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Abstract—Compact parasitic arrays in the form of elec-
tronically steerable parasitic antenna radiators (ESPARs) have
emerged as a new antenna structure that achieves multiple-
input-multiple-output (MIMO) transmission with a single RF
chain. In this paper, we study the application of precoding
on practical ESPARs, where the antennas are equipped with
load impedances of quantized values. We analytically study the
impact of the quantization on the system performance, where it
is shown that while ideal ESPARs with ideal loads can achieve a
similar performance to conventional MIMO, the performance of
ESPARs will be degraded when only loads with quantized values
are available. We further extend the performance analysis to
imperfect channel state information (CSI). In order to alleviate
the performance loss, we propose to approximate the ideal
current vector by optimization, where a closed-form solution is
further obtained. This enables the use of ESPARs in practice
with quantized loads. Simulation results validate our analysis and
show that a significant performance gain can be achieved with the
proposed scheme over ESPARs with quantized loads. Finally, the
tradeoff between performance and power consumption is shown
to be favorable for the proposed ESPAR approaches compared
to conventional MIMO, as evidenced by our energy efficiency
results.

Index Terms—MIMO, ESPARs, precoding, quantized loads,
imperfect CSI, optimization.

I. INTRODUCTION

ULTIPLE-INPUT-MULTIPLE-OUPUT (MIMO) sys-

tems have been widely acknowledged as a promising
technology and simple forms of precoding schemes have
already appeared in the communication standards [1][2]. Pre-
coding techniques can transfer the computational burden from
the user side to the base station (BS) side, and therefore for
multiuser MIMO communications, precoding techniques have
been widely studied for power and cost efficient UE devices
[3]-[10]. Among precoding techniques, capacity achieving
non-linear dirty paper coding (DPC) has been proposed to pre-
subtract interference prior to transmission [3]. However, the
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DPC methods developed so far are generally impractical due
to the complexity and the infinite length assumption of code-
words for the encoding of the data. To retain the performance
benefits of DPC, a number of non-linear precoding techniques
such as vector perturbation (VP) and Tomlinson-Harashima
precoding (THP) that can asymptotically achieve the channel
sum capacity have been proposed in [4]-[8]. Despite the rate
benefits these schemes offer, non-linear methods developed
so far are still complex and impractical due to the adop-
tion of the sophisticated sphere-search algorithms. Therefore,
linear precoding techniques based on channel inversion (CI)
in [11] that offer a much lower computational complexity
have received increasing research attention recently. Compared
to non-linear schemes, the performance of CI precoding is
far from optimum. A regularized channel inversion (RCI)
precoding is then proposed in [12] to provide performance
and capacity gains over CI precoding. A correlation rotation
(CR) linear precoding scheme is further proposed in [13]
which offers additional performance gains by exploiting the
constructive interference.

Existing studies on precoding techniques assume conven-
tional antenna arrays at the transceivers with multiple radio-
frequency (RF) chains, each connected to a different antenna
element. However, the significant hardware burden imposed by
the multiple RF chains and the consequent power consumption
can be a limitation. Furthermore, the spacing between adjacent
antennas for conventional MIMO is usually designed larger
than half of the wavelength to avoid the spatial correlation
and mutual coupling effect between antenna elements, which
is also a limitation in practice. This is especially true for
lightweight and small battery-powered devices with strict size
constraints such as mobiles and small access points (APs),
where the correlation effect and mutual coupling effect cannot
be neglected. Towards this direction, an alternative single-fed
compact antenna array, also known as ESPAR was proposed in
[14] and emerged as a research focus recently [15]-[19]. Dif-
ferent from conventional MIMO where each antenna element
is connected to a dedicated RF chain fed by an independent
voltage source, in ESPAR the voltage is only fed at the sole
active antenna element and the currents at all adjacent parasitic
antennas are induced by the mutual coupling effects between
ESPAR antennas, enabling the parasitic antennas to radiate.
For the compact ESPARs, only one RF chain is needed and
the small size constraint turns to be an advantage as the mutual
coupling is exploited to form the desired signals. Furthermore,
the mutual coupling and consequently the currents at each
parasitic antenna port can be controlled by the tunable loads



at each parasitic antenna element, such that ESPARs can form
different radiation patterns. With ESPARs, the hardware com-
plexity and power consumption can be well alleviated as we
only need one RF chain and one power amplifier, which makes
them a space- and energy-efficient alternative to conventional
antenna array architectures. In practice a single-fed active
element can support an antenna array with only a few parasitic
elements, and therefore ESPARSs are most promising for small-
scale MIMO systems, such as femtocells, the remote radio
heads (RRHs) for the future cloud radio access networks (C-
RANS) and picocells. Therefore in this paper we focus our
study on the small-scale single-fed ESPARSs, and the extension
to a large scale MIMO system can be realized by employing
the multiple-active-multiple-passive (MAMP) antenna arrays
[Chapter 8, 20].

Due to the benefits of ESPARs introduced above, ESPARs
have received research attention recently as a promising can-
didate for the future communication systems. In [21]-[23],
ESPAR is proposed for single-RF MIMO systems where
spatial multiplexing is considered. Specifically, in [23], a
loading scheme is proposed to support the multiplexing of two
16-QAM signals for ESPAR and the effect of impedance errors
on the performance of ESPAR systems is also simulated. Nev-
ertheless, the effect of the impedance errors on the system per-
formance is not mathematically analyzed. In [24], precoding
for ESPAR is discussed and a design guideline is introduced,
where the feeding voltage for the central antenna element and
the calculation of each tunable load is given. However, specific
precoding scheme analysis is not included. An important result
is reported in [25], where a new signal model is introduced
for ESPARs and it is shown that the currents at the ports of
the transmitting array can be considered as the input to the
system. In [26], MIMO transmission with ESPARs is studied,
where the convex optimization approach is employed to obtain
the load values that satisfy the input impedance constraint
for the ESPAR array. In [27], an extension of ESPARs is
introduced, where a load modulated antenna array is proposed,
and its application to massive MIMO is discussed. In [28],
we consider Gaussian random impedance errors for ESPAR
based MIMO systems, and the error effect on the system
performance is shown. The combination of ESPARs with
orthogonal frequency division multiplexing (OFDM) can be
found in [29][30], where the channel estimation techniques
and receiver structures are proposed respectively.

