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BOUNDARY BEHAVIOUR OF FUNCTIONS

WITH HADAMARD GAPS

K. G. BINMORE AND R. HORNBLOWER

l Introduction. In this paper we discuss the boundary properties of a
function / which is analytic in the open unit disc Δ and has Hadamard
gaps—i.e.

/(*) = Σ ^ λ n (zeA) (1)

where

A±ί > q> 1 (n = l,2,3, .-.) . (2)

This gap structure inhibits the possibility of cancellation in the
Taylor series. Indeed, M. Weiss [11] has shown that, under appropriate
growth conditions on the coefficients, the partial sums of the series (1)
behave like independent random variables on dΔ and, in particular, that
a law of the iterated logarithm holds.

The behaviour of / must therefore be expected to be highly irregular
all around the boundary of the unit disc. In this sense, the boundary
properties of functions with Hadamard gaps are 'typical' of the boundary
properties of 'almost all' functions analytic in Δ. (See Offord [9].)

Suppose firstly that Σ \an\ < °° Then / is continuous on Δ and there
is nothing more to be said. We exclude this trivial case and assume
from now on that

Under this hypothesis, dΔ is a natural boundary for / (Ostrowski
[10]). One may ask, what is the range of /? Presumably this is the
whole of the complex plane covered infinitely often. However, in the
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general case, this conjecture remains unproven. It is known to be true
in the case when q is large (M. and G. Weiss [13]) and also for arbitrary
q > 1, provided that an τ4 0 (n -> oo) (W. Fuchs [5]).

One may also ask about the asymptotic properties of /. Here there
is a sharp division into two cases.

Under the hypothesis that an -+ 0 (n-* oo), we have that, given any
ω ^ oo, the set of points ζedΔ such that

anζ* = ω ( 4 )Σ "•rλn -

is uncountable and dense on dΔ. This is a theorem of Paley and M.
Weiss [12]. The set of ζ for which (4) is true must in fact be rather
thin since, in view of Collingwood's maximality theorem [4, p. 80], it is
of first category in dΔ. (See the result of Stechkin quoted in Bary, [2,
P. 25]).

Alternatively, we have the case α κ 7 40 as tι->oo. In this case /
can have no finite asymptotic values at all (Binmore [3]). One assumes
that if ω is an asymptotic value of / at ζ, then (4) holds. But this is
not known in general.

There remains the question of the asymptotic value oo. It follows
from the theorem of Paley and Weiss that a bounded / must have
2 \an\ < oo. It is therefore certainly true that oo is an asymptotic value
when Σ\an\ = °°- A question which has been raised by Anderson [1],
among others, is the following. Is it true that / has oo as an asymptotic
value at a set of points which is dense on ΘΔΊ

In the case when an -/> 0 (n -> oo), this is the the same question as
asking whether or not / belongs to Maclane's class si. This is the class
of non-constant functions which are analytic in Δ and have asymptotic
values at a dense set of points on dΔ. It is known that a non-constant
function analytic in Δ belongs to si provided that

Γlog+ log+ M(r)dr < oo ( 5)
Jo

where Mir) denotes the maximum modulus of the function on the circle
\z\ — r. (Hornblower [6]).

As an example of a function of unrestricted growth which belongs
to si, we have the function / given by (1) with q > 3 (Maclane [8, p. 46]).
Maclane's proof extends to the cases q = 2 and q = 3 but the case of
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arbitrary q > 1 seems to be more difficult. In this paper, we offer a
partial solution to this question.

Let v(r) denote the central index of the function /—i.e. the largest
exponent λm with the property that

\amr i = mdx \anr \ .
n

The central index is an increasing function of r and is continuous on
the right for r < 1. We then have

THEOREM 1. Suppose that f is given by (1) and (2) and that

-iίή- <Q<oo (0 < r < 1) . (6)

Then f belongs to Maclane's class si.

In contrast with the result of Maclane described above, which asserts
that / e si as soon as the gaps are sufficiently large, this result says,
roughly speaking, that fesi when the gaps are not too big. For
example, if the non-zero coefficients of / increase in modulus and

1 < q < -^±1- < Q < oo (n = 1, 2, . . .)

then it follows from Theorem 1 that fesi.
In spite of the difficulty of proving the result even in the case of

Hadamard gaps, one might expect to obtain the conclusion fesi from
a much weaker gap hypothesis than (2). We suggest that the condition

may be sufficient and, probably, even this is too strong. There is some
reason to suppose further that, under the same hypothesis (7), there is
a non-trivial {en}, possibly

oo

*« = π
fc = 0
kφn

with the property that / can have no finite asymptotic value unless
εnan -^0 (n —> oo). (See Binmore [3]).

If these suggestions are true we can deduce the following result,
which we quote below as a conjecture, by means of a method of
Anderson [1].
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CONJECTURE. Suppose that Y^λ'1 < oo. Then there is anon-trivial
sequence {εn} with the property that if /, given by (1), satisfies

ZnUn -A 0 (n -> Oθ)

then the closure of the set of zeros of f contains the whole of dΔ.

We consider the zeros of / rather than any other value simply for
convenience. Fuchs has recently shown this conjecture to be true with
en = 1 (n = 1,2, . •) in the case of Hadamard gaps. This approach is
entirely different from that suggested above. He suggests that the
hypothesis an -/» 0 (n —> oo) of his result should be replaced by 2 1̂ 1 = °°

It is at least clear that, under the sole hypothesis Σ | α n | = °°> the
cluster set C(/, eiθ) is total for each θ. (The case when an -> 0 is con-
tained in the theorem of Paley and Weiss). It follows, incidentally,
from Collingwood's maximality theorem that, if Σ | α w | = oo, then the
set of points at which / has a radial asymptotic value (finite or infinite)
is of first category in dΔ.

