Erratum: H₂S in the L1157-B1 bow shock^{*}

by Jonathan Holdship,¹[†] Serena Viti,¹ Izaskun Jimenez-Serra,¹ Bertrand Lefloch,^{2,3} Claudio Codella,⁴ Linda Podio,⁴ Milena Benedettini,⁵ Francesco Fontani,⁴ Rafael Bachiller,⁶ Mario Tafalla⁶ and Cecilia Ceccarelli^{2,3}

¹Department of Physics and Astronomy, University College London, Gower Street, London WCIE 6BT, UK

²Univ. Grenoble Alpes, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), F-38401 Grenoble, France

³CNRS, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), F-38401 Grenoble, France

⁴INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy

⁵INAF, Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, I-00133 Roma, Italy

⁶IGN, Observatorio Astronómico Nacional, Calle Alfonso XII, E-28014 Madrid, Spain

Key words: stars: formation-ISM: molecules-radio lines: ISM-submillimetre: ISM.

We report an error in the article 'H₂S in the L1157-B1 bow shock' published in 2016, MNRAS, 463, 802–810. The error affects the upper-state column densities of the H₂S transition calculated from their total flux. An error in unit conversion gave a column density a factor of 10 larger than the correct value. This propagated through the analysis, leading to the reported fractional abundance of H₂S in L1157-B1 being similarly too large. The correct fractional abundance of H₂S in L1157-B1 is $6.0 \pm 4.0 \times 10^{-8}$. The deuteration fraction is unchanged.

The best-fitting chemical model of L1157-B1 was selected on two criteria: predicted fractional abundance and the comparison between the abundance and velocity profiles of NH_3 and H_2S . With the revised value, the models where sulphur froze on to the grains without hydrogenating or froze and was converted into OCS (A and

* Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

†E-mail: jrh@star.ucl.ac.uk

D in the original work) predict fractional abundances within the error bar of the measured value. The OCS model still predicts an abundance profile that is inconsistent with the observed ratios of NH_3 and H_2S , but the no-hydrogenation model (model A) cannot be excluded on this basis. As a result of the calculation error, it is therefore most likely that the third point of the conclusion that sulphur on the grains is largely in the form of H_2S is incorrect.

A future article will revisit the H_2S abundance in the context of a more complete analysis of sulphur-bearing species in L1157-B1.

ACKNOWLEDGEMENTS

Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

This paper has been typeset from a TEX/LATEX file prepared by the author.