
Towards advanced robotic manipulation for nuclear
decommissioning: a pilot study on tele-operation and autonomy

Naresh Marturi1,2 Alireza Rastegarpanah2 Chie Takahashi2 Rustam Stolkin2

Jeffrey A. Kuo3 Yasemin Bekiroglu2

Abstract—We present early pilot-studies of a new interna-
tional project, developing advanced robotics to handle nuclear
waste. Despite enormous remote handling requirements, there
has been remarkably little use of robots by the nuclear industry.
The few robots deployed have been directly teleoperated in rudi-
mentary ways, with no advanced control methods or autonomy.
Most remote handling is still done by an aging workforce of
highly skilled experts, using 1960s style mechanical Master-
Slave devices. In contrast, this paper explores how novice human
operators can rapidly learn to control modern robots to perform
basic manipulation tasks; also how autonomous robotics tech-
niques can be used for operator assistance, to increase through-
put rates, decrease errors, and enhance safety. We compare
humans directly teleoperating a robot arm, against human-
supervised semi-autonomous control exploiting computer vision,
visual servoing and autonomous grasping algorithms. We show
how novice operators rapidly improve their performance with
training; suggest how training needs might scale with task com-
plexity; and demonstrate how advanced autonomous robotics
techniques can help human operators improve their overall task
performance. An additional contribution of this paper is to show
how rigorous experimental and analytical methods from human
factors research, can be applied to perform principled scientific
evaluations of human test-subjects controlling robots to perform
practical manipulative tasks.

I. INTRODUCTION

This paper discusses the potential of applying advanced
robotics technologies to the many manipulation tasks in-
volved in nuclear decommissioning. The human factors issues
of tele-operation are explored; learning effects of novice
robot operators are observed; and direct tele-operation is
compared against the potential advantages of exploiting ad-
vanced autonomous robotics and computer vision methods.
This paper reports early findings, of preliminary experiments,
performed as part of a major new international project called
RoMaNS (Robotic Manipulation for Nuclear Sort and Seg-
regation) [1]. RoMaNS is a project funded by the European
Commission’s H2020 programme, with collaboration by five
labs in three countries, including the nuclear agencies of UK
and France.

Nuclear decommissioning, and the safe disposal of nuclear
waste, is a global problem of enormous societal impor-
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Figure 1. Human operator controlling a Brokk robot for pick and place
operations inside a radioligically active environment. The operator is viewing
the robot through a 1.2m thick lead-glass window, and controlling each joint
with a separate lever, while guessing the inverse kinematics from experience.

tance. Decommissioning the legacy waste inventory of the
UK alone, represents the largest environmental remediation
project in the whole of Europe, and is expected to take at
least 100 years to complete, with estimated clean-up costs as
high as £220billion (around $300billion) [2]. The quantities
of legacy nuclear waste are vast, with intermediate level waste
(ILW) alone amounting to 1.4 million cubic metres in the UK.
Nuclear cleanup is a worldwide humanitarian issue (saving
the environment for future generations) that must be faced
by any country that has engaged in nuclear activities.

Much of the legacy nuclear waste is very old. Nuclear
operations in USA and UK began in the 1940s, and greatly
accelerated in both countries following the first USSR atomic
bomb test in 1949. UK pioneered peaceful use of atomic
energy, with the world’s first industrial scale civil nuclear
power plant coming online at the UK Sellafield site in 1956.
Thus, in several countries, legacy nuclear waste materials and
facilities can be more than two-thirds of a century old. At the
UK Sellafield site, 69,600 cubic metres of legacy ILW waste
must be placed into 179,000 storage containers. To avoid
wastefully filling expensive high-level containers with low-
level waste, many old legacy containers must be cut open,
and their contents “sorted and segregated” [3]. This engenders
an enormous requirement for complex remote manipulations,



since all of this waste is too hazardous to be approached by
humans. In most nuclear plants worldwide, the vast majority
of remote manipulation is performed by an aging (mean age
>50 in UK) workforce of very highly skilled human oper-
ators, using mechanical Master-Slave Manipulator (MSM)
devices. Such devices date back to at least 1949 [4] and at
many nuclear sites have changed little in design since the
1960s. They comprise a “master” arm, grasped and moved
by a human in a safe zone, which is mechanically linked
to a system of gearing and cables which passes through
a concrete shielding wall to a “slave” arm and gripper in
the active contaminated zone. Perhaps surprisingly to a lay-
person, remarkably few real robots have been deployed in the
nuclear industry, and these have predominantly been directly
tele-operated in rudimentary ways [5]. One such example can
be seen in Fig. 1, where a human operator is tele-operating
a hydraulic Brokk robot arm. Such robots, widely trusted
in the industry due to their ruggedness and reliability, do
not actually have joint-encoders, and no inverse-kinematics
solving is possible for enabling Cartesian work-space control
via a joystick.

