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The nitrogen-vacancy (N-V) color center in diamond is an enormously important platform for the
development of quantum sensors, including for single-spin and single-molecule NMR. Detection of weak
single-spin signals is greatly enhanced by repeated sequences of microwave pulses; in these dynamical-
decoupling techniques, the key control parameters swept in the experiment are the time intervals, τ,
between pulses. Here, we show that, in fact, the pulse duration tp offers a powerful additional control
parameter. While a non-negligible tp was previously considered simply a source of experimental error, we
elucidate here the underlying quantum dynamics: we identify a landscape of quantum-state crossings which
are usually inactive (closed) but may be controllably activated (opened) by adjusting tp from zero. We
identify these crossings with recently observed but unexpected dips (so-called spurious dips) seen in the
quantum coherence of the N-V spin. With this new understanding, both the position and the strength of
these sharp features may be accurately controlled; they coexist with the usual broader coherence dips of
short-duration microwave pulses, but their sharpness allows for higher-resolution spectroscopy with
quantum diamond sensors, or their analogs.
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I. INTRODUCTION

The nitrogen-vacancy (N-V) color center in diamond is a
powerful nanoscale probe of its local environment [1–3].
The spin-1 electronic ground state can be initialized and
measured using lasers via optically detected magnetic
resonance, providing a window into its surroundings. A
wide range of sensing techniques have been developed to
perform the detection of individual nuclear spins [4–9],
spin clusters [10–13], and even their manipulation for use
as quantum registers [14–18].
For nuclear-spin detection, a sequence of microwave π

pulses repeatedly inverts the electronic state of the N-V
center. If the pulse rate exceeds the width of the environ-
mental spectral density, this permits effective decoupling
from magnetic noise arising from the surrounding bath of
nuclear spins, extending electronic coherence times by
orders of magnitude [19,20]. However, wherever the pulse
spacing τ is resonant with the target nuclear spins, the
converse is true: system-environment interactions are
magnified and a sharp signal is observed in N-V coherence
measurements. The above mechanism underpins a wide
range of techniques and pulse protocols termed dynamical
decoupling (DD).
The effectiveness of DD has stimulated interest in

alternative types of pulse sequences to obtain increased
resolution of experimental signals and protect against pulse
errors [21–23]. The only free parameters considered in
these experiments thus far have been the pulse spacings and

pulse phases. However, the application of certain pulse
sequences has been shown to produce so-called spurious
signals due to the finite duration of pulses [24,25]. To date,
these finite pulses have been considered sources of error, as
they lead to ambiguities in nuclear-spin classification,
presenting a considerable problem for nanoscale NMR
and magnetic resonance imaging (MRI) experiments.
The experimental analysis of DD has commonly been

treated with semiclassical noise theory [4,26] and geo-
metric approaches [5,6], which are exact only in the
simplest cases. Floquet analysis of the full quantum
dynamics was recently introduced [27] as a natural frame-
work of analysis. The method related an observed coher-
ence dip to avoided crossings in the underlying quantum
eigenstates: the shape and the depth of coherence dips are
determined by the width of each avoided crossing.
In this work, we show that the avoided crossings which

produce the usual coherence dips of quantum spin sensing
are actually part of a much larger family of crossings. For a
negligible pulse duration (tp ¼ 0), these are true crossings
that therefore yield no signal. We show here that the effect
of tp > 0 is to open—and thus to activate (to a varying
extent)—this larger landscape of crossings. We develop an
accurate quantum model which enables us to calculate
reliably the strength of these additional signals. We identify
these opened crossings with the “spurious” dips identified
in recent experiments [24].
By understanding the underlying quantum dynamics, we

are able to accurately model these newly identified signals:
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for a small tp, anticrossings are narrow, so the experimental
signals are sharply peaked. We can then propose how
to exploit the pulse width tp as an alternative experimental
parameter which offers an increase in resolution without
the need for complex pulse sequences, i.e., utilizing the
commonplace XY family [28] of pulse sequences.
Furthermore, we show that spurious signals can be either
enhanced or suppressed, i.e., controlled, allowing the
unambiguous classification of nuclear spins. This work
is not limited only to experiments with N-V centers: as the
theory is general, it could be applied to other defect centers,
such as those in silicon carbides.
The physical systems of interest here are modeled by

temporally periodic Hamiltonians, ĤðtÞ ¼ Ĥðtþ TÞ,
where T is the period. For example, for an XY4 NMR
microwave pulse sequence, T ¼ 4τ, which is then repeated
Np times. It can be shown that the behavior is given by an
eigenvalue equation,

ĤFjΦðnÞ
F i ¼ ϵnjΦðnÞ

F i; ð1Þ

quite analogous to a time-independent (but infinite)
Schrödinger equation, but where, in place of a
Hamiltonian, we diagonalize instead the (Hermitian)
Floquet operator,

ĤF ¼
�
ĤðtÞ − i

∂
∂t
�
; ð2Þ

to obtain the corresponding Floquet states jΦðnÞ
F i and

Floquet quasienergies ϵn.
Previously [27], the simple case of nuclear-spin detec-

tion with a Carr-Purcell-Meiboom-Gill (CPMG) sequence
[29,30] of idealized, infinitely sharp δ pulses (where the
pulse duration tp equals 0), allowed certain simplifications:
it is, in fact, straightforward to obtain Floquet states and
quasienergies by direct diagonalization of the one-period
unitary ÛðTÞ, constructed by concatenating the evolution
between pulses. For general pulses, this procedure would
not be adequate; e.g., for pulses of finite duration, the
eigenvectors and quasienergies ϵn ≡ ϵnðtpÞ now depend on
pulse duration; construction of the one-period evolution by
concatenation becomes cumbersome. In this work, it
becomes essential to obtain a full diagonalization of the
Floquet operator with Eq. (2).
When solving Eq. (1), a usual procedure is to write the

