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Abstract. We establish well-posedness in the mild sense for a class of stochastic semilinear
evolution equations on Lp spaces, driven by multiplicative Wiener noise, with a drift term given
by a superposition operator that is assumed to be quasi-monotone and polynomially growing, but
not necessarily continuous. In particular, we consider a notion of mild solution ensuring that the
superposition operator applied to the solution is still function-valued but satisfies only minimal
integrability conditions. The proofs rely on stochastic calculus in Banach spaces, monotonicity and
convexity techniques, and weak compactness in L1 spaces.
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1. Introduction. The purpose of this work is to prove well-posedness (existence,
uniqueness, and continuous dependence of solutions on the initial datum) to stochastic
evolution equations (SEEs) of the type

(1) du(t) +Au(t) dt+ f(u(t)) dt = ηu(t) dt+
∑
k∈N

bk(t, u(t)) dwk(t), u(0) = u0,

where t ∈ [0, T ], A is a linear m-accretive operator on Lq(D), with D a bounded
domain in Rn and q ≥ 2, f : R → R is an increasing function of polynomial growth
(without any continuity assumption), (wk) are independent real standard Wiener pro-
cesses, and (bk) are (random, time-dependendent) maps from Lq(D) to itself satisfying
suitable integrability and Lipschitz continuity conditions. Precise assumptions on the
notion of solution and on the data of the problem are given in section 2. In particular,
we adopt three notions of solution that depend on the integrability properties of f(u):
strict mild and mild solutions are defined to be such that f(u) ∈ L1(0, T ;Lq(D))
almost surely and that f(u) ∈ L1(Ω× [0, T ]×D), respectively (here Ω stands for the
underlying probability space); on the other hand, generalized solutions are defined as
limits of strict mild solutions, so that, in general, f(u) may not have any integrability.
The first notion of solution is the simplest but also the most restrictive in terms of
assumptions on the data of the problem. The second notion is the most natural if one
wants f(u) to be function-valued while satisfying minimal integrability conditions.
The last notion, motivated by analogous constructions in the deterministic setting,
apart from being the least demanding, is useful in several contexts, for instance, in the
study of Kolmogorov operators and Markovian semigroups associated to stochastic
PDEs (cf., e.g., [12]).

Our approach to the well-posedness problem is based, on the probabilistic side,
on stochastic calculus for Lp-valued processes and, on the analytic side, on methods
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2112 CARLO MARINELLI

from the theory of (nonlinear) m-accretive operators and convex analysis. Some ideas
developed here, concerning strict mild and generalized solutions, already appeared, in
a more primitive form, in [23, 25] and, in a slightly different context, in [26].

The results are a step in the attempt to reduce the gap between the well-posedness
theory for deterministic evolution equations of monotone type, which is essentially
complete, and the one for stochastic equations, which is much less developed. In
particular, if A is a (nonlinear, multivalued) m-accretive operator on a Banach space
X and g ∈ L1(0, T ;X), the equation

(2)
dy

dt
+Ay 3 g, y(0) = y0 ∈ X,

admits a unique solution y ∈ C([0, T ];X) that depends continuously on the initial
datum and on the “forcing” term g. We recall that a graph (or, equivalently, a
multivalued operator) A ⊂ X×X is called accretive if, for every (x1, y1), (x2, y2) ∈ A,
there exists z ∈ J(x1−x2) such that 〈y1−y2, z〉 ≥ 0, where J : X → X ′ is the duality
map. An accretive operator A is called m-accretive if I+A is surjective. Accretivity is
thus a notion of monotonicity in Banach spaces: if X is a Hilbert space and A is single-
valued (for simplicity), accretivity simply means that 〈Ax1−Ax2, x1−x2〉 ≥ 0 for all
x1, x2 in the domain of A. The X-valued continuous solution to (2) just mentioned
is defined as the limit of solutions to suitably time-discretized equations, and the
corresponding well-posedness theory was established in full generality by Crandall
and Liggett [11]. If the Banach space X satisfies certain geometric assumptions,
existence results for (2) can be obtained by (comparatively) simpler means, and they
were known before the appearance of [11]. Let us consider, for instance, the case
where X is uniformly smooth (a property that is fulfilled, e.g., by Lp spaces with
p ∈ ]1,∞[): if y0 belongs to the domain of A and the distributional derivative of g
belongs to L1(0, T ;X), then (2) admits a unique strong solution y ∈ C([0, T ];X),
whose distributional derivative belongs to L∞(0, T ;X), that can be obtained as a
limit of solutions (yλ)λ>0 ⊂ C1([0, T ];X) to the regularized equations

dyλ
dt

+Aλyλ = g, yλ(0) = y0,

where Aλ := 1
λ (I − (I +λA)−1), λ > 0, the Yosida approximation of A, is a Lipschitz

continuous accretive operator on X. Since the map (y0, f) 7→ y is continuous from
X×L1(0, T ;X) to C([0, T ];X), a notion of solution to (2) as a limit of strong solutions
to equations with more regular data is then inferred. A comprehensive treatment of
these results, including historical remarks and bibliographical references, can be found
in [1] (for the particular case of X being a Hilbert space, see also [8]).

The picture is completely different for equations of the type

(3) du+Au dt 3
∑
k∈N

Bhk wk(t), u(0) = u0 ∈ X,

where (hk) is an orthonormal basis of a (separable) Hilbert space H, B is a linear
operator from H to X satisfying suitable assumptions, and (wk) are independent real
standard Wiener processes. Regrettably, there is no general well-posedness theory for
equation (3), even if X is a Hilbert space.1 One of the reasons for this is that all

1The essentially different case where A is a maximal monotone operator from a Banach space V
to its dual V ′, for which the gap between the deterministic and the stochastic theories is less wide,
is not disussed here. The interested reader can refer to [1, Chapter 2], [20, 27, 28, 29], and references
therein.

D
ow

nl
oa

de
d 

05
/2

9/
18

 to
 1

28
.4

1.
35

.2
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SEMILINEAR SEEs 2113

existing results of the deterministic theory depend in an essential way on g having
finite variation, hence they cannot be extended to the case where the forcing term
is stochastic. On the other hand, one can find in the literature (references will be
given below) several well-posedness results for particular choices of A, mostly for the
semilinear case, i.e., assuming that A = A + F , where A is a linear (unbounded)
m-accretive operator and F is a nonlinear term. However, some results have recently
been obtained also for the case where A is “fully” nonlinear, for instance, A = −∆β(·)
on H−1, the so-called nonlinear diffusion or porous medium operator (see, e.g., [2, 3]).

From now on we shall focus our discussion on semilinear SEEs of type (3), with
A = A+f , where f is the superposition operator associated to a real-valued function,
and X is an Lp space on a bounded domain of Euclidean space. The large existing
literature on the subject (up-to-date references to which can be found, e.g., in [13])
deals mostly with the Hilbertian setting p = 2. For an extensive discussion of available
results in such a setting we refer the interested reader to [27]. Semilinear equations on
(non-Hilbert) Lp spaces are instead not widely studied. To our knowledge, the best
existence results currently available are those in [21], where global well-posedness in
the mild sense of (1) is obtained assuming that −A generates an analytic semigroup
and that f is polynomially bounded and locally Lipschitz continuous on Lq(D) (not
as function on R!). Even though the condition on f is very restrictive, adapting ideas
from [10], and considerably improving results thereof, well-posedness in spaces of
continuous functions is obtained, allowing f : R→ R to be a (monotone) polynomial,
and assuming that the restriction of −A to C(D) generates a strongly continuous
semigroup of contractions. The approach used in [21] relies on approximation of the
coefficients and extension of local solutions, as well as on a reduction to a deterministic
evolution equation with random coefficients, and on “sandwiching” C(D) between
UMD spaces defined as domains of fractional powers of −A. On the probabilistic
side, the results of [21] rely in an essential way on the semigroup approach to SEE in
UMD Banach spaces.

Even though a general theory for stochastic equations of monotone type remains
currently unattainable, the well-posedness results obtained here complement the ex-
isting ones in the particular case of A as in the previous paragraph and X = Lp,
with p 6= 2. In fact, our simplest existence results (see Theorems 2.3 and 2.7 below)
assume only that −A generates a continuous semigroup of contractions on Lp (for
two different values of p) and that f is monotone and polynomially growing, without
any continuity assumptions (thus we obviously cannot consider solvability in spaces
of continuous functions). More sophisticated results (see Theorem 2.9 below) are ob-
tained under the further assumption that the resolvent of A is sub-Markovian and a
power thereof is hypercontractive. Such hypotheses are satisfied, for instance, by large
classes of nondegenerate second-order elliptic differential operators. The approach we
take follows the “classical” one described above for deterministic equations based on
constructing solutions to regularized equations and then passing to the limit in an
appropriate topology. The key difference is that the necessary a priori estimates on
the approximating equations have to be obtained by other means. To this purpose,
the essential tools are Itô’s formula for the pth power of the Lp norm and techniques
from convex analysis and the theory of nonlinear m-accretive operators.

The rest of the text is organized as follows. The main results are stated in section
2, and auxiliary results are collected in section 3. In sections 4, 5, and 6 we prove
well-posedness in the strict mild, generalized, and mild senses, respectively.

We conclude this introductory section fixing some commonly used notation. All
Lebesgue spaces on D will be denoted without explicit mention of the domain, e.g.,

D
ow

nl
oa

de
d 

05
/2

9/
18

 to
 1

28
.4

1.
35

.2
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2114 CARLO MARINELLI

Lq := Lq(D). The mixed-norm spaces Lp(0, T ;Lq(D)), T ∈ R+, will simply be
denoted by Lp(Lq). The domain and range of a map L will be denoted by D(L)
and R(L), respectively. The standard notation L (E,F ) will be used for the space
of linear bounded operators between two Banach spaces E and F . We shall write
a . b to mean that a is less than or equal to b modulo a multiplicative constant, with
subscripts to emphasize its dependence on specific quantities. Completely analogous
meanings have the symbols & and h.

2. Main results. Let (Ω,F , (Ft)0≤t≤T ,P), with T > 0 fixed, be a filtered prob-
ability space satisfying the “usual” conditions (see, e.g., [14]), and let E denote ex-
pectation with respect to P. All stochastic elements will be defined on this stochastic
basis, and any expression involving random quantities will be meant to hold P-almost
surely, unless otherwise stated. Given p > 0 and a separable Banach space X, we
shall denote by Lp(X) the space of X-valued random variables ζ such that

‖ζ‖Lp(X) :=
(
E‖ζ‖pX

)1/p
<∞

and by Hp(X) the space of measurable2 and adapted X-valued processes such that

‖u‖Hp(X) :=

(
E sup
t≤T
‖u(t)‖pX

)1/p

<∞.

Both spaces are Banach spaces for p ≥ 1 and quasi-Banach spaces for 0 < p < 1.

To look for Lq-valued (mild) solutions to (1), it is clear that the linear operator
A should be taken as the generator of a C0-semigroup on Lq and that the maps (bk)
should satisfy suitable Lipschitz continuity assumptions. For compactness of notation,
we set B := (bk), i.e., B denotes the whole sequence (bk). Similarly, we shall write,
just as notation, W := (wk), and∫ t

0

B(s) dW (s) :=
∑
k∈N

∫ t

0

bk(s) dwk(s).

A completely similar notation will be used for other series of stochastic integrals.
For later use, we introduce the following conditions, where r > 0, s ≥ 2:
(As) A is a linear m-accretive operator on Ls.
(Br,s) The maps bk : Ω× [0, T ]× Ls → Ls are such that bk(·, ·, x) is measurable

and adapted for all x ∈ Ls and all k ∈ N, there exists a constant CB such
that∥∥B(ω, t, u)−B(ω, t, v)

∥∥
Ls(`2)

≤ CB
∥∥u− v∥∥

Ls
∀(ω, t) ∈ Ω× [0, T ],

and B(·, ·, 0) ∈ Lr(L2(0, T ;Ls(`2))).
For simplicity, we shall often suppress explicit indication of the dependence on time
of B. If A satisfies (As), the C0-semigroup of contractions generated by −A on Ls
will be denoted by S. Should A satisfy (As) for different values of s, we shall not
notationally distinguish among different (but consistent) realizations of A and S on
different Ls spaces.

2Since we never need weak measurability, measurable will always mean strongly measurable.
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We assume that the function f : R→ R is increasing and that there exists d ≥ 1
such that |f(x)| . 1 + |x|d for all x ∈ R. In particular, f is not assumed to be
continuous. The graph f0 ⊂ R× R defined by

f0(x) =

{
f(x), x ∈ R \ I,
[f(x−), f(x+)], x ∈ I,

where I is the jump set of f , is maximal monotone and clearly extends the graph of f .
Furthermore, the (multivalued) superposition operator f1 associated to f0, defined as

f1 : u 7−→
{
v ∈ Lq : v ∈ f0(u) a.e.