Remote operation of dual-arm mobile manipulators for
nuclear decommissioning tasks have been proposed [6], [7]
and attempts have been made to deploy tele-operated robots
at nuclear disaster sites [8], with robots controlled by viewing
through a window, or via CCTV cameras mounted on or
around the robot. A major difficulty is situational awareness,
especially the lack of depth perception which affects accuracy
and repeatability [9]. Direct tele-operation by humans is also
slow, while the legacy waste inventory that needs processing
is astronomical. We suggest that modern computer vision
techniques are now robust enough to significantly enhance
throughput rates, accuracy and reliability, by enabling partial
or even full automation of many nuclear waste manipulation
tasks.

Machine vision systems are already being used for a wide
variety of industrial processes [10], where they provide infor-
mation about scenes and objects (size, shape, colour, pose)
which can be used to control a robot’s trajectory in the task
space [11], [12]. However, we are not aware of such visual-
servoing technques being applied in the (highly conservative)
nuclear domain. Some machine vision applications have been
proposed for nuclear facilities. In [3], a vision-based solution
is presented for identification and classification of nuclear
waste items. [13] proposed a vision-based method for control-
ling the trajectory of inspection robots for nuclear reactors.
Techniques for estimating radiation levels and nondestructive
testing of piping systems can be found in [14] and [15],
respectively.

However, comparatively little attention has been given to
automating nuclear sort and segregation tasks, e.g., integra-
tion of tele-operation and automation using a dual-arm robot
based on force feedback only [16]. As an initial step towards
this, in this paper we realise a semi-autonomous framework
for grasping and stacking objects. We use a model-based

object tracker [17], [18] to track and estimate object poses,
which are then fed to a robot trajectory planner to execute
autonomous grasping. This is then combined with human-
supervised motion for placement of grasped objects, making
the overall task semi-autonomous.

We believe that a greater understanding of the underlying
processes is necessary, before nuclear manipulation tasks can
be safely automated. Therefore, an additional objective of this
paper is to identify the problems that emerge during directly
tele-operated tasks, and to then investigate how much might
be gained by human-supervised autonomy technologies, over
conventional direct tele-operation. We present a preliminary
study which compares the performance of vision-guided
semi-autonomy versus direct tele-operation, during basic
grasping and manipulation tasks. We perform two different
tasks using a 7 DoF articulated robot equipped with a two
finger gripper. We first investigate a point-to-point dexterity
task, which requires human subjects to control the position
and orientation of the robot end-effector to reach a set of
predefined goal positions as quickly as possible. We analyse
the subjects’ performance in executing the task repetitively
and discuss the factors affecting the performance. We next
investigate a more complex object grasping and stacking task,
intended to represent Box Encapsulation (manipulating waste
items into safe storage containers) which is a major challenge
for the industry. We measure and compare the performance
of humans on the grasping and stacking task, when using
conventional direct tele-operation, and when employing a
semi-autonomous system, where the human supervises at
a high level, while the vision-guided robot automatically
performs complex tasks such as grasping and trajectory
execution.

Rest of this paper is structured as follows. We introduce
our experimental set-up along with detailed task descriptions
in Section II. In Section III we present our methodology,
including procedures for data collection and analysis, and
we also explain the technical details of our visual servo-
ing method for semi-autonomous manipulation. Section IV
presents the experimental evaluations, followed by a discus-
sion and conclusions in Section V.

II. EXPERIMENTAL SET-UP

Two different tasks are designed to study various fac-
tors effecting performance of fully supervised tele-operated
handling and vision-guided semi-autonomous manipulations.
The developed experimental set-up along with the designed
test-rig to perform this study are detailed first in this section.
Later we present the two tasks in detail.