The above existing studies on ESPARs assume that each
parasitic load has a continuous value range and can be tuned
to any arbitrary values based on the desired radiation pattern.
This may not be feasible in practice since the electronic com-
ponents implementing the load impedances (varactors, phase
shifters, etc) may only take values with finite precision. This
is critical for the application of ESPAR based MIMO, as the
radiation pattern is controlled by tuning the load impedances
of the passive antennas. Therefore, instead of considering the
additive Gaussian random errors for the load impedances in
[28], in this paper we focus on the more realistic ESPAR
based MIMO systems with quantized load impedances and
consider precoding schemes at the transmitter side. Closed-
form expressions for the exact computation of the tunable

loads and the feeding voltage are firstly given. For ESPAR-
based MIMO, in realistic scenarios where there exist i) load
impedance errors due to the quantized load values and ii)
imperfect channel state information (CSI) due to channel
estimation errors, the system performance might be degraded.
We therefore provide a performance analysis of ESPARs with
quantized loads. This effect is particular for ESPAR-based
MIMO systems and has not been well investigated yet. To
be specific, as the antenna spacing for ESPARs is small, we
firstly characterize the semi-correlated channel model and the
corresponding imperfect CSI model. Then, we study the im-
pact of the mismatch effect introduced by the quantized loads
and imperfect CSI on the system performance, and analytically
derive the received signal-to-noise-ratio (SNR) and probability
of error for CI precoding in the presence of these two effects.
It will be shown that the impedance errors introduced by the
quantized loads can be regarded as an additional noise term
that is independent of the transmit SNR, which results in an
error floor observed at high SNR regime. Noting the per-
formance degradation introduced by the quantized loads, we
then propose to approximate the current vector of the ESPAR
array to the desired signal vector by convex optimization to
compensate for the performance degradation. We propose to
jointly optimize the feeding voltage and the quantized loads,
where it is further proven that any additional variations in the
quantized loads can only lead to an additional performance
loss. Therefore, the resulting optimization problem is reduced
to an optimization on the feeding voltage only, where we keep
the values of the quantized loads unchanged. A closed-form
solution of the optimal feeding voltage is further obtained,
and the proposed scheme can be efficiently applied, with-
out incurring significantly additional complexity. Numerical
results show that the proposed scheme can compensate for the
performance loss introduced by the quantized loads and better
approach the performance of conventional MIMO systems,
which enables the application of ESPARs with quantized loads
in practice. It is also shown that the energy efficiency is more
favourable for ESPARs even with quantized loads, due to the
limited RF hardware complexity.

For reasons of clarity we summarize the contributions of
the paper as:

1) We introduce the practical ESPAR based MIMO systems
with quantized load impedances, where the linear precod-
ing structure is introduced and the computation of each
load impedance and the corresponding feeding voltage
are given;

2) We formulate the relationship between the current vector
with quantized loads and the ideal current vector. We then
mathematically analyze the performance of precoding
schemes for ESPAR based MIMO systems with quantized
loads for both perfect CSI and imperfect CSI, where it is
shown that the presence of quantized loads introduces an
additional noise term that is independent of the transmit
SNR, which then leads to an error floor at high SNR
regime;

3) We obtain a closed-form solution to approximate the
current vector of the ESPAR array to the desired signal



vector based on convex optimization to compensate for
the performance loss introduced by the quantized loads,
where it is proven that the optimality is achieved by
optimizing the feeding voltage only while keeping the
values of each tunable load unchanged.

The rest of the paper is organized as follows: Section
II introduces the system model for ESPAR and the corre-
lated channel model. Section III introduces the extension
of existing precoding schemes to single-fed ESPAR MIMO
systems, where the calculation of each load impedance and the
corresponding feeding voltage is given. Section IV analyzes
the system performance for ESPARs with quantized load
impedances for both perfect CSI and imperfect CSI. Section V
introduces the proposed scheme based on convex optimization
to compensate for the performance loss introduced by the
quantized loads, and Section VI discusses the practical imple-
mentations of the ESPAR-based MIMO systems. Section VII
introduces the energy efficiency measurement. Section VIII
presents the numerical results and Section IX concludes our
paper.

Notations: E(), ()%, ()T, ()%, ()71, and tr (-) denote
the expectation, conjugate, transpose, conjugate transpose,
inverse, and trace of a matrix respectively. ||| denotes the
Frobenius norm, I is the identity matrix and O denotes a zero
matrix or vector. C"*™ represents n X n matrix in the complex
set and R.(k,u) denotes the element of the kth-row and uth-
column in R. diag () denotes the conversion of a vector into
a diagonal matrix with the values on its main diagonal. % ()
denotes the real part and < (+) denotes the imaginary part of
a complex variable, respectively.

II. SYSTEM MODEL

In this section, the considered signal model which captures
the features of ESPAR antennas is given, followed by the
MIMO system description and the correlated channel model
we consider.

