3 neu-

rons or their axons in Gpr3711*/* and Gpr3711~/~ hippocampal slices.

3.5 | Prosaptide-evoked GPR37L1 signalling inhibits
astrocyte glutamate uptake

Any alteration by GPR37L1 of the clearance of glutamate by glial gluta-
mate transporters could change tonic excitation and synaptic currents

mediated by glutamate receptors. A change of glutamate transport rate
might also alter the extracellular glutamate concentration reached in
ischemia when transporters reverse and release glutamate (Rossi, Osh-
ima, & Attwell, 2000). Such a change of glutamate release should alter
NMDA receptor (NMDAR)-mediated cell death in ischemia (Brassai,
Suvanjeiev, Ban, & Lakatos, 2015; Vornov and Coyle, 1991) and thus
contribute to the neuroprotective effect in ischemia of GPR37L1 and
prosaptide [see below and Morita et al. (2001)].

To test this hypothesis, we first compared the expression levels of
the glutamate transporters, GLT-1 and GLAST, expressed in astrocytes,
using hippocampal extracts from Gpr3711*/* and Gpr37/17/~ mice.
Quantitative PCR showed that Glast and GIt1 mRNA levels were similar
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in Gpr3711*/" and Gpr3711~~ mice at P14 and P40 (Figure 5a, two-
way ANOVA, Glt1 p=0.56, Glast p = 0.36). Similarly, GLT-1 protein
expression was similar in Gpr37/11"/" and Gpr37/1~/~ mice (Figure 5b, t
test p = 0.7). We then compared the magnitude of the glutamate trans-
porter current in Gpr37/11"™/* and Gpr3711~~ hippocampal astrocytes.
Astrocytes in the stratum radiatum were whole-cell voltage-clamped
(near their resting potential) and responses to p-aspartate (200 uM), a
substrate for glutamate transporters (Gundersen et al., 1995), were
recorded in the presence and absence of the glutamate transporter
blocker TFB-TBOA (10 uM, Figure 5c). Blockers of NMDARs, AMPARs,
GABARs, voltage-gated Na* channels and inwardly rectifying potas-
sium channels were also present throughout the experiment (see Mate-
rials and Methods).

In the absence of prosaptide, the glutamate uptake current was
similar in Gpr37/17/~ and Gpr37I1*/* astrocytes (Figure 5d, p = 0.97).
TFB-TBOA (10 uM), which blocks both GLT-1 and GLAST transporters
(Shimamoto et al., 2004), blocked the p-aspartate evoked current in
both Gpr37I11™/* and Gpr37/17~ astrocytes (Figure 5e, p = 0.4), con-
firming that the current is generated by glutamate transporters. The
lack of a difference in glutamate transporter current with GPR37L1
knocked out could reflect GPR37L1 not being activated under physio-
logical conditions, since it is known that the expression and release of
prosaposin are up-regulated following ischemia (Costain et al., 2010;
Hiraiwa et al., 2003). We therefore investigated the effect of prosap-
tide on the glutamate transporter current evoked by p-aspartate (200
uM), to test whether it modulates the uptake current in the presence
or absence of GPR37L1.

Adding prosaptide (10 uM), at the peak of the p-aspartate-evoked
current, significantly reduced the uptake current in Gpr37/1*/* astro-
cytes but not in Gpr3711~/~ astrocytes (Figure 5f.g, inhibition 31% =
3% for Gpr37111/" and —2% = 6% for Gpr37117', significantly differ-
ent, p=3 x 10 °). Importantly, prosaptide alone (without D-aspartate)
failed to generate any current in either Gpr3711"'* or Gpr37117~/~ astro-
cytes (Figure 5h), showing that the outward prosaptide-evoked current
in the presence of D-aspartate reflects suppression of the inward
uptake current and not an effect on the baseline membrane current.
The mean current generated by prosaptide alone was —1 * 2 pA for
three Gpr3711*/" astrocytes and 0.2 + 1.0 for four Gpr37I1~/~ astro-
cytes (not significantly different from zero, p=0.5 and 0.9, respec-
tively). The inhibition of glutamate transporters by prosaptide in
Gpr3711"/* astrocytes is presumably mediated by GPR37L1 receptors
in the astrocytes themselves and cannot reflect prosaptide acting on
the related GPR37 receptor because it had no effect in Gpr37/17/"
slices.