}
on its obvious domain, is an m-accretive subset of Lq×Lq (see, e.g., [1, pp. 106–107]).
We shall not notationally distinguish among the increasing function f , its maximal
monotone extension f0, and the associated superposition operator f1: they will all be
denoted simply by f .

Remark 2.1. Thanks to the linear term in u on the right-hand side of (1), noth-
ing changes assuming that f (or A, or both) is quasi-monotone, i.e., that f + δI is
monotone for some δ > 0.

We shall establish well-posedness of (1) in several classes of processes. The most
natural, and most restrictive, notion of solution is the following. Here and in the
following we denote the measure P⊗ dt⊗ dx on Ω× [0, T ]×D by m (dt and dx being
the Lebesgue measure on [0, T ] and on D, respectively).

Definition 2.2. Let u0 be an Lq-valued F0-measurable random variable. A mea-
surable adapted Lq-valued processes u is a strict mild solution to (1) if u ∈ L∞(Lq),
there exists an adapted Lq-valued process g ∈ L1(Lq), with g ∈ f(u) m-a.e., and, for
all t ∈ [0, T ], S(t− ·)B(·, u) is stochastically integrable and

(4) u(t) +

∫ t

0

S(t− s)
(
g(s)− ηu(s)

)
ds = S(t)u0 +

∫ t

0

S(t− s)B(s, u(s)) dW (s).

Stochastic integrability of G := (gk) with respect to W here means, apart from
the usual measurability conditions, G ∈ L2(0, T ;Lq(`2)) P-almost surely.3

Our first main result provides sufficient conditions for the well-posedness of (1)
in Hp(Lq). The proof is given in section 4 below.

Theorem 2.3. Let p > 0 and q ≥ 2 be such that

p∗ :=
p

q
(2d+ q − 2) > d.

Assume that
(a) u0 ∈ Lp∗(Lqd);
(b) hypothesis (As) is satisfied for s = q and s = qd;
(c) hypothesis (Br,s) is satisfied for r = p, s = q and r = p∗, s = qd.

Then there exists a unique strict mild solution u ∈ Hp(Lq) to (1). Moreover, u has
continuous paths and the solution map u0 7→ u is Lipschitz continuous from Lp(Lq)
to Hp(Lq).

3This is not the most general definition of stochastic integrability (cf., e.g., [31]), but it suffices
for our purposes.

D
ow

nl
oa

de
d 

05
/2

9/
18

 to
 1

28
.4

1.
35

.2
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2116 CARLO MARINELLI

Relaxing the definition of solution, well-posedness for (1) can be proved for any
p > 0 and q ≥ 2. The following notion of solution derives from the definition of
solution faible by Benilan and Brézis [4]. We first deal with equations with additive
noise, i.e., of the type

(5) du(t) +Au(t) dt+ f(u(t)) dt = ηu(t) dt+B(t) dW (t), u(0) = u0,

where the process B is measurable and adapted and belongs to Lp(L2(0, T ;Lq(`2))).

Definition 2.4. Let p > 0 and q ≥ 2. A process u ∈ Hp(Lq) is a generalized
solution to (5) if there exist sequences (u0n) ⊂ Lp(Lq), (Bn) ⊂ Lp(L2(0, T ;Lq(`2))),
and (un) ⊂ Hp(Lq) such that u0n → u0 in Lp(Lq), Bn → B in Lp(L2(0, T ;Lq(`2))),
and un → u in Hp(Lq) as n→∞, where un is the (unique) strict mild solution to

dun(t) +Aun(t) dt+ f(un(t)) dt = ηun(t) dt+Bn(t) dW (t), un(0) = u0n.

Theorem 2.5. Let p > 0 and q ≥ 2. Assume that
(a) u0 ∈ Lp(Lq);
(b) hypothesis (As) is satisfied for s = q and s = qd;
(c) B ∈ Lp(L2(0, T ;Lq(`2))).

Then (5) admits a unique generalized solution u ∈ Hp(Lq). Moreover, u has con-
tinuous paths and the solution map u0 7→ u is Lipschitz continuous from Lp(Lq) to
Hp(Lq).

In order to define generalized solutions to (1) we need some preparations. In
particular, we (formally) introduce the map Γ on Hp(Lq) defined by Γ : v 7→ w, where
w is the unique generalized solution to

dw(t) +Aw(t) dt+ f(w(t)) dt = ηw(t) dt+B(t, v(t)) dW (t), u(0) = u0,

if it exists. It is easy to see that, if (Bp,q) holds, the domain of Γ is the whole Hp(Lq).
Definition 2.6. A process u ∈ Hp(Lq) is a generalized solution to (1) if it is a

fixed point of Γ in Hp(Lq).
Theorem 2.7. Let p > 0 and q ≥ 2. Assume that
(a) u0 ∈ Lp(Lq);
(b) hypothesis (As) is satisfied for s = q and s = qd;
(c) hypothesis (Bp,q) is satisfied.

Then (1) admits a unique generalized solution u ∈ Hp(Lq). Moreover, u has con-
tinuous paths and the solution map u0 7→ u is Lipschitz continuous from Lp(Lq) to
Hp(Lq).

The proofs of Theorems 2.5 and 2.7 are given in section 5 below. Note that if
u ∈ Hp(Lq) is a generalized solution to (1), we cannot claim that f(u) admits a

selection g such that
∫ t

0
S(t − s)g(s) ds in (4) is well defined, essentially because we

do not have enough integrability for g.
Under additional assumptions we obtain existence of a (unique) solution u for

which f(u) admits a selection g satisfying the “minimal” integrability condition g ∈
L1(L1(L1)).

Definition 2.8. Let u0 be an Lq-valued F0-measurable random variable. A mea-
surable adapted Lq-valued process u ∈ L∞(Lq) is a mild solution to (1) if there exists
g ∈ L1(L1(L1)), with g ∈ f(u) m-a.e., and, for all t ∈ [0, T ], S(t − ·)B(·, u) is
stochastically integrable and (4) is satisfied for all t ∈ [0, T ].
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The corresponding well-posedness result holds in a subset of Hp(Lq) defined in
terms of the potential of f , for which we assume that 0 ∈ f(0). We need some
definitions first: for q ≥ 2, let φq be the homeomorphism of R defined by φq : x 7→
x|x|q−2, and let F : R→ R be the potential of f , i.e., a convex function such that ∂F =
f , which we “normalize” so that F (0) = 0 (in particular F ≥ 0). Similarly, setting
f̃ := f◦φ−1

q , F̃ stands for the potential of f̃ , subject to the same normalization, and F̃ ∗

for its Legendre–Fenchel conjugate. Finally, we set F̂ := F̃ ◦φq. A simple computation

shows that the convex function F̂ is the potential of the maximal monotone graph
x 7→ f(x)φ′q(x).

Theorem 2.9. Let p ≥ q ≥ 2. Assume that
(a) u0 ∈ Lp(Lq);
(b) hypothesis (As) is satisfied for s ∈ {1, q, qd};

(b′) the resolvent Rλ := (I + λA)−1, λ > 0, is sub-Markovian and such that
Rσλ(L1) ⊂ Lq for some σ ∈ N;

(c) hypothesis (Bp,q) is satisfied;
(d) 0 ∈ f(0) and F is even.

Then (1) admits a unique mild solution u∈Hp(Lq) such that F̂ (u), F̃ ∗(g)∈L1(L1(L1)).
Moreover, u has continuous paths and the solution map u0 7→ u is Lipschitz continuous
from Lp(Lq) to Hp(Lq).

The proof is given in section 6 below. It should be remarked that unconditional
well-posedness in Hp(Lq), i.e., without any further conditions on u, remains an open
problem.

Hypothesis (b) is satisfied by large classes of operators, for instance, all genera-
tors of sub-Markovian semigroups on L1(D) and of symmetric semigroups on L2(D).
Their resolvent is obviously sub-Markovian. The “hypercontractivity” of the resolvent
in hypothesis (b′) is satisfied, for example, by nondegenerate second-order elliptic op-
erators, under very mild regularity assumptions on the coefficients, thanks to elliptic
regularity results and Sobolev embedding theorems.

We conclude this section with a brief discussion on the relation among the three
concepts of solutions: it is clear that, by definition, a strict mild solution is a general-
ized solution. The opposite implication is obviously false already in the deterministic
setting. Again the definitions imply that a strict mild solution is a mild solution but
not vice versa. On the other hand, the connection between mild and generalized so-
lutions is subtler: we are going to show (see section 6) that the unique generalized
solution is a mild solution and that, under the hypotheses of Theorem 2.9, the mild
solution is unique. The proof of uniqueness of mild solutions is necessary because
nothing forbids us to imagine that there are other ways of constructing mild solu-
tions, without passing through generalized solutions as we do. It is, however, natural
to ask whether a mild solution is a generalized solution. Again by looking at the de-
terministic situation, the answer is most likely negative. However, it is not difficult to
adapt the proofs in section 6.2 to show that, under the assumptions of Theorem 2.9,
a mild solution is a generalized solution and hence, a fortiori, unique.

3. Auxiliary results. An essential tool will be the following Itô formula for the
qth power of the Lq norm. For the proof (of a slightly more general case), which is
based just on Itô’s formula for real processes and Fubini’s theorem, we refer to [19].

Theorem 3.1. Let u be an Lq-valued process, q ≥ 2, such that

u(t) = u0 +

∫ t

0

b(s) ds+

∫ t

0

G(s) dW (s),
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where
(a) u0 : Ω→ Lq is F0-measurable;
(b) b : Ω× [0, T ]→ Lq is measurable, adapted, and such that b ∈ L1(0, T ;Lq);
(c) G = (gk), with gk : Ω× [0, T ]→ Lq measurable and adapted for all k, satisfies

G ∈ L2(0, T ;Lq(`2)).
Then ∥∥u(t)

∥∥
Lq

=
∥∥u0

∥∥
Lq

+

∫ t

0

〈
q|u(s)|q−2u(s), b(s)

〉
ds

+
∑
k

∫ t

0

〈q|u(s)|q−2u(s), gk(s)〉 dwk(s)

+
1

2

∫ t

0

q(q − 1)
〈
|u(s)|q−2, ‖G‖2`2

〉
ds.

The map Φq := ‖·‖qLq is continuously (Fréchet) differentiable from Lq to R, with

Φ′q : Lq −→ L (Lq,R) ' Lq′
v 7−→ q

〈
|u|q−2u, v

〉
,

so that the sum of the second and third terms on the right-hand side of the above Itô
formula can be concisely written as∫ t

0

Φ′q(s)b(s) ds+

∫ t

0

Φ′q(s)G(s) dW (s).

This equivalent rewriting will be frequently used. It will also be useful to note that,
for any u ∈ Lq,

Φ′q(u) = q‖u‖q−2
Lq

J(u),

where J is the duality mapping of Lq, i.e., the map from Lq to its dual such that
〈J(u), u〉 = ‖u‖2Lq .

We proceed with a pathwise (i.e., valid P-a.s.) estimate for the Lq norm of solu-
tions to linear equations.

Proposition 3.2. Let A be a linear m-accretive operator on Lq, q ≥ 2, and
consider the unique mild solution u to the equation

du(t) +Au(t) = b(t) dt+G(t) dW (t), u(0) = u0,

where u0, b, and G satisfy the assumptions of Theorem 3.1. If u ∈ L∞(Lq), then

∥∥u(t)
∥∥q
Lq
≤
∥∥u0

∥∥q
Lq

+

∫ t

0

Φ′q(u(s))b(s) ds+

∫ t

0

Φ′q(u(s))G(s) dW (s)

+
1

2
q(q − 1)

∫ t

0

∥∥G(s)
∥∥2

Lq(`2)

∥∥u(s)
∥∥q−2

Lq
ds.

Proof. For any Lq-valued map h, we shall write, for ε > 0, hε := (I + εA)−1h. It
is not difficult to verify that uε is the unique strong solution to

duε +Auε = bε dt+Gε dW, uε(0) = uε0
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(cf., e.g., [24, Lemma 6]). Itô’s formula then yields4

∥∥uε(t)∥∥q
Lq

+

∫ t

0

Φ′q(u
ε)Auε ds =

∥∥uε0∥∥qLq +

∫ t

0

Φ′q(u
ε)bε ds+

∫ t

0

Φ′q(u
ε)Gε dW

+
1

2
q(q − 1)

∫ t

0

〈
|uε|q−2, ‖Gε‖2`2

〉
ds,

where Φ′q(u
ε)Auε = q

∥∥uε∥∥q−2

Lq

〈
Auε, J(uε)

〉
≥ 0 by accretivity of A on Lq, and∥∥uε0∥∥Lq ≤ ∥∥u0

∥∥
Lq

by contractivity of (I + εA)−1 on Lq. We are thus left with

∥∥uε(t)∥∥q
Lq
≤
∥∥u0

∥∥q
Lq

+

∫ t

0

Φ′q(u
ε)bε ds+

∫ t

0

Φ′q(u
ε)Gε dW

+
1

2
q(q − 1)

∫ t

0

〈
|uε|q−2, ‖Gε‖2`2

〉
ds.