A. Signal Model

We first consider the signal model for the conventional
antenna array, and then extend to single-fed ESPARs. Assume
that an AP is equipped with [V, antennas, and each antenna
k € {1,2,...,N;} is fed by an independent source with the
complex voltage v and the output impedance zy, where the
equivalent circuit representation is shown in Fig. 1 (a). We
denote the mutual impedance matrix of the transmit array as
Z,, € CNt*Nt which is related to the carrier frequency and
the antenna spacing. Then, according to the generalized Ohm’s
law, the complex current vector at the antenna port can be
expressed as [21]

i = [diag (z0) + Zm] Vo, (1)

where iy € CVt*! is the current vector, zg € CV**! is output
impedance vector, and vg € CNex1 is the voltage vector. We
note that for a conventional MIMO array each element in zg
is fixed as zp (which usually equals 50€2), and each element in
vy is non-zero and adjusted based on the desired signal vector.
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Fig. 1: Circuit representation

When the AP is equipped with a single-fed ESPAR array, the
circuit representation is shown in Fig. 1 (b), where only the
central active element is fed with the voltage vg, while the
remaining N; — 1 elements are parasitic and excited passively
by the mutual coupling effect between antenna elements. In
this case, the current vector at the antenna port can be obtained
based on (1) as [23]

i = [diag (z1) + Zm] " - [0s,0,....,0]"
-1

= [diag (z1) + Zm] Vs (2)

= ZTVS7

where z;, = [20, 21,22, th_l]T is the load impedance
vector and we denote Z as the effective coupling matrix. z is
the fixed load impedance that corresponds to the active antenna
element, and each z;, ¢ € {1,2,..., N; — 1} is the tunable load
that is connected to each parasitic antenna element to control
the radiation pattern for ESPARs. As observed from (2),
different from conventional antenna array where the current on
each antenna is controlled by each voltage source, for ESPARs
the effective coupling matrix Zr is controlled by tuning each
value of z;, and the currents at each antenna port can then be
controlled accordingly.

In this paper we consider a multi-user case, where the AP
equipped with an ESPAR antenna array communicates with a
total number of K single-antenna users in the system. Then,
based on the proposition in [23][24][31], we can consider
the current vector at the antenna port of the ESPAR array
as the input, and a general system equation that captures the
functionality of an antenna array can be expressed as

y =Hi+n, 3)

where y € CK*1 denotes the received signal vector, H €

CEXNt is the channel matrix, n € CE*! denotes the additive
white Gaussian noise (AWGN) vector and n ~ CN ((), o?. I) ,
where o2 is the noise power.

In conventional MIMO systems, the transmitting and receiv-
ing signals indeed relate to the amplitude and phase of the
observed quantity which can be the voltage or current vector.
In this case, the channel matrix typically relates the ‘input
voltages’ and the ‘output voltages’. On the other hand, when



mutual coupling is considered even in a conventional MIMO
system, the relationship between the currents and the feeding
voltages, as given by (1) of our paper, is required with each
entry of vy being non-zero [20]-[26]. While (1) is applicable
for both conventional MIMO and ESPAR MIMO, conventional
MIMO systems typically assume an antenna spacing of \/2 or
even larger to avoid the mutual coupling effect in practice, in
which case the mutual coupling effect can be neglected, and
therefore the mutual impedance matrix becomes a diagonal
matrix, which leads to Z,, = z. -1 where z. denotes the
common self-impedance to match the voltage source. Then,
the current vector is further obtained as ip = (29 + 26)71 V0,
i.e., the currents on each antenna port are a scaled version
of the feeding voltages. Then, the channel that relates the
‘input currents’ and the ‘output voltages’ can be regarded as
a scaled version of the conventional channel matrix, while
the statistical properties remain the same. In other words, the
channel model developed for conventional MIMO is also valid
to relate ‘input currents’ and ‘output voltages’. Therefore, for
the ESPAR-based MIMO systems where the input is given by
(2), current channel models for conventional MIMO systems
can be directly applied to relate ‘input currents’ and ‘output
voltages’.

B. Channel Model

Compared to conventional antenna array that has a relatively
large antenna spacing to avoid mutual coupling effect, the
antenna spacing for ESPARs is small, as the currents on each
parasitic antennas are passively excited by the mutual coupling
effect between antenna elements. Therefore, the channel model
for ESPARs must take the correlation effect among antenna
elements into consideration, which is then modeled as a
geometric semi-correlated Rayleigh flat fading channel, given
by [321[33]

H=[h?, .. b7, . h%]", &)

with the 1 X N; channel vector hy for the k-th user being

hy, = gr Ay, )

where gy € and M denotes the number of directions
of departure (DoDs). Each element in g is distributed as
CN(0,1) that forms the Rayleigh component. A € CM*N:e
represents the transmit-side steering matrix that contains M
steering vectors of the transmit antenna array. For uniform
linear arrays (ULAs), as assumed in this paper, Ay can be
expressed as

Clxjw

A, = \/—M [aT (Ok1),...,a” (Qk,M)]T

where a (0 ;) € C**Nt is given by

; (6)

a(br,) = |:]_,ej27"d5in9k,i’“"ejQﬂ'(Ntfl)dsinﬁkvi} G

In (7), d denotes the equidistant antenna spacing normalized
by the carrier wavelength. 6 ; denotes the angle of departure
(AoDs) and throughout the paper we assume each 6y, ; follows
a uniform distribution in [—, 7. It is worth noting that for

a compact antenna array, the mutual coupling effect should
also be considered in the channel model. For the ESPAR
array, we note that the mutual coupling effect has been taken
into account by the mutual impedance matrix Z,, and further
Z7 when calculating the currents in (2), and is therefore not
explicitly shown in the channel model. By substituting (2) into
(3), the received signals can be obtained as

y=HZrvs;+n. )
—

As can be seen in (8), the above channel model considers
both the correlation and mutual coupling effect at the AP. For
the purpose of the analysis below, full knowledge of channel
state information (CSI) is firstly assumed at the AP, which is a
common assumption for precoding schemes, while cases with
imperfect CSI are also investigated in the following section.