3.6 | GPR37L1 signalling decreases neuronal
responses to prolonged NMDA application

Although Gpr3711 knock-out did not affect the intrinsic excitability of
neurons (Figure 4), it could in principle affect synaptic transmission
between neurons. Although Gpr3711 is expressed only in glia, gliotrans-
mitters released from astrocytes, such as D-serine and TNFa, have

been shown to modulate glutamate-gated currents in neurons
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FIGURE 5 Assessment of glutamate uptake in astrocytes. (a)
Expression of mRNA for the glutamate transporters Glast and Glt-1
assessed by RT-PCR in hippocampus from P14 and P30 Gpr37I1*/
* and Gpr37I17~/~ mice. Data are mean = s.e.m from four experi-
ments. (B) Expression of GLT-1 analyzed by Western blot in hippo-
campus from P14 Gpr37/1*/" and Gpr3711~/~ mice (quantified
relative to actin). Data are mean = s.e.m of four experiments. (c-e)
Glutamate uptake current in astrocytes (number of cells on bars).
(c) Example of a p-aspartate (200 uM)-evoked current in an astro-
cyte at =100 mV, and its inhibition by TFB-TBOA (10 uM). (d) Cur-
rent magnitude. (e) Percentage inhibition of the current by TFB-
TBOA. (f-h) Activation of GPR37L1 inhibits glutamate transport in
astrocytes. (f) The p-aspartate (200 uM)-evoked inward current is
partly inhibited by prosaptide (10 uM, see the difference between
the arrows marked a and b in the Gpr3711"/* cell but not in the
Gpr3711‘/' cell). (g) Quantification of the inhibition of the p-aspar-
tate evoked current by prosaptide. (h) Prosaptide does not evoke a
current in the absence of p-aspartate (in the WT).

(Henneberger, Papouin, Oliet, & Rusakov, 2010; Shigetomi, Jackson-
Weaver, Huckstepp, O'Dell, & Khakh, 2013; Stellwagen and Malenka,
2006). We recorded responses to kainate (3 pM, to activate AMPA/KA
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receptors, in the presence of the NMDAR blocker D-AP5) or to NMDA
(5 uM, in the presence of the AMPA/KA receptor blocker NBQX) in
CA1 pyramidal neurons voltage-clamped at —30 mV (to promote
Mg?* unbinding from NMDAR channels). No difference was seen
between the responses of neurons in Gpr3711~~ or Gpr37/11%/" slices
to a single brief application of KA or NMDA (Figure 6éa,b, p=0.5 for
KA and p = 0.6 for NMDA).

Prolonged application of NMDA to Gpr37I17/~ or Gpr3711"/" slices
evoked a slowly increasing inward current in CA1 pyramidal neurons,
suggesting a sensitization of the NMDA response with time (Figure 6c).
Indeed, repeated brief applications of 5 UM NMDA (3 times for 3
minutes at 4 minute intervals) resulted in a progressive increase in the
current evoked (Figure 6d). In neurons from both Gpr3711*/" and
Gpr37117' slices, the response to the second application of NMDA was
larger than the first (mean ratio 1.5 + 0.1, one sample t test, significantly
>1, p=0.025 for Gpr37ll+/Jr cells; mean ratio 1.3 = 0.1, p = 0.007, for
Gpr37117'~ cells) (Figure 6e). This potentiation was not significantly dif-
ferent in Gpr3711*/" and Gpr37117/~ slices (unpaired t test p = 0.15).