We are now going to pass to the limit as ε → 0 in this inequality. One clearly has∥∥uε(t)∥∥
Lq
→
∥∥u(t)

∥∥
Lq

as ε→ 0 because (I+ εA)−1 converges strongly to the identity

in L (Lq) as ε→ 0. By the triangle inequality,

sup
t≤T

∣∣∣∣∫ t

0

Φ′q(u
ε)bε ds−

∫ t

0

Φ′q(u)b ds

∣∣∣∣ ≤ ∫ T

0

∣∣(Φ′q(uε)− Φ′q(u)
)
bε
∣∣ ds

+

∫ T

0

∣∣Φ′q(u)(bε − b)
∣∣ ds.

The following reasoning is to be understood to hold for each fixed ω in a subset of Ω
of full P-measure. Since uε(s)→ u(s) and bε(s)→ b(s) in Lq, hence also in measure,
for all s ∈ [0, T ], and Φ′q is continuous, it follows that∣∣(Φ′q(uε(s))− Φ′q(u(s))

)
bε(s)

∣∣ ε→0−−−→ 0

in measure for all s. Moreover,∣∣(Φ′q(uε(s))− Φ′q(u(s))
)
bε(s)

∣∣ ≤ ∥∥Φ′q(u
ε(s))− Φ′q(u(s))

∥∥
Lq′

∥∥b(s)∥∥
Lq

.
∥∥u(s)

∥∥q−1

Lq

∥∥b(s)∥∥
Lq
≤
∥∥u∥∥q−1

L∞(Lq)

∥∥b(s)∥∥
Lq

and
∥∥u∥∥q−1

L∞(Lq)

∥∥b∥∥
Lq
∈ L1(0, T ), which imply, by the dominated convergence

theorem, ∫ T

0

∣∣(Φ′q(uε)− Φ′q(u)
)
bε
∣∣ ds ε→0−−−→ 0.

By a completely analogous argument one shows that
∫ T

0

∣∣Φ′q(u)(bε− b)
∣∣ ds ε→0−−−→ 0 and

hence also that ∫ t

0

Φ′q(u
ε)bε ds

ε→0−−−→
∫ t

0

Φ′q(u)b ds.

Let us now show that

Mε(t) :=

∫ t

0

Φ′q(u
ε)Gε dW

ε→0−−−→M(t) :=

∫ t

0

Φ′q(u)GdW

4From now on we shall occasionally omit the indication of the time parameter, if no confusion
may arise, for notational compactness.
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in probability. Recall that, for the sequence of continuous local martingales (Mε−M),
one has supt≤T |Mε(t)−M(t)| → 0 in probability if and only if [Mε−M,Mε−M ](T )→
0 in probability (see, e.g., [18, Proposition 17.6]). We have

[Mε −M,Mε −M ](T ) =

∫ T

0

∥∥Φ′q(u
ε)Gε − Φ′q(u)G

∥∥2

`2
ds,

where, by the triangle inequality,∥∥Φ′q(u
ε)Gε − Φ′q(u)G

∥∥
`2
≤
∥∥(Φ′q(uε)− Φ′q(u)

)
Gε
∥∥
`2

+
∥∥Φ′q(u)(Gε −G)

∥∥
`2
.

By the identification L (Lq,R) ' Lq′ , Minkowski’s and Hölder’s inequalities yield∥∥(Φ′q(uε)− Φ′q(u)
)
Gε
∥∥
`2

=

∥∥∥∥∫
D

(
Φ′q(u

ε)− Φ′q(u)
)
Gε dx

∥∥∥∥
`2

≤
∫
D

∣∣Φ′q(uε)− Φ′q(u)
∣∣ ∥∥Gε∥∥

`2
dx

≤
∥∥Φ′q(u

ε)− Φ′q(u)
∥∥
Lq′

∥∥Gε∥∥
Lq(`2)

,

as well as, similarly,∥∥Φ′q(u)(Gε −G)
∥∥
`2
≤
∥∥Φ′q(u)

∥∥
Lq′

∥∥Gε −G∥∥
Lq(`2)

.

Since (I + εA)−1 is a contraction on Lq, by a classical theorem of Marcinkiewicz and
Zygmund (see, e.g., [15, p. 484]) it is also a contraction on Lq(`2), hence∥∥Φ′q(u

ε)− Φ′q(u)
∥∥
Lq′

∥∥Gε∥∥
Lq(`2)

≤
∥∥Φ′q(u

ε)− Φ′q(u)
∥∥
Lq′

∥∥G∥∥
Lq(`2)

ε→0−−−→ 0

pointwise in the time variable, and ‖Gε−G‖Lq(`2) → 0 because (I + εA)−1 converges
in the strong operator topology to the identity in L (Lq). The above also yields∥∥Φ′q(u

ε)Gε − Φ′q(u)G
∥∥
`2

. ‖u‖q−1
Lq
‖G‖Lq(`2),

where, since G ∈ L2(0, T ;Lq(`2)) and u ∈ L∞(Lq),∫ T

0

‖u(s)‖2(q−1)
Lq

‖G(s)‖2Lq(`2) ds ≤ ‖u‖
2(q−1)
L∞(Lq)

∫ T

0

‖G(s)‖2Lq(`2) ds <∞.

Therefore, by the dominated convergence theorem,

[Mε −M,Mε −M ](T )
ε→0−−−→ 0

in probability. Finally, by Hölder’s inequality,∫ t

0

〈
|u(s)|q−2, ‖Gε(s)‖2`2

〉
ds ≤

∫ t

0

∥∥Gε(s)∥∥2

Lq(`2)

∥∥uε(s)∥∥q−2

Lq
ds

≤
∫ t

0

∥∥G(s)
∥∥2

Lq(`2)

∥∥u(s)
∥∥q−2

Lq
ds.

We now establish a maximal inequality for stochastic convolutions that might
be interesting in its own right (see Remark 3.4 below). We shall use the following
notation, where S stands for the contraction semigroup on Lq generated by −A:

S �G(t) :=

∫ t

0

S(t− s)G(s) dW (s).
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Theorem 3.3. Let p > 0 and q ≥ 2. If G satisfies the hypothesis of Theorem 3.1,
then the stochastic convolution S �G has (a modification with) continuous paths and

E sup
t≤T

∥∥S �G(t)
∥∥p
Lq

. E
(∫ T

0

∥∥G(s)
∥∥2

Lq(`2)
ds

)p/2
.

Proof. We proceed in two steps, first assuming that G takes values in D(A), then
removing this assumption.

Step 1. Let us assume for the moment that G ∈ L2(0, T ;Lq(`2)) and G ∈ D(A)
almost everywhere. As in the proof of Proposition 3.2, it follows that S � G is the
unique strong solution to

du(t) +Au(t) dt = G(t) dW (t), u(0) = 0.

Then Itô’s formula yields∥∥u(t)
∥∥q
Lq

+

∫ t

0

Φ′q(u)Auds =

∫ t

0

Φ′q(u)GdW +
1

2
q(q − 1)

∫ t

0

〈
|u|q−2, ‖G‖2`2

〉
ds.

Setting

v :=
∥∥u∥∥q

Lq
, σ := Φ′q(u)G,

b :=
1

2
q(q − 1)

〈
|u|q−2, ‖G‖2`2

〉
− Φ′q(u)Au,

we can write

v(t) =

∫ t

0

b(s) ds+

∫ t

0

σ(s) dW (s).

Let α ≥ 1 be arbitrary but fixed. Then ϕ : x 7→ x2α ∈ C2 with

ϕ′(x) = 2αx2α−1, ϕ′′(x) = 2α(2α− 1)x2(α−1).

Therefore, by Itô’s formula for real processes,∥∥u(t)
∥∥2αq

Lq
= ϕ(v(t)) =

∫ t

0

(
ϕ′(v(s))b(s) +

1

2
ϕ′′(v(s))‖σ(s)‖2`2

)
ds

+

∫ t

0

ϕ′(v(s))σ(s) dW (s),

where∫ t

0

ϕ′(v(s))b(s) ds =

∫ t

0

∥∥u(s)
∥∥(2α−1)q

Lq

(1

2
q(q−1)

〈
|u|q−2, ‖G‖2`2

〉
−Φ′q(u(s))Au(s)

)
ds.

Accretivity of A implies

Φ′q(u)Au = q‖u‖q−2
Lq
〈J(u), Au〉 ≥ 0;

hence, by Hölder’s inequality and Young’s inequality5 in the form

xy ≤ εx
αq
αq−1 +N(ε)yαq ∀x, y ≥ 0, ε > 0,

5From now on, whenever we apply Young’s inequality, we shall mostly state only the exponents
used.
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one has ∫ t

0

ϕ′(v(s))b(s) ds .
∫ T

0

∥∥u(s)
∥∥2(αq−1)

Lq

∥∥G(s)
∥∥2

Lq(`2)
ds

≤
∥∥u∥∥2(αq−1)

L∞(Lq)

∫ T

0

∥∥G(s)
∥∥2

Lq(`2)
ds

≤ ε
∥∥u∥∥2αq

L∞(Lq)
+N(ε)

(∫ T

0

∥∥G(s)
∥∥2

Lq(`2)
ds

)αq
.

Similarly, ∫ t

0

ϕ′′(v(s))‖σ(s)‖2`2 ds .
∫ t

0

∥∥u(s)
∥∥2(α−1)q

Lq

∥∥σ(s)
∥∥2

`2
ds,

where, by a reasoning already used above,∥∥g∥∥
`2

=
∥∥Φ′q(u)G

∥∥
`2
≤
∥∥Φ′q(u)

∥∥
Lq′

∥∥G∥∥
Lq(`2)

.
∥∥u∥∥q−1

Lq

∥∥G∥∥
Lq(`2)

,

hence, proceeding exactly as before,∫ t

0

ϕ′′(v(s))‖σ(s)‖2`2 ds .
∫ t

0

∥∥u(s)
∥∥2(αq−1)

Lq

∥∥G(s)
∥∥2

Lq(`2)
ds

≤ ε
∥∥u∥∥2αq

L∞(Lq)
+N(ε)

(∫ T

0

∥∥G(s)
∥∥2

Lq(`2)
ds

)αq
.

Finally, Davis’ inequality yields

E sup
t≤T

∣∣∣∣∫ t

0

ϕ′(v(s))σ(s) dW (s)

∣∣∣∣ . E
(∫ T

0

∥∥ϕ′(v(s))σ(s)
∥∥2

`2
ds

)1/2

,

where ∥∥ϕ′(v)g
∥∥
`2

.
∥∥u∥∥2αq−1

Lq

∥∥G∥∥
Lq(`2)

,

which implies, by Young’s inequality with exponents 2αq/(2αq − 1) and 2αq,(∫ T

0

∥∥ϕ′(v(s))σ(s)
∥∥2

`2
ds

)1/2

.
∥∥u∥∥2αq−1

L∞(Lq)

(∫ T

0

∥∥G(s)
∥∥2

Lq(`2)
ds

)1/2

≤ ε
∥∥u∥∥2αq

L∞(Lq)
+N(ε)

(∫ T

0

∥∥G(s)
∥∥2

Lq(`2)
ds

)αq
.

Taking ε small enough, the claim is proved in the case p ≥ 2q. The case 0 < p < 2q
follows by Lenglart’s domination inequality (see [22]).

Step 2. Recall that Gε := (I + εA)−1G is D(A)-valued and converges to G in
L2(0, T ;Lq(`2)) as ε → 0, and uε := S �Gε = (S �G)

ε
is the unique strong solution

to
duε(t) +Auε(t) dt = Gε(t) dW (t), uε(0) = 0.

It is elementary to show, by the previous step, that (uε) is a Cauchy sequence in
Hp(Lq) and that its limit is a modification of S � G. Since uε has continuous paths
and the convergence in Hp(Lq) implies almost sure uniform convergence of paths
(possibly along a subsequence), we conclude that u has a modification with continuous
paths.
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Remark 3.4. The previous result is actually a special case of [32], who considered
the case of X-valued stochastic convolutions, with X a 2-smooth Banach space. Our
proof, although similar in spirit (the idea, as a matter of fact, goes back at least to
[30]), is interesting in the sense that it does not use any infinite-dimensional calculus.
In fact, as already mentioned, Itô’s formula for the qth power of the Lq-norm reduces
to nothing else but the one-dimensional Itô formula and Fubini’s theorem (cf. the
proof in [19]).