Hamiltonian,

ĤðtÞ ¼ Ĥ0 þ ĤpðtÞ; ð3Þ

in terms of a time-independent component Ĥ0 and a time-
periodic potential ĤpðtÞ¼ ĤpðtþTÞ. For nanoscale NMR
applications, Ĥ0 would represent the spin Hamiltonians,
including Zeeman terms and spin-spin interactions, while

ĤpðtÞ would represent the effect of the microwave pulses.
Typically, the Floquet operator is diagonalized in the basis
of Ĥ0. While this representation allows accurate numerical
solutions, it offers comparatively little physical insight.
However, the key part of our approach is to show

that we can consider instead an equivalent rotating-frame
Hamiltonian,

Ĥ0ðtÞ ¼ Ĥav þ V̂tpðtÞ; ð4Þ

where Ĥav is a time-independent, average Hamiltonian,
while V̂tp is an effective time-periodic potential, dependent
on pulse duration, that couples the average Hamiltonian
eigenstates. Section II details the transformation to this
frame.
In Fig. 1, we illustrate the Floquet spectrum and

the associated coherence behavior. The average spin
Hamiltonian in its eigenbasis is Ĥav ¼

P
αjαihαjωα

av.
(i) For the case V̂tp ¼ 0, the unperturbed Floquet

spectrum is shown in Fig. 1(b) and its eigenvalues
are given by ωα

av þ lω, where α ¼ 1;…; D, with D
representing the dimension of the spin system. The
additional index l ¼ 0;�1;�2;… is a consequence
of the invariance of Floquet states to translations in
ϵn by integer multiples of ω ¼ 2π=T. The Floquet
theorem is the temporal analog of the Bloch theorem
and, analogously to the band structure seen in lattice
dynamics in condensed-matter systems, the Floquet
eigenspectrum has additional level structures, cor-
responding to quasienergy shifts of single quanta in
ω. Hence, the unperturbed spectrum has degener-
acies wherever a pair of eigenvalues ωα, ωα0 differ by
an integer multiple of ω (see below). However, in
this case, degeneracies yield true crossings and no
coherence dip is seen.

(ii) For the case V̂ðtp¼0Þ, when we apply π pulses which
approximate ideal δ spikes, some crossings become
anticrossings and the usual structure of coherence
dips appears. The width of the crossing (and hence
the dip shape and visibility) depends crucially on
the matrix elements of the Floquet operator. In the
dressed-state basis where jli ¼ eilωt,

hmsαljĤFjm0
sα

0l0i ¼ ðωα
av þ lωÞδαα0δll0δmsm0

s

þ hmsαljV̂tp jm0
sα

0l0i: ð5Þ

Whether or not a dip is seen can be understood,
to first order, if we consider the diagonal con-
tributions to be dominant, so the levels may still
be labeled by the unperturbed basis msαl. If the
off-diagonal matrix element of V̂tp is nonzero,
then the degeneracy between the corresponding
levels will be lifted, creating an avoided crossing
which causes a coherence dip. For tp ¼ 0 only,
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hmsαljV̂tp jm0
sα

0l0iδmsm0
s
≠0: for the usual dynamical-

decoupling scenario, the bath evolution in the two
subspaces corresponding to the electronic states of
the N-V sensor remains fully independent.

(iii) Finally, we consider and illustrate in Fig. 1(c) the
general case of tp ≠ 0, where we apply π pulses of
finite duration. In this case, we find there are
nonzero couplings for the case ms ≠ m0

s, so that,
potentially, all crossings here are avoided crossings.
These couplings connect previously uncoupled (al-
beit degenerate) levels, hence turning true crossings
into avoided crossings and generating new, spurious
coherence dips.

The paper is constructed as follows: In Sec. II, we
explain how to construct the Floquet Hamiltonian matrix
and, specifically, how to calculate explicitly the matrix
elements of V̂tp . We exploit the fact that the dynamics at an
avoided crossing reduces to an effective two-state system in
order to obtain analytical forms for the coherence functions.

In Sec. III, we apply the method to the sensing of hyperfine
coupled spins and show how to obtain analytically the
shape and magnitude of the coherence dip for pulses of an
arbitrary duration tp and for pulse sequences with arbitrary
pulse positions. Tuning the pulse sequence can open and
close avoided crossings, thus allowing new control over
both expected and spurious coherence dips, and hence the
effective coupling to nuclear targets. A key result of this
work is an expression for spurious coherence dips given
in Eq. (15) and shown, in Sec. III C, to be in excellent
agreement with full numerics. In Sec. IV, we demonstrate
how the small width of spurious avoided crossings equates
to a significant increase in spectral resolution and, in Sec. V,
we conclude.

II. CONSTRUCTING THE FLOQUET
HAMILTONIAN

For the detection of nuclear-spin clusters via a N-V
center, it is typical to give the Hamiltonian in the form

FIG. 1. (a) DD pulse sequences are commonly applied in sensing protocols using N-V centers. A series of microwave pulses
repeatedly flip the electronic spins between an jms ¼ �1i and an jms ¼ 0i state. A frequent convenient approximation is to assume that
the dynamics of an environmental spin is given by a period-averaged Hamiltonian Ĥav (see Sec. II for details), with dips in coherence
occurring at the pulse spacing τdip ∼ π=ωav. We demonstrate in Sec. IV that spurious dips can be used to increase resolution for the