When prosaptide (10 uM) was bath-applied prior to and during the
second application of 5 uM NMDA, the potentiation of the NMDA cur-
rent was blocked in neurons in Gpr3711*/*
ratio 0.79 + 0.13, not significantly different from 1, p = 0.2), without
affecting the potentiation of the NMDA response in neurons in
Gpr37117" slices (mean ratio 1.48 = 0.12, significantly different from 1,
p =0.016, and not significantly different in the presence or absence of
prosaptide, p = 0.15). The potentiation in Gpr37/17~ slices was signifi-
cantly greater than in Gpr37I1*/* slices, p = 0.005). Thus, GPR37L1-
mediated signalling in astrocytes decreases the neuronal NMDAR
response during prolonged activation of NMDARs. This could provide
a neuroprotective mechanism when both glutamate and prosaposin are
released during ischemia.

3.7 | How does astrocyte GPR37L1 regulate neuronal
NMDAR responses?

Because GPR37L1 is present in astrocytes (and OPs, although these
receptors may be less well positioned to regulate NMDAR responses),
while the NMDAR responses recorded are from neurons, a signal must
pass from astrocytes to neurons to alter the NMDAR response when
GPR37L1 is activated by prosaptide. We tested whether the gliotrans-
mitters p-serine or TNF-a mediate this effect.

Activation of NMDARs requires the binding of glutamate and a
co-agonist, either glycine or p-serine (Johnson and Ascher, 1987,
Papouin et al., 2012; Zhang et al., 2014). Increasing the concentration
of glycine or D-serine potentiates the NMDAR-evoked response (Hen-
neberger et al.,, 2010; Johnson and Ascher, 1987; Kang et al., 2013;
Rosenberg et al., 2013), because the glycine/D-serine binding site is
not saturated in cortical brain slices (Fossat et al., 2012), indicating that
changes of the NMDA response can occur if release of p-serine (or gly-
cine) is altered. Moreover, astrocyte-derived p-serine (Henneberger
et al., 2010; Kang et al., 2013; Shigetomi et al., 2013) has been shown
to co-activate postsynaptic neuronal NMDARs. We therefore consid-
ered the possibility that the GPR37L1-mediated inhibition of repeated
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FIGURE 6 Suppression of potentiation of repeated NMDAR
responses in CA1 pyramidal cells by GPR37L1. (a, b) Current
responses to brief application of (a) kainate (3 uM, to activate
kainate and AMPA receptors) and (b) NMDA (5 uM) at —30 mV
were similar in Gpr37I1*/" and Gpr3711~/~ slices. (c) Prolonged
NMDA application evokes a slowly increasing current. (d) Repeated
(at 4-min intervals) application of NMDA (5 pM) also evoked a
gradual increase in response magnitude. (e) Quantification of the
increase in (d) in Gpr37I1*/" and Gpr37/17/~ cells. In both
Gpr3711*"/" and Gpr3711~'~ slices, the response to the second
application of NMDA was larger than the first. p values above bars
in (e) and (g) compare with a ratio of 1. (f) As in (d) but with pro-
saptide (10 uM) present for the second application. (g) Prosaptide
inhibited potentiation of the NMDA current in Gpr37I1*/" (ratio
not significantly different from 1) without affecting the potentia-
tion in the Gpr37117~/~ [ratio ~1.5, and not significantly different
from that in (e), p = 0.15]. Numbers of cells are on bars. All record-
ings were in the presence of TTX (150 nM) and picrotoxin (100
uM); in (a) kainate was applied in the presence of D-AP5 (5 uM),
while in (a) and (c) NMDA was applied with NBQX (10 uM) also
present

