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Abstract (247 words) 
 

 

Background 

The clinical analysis of myocardial dynamic computed tomography myocardial perfusion imaging 

(CT-MPI) lacks standardization. The objective of this prospective study was to compare different 

analysis approaches to diagnose ischaemia in patients with stable angina referred for invasive 

coronary angiography.  

 

Methods and Results 

Patients referred for evaluation of stable angina symptoms underwent adenosine-stress dynamic 

CT-MPI with a second-generation dual-source scanner. Quantitative perfusion parameters such as 

blood flow were calculated by parametric deconvolution for each myocardial voxel. Initially, 

perfusion parameters were extracted according to standard 17-segment-model of the left ventricle 

(fully automatic analysis). These were then manually sampled by an operator (semi-automatic 

analysis). Areas under the receiver-operating characteristic curves (AUCs) of the two different 

approaches were compared. Invasive fractional flow reserve =<0.80, or diameter stenosis >=80% 

on quantitative coronary angiography (QCA) were used as reference standard to define ischaemia. 

 

We enrolled 115 patients (88 men; age 57±9 years). There were 72/286 (25%) vessels causing 

ischaemia in 52/115 (45%) patients. The semi-automatic analysis method was better than the fully 

automatic method at predicting ischaemia (AUCs: 0.87 vs. 0.69; p<0.001) with readings obtained in 

the endocardial myocardium performing better than those in the epicardial myocardium (AUCs: 0.87 

vs. 0.72; p<0.001). The difference in performance between blood flow, expressed as relative to 

remote myocardium, and absolute blood flow was not statistically significant (AUCs: 0.90 vs. 0.87; 

p=ns).  

 

Conclusions 

Endocardial perfusion parameters obtained by semi-automatic analysis of dynamic CT-MPI may 

permit robust discrimination between coronary vessels causing ischaemia vs. not causing 

ischaemia.  

 
 
 
 
Key words: image interpretation; imaging; computed tomography; perfusion imaging.   
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Dynamic CT myocardial perfusion imaging: comparison of clinical 

analysis methods for the detection of vessel-specific ischaemia 

 
 
 
INTRODUCTION 

 

Dynamic computed tomography myocardial perfusion imaging (CT-MPI) using adenosine-mediated 

vasodilation allows for quantitative measurement of perfusion parameters such as myocardial blood 

flow, perfused capillary blood volume and first pass distribution volume.  

 

The feasibility of dynamic CT-MPI was shown in animal studies 1-6 and clinical studies 7-17. Our 

group as well as others demonstrated previously that myocardial blood flow from dynamic CT-MPI 

added value to anatomical computed tomography coronary angiography (CTCA) in the detection of 

vessel-specific ischaemia 12. 

 

In dynamic CT-MPI, time-resolved attenuation curves are constructed as contrast agent passes 

through the heart. A signal-deconvolution step is then required to calculate perfusion parameters. 

Commercially available software packages can automatically display data as a polar map and 

provide segmental readings of perfusion parameters. The accuracy of these in the detection of 

regional ischaemia in clinical settings, however, remains uncertain. As with any new diagnostic test, 

the requirements for understanding the potential clinical value and clinical adoption cannot be 

fulfilled in the absence of standardized analysis methods. At the present time there is no consensus 

regarding the optimal method of dynamic CT-MPI interpretation.  

 

The aims of this study were: 1) to evaluate if a fully automatic analysis method is clinically accurate; 

2) to compare endocardial and transmural CT-MPI findings for their ability to identify vessel-specific 

ischaemia; 3) to compare the diagnostic performances of various absolute perfusion parameters 

with relative perfusion parameters. We used invasive coronary angiography (ICA) and fractional flow 

reserve (FFR) 18 as reference standards to define vessel-specific ischaemia in a prospective cohort 

of patients with stable angina.  
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METHODS 
 
 
Study population 

The Research Ethics Committee approved the study protocol and all patients gave written informed 

consent. Between April 2011 and September 2015, 215 patients with stable chest pain clinically 

referred to ICA at a single institution were screened for inclusion in this prospective study (NIHR 

Clinical Research Network 10590). Study exclusion criteria were acute coronary syndrome, previous 

percutaneous or surgical coronary revascularization, severely impaired left ventricular ejection 

fraction (≤35%), estimated glomerular filtration rate <60ml/min, documented or suspected allergy to 

contrast and contraindications to adenosine infusion (history of severe asthma or obstructive lung 

disease, second or third degree atrio-ventricular block and systolic blood pressure <90mmHg) 

(Figure 1).  

 

Imaging protocol 

Patients underwent CTCA followed by adenosine-stress dynamic CT-MPI one to four weeks before 

ICA. A second-generation dual-source CT scanner (Somatom Definition Flash, Siemens, 

Forchheim, Germany) was used. We allowed 10-15min-delay between CTCA and CT-MPI to 

minimize cross-contamination of contrast on CT-MPI. The CT-MPI scan was acquired using the 

ECG-triggered axial shuttle mode, where the table moves between two alternate positions to sample 

dynamic data. The dynamic dataset consisted of 13-14 volumes of the left ventricle acquired over 

30 s, each volume consisting of thirty-four 3mm-thick images. The total contrast volume used for the 

combined CTCA/CT-MPI protocol was 135ml. A flow-chart detailing patient preparation, scan and 

contrast injection protocols is given in Supplemental figure 1. 

 

For CTCA, the median (IQR) dose length product (DLP) was 235 (120-372) mGy*cm (using a 

conversion factor for the chest of 0.014 this corresponds to 3.3mSv). For CT-MPI, the DLP was 734 

(627-804) mGy*cm (10.3mSv) using 100kV/300mAs, and 430 (398-515) mGy*cm (6.0mSv) using 

80kV/370mAs.  