detection of multiple isolated spins. [Ĥðms¼0;1Þ is the (N-V state-dependent) nuclear Hamiltonian.] (b) The Floquet eigenspectrum for
Ĥav is given by ωav, but it shows the characteristic Floquet structure of dressed states shifted by integer multiples of ω ¼ 2π=T
(sometimes termed “multiphoton states”). In this case, level degeneracies correspond to true crossings. (c) The effect of the DD pulses,
for the ideal tp ¼ 0 case, is to turn some crossings into avoided crossings. A coherence dip, of a strength determined by the width of the
crossing, can then be seen. (d) For the general tp ≠ 0 case, all of the remaining crossings can potentially become avoided crossings:
typically narrow, they yield sharp weaker dips. Our main finding is to show that we can determine these dips analytically; a key result of
this work is Eq. (15), where we give a closed-form expression for the shape and the strength of these so-called spurious coherence dips
and argue that they are, in fact, useful for sensing. For the numerical simulations here, ωav ¼ 2π × 2 MHz and A⊥ ¼ 2π × 200 kHz. The
pulse sequence is XY8, with Np ¼ N=8 ¼ 60 repetitions. The finite pulses have a height Ω ¼ 2π × 20 MHz and a duration tp ¼ π=Ω.
T is in microseconds.
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ĤðtÞ ¼ Ĥ0 þ ĤpðtÞ≡ Î ⊗ Ĥav þ σ̂z ⊗ V̂ þ ĤpðtÞ; ð6Þ
which is in the form of Eq. (3). A distinction is now made
between the N-V and nuclear-spin subspaces. Here, Î and
σ̂z are Pauli matrices in the N-V ms ¼ 0, 1 subspace, Ĥav≡
1
2
½Ĥð0Þ þ Ĥð1Þ� and V̂≡ 1

2
½Ĥð1Þ− Ĥð0Þ� are the nuclear aver-

age and interaction Hamiltonians, respectively. Here,
Ĥðms¼0;1Þ ¼ hmsjĤ0jmsi is the nuclear-spin Hamiltonian
conditioned on the N-V state; see Appendix A for further
details.
In the frame rotating at the microwave frequency, the

pulse-sequence Hamiltonian takes the form

ĤpðtÞ ¼ ΩxðtÞŜx þ ΩyðtÞŜy; ð7Þ

where Ŝx;y represents the N-V spin operators and Ωx;yðtÞ
describes the amplitude of the microwave driving as a
function of time.
In order to obtain the Hamiltonian in the required

form of Eq. (4), we introduce a frame that rotates under
ĤpðtÞ. That is, Ĥ0ðtÞ ¼ Û†

pðtÞĤ0ÛpðtÞ, where ÛpðtÞ¼
T exp½−iR t

0Ĥpðt0Þdt0� is the time-ordered propagator.
The Ĥav component is unaffected by this transformation,

but the remainder will yield the coupling matrix V̂tp of
Eq. (4):

V̂tpðtÞ ¼ Û†
pðtÞσ̂zÛpðtÞ ⊗ V̂ ¼

X
i¼x;y;z

fiðtÞσ̂i ⊗ V̂: ð8Þ

Typically, microwave pulses are modeled as infinitely
sharp δ pulses. This approximation is adequate whenever tp
is much less than the nuclear signal period, so the detected
spin states do not evolve appreciably over the duration of
the pulse; only a modest number of pulse-sequence
repetitions Np are applied so that cumulative errors arising
from these effects remain insignificant.
In this case, the coupling matrix reduces to V̂tpðtÞ ¼

fzðtÞσz ⊗ V̂, where fzðtÞ is the usual stepped modulation
function [see Fig. 2(a)] defined in previous studies, and
there are no x or ymodulation functions. In this picture, the
new frame instantaneously flips along the z axis at each
pulse. We show here that the transformation to a rotating
frame is equally applicable for pulses of finite width.
As found in recent studies [24], the finite duration of

pulses must be taken into account, especially where an
increasing number of pulses are applied: the total phase
accumulation time during pulses Ntp can become compa-
rable or even greater than during ω−1

av if the number of
pulses, N, is sufficiently large. We now obtain the modu-
lation functions for the finite-duration pulses.

A. The f x;y;zðtÞ modulation functions for an arbitrary tp
Although Eq. (8) is generic, for convenience, we test the

method on pulses modeled by top-hat functions with a

given finite height Ω and width tp ¼ π=Ω, chosen such that
a full π rotation is completed during the pulse. In this case,
during the pulse, the frame does not instantaneously flip
along the z axis but must evolve smoothly between the
initial and final positions. This transit induces a sinusoidal
curve between �1 during the pulse, as seen in Fig. 2(b).
The unitarity of the transformation to the rotating frame
then requires that the transverse modulation functions,
fx;yðtÞ, be nonzero [again, see Fig. 2(b)].
During the pulse, the frame rotates about some axis in the

x-y plane, with a phase determined by the phase of the
pulse being applied and also by the phases of the pulses that

FIG. 2. Shows the modulation functions for an XY8 sequence
with (a) ideal π pulses and (b) pulses which provide a π rotation,
but which are of a finite duration tp. For this case, there are
nonzero contributions from fx;yðtÞ modulation functions which
can couple the ms subspaces. In our quantum Floquet treatment,
the modulation functions replace and generalize the role played
by the filter function in classical noise treatments of dynamical-
decoupling-based sensing. (c) Matrix elements of the modula-
tions function hlþ kjfijli in the dressed-state basis. The fz
matrix elements (blue) for k ¼ 4; 12; 20;… are responsible for
the “expected” coherence dips and are of a much larger
magnitude than the fx;y matrix elements, which are nonzero
only for tp > 0 and give rise to the so-called spurious coherence
dips. CPMG control does not produce spurious signals, precisely
because, in that case, the nonzero fk⊥ and fkz’s coincide. The
CPMG case is discussed in Appendix C.
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came before it. The rotation is such that a unit vector þẑ
becomes −ẑ by the end of the pulse.
For an isolated top-hat pulse, the transformation of σ̂z

is simple to calculate; however, the history of previous
pulses must also be taken into account. Consider an
arbitrary sequence of n pulses, all of height Ω and length
tp ¼ π=Ω, applied at times ft1;…; tng and phases
fϕ1;…;ϕng (ϕ ¼ 0 and ϕ ¼ π=2 correspond to X and
Y pulses, respectively). During the mth pulse, i.e., for
t0 ¼ t − tm ∈ ½−tp=2;þtp=2�,