NMDA responses (Figure 6e,f) might reflect a reduction in p-serine
release from astrocytes. Before testing this idea, we first confirmed
that p-serine could potentiate the NMDA response of CA1 neurons.
Indeed, bath application of p-serine (50 uM, in the presence of 5 UM
NMDA), when applied at the peak of the current evoked by NMDA,
further enhanced the current in CA1 pyramidal neurons of both
Gpr37/11™* and Gpr37117~ slices (current increased 4.3 +0.9 fold,
p=0.04 in Gpr3711™'* and 2.6 =0.2 fold, p = 0.004 in Gpr37117";
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FIGURE 7 The gliotransmitters p-serine and TNF-a do not medi-
ate the potentiation of repeated NMDAR responses by GPR37L1.
(a) p-serine potentiated the NMDA (5 uM)-evoked response (num-
bers of cells on bars; p values above bars compare with a ratio of
1). (b) Bath application of 50 uM bp-serine did not prevent potentia-
tion of the current in response to the second application of
NMDA. (c) As for (b), but with TNF-a (10 ng mL™?) present
throughout. TNF-a did not prevent potentiation of the current in
response to the second NMDA application

Figure 7a). This potentiation was not significantly different in the two
genotypes (p = 0.13).

If increased release of p-serine from astrocytes underlies the
potentiation of the NMDA-evoked response, bath perfusion of a
saturating concentration of p-serine throughout the experiment should
prevent this effect. However, the presence of bp-serine (50 uM)
throughout the experiment (Figure 7b) did not affect the potentiation
of the second response to NMDA relative to the first response for
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neurons in either Gpr37/11"/* or Gpr37117/~ slices (mean ratio 1.3 = 0.1
for Gpr3711*/", which is significantly different from 1, p = 0.037, and
mean ratio 1.2 +0.1 for Gpr37I17/~, which is significantly different
from 1, one sample t test p = 0.037). This potentiation ratio was not
different in the two genotypes (unpaired t test p = 0.4).

Alternatively, the GPR37L1-mediated inhibition of NMDA-evoked
responses might involve a change in the release of tumour necrosis fac-
tor alpha (TNF-a) from astrocytes, since TNF-« also decreases (Glazner
and Mattson 2000) or increases (Jara, Singh, Floden, & Combs, 2007;
Marchetti, Klein, Schlett, Pfizenmaier, & Eisel, 2004) neuronal NMDA
responses and modulates NMDAR-mediated excitotoxicity (Jara et al.,
2007; Marchetti et al., 2004). Astrocytes are a source of TNF-« (Stell-
wagen and Malenka 2006). However, bath perfusion of TNF-a (10 ng/
ml) throughout the experiment (Figure 7¢) did not alter the potentiation

1" or

of the response to NMDA for neurons in either Gpr37I
Gpr37117~ slices (mean ratio = 1.6 + 0.2 for Gpr37I11*/*, significantly
different from 1, p = 0.048, and mean ratio 1.9 = 0.1 for Gpr37l1'/', sig-
nificantly different from 1, p = 0.002). This potentiation response was
not different between the two genotypes (p = 0.16).

These results suggest that prosaposin-mediated signalling via
GPR37L1 in astrocytes prevents the potentiation of neuronal NMDAR-
mediated responses seen during repeated or prolonged activation of
these receptors. This could occur by prosaposin suppressing the release
of a molecule from astrocytes that normally generates this potentiation
(although the obvious candidates, p-serine and TNF-«, have been ruled
out) or by prosaposin evoking the release of a molecule from astro-
cytes that suppresses the potentiation. To ask whether this suppres-
sion of NMDAR potentiation could confer neuroprotection during
ischemia, by reducing NMDAR-mediated neurotoxicity (Rothman and
Olney, 1995), we carried out in vitro ischemia experiments.

3.8 | Gpr37I1 expression and activation are
neuroprotective in ischemia

We examined the expression of Gpr37/1 in GFAP-positive astrocytes
and in OLIG2-positive OL-lineage cells in the brain 7 days after 30
minutes of MCAO, by combining ISH with immunohistochemistry.
Gpr3711 expression was significantly higher in cells immediately adja-
cent to the lesion area (Figure 8a), compared to the contralateral hemi-
sphere, and decreased with distance from the lesion (Figure 8b, n = 6,
one-way ANOVA, p = 0.029 for the lesioned hemisphere, p = 0.9998
for the contralateral hemisphere). The cells that increased their expres-
sion of Gpr37I1 were mainly GFAP-positive astrocytes and not OPs
(Figure 8c,d).

