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Abstract 

With increasing numbers of advanced therapies including cell and gene therapies entering early and 

late-stage clinical development, significant focus has been directed towards the development of 

scalable, robust manufacturing processes. Much of the research and development activity in the 

sector has addressed the upstream challenges with particular emphasis on large-scale cell expansion, 

however equally important is the development of large-scale harvesting and downstream processing 

operations. This paper presents and summarises some of the challenges associated with the 

downstream processing of these advanced therapies and highlights recent advancements in the 

technologies suitable for such applications.   

Introduction 

The unavoidable transition towards an older aging population has become a significant medical 

challenge faced by many developed and developing economies. The increased demand for hospital 

and social care coupled with complex medical interventions, has led to spiralling costs for healthcare 

systems globally. Advanced therapies, including cell and gene-based therapies (CGTs) have the 

potential to address previously unmet patient needs, improving overall healthcare costs as well as 

tackling the social and economic effects of chronic and age-related conditions. However, before this 

can be realised, it is critical that robust, scalable and cost-effective manufacturing processes, that 

retain cell functionality, are developed. Unlike traditional manufacture of monoclonal antibodies 

(mAbs) and other biologics, the production and processing of cellular material, forms the basis of the 

product for CGTs [1] . As such, manufacturing processes need to be adapted to ensure that the cellular 

material retains the critical quality attributes (CQAs) throughout the entire process [2, 3]. 

As with the production of mAbs, significant research and development for CGT processes has focused 

on the intensification of upstream processes. For example, several studies have investigated the 

optimization of cell expansion processes of adherent human cells. Significant progress has been made 

in recent years with densities for human mesenchymal stem cells (hMSCs) cultured on microcarriers 

now reaching densities of >1x106 cells mL-1 [4] and human pluripotent stem cells (hPSCs) reaching 

densities of >2-3x106 cells mL-1 [5]. Whilst R&D activity should continue focusing on improving cell 

density, the shift of the manufacturing bottlenecks is inevitably leaning towards downstream 

processing (DSP) [6]. The DSP activities for cell therapies are those unit operations and processes 

which arise post after the cellular expansion stage and, depending on the therapy, can include 

harvesting, washing, cell concentration, formulation, final fill and finish and preservation. 

Despite the fact that most CGT manufacturing processes include a clarification and concentration step 

of the cellular material derived from cell culture, DSP remains largely unaddressed. Typically, a swing-

bucket rotor centrifugation step or a filtration step is included to remove cell debris, large aggregates, 

unwanted proteins, volume reduce (concentrate) and formulate the cellular suspension into a patient-

friendly or preservation-friendly buffer [6]. In the vast majority of expansion studies, there is little or 

no mention of the harvest and subsequent DSP of the cells. For anchorage-dependent cells, 

dissociation into single-cell suspension whilst retaining the CQAs is essential. Current available DSP 

platforms generally offer either high specificity or high throughput, but rarely both. Whilst highly 

specific labelling separation systems may be suitable within low volume production (proof-of-

principle, small scale studies or autologous applications), it is extremely unlikely these will meet the 



demands in the allogeneic manufacturing environment. Equally, DSP techniques adapted from protein 

production for CGTs have the capacity to handle the scales required for allogeneic therapies but are 

hindered by the lack of specificity and sensitivity to target cell isolation. With increasing volumes, cell 

densities and more stringent target product profiles to meet regulatory requirements, the need for 

efficient, highly specific and scalable DSP techniques to effectively purify and formulate the final 

product, will be just as essential as cell expansion.  

Harvest 

The harvesting of cells is the process of removing the cells from the culture vessel (stirred-tank 

bioreactors, hollow-fibre/packed-bed reactors, gas-permeable membrane reactors, etc.) after 

expansion. Given the wide variety of CGTs, the use of both anchorage-dependent and suspension cells, 

in addition to a multiple array of culture devices are used. Therefore, the harvesting protocol is likely 

to be process-specific and require optimisation in each instance. In most instances, the process is likely 

to involve the use of an animal-free recombinant enzymatic dissociation reagent such as recombinant 

trypsin and some physical force exerted through an increase in impeller agitation, bioreactor rotation 

or increased flow rates depending on the culture vessel employed. For example, the harvesting of cells 

using anchorage-dependent hMSCs cultured in stirred-tank bioreactors on microcarriers requires a 

combination of enzymatic dissociation and mechanical force (through impeller agitation) to aid in the 

successful detachment of cells from the microcarriers in situ [7].  