The estimate for stochastic convolutions just obtained allows one to prove well-
posedness in the strict mild sense for equations with a Lipschitz continuous drift.

Proposition 3.5. Let p > 0 and q ≥ 2. Assume that hypotheses (Aq) and (Bp,q)
are verified. If f : R→ R is Lipschitz continuous and u0 ∈ Lp(Lq), then the equation

du(t) +Au(t) dt+ f(u(t)) dt = B(t, u(t)) dW (t), u(0) = u0,

admits a unique strict mild solution u ∈ Hp(Lq) with continuous paths, and the solu-
tion map u0 7→ u is Lipschitz continuous from Lp(Lq) to Hp(Lq).

Proof. Since the proof proceeds by the classical fixed point argument, we omit
some simple details. Consider the map, formally defined for the moment,

Γ : (u0, u) 7→ S(t)u0 −
∫ t

0

S(t− s)f(u(s)) ds+

∫ t

0

S(t− s)B(u(s)) dW (s).

To prove existence and uniqueness, it suffices to show that Γ(u0, ·) is an everywhere
defined contraction on Hp(Lq) for any u0 ∈ Lp(Lq). One has, denoting the Lipschitz
constant of f by Cf ,

sup
t≤T

∥∥∥∥∫ t

0

S(t− s)
(
f(u(s))− f(v(s))

)
ds

∥∥∥∥
Lq

≤
∫ T

0

∥∥f(u(s))− f(v(s))
∥∥
Lq
ds ≤ TCf sup

t≤T

∥∥u(t)− v(t)
∥∥
Lq
,

hence, writing S ∗ f(u) to denote the second term in the above definition of Γ,∥∥S ∗ (f(u)− f(v))
∥∥
Hp(Lq)

≤ TCf
∥∥u− v∥∥Hp(Lq)

.

Similarly, denoting the Lipschitz constant of B by CB , it follows by Theorem 3.3 that

E sup
t≤T

∥∥∥∥∫ t

0

S(t− s)
(
B(u(s))−B(v(s))

)
dW (s)

∥∥∥∥p
Lq

. E
(∫ T

0

∥∥B(u(s)−B(v(s))
∥∥2

Lq(`2)
ds

)p/2
≤ T p/2CpB

∥∥u− v∥∥pHp(Lq)
,

i.e., for a constant N independent of T ,∥∥S � (B(u)−B(v))
∥∥
Hp(Lq)

≤ NT 1/2 CB
∥∥u− v∥∥Hp(Lq)

.

Therefore, choosing T small enough, one finds a constant c ∈ ]0, 1[ such that∥∥Γ(u0, u)− Γ(u0, v)
∥∥
Hp(Lq)

≤ c
∥∥u− v∥∥Hp(Lq)

.
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It is clear that Γ(u0,Hp(Lq)) ⊂ Hp(Lq). Recalling that the function

d : Hp(Lq)×Hp(Lq)→ R+

(x, y) 7→
∥∥x− y∥∥1∧p

Hp(Lq)

is a metric on Hp(Lq), Banach’s contraction principle yields the existence of a unique
fixed point of Γ(u0, ·) on the complete metric space (Hp(Lq), d), which is the unique
strict mild solution we are looking for on the interval [0, T ]. Writing u = Γ(u0, u),
v = Γ(v0, v), the Lipschitz continuity of the solution map follows by c < 1 and∥∥u− v∥∥Hp(Lq)

=
∥∥Γ(u0, u)− Γ(v0, v)

∥∥
Hp(Lq)

≤
∥∥Γ(u0, u)− Γ(u0, v)

∥∥
Hp(Lq)

+
∥∥Γ(u0, v)− Γ(v0, v)

∥∥
Hp(Lq)

≤ c
∥∥u− v∥∥Hp(Lq)

+
∥∥u0 − v0

∥∥
Lp(Lq)

.

By a classical patching argument, the smallness restriction on T can be removed.
Continuity of paths follows by Theorem 3.3.

Remark 3.6. Even though quite sophisticated well-posedness results exist for SEEs
on Lq spaces with Lipschitz continuous coefficients (cf., e.g., [9, 31]), the previous
simple proposition does not seem to follow from the existing literature. For instance,
in op. cit. the semigroup S is assumed to be analytic (but not necessarily accretive),
and (in [31]) solutions are sought in spaces strictly contained in Hp(Lq), and p > 2.
It may indeed be possible to deduce the above well-posedness result from op. cit., but
it seems much easier to give a direct proof.

4. Strict mild solutions. Consider the regularized equation

(6) duλ(t)+Auλ(t) dt+fλ(uλ(t)) dt = ηuλ(t) dt+B(t, uλ(t)) dW (t), uλ(0) = u0,

where fλ : R→ R, λ > 0, is the Yosida approximation of f , defined as

fλ :=
1

λ

(
I − (I + λf)−1

)
.

As is well known (see, e.g., [1, pp. 99, 106–107]), fλ is Lipschitz continuous on R, as
well as on Lq (when viewed as a superposition operator). Thanks to Proposition 3.5,
well-posedness of (6) in the strict mild sense holds in Hp(Lq) for all p > 0 and q ≥ 2.

We now proceed to considering (1). In this section we first show that a priori
estimates on uλ imply well-posedness of (1), then obtain such estimates (under addi-
tional assumptions on A and B), thus proving Theorem 2.3. Our argument depends
on passing to the limit as λ→ 0 in the mild form of the regularized equation (6).

4.1. A priori estimates imply well-posedness. We begin establishing suffi-
cient conditions for (uλ) to be a Cauchy sequence in Hp(Lq), whose limit is then a
natural candidate as solution to (1).

It will be useful to consider the space Hp(X), with X a separable Banach space,
endowed with the equivalent (quasi-)norm

‖u‖Hp,α(X) :=

(
E sup
t≤T

∥∥e−αtu(t)
∥∥p
X

)1/p

, α ∈ R+,

and denoted by Hp,α(X).
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Lemma 4.1. Let p > 0, q ≥ 2, p∗ := p(2d+ q− 2)/q, and assume that hypotheses
(Aq) and (Bp,q) are satisfied. If the sequence (uλ) is bounded in Hp∗(L2d+q−2), then
(uλ) is a Cauchy sequence in Hp(Lq).

Proof. Let us define, for a constant parameter α > η to be chosen later, vλ(t) :=
e−αtuλ(t) for all t ≥ 0, so that

dvλ(t) = −αvλ(t) + e−αtuλ(t),

hence also, for µ > 0,

d(vλ − vµ) +
(

(α− η)(vλ − vµ) +A(vλ − vµ) + e−αt
(
fλ(uλ)− fµ(uµ)

))
dt

= e−αt
(
B(uλ)−B(uµ)

)
dW,

(7)

in the (strict) mild sense, with initial condition vλ(0) − vµ(0) = 0. Proposition 3.2
yields∥∥vλ(t)− vµ(t)

∥∥q
Lq

+ q(α− η)

∫ t

0

‖vλ − vµ‖qLq ds

+

∫ t

0

e−αsΦ′q(vλ − vµ)
(
fλ(uλ)− fµ(uµ)

)
ds

≤
∫ t

0

e−αsΦ′q(vλ − vµ)
(
B(uλ)−B(uµ)

)
dW

+
1

2
q(q − 1)

∫ t

0

∥∥e−αs(B(uλ)−B(uµ)
)∥∥2

Lq(`2)

∥∥vλ − vµ∥∥q−2

Lq
ds.

(8)

We are going to estimate each term appearing in this inequality. Note that Φ′q(cx) =
cq−1Φ′q(x) for all c ∈ R+ and x ∈ Lq, hence

Φ′q(vλ − vµ)
(
fλ(uλ)− fµ(uµ)

)
= e−α(q−1)s Φ′q(uλ − uµ)

(
fλ(uλ)− fµ(uµ)

)
and

Φ′q(uλ − uµ)
(
fλ(uλ)− fµ(uµ)

)
= q

∫
D

|uλ − uµ|q−2(uλ − uµ)
(
fλ(uλ)− fµ(uµ)

)
dx,

where, setting Jλ := (I + λf)−1, λ > 0, and writing

uλ − uµ = uλ − Jλuλ + Jλuλ − Jµuµ + Jµuµ − uµ
= λfλ(uλ) + Jλuλ − Jµuµ − µfµ(uµ),

one has, by monotonicity of f and recalling that fλ = f ◦ Jλ,(
fλ(uλ)− fµ(uµ)

)
(uλ − uµ) ≥

(
fλ(uλ)− fµ(uµ)

)(
λfλ(uλ)− µfµ(uµ)

)
≥ λ

∣∣fλ(uλ)
∣∣2 + µ

∣∣fµ(uµ)
∣∣2 − (λ+ µ)

∣∣fλ(uλ)
∣∣∣∣fµ(uµ)

∣∣
≥ −µ

2

∣∣fλ(uλ)
∣∣2 − λ

2

∣∣fµ(uµ)
∣∣2

≥ −1

2
(λ+ µ)

(∣∣fλ(uλ)
∣∣2 +

∣∣fµ(uµ)
∣∣2).

Moreover, since |fλ(x)| ≤ |f(x)| . 1+ |x|d for all x ∈ R and |x−y|q−2 .
(
|x|+ |y|

)q−2

for all x, y ∈ R (the latter inequality holds because q ≥ 2), one infers
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(
fλ(uλ)− fµ(uµ)

)
(uλ − uµ)|uλ − uµ|q−2

& −(λ+ µ)
(
1 + |uλ|2d + |uµ|2d

)
|uλ − uµ|q−2

& −(λ+ µ)
(

1 +
(
|uλ|+ |uµ|

)2d)(|uλ|+ |uµ|)q−2

& −(λ+ µ)
(

1 + |uλ|2d+q−2 + |uµ|2d+q−2
)
,

thus also∫ t

0

e−αsΦ′q(vλ − vµ)
(
fλ(uλ)− fµ(uµ)

)
ds

& −(λ+ µ)

∫ t

0

e−qαs
(

1 +
∥∥uλ∥∥2d+q−2

L2d+q−2
+
∥∥uµ∥∥2d+q−2

L2d+q−2

)
ds

& −(λ+ µ)
1− e−qαt

qα

(
1 + sup

s≤t

∥∥uλ(s)
∥∥2d+q−2

L2d+q−2
+ sup

s≤t

∥∥uµ(s)
∥∥2d+q−2

L2d+q−2

)
,

which estimates the third term on the left-hand side of (8).
The Lipschitz continuity of B implies that the integrand in the last term on the

right-hand side of (8) is estimated by

C2
Be
−qαs ∥∥uλ − uµ∥∥qLq = C2

B

∥∥vλ − vµ∥∥qLq .
In particular, collecting the second term on the right-hand side and the second term
on the left-hand side of (8), we obtain

∥∥vλ(t)− vµ(t)
∥∥q
Lq

+ q
(
α− η − C2

B(q − 1)/2
) ∫ t

0

‖vλ − vµ‖qLq ds

. (λ+ µ)
1− e−qαt

qα

(
1 + sup

s≤t

∥∥uλ(s)
∥∥2d+q−2

L2d+q−2
+ sup

s≤t

∥∥uµ(s)
∥∥2d+q−2

L2d+q−2

)
+

∣∣∣∣∫ t

0

e−αsΦ′q(vλ − vµ)
(
B(uλ)−B(uµ)

)
dW

∣∣∣∣.
For any α > 1/q, raising both sides to the power p/q, taking supremum in time,6 then
expectation, one gets, setting p∗ := (2d+ q − 2)p/q,

E sup
t≤T

∥∥vλ(t)− vµ(t)
∥∥p
Lq

+ qp/q
(
α− η − 1

2
C2
B(q − 1)

)p/q
E
(∫ T

0

∥∥vλ − vµ∥∥qLq ds
)p/q

. (λ+ µ)p/q
(

1 + E sup
t≤T

∥∥uλ(t)
∥∥p∗
L2d+q−2

+ E sup
t≤T

∥∥uµ(t)
∥∥p∗
L2d+q−2

)
+ E sup

t≤T

∣∣∣∣∫ t

0

e−αsΦ′q(vλ − vµ)
(
B(uλ)−B(uµ)

)
dW

∣∣∣∣p/q,
(9)

where, by the Burkholder–Davis–Gundy inequality,

6Note that A(t) +B(t) ≤ C(t) for all t, with A, B, C positive functions of t, implies supt A(t) ≤
supt C(t) and supt B(t) ≤ supt C(t), hence supt A(t) + supt B(t) ≤ 2 supt C(t).
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E sup
t≤T

∣∣∣∣∫ t

0

e−αsΦ′q(vλ − vµ)
(
B(uλ)−B(uµ)

)
dW

∣∣∣∣p/q
. E

(∫ T

0

∥∥e−αsΦ′q(vλ − vµ)
(
B(uλ)−B(uµ)

)∥∥2

`2
ds

) p
2q

.