III. EXTENSION OF PRECODING SCHEMES TO ESPARS

In conventional MIMO systems, precoding schemes employ
the knowledge of the channel matrix to form the precoding
matrix. In a K x N, MU-MISO system, the precoded signal
vector can be expressed as

x=fPs, ©)

where s € CX*1 is data symbol vector, and P is the precoding

matrix. f is the scaling factor that ensures the signal power to
remain unchanged after precoding, which is given by

1
f=—
Vtr (PHP)
In order to apply the precoding schemes for ESPAR based
MIMO systems, the precoded signal vector is mapped to the
antenna current vector [24][31], i.e.,

(10)

i=x=/f-Ps. (11)
Then, (3) is transformed into
y=f -HPs+n. 12)

With this approach, ESPARs can form the same transmit signal
and radiate as conventional MIMO. Then, we need to obtain
the values of each tunable load z;, i € {1,2,...,N; — 1} and
the corresponding feeding voltage vy that form the desired
radiation pattern. We rewrite (2) and expand it in (13) which
is shown on the top of next page. Then, based on (13), the
feeding voltage and the value of each tunable loads can be
calculated as [23][24]

Ny
Vg = Z Zm (Lm) Zm + ZOih
m=1
1 X
== > Zn (k+1,m)in, k€ {1,2,...,N; — 1}
k+1 1

(14)
As mentioned earlier, the currents are dependent on the
precoding schemes and the symbols that are known before
transmission. Therefore, by setting the feeding voltage and
the loads as calculated based on (14), the ESPARS can radiate



Z. (1,1) 4 2o Z,,(1,2)
Zm (2v 1) Zm (27 2) + 21
Z,, (N, 1) Z,, (N, 2)

Zm (17Nt) Z‘l Vg
i 0
2 (280 = (13)
Zy (Nt, Nt) + 2N, -1 N 0

the desired signals as conventional MIMO. Different from
conventional MIMO, due to the existence of the tunable loads
the input impedance of ESPAR based array is dependent on
the current vector on each port, which is given by

Ny

2in = Zn (L) + > Zyn (1,m) - Zzﬂ
1

15)

m=2

As can be observed in (15), an arbitrary current vector at the
antenna port may lead to 3 (z;,,) < 0. In such case, the ESPAR
array is unable to radiate power and will instead consume
power. R (z;,) > 0 can be satisfied by designing Z,, with a
large enough Z,, (1,1).

IV. PERFORMANCE ANALYSIS FOR ESPARS WITH
QUANTIZED LOADS AND IMPERFECT CSI

A. ESPARs with Quantized Loads

It is observed from (14) that the calculation of each tunable
load and the feeding voltage is based on the assumption
that each parasitic load has a continuous value range and
can be tuned to any arbitrary values. However, this may
be infeasible in practice, and due to the realistic hardware
implementation quantized loads are employed in most cases
[34]-[36]. Therefore in this section, we study the impact of the
quantization in each tunable load on the system performance
of ESPARs. Then, we can express the value of each quantized
load as

Sh=z4ek, ke {1,2,...N, -1}, (16)
where Z; denotes the quantized load at the k-th passive
antenna in practice, z; denotes the ideal load impedace value
that forms the desired radiation pattern, and efﬁ. is the error in
the load value. For the quantized loads, we denote D as the
quantization level for both the real part and imaginary part of
the load impedance, and in this case the potential values of
the quantized loads can be obtained as

Zk =miD + 5 -npD, mg,ng € {O,il,ﬂ:Z,...}. (17
Due to the quantization, the impedance error efc for each
tunable load can be regarded as a variable that is norm
bounded, and the bound that is related to the quantization level
can be obtained as

< (2) +(3) =%
wll =17 2) T 2

(18)

B. Performance Analysis - Quantized Loads, Perfect CSI

Before we begin to study the effect of quantized loads
on the system performance of ESPARs, firstly we need to
study the correlated channel H. Recall (5)(6) and notice that
the transposition does not have an impact on the variable
distribution, we can then obtain

hi = (gxAr)" = Algl,

where A7 € CNexM and gl” € CM>1.

Lemma: For a random variable z~ CN (0,K.,), if there
exists a linear transformation y = Bz, then we have
y~ CN (0, BK.B) [37].

Based on the lemma given above and noting that the
elements of gg are complex random variables with standard
complex Gaussian distribution, the elements of hy also follow
the Gaussian distribution with zero mean, and the covariance
matrix is given by

19)

H *
Cur = AL (AL) = AL A}, (20)

With the above analysis, each row of H is proved to follow a
normal distribution with zero mean and the covariance matrix
given by (20). It should be noted that for each user k, Ay
is slightly different from each other, and for tractability of
analysis we apply the average of Aj to obtain the covariance
matrix of H, denoted as Cy.

We then focus on the performance analysis of ESPARs for
perfect CSI cases with the the errors in the load impedances
only. Consider each tunable load value with error €} as in
(16), then the current vector in (2) with quantized loads can
be rewritten as

i=[diag (21) + Zm] v,
= [diag (z1) + B + Zp] v,
_ —1
= (ZTl +E) v,

where Zj, is the quantized load impedance vector and E; =
diag (0,€, ..., eth_l) is the impedance error matrix. In ideal
cases where the parasitic loads with continuous values are
employed, the feeding voltage can be calculated as (14) and
in cases with impedance errors, the feeding voltage remains
the same. In this case, we have

21

(Z7' +E)i=2Z;"i (22)

Then, the current vector with quantized impedance errors can
be further transformed into
i=(z;' +E) 23l
— (Z;'+E) (Z;' +E —E)i
—i— (Z;' +E) 'Ei

(23)



Then, the received signal vector in the presence of the
impedance errors can be obtained by substituting (23) into
(3), expressed as

y:H§+n
:H[i— Z-'+E ’lEi} +n
(27" +E) i o)
=Hi-H(Z;' +E) Eji+n
=Hi+n; +n.

Compared to (3), the second term n; introduced by the
impedance errors due to quantization can be regarded as an
additional noise term that is independent of the transmit SNR.
We then define the equivalent noise term

A
n.=n;+n

1 (25)
=-H(Z;'+E) Ei+n

We note that the errors here are introduced by the quanti-
zation in the load impedances, and therefore the AP has the
knowledge of the error matrix E;. Then, based on (25), it
can be observed that n,. conditioned on H and i follows an
1.i.d. Gaussian distribution with zero mean [38], where the
equivalent noise power for each user k is given by

U = wpC2op + 0. (26)

In (26), wy, = N%HCH||2 where Cy is the channel covariance
matrix, { = H(Z;1 +El)_1H represents the effect of the

antenna coupling, and J;, = HdC H2 The current vector is equal
to the normalized transmit signal vector and then we have
i]|> = 1. Furthermore, note that each e}, is norm bounded as
shown in (18), we can similarly obtain the upper bound of the
equivalent noise power as
22
Vupper = ?DCTD + 027

27)

where w is the average over wy.