Ûpðt0Þ ¼ exp½−iΩŜϕm
ðt0 þ tp=2Þ�

× ð−iσ̂ϕm−1
Þ × � � � × ð−iσ̂ϕ1

Þ: ð9Þ

Thus, we have

Û†
pðt0Þσ̂zÛpðt0Þ ¼ ð−1Þm sinΩt0σz þ cosΩt0 cosφmσx

þ cosΩt0 sinφmσy; ð10Þ

where φm¼ 2
P

m−1
k¼1 ð−1Þkþ1ϕkþð−1Þmþ1ðϕmþπ=2Þ. The

modulation functions during the mth pulse are

fxðt0Þ ¼ cosΩt0 cosφm;

fyðt0Þ ¼ cosΩt0 sinφm;

fzðt0Þ ¼ ð−1Þm sinΩt0; ð11Þ

and, between the pulses, fzðtÞ ¼ �1 and fx;yðtÞ ¼ 0.
In this section, we define an expanded set of modulation

functions for realistic pulse sequences that generalize the
stepped-modulation function used to model infinitely sharp
microwave pulses. These modulation functions can be
calculated for any periodic pulse sequence, and they are
crucial for deriving an analytical model of the spurious
signals produced by realistic pulses.

B. Matrix elements of the coupling V̂tp

Now that the modulation functions fiðtÞ have been
obtained, the matrix elements of V̂tp may be straightfor-
wardly evaluated in the jmsαli basis:

hmsαljV̂tp jm0
sα

0l0i ¼
X
i¼x;y;z

fl−l
0

i hmsjσ̂ijm0
sihαjV̂jα0i: ð12Þ

The hmsjσ̂ijm0
si’s are common Pauli matrix elements, while

evaluating the nuclear-interaction Hamiltonian matrix ele-
ments hαjV̂jα0i is a standard procedure and is typically
quite straightforward: for nuclear-spin detection V̂ ¼ A⊥Îx
(see Appendix B for further details).
However, the modulation-function matrix elements in

the dressed-state basis are of most significance:

fki ¼ hlþ kjfiðtÞjli ¼
1

T

Z
T

0

dt0fiðt0Þ expð−ikωt0Þ ð13Þ

are the Fourier amplitudes of the periodic modulation
functions. They play a key role in our approach by selecting
whether a crossing becomes an anticrossing, as well as
determining its width; in effect, they replace (and, for the
f⊥ case, generalize) the role played by the filter function, a
common method of analysis of spin sensing, using classical
noise models.
Importantly, for robust DD sequences (see Fig. 2), fkz and

fk⊥ ¼ fkx þ ifky are nonzero for different values of k. The fkz
terms create avoided crossings and coherence dips at
expected pulse spacings, whereas fk⊥ creates new avoided
crossings and dips at so-called spurious positions. The
width of the avoided crossing is proportional to the
magnitude of the relevant fkz or fk⊥. The fact that jfkz j ≫
jfk⊥j immediately explains why the spurious dips are much
sharper and are typically seen only for large pulse numbers,
which is a result of narrower avoided crossings. This
understanding of spurious dip sharpness leads us to propose
a sensing protocol that exploits this behavior to obtain
increased spectral resolution. This method is discussed in
Sec. IV. The finite-pulse effect in experiments using a
CPMG sequence is discussed in Appendix C.

III. APPLICATION: SINGLE-SPIN NMR

A. Average Hamiltonian states

For the detection of a single spin 1=2, such as an
environmental nuclear spin, the average Hamiltonian
Ĥav ¼ ωavÎz and V̂ ¼ A⊥Îx; hence, the average
Hamiltonian basis takes a very simple form. Figure 3
and Appendix A describe how the average Hamiltonian
basis relates to the Zeeman basis. In the weak-coupling

-

-

-

FIG. 3. The direction between the nitrogen and vacancy sites in
the N-V center sets the axis ẑN-V , and the external field,
B ¼ BzẑN-V , is applied parallel. The hyperfine field felt at the
nucleus, A ¼ ðAx; 0; AzÞ, shifts the quantization axes of the
nuclear Hamiltonian. It is useful to work in the nuclear average
Hamiltonian basis, and this quantization axis is shown.
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regime, A⊥ ≪ ωav, so the diagonal matrix elements of ĤF
are much larger than the off-diagonal couplings. The
unperturbed Floquet eigenspectra is given by f�ωav=2þ
lωjl ¼ 0;�1;�2;…g. Degeneracies occur in the spectra
when ω ¼ ωav=k, i.e., T ¼ 2πk=ωav. Figure 1(b) shows the
unperturbed eigenspectra in a scan of DD period, T.
The off-diagonal terms in the V̂tp coupling matrix are

A⊥fkz=2 and A⊥fk⊥=2 ¼ A⊥ðfkx þ ifkyÞ=2, where fki repre-
sents the Fourier amplitudes of the modulation functions.
Figure 2 shows the magnitude of the Fourier amplitudes for
an XY8 pulse sequence evaluated at the degeneracies
T ¼ 2πk=ωav. The coherence dips expected from DD-
based sensing are caused by fkz ; thus, for an XY8 sequence,
dips occur at T ¼ 2πk=ωav for k ¼ 4; 12; 20;…, as seen in

Fig. 1(c). When a finite pulse is modeled, the fk⊥’s become
nonzero, opening new avoided crossings and causing new
coherence dips. The resulting perturbed eigenspectra with
avoided crossings are illustrated in Fig. 1(d).