By an argument based on Minkowski’s and Hölder’s inequalities already used several
times, and the Lipschitz continuity of B, one has∫ T

0

∥∥e−αsΦ′q(vλ − vµ)
(
B(uλ)−B(uµ)

)∥∥2

`2
ds

≤
∫ T

0

∥∥Φ′q(vλ − vµ)
∥∥2

Lq′

∥∥e−αs(B(uλ)−B(uµ)
)∥∥2

Lq(`2)
ds

.
∫ T

0

∥∥vλ − vµ∥∥2(q−1)

Lq

∥∥e−αs(B(uλ)−B(uµ)
)∥∥2

Lq(`2)
ds

≤ C2
B sup
t≤T

∥∥vλ − vµ∥∥2(q−1)

Lq

∫ T

0

∥∥vλ − vµ∥∥2

Lq
ds.

This implies

E sup
t≤T

∣∣∣∣∫ t

0

e−αsΦ′q(vλ − vµ)
(
B(uλ)−B(uµ)

)
dW

∣∣∣∣p/q
. C

p/q
B E sup

t≤T

∥∥vλ − vµ∥∥p(q−1)/q

Lq

(∫ T

0

∥∥vλ − vµ)
∥∥2

Lq
ds

) p
2q

≤ εCp/qB E sup
t≤T

∥∥vλ − vµ∥∥pLq +N1(ε)C
p/q
B E

(∫ T

0

∥∥vλ − vµ)
∥∥2

Lq
ds

) p
2

≤ εCp/qB E sup
t≤T

∥∥vλ − vµ∥∥pLq +N1(ε)C
p/q
B T 1− 2

qE
(∫ T

0

∥∥vλ − vµ)
∥∥q
Lq
ds

) p
q

,

where we have used Young’s inequality with exponents q/(q− 1) and q in the second-
last step, and Hölder’s inequality with exponents q/2 and q/(q − 2) in the last step
(recall that q ≥ 2). By (9), we conclude that there exist constantsN2, N3, independent
of λ, µ, and α, with N2 also independent of ε, such that

E sup
t≤T

∥∥vλ(t)− vµ(t)
∥∥p
Lq

+ qp/q
(
α− η − 1

2
(q − 1)C2

B

)p/q
E
(∫ T

0

∥∥vλ − vµ∥∥qLq ds
)p/q

≤ εN2E sup
t≤T

∥∥vλ(t)− vµ(t)
∥∥p
Lq

+N3E
(∫ T

0

∥∥vλ − vµ∥∥qLq ds
)p/q

+ (λ+ µ)p/q
(

1 + E sup
t≤T

∥∥uλ(t)
∥∥p∗
L2d+q−2

+ E sup
t≤T

∥∥uµ(t)
∥∥p∗
L2d+q−2

)
.

It is immediately seen that, choosing ε small enough and α large enough, we are left
with

E sup
t≤T

∥∥vλ(t)−vµ(t)
∥∥p
Lq

. (λ+µ)p/q
(

1 + E sup
t≤T

∥∥uλ(t)
∥∥p∗
L2d+q−2

+ E sup
t≤T

∥∥uµ(t)
∥∥p∗
L2d+q−2

)
,

which implies, by the boundedness of (uλ) in Hp∗(L2d+q−2), that (uλ) is a Cauchy
sequence in Hp,α(Lq), hence also in Hp(Lq) by equivalence of (quasi-)norms.
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The strong convergence of uλ to a process u ∈ Hp(Lq) just established does not
seem sufficient, unfortunately, to prove that u is a strict mild solution to (1). In fact,
writing the regularized equation (6) in its integral form

(10) uλ(t) +

∫ t

0

S(t− s)fλ(uλ(s)) ds

= S(t)u0 + η

∫ t

0

S(t− s)uλ(s) ds+

∫ t

0

S(t− s)B(s, uλ(s)) dW (s),

difficulties appear, as is natural to expect, when trying to pass to the limit in the
integral on the left-hand side. We are going to show that boundedness assumptions
on (uλ) in a smaller space imply convergence of the term containing fλ(uλ) in a
suitable norm, which is turn yields well-posedness in the strict mild sense. First we
state and prove a Lipschitz continuity result for the solution map u0 7→ u of strict
mild solution, which immediately implies uniqueness.

Lemma 4.2. Let u1, u2 be strict mild solutions in Hp(Lq) to (1) with initial con-
ditions u01 and u02, respectively. Then

‖u1 − u2‖Hp(Lq) . ‖u01 − u02‖Lp(Lq).

In particular, if (1) admits a strict mild solution u ∈ Hp(Lq), then it is unique and
the solution map is Lipschitz continuous from Lp(Lq) to Hp(Lq).

Proof. We use again an argument based on Itô’s formula and elementary inequali-
ties. By definition of a strict mild solution, we have f(u1), f(u2) ∈ L1(Lq). Therefore,
from

d(u1 − u2) +A(u1 − u2) dt+
(
f(u1)− f(u2)

)
dt

= η(u1 − u2) dt+
(
B(u1)−B(u2)

)
dW, u1(0)− u2(0) = u01 − u02,

and Proposition 3.2, it follows that∥∥v1(t)− v2(t)
∥∥q
Lq

+ q(α− η)

∫ t

0

‖v1 − v2‖qLq ds

≤
∥∥u01 − u02

∥∥q
Lq

+M(t)

+
1

2
q(q − 1)

∫ t

0

∥∥e−αs(B(u1)−B(u2)
)∥∥2

Lq(`2)

∥∥v1 − v2

∥∥q−2

Lq
ds,

where vi := e−α·ui, i = 1, 2, and

M(t) :=

∫ t

0

e−αsΦ′q(v1(s)− v2(s))
(
B(u1(s))−B(u2(s))

)
dW (s).

By the Lipschitz continuity of B,∥∥e−αs(B(u1)−B(u2)
)∥∥2

Lq(`2)

∥∥v1 − v2

∥∥q−2

Lq
≤ C2

B

∥∥v1 − v2

∥∥q
Lq
,

hence ∥∥v1(t)− v2(t)
∥∥q
Lq

+ q
(
α− η − 1

2
(q − 1)C2

B

)∫ t

0

‖v1 − v2‖qLq ds

≤
∥∥u01 − u02

∥∥q
Lq

+M(t),
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and we choose α so that
(
α− η− (q− 1)C2

B/2
)
> 0. Taking suprema in time, raising

to the power p/q, taking expectation, and raising to the power 1/p, we get∥∥v1 − v2

∥∥
Hp(Lq)

+ q1/q
(
α− η − 1

2
(q − 1)C2

B

)1/q∥∥v1 − v2

∥∥
Lp(Lq(Lq)))

.
∥∥u01 − u02

∥∥
Lp(Lq)

+
∥∥M∗T∥∥1/q

Lp/q
,

where the implicit constant depends only on p and q, and M∗T := supt≤T |Mt|. The
Burkholder–Davis–Gundy inequality yields∥∥M∗T∥∥1/q

Lp/q
.
∥∥[M,M ]

1/2
T

∥∥1/q

Lp/q
=
∥∥[M,M ]

1/(2q)
T

∥∥
Lp

.

∥∥∥∥(∫ T

0

∥∥v1 − v2

∥∥2(q−1)

Lq

∥∥e−αs(B(u1)−B(u2))
∥∥2

Lq(`2)

) 1
2q
∥∥∥∥
Lp

.
∥∥v1 − v2

∥∥
Lp(L2q(Lq))

≤ ε
∥∥v1 − v2

∥∥
Hp(Lq)

+N(ε)
∥∥v1 − v2

∥∥
Lp(Lq(Lq))

,

where we have used the Lipschitz continuity of B and the inequality

‖φ‖L2q
≤ ‖φ‖1/2Lq

‖φ‖1/2L∞
≤ ε‖φ‖L∞ +N(ε)‖φ‖Lq ∀φ ∈ Lq ∩ L∞.

We are thus left with∥∥v1 − v2

∥∥
Hp(Lq)

+ q1/q
(
α− η − 1

2
(q − 1)C2

B

)1/q∥∥v1 − v2

∥∥
Lp(Lq(Lq)))

.
∥∥u01 − u02

∥∥
Lp(Lq)

+ ε
∥∥v1 − v2

∥∥
Hp(Lq)

+N(ε)
∥∥v1 − v2

∥∥
Lp(Lq(Lq))

.

Since the implicit constant is independent of α and ε, this implies, upon choosing α
large enough and ε small enough, and recalling that the (quasi-)norms ‖·‖Hp,α(Lq) and
‖·‖Hp(Lq) are equivalent,∥∥u1 − u2

∥∥
Hp(Lq)

hT
∥∥u1 − u2

∥∥
Hp,α(Lq)

=
∥∥v1 − v2

∥∥
Hp(Lq)

.
∥∥u01 − u02

∥∥
Lp(Lq)

.

To prove uniqueness of solutions in Hp(Lq) we have used in a crucial way the
condition f(u) ∈ L1(Lq), which allows one to apply Proposition 3.2 (i.e., to use Itô’s
formula). It is thus natural to look for conditions ensuring weak compactness of fλ(uλ)
in a functional space contained in L0(L1(Lq)). This is the motivation for the following
well-posedness result, conditional on boundedness of (uλ) in a suitable norm.

Proposition 4.3. Let p > 0, q ≥ 2 and p∗ := p(2d+q−2)/q > d. If the sequence
(uλ) is bounded in Hp∗(Lqd), then (1) admits a unique strict mild solution u ∈ Hp(Lq)
with continuous paths, and u0 7→ u is Lipschitz continuous from Lp(Lq) to Hp(Lq).

Proof. Since d ≥ 1 implies qd ≥ 2d + q − 2 and Lqd ↪→ L2d+q−2, it follows by
Lemma 4.1 that uλ converges strongly to u ∈ Hp(Lq) as λ→ 0. We are going to pass
to the limit as λ→ 0 in a mild form of (6), i.e., in (10) above. The convergence∫ t

0

S(t− s)B(uλ(s)) dW (s)
λ→0−−−→

∫ t

0

S(t− s)B(u(s)) dW (s)

in probability for all t ≤ T follows by Theorem 3.3. In fact, by the contractivity of S
and the Lipschitz continuity of B, one has
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2130 CARLO MARINELLI

E
∥∥∥∥∫ t

0

S(t− r)
(
B(uλ(r))−B(u(r))

)
dW (r)

∥∥∥∥p
Lq

. E
(∫ T

0

∥∥uλ(r)− u(r)
∥∥2

Lq
dr

)p/2
,

where the last term tends to zero as λ→ 0 because uλ → u in Hp(Lq) and Hp(Lq) ↪→
Lp(L2(Lq)).

We can now consider the term in (10) involving fλ(uλ). It follows from |fλ| ≤ |f |
and |f(x)| . 1 + |x|d for all x ∈ R that, for any s > 1,∥∥fλ(uλ)

∥∥
Lp∗/d(Ls(Lq))

. 1 +
∥∥uλ∥∥dHp∗ (Lqd)

,

so that fλ(uλ) = f(Jλuλ) is bounded, hence weakly compact, in the reflexive Ba-
nach space E := Lp∗/d(Ls(Lq)) (recall that p∗/d > 1 by assumption). In particular,
there exists g ∈ E and a subsequence of λ, denoted by the same symbol, such that
f(Jλuλ) → g weakly in E as λ → 0. Since Jλuλ → u strongly in E as λ → 0 and f ,
as an m-accretive operator on E, is also strongly-weakly closed thereon, we deduce
that g ∈ f(u) m-a.e. Since the linear operator

φ 7→
∫ ·

0

S(· − s)φ(s) ds

is strongly (hence also weakly) continuous on E, we infer that∫ ·
0

S(· − s)fλ(uλ(s)) ds
λ→0−−−→

∫ ·
0

S(· − s)g(s) ds

weakly in E and hence that

u(t) = S(t)u0 −
∫ t

0

S(t− s)
(
g(s)− ηu(s)

)
ds+

∫ t

0

S(t− s)B(u(s)) dW (s)

for almost all t ∈ [0, T ]. However, since u admits a continuous Lq-valued modification,
the identity must be satisfied for all t ∈ [0, T ]. Existence is thus proved, and unique-
ness as well as continuous dependence on the initial datum follow by the previous
lemma. The mild solution u, being a strong limit in Hp(Lq) of (uλ), inherits the path
continuity of the latter.