We note that the above derivation is independent of the
precoding schemes applied at the AP. To obtain the received
SNR and the resulting analytical probability of error, in the
following we assume that CI precoding is employed at the AP,
where based on (11) the current vector can be expressed as

i—f-HYHHAT) s, (28)

and the scaling factor f = 1/tr {(HHH)%}. Then, the

received signal vector with quantized loads is obtained as

y=H.f H?(HH") 's+n,

(29)
=[f-s+n,,
and then the resulting received SNR is given by
2
S e Ll (30)
wkgzék + o2’

It is then observed that the first term of the noise is irrelevant to
the transmit SNR, and therefore at high transmit SNR regime
where 02 becomes negligible, an error floor will be observed.

Probability of error: In order to validate our analysis, we
introduce the probability of bit error for QPSK in flat fading
with respect to the transmit SNR for X' = N, and the average
bit error rate (BER) over all MIMO streams can be calculated
as [39]-[41]

K

1 Pk ]
Po=s=) |1—,/ :
2Kk_1{ 7+ Pk

where 72 = Cy' (k, k) is the k-th diagonal element in the
inverse matrix of the channel covariance Cyy. py is the signal-
to-noise ratio per bit (E,Ny) for stream k. For CI precoding,
p; for each stream can be obtained based on -y, expressed as

1
Pk = 2K (wkC26k + 02) '
Similarly, based on the upper bound of the noise power in (27)
we can obtain the lower bound of pg, which is expressed as

(3D

(32)

1
o> 2 g

2K (LC;W +02>
Fig. 2 compares the analytical BER and the numerical
results for CI precoding under perfect CSI, where for the
considered system the number of DoDs is M = 50 and we
assume K = N; = 5, i.e. ESPAR has a ULA structure with the
active antenna at the center and four parasitic antennas, two at
each side, and there is a total number of K = 5 users in the
system. For simplicity, we assume P = 1 and the quantization
level is D = 1. The system operates at frequency f = 2.5GHz
and the spacing between ESPAR antennas is assumed as
d = 0.25, which is equivalent to A\/4. A relatively large
value (465.4 — 659.59)€2 is chosen as the antenna impedance
to ensure a positive real part of the input impedance. The
mutual impedance can be calculated with the electromagnetic-
field (EMF) methods based on the antenna spacing d [42]. We
summarize the simulation parameters in Table 1. For clarity
the following abbreviations are used throughout the paper:
1) “MIMO CI”: conventional MIMO CI precoding;
2) “ESPAR CI ideal”: simulated ESPAR CI precoding with
ideal loads;
3) “ESPAR CI Quantized”: simulated ESPAR CI precoding
with quantized loads;
4) “ESPAR CI Analytical”: analytical BER result of ESPAR
CI precoding with quantized loads by (32);
5) “ESPAR CI Upperbound”: the BER upper bound of
ESPAR CI precoding with quantized loads by (33).
It can be seen that with ideal continuous loads, ESPAR-based
MIMO systems with a single RF chain can achieve the same
performance as conventional MIMO with a full number of RF

(33)

Simulation parameters Values
Operating frequency 2.5GHz
Antenna spacing d A4
Number of DoDs M 50
Quantization level D 1
Number of active antennas 1
Number of parasitic antennas 4

TABLE I: Simulation Parameters



chains. When we employ the practical quantized loads, it is
observed that ESPAR suffers a performance degradation and
an error floor appears at high SNR regime. It is also observed
that the analytical BER performance matches the simulated
result.
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Fig. 2: BER performance of MIMO and ESPAR-based MIMO,
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C. Performance Analysis - Quantized Loads, Imperfect CSI

We then proceed to investigate the imperfect CSI model
and the performance of ESPAR-based MIMO system under
scenarios with imperfect CSI and quantized loads. In this
paper, we assume that the system is operating in TDD mode
and therefore the CSI H is directly measured at the transmitter
using uplink-downlink reciprocity and is subject to noise errors
[43]. Then, the errors are modeled as inversely proportional
to the transmit SNR, expressed as

H=H+Q, (34)

where H represents the channel at transmission and H is the
estimated channel, with the error matrix Q~ CN (0,7 - Iy,)
that is statistically independent of H. n is the variance of the
channel error and is obtained as

1 —1

where [ is the inverse proportionality coefficient, with %
being the transmit SNR.

With the imperfect CSI model above, by substituting (23)
and (34) into (3), the received signals can be obtained as

y=H [i —(Z7 + El)_lEli} +n
_ (H + Q) i— (H + Q) (Z7' +E) 'Eit+n (36)
— i+ Qi (ﬂ+Q) (Z7' +E) ' Eji+n,

(35)

Then, we can similarly define the equivalent noise term for
imperfect CSI as

a2 Qi- (A+Q) (Z7' +E) 'Ei+n (7

Compared to the case of perfect CSI, we observe that an
additional noise term Qi is introduced as a result of the
imperfect CSI. Then, fi. conditioned on Q, H and i is i.i.d.
Gaussian with zero mean, and the equivalent noise power for
the kth user is given by
Ok =1+ Ok(?0k + 07, (38)
where @, = 11‘\,"—:7||CHH2 considers the channel estimation
error effect on the coupling matrix. The upper bound of
the equivalent noise power for imperfect CSI can be further
obtained as 5o
w(*D
S

’Oupper =N+ (39)
where < is the average of wy.