 

CT-MPI data post-processing 

Firstly, dynamic CT-MPI datasets underwent post-processing using commercial software (Volume 

Perfusion CT Body, Siemens) by an operator with 5 years experience of CT-MPI. The left ventricular 

myocardium was segmented by placing a volume of interest (VOI) using a method of blood pool 

removal combined with thresholding based on attenuation values. A motion correction algorithm 

was applied when needed. The arterial input function (AIF) was sampled by drawing regions of 

interest (ROIs) on the descending aorta in both dynamic image stacks. Time-attenuation curves 

(TACs) were created for each myocardial volumetric image element (voxel) within the VOI. 

Dedicated parametric deconvolution based on 2-compartment model of intra- and extra-vascular 

space was applied to fit the TACs and compute myocardial blood flow, perfused capillary blood 
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volume and first pass distribution volume. Perfused capillary blood volume (ml/100ml) was obtained 

directly from the model as a function of contrast concentration in each voxel of the myocardium. 

Myocardial blood flow (ml/100ml/min) was calculated as the ratio between maximum slope of the fit 

curve/maximum AIF. First pass distribution volume (ml/100ml) was calculated as the ratio between 

peak of the fit curve/maximum AIF 3, 12 (Figure 2).  

 

Parametric data were then processed by a second independent operator (also of 5 years 

experience of CT-MPI), blinded to the ICA/FFR results, using prototype software (Cardiac 

Functional Analysis Protocol Build Data; Siemens) 19, 20. The software employed automatic 

segmentation of the left ventricle based on a heart model that includes the four cardiac chambers as 

well as other anatomical landmarks (cardiac valves and ventricular septum) as control points. 

Endocardial and epicardial contours of the left ventricle were segmented automatically, with the 

option of manual contour correction. From the resulting segmentation, polar maps were generated 

(bulls-eye plots based on 17-segment AHA model 21) for each perfusion parameter. 

 

CT-MPI clinical analysis methods 

From this point onward, we applied two pre-specified clinical analysis methods in all cases, i.e. fully 

automatic and semi-automatic (Figure 2). The fully automatic analysis was followed by the semi-

automatic analysis, with a time interval of 12 weeks between analyses. Anonymized datasets in 

random order were analyzed by both approaches. Parametric look-up table (LUT) display settings 

had range 0-200 ml/100ml/min for blood flow, 0-15 ml/100ml for perfused capillary blood volume, 0-

20 ml/100ml for first-pass distribution volume.  

 

For the fully automatic analysis, the polar map provided segmental values for each perfusion 

parameter. These were derived from the endocardial layer of the myocardium, from the epicardial 

layer as well as transmural (total) myocardium. Within each vascular territory (LAD, LCx, and RCA) 

21, the segment with the lowest value was selected and used in this analysis. 

 

For the semi-automatic analysis, VOIs of at least 0.5cm3 were drawn manually on the perfusion 

polar maps, guided by the color-coded scale. For each VOI, transmural, endocardial and epicardial 

values for each parameter were provided. The endocardial/epicardial (endo/epi) ratio was calculated 

for each parameter. Additionally, relative parameters were calculated as the ratio between the 

absolute parameter obtained from the manually drawn VOI and the segmental parameter 

corresponding to the 75% percentile of the fully automatic segmental analysis in the same patient, 

the latter inputted as denominator (‘remote myocardium’).  

 

To ensure accurate matching of coronary distribution and associated myocardial territories, the 

patient specific coronary anatomy on CTCA (right, left or balanced dominance, length of LAD) was 

used to decide which vessel (RCA, LCA or both) supplied the inferior and infero-septal segments in 

the myocardial polar map. CTCA multi-planar reconstructions and perfusion polar maps were 
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inspected side by side. CTCA was not used to decide whether or not a coronary vessel was causing 

ischaemia, but only to guide the positioning of VOIs on the polar map. The reader was blinded to 

ICA/FFR results. 

 

For the assessment of intra- and inter-observer agreement, 37 anonymized CT-MPI studies were 

randomly chosen and re-analyzed by same operator after a time interval of 12 weeks, and by a 

second blinded operator. 

 

ICA/FFR  

During ICA two interventional cardiologists (10 years experience) visually identified intermediate 

coronary lesions with diameter narrowing between 30% and 90%. FFR was measured in these 

lesions (if deemed safe) using a sensor-tipped 0.014-inch guidewire (Pressure Wire, Radi Medical 

Systems, Uppsala, Sweden). The pressure sensor was positioned just distal to the lesion. FFR was 

calculated as the ratio of mean distal pressure measured by the pressure wire divided by the mean 

proximal pressure measured by the guiding catheter during rest and during maximal myocardial 

hyperemia induced by a continuous intravenous infusion of adenosine (140µg/kg/min for a minimum 

of 2min).  

 

ICA images were further analyzed offline on multiple projections by a single observer (7 years 

experience) blinded to the CT-MPI results. The most severely diseased segment in each coronary 

vessel was identified to derive the percentage diameter narrowing using validated quantitative 

coronary angiography (QCA) software (QAngio® XA, 7.3, Medis, Leiden, the Netherlands). 

 

Pre-specified reference standard  

Lesions producing 30-90% visual coronary narrowing on ICA were classified as ischaemic or non-

ischaemic based on FFR findings. Vessels with FFR ≤0.80 were called ischaemic (i.e. 

haemodynamically significant), those with FFR >0.80 were called non-ischaemic.  

 

Lesions where FFR could not be obtained due to safety reasons were classified as follows based on 

QCA. Lesions with ≥80% diameter narrowing on QCA were adjudicated as ischaemic. Lesions with 

<30% diameter narrowing on QCA were adjudicated as non-ischaemic 18. This was based on the 

observation that a QCA 80% stenosis is likely to correspond to a 90% visual stenosis 22. Lesions 

without an FFR producing QCA 30-80% diameter narrowing were excluded from the analysis.  