4.2. A priori estimates. As we have just seen, well-posedness in the strict
mild sense in Hp(Lq) for (1) can be reduced to obtaining a priori estimates for (uλ)
in Hp1(Lq1), with p1 > p and q1 > q suitably chosen.

Proposition 4.4. Let p > 0 and q ≥ 2. If u0 ∈ Lp(Lq) is F0-measurable and
hypotheses (Aq), (Bp,q) are satisfied, then there exists a constant N , independent of
λ, such that

E sup
t≤T

∥∥uλ(t)
∥∥p
Lq
≤ N

(
1 + E

∥∥u0

∥∥p
Lq

)
.

Proof. The proof uses arguments analogous to ones already seen, hence we omit
some detail. As in previous proofs, we begin observing that the regularized equation
(6) admits a unique Lq-valued solution uλ, and, setting vλ(t) := e−αtuλ(t) for all
t ≥ 0, with α > η a constant to be fixed later, Proposition 3.2 implies
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∥∥vλ(t)
∥∥q
Lq

+ q(α− η)

∫ t

0

‖vλ‖qLq ds+

∫ t

0

e−αsΦ′q(vλ)fλ(uλ) ds

≤
∫ t

0

e−αsΦ′q(vλ)B(uλ) dW

+
1

2
q(q − 1)

∫ t

0

∥∥e−αsB(uλ)
∥∥2

Lq(`2)

∥∥vλ∥∥q−2

Lq
ds.

We shall denote the stochastic integral in the previous inequality by M . By the
homogeneity of order q − 1 of Φ′q, the monotonicity of fλ, the inequality |fλ| ≤ |f |,
the identity ‖Φ′q(x)‖Lq′ = q‖x‖q−1

Lq
, and the elementary inequality aq−1 ≤ 1 + aq for

all a ≥ 0, we have

e−αsΦ′q(vλ)fλ(uλ) = e−qαsΦ′q(uλ)
(
fλ(uλ)− fλ(0) + fλ(0)

)
≥ e−qαsΦ′q(uλ)fλ(0) ≥ −e−qαsΦ′q(uλ)|f(0)|

≥ −qe−qαs|f(0)|‖uλ‖q−1
Lq

≥ −qe−qαs|f(0)| − qe−qαs|f(0)|‖uλ‖qLq ,

hence ∫ t

0

e−αsΦ′q(vλ)fλ(uλ) ds ≥ −|f(0)|
α

(1− e−qαt)− q|f(0)|
∫ t

0

∥∥vλ∥∥qLq ds.
Similarly, by the triangle inequality and Lipschitz continuity of B,∥∥e−αsB(uλ)

∥∥2

Lq(`2)
≤ 2C2

B

∥∥vλ∥∥2

Lq
+ 2e−2αs

∥∥B(0)
∥∥2

Lq(`2)
,

hence, thanks to the elementary inequality aq−2 ≤ 1 + aq, a ≥ 0,

1

2
q(q − 1)

∫ t

0

∥∥e−αsB(uλ)
∥∥2

Lq(`2)

∥∥vλ∥∥q−2

Lq
ds

≤ q(q − 1)C2
B

∫ t

0

(
1 + e−2αs

∥∥B(0)
∥∥2

Lq(`2)

)∥∥vλ∥∥qLq ds
+
q(q − 1)

2α

∥∥B(0)
∥∥2

Lq(`2)
(1− e−2αt).

We can thus write∥∥vλ(t)
∥∥q
Lq

+ q
(
α− η − |f(0)| − (q − 1)C2

B

) ∫ t

0

‖vλ‖qLq ds

≤ |f(0)|
α

+
q(q − 1)

2α

∥∥B(0)
∥∥2

Lq(`2)
+M∗T ,

and we choose the constant α larger than η+ |f(0)|+(q−1)C2
B . Raising to the power

p/q, taking suprema, then expectation, and taking the power 1/p, we are left with∥∥vλ∥∥Hp(Lq)
+N1

∥∥vλ∥∥Lp(Lq(Lq))
. N2 +

∥∥M∗T∥∥1/q

Lp/q
,

where

N1 := q1/q
(
α− η − |f(0)| − (q − 1)C2

B

)1/q

,

N2 :=
( |f(0)|

α
+
q(q − 1)

2α

∥∥B(0)
∥∥2

Lq(`2)

)1/q

,
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and, by an argument based on the Burkholder–Davis–Gundy inequality and norm
interpolation, as in the proof of Lemma 4.2,∥∥M∗T∥∥1/q

Lp/q
.
∥∥[M,M ]

1/2
T

∥∥1/q

Lp/q
=
∥∥[M,M ]

1
2q

T

∥∥
Lp

. ε
∥∥vλ∥∥Hp(Lq)

+N3(ε)
∥∥vλ∥∥Lp(Lq(Lq))

.

Collecting estimates yields∥∥vλ∥∥Hp(Lq)
+N1(α)

∥∥vλ∥∥Lp(Lq(Lq))

≤ N4

(
N2 + ε

∥∥vλ∥∥Hp(Lq)
+N3(ε)

∥∥vλ∥∥Lp(Lq(Lq))

)
for a constant N4 independent of α and ε. The proof is completed choosing first ε
small enough, then α large enough, and appealing to the equivalence of the norms of
Hp(Lq) and Hp,α(Lq).

4.3. Proof of Theorem 2.3. Since u0 ∈ Lp∗(Lqd) and hypotheses (Aqd), (Bp∗,qd)
are satisfied, the regularized equation (6) admits a unique Lqd-valued (strict) mild so-
lution uλ for all λ > 0. By Proposition 4.4 the sequence (uλ) is bounded in Hp∗(Lqd);
hence Proposition 4.3 allows us to conclude that (1) admits a unique strict mild so-
lution u ∈ Hp(Lq) and that the solution map u0 7→ u is Lipschitz continuous from
Lp(Lq) to Hp(Lq).

5. Generalized solutions. In this section we prove Theorems 2.5 and 2.7.
The main tool is the Lipschitz continuity of the map (u0, B) 7→ u established in
the next lemma. For reasons of notational compactness, we set Lr,α(0, T ;X) :=
Lr([0, T ], µ;X), where µ is the measure on [0, T ] with density t 7→ e−rαt.

Lemma 5.1. Assume that p > 0 and q ≥ 2. Let u1, u2 ∈ Hp(Lq) be strict mild
solutions to

du1 +Au1 dt+ f(u1) dt = ηu1 dt+B1 dW, u1(0) = u01,

and

du2 +Au2 dt+ f(u2) dt = ηu2 dt+B2 dW, u2(0) = u02,

respectively, where B1, B2 ∈ Lp(L2(0, T ;Lq(`2))) and u01, u02 ∈ Lp(Lq). Then, for
any α > η,

(11)
∥∥u1 − u2

∥∥
Hp,α(Lq)

.
∥∥u01 − u02

∥∥
Lp(Lq)

+
∥∥B1 −B2

∥∥
Lp(L2,α(0,T ;Lq(`2)))

.

In particular,

(12)
∥∥u1 − u2

∥∥
Hp(Lq)

.
∥∥u01 − u02

∥∥
Lp(Lq)

+
∥∥B1 −B2

∥∥
Lp(L2(0,T ;Lq(`2)))

.

Moreover, the same estimates hold for generalized solutions.

Proof. The proof uses again arguments analogous to those used in the proof of
Lemma 4.2, therefore some detail will be omitted.

Setting vi(t) := e−αtui(t), i = 1, 2, for all t ≥ 0, with α > η, it follows by
Proposition 3.2 and monotonicity of f ,
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∥∥v1(t)− v2(t)
∥∥q
Lq

+ q(α− η)

∫ t

0

‖v1 − v2‖qLq ds

≤
∥∥u01 − u02

∥∥q
Lq

+

∫ t

0

e−αsΦ′q(v1 − v2)
(
B1 −B2

)
dW

+
1

2
q(q − 1)

∫ t

0

∥∥e−αs(B1 −B2

)∥∥2

Lq(`2)

∥∥v1 − v2

∥∥q−2

Lq
ds,

where, by Young’s inequality with exponents q/(q − 2) and q/2, the last term is
estimated by

sup
s≤t

∥∥v1(s)− v2(s)
∥∥q−2

Lq

∫ t

0

e−2αs
∥∥B1 −B2

∥∥2

Lq(`2)
ds

≤ ε sup
s≤t

∥∥v1(s)− v2(s)
∥∥q
Lq

+N(ε)

(∫ t

0

e−2αs
∥∥B1 −B2

∥∥2

Lq(`2)
ds

)q/2
.

Choosing ε smaller than one, hence, as before, raising to the power p/q, taking
suprema in time, then expectation, and finally power 1/p, we get∥∥v1 − v2

∥∥
Hp(Lq)

+ (α− η)1/q
∥∥v1 − v2

∥∥
Lp(Lq(Lq))

.
∥∥u01 − u02

∥∥
Lp(Lq)

+
∥∥B1 −B2

∥∥
Lp(L2,α(0,T ;Lq(`2)))

+
∥∥M∗T∥∥1/q

Lp/q
,

where M denotes the stochastic integral with respect to W in the first inequality
above. Applying the Burkholder–Davis–Gundy inequality, elementary estimates, and
Young’s inequality with exponents q/(q − 1) and q, we have∥∥M∗T∥∥1/q

Lp/q
.
∥∥[M,M ]

1
2q

T

∥∥
Lp

=

∥∥∥∥(∫ T

0

∥∥v1 − v2

∥∥2(q−1)

Lq

∥∥B1 −B2

∥∥2

Lq(`2)
e−2αs ds

) 1
2q
∥∥∥∥
Lp

. ε
∥∥v1 − v2

∥∥
Hp(Lq)

+N(ε)
∥∥B1 −B2

∥∥
Lp(L2,α(0,T ;Lq(`2)))

.

Choosing ε suitably small, the last two inequalities yield∥∥v1 − v2

∥∥
Hp(Lq)

.
∥∥u01 − u02

∥∥
Lp(Lq)

+
∥∥B1 −B2

∥∥
Lp(L2,α(0,T ;Lq(`2)))

,

which, recalling the equivalence of the norms in Hp,α(Lq), α ≥ 0, establishes the claim
because ∥∥u1 − u2

∥∥
Hp,α(Lq)

=
∥∥v1 − v2

∥∥
Hp(Lq)

,∥∥u1 − u2

∥∥
Lp(Lq,α(Lq))

=
∥∥v1 − v2

∥∥
Lp(Lq(Lq))

.

It is easily seen that estimates (11) and (12) are stable with respect to passage to the
limit, hence they remain true for generalized solutions.

Proof of Theorem 2.5. Let p1 ≥ p be such that

p∗1 :=
p1

q
(2d+ q − 2) > d.
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Note that d ≥ 1 implies p∗1 ≥ p1 ≥ p, hence Lp∗1 (Lqd) is dense in Lp(Lq), so that there
exists a sequence

(u0n)n∈N ⊂ Lp∗1 (Lqd)

such that u0n → u0 in Lp(Lq) as n→∞. Similarly, there also exists a sequence

(Bn)n∈N ⊂ Lp∗1 (L2(0, T ;Lqd(`2)))

such that Bn → B in Lp(L2(0, T ;Lq(`2))) as n→∞. Then, by Theorem 2.3, for each
n ∈ N the equation

dun(t) +Aun(t) dt+ f(un(t)) dt = ηu(t) dt+Bn(t) dW (t), un(0) = u0n,

admits a unique strict mild solution un ∈ Hp1(Lq) ↪→ Hp(Lq), and the previous lemma
yields ∥∥un − um∥∥Hp(Lq)

.
∥∥u0n − u0m

∥∥
Lp(Lq)

+
∥∥Bn −Bm∥∥Lp(L2(0,T ;Lq(`2)))

,

hence (un) is a Cauchy sequence in Hp(Lq). This implies that its strong limit u ∈
Hp(Lq) is a generalized solution to (5). Uniqueness and Lipschitz dependence on the
initial datum follow immediately by (11).

Proof of Theorem 2.7. Let w1, w2 ∈ Hp(Lq) and consider the equation, for
i = 1, 2,

dui(t) +Aui(t) dt+ f(ui(t)) dt = ηui(t) dt+B(wi(t)) dW (t), ui(0) = u0i.