A. Robotic Test Platform

The experimental set-up used to perform both tele-operated
as well as semi-automatic tests is shown in Fig. 2. It consists
of a collaborative 7 DoF lightweight robot arm: KUKA LBR
iiwa 14 R820, a Schunk PG plus-70 2-finger parallel jaw
gripper with a stroke size of 68 mm and a commercial
Logitech c920 USB camera. The gripper is attached to the
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Figure 2. Experimental set-up showing various components used in this
work. The test rig with seven buttons, used for the point-to-point dexterity
task, can be seen on the left.

tool center point of the robot and the camera is mounted on
top of the gripper whose optical axis coincides with the z-axis
of the gripper frame. The vision-guided control architecture
for semi-automatic tests was implemented in C++ and is
executed from a remote computer running Windows (8 GB
RAM, 2.3 GHz Intel core i7 CPU). The communication
between the PC and the robot controller has been realised
using UDP and the gripper control commands are transmitted
over serial port. Real-time matrix computations are performed
using ViSP [17].

B. Test-bed for Tele-operation

The tele-operation test-bed is an aluminium frame consist-
ing of seven industrial emergency stop push buttons marked
as S · · · 6 as shown in Fig 3. The outer dimensions of the
frame are 50 × 50 × 50 cm3 and the diameter of each button
head is 40 mm. Each button on the frame is electrically
connected to the work computer via U-HID (USB) interface
board in order to record the corresponding button press event
(with a beep sound) as well as the overall task time. Time
recording automatically starts when the start button S is
pressed and the total time is saved with a task label when the
last button i.e., button-6 is pressed. The directions to navigate
from point-to-point are pre-selected and are shown with the
arrows in Fig. 3(b).

A software user interface (UI) as shown in Fig. 4 has
been implemented in order to provide various functionalities
to tele-operate the robot as well as to control other system
components. Firstly, it allows the operator to jog the robot
in both Cartesian and joint spaces with different speeds.
However, for the sake of task simplicity only Cartesian
jogging in world coordinate frame is used in this work. Next,
it allows to configure and jog the robot using a standard USB
keyboard that acts like a low level haptic device in moving
the robot. Finally it allows to open and close the gripper
whenever required and provides views from all the scene
cameras.

(a) (b)

Figure 3. (a) CAD model of the test-rig used for point-to-point tele-operation
task. (b) Button-press order for navigation with arrows illustrating navigation
directions required for the point-to-point task.

Figure 4. Our user interface for controlling various components in the
system.

C. Task Description

The two tasks designed to analyse the differences between
fully supervised tele-operated handling and vision-guided
semi-autonomous manipulations are detailed below.

1) Point-to-point Dexterity Task: The initial task of point-
to-point robot navigation has been designed to evaluate the
performance of human subjects who are required to execute
the task by passive vision i.e., by looking at the camera-
provided views of the workspace (see Fig. 5). This is usually
the case in nuclear environments where tele-operated robots
are used with several camera views of the application area.
This task requires the participants to move the robot’s end
effector from button-to-button on the test-rig in a specific
order described by the arrows in Fig. 3. To successfully
complete this task, participants need to change both the
position and orientation of the end effector to be able to
reach the buttons.



Figure 5. Human operator performing the point-to-point tele-operation task
by looking at multiple camera views of the work space.

2) Block Stacking: The second task is stacking of wooden
blocks seen in Fig. 2. This task has been designed to
replicate packaging scenario in nuclear facilities, where the
operators are required to load various objects in the containers
sequentially. In this work, we perform this task to study
and analyse the major differences between tele-operation and
vision-guided semi-autonomy. To carry out human subject
performance evaluation, we recruited multiple participants
who manoeuvred the robot from a pre-fixed distance us-
ing the developed software UI to stack various wooden
blocks presented in the workspace. For comparison, we semi-
automated the task by using vision information as feedback
in localising the arm to a pre-grasp location. To this extent,
we implement a CAD model-based tracking to track the
object pose in robot frame. In both cases, we evaluate the
performance in terms of task repeatability, handling and
placement accuracy, and overall stacking time.