Next, we assessed the function of GPR37L1 in hippocampal slices
of P14-P16 mice subjected to chemical ischemia for 30 min (see Meth-
ods). Cell death was minimal for both Gpr3711*/* and the Gpr37/1~/~
slices after 30 min in the control non-ischemic solution (3.2% =+ 1.6%
of pyramidal layer neurons and 1.7% =+ 0.8% of stratum radiatum astro-
cytes in the Gpr37I11*/*, and 2.6% * 2.0% of neurons and 2.3% + 0.8%
of astrocytes in the Gpr37/17/~, in 12 slices from 6 mice of each geno-
type). Cell death was detectable after 30 min of chemical ischemia, fol-

lowed by 40 min in nonischemic (“reperfusion”) solution, in the CA1
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FIGURE 8 Gpr37I1 expression is upregulated in astrocytes but
not in OPs after MCAO. Expression of Gpr3711 1 week after
MCAOQO (30 min) in the lesioned hemisphere of mice was examined
by ISH followed by immunolabeling. (a) MCAQ induced a cortical
lesion that is identifiable by the presence of necrotic tissue
surrounded by a glial scar (b) The mean intensity of the Gpr37I1
signal was quantified in a rectangle (800-um long, 500-pum deep
from the pial surface) starting at the edge of the lesion (as in a).
Data are mean = s.e.m of six experiments (one-way ANOVA shows
a significant decrease with distance in the lesioned hemisphere

[p =0.029] but not in the contralateral hemisphere [p = 0.9998]).
(C, D) Gpr3711 was upregulated in cells at the lesion border. These
Gpr3711* cells in the penumbra were mostly GFAP-positive (C) and
OLIG2-negative (D)

pyramidal layer (where nuclear propidium iodide [PI] staining over-
lapped with the neuronal marker, NEUN; Figure 9a-d) and in the stra-
tum radiatum (where Pl staining was often surrounded by cytosolic
GFAP staining, suggesting that many dead cells were astrocytes; Sup-
porting Information Figure 5a-d). The presence of GPR37L1 signifi-
cantly prevented ischemia-evoked cell death in the pyramidal cell layer
[Figure 9e, 13.6% = 1.1% in Gpr37I1*/* slices compared to 21.3% +
29% in Gpr37I117/~ slices, n=6 (12 slices from 6 mice of each

genotype), one-way ANOVA p = 0.037]. There was, however, no dif-
ference in cell death for astrocyte somata in the stratum radiatum
(16.0% =+ 1.6% PI staining in Gpr37!1*/* compared to 17.3% =+ 2.9% in
Gpr37117/~, n= 6 [12 slices from 6 mice of each genotypel, one-way
ANOVA p = 0.7, data not shown). Thus, GPR37L1 is neuroprotective in
the ischemic hippocampus.

The addition of prosaptide to boost GPR37L1 signaling signifi-
cantly reduced cell death in the pyramidal layer of the hippocampus in
Gpr37117/* slices (a ~25% decrease comparing cell death in ischemia
with or without prosaptide, n =4, p = 0.01, Figure 9f). Prosaptide also
decreased cell death in the hippocampus of Gpr37I1™~/~ mice (~20%
decrease, n=4, p=0.008, Figure 9f). However, prosaptide did not
reduce ischemia-evoked cell death in the stratum radiatum in either
the Gpr37I11*/* or the Gpr37I117/~ slices (1.1% increase in death in
Gpr3711%/* slices, and 0.9% increase in Gpr37l1’/’ slices, data not
shown).