The assumptions on B immediately imply that B(w) ∈ Lp(L2(0, T ;Lq(`2))) for all
w ∈ Hp(Lq), hence the previous equation admits a unique generalized solution ui ∈
Hp(Lq) by Theorem 2.5. In particular, the domain of the map Γ is the whole Hp(Lq)
and its image is contained in Hp(Lq). We are now going to show that Γ is a contraction
in Hp,α(Lq) for small T . In fact, inequality (11) yields∥∥u1 − u2

∥∥
Hp,α(Lq)

.
∥∥u01 − u02

∥∥
Lp(Lq)

+
∥∥B(w1)−B(w2)

∥∥
Lp(L2,α(0,T ;Lq(`2)))

,

where, by the Lipschitz continuity of B,∥∥B(w1)−B(w2)
∥∥p
Lp(L2,α(0,T ;Lq(`2)))

= E
(∫ T

0

e−2αs
∥∥B(w1)−B(w2)

∥∥2

Lq(`2)
ds

)p/2
≤ CpBE

(∫ T

0

e−2αs
∥∥w1 − w2

∥∥2

Lq
ds

)p/2
≤ CpBT

p/2
∥∥w1 − w2

∥∥p
Hp,α(Lq)

.

This implies that Γ is a contraction on Hp,α(Lq) for T small enough, hence that a
unique generalized solution exists that depends Lipschitz continuously on the initial
datum. By a classical patching procedure, the result can be extended to arbitrary
finite T .
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6. Mild solutions. In this section we prove Theorem 2.9. The proof is split
into two parts: first we prove existence, showing that one can pass to the limit in the
term of (10) containing fλ(uλ) in the weak topology of L1(L1(L1)). Then we prove
uniqueness, as a consequence of continuous dependence on the initial datum, via an
extension of Proposition 3.2. We proceed this way because, as will be apparent soon,
the symmetry condition on F and the “regularizing” assumptions on A are needed
only to prove uniqueness.

The proofs in this section rely on some results of convex analysis whose proofs
can be found, for instance, in [17, Chapter E].

6.1. Existence. We shall use the following weak convergence criterion (see [7,
Theorem 18]).

Lemma 6.1. Let (Y,A, µ) be a finite measure space. Assume that γ is a maximal
monotone graph in R× R with D(γ) = R and 0 ∈ γ(0). If the sequences of functions
(zn), (yn) ⊂ L0(Y,A, µ) indexed by n ∈ N are such that limn→∞ yn = y µ-a.e.,
zn ∈ γ(yn) µ-a.e. for all n, and there exists a constant N such that∫

Y

znyn dµ < N ∀n ∈ N,

then there exist z ∈ L1(Y, µ) and a subsequence (nk)k such that znk → z weakly in
L1(Y, µ) as k →∞ and z ∈ γ(y) µ-a.e.

Sketch of proof. The weak compactness in L1(Y, µ) of (zn) is a consequence of
znyn = G(yn) + G∗(zn), where G is a convex function with G(0) = 0 such that γ is
the subdifferential of G and G∗ is the conjugate of G. In fact, D(γ) = R implies that
G∗ is superlinear at infinity, which in turn implies, by the criterion of de la Vallée-
Poussin (see, e.g., [5, Theorem 4.5.9]), that (zn) is uniformly integrable in L1(Y, µ);
hence, by the Dunford–Pettis theorem, it is relatively weakly compact thereon (see,
e.g., [5, Corollary 4.7.19]). The fact that z ∈ γ(y) µ-a.e. requires a further (short)
argument based on monotonicity (see [7] for details).

Let us also introduce some further notation. For q ≥ 2, define the homeomorphism
φq of R and the maximal monotone graph f̃ in R× R as

φq : x 7→ x|x|q−2 = |x|q−1 sgnx, f̃ := f ◦ φ−1
q .

Since 0 ∈ f̃(0), there exists a convex function F̃ : R → R with F̃ (0) = 0 such that
∂F̃ = f̃ , where ∂ stands for the subdifferential (in the sense of convex analysis). As
usual, we shall denote the convex conjugate of F̃ by F̃ ∗. We recall that F̃ ∗ is convex
and superlinear at infinity, because f̃ is finite on the whole real line.

In the next statement g stands for the process defined in Definition 2.8.

Proposition 6.2. Let p ≥ q ≥ 2 and 0 ∈ f(0). Assume that
(a) u0 ∈ Lp(Lq);
(b) hypothesis (As) is satisfied for s ∈ {1, q, qd};
(c) hypothesis (Bp,q) is satisfied.

Then there exists a mild solution u ∈ Hp(Lq) to (1). Moreover, u has continuous

paths and satisfies F̂ (u), F̃ ∗(g) ∈ L1(L1(L1)).

Proof. We proceed in several steps.
Step 1. We begin showing that the generalized solution to (1), which exists and

is unique thanks to Theorem 2.7, can be approximated by strict mild solutions to
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suitable equations. Let u be the generalized solution to (1) and δ > 0. Then there
exists n0 ∈ N such that ‖u − un‖Hp(Lq) < δ for all n > n0, where un is the unique
generalized solution to

dun +Aun dt+ f(un) dt = ηun dt+B(un−1) dW, un(0) = u0.

In turn, for any n > n0, there exists ν = ν(n) and u0ν ,
[
B(un−1)

]
ν

such that

‖un − uνn‖Hp(Lq) . ‖u0 − u0ν‖Lp(Lq) +
∥∥[B(un−1)]ν −B(un−1)

∥∥
Lp(L2(0,T ;Lq(`2)))

< δ,

where uνn is the unique strict mild solution to

duνn +Auνn dt+ f(uνn) dt = ηuνn dt+
[
B(un−1)

]
ν
dW, uνn(0) = u0ν .

In particular, by the triangle inequality, one can construct a sequence of strict mild

solutions ūn := u
ν(n)
n such that ‖u− ūn‖Hp(Lq) is less than (a constant times) δ, i.e.,

being δ arbitrary, the sequence ūn := u
ν(n)
n converges to u in Hp(Lq).

Step 2. We are now going to show that there exists a constant N , independent of
n, such that

E
∫ T

0

Φ′q(ūn(s))ḡn(s) ds < N,

where ḡn ∈ f(ūn) m-a.e. is the selection of f(ūn) appearing in the definition of strict
mild solution. Let B̄n := [B(un−1)]ν(n) and vn(t) := e−αtūn(t) for all t ∈ [0, T ], with
α > η a constant. Proposition 3.2 and obvious estimates yield

∥∥vn∥∥qL∞(0,T ;Lq)
+ q(α− η)

∫ T

0

‖vn(s)‖qLq ds+

∫ T

0

e−αsΦ′q(vn(s))ḡn(s) ds

.
∥∥u0n

∥∥q
Lq

+ sup
t≤T

∣∣∣∣∫ t

0

e−αsΦ′q(vn(s))B̄n(s) dW

∣∣∣∣
+

1

2
q(q − 1)

∫ T

0

∥∥e−αsB̄n(s)
∥∥2

Lq(`2)

∥∥vn(s)
∥∥q−2

Lq
ds.

As before, let us denote the stochastic integral on the right-hand side by M . Ap-
pealing to Young’s inequality with exponents q/(q− 2) and q/2, the last term can be
estimated by

ε
∥∥vn∥∥qL∞(0,T ;Lq)

+N(ε)
∥∥B̄n∥∥qL2(0,T ;Lq(`2))

,

so that, choosing ε small enough, raising to the power p/q, and taking expectation,
we obtain

∥∥vn∥∥pHp(Lq)
+ E

(∫ T

0

e−αsΦ′q(vn(s))ḡn(s) ds

)p/q
.
∥∥u0n

∥∥p
Lp(Lq)

+ E(M∗T )p/q +
∥∥B̄n∥∥pLp(L2(0,T ;Lq(`2)))

.

By an argument already used before, based on the Burkholder–Davis–Gundy inequal-
ity and Young’s inequality with exponents q/(q − 1) and q, we have

E(M∗T )p/q . ε
∥∥vn∥∥pHp(Lq)

+N(ε)
∥∥B̄n∥∥pLp(L2(0,T ;Lq(`2)))

,
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thus also, choosing ε small enough,

E
(∫ T

0

e−αsΦ′q(vn(s))ḡn(s) ds

)p/q
.
∥∥u0n

∥∥p
Lp(Lq)

+
∥∥B̄n∥∥pLp(L2(0,T ;Lq(`2)))

,

where the first term on the right-hand side is bounded because, by definition of a
generalized solution, u0n converges to u0 in Lp(Lq). Moreover, denoting the norm of
Lp(L2(0, T ;Lq(`2))) by ‖·‖ for simplicity,∥∥B̄n −B(un−1)

∥∥ =
∥∥[B(un−1)]ν(n) −B(un−1)

∥∥ < δ,

hence ‖B̄n‖ < ‖B(un−1)‖+ δ, where, by the Lipschitz continuity of B,

‖B(un−1)‖ ≤ ‖B(un−1)−B(0)‖+ ‖B(0)‖
. ‖un−1‖Hp(Lq) + ‖B(0)‖.

Since un → u in Hp(Lq) as n → ∞, it follows that
∥∥un∥∥Hp(Lq)

is bounded, which in

turn implies that
∥∥B̄n∥∥ is also bounded. We conclude that there exists a constant N ,

independent of n, such that

E
(∫ T

0

e−αsΦ′q(vn(s))ḡn(s) ds

)p/q
< N.

Since p/q ≥ 1, it follows by Jensen’s inequality that

E
∫ T

0

e−αsΦ′q(vn(s))ḡn(s) ds < N

(where N might differ from the previous one). The proof is finished observing that
e−αsΦ′q(vn(s)) = e−qαsΦ′q(ūn(s)) and e−qαs ≥ e−qαT for all s ∈ [0, T ].

Step 3. We are going to show that the uniform estimate of the previous step
implies that the generalized solution u is also a mild solution to (1). The conclusion
of the previous step can equivalently be written as∫

Ξ

φq(ūn)ḡn dm < N,

where Ξ := Ω × [0, T ] × D, and N is a constant independent of n. Since φq is a

homeomorphism of R, setting vn := φq(ūn) and recalling the definition f̃ := f ◦ φ−1
q ,

we have (see, e.g., [6, p. II.12] about the associativity of composition of graphs)

ḡn ∈ f(ūn) = f ◦ φ−1
q

(
φq(ūn)

)
= f̃(vn);

hence the previous estimate can be written as∫
Ξ

vnḡn dm < N,

where ḡn ∈ f̃(vn) m-a.e. Since, by continuity of φq, vn = φq(un)→ φq(u) =: v m-a.e.
as n → ∞ and D

(
f ◦ φ−1

q

)
= R, Lemma 6.1 implies that there exists g ∈ L1(m) and

a subsequence (n′) of (n) such that ḡn′ → g weakly in L1(m) as n′ →∞, and

g ∈ f ◦ φ−1
q (v) = f ◦ φ−1

q (φq(u)) = f(u) m-a.e.
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Since −A generates a C0-semigroup of contractions on L1(D) by assumption, one
obtains ∫ t

0

S(t− s)g̃n(s) ds→
∫ t

0

S(t− s)g(s) ds

weakly in L1(L1(L1)) as λ→ 0, by a reasoning completely analogous to that used in
the last part of the proof of Proposition 4.3. Similarly, convergence of the stochastic
convolutions follows as in the proof just mentioned because∥∥B̄n −B(u)

∥∥
Lp(L2(0,T ;Lq(`2)))

n→∞−−−−→ 0.

Step 4. It remains to prove that F̂ (u), F̃ ∗(g) ∈ L1(L1(L1)). In fact, we have
ḡnvn = F̃ (vn) + F̃ ∗(g̃n) because gn ∈ f̃(vn) = ∂F̃ (vn); hence, by the previous step,
there exists a constant N , independent of n, such that∫

Ξ

F̃ (vn) dm < N,

∫
Ξ

F̃ ∗(gn) dm < N.

The convexity of F̃ and F̃ ∗ implies the weak lower semicontinuity in L1(m) of

φ 7→
∫

Ξ

F̃ (φ) dm, φ 7→
∫

Ξ

F̃ ∗(φ) dm,

hence F̃ ∗(g) ∈ L1(m) because ḡn → g weakly in L1(m). Moreover, vn → v in m-
measure and

‖vn‖L1(m) = ‖ūn‖Lq−1(m) → ‖un‖Lq−1(m) = ‖v‖L1(m),

by virtue of the strong convergence ūn → u in Hp(Lq) and the embedding Hp(Lq) ↪→
Lq−1(m). We thus have vn → v strongly in L1(m), hence, similarly as above, F̂ (u) =

F̃ (v) ∈ L1(m).

Remark 6.3. If p < q, the above proof does not work because Jensen’s inequality
reverses. However, a weaker integrability result can still be obtained. Namely, again
by Jensen’s inequality, we have∫

Ξ

∣∣fnφq(un)
∣∣p/q dµ < N,

uniformly over n, where the constant N depends also on the Lebesgue measure of D.
Setting x〈a〉 := |x|a sgnx for all x ∈ R and a > 0, taking into account that 0 ∈ f(0),
the previous estimate can equivalently be written as∫

Ξ

f 〈p/q〉n φ〈p/q〉q (un) dµ < N.