 

Statistical analysis 

Data were analyzed using commercial software (IBM SPSS Statistics for Macintosh, Version 22.0; 

Armonk, NY: IBM Corp. and STATA Statistical Software: release 14. College Station, TX: StataCorp 

LP). Results were reported in accordance with the STARD criteria 23. Continuous variables were 

presented as means ± standard deviations (SD) or medians with interquartile ranges (IQR). 

Categorical variables were shown as frequencies and percentages.  
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The diagnostic performances of the different analysis methods were determined against the 

reference standard FFR/QCA. We obtained receiver operating characteristic (ROC) curves for: a) 

fully automatic and semi-automatic analyses; b) transmural, epicardial and endocardial analyses; c) 

myocardial blood flow, perfused capillary blood volume and first pass distribution volume; d) 

absolute and relative perfusion parameters. Areas under the curve (AUCs) were compared using 

the DeLong test and p-values were adjusted for multiple comparisons using Bonferroni correction. 

Optimal cut-off values were identified for each parameter using the Youden index. A vessel based 

analysis was performed; therefore, the clustered nature of the data (three vessels per patient, or two 

in left coronary dominance) was adjusted for using logistic generalized estimating equations (GEE’s) 

24. 

 

Perfusion parameters were plotted against invasive FFR and differences in the median perfusion 

parameters among the five FFR ranges were tested using the Kruskal Wallis test and Mann-

Whitney U test.    

 

Intra- and inter-observer agreement was evaluated using intra-class correlation coefficients (ICC’s).  

 

A p-value of less than 0.05 was considered statistically significant. 
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RESULTS 

 

Baseline characteristics and ICA/FFR  

The study included 115 patients (88 men; age 57±9 years) who underwent CT-MPI prior to ICA. No 

severe adverse reactions to adenosine or iodinated contrast agent were observed. In 15 patients 

with left coronary dominance, the RCA was short and not included in the analysis. Forty-four 

vessels 30-80% narrowing on QCA (in 40 patients) were excluded from the analysis because FFR 

measurements were not performed due to safety reasons. Therefore 286 coronary vessels and 

corresponding myocardial territories were available for inclusion in this analysis (Figure 1). Based 

on ICA/FFR there were 72/286 (25%) vessels causing ischaemia in 52/115 (45%) patients. Ninety-

six/286 (34%) vessels were directly interrogated with FFR (Table 1). 

 

Fully automatic and semi-automatic CT-MPI analyses   

The time needed to post-process a CT-MPI dataset was 6-8 min. For the semi-automatic analysis 

the operator visually inspected the polar maps and manually positioned the VOIs, which required an 

additional 2-3 min per case. The fully automatic analysis required no additional time. The fully 

automatic analysis was found to have worse performance when compared to the semi-automatic 

analysis.  Myocardial blood flow had moderate performance (AUC 0.69; 0.62-0.76) in the fully 

automatic analysis, which improved with semi-automatic analysis (AUC 0.87; 0.83-0.92) (p<0.001). 

Similar findings were observed for the other two parameters (Table 2). 

 

Endocardial and epicardial measurements  

Myocardial blood flow sampled in the endocardial layer of the myocardium (AUC 0.87; 0.83-0.92) 

performed better than transmural blood flow (AUC 0.82; 0.76-0.87) and epicardial blood flow (AUC 

0.72; 0.65-0.79) (p<0.05). The endo/epicardial ratio did not improve performance (AUC 0.76; 0.68-

0.83) (Table 3). 

 

Absolute and relative perfusion parameters  

Absolute perfusion parameters performed well (AUC range 0.87-0.89). Although there was no 

statistically significant improvement in diagnostic performance with the use of relative perfusion 

parameters (Table 4), when considering only intermediate lesions the AUC of relative blood flow 

was 9% larger than that of absolute blood flow (Table 5). Relative blood flow had the largest AUC 

(AUC 0.90; 0.85-0.95).  

 

Relative perfused capillary blood volume was the parameter with the lowest ratio ischaemic/remote 

myocardium (cut-offs to identify ischaemia 0.64 in all vessels; 0.54 in vessels with intermediate 

lesions). This parameter had higher visual contrast compared to the other parameters (Figure 2).  
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A significant decrease in all perfusion parameters was observed below an FFR value of 0.80 

(p<0.05) (Figure 3).    

 

Intra- and inter-observer agreement 

The semi-automatic analysis of 97 myocardial territories (37 patients) yielded intra- and inter-

observer ICC’s (95% CI) of 0.975 (0.963-0.983) and 0.945 (0.919-0.963) for blood flow; 0.938 

(0.908-0.958) and 0.906 (0.862-0.936) for perfused capillary blood volume; 0.977 (0.965-0.984) and 

0.944 (0.918-0.962) for first pass distribution volume, respectively.  
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DISCUSSION 
 
The main findings of this study were: 1) a semi-automatic analysis of dynamic CT-MPI with minimal 

additional operator time performed better than fully automatic analysis (17-segment model) in the 

diagnosis of myocardial ischaemia; 2) sampling perfusion in the endocardial layer of the 

myocardium made perfusion defects more conspicuous, likely a reflection of the pathophysiological 

wave-front phenomenon of ischaemia. The endo/epicardial ratio did not improve diagnostic 

performance; 3) Relative blood flow had the best AUC; 4) a significant decrease in perfusion was 

observed below an invasive FFR of 0.80. 

 

Previous studies have provided validation of dynamic CT-MPI in patients using a variety of 

reference standards 7-15. The analysis methods used, however, were heterogeneous. Some groups 

used axial images of the thorax and manually drew ROIs on the myocardium to sample blood flow 7, 

while others manually re-sliced the dataset into short and long axis views of the left ventricle 

according to classic cardiac planes 9-15. These approaches were operator-dependent and time 

consuming. Availability of a standardized analysis method is a pre-requisite to define broadly 

applicable thresholds for the differentiation of normal and abnormal perfusion, and implement CT-

MPI in clinical practice. 

