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A major challenge faced by epigenome-wide association studies (EWAS) is cell-type 
heterogeneity. As many EWAS have already demonstrated, adjusting for changes in 
cell-type composition can be critical when analyzing and interpreting findings from 
such studies. Because of their importance, a great number of different statistical 
algorithms, which adjust for cell-type composition, have been proposed. Some of the 
methods are ‘reference based’ in that they require a priori defined reference DNA 
methylation profiles of cell types that are present in the tissue of interest, while other 
algorithms are ‘reference free.’ At present, however, it is unclear how best to adjust 
for cell-type heterogeneity, as this may also largely depend on the type of tissue and 
phenotype being considered. Here, we provide a critical review of the major existing 
algorithms for correcting cell-type composition in the context of Illumina Infinium 
Methylation Beadarrays, with the aim of providing useful recommendations to the 
EWAS community.
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DNA methylation: the marker 
of choice for epigenome-wide 
association studies
Epigenetic modifications represent mitoti-
cally heritable changes which can affect gene 
activity and hence cellular phenotype [1]. 
Epigenome-wide association studies (EWAS) 
seek to identify epigenetic alterations, which 
are associated with disease predisposition or 
disease itself. The number of such EWAS is 
growing at an unprecedented pace [2], fueled 
in part by the realization that susceptibility 
to common diseases may be found also in 
alterations to the epigenome, in addition to 
the genome [3,4]. The epigenome is increas-
ingly believed to play a major role in mediat-
ing the effects of environmental risk factors 
on disease [3,5].

In the context of EWAS, the most relevant 
epigenetic modification is DNA methylation 
(DNAm), which refers to the covalent addi-

tion of a methyl (–CH
3
) group at cytosines 

of CG dinucleotides (commonly referred 
to as ‘CpGs’). Its relevance to EWAS stems 
from the fact that DNAm is a biochemi-
cally stable mark, can be easily amplified 
from relatively small amounts of DNA and 
current technologies allow measurement of 
DNAm genome-wide in a high-throughput 
cost-effective manner [6,7]. Indeed, because 
of cost, Illumina Infinium beadchips are 
favored over whole-genome bisulfite sequenc-
ing (WGBS) as EWAS require DNAm mea-
surements in hundreds, if not thousands, of 
independent samples. The popular Illumina 
450k beadchip [8], which measures DNAm at 
over 450,000 sites, has recently been super-
seded by the Illumina EPIC/850k beadar-
ray [9], which doubles the genomic coverage. 
Measuring epigenetic marks on this scale in 
hundreds to thousands of specimens, includ-
ing clinical specimens, with a high degree 
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of accuracy and reliability is not yet possible for other 
 epigenetic marks such as histone modifications.

Besides these technical reasons, there are also several 
biological reasons why DNAm is currently the most 
relevant epigenetic modification to measure. It plays 
an essential role in development and tissue differen-
tiation [10]; DNAm in a differentiated cell of a given 
lineage is thought to play a critical role in irreversibly 
silencing genes that are not required for specification of 
that lineage [11]. It further plays a key role in determin-
ing transcription factor binding and enhancer function 
during development [11]. Hence, DNAm is highly tis-
sue and cell-type specific [11,12]. DNAm constitutes a 
metastable modification, which is maintained during 
cell division due to the action of DNA methyltrans-
ferase enzymes. However, the fidelity of the DNAm 
copying machinery is significantly lower than that of 
its DNA counterpart, which may result in ‘epimuta-
tions’ every time a cell divides [3]. The rate of such epi-
mutations has been estimated to be as high as 10-5 per 
cytosine per cell division (cf. with a mutation rate of 
bases within CpG nucleotides of ∼10-7 per cell divi-
sion [13,14]). Importantly, DNAm is also highly mallea-
ble, and has been shown to be influenced by many envi-
ronmental exposures, including diet, levels of in utero 
nutrients and smoking [15–19]. The DNAm landscape 
changes dramatically as a function of age [20], in can-
cer [5] and other complex diseases [3]. Thus, DNAm 
represents not only an attractive disease biomarker, but 
also offers to improve our understanding of the inter-
face between environmental risk factors and disease 
phenotypes [3,17,21].