For any a > 0 the function x 7→ x〈a〉 is a homeomorphism of R, hence the function

ψp,q : x 7→ φ
〈p/q〉
q (x) is also a homeomorphism of R. We clearly have

f 〈p/q〉n ∈ f 〈p/q〉 ◦ ψ−1
p,q

(
ψp,q(un)

)
µ-a.e., hence there exists z ∈ L1(µ) such that f

〈p/q〉
nk → z weakly in L1(µ) along a

subsequence (nk), with z ∈ f 〈p/q〉 ◦ ψ−1
p,q

(
ψp,q(u)

)
= f 〈p/q〉(u). We thus have, for a

generalized solution, that ζ ∈ f(u) is only in Lp/q(µ), rather than in L1(µ). This in
particular implies that it does not seem possible any longer to claim that u is a mild
solution, even in a very weak sense, as the semigroup S is not defined in Lq(D) spaces
with 0 < q < 1.
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6.2. Uniqueness. The aim of this subsection is to prove continuous dependence
on the initial datum (from which uniqueness follows immediately) for mild solutions
to (1), without assuming that g ∈ L1(Lq). We need to assume, however, the same
integrability conditions on the solution that are established in the proof of Proposition
6.2, as well as positivity and regularizing properties for the resolvent of A and a
symmetry condition on F .

The key is the following estimate for the difference of two mild solutions to (1),
whose proof is inspired by an analogous result, in a different setting, in [2].

Lemma 6.4. Under the hypotheses of Theorem 2.9, assume that ui, i = 1, 2,
satisfies

ui(t) +

∫ t

0

S(t− s)
(
gi(s)− ηui(s)

)
ds = S(t)u0i +

∫ t

0

S(t− s)B(ui(s)) dW (s)

for all t ∈ [0, T ], where gi ∈ L1(L1(L1)), gi ∈ f(ui) m-a.e., and F̂ (ui), F̃
∗(gi) ∈

L1(L1(L1)). Then, setting vi(t) := e−αtui(t), t ∈ [0, T ], for α ≥ 0 constant, one has∥∥v1(t)− v2(t)
∥∥q
Lq

+ q(α− η)

∫ t

0

∥∥v1(s)− v2(s)
∥∥q
Lq
ds

+

∫ t

0

e−αsΦ′q(v1(s)− v2(s))(g1(s)− g2(s)) ds

≤
∥∥u01 − u02

∥∥q
Lq

+

∫ t

0

e−αsΦ′q(v1(s)− v2(s))
(
B(u1(s))−B(u2(s))

)
dW (s)

+
1

2
q(q − 1)

∫ t

0

∥∥e−αs(B(u1(s))−B(u2(s))
)∥∥2

Lq(`2)

∥∥v1(s)− v2(s)
∥∥q−2

Lq
ds

for all t ∈ [0, T ].

Proof. Given σ ∈ N such that (I + εA)−σ maps L1(D) to Lq(D), set hεi :=
(I+εA)−σh for all h ∈ {ui, u0i, gi, vi}, and Bεi := (I+εA)−σB(ui). Then gi ∈ L1(Lq)
and vεi is the unique Lq-valued strong solution to

dvεi +Avεi dt+ (α− η)vεi dt+ e−αtgεi dt = e−αtBεi dW, uεi (0) = uε0i.

Itô’s formula then yields∥∥vε1(t)− vε2(t)
∥∥q
Lq

+ q(α− η)

∫ t

0

∥∥vε1(s)− vε2(s)
∥∥q
Lq
ds

+

∫ t

0

e−αsΦ′q(v
ε
1(s)− vε2(s))(gε1(s)− gε2(s)) ds

≤
∥∥uε01 − uε02

∥∥q
Lq

+

∫ t

0

e−αsΦ′q(v
ε
1(s)− vε2(s))

(
Bε1(s)−Bε2(s)

)
dW (s)

+
1

2
q(q − 1)

∫ t

0

∥∥e−αs(Bε1(s)−Bε2(s)
)∥∥2

Lq(`2)

∥∥vε1(s)− vε2(s)
∥∥q−2

Lq
ds.

(13)

We are now going to pass to the limit as ε → 0 in the above inequality. Since
(I + εA)−σ converges to the identity in L (Lq) in the strong operator topology, it
immediately follows that
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∥∥vε1(t)− vε2(t)
∥∥
Lq

ε→0−−−→
∥∥v1(t)− v2(t)

∥∥
Lq

∀t ∈ [0, T ],∥∥uε01 − uε02

∥∥
Lq

ε→0−−−→
∥∥u01 − u02

∥∥
Lq
.

Since (I+εA)−σ is contracting in Lq, ‖vε1−vε2‖Lq ≤ ‖v1‖Lq +‖v2‖Lq pointwise; hence,
by Fubini’s theorem, v ∈ Hp(Lq), and the dominated convergence theorem,∫ t

0

∥∥vε(s)∥∥q
Lq
ds

ε→0−−−→
∫ t

0

∥∥v(s)
∥∥q
Lq
ds ∀t ≤ T.

The dominated convergence theorem also immediately shows that∫ t

0

∥∥e−αs(Bε1(s)−Bε2(s)
)∥∥2

Lq(`2)

∥∥vε1(s)− vε2(s)
∥∥q−2

Lq
ds

ε→0−−−→
∫ t

0

∥∥e−αs(B(u1(s))−B(u2(s))
)∥∥2

Lq(`2)

∥∥v1(s)− v2(s)
∥∥q−2

Lq
ds.

Let us now consider the last term on the left-hand side of (13). Recalling the definition
of the homeomorphism φq : x 7→ x|x|q−2, we have∫ t

0

e−αsΦ′q(v
ε
1(s)− vε2(s))(gε1(s)− gε2(s)) ds

= q

∫ t

0

e−qαsΦ′q
(
uε1(s)− uε2(s)

)(
gε1(s)− gε2(s)

)
ds

h
∫ t

0

∫
D

(
gε1(s)− gε2(s)

)
φq
(
uε1(s)− uε2(s)

)
dx ds.

The properties of (I + εA)−σ imply easily that gεi → gi in L1(L1(L1)), hence in m-
measure, as ε → 0. Similarly, since uεi → ui in m-measure and φq is continuous,
φq(u

ε
1 − uε2)→ φq(u1 − u2) in m-measure. In particular,(

gε1 − gε2
)
φq
(
uε1 − uε2

) ε→0−−−→ (g1 − g2)φq(u1 − u2)

in m-measure. We are going to show that this convergence takes place in L1(L1(L1)).
To this purpose, it suffices to show, by Vitali’s theorem, that the sequence on the
left-hand side is uniformly integrable. Let δ ∈ ]0, 1/2] be arbitrary but fixed. By
Young’s inequality with conjugate functions F̃ and F̃ ∗ and the definition F̂ := F̃ ◦φq,∣∣(gε1 − gε2)φq(uε1 − uε2)∣∣ h ∣∣δ(gε1 − gε2)

∣∣ ∣∣φq(δ(uε1 − uε2)
)∣∣

≤ F̂
(∣∣δ(uε1 − uε2)

∣∣)+ F̃ ∗
(∣∣δ(gε1 − gε2)

∣∣)
= F̂

(
δ(uε1 − uε2)

)
+ F̃ ∗

(
δ(gε1 − gε2)

)
.

In the last step we have used that F̂ and F̃ ∗ are even: in fact, since F is even and
F (0) = 0, we infer that f is odd, f̃ is odd, and hence F̃ , F̃ ∗, and F̂ are even with
F̃ (0) = F̃ ∗(0) = F̂ (0) = 0. Then it follows that F̃ ∗ and F̂ are increasing on R+ (this
can also be seen by ∂F̃ ∗ = f̃−1 = φq ◦ f−1 ≥ 0 and ∂F̂ = fφ′q ≥ 0 on R+). Therefore

F̂ (cx) = F̂ (c|x|) ≤ F̂ (|x|) = F̂ (x) for all x ∈ R and c ∈ [0, 1], and the same holds for
F̃ ∗. In particular,
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F̂
(
δ(uε1 − uε2)

)
= F̂

(1

2
(2δuε1) +

1

2
(−2δuε2)

)
≤ 1

2
F̂
(
2δuε1

)
+

1

2
F̂
(
2δuε2

)
≤ 1

2

(
F̂ (uε1) + F̂ (uε2)

)
,

and, completely analogously,

F̃ ∗
(
δ(gε1 − gε2)

)
≤ 1

2

(
F̃ ∗(gε1) + F̃ ∗(gε2)

)
,

thus also ∣∣(gε1 − gε2)φq(uε1 − uε2)∣∣ . F̂ (uε1) + F̂ (uε2) + F̃ ∗(gε1) + F̃ ∗(gε2).

Let us now observe that, by Jensen’s inequality for positive operators (see, e.g., [16]),

F̃ ∗(gεi ) = F̃ ∗
(
(I + εA)−σgi

)
≤ (I + εA)−σF̃ ∗(gi),

F̂ ∗(uεi ) = F̂
(
(I + εA)−σui

)
≤ (I + εA)−σF̂ (ui).

But since F̂ (ui), F̃
∗(gi) ∈ L1(L1(L1)) by assumption, hence (I+εA)−σF̂ (ui)→ F̂ (ui)

and (I + εA)−σF̃ ∗(gi) → F̃ ∗(gi) as ε → 0 in L1L1L1, it follows that the sequence∣∣(gε1 − gε2)φq(u
ε
1−uε2)

∣∣ is dominated by a convergent sequence of L1(L1(L1)), which is
a fortiori uniformly integrable. Then (gε1−gε2)φq(u

ε
1−uε2) is also uniformly integrable,

because a (positive) sequence dominated by a uniformly integrable sequence is itself
uniformly integrable. We have thus proved that the last term on the left-hand side of
(13) converges in probability for all t ∈ [0, T ] to∫ t

0

e−αsΦ′q(v1(s)− v2(s))(g1(s)− g2(s)) ds.

It remains only to consider the stochastic integral on the right-hand side of (13),
which converges to∫ t

0

e−αsΦ′q(v1(s)− v2(s))
(
B(u1(s))−B(u2(s))

)
dW (s)

in probability for all t ∈ [0, T ] as ε → 0. The proof is based on an argument en-
tirely analogous to the one already used in the proof of Proposition 3.2 and is hence
omitted.

We can now prove uniqueness of mild solution to (1) and their continuous depen-
dence on the initial datum.

Proposition 6.5. Under the hypotheses of Theorem 2.9, assume that u ∈ Hp(Lq)
is a mild solution to (1). Then u is the unique mild solution such that F̂ (u)+ F̃ ∗(g) ∈
L1(L1(L1)). Moreover, the solution map u0 7→ u is Lipschitz continuous from Lp(Lq)
to Hp(Lq).

Proof. Let u1, u2 be as in the previous lemma, with u01, u0,2 ∈ Lp(Lq). Then∥∥v1(t)− v2(t)
∥∥q
Lq

+ q(α− η)

∫ t

0

∥∥v1 − v2

∥∥q
Lq
ds+

∫ t

0

e−αsΦ′q(v1 − v2)(g1 − g2) ds

≤
∥∥u01 − u02

∥∥q
Lq

+

∫ t

0

e−αsΦ′q(v1 − v2)
(
B(u1)−B(u2)

)
dW

+
1

2
q(q − 1)

∫ t

0

∥∥e−αs(B(u1)−B(u2)
)∥∥2

Lq(`2)

∥∥v1 − v2

∥∥q−2

Lq
ds,
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where
Φ′q(v1 − v2)

(
g1 − g2

)
= qe−(q−1)α·〈g1 − g2, φq(u1 − u2)

〉
≥ 0.

We are now in the condition to use exactly the same proof of Lemma 4.2, arriving at∥∥u1 − u2

∥∥
Hp(Lq)

.
∥∥u01 − u02

∥∥
Lp(Lq)

,

which proves that u0 7→ u is Lipschitz continuous from Lp(Lq) to Hp(Lq), and hence,
as an immediate consequence, that the solution is unique.

Remark 6.6. It is clear by the previous proof that we do not have well-posedness
in the space Hp(Lq), as our uniqueness result holds only under additional assumptions
on the solution itself. The problem of unconditional uniqueness in Hp(Lq) remains
therefore open.
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[17] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis, Springer-

Verlag, Berlin, 2001.
[18] O. Kallenberg, Foundations of Modern Probability, 2nd ed., Springer, New York, 2002.
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cations VII, Birkhäuser, Basel, 2013, pp. 187–196.

[24] C. Marinelli and Ll. Quer-Sardanyons, Existence of weak solutions for a class of semilinear
stochastic wave equations, SIAM J. Math. Anal., 44 (2012), pp. 906–925.
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thesis, Université Paris XI, 1975.
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