 

Automatic software with limited user interference should benefit the standardization of the CT-MPI 

analysis procedure. Several commercial software packages offer segmentation of the left ventricle 

from CT data and the construction of polar maps (bulls-eye plots) according to standard AHA 

myocardial 17-segment anatomy 19.  In this study, we found that perfusion values of myocardial 

segments derived fully automatically did not perform as well as measurements obtained by an 

operator who identified areas of reduced perfusion on the color-coded polar maps. This may be 

explained by the fully automatic approach possibly diluting perfusion defects within a segment 

(partial volume effect), especially when perfusion defects are located at the border of two or more 

adjacent myocardial segments. It is likely that the operator corrected for this. Also, the quantification 

of perfusion parameters relies on precise demarcation of the myocardial territory downstream to a 

coronary vessel. Myocardial segments are usually assigned to vascular segments following 

assumptions based on the most frequent vascular distribution pattern. Coronary anatomy may vary 

affecting the boundaries of vascular territories. The standard assignment of myocardial segments to 

vascular territories proposed by the AHA 17-segment model may lead in some cases to incorrect 

identification of the target vessel 25-27. CT can provide integrated coronary artery and myocardial 

anatomy. The length of vessels such as the RCA (coronary dominance), the LAD and the number of 

diagonal and marginal branches are accepted determinants of myocardial segment reclassification 

26.  

 

Presence of a transmural blood flow gradient through the myocardium is a well-known phenomenon 

28. The endocardial layer of the myocardium is more sensitive to ischaemia than the epicardial layer 
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due to lower auto-regulatory pressure limits, higher metabolic demand and higher oxygen 

consumption . This principle lies at the basis of the assessment of the transmurality 29, 30 or the 

transmural attenuation ratio applied in static CT-MPI to identify ischaemia 31-34. While the 

endocardial analysis made perfusion defects more conspicuous, in this study the endo/epicardial 

ratio did not improve diagnostic performance. 

  

Previous physiological studies using electron beam computed tomography (EBCT) and positron 

emission tomography (PET) 35, 36 showed that myocardial blood flow was a direct index of 

myocardial perfusion. In this study, we evaluated two additional parameters. First pass distribution 

volume reflects the kinetics of iodinated contrast agents, which exit the vascular space and 

distribute throughout the intravascular and extra-vascular spaces. The perfused capillary blood 

volume quantifies the intravascular contrast agent component only 37.  

 

Perfused capillary blood volume was associated with the lowest ischaemic/remote myocardium ratio 

and the highest image contrast. A potential explanation may be that this parameter directly reflects 

the intra-vascular space (not extra-vascular) during hyperaemic stress, which is characterized by 

fast flow. This parameter may be more sensitive than others to the functionally recruitable 

component of myocardial capillary vessels 38. We hypothesize that this parameter may allow 

perfusion changes to be more conspicuous and easily appreciated by the operator, which may be 

useful for the accurate sampling of perfusion on color-coded polar maps. 

 

Clinical implementation of dynamic CT-MPI  

In dynamic CT-MPI the heart is imaged repeatedly to capture the arrival of the contrast bolus and its 

wash-out during first-pass circulation 1-4. Based on physiological models temporal changes in 

myocardial attenuation, normalized to the enhancement of the blood pool, allow for calculation of 

quantitative measures of myocardial perfusion. In static CT-MPI, a snapshot of myocardial 

attenuation is acquired as a single dataset displaying the instantaneous variation in myocardial 

attenuation as a result of differences in perfusion. The detection of regional perfusion defects is 

qualitative or normalized to attenuation in the remote myocardium or left ventricular cavity 39.  

 

Quantitative perfusion may be advantageous for uncovering balanced ischaemia associated with 

global left ventricular reduction of blood flow, which may be disguised by qualitative approaches. 

Studies using PET 40, 41 have shown the adverse prognostic value of (homogenously) reduced 

myocardial blood flow in the context of microvascular disease 42. The demonstration of coronary 

anatomy by CTCA in conjunction with quantitative CT-MPI could allow for a comprehensive 

evaluation of epicardial coronary artery disease and microvascular dysfunction.  

 

However, there are also challenges to the clinical implementation of dynamic CT-MPI. First, while 

values of myocardial blood flow in healthy subjects during hyperaemic stress were found in the 

range of 200–500 ml/100 g/min by PET 43, the values in this as well as other CT-MPI studies were 
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lower. Ranges of normal and abnormal blood flow obtained by PET 44, 45 and magnetic resonance 

imaging 46 were also different. This may be related to study design, samples sizes, image 

acquisition and post-processing methods, reference standards, as well as age and gender, coronary 

risk profile and prevalence of coronary artery disease. Also, limitation of CT in the temporal 

sampling of the hyperaemic intra-capillary first pass of contrast may partly explain the difference. 

The first-pass extraction of iodine into the normal myocardium under hyperaemia is low and purely 

intravascular transit times are short. Measuring these more correctly would require a sampling rate 

that would significantly increase radiation exposure 47. The underestimation predominantly affects 

absolute values in the normal myocardium and as our results show, this does not appear to strongly 

diminish the discriminating power of CT-MPI based blood flow. It is noteworthy that the CT-MPI 

specific parameter perfused capillary blood volume, which has a smaller dependence on temporal 

sampling, therefore also exhibits a substantially higher ischaemic contrast. Underestimation of 

hyperaemic perfusion may also occur in the event of suboptimal adenosine vasodilator response. 