Cell-type heterogeneity in EWAS
A typical EWAS seeks to identify differentially methyl-
ated positions (DMPs) between a set of cases (e.g., indi-
viduals with a disease, or exposed to a disease risk fac-
tor, or predisposed to disease) and controls (usually, 
age-matched healthy or unexposed individuals). This 
task, however, is hampered by the complex nature of 
the tissues in which DNAm is measured. Easily acces-
sible tissues such as blood, saliva/buccal epithelium 
and cervical smears represent a complex milieu of cell 
types. For instance, whole blood is composed of at 
least 7–8 main cell subtypes (neutrophils, eosinophils, 
basophils, CD14+ monocytes, CD4+ T cells, CD8+ 
T cells, CD19+ B cells and CD56+ natural killer cells). 
A major component of cervical smears is immune cell 
infiltrates [22]. Because DNAm is highly cell-type spe-
cific [11], variations in cell-type composition between 
phenotypes can therefore confound analyses. Often, 
this manifests itself as an inflated signal (i.e., a very 
high proportion of positive associations with most of 
these being false positives). The first clearest demon-

stration of this phenomenon was a study by Liu et al., 
which compared 354 rheumatoid arthritis (RA) cases 
with 337 controls in an EWAS performed in whole 
blood [23]. Not adjusting for cell-type composition 
resulted in a large number of associations (caused by a 
shift in the granulocyte-to-lymphocyte ratio between 
cases and controls), which however disappeared after 
correction [23]. Alternatively, variation in cell-type 
composition which is unrelated, or orthogonal, to the 
phenotype of interest can mask potential associations 
leading to deflated signals. For instance, if the EWAS 
sample size is not large, detection of smoking-associ-
ated DNAm changes in whole blood can be compro-
mised by variation in blood-cell-type composition [19]. 
Thus, adjusting for cell-type heterogeneity is critical 
as highlighted and emphasized subsequently by several 
authors [24].

Correcting for cell-type heterogeneity: 
reference-based methods
Statistical methods aimed at adjusting for cell-type 
heterogeneity in the context of EWAS can be broadly 
classified into two types: reference-based and refer-
ence-free methods (Table 1 & Figure 1). Reference-based 
methods use an a priori defined set of DNAm reference 
profiles for the cell types of interest, in other words, 
those thought to be present in the tissue of interest. 
These reference profiles are defined over a selected 
set of CpGs, typically those which maximize the dis-
criminative power of the different cell types. So far, 
these reference DNAm profiles have been generated 
for tissues such as whole blood (and peripheral blood 
mononuclear cells PBMC) [25,26], cord blood [27–29], 
prefrontal cortex [30] and breast [31]. Given these refer-
ence DNAm profiles, the method proceeds by postu-
lating that a sample’s DNAm profile is a weighted lin-
ear sum of these reference profiles. One then attempts 
to find the weights which best explain the observed 
sample profile, in other words, methods typically use 
a least-squares minimization procedure to accomplish 
this. Once the proportions of the underlying cell types 
in the sample have been estimated, these can then be 
incorporated as covariates in supervised models. This 
then allows identification of DMPs, where the differ-
ential methylation is not driven by underlying changes 
in cell-type composition.

So far, in EWAS, only one major reference-based 
algorithm, due to Houseman et al. [26], has been con-
sidered. This particular algorithm infers proportions 
of cell types present in the reference DNAm database 
using a technique known as constrained projection 
(CP; in the literature, often also referred to as quadratic 
programming [QP]). Briefly, in CP/QP inference pro-
ceeds via least-squares minimization but subject to the 
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Figure 1. Reference-based versus reference-free inference. Summary of the main advantages and disadvantages of the two major 
inference-paradigms for adjusting cell-type heterogeneity in EWAS.  
DNAm: DNA methylation; EWAS: Epigenome-wide association study.
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constraint that weights cannot be negative and that the 
sum of weights must add to 1, or alternatively, that the 
sum adds to a number which is less than or equal to 1, 
the latter constraint allowing for the possibility that 
the reference database does not contain all relevant cell 
subtypes. Houseman’s CP algorithm has been exten-
sively tested and demonstrated to work extremely well 
on whole blood [23,42–43], a tissue for which the com-
position is reasonably well known and for which accu-
rate DNAm reference profiles can be generated [25]. 
However, it is at present unclear whether the CP/QP 
technique is the best possible algorithmic framework 
among reference-based methods. For instance, in the 
context of gene expression, a nonconstrained refer-
ence-based approach called CIBERSORT [32,44], was 
found to outperform CP/QP, although the reduced 
performance of CP/QP in the gene expression con-
text could be due to normalization issues which were 
not fully addressed. CIBERSORT uses an advanced 
form of Support Vector Regression to perform what is 
effectively a penalized multivariate regression, impos-
ing non-negativity and normalization constraints only 
a posteriori, in other words, after estimating the regres-
sion weights. This gives the CIBERSORT algorithm 
more flexibility to search for a wider solution space, 
yet it may also be more susceptible to large sources of 
noise. A recent study compared Houseman’s CP algo-
rithm with CIBERSORT and with another alternative 
based on robust partial correlations [33], concluding 
that the CP algorithm is only optimal when noise lev-
els are random (i.e., Gaussian) and very large. In fact, 
for realistic noise levels, robust partial correlations and 
CIBERSORT were found to outperform Houseman’s 
CP algorithm [33], consistent with the observations 
made in the gene expression context [32]. While these 