III. METHODOLOGY

In this section, we first describe the data acquisition pro-
cedure for tele-operation experiments, then detail the imple-
mentation of vision-guided semi-autonomous block stacking.

A. Tele-operation: Data Acquisition and Analysis

1) Procedure for the Point-to-point Dexterity Task: Six
participants from the students and staff at the University
of Birmingham voluntarily participated in this experiment
. All had normal or corrected to normal vision, and had
no known neurological motor deficits (self-reported). Partici-
pants took a 10 minutes training session followed by the main
experiments. In the training session, they were provided with
an instruction set of the task and asked to familiarize with
the robot control. In the main experiment, they were asked
to complete the task three times without any certain time
limitation. They were allowed to have a break between the
tree trials.

After the end of final session, participants were asked
to answer the computerized version of the NASA Task
Load Index (NASA-TLX) assessment as well as system
usability scale (SUS) questionnaires. The NASA-TLX survey
is widely used in human factor research [19]. The TLX
consists of questionnaires where a participant subjectively

rates the workload on 6 different sub-scales: Mental Demand:
how mentally demanding was the task, Physical Demand:
how physically demanding the task was, Temporal Demand:
how hurried or rushed the pace of the task was, Effort: how
hard the participant has to work to accomplish the level of
performance, Frustration Level: how insecure, disorganised,
irritated, stressed, or annoyed the participant was, and Overall
Performance: how successful in accomplishing the task the
participant was, after conducting the specific task. The raw
scores are within a 100 points range (very low: 0 to very high:
100). In this study, we employed the computer versions of
the TLX and only raw scores were analysed [20], [21]. In
general, the TLX scores indicate the task difficulties. At each
trial, the task performance was measured based on several
factors, the time taken to complete the task, the number
of collisions with the environment, the number of missed
buttons, the number of unacceptable critical incidents such
as user failure to cause the robot to stop with wrong input.

2) Procedure for the Block Stacking Task: This experiment
involves tele-operating the robot to remotely pick-up and
stack 5 cube-shaped wooden blocks. The dimensions of each
block are 4 × 4 × 4 cm3. A group of 5 new participants
were recruited for this task. Each participant had 10 minutes
training to get themselves familiarise with the robot jogging.
Similar to the previous experiment, participants tele-operated
the robot using keyboard functions. However, in this case
the participants were asked to complete the task by directly
viewing the robot standing two meters far from the robot. The
blocks were situated in the workspace ensuring that they were
within reach of the robot and also they were sufficiently apart
from each other such that the gripper fingers do not collide
with neighbouring blocks. Apart from that, to have a fair
comparison, blocks were placed at the same positions for all
trials and for all participants.

For the main experiment, each participant was asked to
perform the task three times and during each trial, similarly
to the previous task, the time taken to complete the task,
the number of collisions with the environment, the number
of dropped objects, and the number of unacceptable criti-
cal incidents were recorded. The task has been considered
successful only when the stacked objects remain still after
placing the final block.

B. Visual-guided Semi-automatic Stacking of Blocks

The overall task is divided into two phases: 1) automatic
navigation of robot and grasping of objects, and 2) stacking
blocks at a pre-defined location using the prior knowledge of
block dimensions. At the first hand, for automatic navigation,
we use the images provided by the camera mounted on top
of the parallel jaw gripper for estimating the objects’ pose
in the robot frame. In turn this information will be used as
a feedback to navigate the robot end-effector to a desired
location i.e., to the pre-grasp location. This intermediate lo-
cation has been selected to avoid the black-spots for tracking
i.e., since the camera is mounted on top of the gripper, the
object will be moved out of the camera field of view when



the robot end-effector is positioned immediately above the
object and can induce errors in the estimated poses. Once
the robot is at pre-grasp location with correct pose (provided
by tracker), it will be automatically re-directed to the grasp
location that provides a stable grasp. The stable grasps are
identified by the last estimated pose from the tracker. Once
the object is grasped successfully, robot navigates to a pre-
defined stacking location. Objects are stacked based on the
number of the object that is being handled (κ = 1 · · · 5) and
the object height (Ω = 40 mm) i.e., the z location to place
the object is κ ∗ Ω and, x and y locations are pre-supplied
and remain same for each block.