Based on the hypothesis that blood flow, once normalized to remote myocardium, should be less 

affected by these factors, Kono et al. 48 and Wichmann et al. 49 demonstrated a better diagnostic 

performance of relative blood flow compared to absolute blood flow. Our study confirmed this in 

territories downstream to intermediate lesions. Intermediate lesions may lead to a milder decline in 

perfusion compared to severe stenoses. Also, intermediate lesions may have an FFR value which 

sits within the known “grey zone” for FFR with high test-retest variability 50.  

 

Secondly, adding CT-MPI to CTCA increases patient radiation and contrast agent exposure. The 

risk of contrast induced nephropathy can be minimized by excluding patients with impaired kidney 

function.  In our study, decreasing tube voltage from 100kV to 80kV was associated with 40% 

decrease in effective dose. Further developments e.g. improved detector technology, lower tube 

voltage using more powerful X-ray generators, and iterative reconstruction algorithms are expected 

to further decrease radiation exposure.  

 

Study limitations 

We acknowledge some study limitations. FFR was not performed in angiographically normal or 

near-normal vessels and in vessels with ≥80% stenosis at QCA. This is in keeping with clinical 

standards. An 80% stenosis at QCA is likely to correspond to a 90% visual stenosis (“oculo-stenotic 

reflex”) 22. By applying this conservative approach in the study, we were unlikely to functionally 

misclassify anatomically severe lesions 18, 22. Although regarded as the clinical standard of reference 

for functional classification of coronary disease, FFR is a measure of pressure and reflects the 

functional consequence of narrowing in epicardial coronary vessels. Myocardial perfusion depends 

on epicardial coronary disease as well as microvasculature within the myocardium. In our study, the 

presence of significant microvascular dysfunction was largely avoided by excluding patients with 

severely impaired left ventricular ejection fraction. Thresholds were derived in this study using the 

Youden index and require validation in external cohorts. The effect played by age, gender, 

cardiovascular risk factors and other potential confounders also require definition in larger studies. 



 13 

Lastly, our study did not include patients with known coronary artery disease and previous 

myocardial infarction. In a patient cohort with known myocardial infarction, Bamberg et al. 8 

demonstrated that first pass distribution volume was significantly lower in infarcted myocardial 

segments compared to ischaemic but viable myocardium. Infarcted tissue is characterized by a 

lower density of capillary vessels compared to non-infarcted myocardium. Because first pass 

distribution volume is the ratio between the peak of the myocardial time attenuation curve and the 

peak of the arterial input function, in infarcted areas this may translate into lower peak enhancement 

and lower first pass distribution volume 8. This observation potentially broadens the ability of CT-

MPI to characterize not only ischaemic vs. non-ischaemic, but also viable vs. non-viable 

myocardium from a single dynamic scan.  

 

Conclusions 

Our study generates the hypothesis that endocardial perfusion parameters obtained by semi-

automatic analysis of dynamic CT-MPI may permit robust discrimination between coronary vessels 

causing ischaemia vs. not causing ischaemia. 
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Figure legends 

 

Figure 1. Inclusion procedure 

 

Patients with symptoms suggestive of coronary artery disease were referred for ICA and prospectively enrolled to 

undergo CT-MPI before ICA. 

 
Footnote: Partial data from 45 patients included in the current study were reported previously in a proof-of-principle study 12. That report 
however did not evaluate multi-parametric data and analysis methods. 
 
 
 

 

Figure 2. Post-processing, fully automatic and semi-automatic analyses of dynamic CT-MPI 

 

Panel A: attenuation changes in the aorta and in the myocardium were used to construct arterial input function (red 

curve) and tissue time attenuation curves (blue line), respectively. Curves were fit to a dedicated two-compartment 

model (intra- and extra-vascular spaces). Perfused capillary blood volume (PCBV) was derived from the model. 

Myocardial blood flow (BF) and first-pass distribution volume (FPDV) were calculated from the fit curves, as shown. 

Panel B: fully automatic analysis of BF, PCBV, and FPDV. Parameter values were available for each myocardial 

segment of the polar map according to the 17-segment American Heart Association (AHA) model. In each vascular 

territory of the myocardium (LAD, LCx and RCA), the segment with the lowest value for each parameter was picked 

and compared to ICA/FFR for the detection of ischaemia.  

Panel C: in the semi-automatic analysis, volumes of interest (VOIs, circles) were placed manually on the polar 

map, guided by color-coding regardless of the segmental grid imposed by the 17-segment model. 

 

Footnote: Color scales:  BF: 0-200 ml/100ml/min; PCBV: 0-15 ml/100ml; FPDV: 0-20 ml/100ml. 

 

 

Figure 3. Relationship between perfusion parameters and FFR 

 

Panel A: scatterplots show relative myocardial blood flow, perfused capillary blood volume and first pass 

distribution volume by invasive FFR. This study could not demonstrate significant differences between men (dark 

dots) and women (white dots).  

Panel B: box and whisker plots show median values (interquartile ranges) of relative blood flow, perfused capillary 

blood volume and first pass distribution volume for FFR ranges, as shown. A significant decrease in perfusion was 

observed below an FFR value of 0.80 (all p-values <0.05). 

 

Footnote: * p-value from Kruskal Wallis test; ** p-value from Mann-Whitney U test.



 19 

TABLES 

Table 1. Baseline characteristics and main ICA/FFR findings (n=115). 
 