results indicate that CP/QP may not be the optimal 
framework for inference, reference-based algorithms 
remain underexplored in the context of EWAS, point-
ing toward the critical need to develop improved forms 
of existing algorithms.

An important ingredient of any reference-based 
method is the reference database itself. The quality of 
the reference DNAm profiles impacts on the quality of 
the subsequent inference, as nicely demonstrated in a 
recent study by Koestler et al. [45]. Two related aspects 
of reference profiles that need particular attention are 
the number of features (i.e., CpGs/probes) and the 
resulting colinearity of the cell-type reference profiles. 
Highly colinear reference profiles (e.g., as for similar 
cell types) can cause well-known difficulties for statis-
tical inference [32]. For this reason, optimization of the 
reference database (i.e., selection and number of CpGs) 
through, say, optimization of the conditioning num-
ber of the reference DNAm matrix [32], may result in a 
reference DNAm database that is more stable to ran-
dom perturbation, for instance, to random removal of 
CpGs, as it may happen in practice when not all CpGs 
in the reference are available in the sample of interest. 
Other potential problems with constructing a refer-
ence DNAm database is the use of reference samples 
that are not representative of the cell types encountered 
in real EWAS. For instance, genetics and, in the case 
of primary cells, the age of the donor tissue can impact 
on DNAm [20,46–48]. However, in practice, this appears 
to be less of a limitation because supervised selection of 
DMPs between cell types generally results in CpGs that 
exhibit very large differences in DNAm, typically on 
the order of 70% if not higher, while age is only associ-
ated with relatively smaller shifts in DNAm ( typically 
around 10–20% from young to old) [21]. Indeed, large 
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differences in DNAm, if inferred by comparing a num-
ber of samples representing two given cell types, are 
unlikely to be the result of confounding factors such 
as age, sex or genetics. Confirming this, typical R2 
values that one obtains by applying reference-based 
methods like CP to simulated mixtures of purified 
blood cell subtypes, using completely independent ref-
erence DNAm profiles, are very high (R2 ∼0.9–1) [33], 
suggesting that age, sex and genetic variation are not 
major confounders in this particular context.

Another possibility to improve the quality of a refer-
ence DNAm database is to use prior biological knowl-
edge about which sites are more likely to be cell-type 
specific. For instance, it is well known that active 
enhancer regions are among the most cell-type-specific 
regions [11,12]. Using cell type-specific DNase Hyper-
sensitive Sites information [49] from the NIH Epigenom-
ics Roadmap [12] and ENCODE [50] can, in principle, 
also help identify sites that are more likely to be bona 
fide cell type-specific DMPs. However, a recent study 
showed that, in practical terms, improvements are only 
rather modest [33], mainly because supervised selection 
of DMPs, favoring CpGs that exhibit large differences 
in DNAm between relevant cell types, will identify 
true positive features, which are strongly enriched for 
enhancer and DNase Hypersensitive Site regions.