Thus, the activation of GPR37L1 that occurs in ischemia in the
absence of added prosaptide (presumably caused by release of endoge-
nous prosaposin) is neuroprotective for pyramidal neurons of the hip-
pocampus and this protective effect is amplified when GPR37L1 is
stimulated further by bath application of prosaptide. The fact that pro-
saptide is also neuroprotective in the Gpr37/1~/~ mice suggests that
the neuroprotective effect of prosaposin might also rely partly on other
receptors such as GPR37 (expressed in mature OLs, Figure 3), or on

other unknown mechanisms.

4 | DISCUSSION

Prosaposin has been reported to be neuroprotective in ischemia, and
glioprotective in conditions of oxidative stress (Lu, Otero, Hiraiwa, &
O'Brien, 2000; Meyer et al., 2013; Morita et al., 2001; Sano et al.,
1994; Terashita et al., 2013). Here we characterize one of the recep-
tors that prosaposin acts through, GPR37L1.

We show that Gpr3711 is expressed in most or all astrocytes and a
subset of OPs (Figure 1). The expression pattern differed from that of
the related receptor Gpr37, which was mainly in mature OLs and not in
astrocytes (Figure 3), contradicting a report that Gpr37 is expressed in
cultured astrocytes (Meyer et al., 2013) but consistent with transcrip-
tome data (Zhang et al., 2014). In mice, Gpr37I1 expression increases
over the first postnatal month and continues to be expressed in adult-
hood (Figure 2) implying a role, not just in development, but in the
function of the mature nervous system. Surprisingly, we could not ver-
ify an earlier claim that GPR37L1 deletion affects motor performance
(Marazziti et al., 2013), possibly due to the use of different Gpr37/17-
mouse lines with different genetic backgrounds, and we found no
obvious effect on OP proliferation. Gpr37I1 expression also had no
effect on the resting electrical properties of hippocampal pyramidal
neurons or astrocytes (Figure 4) but it had two potentially important
effects on glutamatergic signalling.

First, although expression of Gpr37I1 did not affect expression of
the astrocyte glutamate transporters GLT-1 and GLAST, activation of
GPR37L1 with the prosaposin cleavage product prosaptide inhibited
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FIGURE 9 GPR37L1 is neuroprotective during chemical ischemia
in vitro. Hippocampal slices from P14-P16 Gpr37I1*/* and
Gpr37117~ mice were incubated for 30 min in control or ischemic
solution containing propidium iodide (PI), followed by 40 min in
nonischemic solution, and subsequently labelled for NeuN. (a)
NeuN cells labelled for Pl were visible after ischemia in the pyrami-
dal layer. (b) Example of a Gpr37/1*/* pyramidal neuron labelled
for NeuN (c) and PI (d) after ischemia. (e) Percentage of dead cells
for control or ischemia in Gpr37I11*/* and Gpr37I17/~ littermates
(n = 6 experiments). (f) Percentage of dead cells for control or
ischemia, alone or with prosaptide (pro) included in the ischemic
solution, in Gpr3711™/* and Gpr37117~/ littermates (n = 4 experi-
ments). All p values are corrected for multiple comparisons
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astrocyte glutamate uptake and this effect was abolished in the
Gpr37l1 KO (Figure 5). This suggests that prosaptide was acting
through GPR37L1 receptors expressed on the astrocytes being
recorded from, presumably [since GPR37L1 is coupled to G; proteins;
Meyer et al. (2013)] by lowering the cyclic AMP level in the astrocyte,
altering phosphorylation by protein kinase A and thereby affecting the
transporter cycling rate or trafficking of the transporter to and from
the plasma membrane. Deleting Gpr37I1 did not affect the uptake cur-
rent in the absence of applied prosaptide (Figure 5), suggesting that
there is normally little tonic release of prosaposin (at least in brain sli-
ces) and little spontaneous activity of the GPR37L1 receptor, contra-
dicting the suggestion (Coleman et al, 2016) that GPR37L1 is
spontaneously active (although we cannot rule out the possibility of
compensation in response to the knock-out). However, prosaposin
expression and release are increased in ischemia (Costain et al., 2010;
Hiraiwa et al, 2003) and we found that expression of Gpr37I1 is
increased in the penumbra of lesions caused by MCAO (Figure 8), so it
is likely that glutamate transport activity is inhibited in these
conditions.