Characteristics Total (n=115) 

 
Men  88 (77%) 

Age (years)  57 ± 9 

Body mass index (kg/m2)  29 ± 5 

Risk factors   

    Diabetes mellitus *  39 (34%) 

    Hypertension †  66 (57%) 

    Dyslipidemia ‡  94 (82%) 

    Current smoker  72 (63%) 

    Family history of coronary artery disease §    50 (43%) 

Agatston calcium score: median (IQR)  140 (21-467) 

Right dominant coronary system  92 (80%) 

Heart rate (beats/min)   

    Baseline  68 ± 11 

    During adenosine stress  91 ± 15 

Systolic blood pressure (mmHg)   

    Baseline  141 ± 22 

    During adenosine stress  137 ± 21 

Diastolic blood pressure (mmHg)   

    Baseline  79 ± 10 

    During adenosine stress  75 ± 13 

Diameter narrowing on QCA: median (IQR) 

    Mild (≤30%) coronary lesions (n=174)  18% (11-24%) 

    Intermediate (30-80%) coronary lesions (n=75)  49% (40-59%) 

    Severe (≥80%) coronary lesions (n=37)  94% (85-100%) 

Fractional flow reserve: median (IQR)  0.83 (0.75-0.88) 

FFR range  0.46-0.99 

Patients with functionally significant coronary lesion causing 
ischaemia ||  52 (45%) 

    One-vessel disease  36 (31%) 

    Two-vessel disease  12 (10%) 

    Three-vessel disease  4 (4%) 

   

Number of vessel evaluated  286 

Vessels with functionally significant coronary lesion causing 
ischaemia ||  72/286 (25%) 

    Right coronary artery   22 (8%) 

    Left main/left anterior descending coronary artery  34 (12%) 

    Left circumflex artery  16 (5%) 

 
Values are means ± standard deviations, or frequencies (percentages), unless otherwise specified. 

 

* Treatment with oral anti-diabetic medication or insulin;  †  Blood pressure ≥140/90 mmHg or 

treatment for hypertension; ‡  Total cholesterol >180 mg/dl or treatment for hypercholesterolemia;  
§ Family history of coronary artery disease having first- or second- degree relatives with premature 

coronary artery disease (age<55 years). 
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|| Functionally significant coronary lesion defined as FFR ≤0.80 or QCA diameter narrowing ≥80%. 
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Table 2. Fully automatic and semi-automatic analyses for vessel-specific ischaemia 
 

 Vessels not causing 
ischaemia 

Vessels causing  
ischaemia 

AUC (95% CI) p-value * 

     

All vessels (n= 286) 
 
 n=214 n=72   
 
Myocardial blood flow; ml/100ml/min 
Fully automatic 143 (122-167) 118 (93-146) 0.69 (0.62-0.76) 

<0.001 
Semi-automatic 161 (126-191) 92 (74-109) 0.87 (0.83-0.92) 
     
Perfused capillary blood volume; ml/100ml 
Fully automatic 8.8 (7.0-10.6) 6.8 (4.7-8.6) 0.69 (0.62-0.77) 

<0.001 
Semi-automatic 10.7 (7.8-13.3) 4.1 (3.1-5.7) 0.89 (0.84-0.93) 
     
First pass distribution volume; ml/100ml 
Fully automatic 17.1 (14.9-19.0) 14.1 (10.7-16.6) 0.72 (0.64-0.79) 

<0.001 
Semi-automatic 18.9 (15.7-21.4) 11.3 (9.1-13.6) 0.89 (0.84-0.93) 
     
 
Vessels interrogated with FFR (n=96) 
 
 n=59 n=37   
 
Myocardial blood flow; ml/100ml/min 
Fully automatic 142 (119-159) 141 (122-159) 0.50 (0.38-0.62) 

<0.001 
Semi-automatic 150 (114-178) 102 (89-121) 0.76 (0.66-0.86) 
     
Perfused capillary blood volume; ml/100ml 
Fully automatic 9.0 (7.3-10.6) 8.4 (6.8-10.3) 0.55 (0.43-0.66) 

<0.001 
Semi-automatic 9.8 (6.1-12.8) 4.4 (2.7-7.2) 0.82 (0.73-0.91) 
     
First pass distribution volume; ml/100ml 
Fully- automatic 17.0 (15.6-18.5) 16.1 (14.4-17.9) 0.58 (0.46-0.70) 

<0.001 
Semi-automatic 18.6 (14.7-20.7) 13.3 (11.6-15.3) 0.79 (0.70-0.87) 

 

Values are medians (IQR). This study could not demonstrate significant differences between men and women. 

AUC= area under the curve; CI= confidence intervals. 

Results from endocardial analysis. Functionally significant coronary lesion defined as FFR ≤0.80 or QCA diameter narrowing ≥80%. 

* p-value from DeLong test comparing AUC’s of fully-automatic and semi-automatic analyses. Significant p-values in bold. 
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Table 3. Myocardial blood flow from transmural, endocardial, epicardial myocardium and endo/epicardial ratio  
 

     p-value *           

 

Vessels not 
causing 

ischaemia 

Vessels 
causing 

ischaemia 
p-value † 

AUC 
(95% CI) 

Trans- 
mural 

Endo Epi 
Endo/epi  

ratio 
Youden 
index 

Cut-off 
value ‡ 

TP TN FP FN 
Sens, % 
(95% CI) 

Spec, % 
(95% CI) 

PPV, % 
(95% CI) 

NPV, % 
(95% CI) 

Myocardial blood flow; ml/100ml/min 

All vessels (n=286) 

 n=214 n=72                 

Transmural 
149 

(118-177) 
96 

(80-120) 
<0.001 

0.82 
(0.76-0.87) 

- 0.001 <0.001 0.770 0.517 114 51 173 41 21 
0.708 

(0.572-0.815) 
0.808 

(0.732-0.867) 
0.554 

(0.436-0.667) 
0.892 

(0.826-0.935) 

Endo 
161 

(126-191) 
92 

(74-109) 
<0.001 

0.87 
(0.83-0.92) 

0.001 - <0.001 0.017 0.638 106 54 189 25 18 
0.750 

(0.625-0.844) 
0.883 

(0.816-0.928) 
0.684 

(0.551-0.792) 
0.913 

(0.856-0.949) 