Correcting for cell-type heterogeneity: 
reference-free methods
An obvious disadvantage of a reference-based approach 
to cell-type composition estimation is that it requires 
not only knowledge of the underlying cell-types, but 
also the existence of an appropriate reference DNAm 
database (Figure 1). Depending on the phenotype and 
tissue of interest, this may not present a major problem 
(e.g., whole blood EWAS); yet, in many scenarios, the 
exact composition of tissues is unknown or it might 
be challenging to obtain purified cell subtypes of these 
tissues (e.g., for cervical smears or buccal tissue). Even 
in the case of blood, different cell subsets exist (e.g., 
CD8+ T-cell subsets) [51], which are normally not 
accounted for in currently available reference DNAm 
databases [25]. Another limitation of reference-based 
methods is that for other complex tissues like, for 
example, breast or skin, which contain a mixture of 
widely different cell types, including epithelial, adi-
pose, fibroblasts and immune cell types, these cells are 
known to interact with each other, which can modify 
their (expression) profiles [52], so that reference profiles 
obtained from cell types ex vivo may not be the rep-
resentative of their profiles in vivo. While so far these 
intercellular interactions have only been shown to 
alter gene expression profiles [52], concomitant DNAm 
 alterations are likely to be present.

Thus, because of these inherent limitations of ref-
erence-based methods, algorithms that can adjust for 
cell-type composition in a reference-free manner have 
also attracted considerable attention. Reference-free 
algorithms specifically designed for EWAS (but which 
should work on other quantitative data types, e.g., gene 
expression) include EWASher [53], RefFreeEWAS [34] 
and more recently, ReFACTOR [36]. In addition, there 
are reference-free approaches such as surrogate variable 
analysis (SVA) [37,54], independent surrogate variable 
analysis (ISVA) [39], whose goal is to adjust the data for 
any type of confounder (be it cell-type composition or 
not) [24,55]. Another inference paradigm, which can be 
viewed as reference-free, is the removing unwanted vari-
ation (RUV) framework [40], which has recently been 
adapted to Illumina DNAm data (RUVm) [56]. Other 
reference-free approaches, which have been explored in 
the gene expression context, but which could be equally 
applied to DNAm data, are based on non- negative 
matrix factorization (NMF) [57,58]. Indeed, a more 
recent approach by Houseman combines NMF and 
QP/CP (a method we here call NMF–QP) [41]. Gen-
erally speaking, most of these algorithms differ quite 
substantially in terms of their  implementation, which 
can greatly impact on performance.

For instance, one key assumption of EWASher 
and ReFACTOR is that the top components of varia-
tion in the data are driven by cell-type composition. 
While this assumption is generally valid for EWAS 
conducted in whole blood (where relative fractions 
of granulocytes and lymphocytes vary substantially 
across even a healthy population of individuals), it is 
unclear whether this assumption would hold in other 
scenarios. For example, peripheral blood is devoid of 
granulocytes and is composed mainly of leukocytes. 
Thus, in this scenario, it is less clear if the top compo-
nents of variation would all be associated with cell-type 
composition. Therefore, depending on the tissue and 
phenotype of interest, it could well be that the assump-
tion underlying EWASher or ReFACTOR fails. As 
an extreme example, the EWASher study [53] reported 
only a few differentially methylated CpGs between 
normal breast and breast cancer tissue in stark contrast 
to studies demonstrating that most of the breast can-
cer DNAm landscape is altered [59] which is further 
supported by studies conducted in cell lines [60]. Thus, 
methods like EWASher or ReFACTOR can remove 
genuine biological signal if top components of varia-
tion are associated with the phenotype of interest and 
not only driven by cell-type composition. This draw-
back can be avoided by using methods such as Ref-
FreeEWAS, SVA or ISVA, which use the phenotype 
of interest from the outset in a supervised framework. 
In the case of SVA or ISVA, surrogate variables rep-
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resenting potential confounders are identified in the 
space of residual variation, in other words, in the data 
obtained after regressing out the effect due to the phe-
notype of interest. Thus, in SVA/ISVA, we no longer 
need to assume that the top components of variation 
in the data are due to changes in cell-type composi-
tion. Likewise, RefFreeEWAS first regresses out the 
effect of the phenotype of interest on the data and 
subsequently performs a singular value decomposition 
on an augmented matrix made up of the estimated 
regression and residual variation matrix [34,61]. As with 
SVA/ISVA, it, therefore, does not assume that the top 
components of data variation are associated with cell-
type composition, although it does assume that the 
top components in the regression and residual varia-
tion space are, a subtle difference which sets it apart 
from SVA/ISVA. Comparing EWASher/ReFACTOR 
with SVA/ISVA/RefFreeEWAS, it is thus clear that 
the latter methods should be preferable, as the assump-
tions underlying their models are more realistic and 
more likely to hold, independently of tissue type and 
phenotype of interest. However, it is worth pointing 
out that the inference one draws from any method is 
only as good as the model itself, and approaches such 
as SVA/ISVA/RefFreeEWAS may also overfit. Indeed, 
if the underlying regression model linking phenotype 
of interest to the data is a poor one, then it is possible 
that residual variation may still be biological [39]. With 
an approach such as SVA, this could then also lead to 
a loss of power [39]. This problem can, in principle, be 
circumvented by judicious choice of the subspace in 
which to construct the surrogate variables, yet choos-
ing this subspace is an unsolved problem if  confounders 
are truly unknown [39].