2. Proof of Theorem 1

We shall use the letter K to denote a set which consists of the
union of a set of continua lying in Δ such that each continuum has dia-
meter exceeding some fixed positive number δ and, further, such that K
has at least one limit point on dΔ. In particular, K may be a Koebe
sequence of arcs (see, for example, Maclane [8]).

We deduce Theorem 1 from

THEOREM 2. Suppose that (6) holds. Then

for some constant M < oo.

We now show how to deduce Theorem 1 from Theorem 2. Recall
that the level sets L(X) of / are defined, for each λ > 0, by

Let S be a subset of Δ and let δ(r) (0 < r < 1) denote the supremum
of the diameters of the components of the set S Π {r < \z\ < 1}. If
δ(r) —> 0 ( r-» l —), then S is said to 'end at points' on dΔ. Maclane [8]
has shown that the class s/ is identical with the class of those non-



FUNCTIONS WITH HADAMARD GAPS 177

constant functions which are analytic in Δ and whose level sets end at
points on dΔ,

Now suppose that the conclusion of Theorem 2 holds. If / g J/,
then, for some λ > 0, the level set L(X) does not end at points on dΔ
and therefore contains a subset K satisfying the hypotheses of Theorem
2. Thus

\an\ < M sup \f(z)\ = Mλ (n = 1,2,3, . •) .

This implies that / satisfies (5) and hence that f e s/. This is a contra-
diction, and hence Theorem 2 implies Theorem 1.

3. Proof of Theorem 2.

The arguments used to establish Theorem 2 are similar to those in
[3]. Specifically, we require the following lemma.

LEMMA 1. Let P be a given positive integer and let vQ9v19 -vP be
any complex numbers satisfying

( i ) Re vk > Re v0 = P

(ii) \vk - vo\ < k/P

(iii) \vk — vj\ >\k -

Then there exists an exponential polynomial

satisfying

( 8 )

( i )

(ϋ)

(iii)

Gt

P

Σ

(rvΛpKX)

.(1)

\βt

| < 2{xeί-χ

= 1

| < 2(2ePY

(T ^> Cί\

( 9 )

We now embark on the proof of Theorem 2. In accordance with the
notation of [3], we begin with the transformation z = β"ω. The set K
is then transformed into a set J consisting of the union of a set of
continua lying in the right half plane. Each of these continua has
diameter exceeding some fixed positive number δ and their union / has
a limit point on the imaginary axis.

Now consider the values of the function
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F(ω) =

on the set /. Note, in particular, that

We denote the central index of / as a function of x = Re ω by N.
Thus N(x) = v(e~x). The function iV(#) is decreasing and continuous on
the left and hypothesis (6) is equivalent to

N(x)
N(x + )

< Q < oo . (10)

We may assume that N(x) —> + oo (x—> 0 +) for otherwise it follows
immediately that the coefficients are bounded.

Let X be any positive number for which

N(x)
λδ (0<x<X)
2

(11)

and let en be a component of J which contains points to the left of the
line Re ω = X. Such a component exists since / has a limit point on
the imaginary axis. Let ζ = ξ + ίη be a point of smallest real part on
a. Then it is clear that there exists a point ζ/ on a whose distance from
ζ is at least \δ.

Figure 1

Now let p be a positive integer (later to be chosen suitably). Then
the function

N(x)
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is monotonic increasing and continuous on the left. Since g(ξ) > ξ and
g(x) —> 0 (x —> 0 + ) there exists an x (0 < x < ξ) such that

g(χ)<ξ <g(χ+). (12)

We choose P so that

x + P/N(x) = f . (13)

It follows from (12) and hypothesis (10) that

V < P < VQ . (14)

Now let p = x + irj. (Recall that ζ = ξ + iη). Write An = ane~pXn

(n = 1,2,3, . . . ) . Then, if N(x) = λm,

\Am\ = max|An| . (15)

Also, we have that

F » = F(ω + p) = Σ Ane->*°> .

It follows that, if vQ,vlf vP are complex numbers satisfying (8),

T(x) =

Consequently

T (

> I Am\ (l - 2 Σ (q-se1" -y - 2 Σ {Q'e^Ύ
I S = l 5 = 1

Since, by (9i) and (14), GP(x) < {xeι~xy < (xe'-ψ. It follows that, if p
is chosen sufficiently large, then

Γl-A-Π . (17)

Note that the choice of p depends only on the value of q.
We now choose the numbers v09v19 vP. Define ζ0 = ζ and draw
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circles Ck (A; = 1,2, P) with common centre ζ0 and radii k(Pλm)~

respectively. It is clear that there exist points d ζP such that

( i ) ζ* € a

(ϋ) C*eCfc

(iϋ) Rζk > Rζ

(see figure 1). Note that (11) ensures that

Now set

Then conditions (8) of Lemma 1 are satisfied and so we may deduce from

(16), (17) and (9iii) that

\ Γ l 1

<, 2(2eP)p sup \F(ω)\ < 2(2eP)p sup |F(ω)| .

From (15) it follows that, for n = 1,2, ,

IAnI = \ane-***\ < M sup |F(ω)| (18)

where the constant M may be taken by (14) to be A(2epQ)pQ and hence

depends only on the values of q and Q.

The inequality (18) holds for some value of x satisfying 0 < x < X.

The positive constant X is restricted only by (11) which will be satisfied

for all small enough values of X. We may therefore allow x to tend to

zero through a suitable sequence in (18) and obtain

\an\ < M sup |F(ω)| - M sup \f(z)\ .
ωeJ ZGK

This completes the proof of Theorem 2.
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