B. Calculating the coherence function

To model a spurious dip, ĤF must be diagonalized at
T ≈ 2πk=ωav, with k’s such that fk⊥ ¼ jfk⊥j expðiϕk⊥Þ ≠ 0.
At this value of T, the Floquet Hamiltonian can be treated
as an infinite set of 2 × 2matrices as the pairs of degenerate
diagonal entries, ωav=2þ lω and −ωav=2þ ðlþ kÞω, are
coupled by the fk⊥ (or f−k⊥ ) terms, whereas all other off-
diagonal entries fail to couple a degeneracy and can be
neglected. The procedure is shown in Fig. 4, which

FIG. 4. Toolbox for calculating coherence function for finite pulses for detection of spin-half environmental spins. (a) Schematic
representation of the Floquet Hamiltonian matrix. Each element of the original Hamiltonian becomes an infinite block containing all of
the Fourier coefficients. The relative magnitude of the off-diagonal terms are determined by the hyperfine coupling strength v⊥ ¼ A⊥=2
and the Fourier series of the periodic modulation functions, fkz (for the ms ¼ m0

s case, ordinary coherence dips) and fk⊥ ¼ fkx þ ifky
(when ms ≠ m0

s, spurious dips). (b) To evaluate the form of the k ¼ 2 dip, we consider the coupling, at T ≈ Tðk¼2Þ
dip , between the pairs of

states in the avoided crossing. The resulting 2 × 2 matrices can be diagonalized exactly to yield the stroboscopic evolution (see Sec. III
B) and an analytical expression for the shape of the coherence dip shown in (c).
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illustrates the specific case of a k ¼ 2 dip. The Floquet
Hamiltonian is effectively decoupled into 2 × 2 subspaces,
and they can be diagonalized analytically.
The Floquet Hamiltonian can then be written in the form

ĤF ¼ D̂FΛ̂FD̂
−1
F , where Λ̂F is the diagonal matrix of

Floquet quasienergies and D̂F contains all of the Floquet
Hamiltonian eigenstates. The stroboscopic evolution oper-
ator is given by ÛðNpTÞ ¼ D̂ expð−iΛ̂NpTÞD̂−1, where
hmsαjD̂jm0

sα
0i ¼P

lhmsαljD̂Fjm0
sα

00i and hmsαjΛ̂jmsαi ¼
hmsα0jΛ̂Fjmsα0i. This expression is valid for arbitrary
Np’s (and given explicitly in Appendix B), and thus an
analytic expression for the spurious coherence response of
the N-V center can be obtained:

LðNpTÞ ∝ hŜxi ¼ Tr½ŜxÛðNpTÞρ0Û†ðNpTÞ�: ð14Þ

Typically, the N-V center is initially prepared in a
superposition state along the þx direction and the nuclear
target is assumed to be in a thermal state. The initial density
matrix is ρ0 ¼ 1

4
ðIþ σxÞN-V ⊗ Itarget.

The spurious coherence dip is given by

LsðNpTÞ ¼ 1 − 2

�
ϵsðk;TÞ2 − ðωav − kωÞ2=4

ϵsðk;TÞ2
�

× sin2½Npϵsðk;TÞT�cos2ðϕk⊥ þ ϕgÞ; ð15Þ

where ϵsðk;TÞ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωav − kωÞ2 þ jA⊥fk⊥j2

q
describes the

kth avoided crossing. The new parameter ϕg is introduced
to denote a global phase added to all of the pulses while
maintaining the phase of the initial N-V state and meas-
urement. Recent work on spurious coherence dips has
shown a dependence on global phase [25], and it is
modeled here. Figure 5 shows a good fit of this analytic
expression to numerical data.
At the dip ϵsðk;Tk

dipÞ ¼ 1
2
jA⊥fk⊥j, where jA⊥fk⊥j is the

width of the quasienergy avoided crossing and defines
the effective coupling strength of the nuclear spin to the
N-V under DD control, as opposed to the bare coupling
strength A⊥. The term in curly brackets reaches unity
at the dip position, so the depth of the dip is given
by LsðNpTk

dipÞ ¼1−2sin2ðNp
1
2
jA⊥fk⊥jTk

dipÞcos2ðϕk⊥þϕgÞ,
which reaches a maximum depth of LsðNmax

p Tk
dipÞ ¼

−cos½2ðϕk⊥ þ ϕgÞ� at Np ¼ Nmax
p ¼ π=ðjA⊥fk⊥jTk

dipÞ. The
depth of spurious dips is, therefore, limited by the phase of
fk⊥. For XY8, ϕk⊥ ∈ f�π=4;�3π=4g, so the spurious dips
will never drop below zero (for ϕg ¼ 0). However, scan-
ning ϕg gives control over the spurious-dip depths. In fact,
the kth spurious resonance can be turned off, to avoid
ambiguities with other nuclear signals, by setting ϕg ¼
−ϕk⊥ � π=2. Conversely, the contrast of a particular spu-
rious dip can be maximized by choosing ϕg ¼ −ϕk⊥.
Table I lists isotopes with fundamental signals that can

be mimicked by the spurious harmonic of another isotope
and lists the global phase required to suppress this spurious
signal. These global phases are specific for the XY8
sequence, but similar relations can be derived for any other
DD sequence.
For Np > Nmax

p , the dip simply acquires additional
sideband structures, which, with increasing Np, pro-
gressively fill an envelope Lenv

s ðTÞ ¼ 1 − 2f½ϵsðk;TÞ2 −
ðωav − kωÞ2=4�=½ϵsðk;TÞ2�gcos2ðϕk⊥ þϕgÞ function, which
is independent of Np. We also find that this coherence
envelope function has the width WT ¼ 2jA⊥fk⊥jTk

dip=ωav.
A formula for the expected coherence dips can also be

obtained by diagonalizing the Floquet Hamiltonian at Tk
dip

for k such that fkz ≠ 0:

LðNpTÞ ¼ 1 − 2

�
ϵðk;TÞ2 − ðωav−kω

2
Þ2

ϵðk;TÞ2
�
sin2 ½Npϵðk;TÞT�;

ð16Þ

(a)

−

−

− −

−

−

s s

(b)

FIG. 5. Comparison of numerics (the black dots) to the analytic
expressions (the blue lines) for (a) the k ¼ 2 spurious dip and
(b) the k ¼ 4 expected dip under XY8 control. Above are the
associated Floquet avoided crossings. Note that the scale on the
expected avoided crossing is 10 times larger. For the numerical
simulations here, in the Zeeman basis, ωz ¼ 2π × 2 MHz and
Ax ¼ 2π × 200 kHz. The pulse sequence has Np ¼ N=8 ¼ 60

repetitions. The finite pulses have the height Ω ¼ 2π × 20 MHz
and the duration tp ¼ π=Ω.