1) 3D Model-based Tracking: As mentioned before, we
use a model-based object tracker [17] to track each block’s
pose. It uses 3D CAD models to track and estimate the
object’s pose in real-time. The underlying idea behind the
tracker is to obtain a camera pose for which the projected
CAD model fits best with the 2D image contours of the
object. This process involves estimating a rigid transforma-
tion between the virtual camera frame and the tracked object
frame. Previously, these types of methods were studied for
tracking objects in complex environments and are proved to
be efficient in tackling various computer vision issues such
as intensity variations, partial occlusions etc. [22], [23].

Tracking a 3D model of an object in an image counts back
to the classical pose estimation problem. The basic idea is
to project the model using an initial pose, propagate it to
the next frame and perform a 1D search along the model
edges to update the pose. In general, the pose matrix cMo

links the 3D object features P in the world frame to their
corresponding projections p in the image by

p = Pr(cMo,P) (1)

where, Pr(·) is the projection operator. Assuming, the cam-
era intrinsic parameters K are known, (1) becomes

p = KcMoP (2)

If we assign a virtual camera with the object model, the
objective is to estimate the pose of the camera cMo to fit
the model. In order to estimate r (6 degree of freedom
pose vector computed from cMo), in this work, we solely
rely on the object edge information and use the virtual
visual servoing(VVS) framework proposed by Marchand and
Chaumette [24]. The idea is to estimate the transformation
parameters by minimising the error ∆ between the current
values s(r) obtained by forward projection of model using
pose r and the ground truth values s∗ measured in the image
and is given by

∆ =

n∑
i=1

(si(r)− s∗i )
2 (3)

The regulation of ∆ requires linking temporal variations of
si(r) with the velocity screw of the virtual camera defined
by pose r. This is achieved by using an image Jacobian
matrix Js. This process is similar to the classical visual

Figure 6. Initialisation of trackers for all blocks in the very first image. The
wire frames illustrate the object CAD models. These are projected onto the
image using initial poses supplied by the human operator.

servoing and hence, we refer the reader to [24] for further
details. Alternatively, regulation of (3) can be optimised
by using iterative optimisation algorithms such as Quasi-
Newton, Levenberg-Marquardt etc.

In this work, we track five different cube-shaped blocks
present in the workspace. Initially, the robot moved to a pre-
defined home position, which is fixed throughout the process.
Trackers are initialised simultaneously for each object in the
very first image using the user supplied initial poses as shown
in Fig.6. In the case of highly cluttered scenes due to presence
of redundancy edge information, the tracked poses are highly
unstable. In order to minimise these phenomena, we use a
Kalman Filter to predict and update the final pose after VVS,
thus smoothing the changes.

2) Pose-based Visual Controller: If we decompose the
overall task into 5 different subtasks of pick (autonomous)
and place (pre-defined) of objects, we need a reliable visual
controller (using pose features obtained from tracking) to
navigate the arm to the grasping locations of each object. In
order to accomplish this, we implement a pose-based visual
controller in this work. Simplifying the details, we below
show how this can be done for one object.

Let Rc, Ro and Ro∗ be the frame attached to the camera
and the current and desired object frames, respectively. The
tracker provides the homogeneous transformations cMo and
cMo∗ between the camera and the current and desired object
frames, respectively. In order to move the robot to the desired
object pose r∗ (computed from cMo∗ ) the error given by (4)
has to be regulated.

oMo∗ = cMo
−1cMo∗ (4)

Let RR be the frame associated with the robot base. Then
the homogeneous transformation between the object and the
base frame is

RMo = RMc
cMo (5)



where, RMc denotes position and orientation of the camera
in the robot base frame. Using (5), the error to be regulated
is

e =
(
Rto − Rto∗ , θu

)
(6)

where, Rto and Rto∗ are translation vectors derived from
their corresponding homogeneous transformations and θu is
the angle-axis representation of rotation.