Another reference-free approach which was not 
specifically designed for cell-type composition, but 
which could be adapted, is RUVm [56]. This builds on 
a previous version of the algorithm (RUV) designed 
for gene expression data and is based on the concept 
of using negative control probes to capture variation 
associated with confounding factors [40]. RUVm uses 
in-built negative controls of the Illumina beadarray to 
model confounding variation and subsequently iden-
tifies a refined set of empirically determined control 
probes, which are then used as covariates in the final 
supervised regression to identify DMPs. As remarked 
by Jaffe and Irizarry [24], this method could be easily 
adapted to the cell-type composition problem, by using 
as control probes, CpGs that discriminate relevant cell 
types. As such, this method would not be truly refer-
ence free, as it uses prior knowledge, of which CpGs 
are important cell type-specific markers. On the other 
hand, it would also not be an entirely reference-based 
method, since it does not need explicit reference 

DNAm profiles. Thus, such an approach could be cat-
egorized as ‘semireference free,’ and algorithms based 
on this concept remain underexplored.

Correcting for cell-type heterogeneity: is 
there an optimal method?
We have summarized the main advantages and disad-
vantages of reference-free and reference-based methods 
(Figure 1). In terms of actual performance, whether on 
simulated or real data, there is currently a lack of stud-
ies offering a comprehensive and objective comparison 
of these algorithms. So far, the most comprehensive 
analysis has been performed by McGregor et al. [62], 
which compared mainly six algorithms (Houseman’s 
reference-based CP method, RefFreeEWAS, SVA, 
ISVA, EWASher and RUV). This study compared 
performance using extensively simulated data, as well 
as real EWAS, concluding that no single method per-
forms best across all evaluation scenarios [62]. Further-
more, the study concluded that SVA, although rarely 
the best in any single data set, was the most robust, 
in other word, the safest method. McGregor et al. are 
right in pointing out that robustness is, probably, also 
the most desirable feature of an algorithm, given that 
most methods exhibited substantial variation in perfor-
mance. As explained earlier, SVA and ISVA are rela-
tively free of underlying assumptions and are also able 
to adjust for confounders other than cell-type compo-
sition. Hence, this might explain why these methods 
were found to be more robust. Nevertheless, it is still 
premature to discard algorithms such as RefFreeEWAS 
or reference-based methods, since the evaluation of 
McGregor et al. did not consider many real data sets. 
Performance of a given method across different real 
data sets can be highly variable and often very different 
to what is observed on simulated data. Hence, a more 
objective comparison would require evaluation of all of 
these methods in at least five to six independent EWAS. 
To make this point clear, finding that ‘method-A’ out-
performs ‘method-B’ in two EWAS is as significant as 
claiming that a coin is biased just because it yielded two 
heads when tossed twice. To conclusively demonstrate 
that ‘method-A’ outperforms ‘method-B’ would require 
at least five to six independent EWAS, since this would 
then be equivalent to obtaining five to six heads in a 
row, the probability of which is less than 0.05.