TABLE I. Isotopes susceptible to ambiguous characterization
due to the presence of another isotope that mimics the signal at
the listed harmonic. Applying the global phase, ϕg, to all pulses in
the XY8 sequence suppresses the unwanted spurious signal for
unambiguous nuclear species classification. (For XY8, the n×
harmonic of the fundamental signal is at Tk

dip ¼ 2πk=ωav for
k ¼ 4=n.)

Isotope Mimic Harmonic ϕg

1H 13C 4× −π=4
29Si 13C 4=5× −π=4
31P 1H 2=5× þπ=4

ENHANCED RESOLUTION IN NANOSCALE NMR VIA … PHYS. REV. APPLIED 7, 054009 (2017)

054009-7



where ϵðk;TÞ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωav − kωÞ2 þ jA⊥fkz j2

p
describes the

Floquet-eigenvalue avoided crossing, and there is no
dependence on the phase of fkz or a global phase. The
parameters in this case have the same functional form but
employ fkz instead of fk⊥.
Since fk⊥ ≪ fkz , the width of the spurious dips is much

less than those of expected dips implying an increase in
resolution and a possible aid for improving sensing experi-
ments. This result is described in Sec. IV.

C. Comparisons with numerics

To validate the new analytic expression for coherence
dips, it is compared against a full numeric calculation. An
example of the accurate fit is shown in Fig. 5. Both
expected and spurious dips are shown to be modeled well
by the analytic formula. The numerics are obtained by
directly propagating the N-V–nuclear-spin system in the
Zeeman basis. Intervals of free propagation under Ĥ0 are
concatenated with the propagation during the pulse
under Ĥ0 þ Ĥpðt0Þ.
Notice that the k ¼ 2 spurious avoided crossing is approx-

imately 20 times narrower than the expected k ¼ 4 avoided
crossing.This narrowingequates toa20 times reduction indip
width, as can be seen in the coherence traces. The spurious
dips are much narrower than the expected dips. In the next
section,we describe a protocol to exploit this feature to obtain
increased resolution in sensing experiments.

IV. SPURIOUS DIPS AS A RESOURCE

Recent theory proposals and experiments make use of
tunable decoupling sequences to gain control over the
effective coupling to nuclear spins [13,21–23]. These
protocols involve the application of sequences made of
composite pulses with adjustable interpulse spacing so that
one can tune jfkz j and open or close avoided crossings, i.e.,
augmenting or diminishing the effective coupling to
nuclear spins—and thus the width of experimental signals.
By choosing jfkz j to be small, one can sharpen a selected
coherence dip allowing for better resolution between
isolated nuclear spins. The number of pulses that can be
applied is constrained by the T2 coherence time, so the
minimal limit for jfkz j is determined by the requirement that
the dip still obtain a visible contrast after the maximum
number of pulses.
One result of this work is to see that spurious dips are

naturally much narrower than the normal dips because
jfk⊥j ≪ jfkz j. Hence, if spurious signals are observed in the
spectra, one can increase the spectral resolution without
complex pulse-sequence design. One requires only that
jfk⊥j is not so small that the dips cannot obtain appreciable
contrast after the maximum allowed number of pulses is
applied (this constraint is the same for tunable pulse
sequences). From another point of view, the enhanced

spectral resolution by spurious dips is realized by making
the effective coupling smaller than the frequency separa-
tion. Otherwise, the strong coupling invalidates the rotat-
ing-wave approximation to remove perturbation from
unwanted spins [13,21].

s

s

(a)

−

−

(b)

FIG. 6. (a) Numerical simulation of the N-V coherence coupled

to two independent nuclear spins with ωð1Þ
av ¼ 2π × 402.6 kHz

and ωð2Þ
av ¼ 2π × 405.4 kHz and hyperfine coupling strengths

Að1Þ
⊥ ¼ 2π × 21.6 kHz and Að2Þ

⊥ ¼ 2π × 31.0 kHz. (Solid black
line) The coherence trace after Np ¼ 7 repetitions of the XY8
sequence. (Solid gray line) The coherence trace after Np ¼ 75

repetitions. The finite pulses have the height Ω ¼ 2π × 10 MHz
and the width tp ¼ π=Ω. (Inset) A magnification of the spurious
dips with the analytic expression, Eq. (15), for each dip plotted
(the dashed line). (b) Numerical simulation of the N-V coherence
coupled to two, more remote independent nuclear spins with

ωð1Þ
av ¼ 2π × 16.67 kHz and ωð2Þ

av ¼ 2π × 15.56 kHz and hyper-

fine coupling strengths Að1Þ
⊥ ¼ 2π × 1.63 kHz and Að2Þ

⊥ ¼ 2π ×
2.14 kHz. (Solid black line) The coherence trace after Np ¼ 1

repetitions of the XY8 sequence. (Solid gray line) The coherence
trace after Np ¼ 10 repetitions. The finite pulses have the height
Ω ¼ 2π × 100 kHz and the width tp ¼ π=Ω. The analytic ex-
pression, Eq. (15), for the spurious dips is also plotted (the dashed
line). In each case, the expected positions of the fundamental dip
for each spin are denoted by the red and blue vertical dashed
lines, but they are unresolved because the frequency separation is
less than the hyperfine coupling strength. By increasing the
number of pulses, the pairs of spins can be clearly resolved at the
k ¼ 2 spurious dip. A global phase of ϕg ¼ −π=4 is applied to
the pulse sequence to enhance the contrast at the spurious dip.
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This strategy has different benefits with respect to the use
of more-complex sequences. On the one hand, the use of
sequences containing composite pulses requires one to
apply a number of pulses larger than the one used by a
standard sequence, such as XY8. In this respect, and even
under moderate pulse error conditions, the applicability of
composite sequences can be challenging because the error
accumulates, damaging the signal. On the other hand, the
use of a robust sequence of composite pulses requires an
accurate control of each pulse phase [13,21]—i.e., each
pulse has to rotate the N-V state around a different axis on
the x-y plane—and this is another experimental require-
ment to be addressed. Note that, for a XY8 sequence, just
two phases are needed. Furthermore, the analytic expres-
sion, Eq. (15), indicates that one can also gain control over
the spurious dips, either by applying a global phase, ϕg, to
all pulses or by carefully designing the pulse sequence to
selectively control fk⊥.
A simple protocol for increasing resolution is demon-