Epi 
140 

(109-169) 
100 

(82-140) 
<0.001 

0.72 
(0.65-0.79) 

<0.001 <0.001 - 1.000 0.372 118 47 153 61 25 
0.653 

(0.519-0.766) 
0.715 

(0.626-0.790) 
0.435 

(0.333-0.544) 
0.860 

(0.786-0.911) 

Endo/epi ratio 
1.13 

(1.01-1.26) 
0.88 

(0.73-1.07) 
<0.001 

0.76 
(0.68-0.83) 

0.770 0.017 1.000 - 0.490 0.91 43 188 26 29 
0.597 

(0.489-0.697) 
0.879 

(0.822-0.919) 
0.623 

(0.496-0.735) 
0.866 

(0.815-0.905) 

                   

Vessels interrogated with FFR (n=96) 

 n=59 n=37                 

Transmural 
149 

(114-171) 
113 

(93-135) 
0.001 

0.70 
(0.59-0.81) 

- 0.120 0.001 1.000 0.397 146 31 33 26 6 
0.838 

(0.685-0.925) 
0.559 

(0.404-0.704) 
0.544 

(0.399-0.681) 
0.846 

(0.705-0.927) 

Endo 
150 

(114-178) 
102 

(89-121) 
<0.001 

0.76 
(0.66-0.86) 

0.120 - 0.008 1.000 0.475 145 32 36 23 5 
0.865 

(0.724-0.940) 
0.610 

(0.462-0.741) 
0.582 

(0.437-0.714) 
0.878 

(0.737-0.949) 

Epi 
145 

(109-167) 
121 

(93-148) 
0.056 

0.62 
(0.50-0.73) 

0.001 0.008 - 0.580 0.262 127 21 41 18 16 
0.568 

(0.372-0.744) 
0.695 

(0.536-0.818) 
0.538 

(0.370-0.698) 
0.719 

(0.563-0.836) 

Endo/epi ratio 
1.09 

(0.96-1.19) 
0.86 

(0.76-1.00) 
<0.001 

0.74 
(0.63-0.86) 

1.000 1.000 0.580 - 0.533 0.93 26 47 12 11 
0.703 

(0.553-0.819) 
0.797 

(0.679-0.879) 
0.684 

(0.525-0.809) 
0.810 

(0.699-0.887) 
  

 
Values are medians (IQR).  

AUC= area under the curve; CI= confidence intervals; TP= true positive; TN= true negative; FP= false positive; FN= false negative; PPV= positive predictive value; NPV= negative predictive 

value. 

 

Results from semi-automatic analysis. Functionally significant coronary lesion defined as FFR ≤0.80 or QCA diameter narrowing ≥80%. 

* p-value from DeLong test comparing AUC’s of different approaches. Significant p-values in bold. 
† p-value from Mann-Whitney U test comparing vessels not causing ischaemia vs. vessels causing ischaemia. 
‡ cut-off value calculated according to the Youden index. 
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Table 4. Absolute and relative myocardial blood flow, perfused capillary blood volume and first-pass distribution volume (n=286 vascular territories) 
 

     p-value *           

 

Vessels not 
causing 

ischaemia 
(n=214) 

Vessels 
causing 

ischaemia 
(n=72) 

p-value † AUC 
(95% CI) 

Myocardial blood 
flow 

Perfused capillary 
blood volume 

First pass 
distribution volume 

Youden 
index 

Cut-off 
value ‡ 

TP TN FP FN Sens, %  
(95% CI) 

Spec, %  
(95% CI) 

PPV, %  
(95% CI) 

NPV, %  
(95% CI) 

     Absolute Relative Absolute Relative Absolute Relative           

Myocardial blood flow; ml/100ml/min 

Absolute 
161 

(126-191) 
92 

(74-109) 
<0.001 

0.87 
(0.83-0.92) 

- 0.833 1.000 1.000 1.000 1.000 0.638 106 54 189 25 18 
0.750 

(0.624-0.844) 
0.883 

(0.816-0.928) 
0.683 

(0.551-0.792) 
0.913 

(0.856-0.949) 

Relative 
0.92 

(0.79-0.99) 
0.58 

(0.45-0.68) 
<0.001 

0.90 
(0.85-0.95) 

0.833 - 1.000 0.197 1.000 1.000 0.725 0.73 63 179 35 9 
0.875 

(0.787-0.930) 
0.836 

(0.781-0.880) 
0.643 

(0.534-0.738) 
0.952 

(0.911-0.975) 

 

Perfused capillary blood volume; ml/100ml 

Absolute 
10.7 

(7.8-13.3) 
4.1 

(3.1-5.7) 
<0.001 

0.89 
(0.84-0.93) 

1.000 1.000 - 1.000 1.000 1.000 0.656 6.7 59 179 35 13 
0.819 

(0.712-0.893) 
0.836 

(0.769-0.887) 
0.628 

(0.503-0.737) 
0.932 

(0.884-0.961) 

Relative 
0.85 

(0.69-0.99) 
0.39 

(0.28-0.56) 
<0.001 

0.88  
(0.82-0.93) 

1.000 0.197 1.000 - 1.000 1.000 0.665 0.64 62 170 44 10 
0.861 

(0.774-0.918) 
0.794 

(0.733-0.844) 
0.585 

(0.473-0.688) 
0.944 

(0.900-0.970) 

 

First pass distribution volume; ml/100ml 

Absolute 
18.9  

(15.7-21.4) 
11.3  

(9.1-13.6) 
<0.001 

0.89 
(0.84-0.93) 

1.000 1.000 1.000 1.000 - 1.000 0.641 15.6 63 161 53 9 
0.875 

(0.783-0.932) 
0.752 

(0.678-0.814) 
0.543 

(0.439-0.644) 
0.947 

(0.902-0.972) 

Relative 
0.94  

(0.83-0.99) 
0.63  

(0.48-0.75) 
<0.001 

0.89 
(0.85-0.94) 

1.000 1.000 1.000 1.000 1.000 - 0.684 0.79 62 173 41 10 
0.861 

(0.772-0.919) 
0.808 

(0.750-0.856) 
0.602 

(0.496-0.699) 
0.945 

(0.902-0.970) 

                     

CTCA - - - 
0.79  

(0.71-0.86) 
 

- - - - - - - ≥70% 43 208 6 29 
0.597  

(0.476-0.707) 
0.972  

(0.924-0.990) 
0.878  

(0.717-0.953) 
0.878  

(0.825-0.916) 
  

 
Values are medians (IQR). This study could not demonstrate significant differences between men and women. 