Another study comparing a number of different 
algorithms (Houseman’s reference-based CP, RefFreeE-
WAS, EWASher and ReFACTor) on simulated as well 
as real data is the one by Rahmani et al. [36], which 
concluded that ReFACTor leads to improved model-
ing accuracy and power. Although ReFACTor has some 
merit, this study is problematic for a number of reasons. 
First, the comparison of ReFACTor to Houseman’s 
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method in terms of modeling cell-type composition 
was biased. Using matched flow-cytometric estimates 
of underlying blood cell subtypes as gold standard, the 
authors compared R2 values obtained from ReFACTor 
with those from Houseman’s CP algorithm, yet the R2 
values from ReFACTor were inflated because they were 
obtained by fitting a multivariate model which included 
up to ten linear components, without ever consider-
ing model complexity, a procedure which results in 
overfitting. Indeed, as recently pointed out by House-
man et al. [41], it is extremely unlikely that any reference-
free approach (without further biological input) could 
ever outperform a reference-based method in terms of 
modeling cell-type composition. Indeed, the reference-
free NMF–QP approach of Houseman was not shown 
to model cell-type composition better than reference-
based methods, and would require additional biologi-
cal input (e.g., knowledge of which CpGs are cell type-
specific DMPs) to offer comparable levels of modeling 
accuracy [41]. A second major concern with the ReFAC-
Tor study is the use of inappropriate gold standards when 
evaluating methods on a real EWAS. Focusing only on 
one RA EWAS to define a gold-standard list of RA asso-
ciated CpGs (which were identified using Houseman’s 
CP method) is inappropriate since these associations 
have yet to be replicated. It is therefore advisable to com-
pare algorithms with other types of EWAS for which 
replicate studies have been performed. For instance, this 
is the case for smoking, for which there are at least five 
to six independent EWAS in whole blood, all leading 
to the same set of smoking-associated DMPs [18]. This 
common set of smoking-associated DMPs can then 
be used to define a bona fide gold-standard true posi-
tive list. Thus, in summary, it is premature, based on 
existing comparative studies, to conclude that there 
is an algorithm which works optimally in all main 
scenarios. Moreover, current evaluations of cell-type 
deconvolution methods have been applied exclusively in 
the context of Illumina Infinium beadchips with as yet 
no comparative studies on WGBS data. To determine 
whether there is an optimal method will thus require 
much more extensive and objective comparisons, using 
also more comprehensive technologies such as WGBS. 
In the meantime, we provide a flowchart to help guide 
users to the best possible choice of algorithm to meet the 
needs of their specific EWAS (Figure 2).

Future perspective
Looking into the future, it is clear that cell type het-
erogeneity will continue to present a major challenge 
to the analysis and interpretation of EWAS data. 
Although existing reference-based algorithms provide 
reasonably good approximations to cell type compo-
sition estimates in whole blood, these have only been 

assessed in relation to major blood cell subtypes. As 
already pointed out by a few authors [51], there is an 
important need to accurately quantify and map the 
full extent of cell type heterogeneity within a known 
tissue such as blood, since otherwise inferred DMPs 
may still be caused by shifts in rare cell subtype pro-
portions. However, for certain phenotypes such as 
age, it is fairly well accepted that specific DNAm 
alterations (e.g., those that map to repressed chromatin 
domains) [20], or those making up Horvath’s clock [63], 
are not driven by cell type composition [64,65]. Indeed, 
it would be hard to explain such tissue-independent 
age-associated DNAm shifts purely in terms of altera-
tions to the proportion of underlying cell types, since 
these associations have even been observed in highly 
diverse and purified cell populations, including stem-
cell populations [20,65–68]. On the other hand, this may 
not generalize to other phenotypes. For instance, in the 
context of smoking, a recent study concluded that dif-
ferential DNAm of a site mapping to GPR15 (a well-
known smoking associated EWAS hit [18]) is caused by 
an expansion of a normal CD3+ T-cell subtype (marked 
by overexpression of GPR15) in the peripheral blood of 
smokers [69,70]. However, whether the increased pro-
portion of this T-cell subtype in the blood of smok-
ers is due to an expansion of a normal pre-existing 
rare T-cell subtype, or whether it is caused by de novo 
DNAm changes to a common T-cell subtype is still 
unclear, as the study was underpowered and could not 
conclusively assess the effect of smoking carcinogens 
on DNAm patterns [70]. As the epigenomes, includ-
ing DNA methylomes of all major and minor blood 
cell subtypes are generated as part of Blueprint [71], 
this resource will undoubtedly help generate more 
complete reference DNAm databases, allowing more 
refined higher resolution analyses of blood EWAS, 
which may help resolve these outstanding issues. Yet an 
immediate statistical challenge in translating WGBS 
methylomes from the International Human Epig-
enome Consortium (IHEC) and Blueprint [72] into 
reference DNAm profiles that could be used for cell 
type deconvolution in Illumina 450k/EPIC EWAS is 
that the coverage of WGBS data is also limited [73]. For 
instance, the overlap between WGBS data for IHEC 
samples and Illumina 450k probes is typically only 
around 40% and can range from as low as 15% to as 
high as 70%. As pointed out by Libertini et al., the 
recommended IHEC coverage (30×) for WGBS means 
that up to 50% of DMPs could be lost, not allowing 
for high-resolution DMP analysis [73]. How big a limi-
tation this may present to cell type deconvolution algo-
rithms, however, remains to be seen, since so far fairly 
accurate deconvolution is possible in specific tissues 
such as blood using reference DNAm profiles defined 
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Figure 2. Guideline flowchart for selecting optimal cell-type deconvolution method. Recommended guideline 
for selecting an optimal algorithm for cell-type deconvolution in an EWAS. In the final column, within each box, 
recommended algorithms have been ordered in order of preference.  
COMBAT: Combatting Batch Effects; CP: Constrained projection; DNAm: DNA methylation; EWAS: Epigenome-
wide association studies; ISVA: Independent surrogate variable analysis; QP: Quadratic programming; RPC: Robust 
partial correlation; RUV: Removing unwanted variation; SVA: Surrogate variable analysis.