Probability of error: Under imperfect CSI, the analytical
BER is also obtained from (31). Assuming CI precoding at
the transmitter, we can similarly express the Ej Ny for each
user k with imperfect CSI as

1

. = . 40
Pk 2K(n+@k<25k+02) (40)

Then, based on the equivalent upper bound of the noise power,
we can obtain the lower bound of the E} Ny for imperfect CSI,
expressed as
~ 1 A Alower
Pk 2 e = e
2K (n+ 252 4 02)

(41)

In order to validate the analysis, Fig. 3 shows the BER
performance of the ESPAR based MIMO systems with quan-
tized loads under imperfect CSI. The channel error coefficient
is assumed to be S = 2.5. It is observed that while a
similar BER trend can be observed compared to Fig. 2 where
CSI is perfect and there only exist quantization errors, the
performance is degraded due to the channel estimation errors.
It is also observed that under imperfect CSI, the analytical
BER performance matches the simulated result.
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Fig. 3: BER performance of MIMO and ESPAR-based MIMO,
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V. PROPOSED QUANTIZATION-ROBUST SCHEME

As noted above, the presence of the quantized loads leads to
a performance loss for the ESPAR array at high SNR regime.
Therefore in this section we propose to compensate for this
loss by approximating the current vector of ESPARs to the
desired signal vector with convex optimization. Specifically,
we propose to jointly optimize the feeding voltage and the
quantized loads such that an improved performance can be
achieved, which is introduced in detail in the following.

In the presence of the variation in the quantized loads and
the feeding voltage, based on (2) the current vector for the
ESPAR array can be expressed as

i=[diag (Zr) + Zm]”'¥
-1 42)

= [diag (zp) +Zp, + E, (ve + Av),

where z; denotes the optimized quantized loads, v, is the
optimized feeding voltage and Av denotes the variation in
the feeding voltage. The variation in the load impedances E,
can be further expressed as

E, =E; + D - diag (t), (43)

where E; is given in (21) and t € CzZN*1 with each
element being a complex integer. D - diag (t) then denotes
the additional quantized load impedance values compared to
E; in the case of optimality. Note that for single-fed ESPAR
arrays, only the active central antenna element is fed with the
voltage, and therefore only one entry is non-zero for both v
and Av. Then, by introducing an auxiliary complex variable
« where

Av = a - vy, (44)

(42) can be further transformed into

= [diag (z) + Z ] (1+ a) v
(1+ ) [diag (Zr) + Zw) " [diag (z1) + Zy) i
(1+a) {i ~ [diag (31) + zmrlEli}
(

1+a) {i — [diag (ZL) + Zm) " [Ei + D - diag (t)]ij .
45)

Then, based on (45), we can express the difference between
the optimized current vector and the desired current vector as

Ai=i—i
—ai — (14 ) [diag (Z1) + Zy) " [Ei + D - diag (t)] i
= {aI — (1 + a) [diag (z) + Zm + E; + D - diag (t)] "

[E; + D - diag (t)]} i.
(46)
By denoting

A = diag (ZL) + Z.,, + Ey, ()]

which is fixed in terms of the optimization variables, (46) is
further transformed into

ol —(

)[A + D - diag (t)]” 1[E1+D-diag(t)]}i

{
{aI (1+a) I—(1+a)[A+D-diag(t)r1(El—A)}i
{-

I+ (1+a)[A+D - diag(t)] " (AfEl)}i.

(48)
We can then formulate the optimization problem as
Po: min A2
s.t. (49)

t(1)=0

The constraint here corresponds to the active antenna element
where the load impedance is constant. Based on the structure
of Ai shown in (48), the following proposition is obtained.

Proposition 1: Ai cannot be minimized to 0 by optimizing
« which corresponds to the feeding voltage and t which
corresponds to the quantized loads.

Proof: Based on (48), to have ||Ail|> = 0 for any current
vector i is equivalent to

(14 a)[A+D-diag(t)] " (A—E) =1L  (50)
which can be further transformed into
A+ D -diag(t)=(1+a)(A-E)
1
= diag (t) = 5 [cA - (1+a)E;].

From (51), if o = 0, then diag (t) = f% -E;. Since E; is the
diagonal impedance error matrix due to quantization, based on
(18) the absolute value of both the real part and the imaginary
part of eﬁc, i.e. each diagonal element in E;, is smaller than
D. Since t is the complex integer vector, in this case (51)
cannot be satisfied. On the other hand, if « # 0, based on the
expression of A in (47), A is a full matrix with each element
in the non-diagonal equal to

A (i, j) = Ly (i,) , Vi # j. (52)

As E; is a diagonal matrix, therefore it is observed that the
right-hand side of (51) cannot be a diagonal matrix, which
completes the proof. |

Based on the Proposition 1, when employing quantized
loads at the AP, there will always exist a performance loss
compared to conventional MIMO even after the optimization.
We then propose to minimize this performance gap by mini-
mizing ||Ai %, where the following proposition is given.

Proposition 2: When the optimality for the optimization
problem Py is achieved, t* = 0, which means that any further
changes in the quantized loads will result in an additional
performance degradation.

Proof: When there is only a variation in the feeding
voltage, we have an arbitrary o # 0 and t = 0. Then, based
on (42) i can be expressed as

i = [diag (ZL) + Zm) " (Ve + AV)
=(1+a) {i — [diag (z1) + Zm]ilEli} '

(53)



Then, for the same value of «, when a variation in the
quantized loads is further introduced, t # 0, based on (45)
we have

i=(1+a) {i — [diag (71) + Zn) By
(54)
—[diag (ZL) + Zm] "D - diag (t) i} .

Comparing (54) with (53), it is clearly observed that an
additional noise term is introduced in (54) due to the variation
in the quantized loads, which then contributes to the increase in
the power of the equivalent noise. Therefore, to keep the noise
power as small as possible, the optimal case is to keep the
quantized loads unchanged and optimize the feeding voltage
only. |

A. Closed-Form Solution

We then obtain the closed-form solution of the optimal «
that minimizes ||Ai]|®>. Based on the above proposition, the
optimization problem is reduced to optimizing a only, which
can be formulated as

P1: min [|Ail? (55)

Compared to Py, the constraint is also removed as we have
t* = 0. Note that here A, E; and i are all known to the AP
and « is the only variable to be optimized. In this case, Ai
can be further expressed based on (48) as
Ai=(1+a)A ' (A-E)i—i
=I-A"E)i-a+[I-AT'E)-1]i
=P-a+(P-i),

(56)

where we denote P = (I — A~'E;)i and P € C"**!. Then,
we can further express ||Ai]|* as
[Ny

=tr{Ai-Ai"}

—tr{[P-a+@®-i)]P-a+@P-i)"}

=tr {Paa"P"} +tr {(PPY — Pi") o}

+ur {[(PP — Pi) o] "} + 1 {(P i) (P - )"}

=tr {P"Pac”} + 2% {tr [(PP" — Pi") o]}

+tr{(P i) (P i)H}.