CTCA= CT coronary angiography. AUC= area under the curve; CI= confidence intervals; TP= true positive; TN= true negative; FP= false positive; FN= false negative; PPV= positive 

predictive value; NPV= negative predictive value. 

 

Results from semi-automatic endocardial analysis. Functionally significant coronary lesion defined as FFR ≤0.80 or quantitative coronary angiography diameter narrowing ≥80%.  

* p-value from DeLong test comparing AUC’s of perfusion parameters.  
† p-value from Mann-Whitney U test comparing vessels not causing ischaemia vs. vessels causing ischaemia. 
‡ cut-off value calculated according to the Youden index, except for CTCA (≥70% diameter reduction as visually assessed) whose diagnostic performance is reported for comparison. 
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Table 5. Absolute and relative myocardial blood flow, perfused capillary blood volume and first-pass distribution volume in intermediate lesions directly 

interrogated with FFR (n=96 vascular territories) 

 

     p-value *           

 

Vessels not 
causing 

ischaemia 
(n=59) 

Vessels 
causing 

ischaemia 
(n=37) 

p-value † AUC 
(95% CI) 

Myocardial blood 
flow 

Perfused capillary 
blood volume 

First pass 
distribution volume 

Youden 
index 

Cut-off 
value ‡ 

TP TN FP FN Sens, %  
(95% CI) 

Spec, %  
(95% CI) 

PPV, %  
(95% CI) 

NPV, %  
(95% CI) 

     Absolute Relative Absolute Relative Absolute Relative           

Myocardial blood flow; ml/100ml/min 

Absolute 
150 

(114-178) 
102 

(89-121) 
<0.001 

0.76 
(0.66-0.86) 

- 0.064 0.266 0.359 1.000 0.100 0.475 145 32 36 23 5 
0.865 

(0.724-0.940) 
0.610 

(0.462-0.741) 
0.582 

(0.437-0.714) 
0.878 

(0.737-0.949) 

Relative 
0.91 

(0.73-0.98) 
0.62 

(0.55-0.68) 
<0.001 

0.85 
(0.76-0.94) 

0.064 - 1.000 1.000 0.422 1.000 0.638 0.75 33 43 16 4 
0.892 

(0.763-0.955) 
0.729 

(0.594-0.831) 
0.673 

(0.520-0.797) 
0.915 

(0.797-0.967) 

 

Perfused capillary blood volume; ml/100ml 

Absolute 
9.8 

(6.1-12.8) 
4.4 

(2.7-7.2) 
<0.001 

0.82 
(0.73-0.91) 

0.266 1.000 - 1.000 1.000 1.000 0.570 8.3 33 39 20 4 
0.892 

(0.757-0.956) 
0.661 

(0.516-0.781) 
0.623 

(0.469-0.755) 
0.907 

(0.781-0.964) 

Relative 
0.81 

(0.57-1.00) 
0.39 

(0.24-0.50) 
<0.001 

0.83 
(0.74-0.92) 

0.359 1.000 1.000 - 1.000 1.000 0.614 0.54 29 47 12 8 
0.784 

(0.619-0.890) 
0.797 

(0.665-0.886) 
0.707 

(0.535-0.835) 
0.855 

(0.729-0.928) 

 

First pass distribution volume; ml/100ml 

Absolute 
18.6  

(14.7-20.7) 
13.3  

(11.6-15.3) 
<0.001 

0.79  
(0.70-0.89) 

1.000 0.422 1.000 1.000 - 0.579 0.550 16.3 31 41 18 6 
0.838 

(0.692-0.922) 
0.695 

(0.547-0.811) 
0.633 

(0.481-0.762) 
0.872 

(0.745-0.941) 

Relative 
0.94  

(0.79-0.99) 
0.69  

(0.59-0.76) 
<0.001 

0.84  
(0.75-0.93) 

0.100 1.000 1.000 01.000 0.579 - 0.601 0.79 31 43 16 6 
0.838 

(0.698-0.920) 
0.729 

(0.694-0.831) 
0.660 

(0.505-0.786) 
0.878 

(0.750-0.945) 

                     

CTCA - - - 
0.65  

(0.53-0.77) 
 

- - - - - - - ≥70% 13 56 3 24 
0.351  

(0.207-0.529) 
0.949  

(0.809-0.988) 
0.813  

(0.498-0.950) 
0.700  

(0.588-0.792) 

 
Values are medians (IQR).  

CTCA= CT coronary angiography. AUC= area under the curve; CI= confidence intervals; TP= true positive; TN= true negative; FP= false positive; FN= false negative; PPV= positive 

predictive value; NPV= negative predictive value. 

 

Results from semi-automatic endocardial analysis. Functionally significant coronary lesion defined as FFR ≤0.80. 

* p-value from DeLong test comparing AUC’s of perfusion parameters.  
† p-value from Mann-Whitney U test comparing vessels not causing ischaemia vs. vessels causing ischaemia. 
‡ cut-off value calculated according to the Youden index, except for CTCA (≥70% diameter reduction as visually assessed) whose diagnostic performance is reported for comparison. 
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