A flowchart guideline for selecting a cell-type deconvolution algorithm in an EWAS
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over only a relatively few DMPs (typically ∼100–500). 
If it does present a limitation, a potential solution will 
be to construct reference DNAm profiles, not at the 
level of DMPs, but at the level of differentially methyl-
ated regions, such as, for example, COMETS, which 
represent regions of differential co-methylation [74,75].

Generating more complete reference DNA methy-
lomes for all major human cell types, as done by 
IHEC, will also allow direct application of reference-
based methods to many other complex tissues like 
breast, brain, skin or cervix. For instance, a recent 
study successfully constructed a reference DNAm 
database for breast tissue, which included reference 
profiles for breast epithelial cells, adipose cells and all 
major immune cell subtypes, and used it in conjunc-
tion with CP/QP to infer fractions of these cell types 
in a breast cancer EWAS [31]. This study demonstrated 
that the top component of variation correlates with 
variations in adiposity, underlining the importance 
of adjusting for this variation in breast tissue. As the 
number of available reference DNAm profiles grows, 
there will be a strong need to develop statistical meth-

ods which can optimize the construction of reference 
DNAm databases geared toward analysis of a given 
tissue type. This is particularly pertinent since colin-
earity of reference DNAm profiles is detrimental to 
the quality of inference [32,45], and colinearity would 
increase in line with the resolution and number of dif-
ferent cell types present in such reference DNAm data-
bases. Given that cell types can be naturally arranged 
on a developmental tree representing a differentiation 
hierarchy with human embryonic stem cells at the top 
and terminally differentiated cells at the bottom, we 
anticipate that the most powerful cell type deconvolu-
tion algorithms may need to incorporate such a hierar-
chical tree-like structure in the inference. In line with 
this, and depending on the ultimate task and biologi-
cal question, using an overly detailed reference DNAm 
database might be unnecessary and counterproduc-
tive [32]. For example, if the aim is to adjust for immune 
cell contaminants to identify DNAm alterations which 
are specific to the epithelial compartment of a tissue, 
then it may suffice to have one reference DNAm pro-
file to represent any immune cell type, which could 



www.futuremedicine.com 765future science group

Cell-type deconvolution in epigenome-wide association studies: a review & recommendations    Review

be constructed by focusing on common differences 
between any type of immune cell and epithelial cells. 
The latter strategy was successfully adopted in a recent 
breast cancer EWAS [31]. On the other hand, allow-
ing for different types of immune cells can be critical 
in the context of epithelial tumors, where the type of 
immune-cell infiltrate has been shown to dictate risk of 
distant metastasis and clinical outcome [44,76].

Another outstanding question is the extent to which 
cell–cell interactions can affect and limit the applica-
bility of reference-based methods. For instance, recent 
single-cell analyses, performed at the level of gene 
expression [52], point toward the importance of cell–
cell interactions in modifying specific gene expres-
sion programs of tumor, stromal and immune cells. 
Upcoming single-cell RNA-Seq and DNAm data may 
thus help provide a framework to more objectively 
compare reference-based with reference-free methods.