(57)

As P and i are independent of the variable «, the optimization
problem can be transformed into

Ps ngn f (@) (58)

where
f (@) =tr {PPPaa”} + 2% {tr [(PPY — Pi") o]}

=tr{S-aa} +2R[tr (T )].
(59)
In (59), S and T are obtained as

S=PIP >0, T=PPI —Pif. (60)

By denoting

m(a) = QRE, %(Oé) = arM, (61)
the objective function in (59) can be further obtained as
Nt
fa)=5-(agp +afy) + 22 R(T (i,9)] arp
i=1
Nt
— 23 [T (i,i) arm
=t (62)

Ny
= {Sa%E +2) R[T(i,4)] O‘RE}

=1
Ny

+ {saiM —2) ST (i,4)] a,M}
i=1

It is observed from (62) that f («) is in a quadratic form for
both the real part and the imaginary part of «, based on which
we can then obtain the optimal « as

Nt . . Nt . .
- ;%[T (4,1)] _;NT (4,1)]
o = 5 +7- g , (63)

where j denotes the imaginary unit. With (63), the optimal
feeding voltage can be efficiently obtained as

vi=(14a")vs. (64)
With the closed-form solution obtained, the proposed scheme
can be efficiently applied without significant complexity bur-
den.

VI. PRACTICAL IMPLEMENTATION ASPECTS

It is observed that ESPAR-based MIMO systems require
the adaption of each load impedance z; dependent on the
transmit symbols. It has been shown in [44] and the refer-
ences therein that vactor technologies that can support the
adaptive tuning have been developed and can be divided
into three categories: semiconductor-based varactor diodes,
micro-electro-mechanical system (MEMS) varactors, and
ferroelectric-based varactors. Among them, semiconductor-
based and ferroelectric-based varactors can support the tuning
speed as fast as 100ns-100us [44]-[46]. Such techniques can
then be applied to ESPAR-based MIMO systems to support the
adaptive impedance tuning. A proof-of-concept experiment has
been conducted in [22], which supports the implementation of
the ESPAR-based MIMO systems.

On the other hand, the adaptive impedance tuning on each
antenna element may lead to variations on the input impedance
of the ESPAR array, which will have an impact on the
power transfer efficiency. For maximum power transfer, the
impedance of the source should be equal to the conjugate
of the input impedance of the ESPAR array to minimize
any mismatch effects. Such a dynamic matching network can
be implemented with lumped elements and varactor diodes
[24][26].



VII. ENERGY EFFICIENCY

To evaluate the usefulness of the ESPAR-based MIMO
system in practice, we will investigate the tradeoff between
the performance and the power consumption by means of
the resulting energy efficiency. In this section,we define the
energy efficiency of the communication system as the average
achievable sum rate per total transmit power consumed, shown
as [6][8]

R
Ngp - Pac+ Po+ Ppa’

where R is the achievable sum rate, P4c is the constant
radio frequency (RF) circuit power consumption per antenna
element, Py is the fixed power consumption that corresponds
to the baseband processing for the antenna array, Ppy =
(1/e —1)P/eqn: denotes the total power consumption for the
power amplifier where ¢ is the power amplifier efficiency [5].
eqnt 18 the radiation efficiency of the antenna and is defined
as [47][48]

FE = (65)

€ant = €RLErad, (66)

where er;, = 1 — |p|° is the efficiency caused by re-
flection effect, and the reflection coefficient p is obtained
as p = Zijrig, which is based on the input impedance.
Crag = 1 — 22 E{:Zm f‘lml is the radiation efficiency caused

by the dissipation of the antenna, which is defined as the ratio
of the radiated power of the antenna to the power accepted
by the antenna. Throughout the simulations, the values of
each parameter are as follows: ¢ = 0.35, P4c = 33dBm,
and Py = 40dBm. It is worth noting that Ngpr = N, for
conventional MIMO and Nrr = 1 for the single-fed ESPAR
implementation.

VIII. NUMERICAL RESULTS

To evaluate the performance of ESPAR-based MIMO sys-
tems, in this section numerical results based on Monte Carlo
simulations are presented. QPSK modulation is employed to
evaluate the BER performance. The simulation parameters in
this section follow Table I in Section IV. B, and these param-
eters remain the same throughout the following simulations
unless otherwise stated. We consider a total number of K = 3
users in the system. Averaged antenna radiation efficiency is
applied in the simulations to explicitly show the relationship
between the energy efficiency and the selected parameters. We
also assume that MIMO CI has the same antenna efficiency as
ESPAR CI to highlight the energy efficiency gain introduced
by the reduced number of RF chains. While we employ CI
precoding throughout the simulations, the proposed schemes
apply to any other precoding or beamforming techniques.

Fig. 4 presents the BER performance of the proposed
scheme under both perfect CSI and imperfect CSI with re-
spect to the transmit SNR. When ideal continuous loads are
assumed, ESPARSs can radiate exactly the same as conventional
MIMO, thus achieving a similar performance. The presence
of the quantized loads leads to a mismatch effect and greatly
degrades the system performance. With the optimized feeding
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Fig. 4: BER comparison, N; = 5, K = 3, quantization level
D=1, =25, QPSK

voltage obtained by the proposed scheme, the performance of
ESPAR arrays with quantized loads are significantly improved,
both for perfect CSI and imperfect CSI. The proposed scheme
therefore enables the implementation of ESPAR arrays in
practice. Note that the corresponding curves for perfect and
imperfect CSI converge to the same error floor, which signifies
that the quantization errors become dominant at high SNR.

