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Neocortical activity is permeated with endogenously generated fluctuations,
but how these dynamics impact goal-directed behavior remains a mystery. We
demonstrate that ensemble neural activity in primate visual cortex sponta-
neously transitions between phases of vigorous (On) and faint (Off) spiking
synchronously across cortical layers. We show that these On-Off dynamics,
reflecting global changes in cortical state, are also modulated at a local scale
during selective attention. Moreover, we find that the momentary phase of lo-
cal ensemble activity predicts behavioral performance. Our results show that
cortical state is controlled locally within a cortical map according to cogni-
tive demands and reveal the impact of these local changes in cortical state on
goal-directed behavior.

Endogenous fluctuations in neocortical spiking activity vary on a continuum between syn-
chronized and desynchronized states, and the level of synchrony has been associated with the
overall level of arousal (1, 2). During slow-wave sleep and anesthesia, ensemble neural ac-
tivity exhibits slow synchronous transitions between periods of high activity and quiescence.
In individual neurons, these transitions manifest as alternating Down (hyperpolarized) and Up
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(depolarized) phases of the membrane potential, due to, respectively, an ebb and flow of synap-
tic activity (3–7). In awake animals, these slow synchronous transitions are less frequent and
thus ensemble neural activity appears less synchronized than during anesthesia or slow-wave
sleep (8–12). This relationship between arousal and cortical synchrony suggests that mech-
anisms controlling cortical state are brain-wide and unrelated to neural circuits involving the
selective recruitment of local populations during goal-directed behavior. In particular, changes
in cortical state should be orthogonal to the modulations of spiking activity observed locally
within cortical maps during selective attention.

We discovered that spontaneous transitions between episodes of vigorous (On) and faint
(Off) spiking occur synchronously across cortical layers in the visual cortex of behaving mon-
keys. We recorded ensemble spiking activity in area V4 of two rhesus macaques (G and B) with
16-channel linear array microelectrodes (Fig. 1C, left panel) arranged such that receptive fields
(RFs) on all channels largely overlapped (Fig. 1A and fig. S1, supplementary methods 1). The
On-Off transitions occurred synchronously throughout the cortical depth during fixation and in
the absence of visual stimulation (Fig. 1B,C). The On and Off episodes resembled the Up and
Down phases commonly observed during anesthesia and slow-wave sleep (1–3), and were con-
sistent with the the large fluctuations in cortical membrane potentials recorded intracellularly in
behaving monkeys (13).

To examine whether these On-Off fluctuations also occur during more demanding cognitive
behaviors, we trained monkeys to perform a selective attention task. In this task, monkeys
were rewarded for detecting changes in a visual stimulus and indicating those changes with an
antisaccade response (Fig. 1D). During each trial, a small central cue indicated the stimulus that
was most likely to change orientation. The cued stimulus was thus the target of covert attention,
whereas due to anticipation of antisaccadic response, the stimulus opposite to the cue was the
target of overt attention (14). In spite of the difficulty of the task, monkeys performed well
above chance, with 69% and 67% correct responses for monkeys G and B, respectively. While
monkeys performed this task, we recorded from area V4 in 46 sessions (25 in monkey G and
21 in monkey B). As in the fixation task, we observed prominent On-Off transitions occurring
synchronously across the cortical depth in both spontaneous and stimulus-driven activity, before
and after the attention cue was presented, and evident in both single- and multi-unit activity
(Fig. 1E, fig. S2, supplementary information 3.1). On-episodes reliably followed stimulus onset
on majority of trials. However, subsequent On-Off transitions occurred irregularly within and
across trials during the sustained response to the stable RF stimulus. Transitions were also
irregular with respect to the attention-cue’s onset.