If mild ischemia inhibits glutamate uptake, there is expected to be
a rise in extracellular glutamate concentration, which might desensitize
AMPARSs and tonically activate NMDARs, thus altering neuronal infor-
mation processing. A further suppression of glutamate transport by
prosaposin release in this situation will accentuate these effects. The
situation is different in profound ischemia, however, when ion gradient
run-down leads to glutamate transporters reversing and releasing gluta-
mate, which reaches a concentration of 100-200 uM in the extracellu-
lar space and evokes a neurotoxic entry of Ca?>* via NMDAR channels
(Krzyzanowska, Pomierny, Filip, & Pera, 2014; Rossi et al., 2000; Roth-
man & Olney, 1995). In this situation, inhibition of glutamate transport
by prosaposin release will slow the release of glutamate. However, at
least in the first few minutes of ischemia, transporter knock-out experi-
ments measuring the latency to the anoxic depolarization (when the
extracellular glutamate concentration rises dramatically) suggest that it
is the neuronal glutamate transporters that reverse first rather than
astrocyte transporters, probably because the intracellular glutamate
concentration is higher in neurons than in astrocytes (Gebhardt,
Korner, & Heinemann, 2002; Hamann, Rossi, Marie, & Attwell, 2002).

Second, and perhaps more importantly, prosaptide-evoked
GPR37L1 signalling decreases the response of neurons to prolonged
activation of NMDARs (Figure 6). Such prolonged activation will occur
during the prolonged elevation of extracellular glutamate concentration
that occurs in ischemia and GPR37L1 should thus decrease the neuro-
toxic rise of [Ca®"]; that occurs in neurons in ischemia. Indeed, expres-
sion of GPR37L1 was neuroprotective during ischemia even in the
absence of added prosaptide (Figure 9)—an effect that presumably
depends on the release of prosaposin that is induced by ischemia (Cos-
tain et al., 2010; Hiraiwa et al., 2003; Yokota et al., 2001). In vivo, up-
regulation of Gpr37I1 in the penumbra of an ischemic lesion (Figure 8)
might promote GRP37L1-mediated neuroprotection. The mechanism
by which GPR37L1 decreases neuronal responses to prolonged activa-
tion of NMDARs is mysterious. Because the GPR37L1 is located in
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astrocytes, to regulate neuronal NMDARs a gliotransmitter of some
sort must have its release from the astrocytes modulated when
GPR37L1 is activated. We have ruled out two candidates for this role—
p-serine and TNF-a —which have previously been shown to increase
NMDAR responses when released from astrocytes (Henneberger et al.,
2010; Shigetomi et al., 2013; Figure 7). Our work suggests that a fur-
ther gliotransmitter must exist that has a similar effect, and that its
release is modulated by GPR37L1, but further work is needed to iden-
tify this agent.

We found that Gpr37I1 is also expressed in ~25% of OPs but we
did not detect any effect of Gpr37I1 knockout on OP density or myeli-
nation in healthy mice (Supporting Information Figure 3b,c). However,
GPR37 and GPR37L1 might protect against demyelination caused by
injury or disease, and/or stimulate remyelination (Hiraiwa, Campana,
Mizisin, Mohiuddin, & O'Brien, 1999; Hiraiwa, Taylor, Campana, Darin,
& O'Brien, 1997). Myelinating OLs are sensitive to ischemia (Back &
Rosenberg, 2014) and are probably damaged in our in vitro ischemia
experiments, but we did not quantify this. The potential glioprotective
role of GPR37L1 during ischemia or other insults, and what distin-
guishes the GPR37L1-expressing and nonexpressing subpopulations of

OPs, are interesting questions for the future.
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