strated in Fig. 6. Here, an XY8 sequence drives a N-V
center coupled to two isolated nuclear spins (13C in
diamond, for demonstration). In the first instance, the spins
are approximately 0.6 nm from the N-V, while, in the
second instance, the spins are more weakly coupled at
about 2 nm from the N-V center. In both cases, initial
attempts to resolve the spin with the fundamental dip fail
because the hyperfine coupling strengths are greater than
the signal separation. However, by judiciously increasing
the number of pulses and reducing the microwave pulse
height (i.e., the Rabi frequency), one obtains sharp spurious
features where the signals can be resolved. One can also
add a global phase to the pulse sequence to enhance the
contrast of the desired spurious dip.

V. CONCLUSION

We propose the use of the microwave pulse width, tp
in dynamical-decoupling sequences as an additional
experimental parameter in nanoscale NMR and MRI
experiments. We demonstrate increased resolution in the
detection of single nuclear spins by exploiting so-called
spurious signals that arise due to finite pulse widths. We
also propose methods for suppressing the spurious signals
from nuclei when they mimic signals from other isotopes,
thus removing ambiguity in nuclear-spin identification.
Floquet analysis is applied as the natural framework for

studying quantum-sensing experiments under periodic
dynamical-decoupling control. It reveals a landscape of
avoided crossings in an underlying quantum spectrum that
controls the position and the depth of characteristic N-V
coherence dips. It is shown that adjusting tp from zero
opens new avoided crossings that correspond to spurious
signals in coherence traces. An analytic expression for
spurious dips is given in Eq. (15), and it is shown to be in
good agreement with numerics. Our study heralds an

alternative generation of pulse-sequence design that
exploits realistic pulse profiles alongside tuned pulse
spacings and phases.
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APPENDIX A: AVERAGE HAMILTONIAN
STATES FOR SINGLE-SPIN SENSING

To analyze the effect of finite pulses, we model an
experiment sensing a single nuclear spin half, Î. For
nuclear spins far from the N-V center, we can assume
the hyperfine coupling to be pure dephasing. In this case,
the nuclear-spin Hamiltonian is conditioned on the state
of the N-V center: Ĥð0Þ ¼ γnB0ÎzN-V and Ĥð1Þ ¼ γnB0ÎzN-Vþ
A · Î, where the superscripts 0 and 1 denote the N-V-center
state. Here, ẑN-V is set by the N-V axis and x̂N-V is set
by the hyperfine field such that A ¼ ðAx; 0; AzÞ. A mag-
netic field, B ¼ B0ẑN-V , is applied parallel to the N-V
axis and γn is the nuclear gyromagnetic ratio. In the lab
frame, the nuclear average Hamiltonian is given by
Ĥav ¼ γnB0ÎzN-V þ 1

2
A · Î, and the nuclear-interaction

Hamiltonian is V̂ ¼ 1
2
A · Î.

In the average Hamiltonian basis, Ĥav ¼ ωavÎz and
V̂¼A⊥ÎxþA∥Îz, where ẑ¼ cosθavẑN-Vþsinθavx̂N-V and
x̂¼cosθavx̂N-V−sinθavẑN-V . The average Hamiltonian
frequency is ωav ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγnBz þ Az=2Þ2 þ ðAx=2Þ2

p
, and

the hyperfine components in this basis are given by
A⊥ ¼ ðAx cos θav − Az sin θavÞ=2 and A∥ ¼ ðAz cos θav þ
Ax sin θavÞ=2, where θav ¼ arctan½Ax=ð2γnB0 þ AzÞ�.
Figure 3 shows the system fields in the two bases. For
simplicity, we ignore the A∥ contribution to the interaction
term as, for weak coupling, the effect of parallel fluctua-
tions is small. In the Floquet Hamiltonian, this approxi-
mation can be understood, as it does not couple degenerate
energy levels. Perturbative techniques could be used to
study the effect of parallel coupling strengths.
Considering the application of a repeated XY8 dynami-

cal-decoupling sequence, the N-V–nuclear Hamiltonian
can be written in the frame rotating under the effect of
the pulse Hamiltonian as

Ĥ0ðtÞ ¼ Î ⊗ ωavÎz þ
X
i¼x;y;z

fiðtÞσ̂i ⊗ A⊥Îx; ðA1Þ

where the modulation functions for XY8 are shown
in Fig. 2. This Hamiltonian is shown in matrix form in
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Fig. 7 so that it can be compared with a schematic
representation of ĤF, which is shown in Fig. 4. The
elements of the Floquet Hamiltonian, ĤF, are obtained
from Eq. (5). In the weak-coupling regime, ωav ≫ A⊥, ĤF
is approximately diagonal with only small off-diagonal
perturbations.
The unperturbed eigenvalues are given by the diagonal

entries ϵ�l ¼ �ωav=2þ lω, which are doublets. These
doublets remain degenerate, as there is no off-diagonal
perturbation connecting them. More interesting are the
degeneracies that occur when the DD frequency, ω, is set to
ω ¼ ωav=k. At this point, ωav=2þmω ¼ −ωav=2þ ðmþ
kÞω for all m’s. In Fig. 1(b), these unperturbed eigenvalues
are plotted as ϵ�lT ¼ �ωavT=2þ l2π.
If the off-diagonal perturbation connecting two diagonal

entries is nonzero, the degeneracy will be lifted and an
avoided crossing will appear. These perturbed eigenvalues
are plotted in Figs. 1(c) and 1(d).