To characterize the On-Off dynamics, we counted spikes in 10 ms time bins and used a Hid-
den Markov Model (HMM) as a statistically principled way to segment spike-count data into On
and Off episodes (15, 16) (Fig. 2A, supplementary methods 2). HMM was fitted to 16-channel
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multi-unit activity, but all analyses based on fitted HMM were performed on both single- and
multi-unit activities yielding highly consistent results. The HMM has a one-dimensional, latent
variable representing an unobserved population state that switches between two phases, On and
Off. Spikes on 16 recorded channels are assumed to be generated by inhomogeneous Poisson
processes with different mean rates during the On and Off phases. When an HMM is fitted to
the spiking data, 34 parameters are estimated: firing rates in the On and Off phases for each
of 16 channels and transition probabilities pon and poff for the entire ensemble (Fig. 2B). Using
these parameters, we can then infer the most likely sequence of On and Off episodes that under-
lie the observed spike trains on a trial-by-trial basis (Fig. 2C). By visual inspection, On and Off
episodes inferred by the HMM were closely aligned to the periods of vigorous and faint spiking.
These On-Off transitions in spike-rates were also phase-locked to low-frequency fluctuations in
the local field potential (LFP) (fig. S3, supplementary information 3.2). On average, the HMM
captured about half of the maximal explainable variance in the data (fig. S4, supplementary
information 3.3). For most recording sessions (31 total, 67%), the two-phase HMM was the
most parsimonious model among HMMs with 1 or up to 8 possible phases (fig. S5). These
31 recordings were therefore used in subsequent analyses of On and Off episode durations.
For the remaining 15 (33%) recordings, a one-phase HMM was the most parsimonious model.
Consistent with HMM assumptions, the durations of On and Off episodes were distributed ex-
ponentially with the decay time-constants τon and τoff given by the average On and Off episode
durations (Fig. 2D). The averages across sessions of these average On and Off episode dura-
tions were, respectively, τon = 149± 77 ms and τoff = 102± 33 ms for stimulus-driven activity
and τon = 97 ± 36 ms and τoff = 118 ± 47 ms for spontaneous activity (mean ± std across 31
sessions) (fig. S6). In addition, we analyzed laminar recordings from area V4 performed with
a different type of linear electrode array, in two different behaving monkeys, and in a different
laboratory. In this additional dataset, On-Off transitions also occurred synchronously across
cortical layers during spontaneous and stimulus-driven activity and were equally well described
by the two-phase HMM (Fig. 2E-G, fig. S7, supplementary information 3.4).

To investigate the extent to which On-Off dynamics reflect arousal or selective attention, we
analyzed data from the two monkeys performing the attention task. In rodents, cortical state
dynamics closely covary with global arousal, as measured by pupil size, with dilation charac-
terized by desynchronization of neural activity and constriction by an increase in low-frequency
fluctuations (17, 18). Similarly, we found that the pupil size was positively correlated with the
average duration of On episodes on a trial-by-trial basis, during fixation and attention (fig. S8).
Thus, the On-Off dynamics indeed reflected global changes of cortical state associated with
arousal. Spatial attention, on the other hand, involves the selective recruitment of local neu-
ronal populations encoding behaviorally relevant stimuli at one retinotopic location and the
simultaneous suppression of populations encoding irrelevant stimuli in other retinotopic loca-
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tions (19–21). In our attention task, we used three behavioral conditions to measure the local
effects of both covert and overt attention on neuronal activity. In the covert attention condition,
the cue directed animal’s attention to the RF stimulus. In the overt attention condition, the cue
directed attention to the stimulus opposite the RF and indicated that a saccade to the RF stimulus
was likely to be required. In the control condition, the cue directed covert and overt attention to
stimuli in directions orthogonal to the RF direction. The overall mean firing rate of V4 neurons
was greater in covert and overt attention conditions relative to the control condition (Fig. 3A,
fig. S9B), as has been previously reported (14). If these local effects of selective attention are
indeed orthogonal to global state changes, then we should not expect On-Off dynamics to be
modulated by attention.

We considered three ways in which an attention-induced increase in mean firing rate could
co-occur with the On-Off dynamics (Fig. 3B). First, mean firing rate could be enhanced during
On phase, Off phase, or both, without any difference in the transition dynamics across attention
conditions. This outcome would suggest that the On-Off dynamics are not selective for local
neuronal populations, but reflect a global state. Second, the enhancement in the mean firing rate
could arise entirely from an increase in the duration of On episodes, or decrease in the duration
of Off episodes, or both, but without any change in the firing rates during On or Off phases.
Third, a combination of the first two scenarios is also possible: the firing rates and durations of
the On and Off episodes could both be modulated. The last two outcomes would both indicate
that On-Off dynamics are locally and selectively modulated within confined retinotopic regions
and do not solely reflect a global arousal state.