Single-cell DNAm analysis also offers a means of 
improving the resolution of reference-based methods. 
While cell-to-cell variation in DNAm within a phe-
notypically homogeneous cell population has been 
observed [77], it is yet unclear whether this intercellu-
lar epigenetic variation is of functional or phenotypic 
importance. If important, such intercellular DNAm 
heterogeneity requires a revision of the notion of ‘cell 
type.’ However, we anticipate that the functional or 
phenotypic importance of intercellular DNAm vari-
ability will manifest itself at the cell-population level, 
as has been proposed for the case of gene expression [78]. 
This would then allow for a well-defined notion of ‘cell 
type’, and reference DNAm profiles for such cell types 
could be constructed fairly accurately by compar-
ing bulk or pooled DNAm profiles of corresponding 
cell types and selecting DMPs that exhibit the largest 
differences in mean DNAm. DMPs exhibiting large 
(i.e., >80%) changes in DNAm between cell types 
are unlikely to represent loci that exhibit substantial 
 cell-to-cell variation within a cell type.

Another interesting question which has not yet 
been addressed and which could serve to further assess 
the reliability of existing algorithms is a direct com-
parison between data types. While studies have com-
pared expression (the ESTIMATE algorithm [79]) and 
methylation (the MethylPurify algorithm [80]) based 
estimates of tumor purity with those obtained using 
gold-standard SNP/copy-number assays, no study has 
yet evaluated the extent to which expression-based and 
DNAm-based cell type composition estimates agree, 
even in a common tissue such as blood. This is impor-
tant to assess, since DNAm offers a more stable assay 
than RNA, yet is not directly functional, rendering a 
comparison between the two data types highly non-
trivial and interesting. Such comparisons are possible 

using existing matched DNAm and RNA-Seq data 
sets [65,81]. In performing such comparisons, one should 
not forget to include statistical cell type deconvolution 
algorithms which have been developed mainly for gene 
expression (e.g., CIBERSORT [32] or CellMix [82,83]), 
but which are, in principle, equally applicable to any 
other data type, including DNAm.

Integration of multiple data types, while not pos-
sible for most EWAS (which by definition only mea-
sure DNAm), presents an interesting methodological 
opportunity to improve the construction of reference 
DNAm databases, or, as a means of incorporating 
higher systems-level information as prior biological 
knowledge, which may be particularly useful for ref-
erence-free or semi-reference free approaches. For 
instance, cell type-specific DMPs which correlate 
with gene expression in-cis may represent a more bio-
logically relevant set of features for constructing refer-
ence DNAm databases. Alternatively, previous studies 
have shown the value of integrating DNAm data with 
interaction networks to identify gene modules which 
mark specific cell types [84]. This may provide another 
means of adjusting for cell type composition, either in 
a  reference-based or semi-reference free framework.

Last but not least, another unmet yet key challenge is 
the identification of the specific cell types which drive 
the interesting DMPs. In principle, a DMP between 
phenotypes, which is not driven by cell type composi-
tion effects, could be the result of differential meth-
ylation in only one of the underlying cell types, or, 
at the other extreme, be present in all underlying cell 
types [61]. Identifying which specific cell types carry 
the DNAm alteration is of fundamental importance, 
and statistical approaches to this problem are lacking. 
In the context of smoking, a recent experimental study 
has shown that specific well-validated smoking-associ-
ated DMPs may be present in all blood cell subtypes 
(e.g., cg05575921 in AHRR) or only in specific sub-
sets, for instance, hypomethylation of two CpGs map-
ping to GFI1 and F2RL3 was found to be specific to 
granulocytes, while hypomethylation of another two 
CpGs mapping to CPOX and GPR15 were only found 
in peripheral blood mononuclear cells (T cells) from 
smokers [69]. From a statistical-methods perspective, 
findings of this kind are extremely useful for develop-
ing and improving algorithms which could pinpoint 
the specific types of cells that are altered.
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Executive summary

•	 Statistical algorithms aimed at correcting for cell type heterogeneity in epigenome-wide association studies 
(EWAS) can be broadly classified into reference-based and reference-free algorithms, with semireference-free 
emerging as a promising new inference paradigm.

•	 For EWAS conducted in whole blood, peripheral blood mononuclear cells or cord blood, we recommend the 
use of reference-based methods like CIBERSORT or robust partial correlations. However, if there is evidence 
of additional confounding variation and absolute quantification of cell type proportions is not required, 
methods like surrogate variable analysis, independent surrogate variable analysis or RefFreeEWAS are a safer 
option.

•	 For EWAS studies conducted in other tissues (e.g., buccal, cervical smears or other epithelial tissues), unless 
a high-quality DNA methylation reference database is available, we recommend the use of reference-free 
methods like surrogate variable analysis, independent surrogate variable analysis or RefFreeEWAS.
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