APPENDIX B: COHERENCE FUNCTIONS

1. tp = 0 case: Expected coherence dips

The Fourier amplitudes fkz determine the positions of the
expected coherence dips. The Fourier series for an XY8
sequence is shown in Fig. 2(c). Dips appear when ω ¼
ωav=k for k ¼ 4; 12; 20;…. At these values of ω, we must
take the off-diagonal perturbations into account, and the
Floquet Hamiltonian separates into an infinite set of 2 × 2
matrices which can be diagonalized.
As discussed in Sec. III B, the stroboscopic evolution

in the original Hilbert space is obtained from the diago-
nalization of ĤF. At the expected coherence dips, the
propagator is given by

ÛðNpTÞ ¼ e−ikNpπ

0
BBB@

ua ub 0 0

−u�b u�a 0 0

0 0 ua −ub
0 0 u�b u�a

1
CCCA; ðB1Þ

where ua¼cos½Npϵðk;TÞT�−isin½Npϵðk;TÞT�cosθFðk;TÞ,
ub ¼ −i sin½Npϵðk;TÞT� sin θFðk;TÞ and ϵðk;TÞ ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωav − kωÞ2 þ jA⊥fkz j2

p
and θFðk;TÞ ¼ arctan½jA⊥fkz j=

ðωav − kωÞ�.
The coherence of the N-V sensor near the dip at Tk

dip ¼
2kπ=ωav is thus modeled by

LðNpTÞ ¼ 1 − 2 sin2½Npϵðk;TÞT� sin2 θFðk;TÞ: ðB2Þ

In the main text, we use the identity sin2 θFðk;TÞ ¼
½ϵðk;TÞ2 − ðωav − kωÞ2=4�=ϵðk;TÞ2 to emphasize the
importance of the Floquet quasienergy spectra, ϵðk;TÞ.

2. tp ≠ 0 case: Spurious coherence dips

For the XY8 sequence, there are spurious dips at Tk
dip ¼

2kπ=ωav for k ¼ 1; 2; 3; 5; 6; 7; 9; 10; 11;…, as shown in
Fig. 1. For these k’s, the Floquet Hamiltonian will again
have degeneracies in diagonal terms lifted by off-diagonal
perturbations. The Floquet Hamiltonian separates into
2 × 2 matrices and can be diagonalized. The stroboscopic
evolution is then given by

ÛsðNpTÞ ¼ e−ikNpπ

0
BBB@

va 0 0 vb
0 v�a −vb 0

0 v�b va 0

−v�b 0 0 v�a

1
CCCA; ðB3Þ

where va ¼ cos½Npϵðk;TÞT� − i sin½Npϵsðk;TÞT�×
cos θFsðk;TÞ, vb ¼−isin½ðNpϵsðk;TÞT�sinθFsðk;TÞe−iϕk

F

and ϵsðk;TÞ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωav − kωÞ2 þ jA⊥fk⊥j2

q
, θFsðk;TÞ ¼

arctan½jA⊥fk⊥j=ðωav − kωÞ� and ϕk
F ¼ ϕk⊥, where fk⊥ ¼

jfk⊥jeiϕ
k⊥ .

The spurious dip near Tk
dip ¼ 2kπ=ωav in a N-V coher-

ence trace is thus modeled by

LsðNpTÞ ¼ 1 − 2 sin2½Npϵsðk;TÞT� sin2 θFsðk;TÞ cos2 ϕk
F:

ðB4Þ

APPENDIX C: CPMG SEQUENCES

In this section, we briefly analyze the sensor response
under the CPMG dynamical-decoupling sequence. A
CPMG sequence has the same pulse positions as XY8
except that all pulses have the same (x) phase. The pulse
amplitudes are shown in Fig. 8(a) along with the
modulation functions obtained from Eq. (11). The
fzðtÞ modulation function is independent of the pulse
phases and thus is the same as for XY8. The change of
pulse phase is encoded into the perpendicular modula-
tion functions. For CPMG, fxðtÞ ¼ 0, while fyðtÞ
is shown.
When detecting a single nuclear spin, as in the

main text, one first studies the unperturbed Floquet
spectrum to find that there are degeneracies at
T ¼ 2πk=ωav. (We choose an eight-pulse CPMG unit

FIG. 7. Full N-V–nuclear-spin
Hamiltonian in the average nu-
clear-spin basis. It is composed of
the diagonal average Hamiltonian
with periodic off-diagonal terms.
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as one period to allow for a simple comparison with
XY8.) Upon calculating the coupling-matrix elements in
the Floquet Hamiltonian, one finds that the spurious
couplings A⊥fk⊥=2 are nonzero for k ¼ 4; 12; 20;…,
coinciding with the nonzero expected couplings
A⊥fkz=2; see Fig. 8(b). This correspondance is due to
fzðtÞ and fyðtÞ having the same frequency, which
immediately explains why spurious resonances are not
seen in CPMG coherence traces. The spurious signal is
buried inside the expected dip. In fact, the finite-pulse
effect on CPMG traces is to perturb the expected
coherence dip but not create new signals.
The coherence can again be modeled by LðNpTÞ ∝

Tr½ŜxÛðNpTÞρ0Û†ðNpTÞ�, where the propagator at time
t ¼ NpT is determined by an effective Hamiltonian
ÛðNpTÞ ¼ expð−iĤeffNpTÞ. At T ¼ 2πk=ωav,

Ĥeff ¼

0
BBBBB@

ωav−kω
2

A⊥
2
fkz 0 A⊥

2
fk�⊥

A⊥
2
fkz − ωav−kω

2
A⊥
2
f−k�⊥ 0

0 A⊥
2
f−k⊥

ωav−kω
2

− A⊥
2
fkz

A⊥
2
fk⊥ 0 − A⊥

2
fkz − ωav−kω

2

1
CCCCCA
: ðC1Þ
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