We found that the On-Off dynamics were modulated by attention consistent with the third
scenario. Firing rates during the On and Off phases were slightly, but significantly, enhanced
during both types of attention (Fig. 3C, Wilcoxon signed rank test, covert: On phase median
modulation index (MI) MI = 0.008, p = 0.002, Off phase median MI = 0.005, p = 0.046;
overt: On phase median MI = 0.014, p < 10−5, Off phase median MI = 0.029, p < 10−10)
(supplementary methods 2.2). The average duration of Off episodes was significantly longer
in the covert, but not the overt, attention condition compared to control conditions (Fig. 3D,
Wilcoxon signed rank test, covert: median change in duration 4 ms, p = 0.004; overt: median
change in duration −2 ms, p = 0.652). However, the average duration of On episodes was sig-
nificantly longer during both covert and overt attention compared to controls (Fig. 3D, Wilcoxon
signed rank test, covert: median change in duration 7 ms, p < 10−3; overt: median change in
duration 13 ms, p < 10−4). Correspondingly, the On-Off transition frequency was significantly
lower during covert and overt attention compared to control conditions (fig. S9A, Wilcoxon
signed rank test, covert: median reduction in frequency 0.2 Hz, p = 0.001; overt: median re-
duction in frequency 0.2 Hz, p < 10−3). In separate control analyses, we confirmed that the
changes in On-Off dynamics were not an artifact of the attention-related increase in firing rates,
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or of the HMM’s assumption of discrete On-Off phases (figs. S9,S10, supplementary informa-
tion 3.5,3.6). We also considered the influence of microsaccades. Unlike stimulus onset, which
was reliably followed by On-episodes, only a small fraction of transitions were preceded by a
microsaccade (fig. S11A-D). Nonetheless, changes in frequency or direction of miscrosaccades
could not account for observed increases in On-episode durations (fig. S11E-G). Moreover, in-
creases in On-episode durations were also observed on trials without microsaccades (fig. S11H,
supplementary information 3.7).

Finally, we asked whether On-Off dynamics, in addition to being modulated by attention,
predicted behavioral performance. In our task, the probability of detecting a change was greater
at the cued location compared to uncued locations (14). We investigated how the increase
in detection probability at the cued location was related to On-Off dynamics (supplementary
methods 2.2). We found that when the cued orientation change occurred in the RFs of recorded
neurons, the probability of detecting that change was significantly greater when it occurred
during an On phase than during an Off phase (Fig. 4A, median detection probability 64.8%

during Off phase, 78.3% during On phase, difference 13.5%, p < 10−3, Wilcoxon signed rank
test). This difference in detection probability was evident beginning ∼ 150 ms before the
stimulus change (Fig. 4B), consistent with the average duration of On-episodes. This effect was
spatially selective: we found no difference in detection probability between On- and Off-phases
when the cued change occurred outside the RFs of recorded neurons (Fig. 4A, median detection
probability difference 0.4%, p = 0.943, Wilcoxon signed rank test).

We have shown that spontaneous On-Off transitions, occurring synchronously throughout
the cortical depth, are modulated locally within a cortical map during selective attention and
predict behavioral performance. These On-Off dynamics represent a substantial source of cor-
related variability classically observed in cortical responses (22), and many features of this
correlated variability, such as spike-count correlations (23), can be understood as arising from
the On-Off dynamics (fig. S12, supplementary information 3.8). The correlated variability can
be affected by cognitive factors (24–26), in particular spike-count correlations can increase
or decrease during selective attention (27–30), and changes in the On-Off dynamics account
for changes in spike-count correlations during attention in our data (fig. S13, supplementary
information 3.8.4). Recent models parsimoniously attribute changes in mean firing rates and
spike-count correlations during attention to fluctuations in shared modulatory signals (31), with
smaller spike-count correlations accounted for by reduced fluctuations in these modulatory
signals (32). The On-Off dynamics observed here provide a basis for positing the apparent
trial-to-trial fluctuations in shared modulatory signals (32, 33), but can account for within-trial
fluctuations as well (fig. S12, supplementary information 3.8.2).