Now by linking the time variation of current features s =

˙RMo =
(

˙Rto, ˙θu
)>

to the robot velocity, we get[ ˙Rto
˙θu

]
ṡ

=

[
Jv 0
0 Jw

]
J

[
v
w

]
v

(7)

where, v and w are linear and angular velocities, respectively
and Jv and Jw are linear and angular Jacobians. In this work
we chose Jv = I and Jw as provided in [25]. Using (7), he
final control law is given by:

v = −λJ†
(
RMo − RMo∗

)
(8)

where, J† the pseudo inverse of the Jacobian matrix and λ is a
positive gain to ensure the exponential convergence. Equation
(8) navigates the robot to a pre-grasp location at which the
visual control stops. The final pose of the object during the
visual servoing process is retained for grasping purposes from
whereon the robot follows a pre-defined motion until placing
the object at a desired location.

IV. EXPERIMENTAL EVALUATION

In this section we present the experimental results obtained
for both tele-operation and vision-guided semi-autonomous
tasks along with a detailed analysis investigating the task
performance.

A. Results for the Point-to-point Dexterity Task

The performance of all 6 participants during point-to-point
dexterity task has been evaluated based on the criteria listed
in Section III. Although some participants failed to press
the buttons a number of times during their training session,
no such instances were observed during the main trials. As
shown in Fig. 7(a), the averaged time-to-completion across 6
participants were 272.8 seconds at the first trial and then
reduced to 199.7 seconds at the third trial. The repeated
measure ANOVA (Analysis of Variance) was used on the
time-to-completion data in order to evaluate whether the per-
formance significantly changed or not across three trials [26].
Mauchly’s test indicated that the assumption of sphericity for
ANOVA is satisfied: χ2(2) = 2.17, p = .338. The ANOVA
test shows that there was a significant learning effect across
the three trials: F (2, 10) = 8.739, p = .006 < .05. These
results suggest that the task performance can be constantly
improved through the repetition.

Fig. 8 shows the NASA-TLX scores. The Mental Demands
are significantly high compared with other sub-scales. This
seems to reflect that the point-to-point dexterity task with
button pressings required participants to construct the 3D
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Figure 7. Time spent to complete a) the point-to-point dexterity task and
b) the block stacking task for all participants. For each participant task
completion time in each trial is shown.

Figure 8. NASA Task Load Index scores for the point-to-point dexterity
task, averaged across 6 participants.

perception of the remote workspace through the 2D images
of the live camera-feeds. At the same time, participants also
needed to control the robot arm by tele-operation, which is
the 2D space configuration and intuitively difficult to operate
corresponding to the 3D space. These operations require high
cognitive load and functioning. On the contrary, the physical
demands and frustration were relatively low compared with
other sub-scales, suggesting that the tele-manipulation could
reduce the physical tiredness for such a repetitive task. This
trend might depend on the experimental design, i.e., no-time
limit for the completion. Participants could focus more on
their performance rather than the temporal demand.

Overall results suggest that designed experimental set-up is
sufficiently convenient for the participants and they improved
their performance in terms of completion time over the trials.

B. Results for the Block Stacking Task

Fig. 7(b) shows the time-to-completion of all 5 partici-
pants for the stacking task. The averaged time-to-completions
across 5 participants were 311.0 seconds at the first trial and
then slightly reduced to 273.0 seconds at the third trial. Simi-
larly to the previous task, the repeated measure ANOVA was



Table I
STATISTICAL ANALYSIS OF TELE-OPERATED BLOCK STACKING.

Participant ID Π α β γ

Av. Std. Av. Std. Av. Std. Av. Std.

1 274.3 25.4 3.6 3.2 0.6 0.5 0.6 0.5
2 212.3 30.7 0.3 0.5 0.3 0.5 0.0 0.0
3 251.3 37.4 2.6 3.0 0.6 0.5 0.3 0.5
4 354.3 40.5 2.0 3.4 1.6 0.5 0.0 0.0
5 328.6 64.2 1.6 2.8 0.3 0.5 0.0 0.0

Av. = Average over 3 trials, Std. = Standard deviation.

used on the time-to-completion data. Mauchly’s test indicated
that the sphericity assumption is satisfied: χ2(2) = 2.17,
p = .257. In contrast to the point-to-point dexterity task,
the results show that there was no significant effect across the
three trials: F (2, 8) = 1.797, p = .227. This can be explained
by the fact that in the block stacking task, there were
unpredictable, or accidental, factors due to the interactions
between the end effector and the blocks; e.g., sometimes as
more blocks were stacked not sufficiently well aligned, the
tower could become unbalanced and easily collapse. Overall,
the number of critical incidents (collisions and drops) were
relatively high compared with the point-to-point dexterity
task. Table I shows the task completion time (Π), the number
of collisions (α), the number of dropped objects (β), the
number of critical incidents (γ) for each trial. The number
of accidents was relatively high compared with the point-
to-point dexterity task. Although the task completion time
reflected the effect of such unpredictable factors, the impact
on the task performance was huge especially within small
number of trials. We plan to extend the evaluations to deal
with such variations in performance by e.g., designing a task
score considering not only time-completion but also weight,
or penalty, for unwanted behaviour.