50 T T T T
—MIMO CI
451 ¥ ESPAR Clideal
MRS
N u ropose:
% 40 ——Channel Sum Capacity
835 Solid: Perfect CSI
=~ Dashed: Imperfect CSI
230
E 25+ T
>3
w
220F R 1
8
g’ ‘
S 10 1
<
5 ]
&

20 3
SNR (dB)

Fig. 5: Achievable sum rate, N, = 5, K = 3, quantization
level D=1, =25

Fig. 5 compares the achievable sum rate of the proposed
scheme of conventional MIMO and ESPAR with quantized
loads with respect to the transmit SNR for both perfect CSI
and imperfect CSI. The channel sum capacity is given by

C=E { sup log, [det(I + HHGH)} } (67)
GeA

where sup denotes the supremum function and A is the set

of diagonal K x K matrices with nonnegative elements to

ensure ¢t (G) = 1. When equal transmit power allocation is

assumed, G = (1/K) - I. We note that, by the current vector



expression in (11), the typical Gaussian signaling assumption
in the transmit symbols s translates directly to the antenna
current vectors i in the ESPAR signal model. Accordingly, the
Shannon formula above assuming Gaussian signals can still
be applied to quantify the ESPAR performance. Then, it can
be observed from Fig. 5 that with ideal load impedances, the
ESPAR-based MIMO system can achieve the same rate per-
formance as conventional MIMO. However in the presence of
impedance errors by quantization, ESPARs are outperformed
by conventional MIMO transmission. The proposed scheme
is observed to achieve an improved performance compared
to ESPAR with quantized loads and can better approach the
performance of conventional MIMO, for both perfect CSI and
imperfect CSI.
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Fig. 6: BER comparison with respect to quantization level D,
N; =5, K =3, SNR=30dB, 8 = 2.5, QPSK

Fig. 6 compares the BER performance of conventional
MIMO and ESPARs with an increasing quantization level D
at the SNR of 30dB, under both perfect CSI and imperfect
CSI. For conventional MIMO, the BER performance remains
the same as impedance errors will not impact its performance.
For ESPAR with quantized loads, as can be seen, the BER
performance is degraded severely with the increase in the
quantization level. For the proposed scheme, it can be observed
that an improved performance can be achieved for both perfect
CSI and imperfect CSI, where the impedance mismatch effect
is greatly alleviated. It is also observed that the performance
gains of the proposed scheme over ESPARs with quantized
loads become more significant with the increase in the quan-
tization level.

Fig. 7 shows the achievable sum rate of conventional MIMO
and ESPARs with respect to the quantization level D under
both perfect CSI and imperfect CSI. With an increase in the
quantization level D, the performance gap between conven-
tional MIMO and ESPARs with quantized loads becomes
larger, as the impedance mismatch effect becomes more se-
vere. For the proposed scheme, it is observed that it can better
approach the rate performance of conventional MIMO for both
perfect CSI and imperfect CSI. Furthermore, it is shown that
the performance gains over ESPAR with quantized loads are
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Fig. 7: Achievable sum rate with respect to quantization level
D, N =5, K =3, SNR=30dB, g =2.5

more significant with a larger value of the quantization level,
which reveals the robustness of the proposed scheme even
when quantization level is high.
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Fig. 8 shows the energy efficiency of conventional MIMO
and ESPARs with respect to the quantization level D. For both
perfect CSI and imperfect CSI, it is observed that almost all
schemes based on ESPARs achieve a higher energy efficiency
performance compared to conventional MIMO, which is due
to the reduced number of RF chains required and the resulting
reduced power consumption. Moreover, it is observed that
in the presence of quantized loads, there will be an energy
efficiency loss caused by the reduced sum rate performance,
as shown in Fig. 7. For the proposed scheme, it can be seen
that while there is still a slight performance degradation with
the increase in the quantization level, it can better approach
the energy efficiency performance of ESPARs with ideal
continuous loads, for both perfect CSI and imperfect CSI.



Therefore, ESPARs with the proposed scheme can meet the
requirement for the future green communications.
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Fig. 9 compares the energy efficiency of conventional
MIMO and ESPARs with the increase in the transmit power
at SNR=30dB. For all schemes, the energy efficiency perfor-
mance is reduced with the increase in the transmit power, as
shown in (65). Moreover, it is observed that ESPAR systems
with ideal continuous loads offers the highest energy efficiency
due to the superior rate performance and the low power
consumption. For the proposed optimization based scheme, it
is observed that it improves the energy efficiency performance
of ESPARs with quantized loads due to the superior rate
performance, as shown in Fig. 5. For the imperfect CSI case, a
similar performance trend can be observed, and the proposed
scheme can approach the performance of ESPARs with the
ideal continuous loads.
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Fig. 10: Energy efficiency per user with respect to the number
of users, Ny = 5, quantization level D = 1, SNR=30dB,
8=25

Fig. 10 shows the average energy efficiency per user for both
conventional MIMO and ESPARSs, where the transmit power is
equally allocated to each user. With the increase in the number
of users, the energy efficiency per user is reduced due to the
reduced transmit power per user and the resulting reduced rate
per user. Moreover, it is observed that conventional MIMO
achieves the lowest energy efficiency performance due to the
overwhelming power consumption for multiple RF chains.
With the proposed scheme, ESPARs with quantized loads can
achieve a similar energy efficiency performance to the ideal
ESPAR arrays.

IX. CONCLUSION

In this paper the precoding techniques for ESPAR-based
MIMO systems are studied. The exact computation of the
tunable loads and feeding voltage is firstly obtained. Then,
we analytically derive the received SNR and probability of
error for CI precoding in the presence of quantized loads and
imperfect CSI. It is shown that impedance errors introduced by
quantization introduce an additional noise term. Furthermore,
to compensate for the performance degradation, we propose a
robust scheme where the optimal feeding voltage is obtained
with a closed-form solution. Simulation results show that ES-
PARSs with the ideal continuous loads can achieve a similar per-
formance to conventional MIMO, while the proposed scheme
can compensate for the performance loss introduced by the
quantized loads. It is also shown that the energy efficiency
results are more favourable for ESPAR based systems as only
one RF chain is employed.
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