What mechanisms underlie the spatially and temporally precise control of cortical state dur-
ing selective attention? Our results suggest that global mechanisms governing cortical states
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may themselves also operate on a local scale or, alternatively, may interact with separate at-
tentional control mechanisms operating locally. Indeed, recent evidence suggest that neuro-
modulators known to act on a brain-wide scale (1, 34, 35), also mediate the effects of selective
attention (36) and influence circuits controlling selective attention (37). On the other hand,
cortico-cortical inputs appear to influence state changes in a spatially targeted manner (38, 39).
Since diffuse neuromodulatory signals are interspersed with topographically precise projec-
tions throughout cortex, local modulation of cortical state is likely to be widespread, extending
to modalities beyond vision and serving many cognitive functions.
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Fig 1. Spontaneous On and Off transitions in spiking activity during fixation and attention
tasks. (A) Overlap of V4 receptive fields measured simultaneously across the cortical depth on
16 channels (lines - RF contours, dots - RF centers) for 3 example recordings (dva - degrees
of visual angle). (B) Fixation task: monkeys fixated a central dot (FP) on a blank screen for 3
seconds on each trial ; dashed circle outlines approximate V4 receptive field locations (V4 RF).
(C) An example trial showing spontaneous transitions between episodes of vigorous (On) and
faint (Off) spiking in multi-unit activity simultaneously recorded with 16-channel electrodes
(left panel). Spikes are marked by vertical ticks. (D) Attention task: monkeys reported ori-
entation changes with an antisaccade. A cue indicated which stimulus was likely to change.
Monkeys initiated a trial by fixating a central dot (Fixation). After a brief delay (333 ms and
170 ms in monkeys G and B, respectively), four peripheral oriented-grating stimuli appeared,
one in each of the screen’s quadrants (Stimulus). After a variable delay (200−2, 700 ms), stim-
uli briefly disappeared (Blank, < 270 ms) then reappeared either with or without one of them
changing orientation. Monkeys reported an orientation change by executing a saccade to the
stimulus diametrically opposite to the change location (Antisaccade, arrow indicates saccade
direction). If no change happened, monkeys had to maintain fixation (No saccade). A small,
central cue (white line, illustrated larger than actual size) appeared shortly (200− 500 ms) after
stimulus onset (Cue), pointing toward the stimulus which was most likely to change. (E) On
and Off transitions in multi-unit spiking activity on 16 simultaneously recorded channels (each
horizontal band) for twenty example trials. Activity is aligned to the stimulus’ (left panel, blue
triangles) and attention cue’s onset times (right panel, red triangles).

Fig 2. Hidden Markov Model (HMM) of On-Off dynamics. (A) HMM schematic: in each
time bin (t1, t2, t3, . . . ), spike counts x1, . . . x16 on 16 channels are generated by inhomogeneous
Poisson processes with mean rates r1, . . . r16 that are different between the On and Off phase.
Transitions between unobserved On and Off phases are governed by probabilities pon and poff.
(B) Example HMM fit: firing rates of 16 channels in the On and Off phase and transition
probabilities (numbers above the curved arrows) estimated by the model. Error bars are 5%
and 95% percentiles over 10 bootstrap samples. HMM was fitted to multi-unit activity within
the window starting 400 ms after the attention cue onset and until start of the blank period (see
Fig. 1D). (C) Example epoch of spiking activity segmented into On (green) and Off (pink)
episodes by the HMM. (D) Distributions (black lines) of On (right panel) and Off (left panel)
episode durations overlaid by exponential distributions (green and pink lines) with the decay
time-constants set by HMM transition probabilities. (E-G) Same as B-D, but for the additional
laminar dataset.
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Fig 3. Effects of covert and overt attention on dynamics of On-Off transitions. (A) Average
firing rates of an example single-unit for covert (blue), overt (orange) and control trials (grey).
Shaded area represents ±sem. (B) Three hypothetical ways On-Off dynamics can interact with
attention-related increase in average firing rate (blue line - attention, black dashed line - control).
(C) Distribution of attention modulation index of single-unit firing rates in the On (right panel)
and Off (left panel) phases during covert (blue) and overt attention (orange). (D) Distribution
across recordings of the difference in average durations of On (right panel) and Off (left panel)
episodes between covert attention and control (blue), and overt attention and control (orange)
conditions. In panels C,D, triangles indicate medians of the distributions; p-values are for
Wilcoxon signed rank test. (E) Cartoon of two sites in area V4 corresponding to attended (blue
ellipse) and unattended (black ellipse) retinotopic locations (upper panel) with corresponding
On-Off dynamics (lower panel).

Fig 4. On-Off population state predicts behavioral performance. (A) Probability to detect
an orientation change that occurred during the Off-phase (x-axis) versus a change that occurred
during the On-phase (y-axis). Each point represents one recording session (blue - covert at-
tention, grey - control condition). Inset: average difference between the On and Off detection
probability. Error bars represent std across recordings, asterisks indicate p < 10−3 for Wilcoxon
signed rank test. (B) Time course of the detection probability. At each time bin, the detection
probability was calculated separately for trials on which the instantaneous population state was
in the On-phase (green line) and on which it was in the Off-phase (pink line) at the correspond-
ing time bin. Grey shading indicates significant difference in detection probability (two-sided
paired t-test, p < 0.05 corrected for multiple comparisons across all time bins).
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Figure-1. Engel et al.
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Figure-2. Engel et al.
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Figure-3. Engel et al.
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Figure-4. Engel et al.
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