Even though the participants directly viewed the
workspace (which we expect would provide good depth
perceptions compared with the point-to-point dexterity task),
there were difficulties to construct straight and stable block
towers. This seemed to have a large impact on the task
performance, which possibly was one of the main reasons
that the learning effect was disappeared across three trials.
Overall, this task was more difficult to achieve compared
to the previous one and require more trials for participants
to excel. To avoid such accidents, providing the participants
with more information, e.g. force feedback, can be helpful.

C. Results for Vision-guided Stacking of Blocks

We have conducted experiments in order to evaluate the
semi-autonomous robotic performance in performing the
block stacking task. As mentioned before, this task is decom-
posed into two phases: automatic navigation and grasping of
blocks using vision feedback and stacking blocks at a prede-
fined location. In order to have a fair evaluation, the blocks
were placed in similar locations as for the tele-operated task.
Trackers are automatically initialised from the user defined

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
o
s
t

Iterations

(a) (b) (c)

(d) (e)

0 200 400 600 800 1000 1200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

E
rr

o
r

Iterations

j1

j2

j3

j4

j5

j6

j7

Figure 9. (a)-(c) Series of images obtained during the automatic arm
navigation to pre-grasp location for block 1. Purple wireframe represents
the desired pose and the green one represents current pose. Pose errors at
(a) initial and (b) final iterations during the visual servoing process can be
seen. (d) and (e) illustrate the error for all seven joints and cost variations
respectively, during visual servoing for block 1. Cost is considered to be
sum of squared error and is used to verify the task convergence.

initial poses. Then the robot has been automatically navigated
to the pre-grasp pose, which is accomplished by regulating
the positional error. Fig. 9(a)-(c) illustrate a series of images
obtained during the robot navigation with visual feedback.
Error and cost variations during the task for the first object
are shown in Fig. 9(d) and (e), respectively. Here cost is
considered to be the sum of squares of error i.e., e2 and has
been used to check the process convergence. Fig. 10 shows
a series of images during the stacking of blocks. In order
to evaluate the performance, this task has been executed 11
times and the corresponding time for each trial has been
shown in Fig. 11. On average it requires 88 seconds (in
robot T1 mode) to stack 5 different blocks, over three times
faster than the tele-operation experiments. Apart from that
the task has also been monitored for collisions and failures.
The overall performance directly depends on the success of
tracking system. Due to constant lighting and cluster-less
environment, the trackers succeeded in all 11 trials and hence,
no task failures or collisions were observed. Also, unlike
with human tests, there were no shortcomings in the depth
perception, which we think is the main reason behind reliable
performance. However, in either of the cases i.e., both semi-
autonomous and human tests, integrating tactile information
with grasping can improve the overall performance [27].

V. CONCLUSION

This paper has investigated human performance in exe-
cuting remote manipulation tasks by teleoperating a robot.
We have also presented and demonstrated a system for semi-
autonomous manipulation using visual servoing. Performance
of human test-subjects using both systems was evaluated
and compared. Our results show how performance improves
with training, and suggest how training requirements scale



Figure 10. Series of images illustrating the stacking of various blocks during
the semi-automated task. Rightmost image illustrates the task success.

Figure 11. Overall time taken for semi-automated block stacking during 11
runs. On average the stacking of 5 blocks took 88 seconds, more than three
times faster than teleoperation mode.

with task complexity. Our results also demonstrate how
the incorporation of autonomous robot control methods can
reduce workload for human operators, while improving task
completion time, repeatibility and precision. We plan to
extend this initial pilot-study with additional experiments,
including greater numbers of participants and additional
manipulation example tasks. We also plan to extend our study
to include advanced haptic feedback control devices.
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