This procedure has been employed successfully for a range of anchorage-dependent cell types in a 

range of bioreactor systems and in all cases (Figure 1), importantly, demonstrated retention of the 

CQAs [8] despite concerns that the increase in agitation will result in cell-damaging shear forces. This 

harvesting method has demonstrated that it is possible to increase impeller agitation. This aids in the 

rate of cell detachment, whilst ensuring that the Kolmogorov scale remains greater than the size of 

the cell once it has been detached and therefore unlikely to cause cell damage. Such an approach led 

to > 95% harvesting efficiency with the cells demonstrating retention of CQAs, despite a five-fold 

increase in the impeller agitation (compared to the original culture agitation) and a Kolmogorov scale 

of ~ 30 µm, larger than the average diameter of the cells (~15 µm) [7]. This in situ detachment 

procedure should be scalable to larger, industrial-scale bioreactors having been established on well-

understood theoretical mixing principles. Moreover, given the detachment procedure is undertaken 

in situ, it eliminates the need for an additional processing step outside of the culture vessel, reduces 

contamination risk and decreases time between process steps. 

Although the procedure is likely to involve the use of a recombinant dissociation reagent, the harvest 

of a hollow-fibre or packed-bed bioreactor culture is likely to be different and may involve extended 

contact with the dissociation reagent, increased flow rates, and/or rotation of the culture vessel. In all 

instances of the harvesting procedure, it is important, particularly where mechanical forces are used 

to dissociate cells, that no additional debris or particulates arise due to the microcarrier/cell-substrate 

damage. Such an outcome would result in additional burden on the DSP operations to remove such 

particulates. Some groups have demonstrated successful culture of cells on biodegradable 

microcarriers [9] to overcome this concern, yet this may still pose a concern for final formulation and 

patient administration.  

Advances in biomaterial formulation have facilitated the development of alternative approaches for 

cell harvesting with multiple studies demonstrating the potential to remove the need for enzymatic 

dissociation reagents and mechanical agitation to facilitate successful harvest. Such approaches 

include the use of environmentally responsive polymers to coat microcarriers which enable both the 

culture of anchorage-dependent cells and the subsequent detachment of the cells through a change 



in the culture temperature and/or pH [10, 11]. Although promising, there is a concern that non-

enzymatic methods for cell dissociation results in the formation of cell sheets rather than a single-cell 

suspension; this may be inappropriate for applications that require intravenous administration.  

Volume reduction, wash and formulation  

CGTs to date use swing-bucket rotor centrifugation for cell washing and concentration. A biological 

safety cabinet usually is needed for the subsequent resuspension step, which involves discarding spent 

medium and resuspending in a suitable buffer. This process may be repeated multiple times to ensure 

the complete removal of any unwanted reagents and/or particles. However, centrifugation has proven 

to be a difficult step to automate while maintaining sterility [1] and can pose a problem to achieve the 

required cell numbers for the manufacture of highly concentrated CGTs [12]. Alternatives to swing-

bucket rotor centrifugation, include continuous counterflow centrifugation systems and filtration 

systems which can be more amenable to large-scale, contained and automated operations [6]. 

Counterflow centrifugation systems, such as kSep® (KBI Biopharma) and Elutra cell separation system 

(Terumo BCT), can keep the cells in suspension whilst washing them, clearing out residuals from the 

supernatant and exchanging the buffer. kSep® in particular can be fully automated and contained, 

uses a disposable flow path, is scalable from 0.1 L to >1000 L and can achieve high cell recoveries 

(>80%) and high cell viabilities (>90%). The capital investment needed, together with the cost of 

disposables, demands careful consideration when carrying out process development [6]. 

Tangential flow filtration (TFF) offers an alternative that can also be scaled, automated, fully contained 

and, generally, involves a lower capital investment and disposables costs, which may make it more 

amenable to process development activities [6]. For instance, for the anchorage-dependent cells, after 

the cells are enzymatically dissociated into a single-cell suspension (whether that is detachment from 

microcarriers, culture surfaces, colonies or embryoid bodies), these are generally quenched with 

culture media to preserve cell health by preventing the enzyme from further digesting cell 

components. More specifically, for the hMSC microcarrier-based expansion outlined previously, cell 

detachment from the microcarrier is only one aspect of the harvesting procedure. Assuming the 

microcarriers are not biodegradable and not part of the final product formulation, the next DSP step 

is likely to be the separation of cells from microcarriers by size exclusion techniques. For example, 

dead end filtration using a vacuum as a driving force was employed in the aforementioned hMSCs 

studies [7, 8]. However, this technique, although suitable for the purposes of the study, is not a 

scalable technique like TFF. Other groups have used TFF and expanded bed chromatography (EBC) as 

continuous, integrated alternative techniques for the improved washing and concentration of hMSCs 

[13, 14]. Cunha and colleagues showed high protein clearance (98%), high recovery of viable hMSCs 

(70%) with no impact on cell viability (95%) or other CQAs (morphology, immunophenotyped, 

proliferation, adhesion capacity and multipotent differentiation potential) [13, 14]. Furthermore, 

these studies show shorter processing times when using continuous filtration techniques as opposed 

to discountinuous operations. 

Another recent technique that is showing promise for the DSP of CGTs is acoustic filtration [15, 16]. 

Acoustic filtration uses standing waves to capture, separate and concentrate particles in a fluid 

without having a physical barrier (membrane or filter) like traditional filtration systems. It is therefore 

considered suitable for shear-sensitive cell lines and potentially allows for higher throughput, together 

with less clogging issues than traditional membrane based systems, extending the lifetime of the 

disposables.  

Addressing the DSP challenges 



Due to the relative infancy of the CGT DSP space, a large proportion of the research and development 

activity needs to focus on effective process development and understanding of the critical process 

parameters (CPPs) at the small scale. The development of bench-scale technologies which better 

mimic the full scale will be paramount to the rapid development of robust DSP processes and allow 

cost-effective screening of the susceptibility of cell lines to operating conditions for CGTs [17]. To date, 

some efforts have focused on the development of ultra scale-down (USD) tools to mimic various large 

scale operations such as continuous centrifugation [18] dead end filtration [19, 20] and membrane 

separation [21, 22] (Table 1). USD devices allow the investigation of several manufacturing 

hydrodynamic environments [21] and geometries [23] with little material, increasing the throughput 

of the experimental phase in a cost-effective and time-efficient manner and ultimately, expediting 

process development of DSP operations.  

Delivering effective DSP technologies and robust processes with the capacity to target specificity and 

throughput is required to ensure that advances in upstream processing are maximised. Effective scale-

down models, adequately characterised, may facilitate a thorough understanding of the CPPs and 

expedite process optimisation and parameter screening studies in a cost-effective and timely manner. 

Moreover, further process understanding and knowledge of the product’s CQAs will be key to develop 

effective and suitable DSP solutions with the capacity to scale and quality requirements of CGT 

products. 
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Figures/Tables: 

 

Figure 1: Phase-contrast image of single hMSCs in suspension following detachment from 

microcarriers 

 

 

DSP Unit Operation Reference 

Continuous centrifugation Bocyhyn et al. 2001 [24] 
Hutchinson et al. 2006 [18] 

Batch centrifugation Delahaye et al. 2015 [25] 
Hutchinson et al. 2006 [18] 
McCoy et al. 2009 [26] 

Chromatography Titchener-Hooker et al. 2008 [27] 
Hutchinson et al. 2006 [18] 

Membrane separation (TFF) Masri et al. 2017 [21] 
Ma et al. 2010 [22] 

Depth filtration Jackson et al. 2006 [19]  
Lau et al. 2013 [20] 

Fill and finish (capillaries) Acosta-Martinez et al. 2010 [23] 

 

Table 1: Overview of ultra scale-down tools reported in literature as predictive tools for several 

different large-scale downstream processing steps and/or processing parameters 


